parent
							
								
									65d963325e
								
							
						
					
					
						commit
						70395a74c0
					
				| @ -0,0 +1,33 @@ | ||||
| from PIL import Image | ||||
| import numpy as np | ||||
| import paddle.fluid as fluid | ||||
| from 口罩检测.util import train_parameters | ||||
| from 口罩检测.VGGNet import VGGNet | ||||
| def load_image(img_path): | ||||
|     img =Image.open(img_path) | ||||
|     if img.mode !='RGB': | ||||
|         img = img.covert('RGB') | ||||
|     img = img.resize((244,244),Image.BILINEAR) | ||||
|     img = np.array(img).astype('float32') | ||||
|     img = img.transpose((2,0,1)) | ||||
|     img = img/255.0 | ||||
|     return img | ||||
| 
 | ||||
| label_dict = train_parameters['label_dict'] | ||||
| 
 | ||||
| #模型预测 | ||||
| with fluid.dygraph.guard(): | ||||
|     model,_ = fluid.dygraph.load_dygraph('vgg') | ||||
|     vgg = VGGNet() | ||||
|     vgg.eval() | ||||
|     infer_path='./unmask.jpg' | ||||
|     img = Image.open(infer_path) | ||||
| 
 | ||||
|     x_data = load_image(infer_path) | ||||
|     x_data = np.array(x_data) | ||||
|     x_data = x_data[np.newaxis,:,:,:] | ||||
|     x_data= fluid.dygraph.to_variable(x_data) | ||||
|     out = vgg(x_data) | ||||
|     result = np.argmax(out.numpy()) | ||||
|     print(label_dict) | ||||
|     print("被预测的图片为:{}".format(label_dict[str(result)])) | ||||
					Loading…
					
					
				
		Reference in new issue