parent
65d963325e
commit
70395a74c0
@ -0,0 +1,33 @@
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import paddle.fluid as fluid
|
||||
from 口罩检测.util import train_parameters
|
||||
from 口罩检测.VGGNet import VGGNet
|
||||
def load_image(img_path):
|
||||
img =Image.open(img_path)
|
||||
if img.mode !='RGB':
|
||||
img = img.covert('RGB')
|
||||
img = img.resize((244,244),Image.BILINEAR)
|
||||
img = np.array(img).astype('float32')
|
||||
img = img.transpose((2,0,1))
|
||||
img = img/255.0
|
||||
return img
|
||||
|
||||
label_dict = train_parameters['label_dict']
|
||||
|
||||
#模型预测
|
||||
with fluid.dygraph.guard():
|
||||
model,_ = fluid.dygraph.load_dygraph('vgg')
|
||||
vgg = VGGNet()
|
||||
vgg.eval()
|
||||
infer_path='./unmask.jpg'
|
||||
img = Image.open(infer_path)
|
||||
|
||||
x_data = load_image(infer_path)
|
||||
x_data = np.array(x_data)
|
||||
x_data = x_data[np.newaxis,:,:,:]
|
||||
x_data= fluid.dygraph.to_variable(x_data)
|
||||
out = vgg(x_data)
|
||||
result = np.argmax(out.numpy())
|
||||
print(label_dict)
|
||||
print("被预测的图片为:{}".format(label_dict[str(result)]))
|
Loading…
Reference in new issue