from 口罩检测.generate_data import custom_reader from 口罩检测.util import train_parameters import paddle as paddle import paddle.fluid as fluid from 口罩检测.VGGNet import VGGNet import numpy as np eval_reader = paddle.batch(custom_reader(train_parameters['eval_list_path']), batch_size=train_parameters['train_batch_size'], drop_last=True) with fluid.dygraph.guard(): model,_ =fluid.load_dygraph('vgg') vgg =VGGNet() vgg.eval() accs=[] for batch_id,data in enumerate(eval_reader()): x_data = np.array([x[0] for x in data]).astype('float32') y_data = np.array([x[1] for x in data]).astype('int64') y_data = y_data[:,np.newaxis] img = fluid.dygraph.to_variable(x_data) label =fluid.dygraph.to_variable(y_data) out,acc= vgg(img,label) label = np.argmax(out.numpy()) accs.append(acc.numpy()[0]) print(np.mean(accs))