import matplotlib.pyplot as plt train_parameters={ "input_size":[3,244,244], "class_dim":-1, 'target_path':"./data_set", "train_list_path":'./train.txt', 'eval_list_path':'./eval.txt', "readme_path": "./readme.json", 'label_dict':{'0': 'maskimages', '1': 'nomaskimages'}, "train_batch_size": 8, 'num_epochs':1, "learning_stategry":{ 'lr':0.001 } } def draw_train_process(title,iters,cost,accs,label_cost,label_acc): plt.title(title,fontsize=24) plt.xlabel('iter',fontsize=20) plt.ylabel('cost/acc',fontsize=20) plt.plot(iters,cost,color='red',label=label_cost) plt.plot(iters,accs,color='green',label=label_acc) plt.legend() plt.grid() plt.show() def draw_process(title,color,iters,data,label): plt.title(title, fontsize=24) plt.xlabel("iter", fontsize=20) plt.ylabel(label, fontsize=20) plt.plot(iters, data,color=color,label=label) plt.legend() plt.grid() plt.show()