You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

90 lines
2.8 KiB

2 years ago
# -*- coding: utf-8 -*-
"""
@File : utils.py
@Author: csc
@Date : 2022/7/18
"""
import numpy as np
import torch
import torchvision.transforms as transforms
from PIL import Image
import cv2
def figure2ndarray(fig):
"""
matplotlib.figure.Figure转为np.ndarray
"""
fig.canvas.draw()
w, h = fig.canvas.get_width_height()
buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype='u1')
img = buf_ndarray.reshape(h, w, 3)
return img
def inArea(point: tuple, area: tuple):
"""
点是否在区域内
point: (x0, y0)
area: ((x1, y1), (x2, y2)) 左上角 右下角
"""
return area[0][0] <= point[0] <= area[1][0] and area[0][1] <= point[1] <= area[1][1]
cnn_normalization_mean = [0.485, 0.456, 0.406]
cnn_normalization_std = [0.229, 0.224, 0.225]
tensor_normalizer = transforms.Normalize(mean=cnn_normalization_mean, std=cnn_normalization_std)
epsilon = 1e-5
def mean_std(features):
"""输入 VGG19 计算的四个特征输出每张特征图的均值和标准差长度为1920"""
mean_std_features = []
for x in features:
x = x.view(*x.shape[:2], -1)
x = torch.cat([x.mean(-1), torch.sqrt(x.var(-1) + epsilon)], dim=-1)
n = x.shape[0]
x2 = x.view(n, 2, -1).transpose(2, 1).contiguous().view(n, -1) # [mean, ..., std, ...] to [mean, std, ...]
mean_std_features.append(x2)
mean_std_features = torch.cat(mean_std_features, dim=-1)
return mean_std_features
def preprocess_image(image, target_width=None):
"""输入 PIL.Image 对象,输出标准化后的四维 tensor"""
if target_width:
t = transforms.Compose([
transforms.Resize(target_width),
transforms.CenterCrop(target_width),
transforms.ToTensor(),
tensor_normalizer,
])
else:
t = transforms.Compose([
transforms.ToTensor(),
tensor_normalizer,
])
return t(image).unsqueeze(0)
def image_to_tensor(image, target_width=None):
"""输入 OpenCV 图像,范围 0~255BGR 顺序,输出标准化后的四维 tensor"""
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
return preprocess_image(image, target_width)
def recover_image(tensor):
"""输入 GPU 上的四维 tensor输出 0~255 范围的三维 numpy 矩阵RGB 顺序"""
image = tensor.detach().cpu().numpy()
image = image * np.array(cnn_normalization_std).reshape((1, 3, 1, 1)) + \
np.array(cnn_normalization_mean).reshape((1, 3, 1, 1))
return (image.transpose(0, 2, 3, 1) * 255.).clip(0, 255).astype(np.uint8)[0]
def recover_tensor(tensor):
m = torch.tensor(cnn_normalization_mean).view(1, 3, 1, 1).to(tensor.device)
s = torch.tensor(cnn_normalization_std).view(1, 3, 1, 1).to(tensor.device)
tensor = tensor * s + m
return tensor.clamp(0, 1)