You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

237 lines
8.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# -*- coding: utf-8 -*-
"""
@File : models.py
@Author: csc
@Date : 2022/6/23
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torchvision.models as models
import numpy as np
from collections import defaultdict
from utils import *
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device = 'cpu'
class VGG(nn.Module):
def __init__(self, features):
super(VGG, self).__init__()
self.features = features
self.layer_name_mapping = {
'3': "relu1_2",
'8': "relu2_2",
'15': "relu3_3",
'22': "relu4_3"
}
for p in self.parameters():
p.requires_grad = False
def forward(self, x):
outs = []
for name, module in self.features._modules.items():
x = module(x)
if name in self.layer_name_mapping:
outs.append(x)
return outs
class VGG19(nn.Module):
def __init__(self, features):
super(VGG19, self).__init__()
self.features = features
self.layer_name_mapping = {
'3': "relu1_2",
'8': "relu2_2",
'17': "relu3_4",
'26': "relu4_4"
}
for p in self.parameters():
p.requires_grad = False
def forward(self, x):
outs = []
for name, module in self.features._modules.items():
x = module(x)
if name in self.layer_name_mapping:
outs.append(x)
return outs
class MyConv2D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, groups=1):
super(MyConv2D, self).__init__()
self.weight = torch.zeros((out_channels, in_channels, kernel_size, kernel_size)).to(device)
self.bias = torch.zeros(out_channels).to(device)
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = (kernel_size, kernel_size)
self.stride = (stride, stride)
self.groups = groups
def forward(self, x):
return F.conv2d(x, self.weight, self.bias, self.stride, groups=self.groups)
def extra_repr(self):
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}')
return s.format(**self.__dict__)
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv = nn.Sequential(
*ConvLayer(channels, channels, kernel_size=3, stride=1),
*ConvLayer(channels, channels, kernel_size=3, stride=1, relu=False)
)
def forward(self, x):
return self.conv(x) + x
class ResNeXtBlock(nn.Module):
def __init__(self, in_channels, out_channels, identity_downsample=None, stride=1, cardinality=32, width_per_group=64):
super(ResNeXtBlock, self).__init__()
width = int(out_channels * (width_per_group / 64)) * cardinality # 转换通道数
# self.conv1 = nn.Conv2d(in_channels, width, kernel_size=1, stride=1, padding=0) # 不改变尺寸
self.conv1 = MyConv2D(in_channels, width, kernel_size=1, stride=1)
self.bn1 = nn.BatchNorm2d(width)
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=cardinality) # stride=2尺寸减半stride=1尺寸不变
# self.conv2 = MyConv2D(width, width, kernel_size=3, stride=stride, groups=cardinality)
self.bn2 = nn.BatchNorm2d(width)
# self.conv3 = nn.Conv2d(width, out_channels, kernel_size=1, stride=1, padding=0) # 不改变尺寸
self.conv3 = MyConv2D(width, out_channels, kernel_size=1, stride=1)
self.bn3 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
self.identity_downsample = identity_downsample
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
if self.identity_downsample is not None:
identity = self.identity_downsample(identity)
# 残差连接
# print(x.shape)
# print(identity.shape)
x += identity
x = self.relu(x)
return x
def ConvLayer(in_channels, out_channels, kernel_size=3, stride=1,
upsample=None, instance_norm=True, relu=True, trainable=False):
layers = []
if upsample:
layers.append(nn.Upsample(mode='nearest', scale_factor=upsample))
layers.append(nn.ReflectionPad2d(kernel_size // 2))
if trainable:
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size, stride))
else:
layers.append(MyConv2D(in_channels, out_channels, kernel_size, stride))
if instance_norm:
layers.append(nn.InstanceNorm2d(out_channels))
if relu:
layers.append(nn.ReLU())
return layers
class TransformNet(nn.Module):
def __init__(self, base=8, residuals='resnet'):
super(TransformNet, self).__init__()
self.base = base
self.weights = []
self.downsampling = nn.Sequential(
*ConvLayer(3, base, kernel_size=9, trainable=True),
*ConvLayer(base, base * 2, kernel_size=3, stride=2),
*ConvLayer(base * 2, base * 4, kernel_size=3, stride=2),
)
if residuals == 'resnet':
self.residuals = nn.Sequential(*[ResidualBlock(base * 4) for i in range(5)])
elif residuals == 'resnext':
self.residuals = nn.Sequential(ResNeXtBlock(base * 4, base * 4))
self.upsampling = nn.Sequential(
*ConvLayer(base * 4, base * 2, kernel_size=3, upsample=2),
*ConvLayer(base * 2, base, kernel_size=3, upsample=2),
*ConvLayer(base, 3, kernel_size=9, instance_norm=False, relu=False, trainable=True),
)
self.get_param_dict()
def forward(self, X):
y = self.downsampling(X)
y = self.residuals(y)
y = self.upsampling(y)
return y
def get_param_dict(self):
"""找出该网络所有 MyConv2D 层,计算它们需要的权值数量"""
param_dict = defaultdict(int)
def dfs(module, name):
for name2, layer in module.named_children():
dfs(layer, '%s.%s' % (name, name2) if name != '' else name2)
if module.__class__ == MyConv2D:
param_dict[name] += int(np.prod(module.weight.shape))
param_dict[name] += int(np.prod(module.bias.shape))
dfs(self, '')
return param_dict
def set_my_attr(self, name, value):
# 下面这个循环是一步步遍历类似 residuals.0.conv.1 的字符串,找到相应的权值
target = self
for x in name.split('.'):
if x.isnumeric():
target = target.__getitem__(int(x))
else:
target = getattr(target, x)
# 设置对应的权值
n_weight = np.prod(target.weight.shape)
target.weight = value[:n_weight].view(target.weight.shape)
target.bias = value[n_weight:].view(target.bias.shape)
def set_weights(self, weights, i=0):
"""输入权值字典,对该网络所有的 MyConv2D 层设置权值"""
for name, param in weights.items():
self.set_my_attr(name, weights[name][i])
class MetaNet(nn.Module):
def __init__(self, param_dict, backbone='vgg16'):
super(MetaNet, self).__init__()
self.param_num = len(param_dict)
if backbone == 'vgg16':
self.hidden = nn.Linear(1920, 128 * self.param_num)
elif backbone == 'vgg19':
self.hidden = nn.Linear(1920, 128 * self.param_num)
self.fc_dict = {}
for i, (name, params) in enumerate(param_dict.items()):
self.fc_dict[name] = i
setattr(self, 'fc{}'.format(i + 1), nn.Linear(128, params))
def forward(self, mean_std_features):
hidden = F.relu(self.hidden(mean_std_features))
filters = {}
for name, i in self.fc_dict.items():
fc = getattr(self, 'fc{}'.format(i + 1))
filters[name] = fc(hidden[:, i * 128:(i + 1) * 128])
return filters