You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

284 lines
9.7 KiB

# -*- coding: utf-8 -*-
"""
@File : situation3.py
@Author: csc
@Date : 2022/6/24
"""
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '4'
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import random
from PIL import Image
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.models as models
import shutil
from glob import glob
# from tensorboardX import SummaryWriter
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import multiprocessing
import copy
from tqdm import tqdm
from collections import defaultdict
# import horovod.torch as hvd
import torch.utils.data.distributed
from utils import *
from models import *
import time
from pprint import pprint
display = pprint
# hvd.init()
# torch.cuda.set_device(hvd.local_rank())
# device = torch.device("cuda:%s" %hvd.local_rank() if torch.cuda.is_available() else "cpu")
device = 'cpu'
class ModelConfig:
vgg19 = True
resnext = True
gram = True
is_hvd = False
tag = 'nohvd'
base = 32
if ModelConfig.gram:
style_weight = 3e5
else:
style_weight = 50
content_weight = 1
tv_weight = 1e-6
epochs = 22
batch_size = 8
width = 256
verbose_hist_batch = 40 # 100
verbose_image_batch = 40 # 800
model_name = f'metanet_base{base}_style{style_weight}_tv{tv_weight}_tag{tag}'
# print(f'model_name: {model_name}, rank: {hvd.rank()}')
def rmrf(path):
try:
shutil.rmtree(path)
except:
pass
rmrf('runs/' + model_name)
# 16 -> 23; 19 -> 27
if ModelConfig.vgg19:
backbone = models.vgg19(pretrained=False)
backbone.load_state_dict(torch.load('./models/vgg19-dcbb9e9d.pth'))
backbone = VGG19(backbone.features[:27]).to(device).eval()
else:
backbone = models.vgg16(pretrained=False)
backbone.load_state_dict(torch.load('./models/vgg16-397923af.pth'))
backbone = VGG(backbone.features[:23].to(device)).eval()
if ModelConfig.resnext:
transform_net = TransformNet(base, residuals='resnext').to(device)
else:
transform_net = TransformNet(base).to(device)
transform_net.get_param_dict()
metanet = MetaNet(transform_net.get_param_dict(),
backbone=('vgg19' if ModelConfig.vgg19 else 'vgg16')).to(device)
data_transform = transforms.Compose([
transforms.RandomResizedCrop(width, scale=(256/480, 1), ratio=(1, 1)),
transforms.ToTensor(),
tensor_normalizer
])
style_dataset = torchvision.datasets.ImageFolder('../WikiArt_1000/', transform=data_transform)
content_dataset = torchvision.datasets.ImageFolder('../COCO2014_1000/', transform=data_transform)
content_data_loader = torch.utils.data.DataLoader(content_dataset, batch_size=batch_size,
shuffle=True, num_workers=0)
print(style_dataset)
print('-'*20)
print(content_dataset)
metanet.eval()
transform_net.eval()
rands = torch.rand(8, 3, 256, 256).to(device)
features = backbone(rands)
weights = metanet(mean_std(features))
transform_net.set_weights(weights)
transformed_images = transform_net(torch.rand(8, 3, 256, 256).to(device))
print('features:')
display([x.shape for x in features])
print('weights:')
display([x.shape for x in weights.values()])
print('transformed_images:')
display(transformed_images.shape)
# visualization_style_image = random.choice(style_dataset)[0].unsqueeze(0).to(device)
# visualization_content_images = torch.stack([random.choice(content_dataset)[0] for i in range(4)]).to(device)
rmrf('runs/' + model_name)
writer = SummaryWriter('runs/'+model_name)
# visualization_style_image = random.choice(style_dataset)[0].unsqueeze(0).to(device)
visualization_content_images = torch.stack([random.choice(content_dataset)[0] for i in range(4)]).to(device)
# writer.add_images('content_image', recover_tensor(visualization_content_images), 0)
# writer.add_graph(transform_net, (rands, ))
del rands, features, weights, transformed_images
trainable_params = {}
trainable_param_shapes = {}
for model in [backbone, transform_net, metanet]:
for name, param in model.named_parameters():
if param.requires_grad:
trainable_params[name] = param
trainable_param_shapes[name] = param.shape
# 开始训练
optimizer = optim.Adam(trainable_params.values(), 1e-3)
n_batch = len(content_data_loader)
metanet.train()
transform_net.train()
for epoch in range(epochs):
smoother = defaultdict(Smooth)
with tqdm(enumerate(content_data_loader), total=n_batch) as pbar:
for batch, (content_images, _) in pbar:
# 当前 batch 的大小
size = content_images.size()[0]
n_iter = epoch * n_batch + batch
# 每 20 个 batch 随机挑选一张新的风格图像,计算其特征
if batch % 20 == 0:
style_image = random.choice(style_dataset)[0]
style_image_tensor = style_image.unsqueeze(0).to(device)
style_features = backbone(style_image_tensor)
style_mean_std = mean_std(style_features)
# gram
style_grams = [gram_matrix(x) for x in backbone(torch.stack((style_image,) * batch_size))]
# batch 末尾不足 batch_size 时按 size 算
if size != batch_size:
style_grams = [gram_matrix(x) for x in backbone(torch.stack((style_image,) * size))]
# 检查纯色
x = content_images.cpu().numpy()
if (x.min(-1).min(-1) == x.max(-1).max(-1)).any():
continue
optimizer.zero_grad()
# 使用风格图像生成风格模型
weights = metanet(mean_std(style_features))
transform_net.set_weights(weights, 0)
# 使用风格模型预测风格迁移图像
content_images = content_images.to(device)
transformed_images = transform_net(content_images)
# 使用 vgg16 计算特征
content_features = backbone(content_images)
transformed_features = backbone(transformed_images)
transformed_mean_std = mean_std(transformed_features)
# content loss
content_loss = content_weight * F.mse_loss(transformed_features[2], content_features[2])
# style loss
if ModelConfig.gram:
# gram
style_loss = 0
transformed_grams = [gram_matrix(x) for x in transformed_features]
for a, b in zip(transformed_grams, style_grams):
style_loss += F.mse_loss(a, b) * style_weight
style_loss /= size
else:
style_loss = style_weight * F.mse_loss(transformed_mean_std,
style_mean_std.expand_as(transformed_mean_std))
# total variation loss
y = transformed_images
tv_loss = tv_weight * (torch.sum(torch.abs(y[:, :, :, :-1] - y[:, :, :, 1:])) +
torch.sum(torch.abs(y[:, :, :-1, :] - y[:, :, 1:, :])))
# 求和
loss = content_loss + style_loss + tv_loss
loss.backward()
optimizer.step()
smoother['content_loss'] += content_loss.item()
smoother['style_loss'] += style_loss.item()
smoother['tv_loss'] += tv_loss.item()
smoother['loss'] += loss.item()
max_value = max([x.max().item() for x in weights.values()])
writer.add_scalar('loss/loss', loss, n_iter)
writer.add_scalar('loss/content_loss', content_loss, n_iter)
writer.add_scalar('loss/style_loss', style_loss, n_iter)
writer.add_scalar('loss/total_variation', tv_loss, n_iter)
writer.add_scalar('loss/max', max_value, n_iter)
s = 'Epoch: {} '.format(epoch + 1)
s += 'Content: {:.2f} '.format(smoother['content_loss'])
s += 'Style: {:.2f} '.format(smoother['style_loss'])
s += 'TV: {:.2f} '.format(smoother['tv_loss'])
s += 'Loss: {:.2f} '.format(smoother['loss'])
s += 'Max: {:.2f}'.format(max_value)
# if (batch + 1) % verbose_image_batch == 0:
# transform_net.eval()
# visualization_transformed_images = transform_net(visualization_content_images)
# transform_net.train()
# visualization_transformed_images = torch.cat([style_image, visualization_transformed_images])
# writer.add_images('debug', recover_tensor(visualization_transformed_images), n_iter)
# del visualization_transformed_images
if (batch + 1) % verbose_hist_batch == 0:
for name, param in weights.items():
writer.add_histogram('transform_net.' + name, param.clone().cpu().data.numpy(),
n_iter, bins='auto')
for name, param in transform_net.named_parameters():
writer.add_histogram('transform_net.' + name, param.clone().cpu().data.numpy(),
n_iter, bins='auto')
for name, param in metanet.named_parameters():
l = name.split('.')
l.remove(l[-1])
writer.add_histogram('metanet.' + '.'.join(l), param.clone().cpu().data.numpy(),
n_iter, bins='auto')
pbar.set_description(s)
del transformed_images, weights
torch.save(metanet.state_dict(), 'checkpoints/{}_{}.pth'.format(model_name, epoch + 1))
torch.save(transform_net.state_dict(),
'checkpoints/{}_transform_net_{}.pth'.format(model_name, epoch + 1))
torch.save(metanet.state_dict(), 'models/{}.pth'.format(model_name))
torch.save(transform_net.state_dict(), 'models/{}_transform_net.pth'.format(model_name))