|
|
# -*- coding: utf-8 -*-
|
|
|
"""
|
|
|
@File : utils.py
|
|
|
@Author: csc
|
|
|
@Date : 2022/7/18
|
|
|
"""
|
|
|
import numpy as np
|
|
|
import torch
|
|
|
import torchvision.transforms as transforms
|
|
|
from PIL import Image
|
|
|
import cv2
|
|
|
|
|
|
|
|
|
def figure2ndarray(fig):
|
|
|
"""
|
|
|
matplotlib.figure.Figure转为np.ndarray
|
|
|
"""
|
|
|
fig.canvas.draw()
|
|
|
w, h = fig.canvas.get_width_height()
|
|
|
buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype='u1')
|
|
|
img = buf_ndarray.reshape(h, w, 3)
|
|
|
return img
|
|
|
|
|
|
|
|
|
def inArea(point: tuple, area: tuple):
|
|
|
"""
|
|
|
点是否在区域内
|
|
|
point: (x0, y0)
|
|
|
area: ((x1, y1), (x2, y2)) 左上角 右下角
|
|
|
"""
|
|
|
return area[0][0] <= point[0] <= area[1][0] and area[0][1] <= point[1] <= area[1][1]
|
|
|
|
|
|
|
|
|
cnn_normalization_mean = [0.485, 0.456, 0.406]
|
|
|
cnn_normalization_std = [0.229, 0.224, 0.225]
|
|
|
tensor_normalizer = transforms.Normalize(mean=cnn_normalization_mean, std=cnn_normalization_std)
|
|
|
epsilon = 1e-5
|
|
|
|
|
|
|
|
|
def mean_std(features):
|
|
|
"""输入 VGG19 计算的四个特征,输出每张特征图的均值和标准差,长度为1920"""
|
|
|
mean_std_features = []
|
|
|
for x in features:
|
|
|
x = x.view(*x.shape[:2], -1)
|
|
|
x = torch.cat([x.mean(-1), torch.sqrt(x.var(-1) + epsilon)], dim=-1)
|
|
|
n = x.shape[0]
|
|
|
x2 = x.view(n, 2, -1).transpose(2, 1).contiguous().view(n, -1) # [mean, ..., std, ...] to [mean, std, ...]
|
|
|
mean_std_features.append(x2)
|
|
|
mean_std_features = torch.cat(mean_std_features, dim=-1)
|
|
|
return mean_std_features
|
|
|
|
|
|
|
|
|
def preprocess_image(image, target_width=None):
|
|
|
"""输入 PIL.Image 对象,输出标准化后的四维 tensor"""
|
|
|
if target_width:
|
|
|
t = transforms.Compose([
|
|
|
transforms.Resize(target_width),
|
|
|
transforms.CenterCrop(target_width),
|
|
|
transforms.ToTensor(),
|
|
|
tensor_normalizer,
|
|
|
])
|
|
|
else:
|
|
|
t = transforms.Compose([
|
|
|
transforms.ToTensor(),
|
|
|
tensor_normalizer,
|
|
|
])
|
|
|
return t(image).unsqueeze(0)
|
|
|
|
|
|
|
|
|
def image_to_tensor(image, target_width=None):
|
|
|
"""输入 OpenCV 图像,范围 0~255,BGR 顺序,输出标准化后的四维 tensor"""
|
|
|
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
image = Image.fromarray(image)
|
|
|
return preprocess_image(image, target_width)
|
|
|
|
|
|
|
|
|
def recover_image(tensor):
|
|
|
"""输入 GPU 上的四维 tensor,输出 0~255 范围的三维 numpy 矩阵,RGB 顺序"""
|
|
|
image = tensor.detach().cpu().numpy()
|
|
|
image = image * np.array(cnn_normalization_std).reshape((1, 3, 1, 1)) + \
|
|
|
np.array(cnn_normalization_mean).reshape((1, 3, 1, 1))
|
|
|
return (image.transpose(0, 2, 3, 1) * 255.).clip(0, 255).astype(np.uint8)[0]
|
|
|
|
|
|
|
|
|
def recover_tensor(tensor):
|
|
|
m = torch.tensor(cnn_normalization_mean).view(1, 3, 1, 1).to(tensor.device)
|
|
|
s = torch.tensor(cnn_normalization_std).view(1, 3, 1, 1).to(tensor.device)
|
|
|
tensor = tensor * s + m
|
|
|
return tensor.clamp(0, 1)
|