From 6625b62c3cc2a5b7f75c059549b5b9235f51e0cf Mon Sep 17 00:00:00 2001 From: kun <1819123358@qq.com> Date: Thu, 8 Jun 2023 13:11:42 +0800 Subject: [PATCH] yolov5 --- yolov5-6.2/.dockerignore | 222 ---- yolov5-6.2/.gitattributes | 2 - yolov5-6.2/.github/CODE_OF_CONDUCT.md | 128 -- .../.github/ISSUE_TEMPLATE/bug-report.yml | 85 -- yolov5-6.2/.github/ISSUE_TEMPLATE/config.yml | 8 - .../ISSUE_TEMPLATE/feature-request.yml | 50 - .../.github/ISSUE_TEMPLATE/question.yml | 33 - yolov5-6.2/.github/PULL_REQUEST_TEMPLATE.md | 9 - yolov5-6.2/.github/README_cn.md | 353 ----- yolov5-6.2/.github/SECURITY.md | 7 - yolov5-6.2/.github/dependabot.yml | 23 - yolov5-6.2/.github/workflows/ci-testing.yml | 135 -- .../.github/workflows/codeql-analysis.yml | 54 - yolov5-6.2/.github/workflows/docker.yml | 54 - yolov5-6.2/.github/workflows/greetings.yml | 63 - yolov5-6.2/.github/workflows/rebase.yml | 21 - yolov5-6.2/.github/workflows/stale.yml | 40 - yolov5-6.2/.gitignore | 256 ---- yolov5-6.2/.pre-commit-config.yaml | 64 - yolov5-6.2/CONTRIBUTING.md | 98 -- yolov5-6.2/LICENSE | 674 ---------- yolov5-6.2/README.md | 363 ------ yolov5-6.2/classify/predict.py | 109 -- yolov5-6.2/classify/train.py | 325 ----- yolov5-6.2/classify/val.py | 158 --- yolov5-6.2/data/Argoverse.yaml | 67 - yolov5-6.2/data/GlobalWheat2020.yaml | 54 - yolov5-6.2/data/ImageNet.yaml | 156 --- yolov5-6.2/data/Objects365.yaml | 114 -- yolov5-6.2/data/SKU-110K.yaml | 53 - yolov5-6.2/data/VOC.yaml | 81 -- yolov5-6.2/data/VisDrone.yaml | 61 - yolov5-6.2/data/ball.yaml | 5 - yolov5-6.2/data/coco.yaml | 45 - yolov5-6.2/data/coco128.yaml | 30 - yolov5-6.2/data/hyps/hyp.Objects365.yaml | 34 - yolov5-6.2/data/hyps/hyp.VOC.yaml | 40 - yolov5-6.2/data/hyps/hyp.scratch-high.yaml | 34 - yolov5-6.2/data/hyps/hyp.scratch-low.yaml | 34 - yolov5-6.2/data/hyps/hyp.scratch-med.yaml | 34 - yolov5-6.2/data/images/bus.jpg | Bin 487438 -> 0 bytes yolov5-6.2/data/images/zidane.jpg | Bin 168949 -> 0 bytes yolov5-6.2/data/scripts/download_weights.sh | 21 - yolov5-6.2/data/scripts/get_coco.sh | 56 - yolov5-6.2/data/scripts/get_coco128.sh | 17 - yolov5-6.2/data/scripts/get_imagenet.sh | 51 - yolov5-6.2/data/xView.yaml | 102 -- yolov5-6.2/detect.py | 260 ---- yolov5-6.2/export.py | 616 --------- yolov5-6.2/hubconf.py | 160 --- yolov5-6.2/ip.py | 21 - yolov5-6.2/models/__init__.py | 0 yolov5-6.2/models/common.py | 771 ----------- yolov5-6.2/models/experimental.py | 107 -- yolov5-6.2/models/hub/anchors.yaml | 59 - yolov5-6.2/models/hub/yolov3-spp.yaml | 51 - yolov5-6.2/models/hub/yolov3-tiny.yaml | 41 - yolov5-6.2/models/hub/yolov3.yaml | 51 - yolov5-6.2/models/hub/yolov5-bifpn.yaml | 48 - yolov5-6.2/models/hub/yolov5-fpn.yaml | 42 - yolov5-6.2/models/hub/yolov5-p2.yaml | 54 - yolov5-6.2/models/hub/yolov5-p34.yaml | 41 - yolov5-6.2/models/hub/yolov5-p6.yaml | 56 - yolov5-6.2/models/hub/yolov5-p7.yaml | 67 - yolov5-6.2/models/hub/yolov5-panet.yaml | 48 - yolov5-6.2/models/hub/yolov5l6.yaml | 60 - yolov5-6.2/models/hub/yolov5m6.yaml | 60 - yolov5-6.2/models/hub/yolov5n6.yaml | 60 - yolov5-6.2/models/hub/yolov5s-ghost.yaml | 48 - .../models/hub/yolov5s-transformer.yaml | 48 - yolov5-6.2/models/hub/yolov5s6.yaml | 60 - yolov5-6.2/models/hub/yolov5x6.yaml | 60 - yolov5-6.2/models/tf.py | 574 -------- yolov5-6.2/models/yolo.py | 360 ----- yolov5-6.2/models/yolov5l.yaml | 48 - yolov5-6.2/models/yolov5m.yaml | 48 - yolov5-6.2/models/yolov5n.yaml | 48 - yolov5-6.2/models/yolov5s.yaml | 48 - yolov5-6.2/models/yolov5x.yaml | 48 - yolov5-6.2/requirements.txt | 43 - yolov5-6.2/setup.cfg | 59 - yolov5-6.2/test.py | 300 ----- yolov5-6.2/test/test.py | 12 - yolov5-6.2/train.py | 632 --------- yolov5-6.2/tutorial.ipynb | 1141 ---------------- yolov5-6.2/utils/__init__.py | 36 - yolov5-6.2/utils/activations.py | 103 -- yolov5-6.2/utils/augmentations.py | 348 ----- yolov5-6.2/utils/autoanchor.py | 170 --- yolov5-6.2/utils/autobatch.py | 66 - yolov5-6.2/utils/aws/__init__.py | 0 yolov5-6.2/utils/aws/mime.sh | 26 - yolov5-6.2/utils/aws/resume.py | 40 - yolov5-6.2/utils/aws/userdata.sh | 27 - yolov5-6.2/utils/benchmarks.py | 157 --- yolov5-6.2/utils/callbacks.py | 71 - yolov5-6.2/utils/dataloaders.py | 1156 ----------------- yolov5-6.2/utils/docker/Dockerfile | 68 - yolov5-6.2/utils/docker/Dockerfile-arm64 | 42 - yolov5-6.2/utils/docker/Dockerfile-cpu | 39 - yolov5-6.2/utils/downloads.py | 180 --- yolov5-6.2/utils/flask_rest_api/README.md | 73 -- .../utils/flask_rest_api/example_request.py | 19 - yolov5-6.2/utils/flask_rest_api/restapi.py | 48 - yolov5-6.2/utils/general.py | 1050 --------------- yolov5-6.2/utils/google_app_engine/Dockerfile | 25 - .../additional_requirements.txt | 4 - yolov5-6.2/utils/google_app_engine/app.yaml | 14 - yolov5-6.2/utils/loggers/__init__.py | 308 ----- yolov5-6.2/utils/loggers/clearml/README.md | 222 ---- yolov5-6.2/utils/loggers/clearml/__init__.py | 0 .../utils/loggers/clearml/clearml_utils.py | 156 --- yolov5-6.2/utils/loggers/clearml/hpo.py | 84 -- yolov5-6.2/utils/loggers/wandb/README.md | 162 --- yolov5-6.2/utils/loggers/wandb/__init__.py | 0 yolov5-6.2/utils/loggers/wandb/log_dataset.py | 27 - yolov5-6.2/utils/loggers/wandb/sweep.py | 41 - yolov5-6.2/utils/loggers/wandb/sweep.yaml | 143 -- yolov5-6.2/utils/loggers/wandb/wandb_utils.py | 584 --------- yolov5-6.2/utils/loss.py | 234 ---- yolov5-6.2/utils/metrics.py | 364 ------ yolov5-6.2/utils/plots.py | 522 -------- yolov5-6.2/utils/torch_utils.py | 454 ------- yolov5-6.2/val.py | 396 ------ 124 files changed, 18132 deletions(-) delete mode 100644 yolov5-6.2/.dockerignore delete mode 100644 yolov5-6.2/.gitattributes delete mode 100644 yolov5-6.2/.github/CODE_OF_CONDUCT.md delete mode 100644 yolov5-6.2/.github/ISSUE_TEMPLATE/bug-report.yml delete mode 100644 yolov5-6.2/.github/ISSUE_TEMPLATE/config.yml delete mode 100644 yolov5-6.2/.github/ISSUE_TEMPLATE/feature-request.yml delete mode 100644 yolov5-6.2/.github/ISSUE_TEMPLATE/question.yml delete mode 100644 yolov5-6.2/.github/PULL_REQUEST_TEMPLATE.md delete mode 100644 yolov5-6.2/.github/README_cn.md delete mode 100644 yolov5-6.2/.github/SECURITY.md delete mode 100644 yolov5-6.2/.github/dependabot.yml delete mode 100644 yolov5-6.2/.github/workflows/ci-testing.yml delete mode 100644 yolov5-6.2/.github/workflows/codeql-analysis.yml delete mode 100644 yolov5-6.2/.github/workflows/docker.yml delete mode 100644 yolov5-6.2/.github/workflows/greetings.yml delete mode 100644 yolov5-6.2/.github/workflows/rebase.yml delete mode 100644 yolov5-6.2/.github/workflows/stale.yml delete mode 100644 yolov5-6.2/.gitignore delete mode 100644 yolov5-6.2/.pre-commit-config.yaml delete mode 100644 yolov5-6.2/CONTRIBUTING.md delete mode 100644 yolov5-6.2/LICENSE delete mode 100644 yolov5-6.2/README.md delete mode 100644 yolov5-6.2/classify/predict.py delete mode 100644 yolov5-6.2/classify/train.py delete mode 100644 yolov5-6.2/classify/val.py delete mode 100644 yolov5-6.2/data/Argoverse.yaml delete mode 100644 yolov5-6.2/data/GlobalWheat2020.yaml delete mode 100644 yolov5-6.2/data/ImageNet.yaml delete mode 100644 yolov5-6.2/data/Objects365.yaml delete mode 100644 yolov5-6.2/data/SKU-110K.yaml delete mode 100644 yolov5-6.2/data/VOC.yaml delete mode 100644 yolov5-6.2/data/VisDrone.yaml delete mode 100644 yolov5-6.2/data/ball.yaml delete mode 100644 yolov5-6.2/data/coco.yaml delete mode 100644 yolov5-6.2/data/coco128.yaml delete mode 100644 yolov5-6.2/data/hyps/hyp.Objects365.yaml delete mode 100644 yolov5-6.2/data/hyps/hyp.VOC.yaml delete mode 100644 yolov5-6.2/data/hyps/hyp.scratch-high.yaml delete mode 100644 yolov5-6.2/data/hyps/hyp.scratch-low.yaml delete mode 100644 yolov5-6.2/data/hyps/hyp.scratch-med.yaml delete mode 100644 yolov5-6.2/data/images/bus.jpg delete mode 100644 yolov5-6.2/data/images/zidane.jpg delete mode 100644 yolov5-6.2/data/scripts/download_weights.sh delete mode 100644 yolov5-6.2/data/scripts/get_coco.sh delete mode 100644 yolov5-6.2/data/scripts/get_coco128.sh delete mode 100644 yolov5-6.2/data/scripts/get_imagenet.sh delete mode 100644 yolov5-6.2/data/xView.yaml delete mode 100644 yolov5-6.2/detect.py delete mode 100644 yolov5-6.2/export.py delete mode 100644 yolov5-6.2/hubconf.py delete mode 100644 yolov5-6.2/ip.py delete mode 100644 yolov5-6.2/models/__init__.py delete mode 100644 yolov5-6.2/models/common.py delete mode 100644 yolov5-6.2/models/experimental.py delete mode 100644 yolov5-6.2/models/hub/anchors.yaml delete mode 100644 yolov5-6.2/models/hub/yolov3-spp.yaml delete mode 100644 yolov5-6.2/models/hub/yolov3-tiny.yaml delete mode 100644 yolov5-6.2/models/hub/yolov3.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5-bifpn.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5-fpn.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5-p2.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5-p34.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5-p6.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5-p7.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5-panet.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5l6.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5m6.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5n6.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5s-ghost.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5s-transformer.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5s6.yaml delete mode 100644 yolov5-6.2/models/hub/yolov5x6.yaml delete mode 100644 yolov5-6.2/models/tf.py delete mode 100644 yolov5-6.2/models/yolo.py delete mode 100644 yolov5-6.2/models/yolov5l.yaml delete mode 100644 yolov5-6.2/models/yolov5m.yaml delete mode 100644 yolov5-6.2/models/yolov5n.yaml delete mode 100644 yolov5-6.2/models/yolov5s.yaml delete mode 100644 yolov5-6.2/models/yolov5x.yaml delete mode 100644 yolov5-6.2/requirements.txt delete mode 100644 yolov5-6.2/setup.cfg delete mode 100644 yolov5-6.2/test.py delete mode 100644 yolov5-6.2/test/test.py delete mode 100644 yolov5-6.2/train.py delete mode 100644 yolov5-6.2/tutorial.ipynb delete mode 100644 yolov5-6.2/utils/__init__.py delete mode 100644 yolov5-6.2/utils/activations.py delete mode 100644 yolov5-6.2/utils/augmentations.py delete mode 100644 yolov5-6.2/utils/autoanchor.py delete mode 100644 yolov5-6.2/utils/autobatch.py delete mode 100644 yolov5-6.2/utils/aws/__init__.py delete mode 100644 yolov5-6.2/utils/aws/mime.sh delete mode 100644 yolov5-6.2/utils/aws/resume.py delete mode 100644 yolov5-6.2/utils/aws/userdata.sh delete mode 100644 yolov5-6.2/utils/benchmarks.py delete mode 100644 yolov5-6.2/utils/callbacks.py delete mode 100644 yolov5-6.2/utils/dataloaders.py delete mode 100644 yolov5-6.2/utils/docker/Dockerfile delete mode 100644 yolov5-6.2/utils/docker/Dockerfile-arm64 delete mode 100644 yolov5-6.2/utils/docker/Dockerfile-cpu delete mode 100644 yolov5-6.2/utils/downloads.py delete mode 100644 yolov5-6.2/utils/flask_rest_api/README.md delete mode 100644 yolov5-6.2/utils/flask_rest_api/example_request.py delete mode 100644 yolov5-6.2/utils/flask_rest_api/restapi.py delete mode 100644 yolov5-6.2/utils/general.py delete mode 100644 yolov5-6.2/utils/google_app_engine/Dockerfile delete mode 100644 yolov5-6.2/utils/google_app_engine/additional_requirements.txt delete mode 100644 yolov5-6.2/utils/google_app_engine/app.yaml delete mode 100644 yolov5-6.2/utils/loggers/__init__.py delete mode 100644 yolov5-6.2/utils/loggers/clearml/README.md delete mode 100644 yolov5-6.2/utils/loggers/clearml/__init__.py delete mode 100644 yolov5-6.2/utils/loggers/clearml/clearml_utils.py delete mode 100644 yolov5-6.2/utils/loggers/clearml/hpo.py delete mode 100644 yolov5-6.2/utils/loggers/wandb/README.md delete mode 100644 yolov5-6.2/utils/loggers/wandb/__init__.py delete mode 100644 yolov5-6.2/utils/loggers/wandb/log_dataset.py delete mode 100644 yolov5-6.2/utils/loggers/wandb/sweep.py delete mode 100644 yolov5-6.2/utils/loggers/wandb/sweep.yaml delete mode 100644 yolov5-6.2/utils/loggers/wandb/wandb_utils.py delete mode 100644 yolov5-6.2/utils/loss.py delete mode 100644 yolov5-6.2/utils/metrics.py delete mode 100644 yolov5-6.2/utils/plots.py delete mode 100644 yolov5-6.2/utils/torch_utils.py delete mode 100644 yolov5-6.2/val.py diff --git a/yolov5-6.2/.dockerignore b/yolov5-6.2/.dockerignore deleted file mode 100644 index 3b669254..00000000 --- a/yolov5-6.2/.dockerignore +++ /dev/null @@ -1,222 +0,0 @@ -# Repo-specific DockerIgnore ------------------------------------------------------------------------------------------- -.git -.cache -.idea -runs -output -coco -storage.googleapis.com - -data/samples/* -**/results*.csv -*.jpg - -# Neural Network weights ----------------------------------------------------------------------------------------------- -**/*.pt -**/*.pth -**/*.onnx -**/*.engine -**/*.mlmodel -**/*.torchscript -**/*.torchscript.pt -**/*.tflite -**/*.h5 -**/*.pb -*_saved_model/ -*_web_model/ -*_openvino_model/ - -# Below Copied From .gitignore ----------------------------------------------------------------------------------------- -# Below Copied From .gitignore ----------------------------------------------------------------------------------------- - - -# GitHub Python GitIgnore ---------------------------------------------------------------------------------------------- -# Byte-compiled / optimized / DLL files -__pycache__/ -*.py[cod] -*$py.class - -# C extensions -*.so - -# Distribution / packaging -.Python -env/ -build/ -develop-eggs/ -dist/ -downloads/ -eggs/ -.eggs/ -lib/ -lib64/ -parts/ -sdist/ -var/ -wheels/ -*.egg-info/ -wandb/ -.installed.cfg -*.egg - -# PyInstaller -# Usually these files are written by a python script from a template -# before PyInstaller builds the exe, so as to inject date/other infos into it. -*.manifest -*.spec - -# Installer logs -pip-log.txt -pip-delete-this-directory.txt - -# Unit test / coverage reports -htmlcov/ -.tox/ -.coverage -.coverage.* -.cache -nosetests.xml -coverage.xml -*.cover -.hypothesis/ - -# Translations -*.mo -*.pot - -# Django stuff: -*.log -local_settings.py - -# Flask stuff: -instance/ -.webassets-cache - -# Scrapy stuff: -.scrapy - -# Sphinx documentation -docs/_build/ - -# PyBuilder -target/ - -# Jupyter Notebook -.ipynb_checkpoints - -# pyenv -.python-version - -# celery beat schedule file -celerybeat-schedule - -# SageMath parsed files -*.sage.py - -# dotenv -.env - -# virtualenv -.venv* -venv*/ -ENV*/ - -# Spyder project settings -.spyderproject -.spyproject - -# Rope project settings -.ropeproject - -# mkdocs documentation -/site - -# mypy -.mypy_cache/ - - -# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore ----------------------------------------------- - -# General -.DS_Store -.AppleDouble -.LSOverride - -# Icon must end with two \r -Icon -Icon? - -# Thumbnails -._* - -# Files that might appear in the root of a volume -.DocumentRevisions-V100 -.fseventsd -.Spotlight-V100 -.TemporaryItems -.Trashes -.VolumeIcon.icns -.com.apple.timemachine.donotpresent - -# Directories potentially created on remote AFP share -.AppleDB -.AppleDesktop -Network Trash Folder -Temporary Items -.apdisk - - -# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore -# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm -# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839 - -# User-specific stuff: -.idea/* -.idea/**/workspace.xml -.idea/**/tasks.xml -.idea/dictionaries -.html # Bokeh Plots -.pg # TensorFlow Frozen Graphs -.avi # videos - -# Sensitive or high-churn files: -.idea/**/dataSources/ -.idea/**/dataSources.ids -.idea/**/dataSources.local.xml -.idea/**/sqlDataSources.xml -.idea/**/dynamic.xml -.idea/**/uiDesigner.xml - -# Gradle: -.idea/**/gradle.xml -.idea/**/libraries - -# CMake -cmake-build-debug/ -cmake-build-release/ - -# Mongo Explorer plugin: -.idea/**/mongoSettings.xml - -## File-based project format: -*.iws - -## Plugin-specific files: - -# IntelliJ -out/ - -# mpeltonen/sbt-idea plugin -.idea_modules/ - -# JIRA plugin -atlassian-ide-plugin.xml - -# Cursive Clojure plugin -.idea/replstate.xml - -# Crashlytics plugin (for Android Studio and IntelliJ) -com_crashlytics_export_strings.xml -crashlytics.properties -crashlytics-build.properties -fabric.properties diff --git a/yolov5-6.2/.gitattributes b/yolov5-6.2/.gitattributes deleted file mode 100644 index dad4239e..00000000 --- a/yolov5-6.2/.gitattributes +++ /dev/null @@ -1,2 +0,0 @@ -# this drop notebooks from GitHub language stats -*.ipynb linguist-vendored diff --git a/yolov5-6.2/.github/CODE_OF_CONDUCT.md b/yolov5-6.2/.github/CODE_OF_CONDUCT.md deleted file mode 100644 index 27e59e9a..00000000 --- a/yolov5-6.2/.github/CODE_OF_CONDUCT.md +++ /dev/null @@ -1,128 +0,0 @@ -# YOLOv5 🚀 Contributor Covenant Code of Conduct - -## Our Pledge - -We as members, contributors, and leaders pledge to make participation in our -community a harassment-free experience for everyone, regardless of age, body -size, visible or invisible disability, ethnicity, sex characteristics, gender -identity and expression, level of experience, education, socio-economic status, -nationality, personal appearance, race, religion, or sexual identity -and orientation. - -We pledge to act and interact in ways that contribute to an open, welcoming, -diverse, inclusive, and healthy community. - -## Our Standards - -Examples of behavior that contributes to a positive environment for our -community include: - -- Demonstrating empathy and kindness toward other people -- Being respectful of differing opinions, viewpoints, and experiences -- Giving and gracefully accepting constructive feedback -- Accepting responsibility and apologizing to those affected by our mistakes, - and learning from the experience -- Focusing on what is best not just for us as individuals, but for the - overall community - -Examples of unacceptable behavior include: - -- The use of sexualized language or imagery, and sexual attention or - advances of any kind -- Trolling, insulting or derogatory comments, and personal or political attacks -- Public or private harassment -- Publishing others' private information, such as a physical or email - address, without their explicit permission -- Other conduct which could reasonably be considered inappropriate in a - professional setting - -## Enforcement Responsibilities - -Community leaders are responsible for clarifying and enforcing our standards of -acceptable behavior and will take appropriate and fair corrective action in -response to any behavior that they deem inappropriate, threatening, offensive, -or harmful. - -Community leaders have the right and responsibility to remove, edit, or reject -comments, commits, code, wiki edits, issues, and other contributions that are -not aligned to this Code of Conduct, and will communicate reasons for moderation -decisions when appropriate. - -## Scope - -This Code of Conduct applies within all community spaces, and also applies when -an individual is officially representing the community in public spaces. -Examples of representing our community include using an official e-mail address, -posting via an official social media account, or acting as an appointed -representative at an online or offline event. - -## Enforcement - -Instances of abusive, harassing, or otherwise unacceptable behavior may be -reported to the community leaders responsible for enforcement at -hello@ultralytics.com. -All complaints will be reviewed and investigated promptly and fairly. - -All community leaders are obligated to respect the privacy and security of the -reporter of any incident. - -## Enforcement Guidelines - -Community leaders will follow these Community Impact Guidelines in determining -the consequences for any action they deem in violation of this Code of Conduct: - -### 1. Correction - -**Community Impact**: Use of inappropriate language or other behavior deemed -unprofessional or unwelcome in the community. - -**Consequence**: A private, written warning from community leaders, providing -clarity around the nature of the violation and an explanation of why the -behavior was inappropriate. A public apology may be requested. - -### 2. Warning - -**Community Impact**: A violation through a single incident or series -of actions. - -**Consequence**: A warning with consequences for continued behavior. No -interaction with the people involved, including unsolicited interaction with -those enforcing the Code of Conduct, for a specified period of time. This -includes avoiding interactions in community spaces as well as external channels -like social media. Violating these terms may lead to a temporary or -permanent ban. - -### 3. Temporary Ban - -**Community Impact**: A serious violation of community standards, including -sustained inappropriate behavior. - -**Consequence**: A temporary ban from any sort of interaction or public -communication with the community for a specified period of time. No public or -private interaction with the people involved, including unsolicited interaction -with those enforcing the Code of Conduct, is allowed during this period. -Violating these terms may lead to a permanent ban. - -### 4. Permanent Ban - -**Community Impact**: Demonstrating a pattern of violation of community -standards, including sustained inappropriate behavior, harassment of an -individual, or aggression toward or disparagement of classes of individuals. - -**Consequence**: A permanent ban from any sort of public interaction within -the community. - -## Attribution - -This Code of Conduct is adapted from the [Contributor Covenant][homepage], -version 2.0, available at -https://www.contributor-covenant.org/version/2/0/code_of_conduct.html. - -Community Impact Guidelines were inspired by [Mozilla's code of conduct -enforcement ladder](https://github.com/mozilla/diversity). - -For answers to common questions about this code of conduct, see the FAQ at -https://www.contributor-covenant.org/faq. Translations are available at -https://www.contributor-covenant.org/translations. - -[homepage]: https://www.contributor-covenant.org diff --git a/yolov5-6.2/.github/ISSUE_TEMPLATE/bug-report.yml b/yolov5-6.2/.github/ISSUE_TEMPLATE/bug-report.yml deleted file mode 100644 index fcb64138..00000000 --- a/yolov5-6.2/.github/ISSUE_TEMPLATE/bug-report.yml +++ /dev/null @@ -1,85 +0,0 @@ -name: 🐛 Bug Report -# title: " " -description: Problems with YOLOv5 -labels: [bug, triage] -body: - - type: markdown - attributes: - value: | - Thank you for submitting a YOLOv5 🐛 Bug Report! - - - type: checkboxes - attributes: - label: Search before asking - description: > - Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists. - options: - - label: > - I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report. - required: true - - - type: dropdown - attributes: - label: YOLOv5 Component - description: | - Please select the part of YOLOv5 where you found the bug. - multiple: true - options: - - "Training" - - "Validation" - - "Detection" - - "Export" - - "PyTorch Hub" - - "Multi-GPU" - - "Evolution" - - "Integrations" - - "Other" - validations: - required: false - - - type: textarea - attributes: - label: Bug - description: Provide console output with error messages and/or screenshots of the bug. - placeholder: | - 💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response. - validations: - required: true - - - type: textarea - attributes: - label: Environment - description: Please specify the software and hardware you used to produce the bug. - placeholder: | - - YOLO: YOLOv5 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB) - - OS: Ubuntu 20.04 - - Python: 3.9.0 - validations: - required: false - - - type: textarea - attributes: - label: Minimal Reproducible Example - description: > - When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem. - This is referred to by community members as creating a [minimal reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). - placeholder: | - ``` - # Code to reproduce your issue here - ``` - validations: - required: false - - - type: textarea - attributes: - label: Additional - description: Anything else you would like to share? - - - type: checkboxes - attributes: - label: Are you willing to submit a PR? - description: > - (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature. - See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started. - options: - - label: Yes I'd like to help by submitting a PR! diff --git a/yolov5-6.2/.github/ISSUE_TEMPLATE/config.yml b/yolov5-6.2/.github/ISSUE_TEMPLATE/config.yml deleted file mode 100644 index 4db7cefb..00000000 --- a/yolov5-6.2/.github/ISSUE_TEMPLATE/config.yml +++ /dev/null @@ -1,8 +0,0 @@ -blank_issues_enabled: true -contact_links: - - name: 💬 Forum - url: https://community.ultralytics.com/ - about: Ask on Ultralytics Community Forum - - name: Stack Overflow - url: https://stackoverflow.com/search?q=YOLOv5 - about: Ask on Stack Overflow with 'YOLOv5' tag diff --git a/yolov5-6.2/.github/ISSUE_TEMPLATE/feature-request.yml b/yolov5-6.2/.github/ISSUE_TEMPLATE/feature-request.yml deleted file mode 100644 index 68ef9851..00000000 --- a/yolov5-6.2/.github/ISSUE_TEMPLATE/feature-request.yml +++ /dev/null @@ -1,50 +0,0 @@ -name: 🚀 Feature Request -description: Suggest a YOLOv5 idea -# title: " " -labels: [enhancement] -body: - - type: markdown - attributes: - value: | - Thank you for submitting a YOLOv5 🚀 Feature Request! - - - type: checkboxes - attributes: - label: Search before asking - description: > - Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists. - options: - - label: > - I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests. - required: true - - - type: textarea - attributes: - label: Description - description: A short description of your feature. - placeholder: | - What new feature would you like to see in YOLOv5? - validations: - required: true - - - type: textarea - attributes: - label: Use case - description: | - Describe the use case of your feature request. It will help us understand and prioritize the feature request. - placeholder: | - How would this feature be used, and who would use it? - - - type: textarea - attributes: - label: Additional - description: Anything else you would like to share? - - - type: checkboxes - attributes: - label: Are you willing to submit a PR? - description: > - (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature. - See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started. - options: - - label: Yes I'd like to help by submitting a PR! diff --git a/yolov5-6.2/.github/ISSUE_TEMPLATE/question.yml b/yolov5-6.2/.github/ISSUE_TEMPLATE/question.yml deleted file mode 100644 index 8e0993c6..00000000 --- a/yolov5-6.2/.github/ISSUE_TEMPLATE/question.yml +++ /dev/null @@ -1,33 +0,0 @@ -name: ❓ Question -description: Ask a YOLOv5 question -# title: " " -labels: [question] -body: - - type: markdown - attributes: - value: | - Thank you for asking a YOLOv5 ❓ Question! - - - type: checkboxes - attributes: - label: Search before asking - description: > - Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists. - options: - - label: > - I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. - required: true - - - type: textarea - attributes: - label: Question - description: What is your question? - placeholder: | - 💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response. - validations: - required: true - - - type: textarea - attributes: - label: Additional - description: Anything else you would like to share? diff --git a/yolov5-6.2/.github/PULL_REQUEST_TEMPLATE.md b/yolov5-6.2/.github/PULL_REQUEST_TEMPLATE.md deleted file mode 100644 index f25b017a..00000000 --- a/yolov5-6.2/.github/PULL_REQUEST_TEMPLATE.md +++ /dev/null @@ -1,9 +0,0 @@ -<!-- -Thank you for submitting a YOLOv5 🚀 Pull Request! We want to make contributing to YOLOv5 as easy and transparent as possible. A few tips to get you started: - -- Search existing YOLOv5 [PRs](https://github.com/ultralytics/yolov5/pull) to see if a similar PR already exists. -- Link this PR to a YOLOv5 [issue](https://github.com/ultralytics/yolov5/issues) to help us understand what bug fix or feature is being implemented. -- Provide before and after profiling/inference/training results to help us quantify the improvement your PR provides (if applicable). - -Please see our ✅ [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) for more details. ---> diff --git a/yolov5-6.2/.github/README_cn.md b/yolov5-6.2/.github/README_cn.md deleted file mode 100644 index 86b502df..00000000 --- a/yolov5-6.2/.github/README_cn.md +++ /dev/null @@ -1,353 +0,0 @@ -<div align="center"> -<p> - <a align="left" href="https://ultralytics.com/yolov5" target="_blank"> - <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a> -</p> -<br> - -[English](../README.md) | 简体中文 -<div> - <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a> - <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a> - <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> - <br> - <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> - <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> - <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a> -</div> - -<br> -<p> -YOLOv5🚀是一个在COCO数据集上预训练的物体检测架构和模型系列,它代表了<a href="https://ultralytics.com">Ultralytics</a>对未来视觉AI方法的公开研究,其中包含了在数千小时的研究和开发中所获得的经验和最佳实践。 -</p> - -<div align="center"> - <a href="https://github.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://twitter.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://youtube.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a> -</div> - -<!-- -<a align="center" href="https://ultralytics.com/yolov5" target="_blank"> -<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a> ---> - -</div> - -## <div align="center">文件</div> - -请参阅[YOLOv5 Docs](https://docs.ultralytics.com),了解有关训练、测试和部署的完整文件。 - -## <div align="center">快速开始案例</div> - -<details open> -<summary>安装</summary> - -在[**Python>=3.7.0**](https://www.python.org/) 的环境中克隆版本仓并安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt),包括[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/)。 -```bash -git clone https://github.com/ultralytics/yolov5 # 克隆 -cd yolov5 -pip install -r requirements.txt # 安装 -``` - -</details> - -<details open> -<summary>推理</summary> - -YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 推理. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从最新YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases)下载。 - -```python -import torch - -# 模型 -model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom - -# 图像 -img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list - -# 推理 -results = model(img) - -# 结果 -results.print() # or .show(), .save(), .crop(), .pandas(), etc. -``` - -</details> - -<details> -<summary>用 detect.py 进行推理</summary> - -`detect.py` 在各种数据源上运行推理, 其会从最新的 YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中自动下载 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 并将检测结果保存到 `runs/detect` 目录。 - -```bash -python detect.py --source 0 # 网络摄像头 - img.jpg # 图像 - vid.mp4 # 视频 - path/ # 文件夹 - 'path/*.jpg' # glob - 'https://youtu.be/Zgi9g1ksQHc' # YouTube - 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP 流 -``` - -</details> - -<details> -<summary>训练</summary> - -以下指令再现了 YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) -数据集结果. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data) 自动从最新的YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中下载。YOLOv5n/s/m/l/x的训练时间在V100 GPU上是 1/2/4/6/8天(多GPU倍速). 尽可能使用最大的 `--batch-size`, 或通过 `--batch-size -1` 来实现 YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092). 批量大小显示为 V100-16GB。 - -```bash -python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128 - yolov5s 64 - yolov5m 40 - yolov5l 24 - yolov5x 16 -``` - -<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png"> - -</details> - -<details open> -<summary>教程</summary> - -- [训练自定义数据](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 推荐 -- [获得最佳训练效果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️ 推荐 -- [使用 Weights & Biases 记录实验](https://github.com/ultralytics/yolov5/issues/1289) 🌟 新 -- [Roboflow:数据集、标签和主动学习](https://github.com/ultralytics/yolov5/issues/4975) 🌟 新 -- [多GPU训练](https://github.com/ultralytics/yolov5/issues/475) -- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ⭐ 新 -- [TFLite, ONNX, CoreML, TensorRT 导出](https://github.com/ultralytics/yolov5/issues/251) 🚀 -- [测试时数据增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303) -- [模型集成](https://github.com/ultralytics/yolov5/issues/318) -- [模型剪枝/稀疏性](https://github.com/ultralytics/yolov5/issues/304) -- [超参数进化](https://github.com/ultralytics/yolov5/issues/607) -- [带有冻结层的迁移学习](https://github.com/ultralytics/yolov5/issues/1314) ⭐ 新 -- [架构概要](https://github.com/ultralytics/yolov5/issues/6998) ⭐ 新 - -</details> - -## <div align="center">环境</div> - -使用经过我们验证的环境,几秒钟就可以开始。点击下面的每个图标了解详情。 - -<div align="center"> - <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/> - </a> - <a href="https://www.kaggle.com/ultralytics/yolov5"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/> - </a> - <a href="https://hub.docker.com/r/ultralytics/yolov5"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/> - </a> - <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/> - </a> - <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/> - </a> -</div> - -## <div align="center">如何与第三方集成</div> - -<div align="center"> - <a href="https://bit.ly/yolov5-deci-platform"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-deci.png" width="10%" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" /> - <a href="https://cutt.ly/yolov5-readme-clearml"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" /> - <a href="https://roboflow.com/?ref=ultralytics"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" /> - <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb.png" width="10%" /></a> -</div> - -|Deci ⭐ NEW|ClearML ⭐ NEW|Roboflow|Weights & Biases -|:-:|:-:|:-:|:-:| -|Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) - - -## <div align="center">为什么选择 YOLOv5</div> - -<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p> -<details> - <summary>YOLOv5-P5 640 图像 (点击扩展)</summary> - -<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p> -</details> -<details> - <summary>图片注释 (点击扩展)</summary> - -- **COCO AP val** 表示 mAP@0.5:0.95 在5000张图像的[COCO val2017](http://cocodataset.org)数据集上,在256到1536的不同推理大小上测量的指标。 -- **GPU Speed** 衡量的是在 [COCO val2017](http://cocodataset.org) 数据集上使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例在批量大小为32时每张图像的平均推理时间。 -- **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) ,批量大小设置为 8。 -- 复现 mAP 方法: `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` - -</details> - -### 预训练检查点 - -| Model | size<br><sup>(pixels) | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) | -|------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|------------------------------|-------------------------------|--------------------------------|--------------------|------------------------| -| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** | -| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 | -| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 | -| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 | -| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 | -| | | | | | | | | | -| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 | -| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 | -| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 | -| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 | -| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x6.pt)<br>+ [TTA][TTA] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- | - -<details> - <summary>表格注释 (点击扩展)</summary> - -- 所有检查点都以默认设置训练到300个时期. Nano和Small模型用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, 其他模型使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml). -- **mAP<sup>val</sup>** 值是 [COCO val2017](http://cocodataset.org) 数据集上的单模型单尺度的值。 -<br>复现方法: `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` -- 使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) 实例对COCO val图像的平均速度。不包括NMS时间(~1 ms/img) -<br>复现方法: `python val.py --data coco.yaml --img 640 --task speed --batch 1` -- **TTA** [测试时数据增强](https://github.com/ultralytics/yolov5/issues/303) 包括反射和比例增强. -<br>复现方法: `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` - -</details> - - -## <div align="center">Classification ⭐ NEW</div> - -YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation, prediction and export! We've made training classifier models super simple. Click below to get started. - -<details> - <summary>Classification Checkpoints (click to expand)</summary> - -<br> - -We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility. - -| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) | -|----------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----------------------------------------------|--------------------------------|-------------------------------------|--------------------|------------------------| -| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** | -| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 | -| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 | -| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 | -| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 | -| | -| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 | -| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 | -| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 | -| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 | -| | -| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 | -| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 | -| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 | -| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 | - -<details> - <summary>Table Notes (click to expand)</summary> - -- All checkpoints are trained to 90 epochs with SGD optimizer with lr0=0.001 at image size 224 and all default settings. Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2. -- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224` -- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1` -- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224` -</details> -</details> - -<details> - <summary>Classification Usage Examples (click to expand)</summary> - -### Train -YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`. - -```bash -# Single-GPU -python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128 - -# Multi-GPU DDP -python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3 -``` - -### Val -Validate accuracy on a pretrained model. To validate YOLOv5s-cls accuracy on ImageNet. -```bash -bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images) -python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet --img 224 -``` - -### Predict -Run a classification prediction on an image. -```bash -python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg -``` -```python -model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt') # load from PyTorch Hub -``` - -### Export -Export a group of trained YOLOv5-cls, ResNet and EfficientNet models to ONNX and TensorRT. -```bash -python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224 -``` -</details> - - -## <div align="center">贡献</div> - -我们重视您的意见! 我们希望给大家提供尽可能的简单和透明的方式对 YOLOv5 做出贡献。开始之前请先点击并查看我们的 [贡献指南](CONTRIBUTING.md),填写[YOLOv5调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 来向我们发送您的经验反馈。真诚感谢我们所有的贡献者! - -<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 --> -<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a> - -## <div align="center">联系</div> - -关于YOLOv5的漏洞和功能问题,请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)。商业咨询或技术支持服务请访问[https://ultralytics.com/contact](https://ultralytics.com/contact)。 - -<br> -<div align="center"> - <a href="https://github.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://twitter.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://youtube.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="3%" alt="" /></a> -</div> - -[assets]: https://github.com/ultralytics/yolov5/releases -[tta]: https://github.com/ultralytics/yolov5/issues/303 diff --git a/yolov5-6.2/.github/SECURITY.md b/yolov5-6.2/.github/SECURITY.md deleted file mode 100644 index aa3e8409..00000000 --- a/yolov5-6.2/.github/SECURITY.md +++ /dev/null @@ -1,7 +0,0 @@ -# Security Policy - -We aim to make YOLOv5 🚀 as secure as possible! If you find potential vulnerabilities or have any concerns please let us know so we can investigate and take corrective action if needed. - -### Reporting a Vulnerability - -To report vulnerabilities please email us at hello@ultralytics.com or visit https://ultralytics.com/contact. Thank you! diff --git a/yolov5-6.2/.github/dependabot.yml b/yolov5-6.2/.github/dependabot.yml deleted file mode 100644 index c1b3d5d5..00000000 --- a/yolov5-6.2/.github/dependabot.yml +++ /dev/null @@ -1,23 +0,0 @@ -version: 2 -updates: - - package-ecosystem: pip - directory: "/" - schedule: - interval: weekly - time: "04:00" - open-pull-requests-limit: 10 - reviewers: - - glenn-jocher - labels: - - dependencies - - - package-ecosystem: github-actions - directory: "/" - schedule: - interval: weekly - time: "04:00" - open-pull-requests-limit: 5 - reviewers: - - glenn-jocher - labels: - - dependencies diff --git a/yolov5-6.2/.github/workflows/ci-testing.yml b/yolov5-6.2/.github/workflows/ci-testing.yml deleted file mode 100644 index aa797c44..00000000 --- a/yolov5-6.2/.github/workflows/ci-testing.yml +++ /dev/null @@ -1,135 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# YOLOv5 Continuous Integration (CI) GitHub Actions tests - -name: YOLOv5 CI - -on: - push: - branches: [ master ] - pull_request: - branches: [ master ] - schedule: - - cron: '0 0 * * *' # runs at 00:00 UTC every day - -jobs: - Benchmarks: - runs-on: ${{ matrix.os }} - strategy: - matrix: - os: [ ubuntu-latest ] - python-version: [ '3.9' ] # requires python<=3.9 - model: [ yolov5n ] - steps: - - uses: actions/checkout@v3 - - uses: actions/setup-python@v4 - with: - python-version: ${{ matrix.python-version }} - #- name: Cache pip - # uses: actions/cache@v3 - # with: - # path: ~/.cache/pip - # key: ${{ runner.os }}-Benchmarks-${{ hashFiles('requirements.txt') }} - # restore-keys: ${{ runner.os }}-Benchmarks- - - name: Install requirements - run: | - python -m pip install --upgrade pip wheel - pip install -r requirements.txt coremltools openvino-dev tensorflow-cpu --extra-index-url https://download.pytorch.org/whl/cpu - python --version - pip --version - pip list - - name: Run benchmarks - run: | - python utils/benchmarks.py --weights ${{ matrix.model }}.pt --img 320 --hard-fail - - Tests: - timeout-minutes: 60 - runs-on: ${{ matrix.os }} - strategy: - fail-fast: false - matrix: - os: [ ubuntu-latest, macos-latest, windows-latest ] - python-version: [ '3.10' ] - model: [ yolov5n ] - include: - - os: ubuntu-latest - python-version: '3.7' # '3.6.8' min - model: yolov5n - - os: ubuntu-latest - python-version: '3.8' - model: yolov5n - - os: ubuntu-latest - python-version: '3.9' - model: yolov5n - - os: ubuntu-latest - python-version: '3.8' # torch 1.7.0 requires python >=3.6, <=3.8 - model: yolov5n - torch: '1.7.0' # min torch version CI https://pypi.org/project/torchvision/ - steps: - - uses: actions/checkout@v3 - - uses: actions/setup-python@v4 - with: - python-version: ${{ matrix.python-version }} - - name: Get cache dir - # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow - id: pip-cache - run: echo "::set-output name=dir::$(pip cache dir)" - - name: Cache pip - uses: actions/cache@v3 - with: - path: ${{ steps.pip-cache.outputs.dir }} - key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }} - restore-keys: ${{ runner.os }}-${{ matrix.python-version }}-pip- - - name: Install requirements - run: | - python -m pip install --upgrade pip wheel - if [ "${{ matrix.torch }}" == "1.7.0" ]; then - pip install -r requirements.txt torch==1.7.0 torchvision==0.8.1 --extra-index-url https://download.pytorch.org/whl/cpu - else - pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu - fi - shell: bash # for Windows compatibility - - name: Check environment - run: | - python -c "import utils; utils.notebook_init()" - echo "RUNNER_OS is ${{ runner.os }}" - echo "GITHUB_EVENT_NAME is ${{ github.event_name }}" - echo "GITHUB_WORKFLOW is ${{ github.workflow }}" - echo "GITHUB_ACTOR is ${{ github.actor }}" - echo "GITHUB_REPOSITORY is ${{ github.repository }}" - echo "GITHUB_REPOSITORY_OWNER is ${{ github.repository_owner }}" - python --version - pip --version - pip list - - name: Test detection - shell: bash # for Windows compatibility - run: | - # export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories - m=${{ matrix.model }} # official weights - b=runs/train/exp/weights/best # best.pt checkpoint - python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train - for d in cpu; do # devices - for w in $m $b; do # weights - python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val - python detect.py --imgsz 64 --weights $w.pt --device $d # detect - done - done - python hubconf.py --model $m # hub - # python models/tf.py --weights $m.pt # build TF model - python models/yolo.py --cfg $m.yaml # build PyTorch model - python export.py --weights $m.pt --img 64 --include torchscript # export - python - <<EOF - import torch - for path in '$m', '$b': - model = torch.hub.load('.', 'custom', path=path, source='local') - print(model('data/images/bus.jpg')) - EOF - - name: Test classification - shell: bash # for Windows compatibility - run: | - m=${{ matrix.model }}-cls.pt # official weights - b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint - python classify/train.py --imgsz 32 --model $m --data mnist2560 --epochs 1 # train - python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist2560 # val - python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist2560/test/7/60.png # predict - python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict - python export.py --weights $b --img 64 --imgsz 224 --include torchscript # export diff --git a/yolov5-6.2/.github/workflows/codeql-analysis.yml b/yolov5-6.2/.github/workflows/codeql-analysis.yml deleted file mode 100644 index b6f75109..00000000 --- a/yolov5-6.2/.github/workflows/codeql-analysis.yml +++ /dev/null @@ -1,54 +0,0 @@ -# This action runs GitHub's industry-leading static analysis engine, CodeQL, against a repository's source code to find security vulnerabilities. -# https://github.com/github/codeql-action - -name: "CodeQL" - -on: - schedule: - - cron: '0 0 1 * *' # Runs at 00:00 UTC on the 1st of every month - -jobs: - analyze: - name: Analyze - runs-on: ubuntu-latest - - strategy: - fail-fast: false - matrix: - language: ['python'] - # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ] - # Learn more: - # https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed - - steps: - - name: Checkout repository - uses: actions/checkout@v3 - - # Initializes the CodeQL tools for scanning. - - name: Initialize CodeQL - uses: github/codeql-action/init@v2 - with: - languages: ${{ matrix.language }} - # If you wish to specify custom queries, you can do so here or in a config file. - # By default, queries listed here will override any specified in a config file. - # Prefix the list here with "+" to use these queries and those in the config file. - # queries: ./path/to/local/query, your-org/your-repo/queries@main - - # Autobuild attempts to build any compiled languages (C/C++, C#, or Java). - # If this step fails, then you should remove it and run the build manually (see below) - - name: Autobuild - uses: github/codeql-action/autobuild@v2 - - # ℹ️ Command-line programs to run using the OS shell. - # 📚 https://git.io/JvXDl - - # ✏️ If the Autobuild fails above, remove it and uncomment the following three lines - # and modify them (or add more) to build your code if your project - # uses a compiled language - - #- run: | - # make bootstrap - # make release - - - name: Perform CodeQL Analysis - uses: github/codeql-action/analyze@v2 diff --git a/yolov5-6.2/.github/workflows/docker.yml b/yolov5-6.2/.github/workflows/docker.yml deleted file mode 100644 index c89d0ada..00000000 --- a/yolov5-6.2/.github/workflows/docker.yml +++ /dev/null @@ -1,54 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Builds ultralytics/yolov5:latest images on DockerHub https://hub.docker.com/r/ultralytics/yolov5 - -name: Publish Docker Images - -on: - push: - branches: [ master ] - -jobs: - docker: - if: github.repository == 'ultralytics/yolov5' - name: Push Docker image to Docker Hub - runs-on: ubuntu-latest - steps: - - name: Checkout repo - uses: actions/checkout@v3 - - - name: Set up QEMU - uses: docker/setup-qemu-action@v2 - - - name: Set up Docker Buildx - uses: docker/setup-buildx-action@v2 - - - name: Login to Docker Hub - uses: docker/login-action@v2 - with: - username: ${{ secrets.DOCKERHUB_USERNAME }} - password: ${{ secrets.DOCKERHUB_TOKEN }} - - - name: Build and push arm64 image - uses: docker/build-push-action@v3 - with: - context: . - platforms: linux/arm64 - file: utils/docker/Dockerfile-arm64 - push: true - tags: ultralytics/yolov5:latest-arm64 - - - name: Build and push CPU image - uses: docker/build-push-action@v3 - with: - context: . - file: utils/docker/Dockerfile-cpu - push: true - tags: ultralytics/yolov5:latest-cpu - - - name: Build and push GPU image - uses: docker/build-push-action@v3 - with: - context: . - file: utils/docker/Dockerfile - push: true - tags: ultralytics/yolov5:latest diff --git a/yolov5-6.2/.github/workflows/greetings.yml b/yolov5-6.2/.github/workflows/greetings.yml deleted file mode 100644 index d5dad7a2..00000000 --- a/yolov5-6.2/.github/workflows/greetings.yml +++ /dev/null @@ -1,63 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -name: Greetings - -on: - pull_request_target: - types: [opened] - issues: - types: [opened] - -jobs: - greeting: - runs-on: ubuntu-latest - steps: - - uses: actions/first-interaction@v1 - with: - repo-token: ${{ secrets.GITHUB_TOKEN }} - pr-message: | - 👋 Hello @${{ github.actor }}, thank you for submitting a YOLOv5 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to: - - ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an automatic [GitHub Actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) merge may be attempted by writing /rebase in a new comment, or by running the following code, replacing 'feature' with the name of your local branch: - ```bash - git remote add upstream https://github.com/ultralytics/yolov5.git - git fetch upstream - # git checkout feature # <--- replace 'feature' with local branch name - git merge upstream/master - git push -u origin -f - ``` - - ✅ Verify all Continuous Integration (CI) **checks are passing**. - - ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee - - issue-message: | - 👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ [Tutorials](https://github.com/ultralytics/yolov5/wiki#tutorials) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) all the way to advanced concepts like [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607). - - If this is a 🐛 Bug Report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you. - - If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online [W&B logging](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data#visualize) if available. - - For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com. - - ## Requirements - - [**Python>=3.7.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). To get started: - ```bash - git clone https://github.com/ultralytics/yolov5 # clone - cd yolov5 - pip install -r requirements.txt # install - ``` - - ## Environments - - YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled): - - - **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> - - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) - - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart) - - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> - - - ## Status - - <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a> - - If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit. diff --git a/yolov5-6.2/.github/workflows/rebase.yml b/yolov5-6.2/.github/workflows/rebase.yml deleted file mode 100644 index a4dc9e50..00000000 --- a/yolov5-6.2/.github/workflows/rebase.yml +++ /dev/null @@ -1,21 +0,0 @@ -# https://github.com/marketplace/actions/automatic-rebase - -name: Automatic Rebase -on: - issue_comment: - types: [created] -jobs: - rebase: - name: Rebase - if: github.event.issue.pull_request != '' && contains(github.event.comment.body, '/rebase') - runs-on: ubuntu-latest - steps: - - name: Checkout the latest code - uses: actions/checkout@v3 - with: - token: ${{ secrets.ACTIONS_TOKEN }} - fetch-depth: 0 # otherwise, you will fail to push refs to dest repo - - name: Automatic Rebase - uses: cirrus-actions/rebase@1.7 - env: - GITHUB_TOKEN: ${{ secrets.ACTIONS_TOKEN }} diff --git a/yolov5-6.2/.github/workflows/stale.yml b/yolov5-6.2/.github/workflows/stale.yml deleted file mode 100644 index 03d99790..00000000 --- a/yolov5-6.2/.github/workflows/stale.yml +++ /dev/null @@ -1,40 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -name: Close stale issues -on: - schedule: - - cron: '0 0 * * *' # Runs at 00:00 UTC every day - -jobs: - stale: - runs-on: ubuntu-latest - steps: - - uses: actions/stale@v5 - with: - repo-token: ${{ secrets.GITHUB_TOKEN }} - stale-issue-message: | - 👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs. - - Access additional [YOLOv5](https://ultralytics.com/yolov5) 🚀 resources: - - **Wiki** – https://github.com/ultralytics/yolov5/wiki - - **Tutorials** – https://github.com/ultralytics/yolov5#tutorials - - **Docs** – https://docs.ultralytics.com - - Access additional [Ultralytics](https://ultralytics.com) ⚡ resources: - - **Ultralytics HUB** – https://ultralytics.com/hub - - **Vision API** – https://ultralytics.com/yolov5 - - **About Us** – https://ultralytics.com/about - - **Join Our Team** – https://ultralytics.com/work - - **Contact Us** – https://ultralytics.com/contact - - Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed! - - Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐! - - stale-pr-message: 'This pull request has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv5 🚀 and Vision AI ⭐.' - days-before-issue-stale: 30 - days-before-issue-close: 10 - days-before-pr-stale: 90 - days-before-pr-close: 30 - exempt-issue-labels: 'documentation,tutorial,TODO' - operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting. diff --git a/yolov5-6.2/.gitignore b/yolov5-6.2/.gitignore deleted file mode 100644 index 69a00843..00000000 --- a/yolov5-6.2/.gitignore +++ /dev/null @@ -1,256 +0,0 @@ -# Repo-specific GitIgnore ---------------------------------------------------------------------------------------------- -*.jpg -*.jpeg -*.png -*.bmp -*.tif -*.tiff -*.heic -*.JPG -*.JPEG -*.PNG -*.BMP -*.TIF -*.TIFF -*.HEIC -*.mp4 -*.mov -*.MOV -*.avi -*.data -*.json -*.cfg -!setup.cfg -!cfg/yolov3*.cfg - -storage.googleapis.com -runs/* -data/* -data/images/* -!data/*.yaml -!data/hyps -!data/scripts -!data/images -!data/images/zidane.jpg -!data/images/bus.jpg -!data/*.sh - -results*.csv - -# Datasets ------------------------------------------------------------------------------------------------------------- -coco/ -coco128/ -VOC/ - -# MATLAB GitIgnore ----------------------------------------------------------------------------------------------------- -*.m~ -*.mat -!targets*.mat - -# Neural Network weights ----------------------------------------------------------------------------------------------- -*.weights -*.pt -*.pb -*.onnx -*.engine -*.mlmodel -*.torchscript -*.tflite -*.h5 -*_saved_model/ -*_web_model/ -*_openvino_model/ -darknet53.conv.74 -yolov3-tiny.conv.15 - -# GitHub Python GitIgnore ---------------------------------------------------------------------------------------------- -# Byte-compiled / optimized / DLL files -__pycache__/ -*.py[cod] -*$py.class - -# C extensions -*.so - -# Distribution / packaging -.Python -env/ -build/ -develop-eggs/ -dist/ -downloads/ -eggs/ -.eggs/ -lib/ -lib64/ -parts/ -sdist/ -var/ -wheels/ -*.egg-info/ -/wandb/ -.installed.cfg -*.egg - - -# PyInstaller -# Usually these files are written by a python script from a template -# before PyInstaller builds the exe, so as to inject date/other infos into it. -*.manifest -*.spec - -# Installer logs -pip-log.txt -pip-delete-this-directory.txt - -# Unit test / coverage reports -htmlcov/ -.tox/ -.coverage -.coverage.* -.cache -nosetests.xml -coverage.xml -*.cover -.hypothesis/ - -# Translations -*.mo -*.pot - -# Django stuff: -*.log -local_settings.py - -# Flask stuff: -instance/ -.webassets-cache - -# Scrapy stuff: -.scrapy - -# Sphinx documentation -docs/_build/ - -# PyBuilder -target/ - -# Jupyter Notebook -.ipynb_checkpoints - -# pyenv -.python-version - -# celery beat schedule file -celerybeat-schedule - -# SageMath parsed files -*.sage.py - -# dotenv -.env - -# virtualenv -.venv* -venv*/ -ENV*/ - -# Spyder project settings -.spyderproject -.spyproject - -# Rope project settings -.ropeproject - -# mkdocs documentation -/site - -# mypy -.mypy_cache/ - - -# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore ----------------------------------------------- - -# General -.DS_Store -.AppleDouble -.LSOverride - -# Icon must end with two \r -Icon -Icon? - -# Thumbnails -._* - -# Files that might appear in the root of a volume -.DocumentRevisions-V100 -.fseventsd -.Spotlight-V100 -.TemporaryItems -.Trashes -.VolumeIcon.icns -.com.apple.timemachine.donotpresent - -# Directories potentially created on remote AFP share -.AppleDB -.AppleDesktop -Network Trash Folder -Temporary Items -.apdisk - - -# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore -# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm -# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839 - -# User-specific stuff: -.idea/* -.idea/**/workspace.xml -.idea/**/tasks.xml -.idea/dictionaries -.html # Bokeh Plots -.pg # TensorFlow Frozen Graphs -.avi # videos - -# Sensitive or high-churn files: -.idea/**/dataSources/ -.idea/**/dataSources.ids -.idea/**/dataSources.local.xml -.idea/**/sqlDataSources.xml -.idea/**/dynamic.xml -.idea/**/uiDesigner.xml - -# Gradle: -.idea/**/gradle.xml -.idea/**/libraries - -# CMake -cmake-build-debug/ -cmake-build-release/ - -# Mongo Explorer plugin: -.idea/**/mongoSettings.xml - -## File-based project format: -*.iws - -## Plugin-specific files: - -# IntelliJ -out/ - -# mpeltonen/sbt-idea plugin -.idea_modules/ - -# JIRA plugin -atlassian-ide-plugin.xml - -# Cursive Clojure plugin -.idea/replstate.xml - -# Crashlytics plugin (for Android Studio and IntelliJ) -com_crashlytics_export_strings.xml -crashlytics.properties -crashlytics-build.properties -fabric.properties diff --git a/yolov5-6.2/.pre-commit-config.yaml b/yolov5-6.2/.pre-commit-config.yaml deleted file mode 100644 index 43aca019..00000000 --- a/yolov5-6.2/.pre-commit-config.yaml +++ /dev/null @@ -1,64 +0,0 @@ -# Define hooks for code formations -# Will be applied on any updated commit files if a user has installed and linked commit hook - -default_language_version: - python: python3.8 - -# Define bot property if installed via https://github.com/marketplace/pre-commit-ci -ci: - autofix_prs: true - autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions' - autoupdate_schedule: monthly - # submodules: true - -repos: - - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v4.3.0 - hooks: - # - id: end-of-file-fixer - - id: trailing-whitespace - - id: check-case-conflict - - id: check-yaml - - id: check-toml - - id: pretty-format-json - - id: check-docstring-first - - - repo: https://github.com/asottile/pyupgrade - rev: v2.37.3 - hooks: - - id: pyupgrade - name: Upgrade code - args: [ --py37-plus ] - - - repo: https://github.com/PyCQA/isort - rev: 5.10.1 - hooks: - - id: isort - name: Sort imports - - - repo: https://github.com/pre-commit/mirrors-yapf - rev: v0.32.0 - hooks: - - id: yapf - name: YAPF formatting - - - repo: https://github.com/executablebooks/mdformat - rev: 0.7.14 - hooks: - - id: mdformat - name: MD formatting - additional_dependencies: - - mdformat-gfm - - mdformat-black - exclude: "README.md|README_cn.md" - - - repo: https://github.com/asottile/yesqa - rev: v1.3.0 - hooks: - - id: yesqa - - - repo: https://github.com/PyCQA/flake8 - rev: 5.0.2 - hooks: - - id: flake8 - name: PEP8 diff --git a/yolov5-6.2/CONTRIBUTING.md b/yolov5-6.2/CONTRIBUTING.md deleted file mode 100644 index 13b9b73b..00000000 --- a/yolov5-6.2/CONTRIBUTING.md +++ /dev/null @@ -1,98 +0,0 @@ -## Contributing to YOLOv5 🚀 - -We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's: - -- Reporting a bug -- Discussing the current state of the code -- Submitting a fix -- Proposing a new feature -- Becoming a maintainer - -YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be -helping push the frontiers of what's possible in AI 😃! - -## Submitting a Pull Request (PR) 🛠️ - -Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps: - -### 1. Select File to Update - -Select `requirements.txt` to update by clicking on it in GitHub. - -<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p> - -### 2. Click 'Edit this file' - -Button is in top-right corner. - -<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p> - -### 3. Make Changes - -Change `matplotlib` version from `3.2.2` to `3.3`. - -<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p> - -### 4. Preview Changes and Submit PR - -Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch** -for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose -changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃! - -<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p> - -### PR recommendations - -To allow your work to be integrated as seamlessly as possible, we advise you to: - -- ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an - automatic [GitHub Actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) merge may - be attempted by writing /rebase in a new comment, or by running the following code, replacing 'feature' with the name - of your local branch: - -```bash -git remote add upstream https://github.com/ultralytics/yolov5.git -git fetch upstream -# git checkout feature # <--- replace 'feature' with local branch name -git merge upstream/master -git push -u origin -f -``` - -- ✅ Verify all Continuous Integration (CI) **checks are passing**. -- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase - but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee - -## Submitting a Bug Report 🐛 - -If you spot a problem with YOLOv5 please submit a Bug Report! - -For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few -short guidelines below to help users provide what we need in order to get started. - -When asking a question, people will be better able to provide help if you provide **code** that they can easily -understand and use to **reproduce** the problem. This is referred to by community members as creating -a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces -the problem should be: - -- ✅ **Minimal** – Use as little code as possible that still produces the same problem -- ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself -- ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem - -In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code -should be: - -- ✅ **Current** – Verify that your code is up-to-date with current - GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new - copy to ensure your problem has not already been resolved by previous commits. -- ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this - repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️. - -If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 -**Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing -a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better -understand and diagnose your problem. - -## License - -By contributing, you agree that your contributions will be licensed under -the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/) diff --git a/yolov5-6.2/LICENSE b/yolov5-6.2/LICENSE deleted file mode 100644 index 92b370f0..00000000 --- a/yolov5-6.2/LICENSE +++ /dev/null @@ -1,674 +0,0 @@ -GNU GENERAL PUBLIC LICENSE - Version 3, 29 June 2007 - - Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - Preamble - - The GNU General Public License is a free, copyleft license for -software and other kinds of works. - - The licenses for most software and other practical works are designed -to take away your freedom to share and change the works. By contrast, -the GNU General Public License is intended to guarantee your freedom to -share and change all versions of a program--to make sure it remains free -software for all its users. We, the Free Software Foundation, use the -GNU General Public License for most of our software; it applies also to -any other work released this way by its authors. You can apply it to -your programs, too. - - When we speak of free software, we are referring to freedom, not -price. Our General Public Licenses are designed to make sure that you -have the freedom to distribute copies of free software (and charge for -them if you wish), that you receive source code or can get it if you -want it, that you can change the software or use pieces of it in new -free programs, and that you know you can do these things. - - To protect your rights, we need to prevent others from denying you -these rights or asking you to surrender the rights. Therefore, you have -certain responsibilities if you distribute copies of the software, or if -you modify it: responsibilities to respect the freedom of others. - - For example, if you distribute copies of such a program, whether -gratis or for a fee, you must pass on to the recipients the same -freedoms that you received. You must make sure that they, too, receive -or can get the source code. And you must show them these terms so they -know their rights. - - Developers that use the GNU GPL protect your rights with two steps: -(1) assert copyright on the software, and (2) offer you this License -giving you legal permission to copy, distribute and/or modify it. - - For the developers' and authors' protection, the GPL clearly explains -that there is no warranty for this free software. For both users' and -authors' sake, the GPL requires that modified versions be marked as -changed, so that their problems will not be attributed erroneously to -authors of previous versions. - - Some devices are designed to deny users access to install or run -modified versions of the software inside them, although the manufacturer -can do so. This is fundamentally incompatible with the aim of -protecting users' freedom to change the software. The systematic -pattern of such abuse occurs in the area of products for individuals to -use, which is precisely where it is most unacceptable. Therefore, we -have designed this version of the GPL to prohibit the practice for those -products. If such problems arise substantially in other domains, we -stand ready to extend this provision to those domains in future versions -of the GPL, as needed to protect the freedom of users. - - Finally, every program is threatened constantly by software patents. -States should not allow patents to restrict development and use of -software on general-purpose computers, but in those that do, we wish to -avoid the special danger that patents applied to a free program could -make it effectively proprietary. To prevent this, the GPL assures that -patents cannot be used to render the program non-free. - - The precise terms and conditions for copying, distribution and -modification follow. - - TERMS AND CONDITIONS - - 0. Definitions. - - "This License" refers to version 3 of the GNU General Public License. - - "Copyright" also means copyright-like laws that apply to other kinds of -works, such as semiconductor masks. - - "The Program" refers to any copyrightable work licensed under this -License. Each licensee is addressed as "you". "Licensees" and -"recipients" may be individuals or organizations. - - To "modify" a work means to copy from or adapt all or part of the work -in a fashion requiring copyright permission, other than the making of an -exact copy. The resulting work is called a "modified version" of the -earlier work or a work "based on" the earlier work. - - A "covered work" means either the unmodified Program or a work based -on the Program. - - To "propagate" a work means to do anything with it that, without -permission, would make you directly or secondarily liable for -infringement under applicable copyright law, except executing it on a -computer or modifying a private copy. Propagation includes copying, -distribution (with or without modification), making available to the -public, and in some countries other activities as well. - - To "convey" a work means any kind of propagation that enables other -parties to make or receive copies. Mere interaction with a user through -a computer network, with no transfer of a copy, is not conveying. - - An interactive user interface displays "Appropriate Legal Notices" -to the extent that it includes a convenient and prominently visible -feature that (1) displays an appropriate copyright notice, and (2) -tells the user that there is no warranty for the work (except to the -extent that warranties are provided), that licensees may convey the -work under this License, and how to view a copy of this License. If -the interface presents a list of user commands or options, such as a -menu, a prominent item in the list meets this criterion. - - 1. Source Code. - - The "source code" for a work means the preferred form of the work -for making modifications to it. "Object code" means any non-source -form of a work. - - A "Standard Interface" means an interface that either is an official -standard defined by a recognized standards body, or, in the case of -interfaces specified for a particular programming language, one that -is widely used among developers working in that language. - - The "System Libraries" of an executable work include anything, other -than the work as a whole, that (a) is included in the normal form of -packaging a Major Component, but which is not part of that Major -Component, and (b) serves only to enable use of the work with that -Major Component, or to implement a Standard Interface for which an -implementation is available to the public in source code form. A -"Major Component", in this context, means a major essential component -(kernel, window system, and so on) of the specific operating system -(if any) on which the executable work runs, or a compiler used to -produce the work, or an object code interpreter used to run it. - - The "Corresponding Source" for a work in object code form means all -the source code needed to generate, install, and (for an executable -work) run the object code and to modify the work, including scripts to -control those activities. However, it does not include the work's -System Libraries, or general-purpose tools or generally available free -programs which are used unmodified in performing those activities but -which are not part of the work. For example, Corresponding Source -includes interface definition files associated with source files for -the work, and the source code for shared libraries and dynamically -linked subprograms that the work is specifically designed to require, -such as by intimate data communication or control flow between those -subprograms and other parts of the work. - - The Corresponding Source need not include anything that users -can regenerate automatically from other parts of the Corresponding -Source. - - The Corresponding Source for a work in source code form is that -same work. - - 2. Basic Permissions. - - All rights granted under this License are granted for the term of -copyright on the Program, and are irrevocable provided the stated -conditions are met. This License explicitly affirms your unlimited -permission to run the unmodified Program. The output from running a -covered work is covered by this License only if the output, given its -content, constitutes a covered work. This License acknowledges your -rights of fair use or other equivalent, as provided by copyright law. - - You may make, run and propagate covered works that you do not -convey, without conditions so long as your license otherwise remains -in force. You may convey covered works to others for the sole purpose -of having them make modifications exclusively for you, or provide you -with facilities for running those works, provided that you comply with -the terms of this License in conveying all material for which you do -not control copyright. Those thus making or running the covered works -for you must do so exclusively on your behalf, under your direction -and control, on terms that prohibit them from making any copies of -your copyrighted material outside their relationship with you. - - Conveying under any other circumstances is permitted solely under -the conditions stated below. Sublicensing is not allowed; section 10 -makes it unnecessary. - - 3. Protecting Users' Legal Rights From Anti-Circumvention Law. - - No covered work shall be deemed part of an effective technological -measure under any applicable law fulfilling obligations under article -11 of the WIPO copyright treaty adopted on 20 December 1996, or -similar laws prohibiting or restricting circumvention of such -measures. - - When you convey a covered work, you waive any legal power to forbid -circumvention of technological measures to the extent such circumvention -is effected by exercising rights under this License with respect to -the covered work, and you disclaim any intention to limit operation or -modification of the work as a means of enforcing, against the work's -users, your or third parties' legal rights to forbid circumvention of -technological measures. - - 4. Conveying Verbatim Copies. - - You may convey verbatim copies of the Program's source code as you -receive it, in any medium, provided that you conspicuously and -appropriately publish on each copy an appropriate copyright notice; -keep intact all notices stating that this License and any -non-permissive terms added in accord with section 7 apply to the code; -keep intact all notices of the absence of any warranty; and give all -recipients a copy of this License along with the Program. - - You may charge any price or no price for each copy that you convey, -and you may offer support or warranty protection for a fee. - - 5. Conveying Modified Source Versions. - - You may convey a work based on the Program, or the modifications to -produce it from the Program, in the form of source code under the -terms of section 4, provided that you also meet all of these conditions: - - a) The work must carry prominent notices stating that you modified - it, and giving a relevant date. - - b) The work must carry prominent notices stating that it is - released under this License and any conditions added under section - 7. This requirement modifies the requirement in section 4 to - "keep intact all notices". - - c) You must license the entire work, as a whole, under this - License to anyone who comes into possession of a copy. This - License will therefore apply, along with any applicable section 7 - additional terms, to the whole of the work, and all its parts, - regardless of how they are packaged. This License gives no - permission to license the work in any other way, but it does not - invalidate such permission if you have separately received it. - - d) If the work has interactive user interfaces, each must display - Appropriate Legal Notices; however, if the Program has interactive - interfaces that do not display Appropriate Legal Notices, your - work need not make them do so. - - A compilation of a covered work with other separate and independent -works, which are not by their nature extensions of the covered work, -and which are not combined with it such as to form a larger program, -in or on a volume of a storage or distribution medium, is called an -"aggregate" if the compilation and its resulting copyright are not -used to limit the access or legal rights of the compilation's users -beyond what the individual works permit. Inclusion of a covered work -in an aggregate does not cause this License to apply to the other -parts of the aggregate. - - 6. Conveying Non-Source Forms. - - You may convey a covered work in object code form under the terms -of sections 4 and 5, provided that you also convey the -machine-readable Corresponding Source under the terms of this License, -in one of these ways: - - a) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by the - Corresponding Source fixed on a durable physical medium - customarily used for software interchange. - - b) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by a - written offer, valid for at least three years and valid for as - long as you offer spare parts or customer support for that product - model, to give anyone who possesses the object code either (1) a - copy of the Corresponding Source for all the software in the - product that is covered by this License, on a durable physical - medium customarily used for software interchange, for a price no - more than your reasonable cost of physically performing this - conveying of source, or (2) access to copy the - Corresponding Source from a network server at no charge. - - c) Convey individual copies of the object code with a copy of the - written offer to provide the Corresponding Source. This - alternative is allowed only occasionally and noncommercially, and - only if you received the object code with such an offer, in accord - with subsection 6b. - - d) Convey the object code by offering access from a designated - place (gratis or for a charge), and offer equivalent access to the - Corresponding Source in the same way through the same place at no - further charge. You need not require recipients to copy the - Corresponding Source along with the object code. If the place to - copy the object code is a network server, the Corresponding Source - may be on a different server (operated by you or a third party) - that supports equivalent copying facilities, provided you maintain - clear directions next to the object code saying where to find the - Corresponding Source. Regardless of what server hosts the - Corresponding Source, you remain obligated to ensure that it is - available for as long as needed to satisfy these requirements. - - e) Convey the object code using peer-to-peer transmission, provided - you inform other peers where the object code and Corresponding - Source of the work are being offered to the general public at no - charge under subsection 6d. - - A separable portion of the object code, whose source code is excluded -from the Corresponding Source as a System Library, need not be -included in conveying the object code work. - - A "User Product" is either (1) a "consumer product", which means any -tangible personal property which is normally used for personal, family, -or household purposes, or (2) anything designed or sold for incorporation -into a dwelling. In determining whether a product is a consumer product, -doubtful cases shall be resolved in favor of coverage. For a particular -product received by a particular user, "normally used" refers to a -typical or common use of that class of product, regardless of the status -of the particular user or of the way in which the particular user -actually uses, or expects or is expected to use, the product. A product -is a consumer product regardless of whether the product has substantial -commercial, industrial or non-consumer uses, unless such uses represent -the only significant mode of use of the product. - - "Installation Information" for a User Product means any methods, -procedures, authorization keys, or other information required to install -and execute modified versions of a covered work in that User Product from -a modified version of its Corresponding Source. The information must -suffice to ensure that the continued functioning of the modified object -code is in no case prevented or interfered with solely because -modification has been made. - - If you convey an object code work under this section in, or with, or -specifically for use in, a User Product, and the conveying occurs as -part of a transaction in which the right of possession and use of the -User Product is transferred to the recipient in perpetuity or for a -fixed term (regardless of how the transaction is characterized), the -Corresponding Source conveyed under this section must be accompanied -by the Installation Information. But this requirement does not apply -if neither you nor any third party retains the ability to install -modified object code on the User Product (for example, the work has -been installed in ROM). - - The requirement to provide Installation Information does not include a -requirement to continue to provide support service, warranty, or updates -for a work that has been modified or installed by the recipient, or for -the User Product in which it has been modified or installed. Access to a -network may be denied when the modification itself materially and -adversely affects the operation of the network or violates the rules and -protocols for communication across the network. - - Corresponding Source conveyed, and Installation Information provided, -in accord with this section must be in a format that is publicly -documented (and with an implementation available to the public in -source code form), and must require no special password or key for -unpacking, reading or copying. - - 7. Additional Terms. - - "Additional permissions" are terms that supplement the terms of this -License by making exceptions from one or more of its conditions. -Additional permissions that are applicable to the entire Program shall -be treated as though they were included in this License, to the extent -that they are valid under applicable law. If additional permissions -apply only to part of the Program, that part may be used separately -under those permissions, but the entire Program remains governed by -this License without regard to the additional permissions. - - When you convey a copy of a covered work, you may at your option -remove any additional permissions from that copy, or from any part of -it. (Additional permissions may be written to require their own -removal in certain cases when you modify the work.) You may place -additional permissions on material, added by you to a covered work, -for which you have or can give appropriate copyright permission. - - Notwithstanding any other provision of this License, for material you -add to a covered work, you may (if authorized by the copyright holders of -that material) supplement the terms of this License with terms: - - a) Disclaiming warranty or limiting liability differently from the - terms of sections 15 and 16 of this License; or - - b) Requiring preservation of specified reasonable legal notices or - author attributions in that material or in the Appropriate Legal - Notices displayed by works containing it; or - - c) Prohibiting misrepresentation of the origin of that material, or - requiring that modified versions of such material be marked in - reasonable ways as different from the original version; or - - d) Limiting the use for publicity purposes of names of licensors or - authors of the material; or - - e) Declining to grant rights under trademark law for use of some - trade names, trademarks, or service marks; or - - f) Requiring indemnification of licensors and authors of that - material by anyone who conveys the material (or modified versions of - it) with contractual assumptions of liability to the recipient, for - any liability that these contractual assumptions directly impose on - those licensors and authors. - - All other non-permissive additional terms are considered "further -restrictions" within the meaning of section 10. If the Program as you -received it, or any part of it, contains a notice stating that it is -governed by this License along with a term that is a further -restriction, you may remove that term. If a license document contains -a further restriction but permits relicensing or conveying under this -License, you may add to a covered work material governed by the terms -of that license document, provided that the further restriction does -not survive such relicensing or conveying. - - If you add terms to a covered work in accord with this section, you -must place, in the relevant source files, a statement of the -additional terms that apply to those files, or a notice indicating -where to find the applicable terms. - - Additional terms, permissive or non-permissive, may be stated in the -form of a separately written license, or stated as exceptions; -the above requirements apply either way. - - 8. Termination. - - You may not propagate or modify a covered work except as expressly -provided under this License. Any attempt otherwise to propagate or -modify it is void, and will automatically terminate your rights under -this License (including any patent licenses granted under the third -paragraph of section 11). - - However, if you cease all violation of this License, then your -license from a particular copyright holder is reinstated (a) -provisionally, unless and until the copyright holder explicitly and -finally terminates your license, and (b) permanently, if the copyright -holder fails to notify you of the violation by some reasonable means -prior to 60 days after the cessation. - - Moreover, your license from a particular copyright holder is -reinstated permanently if the copyright holder notifies you of the -violation by some reasonable means, this is the first time you have -received notice of violation of this License (for any work) from that -copyright holder, and you cure the violation prior to 30 days after -your receipt of the notice. - - Termination of your rights under this section does not terminate the -licenses of parties who have received copies or rights from you under -this License. If your rights have been terminated and not permanently -reinstated, you do not qualify to receive new licenses for the same -material under section 10. - - 9. Acceptance Not Required for Having Copies. - - You are not required to accept this License in order to receive or -run a copy of the Program. Ancillary propagation of a covered work -occurring solely as a consequence of using peer-to-peer transmission -to receive a copy likewise does not require acceptance. However, -nothing other than this License grants you permission to propagate or -modify any covered work. These actions infringe copyright if you do -not accept this License. Therefore, by modifying or propagating a -covered work, you indicate your acceptance of this License to do so. - - 10. Automatic Licensing of Downstream Recipients. - - Each time you convey a covered work, the recipient automatically -receives a license from the original licensors, to run, modify and -propagate that work, subject to this License. You are not responsible -for enforcing compliance by third parties with this License. - - An "entity transaction" is a transaction transferring control of an -organization, or substantially all assets of one, or subdividing an -organization, or merging organizations. If propagation of a covered -work results from an entity transaction, each party to that -transaction who receives a copy of the work also receives whatever -licenses to the work the party's predecessor in interest had or could -give under the previous paragraph, plus a right to possession of the -Corresponding Source of the work from the predecessor in interest, if -the predecessor has it or can get it with reasonable efforts. - - You may not impose any further restrictions on the exercise of the -rights granted or affirmed under this License. For example, you may -not impose a license fee, royalty, or other charge for exercise of -rights granted under this License, and you may not initiate litigation -(including a cross-claim or counterclaim in a lawsuit) alleging that -any patent claim is infringed by making, using, selling, offering for -sale, or importing the Program or any portion of it. - - 11. Patents. - - A "contributor" is a copyright holder who authorizes use under this -License of the Program or a work on which the Program is based. The -work thus licensed is called the contributor's "contributor version". - - A contributor's "essential patent claims" are all patent claims -owned or controlled by the contributor, whether already acquired or -hereafter acquired, that would be infringed by some manner, permitted -by this License, of making, using, or selling its contributor version, -but do not include claims that would be infringed only as a -consequence of further modification of the contributor version. For -purposes of this definition, "control" includes the right to grant -patent sublicenses in a manner consistent with the requirements of -this License. - - Each contributor grants you a non-exclusive, worldwide, royalty-free -patent license under the contributor's essential patent claims, to -make, use, sell, offer for sale, import and otherwise run, modify and -propagate the contents of its contributor version. - - In the following three paragraphs, a "patent license" is any express -agreement or commitment, however denominated, not to enforce a patent -(such as an express permission to practice a patent or covenant not to -sue for patent infringement). To "grant" such a patent license to a -party means to make such an agreement or commitment not to enforce a -patent against the party. - - If you convey a covered work, knowingly relying on a patent license, -and the Corresponding Source of the work is not available for anyone -to copy, free of charge and under the terms of this License, through a -publicly available network server or other readily accessible means, -then you must either (1) cause the Corresponding Source to be so -available, or (2) arrange to deprive yourself of the benefit of the -patent license for this particular work, or (3) arrange, in a manner -consistent with the requirements of this License, to extend the patent -license to downstream recipients. "Knowingly relying" means you have -actual knowledge that, but for the patent license, your conveying the -covered work in a country, or your recipient's use of the covered work -in a country, would infringe one or more identifiable patents in that -country that you have reason to believe are valid. - - If, pursuant to or in connection with a single transaction or -arrangement, you convey, or propagate by procuring conveyance of, a -covered work, and grant a patent license to some of the parties -receiving the covered work authorizing them to use, propagate, modify -or convey a specific copy of the covered work, then the patent license -you grant is automatically extended to all recipients of the covered -work and works based on it. - - A patent license is "discriminatory" if it does not include within -the scope of its coverage, prohibits the exercise of, or is -conditioned on the non-exercise of one or more of the rights that are -specifically granted under this License. You may not convey a covered -work if you are a party to an arrangement with a third party that is -in the business of distributing software, under which you make payment -to the third party based on the extent of your activity of conveying -the work, and under which the third party grants, to any of the -parties who would receive the covered work from you, a discriminatory -patent license (a) in connection with copies of the covered work -conveyed by you (or copies made from those copies), or (b) primarily -for and in connection with specific products or compilations that -contain the covered work, unless you entered into that arrangement, -or that patent license was granted, prior to 28 March 2007. - - Nothing in this License shall be construed as excluding or limiting -any implied license or other defenses to infringement that may -otherwise be available to you under applicable patent law. - - 12. No Surrender of Others' Freedom. - - If conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot convey a -covered work so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you may -not convey it at all. For example, if you agree to terms that obligate you -to collect a royalty for further conveying from those to whom you convey -the Program, the only way you could satisfy both those terms and this -License would be to refrain entirely from conveying the Program. - - 13. Use with the GNU Affero General Public License. - - Notwithstanding any other provision of this License, you have -permission to link or combine any covered work with a work licensed -under version 3 of the GNU Affero General Public License into a single -combined work, and to convey the resulting work. The terms of this -License will continue to apply to the part which is the covered work, -but the special requirements of the GNU Affero General Public License, -section 13, concerning interaction through a network will apply to the -combination as such. - - 14. Revised Versions of this License. - - The Free Software Foundation may publish revised and/or new versions of -the GNU General Public License from time to time. Such new versions will -be similar in spirit to the present version, but may differ in detail to -address new problems or concerns. - - Each version is given a distinguishing version number. If the -Program specifies that a certain numbered version of the GNU General -Public License "or any later version" applies to it, you have the -option of following the terms and conditions either of that numbered -version or of any later version published by the Free Software -Foundation. If the Program does not specify a version number of the -GNU General Public License, you may choose any version ever published -by the Free Software Foundation. - - If the Program specifies that a proxy can decide which future -versions of the GNU General Public License can be used, that proxy's -public statement of acceptance of a version permanently authorizes you -to choose that version for the Program. - - Later license versions may give you additional or different -permissions. However, no additional obligations are imposed on any -author or copyright holder as a result of your choosing to follow a -later version. - - 15. Disclaimer of Warranty. - - THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY -APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT -HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY -OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, -THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM -IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF -ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. Limitation of Liability. - - IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING -WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS -THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY -GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE -USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF -DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD -PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), -EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF -SUCH DAMAGES. - - 17. Interpretation of Sections 15 and 16. - - If the disclaimer of warranty and limitation of liability provided -above cannot be given local legal effect according to their terms, -reviewing courts shall apply local law that most closely approximates -an absolute waiver of all civil liability in connection with the -Program, unless a warranty or assumption of liability accompanies a -copy of the Program in return for a fee. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Programs - - If you develop a new program, and you want it to be of the greatest -possible use to the public, the best way to achieve this is to make it -free software which everyone can redistribute and change under these terms. - - To do so, attach the following notices to the program. It is safest -to attach them to the start of each source file to most effectively -state the exclusion of warranty; and each file should have at least -the "copyright" line and a pointer to where the full notice is found. - - <one line to give the program's name and a brief idea of what it does.> - Copyright (C) <year> <name of author> - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see <http://www.gnu.org/licenses/>. - -Also add information on how to contact you by electronic and paper mail. - - If the program does terminal interaction, make it output a short -notice like this when it starts in an interactive mode: - - <program> Copyright (C) <year> <name of author> - This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. - This is free software, and you are welcome to redistribute it - under certain conditions; type `show c' for details. - -The hypothetical commands `show w' and `show c' should show the appropriate -parts of the General Public License. Of course, your program's commands -might be different; for a GUI interface, you would use an "about box". - - You should also get your employer (if you work as a programmer) or school, -if any, to sign a "copyright disclaimer" for the program, if necessary. -For more information on this, and how to apply and follow the GNU GPL, see -<http://www.gnu.org/licenses/>. - - The GNU General Public License does not permit incorporating your program -into proprietary programs. If your program is a subroutine library, you -may consider it more useful to permit linking proprietary applications with -the library. If this is what you want to do, use the GNU Lesser General -Public License instead of this License. But first, please read -<http://www.gnu.org/philosophy/why-not-lgpl.html>. diff --git a/yolov5-6.2/README.md b/yolov5-6.2/README.md deleted file mode 100644 index b368d1d6..00000000 --- a/yolov5-6.2/README.md +++ /dev/null @@ -1,363 +0,0 @@ -<div align="center"> -<p> - <a align="left" href="https://ultralytics.com/yolov5" target="_blank"> - <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a> -</p> - -English | [简体中文](.github/README_cn.md) -<br> -<div> - <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a> - <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a> - <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> - <br> - <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> - <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> - <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a> -</div> - -<br> -<p> -YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a> - open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. -</p> - -<div align="center"> - <a href="https://github.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://twitter.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://youtube.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> - <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a> -</div> - -<!-- -<a align="center" href="https://ultralytics.com/yolov5" target="_blank"> -<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a> ---> - -</div> - -## <div align="center">Documentation</div> - -See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. - -## <div align="center">Quick Start Examples</div> - -<details open> -<summary>Install</summary> - -Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a -[**Python>=3.7.0**](https://www.python.org/) environment, including -[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). - -```bash -git clone https://github.com/ultralytics/yolov5 # clone -cd yolov5 -pip install -r requirements.txt # install -``` - -</details> - -<details open> -<summary>Inference</summary> - -YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest -YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). - -```python -import torch - -# Model -model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom - -# Images -img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list - -# Inference -results = model(img) - -# Results -results.print() # or .show(), .save(), .crop(), .pandas(), etc. -``` - -</details> - -<details> -<summary>Inference with detect.py</summary> - -`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from -the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. - -```bash -python detect.py --source 0 # webcam - img.jpg # image - vid.mp4 # video - path/ # directory - 'path/*.jpg' # glob - 'https://youtu.be/Zgi9g1ksQHc' # YouTube - 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream -``` - -</details> - -<details> -<summary>Training</summary> - -The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) -results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) -and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest -YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are -1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the -largest `--batch-size` possible, or pass `--batch-size -1` for -YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB. - -```bash -python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128 - yolov5s 64 - yolov5m 40 - yolov5l 24 - yolov5x 16 -``` - -<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png"> - -</details> - -<details open> -<summary>Tutorials</summary> - -- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 RECOMMENDED -- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️ - RECOMMENDED -- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) -- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW -- [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀 -- [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303) -- [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318) -- [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304) -- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607) -- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) -- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW -- [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) -- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) 🌟 NEW -- [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW -- [Deci Platform](https://github.com/ultralytics/yolov5/wiki/Deci-Platform) 🌟 NEW - -</details> - -## <div align="center">Environments</div> - -Get started in seconds with our verified environments. Click each icon below for details. - -<div align="center"> - <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" /> - <a href="https://www.kaggle.com/ultralytics/yolov5"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" /> - <a href="https://hub.docker.com/r/ultralytics/yolov5"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" /> - <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" /> - <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a> -</div> - -## <div align="center">Integrations</div> - -<div align="center"> - <a href="https://bit.ly/yolov5-deci-platform"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-deci.png" width="10%" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" /> - <a href="https://cutt.ly/yolov5-readme-clearml"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" /> - <a href="https://roboflow.com/?ref=ultralytics"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" /> - <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme"> - <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb.png" width="10%" /></a> -</div> - -|Deci ⭐ NEW|ClearML ⭐ NEW|Roboflow|Weights & Biases -|:-:|:-:|:-:|:-:| -|Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) - - -## <div align="center">Why YOLOv5</div> - -<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p> -<details> - <summary>YOLOv5-P5 640 Figure (click to expand)</summary> - -<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p> -</details> -<details> - <summary>Figure Notes (click to expand)</summary> - -- **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536. -- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32. -- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8. -- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` - -</details> - -### Pretrained Checkpoints - -| Model | size<br><sup>(pixels) | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) | -|------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|------------------------------|-------------------------------|--------------------------------|--------------------|------------------------| -| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** | -| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 | -| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 | -| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 | -| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 | -| | | | | | | | | | -| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 | -| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 | -| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 | -| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 | -| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x6.pt)<br>+ [TTA][TTA] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- | - -<details> - <summary>Table Notes (click to expand)</summary> - -- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml). -- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` -- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1` -- **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` - -</details> - -## <div align="center">Classification ⭐ NEW</div> - -YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation, prediction and export! We've made training classifier models super simple. Click below to get started. - -<details> - <summary>Classification Checkpoints (click to expand)</summary> - -<br> - -We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility. - -| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) | -|----------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----------------------------------------------|--------------------------------|-------------------------------------|--------------------|------------------------| -| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** | -| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 | -| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 | -| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 | -| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 | -| | -| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 | -| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 | -| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 | -| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 | -| | -| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 | -| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 | -| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 | -| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 | - -<details> - <summary>Table Notes (click to expand)</summary> - -- All checkpoints are trained to 90 epochs with SGD optimizer with lr0=0.001 at image size 224 and all default settings. Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2. -- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224` -- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1` -- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224` -</details> -</details> - -<details> - <summary>Classification Usage Examples (click to expand)</summary> - -### Train -YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`. - -```bash -# Single-GPU -python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128 - -# Multi-GPU DDP -python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3 -``` - -### Val -Validate accuracy on a pretrained model. To validate YOLOv5s-cls accuracy on ImageNet. -```bash -bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images) -python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet --img 224 -``` - -### Predict -Run a classification prediction on an image. -```bash -python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg -``` -```python -model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt') # load from PyTorch Hub -``` - -### Export -Export a group of trained YOLOv5-cls, ResNet and EfficientNet models to ONNX and TensorRT. -```bash -python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224 -``` -</details> - - -## <div align="center">Contribute</div> - -We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors! - -<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 --> -<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a> - -## <div align="center">Contact</div> - -For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or -professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact). - -<br> -<div align="center"> - <a href="https://github.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://twitter.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://youtube.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="3%" alt="" /></a> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" /> - <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;"> - <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="3%" alt="" /></a> -</div> - -[assets]: https://github.com/ultralytics/yolov5/releases -[tta]: https://github.com/ultralytics/yolov5/issues/303 diff --git a/yolov5-6.2/classify/predict.py b/yolov5-6.2/classify/predict.py deleted file mode 100644 index 419830d4..00000000 --- a/yolov5-6.2/classify/predict.py +++ /dev/null @@ -1,109 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Run classification inference on images - -Usage: - $ python classify/predict.py --weights yolov5s-cls.pt --source im.jpg -""" - -import argparse -import os -import sys -from pathlib import Path - -import cv2 -import torch.nn.functional as F - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[1] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative - -from classify.train import imshow_cls -from models.common import DetectMultiBackend -from utils.augmentations import classify_transforms -from utils.general import LOGGER, check_requirements, colorstr, increment_path, print_args -from utils.torch_utils import select_device, smart_inference_mode, time_sync - - -@smart_inference_mode() -def run( - weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s) - source=ROOT / 'data/images/bus.jpg', # file/dir/URL/glob, 0 for webcam - imgsz=224, # inference size - device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu - half=False, # use FP16 half-precision inference - dnn=False, # use OpenCV DNN for ONNX inference - show=True, - project=ROOT / 'runs/predict-cls', # save to project/name - name='exp', # save to project/name - exist_ok=False, # existing project/name ok, do not increment -): - file = str(source) - seen, dt = 1, [0.0, 0.0, 0.0] - device = select_device(device) - - # Directories - save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run - save_dir.mkdir(parents=True, exist_ok=True) # make dir - - # Transforms - transforms = classify_transforms(imgsz) - - # Load model - model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half) - model.warmup(imgsz=(1, 3, imgsz, imgsz)) # warmup - - # Image - t1 = time_sync() - im = cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB) - im = transforms(im).unsqueeze(0).to(device) - im = im.half() if model.fp16 else im.float() - t2 = time_sync() - dt[0] += t2 - t1 - - # Inference - results = model(im) - t3 = time_sync() - dt[1] += t3 - t2 - - p = F.softmax(results, dim=1) # probabilities - i = p.argsort(1, descending=True)[:, :5].squeeze() # top 5 indices - dt[2] += time_sync() - t3 - LOGGER.info(f"image 1/1 {file}: {imgsz}x{imgsz} {', '.join(f'{model.names[j]} {p[0, j]:.2f}' for j in i)}") - - # Print results - t = tuple(x / seen * 1E3 for x in dt) # speeds per image - shape = (1, 3, imgsz, imgsz) - LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t) - if show: - imshow_cls(im, f=save_dir / Path(file).name, verbose=True) - LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") - return p - - -def parse_opt(): - parser = argparse.ArgumentParser() - parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)') - parser.add_argument('--source', type=str, default=ROOT / 'data/images/bus.jpg', help='file') - parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)') - parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') - parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') - parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') - parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save to project/name') - parser.add_argument('--name', default='exp', help='save to project/name') - parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') - opt = parser.parse_args() - print_args(vars(opt)) - return opt - - -def main(opt): - check_requirements(exclude=('tensorboard', 'thop')) - run(**vars(opt)) - - -if __name__ == "__main__": - opt = parse_opt() - main(opt) diff --git a/yolov5-6.2/classify/train.py b/yolov5-6.2/classify/train.py deleted file mode 100644 index f2b46556..00000000 --- a/yolov5-6.2/classify/train.py +++ /dev/null @@ -1,325 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Train a YOLOv5 classifier model on a classification dataset -Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/custom/dataset' - -Usage: - $ python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 128 - $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3 -""" - -import argparse -import os -import subprocess -import sys -import time -from copy import deepcopy -from datetime import datetime -from pathlib import Path - -import torch -import torch.distributed as dist -import torch.hub as hub -import torch.optim.lr_scheduler as lr_scheduler -import torchvision -from torch.cuda import amp -from tqdm import tqdm - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[1] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative - -from classify import val as validate -from models.experimental import attempt_load -from models.yolo import ClassificationModel, DetectionModel -from utils.dataloaders import create_classification_dataloader -from utils.general import (DATASETS_DIR, LOGGER, WorkingDirectory, check_git_status, check_requirements, colorstr, - download, increment_path, init_seeds, print_args, yaml_save) -from utils.loggers import GenericLogger -from utils.plots import imshow_cls -from utils.torch_utils import (ModelEMA, model_info, reshape_classifier_output, select_device, smart_DDP, - smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first) - -LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html -RANK = int(os.getenv('RANK', -1)) -WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) - - -def train(opt, device): - init_seeds(opt.seed + 1 + RANK, deterministic=True) - save_dir, data, bs, epochs, nw, imgsz, pretrained = \ - opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \ - opt.imgsz, str(opt.pretrained).lower() == 'true' - cuda = device.type != 'cpu' - - # Directories - wdir = save_dir / 'weights' - wdir.mkdir(parents=True, exist_ok=True) # make dir - last, best = wdir / 'last.pt', wdir / 'best.pt' - - # Save run settings - yaml_save(save_dir / 'opt.yaml', vars(opt)) - - # Logger - logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None - - # Download Dataset - with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT): - data_dir = data if data.is_dir() else (DATASETS_DIR / data) - if not data_dir.is_dir(): - LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...') - t = time.time() - if str(data) == 'imagenet': - subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True) - else: - url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip' - download(url, dir=data_dir.parent) - s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n" - LOGGER.info(s) - - # Dataloaders - nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes - trainloader = create_classification_dataloader(path=data_dir / 'train', - imgsz=imgsz, - batch_size=bs // WORLD_SIZE, - augment=True, - cache=opt.cache, - rank=LOCAL_RANK, - workers=nw) - - test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val - if RANK in {-1, 0}: - testloader = create_classification_dataloader(path=test_dir, - imgsz=imgsz, - batch_size=bs // WORLD_SIZE * 2, - augment=False, - cache=opt.cache, - rank=-1, - workers=nw) - - # Model - with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT): - if Path(opt.model).is_file() or opt.model.endswith('.pt'): - model = attempt_load(opt.model, device='cpu', fuse=False) - elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0 - model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None) - else: - m = hub.list('ultralytics/yolov5') # + hub.list('pytorch/vision') # models - raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m)) - if isinstance(model, DetectionModel): - LOGGER.warning("WARNING: pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'") - model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model - reshape_classifier_output(model, nc) # update class count - for p in model.parameters(): - p.requires_grad = True # for training - for m in model.modules(): - if not pretrained and hasattr(m, 'reset_parameters'): - m.reset_parameters() - if isinstance(m, torch.nn.Dropout) and opt.dropout is not None: - m.p = opt.dropout # set dropout - model = model.to(device) - names = trainloader.dataset.classes # class names - model.names = names # attach class names - - # Info - if RANK in {-1, 0}: - model_info(model) - if opt.verbose: - LOGGER.info(model) - images, labels = next(iter(trainloader)) - file = imshow_cls(images[:25], labels[:25], names=names, f=save_dir / 'train_images.jpg') - logger.log_images(file, name='Train Examples') - logger.log_graph(model, imgsz) # log model - - # Optimizer - optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=5e-5) - - # Scheduler - lrf = 0.01 # final lr (fraction of lr0) - # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine - lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear - scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) - # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1, - # final_div_factor=1 / 25 / lrf) - - # EMA - ema = ModelEMA(model) if RANK in {-1, 0} else None - - # DDP mode - if cuda and RANK != -1: - model = smart_DDP(model) - - # Train - t0 = time.time() - criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function - best_fitness = 0.0 - scaler = amp.GradScaler(enabled=cuda) - val = test_dir.stem # 'val' or 'test' - LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n' - f'Using {nw * WORLD_SIZE} dataloader workers\n' - f"Logging results to {colorstr('bold', save_dir)}\n" - f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n' - f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}") - for epoch in range(epochs): # loop over the dataset multiple times - tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness - model.train() - if RANK != -1: - trainloader.sampler.set_epoch(epoch) - pbar = enumerate(trainloader) - if RANK in {-1, 0}: - pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') - for i, (images, labels) in pbar: # progress bar - images, labels = images.to(device, non_blocking=True), labels.to(device) - - # Forward - with amp.autocast(enabled=cuda): # stability issues when enabled - loss = criterion(model(images), labels) - - # Backward - scaler.scale(loss).backward() - - # Optimize - scaler.unscale_(optimizer) # unscale gradients - torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients - scaler.step(optimizer) - scaler.update() - optimizer.zero_grad() - if ema: - ema.update(model) - - if RANK in {-1, 0}: - # Print - tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses - mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) - pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36 - - # Test - if i == len(pbar) - 1: # last batch - top1, top5, vloss = validate.run(model=ema.ema, - dataloader=testloader, - criterion=criterion, - pbar=pbar) # test accuracy, loss - fitness = top1 # define fitness as top1 accuracy - - # Scheduler - scheduler.step() - - # Log metrics - if RANK in {-1, 0}: - # Best fitness - if fitness > best_fitness: - best_fitness = fitness - - # Log - metrics = { - "train/loss": tloss, - f"{val}/loss": vloss, - "metrics/accuracy_top1": top1, - "metrics/accuracy_top5": top5, - "lr/0": optimizer.param_groups[0]['lr']} # learning rate - logger.log_metrics(metrics, epoch) - - # Save model - final_epoch = epoch + 1 == epochs - if (not opt.nosave) or final_epoch: - ckpt = { - 'epoch': epoch, - 'best_fitness': best_fitness, - 'model': deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(), - 'ema': None, # deepcopy(ema.ema).half(), - 'updates': ema.updates, - 'optimizer': None, # optimizer.state_dict(), - 'opt': vars(opt), - 'date': datetime.now().isoformat()} - - # Save last, best and delete - torch.save(ckpt, last) - if best_fitness == fitness: - torch.save(ckpt, best) - del ckpt - - # Train complete - if RANK in {-1, 0} and final_epoch: - LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)' - f"\nResults saved to {colorstr('bold', save_dir)}" - f"\nPredict: python classify/predict.py --weights {best} --source im.jpg" - f"\nValidate: python classify/val.py --weights {best} --data {data_dir}" - f"\nExport: python export.py --weights {best} --include onnx" - f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')" - f"\nVisualize: https://netron.app\n") - - # Plot examples - images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels - pred = torch.max(ema.ema((images.half() if cuda else images.float()).to(device)), 1)[1] - file = imshow_cls(images, labels, pred, names, verbose=False, f=save_dir / 'test_images.jpg') - - # Log results - meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()} - logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch) - logger.log_model(best, epochs, metadata=meta) - - -def parse_opt(known=False): - parser = argparse.ArgumentParser() - parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path') - parser.add_argument('--data', type=str, default='mnist', help='cifar10, cifar100, mnist, imagenet, etc.') - parser.add_argument('--epochs', type=int, default=10) - parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs') - parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=128, help='train, val image size (pixels)') - parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') - parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') - parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') - parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') - parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name') - parser.add_argument('--name', default='exp', help='save to project/name') - parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') - parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False') - parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer') - parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate') - parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon') - parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head') - parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)') - parser.add_argument('--verbose', action='store_true', help='Verbose mode') - parser.add_argument('--seed', type=int, default=0, help='Global training seed') - parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') - return parser.parse_known_args()[0] if known else parser.parse_args() - - -def main(opt): - # Checks - if RANK in {-1, 0}: - print_args(vars(opt)) - check_git_status() - check_requirements() - - # DDP mode - device = select_device(opt.device, batch_size=opt.batch_size) - if LOCAL_RANK != -1: - assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size' - assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' - assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' - torch.cuda.set_device(LOCAL_RANK) - device = torch.device('cuda', LOCAL_RANK) - dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo") - - # Parameters - opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run - - # Train - train(opt, device) - - -def run(**kwargs): - # Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m') - opt = parse_opt(True) - for k, v in kwargs.items(): - setattr(opt, k, v) - main(opt) - return opt - - -if __name__ == "__main__": - opt = parse_opt() - main(opt) diff --git a/yolov5-6.2/classify/val.py b/yolov5-6.2/classify/val.py deleted file mode 100644 index 0930ba8c..00000000 --- a/yolov5-6.2/classify/val.py +++ /dev/null @@ -1,158 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Validate a classification model on a dataset - -Usage: - $ python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet -""" - -import argparse -import os -import sys -from pathlib import Path - -import torch -from tqdm import tqdm - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[1] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative - -from models.common import DetectMultiBackend -from utils.dataloaders import create_classification_dataloader -from utils.general import LOGGER, check_img_size, check_requirements, colorstr, increment_path, print_args -from utils.torch_utils import select_device, smart_inference_mode, time_sync - - -@smart_inference_mode() -def run( - data=ROOT / '../datasets/mnist', # dataset dir - weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s) - batch_size=128, # batch size - imgsz=224, # inference size (pixels) - device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu - workers=8, # max dataloader workers (per RANK in DDP mode) - verbose=False, # verbose output - project=ROOT / 'runs/val-cls', # save to project/name - name='exp', # save to project/name - exist_ok=False, # existing project/name ok, do not increment - half=True, # use FP16 half-precision inference - dnn=False, # use OpenCV DNN for ONNX inference - model=None, - dataloader=None, - criterion=None, - pbar=None, -): - # Initialize/load model and set device - training = model is not None - if training: # called by train.py - device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model - half &= device.type != 'cpu' # half precision only supported on CUDA - model.half() if half else model.float() - else: # called directly - device = select_device(device, batch_size=batch_size) - - # Directories - save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run - save_dir.mkdir(parents=True, exist_ok=True) # make dir - - # Load model - model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half) - stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine - imgsz = check_img_size(imgsz, s=stride) # check image size - half = model.fp16 # FP16 supported on limited backends with CUDA - if engine: - batch_size = model.batch_size - else: - device = model.device - if not (pt or jit): - batch_size = 1 # export.py models default to batch-size 1 - LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') - - # Dataloader - data = Path(data) - test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val - dataloader = create_classification_dataloader(path=test_dir, - imgsz=imgsz, - batch_size=batch_size, - augment=False, - rank=-1, - workers=workers) - - model.eval() - pred, targets, loss, dt = [], [], 0, [0.0, 0.0, 0.0] - n = len(dataloader) # number of batches - action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing' - desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}" - bar = tqdm(dataloader, desc, n, not training, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}', position=0) - with torch.cuda.amp.autocast(enabled=device.type != 'cpu'): - for images, labels in bar: - t1 = time_sync() - images, labels = images.to(device, non_blocking=True), labels.to(device) - t2 = time_sync() - dt[0] += t2 - t1 - - y = model(images) - t3 = time_sync() - dt[1] += t3 - t2 - - pred.append(y.argsort(1, descending=True)[:, :5]) - targets.append(labels) - if criterion: - loss += criterion(y, labels) - dt[2] += time_sync() - t3 - - loss /= n - pred, targets = torch.cat(pred), torch.cat(targets) - correct = (targets[:, None] == pred).float() - acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy - top1, top5 = acc.mean(0).tolist() - - if pbar: - pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}" - if verbose: # all classes - LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}") - LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}") - for i, c in enumerate(model.names): - aci = acc[targets == i] - top1i, top5i = aci.mean(0).tolist() - LOGGER.info(f"{c:>24}{aci.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}") - - # Print results - t = tuple(x / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image - shape = (1, 3, imgsz, imgsz) - LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t) - LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") - - return top1, top5, loss - - -def parse_opt(): - parser = argparse.ArgumentParser() - parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path') - parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)') - parser.add_argument('--batch-size', type=int, default=128, help='batch size') - parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)') - parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') - parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') - parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output') - parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name') - parser.add_argument('--name', default='exp', help='save to project/name') - parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') - parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') - parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') - opt = parser.parse_args() - print_args(vars(opt)) - return opt - - -def main(opt): - check_requirements(exclude=('tensorboard', 'thop')) - run(**vars(opt)) - - -if __name__ == "__main__": - opt = parse_opt() - main(opt) diff --git a/yolov5-6.2/data/Argoverse.yaml b/yolov5-6.2/data/Argoverse.yaml deleted file mode 100644 index 9d21296e..00000000 --- a/yolov5-6.2/data/Argoverse.yaml +++ /dev/null @@ -1,67 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI -# Example usage: python train.py --data Argoverse.yaml -# parent -# ├── yolov5 -# └── datasets -# └── Argoverse ← downloads here (31.3 GB) - - -# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] -path: ../datasets/Argoverse # dataset root dir -train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images -val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images -test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview - -# Classes -nc: 8 # number of classes -names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names - - -# Download script/URL (optional) --------------------------------------------------------------------------------------- -download: | - import json - - from tqdm import tqdm - from utils.general import download, Path - - - def argoverse2yolo(set): - labels = {} - a = json.load(open(set, "rb")) - for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."): - img_id = annot['image_id'] - img_name = a['images'][img_id]['name'] - img_label_name = f'{img_name[:-3]}txt' - - cls = annot['category_id'] # instance class id - x_center, y_center, width, height = annot['bbox'] - x_center = (x_center + width / 2) / 1920.0 # offset and scale - y_center = (y_center + height / 2) / 1200.0 # offset and scale - width /= 1920.0 # scale - height /= 1200.0 # scale - - img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']] - if not img_dir.exists(): - img_dir.mkdir(parents=True, exist_ok=True) - - k = str(img_dir / img_label_name) - if k not in labels: - labels[k] = [] - labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n") - - for k in labels: - with open(k, "w") as f: - f.writelines(labels[k]) - - - # Download - dir = Path('../datasets/Argoverse') # dataset root dir - urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip'] - download(urls, dir=dir, delete=False) - - # Convert - annotations_dir = 'Argoverse-HD/annotations/' - (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images' - for d in "train.json", "val.json": - argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels diff --git a/yolov5-6.2/data/GlobalWheat2020.yaml b/yolov5-6.2/data/GlobalWheat2020.yaml deleted file mode 100644 index 4c43693f..00000000 --- a/yolov5-6.2/data/GlobalWheat2020.yaml +++ /dev/null @@ -1,54 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan -# Example usage: python train.py --data GlobalWheat2020.yaml -# parent -# ├── yolov5 -# └── datasets -# └── GlobalWheat2020 ← downloads here (7.0 GB) - - -# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] -path: ../datasets/GlobalWheat2020 # dataset root dir -train: # train images (relative to 'path') 3422 images - - images/arvalis_1 - - images/arvalis_2 - - images/arvalis_3 - - images/ethz_1 - - images/rres_1 - - images/inrae_1 - - images/usask_1 -val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1) - - images/ethz_1 -test: # test images (optional) 1276 images - - images/utokyo_1 - - images/utokyo_2 - - images/nau_1 - - images/uq_1 - -# Classes -nc: 1 # number of classes -names: ['wheat_head'] # class names - - -# Download script/URL (optional) --------------------------------------------------------------------------------------- -download: | - from utils.general import download, Path - - - # Download - dir = Path(yaml['path']) # dataset root dir - urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip', - 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip'] - download(urls, dir=dir) - - # Make Directories - for p in 'annotations', 'images', 'labels': - (dir / p).mkdir(parents=True, exist_ok=True) - - # Move - for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \ - 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1': - (dir / p).rename(dir / 'images' / p) # move to /images - f = (dir / p).with_suffix('.json') # json file - if f.exists(): - f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations diff --git a/yolov5-6.2/data/ImageNet.yaml b/yolov5-6.2/data/ImageNet.yaml deleted file mode 100644 index 9f89b426..00000000 --- a/yolov5-6.2/data/ImageNet.yaml +++ /dev/null @@ -1,156 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University -# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels -# Example usage: python classify/train.py --data imagenet -# parent -# ├── yolov5 -# └── datasets -# └── imagenet ← downloads here (144 GB) - - -# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] -path: ../datasets/imagenet # dataset root dir -train: train # train images (relative to 'path') 1281167 images -val: val # val images (relative to 'path') 50000 images -test: # test images (optional) - -# Classes -nc: 1000 # number of classes -names: ['tench', 'goldfish', 'great white shark', 'tiger shark', 'hammerhead shark', 'electric ray', 'stingray', 'cock', - 'hen', 'ostrich', 'brambling', 'goldfinch', 'house finch', 'junco', 'indigo bunting', 'American robin', - 'bulbul', 'jay', 'magpie', 'chickadee', 'American dipper', 'kite', 'bald eagle', 'vulture', 'great grey owl', - 'fire salamander', 'smooth newt', 'newt', 'spotted salamander', 'axolotl', 'American bullfrog', 'tree frog', - 'tailed frog', 'loggerhead sea turtle', 'leatherback sea turtle', 'mud turtle', 'terrapin', 'box turtle', - 'banded gecko', 'green iguana', 'Carolina anole', 'desert grassland whiptail lizard', 'agama', - 'frilled-necked lizard', 'alligator lizard', 'Gila monster', 'European green lizard', 'chameleon', - 'Komodo dragon', 'Nile crocodile', 'American alligator', 'triceratops', 'worm snake', 'ring-necked snake', - 'eastern hog-nosed snake', 'smooth green snake', 'kingsnake', 'garter snake', 'water snake', 'vine snake', - 'night snake', 'boa constrictor', 'African rock python', 'Indian cobra', 'green mamba', 'sea snake', - 'Saharan horned viper', 'eastern diamondback rattlesnake', 'sidewinder', 'trilobite', 'harvestman', 'scorpion', - 'yellow garden spider', 'barn spider', 'European garden spider', 'southern black widow', 'tarantula', - 'wolf spider', 'tick', 'centipede', 'black grouse', 'ptarmigan', 'ruffed grouse', 'prairie grouse', 'peacock', - 'quail', 'partridge', 'grey parrot', 'macaw', 'sulphur-crested cockatoo', 'lorikeet', 'coucal', 'bee eater', - 'hornbill', 'hummingbird', 'jacamar', 'toucan', 'duck', 'red-breasted merganser', 'goose', 'black swan', - 'tusker', 'echidna', 'platypus', 'wallaby', 'koala', 'wombat', 'jellyfish', 'sea anemone', 'brain coral', - 'flatworm', 'nematode', 'conch', 'snail', 'slug', 'sea slug', 'chiton', 'chambered nautilus', 'Dungeness crab', - 'rock crab', 'fiddler crab', 'red king crab', 'American lobster', 'spiny lobster', 'crayfish', 'hermit crab', - 'isopod', 'white stork', 'black stork', 'spoonbill', 'flamingo', 'little blue heron', 'great egret', 'bittern', - 'crane (bird)', 'limpkin', 'common gallinule', 'American coot', 'bustard', 'ruddy turnstone', 'dunlin', - 'common redshank', 'dowitcher', 'oystercatcher', 'pelican', 'king penguin', 'albatross', 'grey whale', - 'killer whale', 'dugong', 'sea lion', 'Chihuahua', 'Japanese Chin', 'Maltese', 'Pekingese', 'Shih Tzu', - 'King Charles Spaniel', 'Papillon', 'toy terrier', 'Rhodesian Ridgeback', 'Afghan Hound', 'Basset Hound', - 'Beagle', 'Bloodhound', 'Bluetick Coonhound', 'Black and Tan Coonhound', 'Treeing Walker Coonhound', - 'English foxhound', 'Redbone Coonhound', 'borzoi', 'Irish Wolfhound', 'Italian Greyhound', 'Whippet', - 'Ibizan Hound', 'Norwegian Elkhound', 'Otterhound', 'Saluki', 'Scottish Deerhound', 'Weimaraner', - 'Staffordshire Bull Terrier', 'American Staffordshire Terrier', 'Bedlington Terrier', 'Border Terrier', - 'Kerry Blue Terrier', 'Irish Terrier', 'Norfolk Terrier', 'Norwich Terrier', 'Yorkshire Terrier', - 'Wire Fox Terrier', 'Lakeland Terrier', 'Sealyham Terrier', 'Airedale Terrier', 'Cairn Terrier', - 'Australian Terrier', 'Dandie Dinmont Terrier', 'Boston Terrier', 'Miniature Schnauzer', 'Giant Schnauzer', - 'Standard Schnauzer', 'Scottish Terrier', 'Tibetan Terrier', 'Australian Silky Terrier', - 'Soft-coated Wheaten Terrier', 'West Highland White Terrier', 'Lhasa Apso', 'Flat-Coated Retriever', - 'Curly-coated Retriever', 'Golden Retriever', 'Labrador Retriever', 'Chesapeake Bay Retriever', - 'German Shorthaired Pointer', 'Vizsla', 'English Setter', 'Irish Setter', 'Gordon Setter', 'Brittany', - 'Clumber Spaniel', 'English Springer Spaniel', 'Welsh Springer Spaniel', 'Cocker Spaniels', 'Sussex Spaniel', - 'Irish Water Spaniel', 'Kuvasz', 'Schipperke', 'Groenendael', 'Malinois', 'Briard', 'Australian Kelpie', - 'Komondor', 'Old English Sheepdog', 'Shetland Sheepdog', 'collie', 'Border Collie', 'Bouvier des Flandres', - 'Rottweiler', 'German Shepherd Dog', 'Dobermann', 'Miniature Pinscher', 'Greater Swiss Mountain Dog', - 'Bernese Mountain Dog', 'Appenzeller Sennenhund', 'Entlebucher Sennenhund', 'Boxer', 'Bullmastiff', - 'Tibetan Mastiff', 'French Bulldog', 'Great Dane', 'St. Bernard', 'husky', 'Alaskan Malamute', 'Siberian Husky', - 'Dalmatian', 'Affenpinscher', 'Basenji', 'pug', 'Leonberger', 'Newfoundland', 'Pyrenean Mountain Dog', - 'Samoyed', 'Pomeranian', 'Chow Chow', 'Keeshond', 'Griffon Bruxellois', 'Pembroke Welsh Corgi', - 'Cardigan Welsh Corgi', 'Toy Poodle', 'Miniature Poodle', 'Standard Poodle', 'Mexican hairless dog', - 'grey wolf', 'Alaskan tundra wolf', 'red wolf', 'coyote', 'dingo', 'dhole', 'African wild dog', 'hyena', - 'red fox', 'kit fox', 'Arctic fox', 'grey fox', 'tabby cat', 'tiger cat', 'Persian cat', 'Siamese cat', - 'Egyptian Mau', 'cougar', 'lynx', 'leopard', 'snow leopard', 'jaguar', 'lion', 'tiger', 'cheetah', 'brown bear', - 'American black bear', 'polar bear', 'sloth bear', 'mongoose', 'meerkat', 'tiger beetle', 'ladybug', - 'ground beetle', 'longhorn beetle', 'leaf beetle', 'dung beetle', 'rhinoceros beetle', 'weevil', 'fly', 'bee', - 'ant', 'grasshopper', 'cricket', 'stick insect', 'cockroach', 'mantis', 'cicada', 'leafhopper', 'lacewing', - 'dragonfly', 'damselfly', 'red admiral', 'ringlet', 'monarch butterfly', 'small white', 'sulphur butterfly', - 'gossamer-winged butterfly', 'starfish', 'sea urchin', 'sea cucumber', 'cottontail rabbit', 'hare', - 'Angora rabbit', 'hamster', 'porcupine', 'fox squirrel', 'marmot', 'beaver', 'guinea pig', 'common sorrel', - 'zebra', 'pig', 'wild boar', 'warthog', 'hippopotamus', 'ox', 'water buffalo', 'bison', 'ram', 'bighorn sheep', - 'Alpine ibex', 'hartebeest', 'impala', 'gazelle', 'dromedary', 'llama', 'weasel', 'mink', 'European polecat', - 'black-footed ferret', 'otter', 'skunk', 'badger', 'armadillo', 'three-toed sloth', 'orangutan', 'gorilla', - 'chimpanzee', 'gibbon', 'siamang', 'guenon', 'patas monkey', 'baboon', 'macaque', 'langur', - 'black-and-white colobus', 'proboscis monkey', 'marmoset', 'white-headed capuchin', 'howler monkey', 'titi', - "Geoffroy's spider monkey", 'common squirrel monkey', 'ring-tailed lemur', 'indri', 'Asian elephant', - 'African bush elephant', 'red panda', 'giant panda', 'snoek', 'eel', 'coho salmon', 'rock beauty', 'clownfish', - 'sturgeon', 'garfish', 'lionfish', 'pufferfish', 'abacus', 'abaya', 'academic gown', 'accordion', - 'acoustic guitar', 'aircraft carrier', 'airliner', 'airship', 'altar', 'ambulance', 'amphibious vehicle', - 'analog clock', 'apiary', 'apron', 'waste container', 'assault rifle', 'backpack', 'bakery', 'balance beam', - 'balloon', 'ballpoint pen', 'Band-Aid', 'banjo', 'baluster', 'barbell', 'barber chair', 'barbershop', 'barn', - 'barometer', 'barrel', 'wheelbarrow', 'baseball', 'basketball', 'bassinet', 'bassoon', 'swimming cap', - 'bath towel', 'bathtub', 'station wagon', 'lighthouse', 'beaker', 'military cap', 'beer bottle', 'beer glass', - 'bell-cot', 'bib', 'tandem bicycle', 'bikini', 'ring binder', 'binoculars', 'birdhouse', 'boathouse', - 'bobsleigh', 'bolo tie', 'poke bonnet', 'bookcase', 'bookstore', 'bottle cap', 'bow', 'bow tie', 'brass', 'bra', - 'breakwater', 'breastplate', 'broom', 'bucket', 'buckle', 'bulletproof vest', 'high-speed train', - 'butcher shop', 'taxicab', 'cauldron', 'candle', 'cannon', 'canoe', 'can opener', 'cardigan', 'car mirror', - 'carousel', 'tool kit', 'carton', 'car wheel', 'automated teller machine', 'cassette', 'cassette player', - 'castle', 'catamaran', 'CD player', 'cello', 'mobile phone', 'chain', 'chain-link fence', 'chain mail', - 'chainsaw', 'chest', 'chiffonier', 'chime', 'china cabinet', 'Christmas stocking', 'church', 'movie theater', - 'cleaver', 'cliff dwelling', 'cloak', 'clogs', 'cocktail shaker', 'coffee mug', 'coffeemaker', 'coil', - 'combination lock', 'computer keyboard', 'confectionery store', 'container ship', 'convertible', 'corkscrew', - 'cornet', 'cowboy boot', 'cowboy hat', 'cradle', 'crane (machine)', 'crash helmet', 'crate', 'infant bed', - 'Crock Pot', 'croquet ball', 'crutch', 'cuirass', 'dam', 'desk', 'desktop computer', 'rotary dial telephone', - 'diaper', 'digital clock', 'digital watch', 'dining table', 'dishcloth', 'dishwasher', 'disc brake', 'dock', - 'dog sled', 'dome', 'doormat', 'drilling rig', 'drum', 'drumstick', 'dumbbell', 'Dutch oven', 'electric fan', - 'electric guitar', 'electric locomotive', 'entertainment center', 'envelope', 'espresso machine', 'face powder', - 'feather boa', 'filing cabinet', 'fireboat', 'fire engine', 'fire screen sheet', 'flagpole', 'flute', - 'folding chair', 'football helmet', 'forklift', 'fountain', 'fountain pen', 'four-poster bed', 'freight car', - 'French horn', 'frying pan', 'fur coat', 'garbage truck', 'gas mask', 'gas pump', 'goblet', 'go-kart', - 'golf ball', 'golf cart', 'gondola', 'gong', 'gown', 'grand piano', 'greenhouse', 'grille', 'grocery store', - 'guillotine', 'barrette', 'hair spray', 'half-track', 'hammer', 'hamper', 'hair dryer', 'hand-held computer', - 'handkerchief', 'hard disk drive', 'harmonica', 'harp', 'harvester', 'hatchet', 'holster', 'home theater', - 'honeycomb', 'hook', 'hoop skirt', 'horizontal bar', 'horse-drawn vehicle', 'hourglass', 'iPod', 'clothes iron', - "jack-o'-lantern", 'jeans', 'jeep', 'T-shirt', 'jigsaw puzzle', 'pulled rickshaw', 'joystick', 'kimono', - 'knee pad', 'knot', 'lab coat', 'ladle', 'lampshade', 'laptop computer', 'lawn mower', 'lens cap', - 'paper knife', 'library', 'lifeboat', 'lighter', 'limousine', 'ocean liner', 'lipstick', 'slip-on shoe', - 'lotion', 'speaker', 'loupe', 'sawmill', 'magnetic compass', 'mail bag', 'mailbox', 'tights', 'tank suit', - 'manhole cover', 'maraca', 'marimba', 'mask', 'match', 'maypole', 'maze', 'measuring cup', 'medicine chest', - 'megalith', 'microphone', 'microwave oven', 'military uniform', 'milk can', 'minibus', 'miniskirt', 'minivan', - 'missile', 'mitten', 'mixing bowl', 'mobile home', 'Model T', 'modem', 'monastery', 'monitor', 'moped', - 'mortar', 'square academic cap', 'mosque', 'mosquito net', 'scooter', 'mountain bike', 'tent', 'computer mouse', - 'mousetrap', 'moving van', 'muzzle', 'nail', 'neck brace', 'necklace', 'nipple', 'notebook computer', 'obelisk', - 'oboe', 'ocarina', 'odometer', 'oil filter', 'organ', 'oscilloscope', 'overskirt', 'bullock cart', - 'oxygen mask', 'packet', 'paddle', 'paddle wheel', 'padlock', 'paintbrush', 'pajamas', 'palace', 'pan flute', - 'paper towel', 'parachute', 'parallel bars', 'park bench', 'parking meter', 'passenger car', 'patio', - 'payphone', 'pedestal', 'pencil case', 'pencil sharpener', 'perfume', 'Petri dish', 'photocopier', 'plectrum', - 'Pickelhaube', 'picket fence', 'pickup truck', 'pier', 'piggy bank', 'pill bottle', 'pillow', 'ping-pong ball', - 'pinwheel', 'pirate ship', 'pitcher', 'hand plane', 'planetarium', 'plastic bag', 'plate rack', 'plow', - 'plunger', 'Polaroid camera', 'pole', 'police van', 'poncho', 'billiard table', 'soda bottle', 'pot', - "potter's wheel", 'power drill', 'prayer rug', 'printer', 'prison', 'projectile', 'projector', 'hockey puck', - 'punching bag', 'purse', 'quill', 'quilt', 'race car', 'racket', 'radiator', 'radio', 'radio telescope', - 'rain barrel', 'recreational vehicle', 'reel', 'reflex camera', 'refrigerator', 'remote control', 'restaurant', - 'revolver', 'rifle', 'rocking chair', 'rotisserie', 'eraser', 'rugby ball', 'ruler', 'running shoe', 'safe', - 'safety pin', 'salt shaker', 'sandal', 'sarong', 'saxophone', 'scabbard', 'weighing scale', 'school bus', - 'schooner', 'scoreboard', 'CRT screen', 'screw', 'screwdriver', 'seat belt', 'sewing machine', 'shield', - 'shoe store', 'shoji', 'shopping basket', 'shopping cart', 'shovel', 'shower cap', 'shower curtain', 'ski', - 'ski mask', 'sleeping bag', 'slide rule', 'sliding door', 'slot machine', 'snorkel', 'snowmobile', 'snowplow', - 'soap dispenser', 'soccer ball', 'sock', 'solar thermal collector', 'sombrero', 'soup bowl', 'space bar', - 'space heater', 'space shuttle', 'spatula', 'motorboat', 'spider web', 'spindle', 'sports car', 'spotlight', - 'stage', 'steam locomotive', 'through arch bridge', 'steel drum', 'stethoscope', 'scarf', 'stone wall', - 'stopwatch', 'stove', 'strainer', 'tram', 'stretcher', 'couch', 'stupa', 'submarine', 'suit', 'sundial', - 'sunglass', 'sunglasses', 'sunscreen', 'suspension bridge', 'mop', 'sweatshirt', 'swimsuit', 'swing', 'switch', - 'syringe', 'table lamp', 'tank', 'tape player', 'teapot', 'teddy bear', 'television', 'tennis ball', - 'thatched roof', 'front curtain', 'thimble', 'threshing machine', 'throne', 'tile roof', 'toaster', - 'tobacco shop', 'toilet seat', 'torch', 'totem pole', 'tow truck', 'toy store', 'tractor', 'semi-trailer truck', - 'tray', 'trench coat', 'tricycle', 'trimaran', 'tripod', 'triumphal arch', 'trolleybus', 'trombone', 'tub', - 'turnstile', 'typewriter keyboard', 'umbrella', 'unicycle', 'upright piano', 'vacuum cleaner', 'vase', 'vault', - 'velvet', 'vending machine', 'vestment', 'viaduct', 'violin', 'volleyball', 'waffle iron', 'wall clock', - 'wallet', 'wardrobe', 'military aircraft', 'sink', 'washing machine', 'water bottle', 'water jug', - 'water tower', 'whiskey jug', 'whistle', 'wig', 'window screen', 'window shade', 'Windsor tie', 'wine bottle', - 'wing', 'wok', 'wooden spoon', 'wool', 'split-rail fence', 'shipwreck', 'yawl', 'yurt', 'website', 'comic book', - 'crossword', 'traffic sign', 'traffic light', 'dust jacket', 'menu', 'plate', 'guacamole', 'consomme', - 'hot pot', 'trifle', 'ice cream', 'ice pop', 'baguette', 'bagel', 'pretzel', 'cheeseburger', 'hot dog', - 'mashed potato', 'cabbage', 'broccoli', 'cauliflower', 'zucchini', 'spaghetti squash', 'acorn squash', - 'butternut squash', 'cucumber', 'artichoke', 'bell pepper', 'cardoon', 'mushroom', 'Granny Smith', 'strawberry', - 'orange', 'lemon', 'fig', 'pineapple', 'banana', 'jackfruit', 'custard apple', 'pomegranate', 'hay', - 'carbonara', 'chocolate syrup', 'dough', 'meatloaf', 'pizza', 'pot pie', 'burrito', 'red wine', 'espresso', - 'cup', 'eggnog', 'alp', 'bubble', 'cliff', 'coral reef', 'geyser', 'lakeshore', 'promontory', 'shoal', - 'seashore', 'valley', 'volcano', 'baseball player', 'bridegroom', 'scuba diver', 'rapeseed', 'daisy', - "yellow lady's slipper", 'corn', 'acorn', 'rose hip', 'horse chestnut seed', 'coral fungus', 'agaric', - 'gyromitra', 'stinkhorn mushroom', 'earth star', 'hen-of-the-woods', 'bolete', 'ear', - 'toilet paper'] # class names - -# Download script/URL (optional) -download: data/scripts/get_imagenet.sh diff --git a/yolov5-6.2/data/Objects365.yaml b/yolov5-6.2/data/Objects365.yaml deleted file mode 100644 index 4cc94753..00000000 --- a/yolov5-6.2/data/Objects365.yaml +++ /dev/null @@ -1,114 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Objects365 dataset https://www.objects365.org/ by Megvii -# Example usage: python train.py --data Objects365.yaml -# parent -# ├── yolov5 -# └── datasets -# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips) - - -# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] -path: ../datasets/Objects365 # dataset root dir -train: images/train # train images (relative to 'path') 1742289 images -val: images/val # val images (relative to 'path') 80000 images -test: # test images (optional) - -# Classes -nc: 365 # number of classes -names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup', - 'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book', - 'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag', - 'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV', - 'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle', - 'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird', - 'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck', - 'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning', - 'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife', - 'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock', - 'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish', - 'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan', - 'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard', - 'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign', - 'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat', - 'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard', - 'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry', - 'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks', - 'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors', - 'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape', - 'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck', - 'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette', - 'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket', - 'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine', - 'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine', - 'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon', - 'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse', - 'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball', - 'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin', - 'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts', - 'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit', - 'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD', - 'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder', - 'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips', - 'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab', - 'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal', - 'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart', - 'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French', - 'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell', - 'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil', - 'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis'] - - -# Download script/URL (optional) --------------------------------------------------------------------------------------- -download: | - from tqdm import tqdm - - from utils.general import Path, check_requirements, download, np, xyxy2xywhn - - check_requirements(('pycocotools>=2.0',)) - from pycocotools.coco import COCO - - # Make Directories - dir = Path(yaml['path']) # dataset root dir - for p in 'images', 'labels': - (dir / p).mkdir(parents=True, exist_ok=True) - for q in 'train', 'val': - (dir / p / q).mkdir(parents=True, exist_ok=True) - - # Train, Val Splits - for split, patches in [('train', 50 + 1), ('val', 43 + 1)]: - print(f"Processing {split} in {patches} patches ...") - images, labels = dir / 'images' / split, dir / 'labels' / split - - # Download - url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/" - if split == 'train': - download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json - download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8) - elif split == 'val': - download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json - download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8) - download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8) - - # Move - for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'): - f.rename(images / f.name) # move to /images/{split} - - # Labels - coco = COCO(dir / f'zhiyuan_objv2_{split}.json') - names = [x["name"] for x in coco.loadCats(coco.getCatIds())] - for cid, cat in enumerate(names): - catIds = coco.getCatIds(catNms=[cat]) - imgIds = coco.getImgIds(catIds=catIds) - for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'): - width, height = im["width"], im["height"] - path = Path(im["file_name"]) # image filename - try: - with open(labels / path.with_suffix('.txt').name, 'a') as file: - annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None) - for a in coco.loadAnns(annIds): - x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner) - xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4) - x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped - file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n") - except Exception as e: - print(e) diff --git a/yolov5-6.2/data/SKU-110K.yaml b/yolov5-6.2/data/SKU-110K.yaml deleted file mode 100644 index 2acf34d1..00000000 --- a/yolov5-6.2/data/SKU-110K.yaml +++ /dev/null @@ -1,53 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail -# Example usage: python train.py --data SKU-110K.yaml -# parent -# ├── yolov5 -# └── datasets -# └── SKU-110K ← downloads here (13.6 GB) - - -# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] -path: ../datasets/SKU-110K # dataset root dir -train: train.txt # train images (relative to 'path') 8219 images -val: val.txt # val images (relative to 'path') 588 images -test: test.txt # test images (optional) 2936 images - -# Classes -nc: 1 # number of classes -names: ['object'] # class names - - -# Download script/URL (optional) --------------------------------------------------------------------------------------- -download: | - import shutil - from tqdm import tqdm - from utils.general import np, pd, Path, download, xyxy2xywh - - - # Download - dir = Path(yaml['path']) # dataset root dir - parent = Path(dir.parent) # download dir - urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz'] - download(urls, dir=parent, delete=False) - - # Rename directories - if dir.exists(): - shutil.rmtree(dir) - (parent / 'SKU110K_fixed').rename(dir) # rename dir - (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir - - # Convert labels - names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names - for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv': - x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations - images, unique_images = x[:, 0], np.unique(x[:, 0]) - with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f: - f.writelines(f'./images/{s}\n' for s in unique_images) - for im in tqdm(unique_images, desc=f'Converting {dir / d}'): - cls = 0 # single-class dataset - with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f: - for r in x[images == im]: - w, h = r[6], r[7] # image width, height - xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance - f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label diff --git a/yolov5-6.2/data/VOC.yaml b/yolov5-6.2/data/VOC.yaml deleted file mode 100644 index 636ddc42..00000000 --- a/yolov5-6.2/data/VOC.yaml +++ /dev/null @@ -1,81 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford -# Example usage: python train.py --data VOC.yaml -# parent -# ├── yolov5 -# └── datasets -# └── VOC ← downloads here (2.8 GB) - - -# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] -path: ../datasets/VOC -train: # train images (relative to 'path') 16551 images - - images/train2012 - - images/train2007 - - images/val2012 - - images/val2007 -val: # val images (relative to 'path') 4952 images - - images/test2007 -test: # test images (optional) - - images/test2007 - -# Classes -nc: 20 # number of classes -names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', - 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names - - -# Download script/URL (optional) --------------------------------------------------------------------------------------- -download: | - import xml.etree.ElementTree as ET - - from tqdm import tqdm - from utils.general import download, Path - - - def convert_label(path, lb_path, year, image_id): - def convert_box(size, box): - dw, dh = 1. / size[0], 1. / size[1] - x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2] - return x * dw, y * dh, w * dw, h * dh - - in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml') - out_file = open(lb_path, 'w') - tree = ET.parse(in_file) - root = tree.getroot() - size = root.find('size') - w = int(size.find('width').text) - h = int(size.find('height').text) - - for obj in root.iter('object'): - cls = obj.find('name').text - if cls in yaml['names'] and not int(obj.find('difficult').text) == 1: - xmlbox = obj.find('bndbox') - bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')]) - cls_id = yaml['names'].index(cls) # class id - out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n') - - - # Download - dir = Path(yaml['path']) # dataset root dir - url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/' - urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images - f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images - f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images - download(urls, dir=dir / 'images', delete=False, curl=True, threads=3) - - # Convert - path = dir / 'images/VOCdevkit' - for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'): - imgs_path = dir / 'images' / f'{image_set}{year}' - lbs_path = dir / 'labels' / f'{image_set}{year}' - imgs_path.mkdir(exist_ok=True, parents=True) - lbs_path.mkdir(exist_ok=True, parents=True) - - with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f: - image_ids = f.read().strip().split() - for id in tqdm(image_ids, desc=f'{image_set}{year}'): - f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path - lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path - f.rename(imgs_path / f.name) # move image - convert_label(path, lb_path, year, id) # convert labels to YOLO format diff --git a/yolov5-6.2/data/VisDrone.yaml b/yolov5-6.2/data/VisDrone.yaml deleted file mode 100644 index 10337b46..00000000 --- a/yolov5-6.2/data/VisDrone.yaml +++ /dev/null @@ -1,61 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University -# Example usage: python train.py --data VisDrone.yaml -# parent -# ├── yolov5 -# └── datasets -# └── VisDrone ← downloads here (2.3 GB) - - -# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] -path: ../datasets/VisDrone # dataset root dir -train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images -val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images -test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images - -# Classes -nc: 10 # number of classes -names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor'] - - -# Download script/URL (optional) --------------------------------------------------------------------------------------- -download: | - from utils.general import download, os, Path - - def visdrone2yolo(dir): - from PIL import Image - from tqdm import tqdm - - def convert_box(size, box): - # Convert VisDrone box to YOLO xywh box - dw = 1. / size[0] - dh = 1. / size[1] - return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh - - (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory - pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}') - for f in pbar: - img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size - lines = [] - with open(f, 'r') as file: # read annotation.txt - for row in [x.split(',') for x in file.read().strip().splitlines()]: - if row[4] == '0': # VisDrone 'ignored regions' class 0 - continue - cls = int(row[5]) - 1 - box = convert_box(img_size, tuple(map(int, row[:4]))) - lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n") - with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl: - fl.writelines(lines) # write label.txt - - - # Download - dir = Path(yaml['path']) # dataset root dir - urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip', - 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip', - 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip', - 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip'] - download(urls, dir=dir, curl=True, threads=4) - - # Convert - for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev': - visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels diff --git a/yolov5-6.2/data/ball.yaml b/yolov5-6.2/data/ball.yaml deleted file mode 100644 index 6a0b7feb..00000000 --- a/yolov5-6.2/data/ball.yaml +++ /dev/null @@ -1,5 +0,0 @@ -train: ./data/ball/train/images -val: ./data/ball/valid/images - -nc: 2 -names: ['Cricketball','Football'] \ No newline at end of file diff --git a/yolov5-6.2/data/coco.yaml b/yolov5-6.2/data/coco.yaml deleted file mode 100644 index 0c0c4ada..00000000 --- a/yolov5-6.2/data/coco.yaml +++ /dev/null @@ -1,45 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# COCO 2017 dataset http://cocodataset.org by Microsoft -# Example usage: python train.py --data coco.yaml -# parent -# ├── yolov5 -# └── datasets -# └── coco ← downloads here (20.1 GB) - - -# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] -path: ../datasets/coco # dataset root dir -train: train2017.txt # train images (relative to 'path') 118287 images -val: val2017.txt # val images (relative to 'path') 5000 images -test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794 - -# Classes -nc: 80 # number of classes -names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', - 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', - 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', - 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', - 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', - 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', - 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', - 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', - 'hair drier', 'toothbrush'] # class names - - -# Download script/URL (optional) -download: | - from utils.general import download, Path - - - # Download labels - segments = False # segment or box labels - dir = Path(yaml['path']) # dataset root dir - url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/' - urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels - download(urls, dir=dir.parent) - - # Download data - urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images - 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images - 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional) - download(urls, dir=dir / 'images', threads=3) diff --git a/yolov5-6.2/data/coco128.yaml b/yolov5-6.2/data/coco128.yaml deleted file mode 100644 index 2517d207..00000000 --- a/yolov5-6.2/data/coco128.yaml +++ /dev/null @@ -1,30 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics -# Example usage: python train.py --data coco128.yaml -# parent -# ├── yolov5 -# └── datasets -# └── coco128 ← downloads here (7 MB) - - -# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] -path: ../datasets/coco128 # dataset root dir -train: images/train2017 # train images (relative to 'path') 128 images -val: images/train2017 # val images (relative to 'path') 128 images -test: # test images (optional) - -# Classes -nc: 80 # number of classes -names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', - 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', - 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', - 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', - 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', - 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', - 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', - 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', - 'hair drier', 'toothbrush'] # class names - - -# Download script/URL (optional) -download: https://ultralytics.com/assets/coco128.zip diff --git a/yolov5-6.2/data/hyps/hyp.Objects365.yaml b/yolov5-6.2/data/hyps/hyp.Objects365.yaml deleted file mode 100644 index 74971740..00000000 --- a/yolov5-6.2/data/hyps/hyp.Objects365.yaml +++ /dev/null @@ -1,34 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Hyperparameters for Objects365 training -# python train.py --weights yolov5m.pt --data Objects365.yaml --evolve -# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials - -lr0: 0.00258 -lrf: 0.17 -momentum: 0.779 -weight_decay: 0.00058 -warmup_epochs: 1.33 -warmup_momentum: 0.86 -warmup_bias_lr: 0.0711 -box: 0.0539 -cls: 0.299 -cls_pw: 0.825 -obj: 0.632 -obj_pw: 1.0 -iou_t: 0.2 -anchor_t: 3.44 -anchors: 3.2 -fl_gamma: 0.0 -hsv_h: 0.0188 -hsv_s: 0.704 -hsv_v: 0.36 -degrees: 0.0 -translate: 0.0902 -scale: 0.491 -shear: 0.0 -perspective: 0.0 -flipud: 0.0 -fliplr: 0.5 -mosaic: 1.0 -mixup: 0.0 -copy_paste: 0.0 diff --git a/yolov5-6.2/data/hyps/hyp.VOC.yaml b/yolov5-6.2/data/hyps/hyp.VOC.yaml deleted file mode 100644 index 0aa4e7d9..00000000 --- a/yolov5-6.2/data/hyps/hyp.VOC.yaml +++ /dev/null @@ -1,40 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Hyperparameters for VOC training -# python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve -# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials - -# YOLOv5 Hyperparameter Evolution Results -# Best generation: 467 -# Last generation: 996 -# metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss -# 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865 - -lr0: 0.00334 -lrf: 0.15135 -momentum: 0.74832 -weight_decay: 0.00025 -warmup_epochs: 3.3835 -warmup_momentum: 0.59462 -warmup_bias_lr: 0.18657 -box: 0.02 -cls: 0.21638 -cls_pw: 0.5 -obj: 0.51728 -obj_pw: 0.67198 -iou_t: 0.2 -anchor_t: 3.3744 -fl_gamma: 0.0 -hsv_h: 0.01041 -hsv_s: 0.54703 -hsv_v: 0.27739 -degrees: 0.0 -translate: 0.04591 -scale: 0.75544 -shear: 0.0 -perspective: 0.0 -flipud: 0.0 -fliplr: 0.5 -mosaic: 0.85834 -mixup: 0.04266 -copy_paste: 0.0 -anchors: 3.412 diff --git a/yolov5-6.2/data/hyps/hyp.scratch-high.yaml b/yolov5-6.2/data/hyps/hyp.scratch-high.yaml deleted file mode 100644 index 123cc840..00000000 --- a/yolov5-6.2/data/hyps/hyp.scratch-high.yaml +++ /dev/null @@ -1,34 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Hyperparameters for high-augmentation COCO training from scratch -# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300 -# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials - -lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) -lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf) -momentum: 0.937 # SGD momentum/Adam beta1 -weight_decay: 0.0005 # optimizer weight decay 5e-4 -warmup_epochs: 3.0 # warmup epochs (fractions ok) -warmup_momentum: 0.8 # warmup initial momentum -warmup_bias_lr: 0.1 # warmup initial bias lr -box: 0.05 # box loss gain -cls: 0.3 # cls loss gain -cls_pw: 1.0 # cls BCELoss positive_weight -obj: 0.7 # obj loss gain (scale with pixels) -obj_pw: 1.0 # obj BCELoss positive_weight -iou_t: 0.20 # IoU training threshold -anchor_t: 4.0 # anchor-multiple threshold -# anchors: 3 # anchors per output layer (0 to ignore) -fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) -hsv_h: 0.015 # image HSV-Hue augmentation (fraction) -hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) -hsv_v: 0.4 # image HSV-Value augmentation (fraction) -degrees: 0.0 # image rotation (+/- deg) -translate: 0.1 # image translation (+/- fraction) -scale: 0.9 # image scale (+/- gain) -shear: 0.0 # image shear (+/- deg) -perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 -flipud: 0.0 # image flip up-down (probability) -fliplr: 0.5 # image flip left-right (probability) -mosaic: 1.0 # image mosaic (probability) -mixup: 0.1 # image mixup (probability) -copy_paste: 0.1 # segment copy-paste (probability) diff --git a/yolov5-6.2/data/hyps/hyp.scratch-low.yaml b/yolov5-6.2/data/hyps/hyp.scratch-low.yaml deleted file mode 100644 index b9ef1d55..00000000 --- a/yolov5-6.2/data/hyps/hyp.scratch-low.yaml +++ /dev/null @@ -1,34 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Hyperparameters for low-augmentation COCO training from scratch -# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear -# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials - -lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) -lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf) -momentum: 0.937 # SGD momentum/Adam beta1 -weight_decay: 0.0005 # optimizer weight decay 5e-4 -warmup_epochs: 3.0 # warmup epochs (fractions ok) -warmup_momentum: 0.8 # warmup initial momentum -warmup_bias_lr: 0.1 # warmup initial bias lr -box: 0.05 # box loss gain -cls: 0.5 # cls loss gain -cls_pw: 1.0 # cls BCELoss positive_weight -obj: 1.0 # obj loss gain (scale with pixels) -obj_pw: 1.0 # obj BCELoss positive_weight -iou_t: 0.20 # IoU training threshold -anchor_t: 4.0 # anchor-multiple threshold -# anchors: 3 # anchors per output layer (0 to ignore) -fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) -hsv_h: 0.015 # image HSV-Hue augmentation (fraction) -hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) -hsv_v: 0.4 # image HSV-Value augmentation (fraction) -degrees: 0.0 # image rotation (+/- deg) -translate: 0.1 # image translation (+/- fraction) -scale: 0.5 # image scale (+/- gain) -shear: 0.0 # image shear (+/- deg) -perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 -flipud: 0.0 # image flip up-down (probability) -fliplr: 0.5 # image flip left-right (probability) -mosaic: 1.0 # image mosaic (probability) -mixup: 0.0 # image mixup (probability) -copy_paste: 0.0 # segment copy-paste (probability) diff --git a/yolov5-6.2/data/hyps/hyp.scratch-med.yaml b/yolov5-6.2/data/hyps/hyp.scratch-med.yaml deleted file mode 100644 index d6867d75..00000000 --- a/yolov5-6.2/data/hyps/hyp.scratch-med.yaml +++ /dev/null @@ -1,34 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Hyperparameters for medium-augmentation COCO training from scratch -# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300 -# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials - -lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) -lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf) -momentum: 0.937 # SGD momentum/Adam beta1 -weight_decay: 0.0005 # optimizer weight decay 5e-4 -warmup_epochs: 3.0 # warmup epochs (fractions ok) -warmup_momentum: 0.8 # warmup initial momentum -warmup_bias_lr: 0.1 # warmup initial bias lr -box: 0.05 # box loss gain -cls: 0.3 # cls loss gain -cls_pw: 1.0 # cls BCELoss positive_weight -obj: 0.7 # obj loss gain (scale with pixels) -obj_pw: 1.0 # obj BCELoss positive_weight -iou_t: 0.20 # IoU training threshold -anchor_t: 4.0 # anchor-multiple threshold -# anchors: 3 # anchors per output layer (0 to ignore) -fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) -hsv_h: 0.015 # image HSV-Hue augmentation (fraction) -hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) -hsv_v: 0.4 # image HSV-Value augmentation (fraction) -degrees: 0.0 # image rotation (+/- deg) -translate: 0.1 # image translation (+/- fraction) -scale: 0.9 # image scale (+/- gain) -shear: 0.0 # image shear (+/- deg) -perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 -flipud: 0.0 # image flip up-down (probability) -fliplr: 0.5 # image flip left-right (probability) -mosaic: 1.0 # image mosaic (probability) -mixup: 0.1 # image mixup (probability) -copy_paste: 0.0 # segment copy-paste (probability) diff --git a/yolov5-6.2/data/images/bus.jpg b/yolov5-6.2/data/images/bus.jpg deleted file mode 100644 index b43e311165c785f000eb7493ff8fb662d06a3f83..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 487438 zcmeFYbyODL*Ec*DA)V4KCDNT2AR-_jqKI^Ncc+4McY{cYlr%_p2}pN$ch@`USHHjY ztovT;S?_xPdw=KR%zS3gKKtywPs~1NhP&~*c>q&NTv8l>Kmgzc_yg`15Z%O_j12%l zMh2h<000p{g<t?MAbJ4iR0!rTj11yT2sQu<o+025fDi%jzc2t4LWuw33JBdlJfH*! z+pn?+AYVO%{TIdoaXaK00Qb8r3;+@R7yB9i!N8<H%^!>)1o8qRR#s;EfbnZ1OACDp zrMLGaQ2TpLexKRcnc0{*0f3#AjgOy|gP)a+f(<-!^K)<j0J&G<9}QvTy;A;SHGj%~ zwe^4e55@$5Z~(a18jh8noh=;pkLECX;c$PkQv~EU4+I7lh=c(59s;$2366yMD?d6C z_Afm-67Da~j70dSF3^XONdMLwiTt;0ek9H>I_N2wvPif4y5P7$TpJnjO9wb!b`Bsi z@?ZSvkIrnYte;^1cn_BT6YL)h$NL%opSr--$@s1ReNO-~Vg8}tW7z+|@c&@YvzZV6 zgU<d-Pf)i9hnXC|bO3t`0(K_nFH8es0#MX_y7$R_Yomf0{(own|A_{`gjs_PTMs~X z9|J&38UT5<3;>j%++XQl<@??Vd0>j10{8);zj_CSu`JjxAYeZx0Bc3MzYk_)P$STH zFwEd3CuqTayBYxitPbdvKRlpje{mTo`47Dm<o<&p;K;adV{in(c7xX3W6+DRivZeR zp2q<CUkm`4e=!8W`r{YaLjdP59T~v?gDC)j@DBzh6aC@`ZG<BL$p3@>=uaPlBLk>@ z(Lo*HXaSl(JP<E{_74Vief*c78KC=1zxNBEV`XM+Ysbneiv<I?fKH47bOCP|7jQUn z0}22mfDdT|3V}|*8;}Dy0V_Zq(1Lt~wFaC3HoySj1F!ZWA0XDiS3nC;13W-_Afyx4 z8Tbfr0j7WsPysYUh9MLXV?Y*g10sP4AQ8d`>j*>x&%g#S0XBdw$Q(o);tsq5Im`h= zpa8N0V+1gOifV#2<N{(amk<faS3nt11tb6tzyjh9!w)<G4O9d<Gyp{yOqfTIa6k|E z03?H2qQf}Bh=AqEfGVI3<UxaZ3_}hH1MGo#AQ*TDj6>96_y87w1gHgu0Am0N!VJRz zNd)hE0#NX`4S5YC4ak7{c>oE37-$bOj23v`9Iysn1JVFL%o`YSKp5Z!`Po2zKL|BU z6l4kT1wMmbNCw`+JcXeHEJ4jEKpi=O9DoXD3vvnA0<l0G;0U<D=)ur{cDw`c(tutz z1B4(p5L}2Z@E*J?55z#2A^M=?x4=4BXDQGKu)|CPW1u%BL9L$y+K_HgmL1RqnSp79 zlmSAZmW+^5km3#g;($8<8Il3=4gls5C(u3)AOMmISpdsa0zZI5pd2^>dO*AULEnA_ zGC;3>0y2RKz~X+^|CL~V^$ZaHIsYaDFsOfe%P=_I!NEU3KzwIlrfq2Z&OzJEUSHYH z*j(RMSKCbgoxYW&t`R2WAvmw8%rzYoVhbd8gChYE3!n5c6AQ24Z-KuioqKpcy8bf> z-`$-|0&x08cXv-H0ALjM?rxb8fVc^ROypn&^@If6pV@fWL^wFOxS04jIK`MaIoQRS zp7B0sW#Z!$ea<T;Ci0Axn-2i2`B+&&>wYKDCYUMkaYhLMW+xz)0?AllzMq|b%_iXa zULSBy{ykg$AI}^L9c^7x3O##mGYVa8bA20a3T|_A3Ii7Q`{xdT0s0IaivY|k@BpHF zDd1dza1I`S(G~CMaDV8Cm>|0M@^4Q+_(caXA{{vA{8JW@71ZNbS?T+-Xn%QLfFAut zm%pcD{iVMK=aYZw1b^vD0O>C}3MgL-^y9t!`?}2Ti-U;{%=dcS&)MJ^^WGzRVE+BI z2Y$r`ARSrt7acil95jRt#P@UheYrp0d-VI7)fE7$Spl>|us%|}Kj(kvd5{Y(+ZO;H z8s9A-;~Cl6S@E;5SlBXa>sjjPGwWKKvp8v6v9K|-vH(zFCo9nF`gRmL`i909f|PqT z4U`nddV-XSTr#XOR-*bw#xGoK^xwL?lGk-H)#cNp6c(a@I`KQ1Tbb+IX;V0vn_1ZM zI|)+$63!3edol|p#V-~+Q$b24nb#DemNxnnT+E!ztdwAB8$APlx#!~llm)K@DgRN@ z(b19Fk%QUN#*l@LkB^Uqm7Rs1oeAV%vURqw({^IAu%-GV;W;=WY>ch!j4drF?j>sL zSlZhOQi3)AR>|Dzuh{?5_CJhPMwWJ#wnmo!3;W;OzZ`a7$ckUoMqk@b|2dciDev9R z#LB_M$|nCOAYukXhu@4cmU_kp&i^ape@L^mk+-xo6QukdXHio8t(O13^zRD6R{7s* zV*%aD@{eEd;ok-lqWEw6uLu6?f&Y5ozaIFn2mb4U|NnX5-w;pV0*oLW!2k}p+X0-w zt)Aa;4+RG^E5Q3qQU>lmE(HK#5{L=_OH3m{0>-*901OF?Fz|qlgO!_ug9JthK)jDZ zSUFhPNMLyW^8)&Z>9;JJU$QXK-j+vFJh&RsMwth^gcarQ7GXFgMMX7V%gKsMz7+el zQ3gY;4embOS8i@$XCo)^j6z9Sg#uv#jMNdps2mTV(AKrJ5_$dl<-N>5=U?*w9!^Jp zMasYs)4i;2q8Kk4PfQu!goh&oo48(o+5TsMtOv%D;H_&g>+4$C*nwg9eSA*kXlHeg z{XvXl11bgL<a=!R8-KgUI=^x2FCKY0QIH3W-vJ6;BW+Ly<Q&9|I{!g8{15z3y&wyK z^4!?g%1qmt;x)LT_WyOV({}>x002=-D`y*HLnAwi-#a>z7P`!g6kvn$0KmP^f7g5T z=9e!act8H7dCviWV8h+rUCqBVsRjTj21_DW|4XCe1s6=<x}>w(O4~;Jm%RH`4vc{T z037Cki!5buUGnpOtz&Dz!T#$$1oauXD4e~!JE8^Gb5Q_r6MlDh_4)4ZCIeg|O#?uq z#a$zSg$TzBOAia71Yocruvn10*82r31RnA${Z<^j{%7@!gp2|*l!MDS2rMiN94tKi zedmU_-)|<uVZmcRViS4r@QpSCr8N%whlq4Us%OPbxN-yg)EqiCUP#Dz_ymMRG_;TD zp3rl0ar5x<@ryne6PI`)DfL$Voq{50uCAWGfuWJHiLITzgQJtPi}yz#UqAnVz{sfR znAo`Zgv8GonOWI6Uvj^el$MoOR901gZ*FOAYwzgn>K+^#9vK}QpO{=&Tv}dPU0dJS zJUBc$J~=%*zqq`&3j)CYHVZudw(S3~3*7F4z`()5!Xez-1%YwAHyjHN{t?>)Y>_tz z+SU&#**_rSJc~##ZbG8sklV-Au^B+dqvl+oIk-3Nmu3HVhI#$Jvh1&6|JpSLh=Qa2 zKEZ&0urM%SQ^A4>4m1Hw@DJdBr3e2cgkK5qJ|X>0cc7485@2B9z(1r1@DKjp`@aTv zGvGD>$K51=3JY#2V8LR6TTVAP`&kQR)8Q3ubM3sHf~F(dHL6v}Y8|*gG-ncUJ7ld# zYk6cI(K^1J^FFy$%r#!?32|^}>QK3r{}HoddzQ!`T0Y2lTt-~5z+JV(JqQ)Oy?9%B zoTq5@K#x1FM2{?r{)I3rZi7mezT;|Boubi9Wnd&_FSk^b@7_<v5C+QSZF5z@uE|Je zborBzNvg1n2WwMYg1yu4*=0=GnGvU-Rc(ZRk=>-vf8EC5b`9ye7Ld;+RKVL$i%u0L zGFFFGA!Iip;*_HaoNIxb!cyQPdDPCzN=|rVs-XHfk^@tHi7ffyT&nRQE%EjkuhYRm zH2d1RQ-0C8#4%l3Z)G`N{}wFg<Fw0Fg=p<*Mb6O~ZF?~_783OKT$6z)n_yXlv;s9Y z=}PnR;iTe@lnONuEw<|o4Kx)oQU0m^%I~oO4XAr6v)q(u8mr>DfRJeWG|=SNU{ahe z@m-vHUumAK3K`)jM|}z!M%-^~Po(ule}dX@tGtp$V@ux7{aHIhg8AcUsz+K#o&7}` zC*|;0t=*~NhCE+evtcd10#@>Rj<5uUl6F@(6<9f!?F7_hkh3DWQM(Mml6)2~g76n7 zxQ*FKoZ5-=dUl<HZ7y8LMytMG7W<|wr@L*&8w)LEQ=Ooqu4d?R^KDjq{Q}VJj+_1L z8kBhRmWz<!)CUq=U8ekQ4wqRe#|V3t{vUou`D*qUcZ}A2Y2wlid~0oJtw;7UvruX2 zgCZ4TPx3*itf&&D!!(%?;zpuTU3{^Ba;OWL^KDG@w=qW^r5ICUIgKV__{Y3wg($5m zjebf)S<eylw`IE4OsON%ZV(MB$Q&^OtV3I}oQqnOXiVt}7ieCxw@<|tD=Lr|Sc)Rx zGjJg3Wc@rNcFhwAqK>G*Y@xP?$-<ua;pyb<$lF11o!4WxwQA1J8NapyOK=AWZaIu@ zXQrA_Tf!1R?Jvg!)nH`CH+)&D$J#Pmm@huZWH9ord&Z(YAJq69{`d%spW%I@J4gSP zvP0?gv}8g&@XC68G<i1{D=w9fS16`)KZF!3Ke0OE%eBOCS+9c(_IBM&iG)Rj#1lzf zg>Zr5DfaIl${=lW!<?GlM7R0&!r133BNj{QCDMqoKfB{eBu^cTmSIUOGz8GgS1~nY za<89%52$zgvD0)MI7?0bO0vz4-+kqzBHc=f@MW+=X3DVM2`R%*U)pk}N3_=6ILkN7 zE~xyv8@|$ezAm+=;^K3pW!VCGTD-)F@YEgI_+hd#6Sd|CaW7)9*Io^A#beC6GW3^7 z38^i0)ya$YXC@S?bZuu<ylB-lY=n<?8~Lf)NUg(^?UW(hn6uLVb6GK6La<HD)bPeF zm?l=vVu|w(2qdac$Z8S}fC}ds561gKrwn3g!<nrjRTJcMEqsa-*SG6wj1p%GV$uRB zgJeghKg;MJbz&<}(Uq7zoy)RzDd_DB_qRKQpOVJ0evwx`l4+Ic<>TpReOe^#?)j!_ zXmyZf)ime{x(ab-=z<b#M2!{t_?fLn8#=Z0`M1jS9z_P%rqnvmMd1g{6_>hF-}<cz z&A)jwQ(Y}c{6NyUR*ZFuYW_~&mTeM;IZ2bbjm_`{7O5+y;)??uF1Rm^368KLx{+Jr z^9N^geyXN#v!_*@!*DL$236UidF7pfVv)4dwItu#ZTJf63|kz3cIZ3rx9>W0Atv$} z`pNm>MZL(+gho!*gpb4NiS^mY5(w4f^ECHfE1djXNY#`Rpqk~>M44JY9T18Th))#r zQF_TNUt{xdjiuWE+O&oY_h&h;PyJUE=X_l6uXO$O_@Sm9WnungPn>+hf}q5FKC+Vr zvKSgFvmy_DC^{n^n%l9Z<`G(&jk#vHNe`6s<=go)+aqSh$IG7jL`Picd9NfSx<{I8 zAu^+AE%9z?>Uv$)iP;TFL?}EA8d2I{@xWLY!mn2qM%{8GQXlzY$rE8rMG#0k$67{x z@m&ACKwR=zlqor~#_X<f!L}KT$Iq_SejLl3e%k4sAEV}&kE2?|Mb3(xV*75}HFu=* z*7rz<An6dqU|lPE6jU3&e!-23db$XEbttt@y0TO?mC=(*SU$4y300=d6BPpb!>!y4 zzs3IXmifI_P0XACt_HN}4VTy`zAL7keE-r|=9hsoMH7$h*YVV6wU_PstXMqtFpy13 zBuwuBB&Kn{43)CRdUUI=Ty)CA**4sLEtOI?p$B@O1&K~KyILLb)(Lo#+nhToSg9h~ zv^P^Bx5NH?u@i%0!~q}udbF0cPqB6a54ZFORhVAI>ynl^2*>YD3g04a9Wd2C%r*Kx zTY8g|DM~-n=59eGFlGeHP9?gcrpiX|;1--7@7qYCxH1#At$m<y)Qs))RX{qvfO}7x zH^Oj4Z{94VK$rgOlq92VuvcEPx8_7;kOwL8lR-2XBuX~PdS!jX%8!t6Wn}$?Ivlr8 zWU?j~cfew5(!$owtHCMdfwCQO>PJ25QxbgPbdB)c7EQZ6o+sI%mYQf}FLtb2wKG&_ zBWr|1Sg<CV_NCwOuNLI0j63s&nAb{X%x**>#f5)saR@I>_9Uu?(?d@vQXcj+?#FhT zYeBJIWPw*Qov)yX8Ls<W`MMXoRo`$IA;o*fPwF;fPl)82YV3F`NV<;uN-T7d8`UnU zs7!T9aC=W^0PzwY_Cm3<{>dHSWpdl2iOE7cY`4y->aNMyOD*lZ&?|1Xh9-C#D91yv zraSem6Ydyy<MpD6T%^5jk?S4MLgxOmUeYz^$TY_(aqR7wPeT|B?Vxt79Id}He+x3Y zL>yJ^2ZXYaq5UF@QO+V@U5HG^RpP)Q$<07!Kq-#NrW?}vuF^GrJT-$p0ZO8{@wm0& zoCdwpG`$zY_gZFA2Ay=kU!Ex~@OT5=x_ok2dGm)uNK<kpEK@R;ChB?5Ez%uuC3#N% z#u8)PN%7@DGU_M6zBu=r5NEpZWY13~{aDPO^os=?mWI~9U7X+z=MJy9H!Sqi*FVTA zpqn9MSvXi^auKCXT5uPO6$~8|!Jig~>c8T#y=m^4tTZH&>As12tBsSf%BKEY*S;gy zo@9PLwDGuz<=hXWZEs?A+o+y%2&%fjJ2(@|+wZTN!g=^3Jz9c7d0Pn=%4ky|@h03_ z9V)q`>F;9ZXsDoxwbA?>4L4@_iNylq%t{ALeao%{$+BZnc23H$OAV(pE-R+RWJYG% zf`gyktVJYsdBlsu`tEc2tz`P^>SJnbw$Nm9k->Vh^R$+VCp0+|<tSV?%eMwH!<oq| zSu%B=6K^`K2h)e3GW#fErMImILNU4PXFofI2UQm0#fA2P$=VNHypv=Uh*#tJ<F{0j z*0~+&ZUV!PYbxl}JWaZcaq^o&QKj)-VbmiX=cTgyKC)5B9!nqciDf}zG4@Njk>x)x z%~9T*W%jxQME3Rjf`lg~@vD6=a{L&3VwF~Oy66ZYUXc%+;l>>Idut_}m#UbyY0a64 z9w4$r&px$yYdl5S{qB@>+T31CT!fE7W5aR2KPb^R)u3UJqJH+nk61;vGH=o!GG+TN z^Os|B%Ck;_tLFT>w(!@e(1j|zU~liLU18R<#mZ28G^jw!;FpSu!qxp=YphnrSCsgp zw;MZ`Ypt?7GGu!#9&CPBRByZxLN~efsSGgo3Z|_NSPA6-dJlznT2IgW#-uAF%*#?> z^s7e}g1ZeMo*t1AYvuxBdofRW-RxnZ%dWHy3k5u?RbH3G7lo;<zF}wYW2RZ3Qe%pc zU<G51C1dq$3E`NoQwCAD5wO);$;Pz9RGMLCgipYdl`pQ;GC=90vUk(W!yNgR_?0Hw zxGXf*zB!pL6!}~$&Kr!@@_CeO+VnHV9;&tXqQ?H{`QEonDQR9*OBJs7J}r(RMu_1+ zy7kO@i^x7TL&uE8T;Vxe6N$AnVwh!Y0ON~nEe}h&WG`3mHka9eMI|VgE?R6DRw$0Z z%$uiHeUduWjXe*eJ_KGYEh+}v2Ze=TO0P<rTILvsTd-3eF%C7vC(WRs1%7pC7ndXs zW$13yvJUT%9F>hzXy`mUA`wR}gb`{hG{=`cw-e2GlRxP9Z;vxaFLnOXo0A!?I<2mu zE`B<l7a7$?*@fxwrV=fso2{|&c+W=&;rxU7r_K6DqYJ9MOp70A-ghdcmA`nmqSS|I zON$!P=WeU$MwmP6RN7vVC{`b1yoe>7VD<9_d~^{tef~he11e)Fo~|05sKZh^fxKPW zATsisw7pwk>RRfYIa0}#RhFslaHf~Pu52KK)z?*7%|FFp(qoU}AY7!VU_paD=R^Pg z@Mg!fV@<`Rw7cC@Wmf;^`99K{;RB1$XZ)I;qWR|tS8s0n>PgR|_B|IqIwtyE)9@R% zF626W&;$De6Vse%?Vwq!?NU!ds`NVHAiFvbX(RmFWx6SA?x}Hnp53~2#GYo`+_psS z#%0b<@4jiXw|Mc;?s1C4!3j>qhXrNY>dM4z#(~~?S?)=t>G!*>352&I<@i_31D48K zI<?yu)h85**Zu9tbIL#Jiv`yl4_6&Dsl%ch4Q$$8WhsuNU`!}su(K1OlA&pBX4a~{ z5+9W8eZ?gnfx{}-YEMGcJZw)F6zw*jrWSTk)QOAxT`->Kht8}?gfaIHmELs@0pS{X zcLTIs(AaaKx)y=tWd!-T1XQU;Pb>2x(%8x41pxuy(go3#XPe88|6rlH+*2Bc_n&sm zPL`+!8!#G-?*Lpe>#L_umaU1xmqIzZ3p)mM7N6;9Lj?*%WkQ;(E~3k{8=DZ|mU4?~ z<`d|7#}y;b<<n;HtX7?rb)J03bg(ID$Sa<2s3hM>S!9@-eApp`w=bR<drMR!jmGds z+Gu8WXPYX9jHk*Tvy3`?3ey5LDN+Ic{dN1uwb(+6u6*_ANjz?vTzS=tgw^pTT1Nyz zxMg3aV61Qs%`bCEh30m5K=3VF`3GzPQ@bH7EZleaXV2%E*{(HX?9veYK6063DEqa# z*k^6H8@{tCZNhn9G`S41=^1xD&~#M|BDVdqICSQ6Hhi?@B$r3`)?T4<<GOIBze{@N zwb=aQecuqPQ^$wmhWg0a&-N{h639QTL6@~o1?$ZYdb5iVS_JV3$$uo8V&AIFdr9*o zPFrY4T1Ta(mS5&B6@il?M%eb*5{7?;LWk_wvAeW_G~te(o-93*G&LHTLySOe@p}Tj z`LX4kAOho46}>oa>?TwfJ1K*AG&cDc@EtuHeXgO-MT1qE>>rbpT?8#>I~GVBBNTh| zx3i;UXbUD!FU)?R)IHmhN^5D*llkamGaSmZ<SK>Z)7kg5IV#ol;n+z16Ye>PQClPR z#;Kv;d!s%`2i%gNaC2=-N8E=o(Eu8(??$H|9O>XAYTF5SWufSE{jQ7cRR<`-NYuny zm4n+ADHl+Ym`(s)6gG9XZfh$~{%xS7iHBoohwF=1EHa^C@@h^#mD<X7DNwJuCp4d@ zpH2mTNUcvTUrWO+*Qw_lX3CaR7|`|+Uy95{_QdM3k=#mlXDB)7-G1B_7rQ}UBb1;O zfz!Fd6phK-NmC6Q$~OEiE!bv5#j#c0qA8usq%Y|3y=pvV<3{q0Z2F!WrcdTXzrSKo z&~AfVLr86a2aO3Hn^!`0xdd?#>DG#+g_X-`|B_~d2K@nE%zV)~O-#Y<m-Iy;3|FV0 z-@@D~f6BnU;30wOrvM)AB##}PEF#73EtVBnW1?P`mxMb*`?15Fj<+;__7&+Gx?jN? z)f3lZCpmKx<4lo+5z<R7TRtPO-$>ledh-lF;>3-nK(fn|?QCvGvCt^ivzR6|&)Si+ zJZ57*)B4BGq0Z8qV!-08*QsOY^JH3p5P>nPoAA&s%SzROV8-~f_yGO4(3fyBRImdm zxhUUANEU16&gl$4GG1$6;bS28TA5?dz1g44YTrN#yWvK3)F<Tur%@Zl;D}_bqnsV{ zMOiX+6*rQ7%a8fl)zzN(%7Uk#1};X=x-1cGv=W~z8lyZ9p~_u&P2%+cqtzN$UoJ>; zYi-5AqbX)U%GxrkKS_w;T<C0peA_Zh*-goG=54F(dFt)b>y+(T*Plm5XO<+w--Ao@ zP2O6EC~#ZG)Acc&WGtQDyggmJNuVjI2zAacsui`R9^!buVZxcl6s?8bVVmJ>2t-7A z!MjmiIXitnJX&n<aT8uxUzT<keOsw)K+9dJAKqd_3Ht*ZNrg`>n@S&L#1GkH_q=+s z09GE1IpeRf_CxYFxOOUh7I$PK2w<qfMUXA!91(PgEqEWPrsG~P6!E-D5igH6X}FHL z=@>l{a;O=<l$MlvwRSpDJDl_;p&<VnViKf-&GJNLNg<8ha%y!~NLJ?R6)&mjcG8nr zqgT5bVPDoR6x%c~>OwuI!aDe0hchNRzIS8%;Rm<4_I6ZhABlq0J1X#sN`{HZW-6vm zuv9Z~4c|8KP&20g)29=bkL)=l^MOTHM1<_q?-TBTEx9(E9_uoUn9ljj;V~Z@+o`~d zGh$Msj?~3Py5V*tG~dRvB9im+1K6fpjKOU;(WL^N{+3Y%6`v$Y$FFLlrl>}SPnEhj z=$A-k9A@d9R|m7N81o~UpVC`d2V0*jHs0dh#NGjhvOcp^mN?VrCLMCayB13U<sov9 zJikz?z2Jc3!S^tWcqZ8y$o>V18r^iR^Bs={c9IKM<;f*Uybp~`RhqcRPx4BMCKk-w zUQMh*59EpSphcOg{p<qa(>Px{*Srvdr$42MrEf~vMRQ(I^{u{m94qrFMl|r2&W+f* zNXf*5pu(%~Ayd77F)U-l7M1g}YGMeiEj&Hax^2JI?XYFh!an&mmdpOS6-`!b#J-0u ze3>#<>x0A=6ZA%dhG2Cv+@Llga<TSK&T)Xm3OYe>atB!H3Z2~e@N(z(ufAf8c23Va zyTKUW`#49+rRkMcD%@Ph(~$}{lJ@d|Ho?(8+r))2!lZe=uC1-Tz4SfJvW>IJ&bQ~w zKD>{!T;o0p8(DgL;@T5(Ho%*X9&X|l(@z^$s^*^{68b*tF|;Y}C#3qM2L~>+>*1aJ z<cDt&Zu>?f>({p*z78aDtI?JgSPTkhw_YV{kQzD<+0R)pY!eQvr|=BWARdA~&s$(( zD$Z5SY9C}_sVFI3&NGL5K%hN7=1!zyQ{REcAD+TRTaY8GYIX<wxDEjOv6qSE7q=HR z!VCnN@_-AYwfDM<_xWj2ga={!=k|-?;JDXT;!meK8q~&$Z^!r@Qs(E#w=~EHV$x*3 zHAD(HG3&WTMi4{{J4f<G??9ih3<Vz55sh}dN_#V8*TYA7v;0ONKos5}MDl{<!DLp= z!y&HzfFSD<A!5Fs>8;+T)9X<FgHU-P7pyr__ZxSHvi)~uHk*?))yp!48|xGEZfA(K zx?6+QQJFno)Ormw)FfO+8x!8yKKzIPUm-a)XYVKkGh~klHD5qs=p^HgY9oRw>u(a> z!V^$YW!QS36iSL!<U5Ts!b=2ZC)-uuzHdNTRy>&fmXlJ6XLx&|EPKec_mJ29*^8sF zaNR?$Bg1BAy{L}FsizXx?y6n_hGv<lV-<pZncstd=qgOU-?y@I+Ec5F+2y$OL}F07 zaA_B4D8Kns0gFC!Ubxx(T6?mi+$Ms9*v_tzF@tc8urPE$Vv_s#HJfHT*GjKIT7|5+ zjPyFm1a)VdS2qeBbRK!kK7>n|%HRCm&QR!y+%DH`A7Y3vHUl=_yl03;yyb8qfrEDc zf_m;%4!?q4>|{uCsN8cp36kUMHm9|nhuV(r`=T1&FGOit5T%%Hs{$Y$vO@%d3}eXQ zz2V5A58O@LgpGr)LLQ%b9^hpdbH)y~noD(|;Mm_>t{H3ChVpLhscNg71}++1Sf0My zpDp+_t0wlPv6DI^z&uG2R;Q3V(i?h^c&WGu^VK*4fso83t(E8^?o|6cV(|{ZHyJd# zyctq|9=ko??W6bflbM`U@MUsx;H7IvG275*^>H*xFPEbTZ%xG>BaZ&ma=h%Filyvl zH{Hu&1<&;e?*QQi6_|-n-vUYCFJz_q53{!)2*to@T&CUqyg~VC*FZbp9WSqg)X&Ge zv!M}Xwpr|+@>J*!km?x3!_+Z+twYD|UZYbZt+cbm4n@VS+UsMupu$(L%)Ppyclhb< zt9vtLPOr*W&^e>Z_(`|mjW0>z@T1aRr4JfUcrcNZ*SOXyZE|FYtO>49{2U0syN<*+ zDnpj;fH9??0?_W=8i%M`7X^PqY@jySc1Kl0N9AYaDF>&ac86%hj#MLV_t71&nVFJ2 z^}XGy?G?vlis7oH1x++sBkIx1E@>IDkMzk)sWBc*d!flA??RMFr_pO23RsvZCJ(Sh znV)hJNVV7#Tk;PX>EfX~qQ`U?#~M?;ESyUELABMm`rTc5*$%lHxn)0phJOlQoWx$R zu4eSy*mZp(XFEZ3I~Rt{$uE{T*?KB8rbQ-S<Y+Q3hSfFSh8g3fA*wL{af%0Bg(Qx$ zSX|W!khmyZ9Pud@z!TRJGOuoGx9-n!aSBZ7GkL;g+i%Z6JVx``)R1uLMo;3R>h|4g z{bLy!Guoq1_L!ZKnf~3I&<eOi402|dz_XeHE}{O_srPLNz3mL~QL;mZF--Q53V}!+ zig{G_)aqUbt<Bjkl9&Zcmo+5ATt-&&j`%ykZfUZt?WQtv4EqTjV7+NN!|4g*_IQ-D ztt@f#_Q?`*9;LsY%vZMVFChV)TUEC5MGb~iC>si-4_jHy!r#L;nmVXOMENNoc&DBC z<-pX37K#M<?n70SQ^{l(p$4mmd<A31WL166J9|pEj|baM0~oE6OVBzVdjVazmjRzW zdKyqNeim$7D(oI)!1AC_Je{{|HrIc%F`Sxtq^8htMZNwqO4#Rwy=EX<#3r7^``S9$ zajWF3n{aT>9^Kr)9iaIklLHD(Nh-cr%O0<FvBNBeuRu+$GZiU2Q|KG$e<p}9S|2qm zY!DWpVrQKs%_3j~Bst5yyAT(yE$APt?N{7)3~&>+8l9{wZEf6Ppe!>_t%5Z6FK7r+ zrl?q)P>g*QB(nWjPpCHk68mWl1{~zAl(Y&j)C*BK3^&78-yTWWC?xy@2pg>4*d=?B zIEnf&JV(%3kb$5}a@}ZgbWLD^lo{66-m2v+)htJ7>J%IxJItK%7TSuPa6D=*V^8L% z0`QDuF6075c47@^>+tYHow$AG$re+Tw!Uo4wkr=2iTES(lDA#om@0{I)xMCrZnX_f z$c^BsZ*2~*yF?!`Pbm0|W+RF_pJoyxLv+OL9CDjx@4SS<!@*6-KFtp4=pm1;K3?e} z%T)X_o`ET3u=L3cOKm15N^OfrC9$E4C|^qOpt|%9a7SLpWL+Aph!My`UV9PV2Gyql z)=1V;>8&k+=q|51RtY%!z0q$UODLAAdM#V3e!SrAC=$#|%w+T<#J>Za1*-!OEz895 zA+)cTh6uE580cTrx4TX8PR^uJBpK`bh28=5#jjj!$_o!ZbapJXy|XR$s&2BZNwX+# z{@Rzc>RoI?ulo7pq<Q`K{S=Y4=wngpNHKOj07k~_XRYZbtEeMxzwukAqL)To3>a7@ zWU5*P1<QDG2hnm*$xI8%`_~w(FE5#+kZMNE7j44}2`;be8i;xlySXdM10SV)eUDzJ z`l(0}rHx=xZZP9w(^i%tL%77?ylAngRUHN;g+fC63vpE>pV;yk-pk;krrG^2BsH>B z2Z`J*>4pBuQnhczzT^S*#KUGqTK!4(`lf;-!4VygULSN}OCGWVj&|1!5*=NJj)m$^ zBb>##k?N4-8X;q(&iyJ!S2uL|#;A<XLSb1tTS9*%$-ZLPFg_@kFL<N2m>cm-6Wwnx z75}_$UNb-iK0oo@VQ1x&$U=wC%!h}awd~bfUhvL$fIlZOLrr>a51Eu(W+*_)5!$#` zVD<eD@DnaSHhscO%DjWWVk&(s9UpJTOJ1wVhAu9mh#<Jt%UDl-E~{2*YMSAiv!H6D zH2Wj>D3^e(PhaBgwN&e};>+_?pXbpdp++lQ6uag8#6=G{d4$x0J^GO7k#DY36Z$Pp zHuA4&m}-z1gXJQHjK&Wk(ESO`mBgbE%jf4|y6MDd0&S}TdURNY$2W%^!SwOFOe<RT zO&JAqU;s(L`9!@|dZDX)eH_=cj$o?KiT6mTFPKL2G_GekdAJ4lm1lFLHa$AStOE0S z+|$tJ1-xdc)Q^&`N&(hP)=5a?vO!&3(=0T$|JiNZL3RZE;Y&$Mr9piwS!)U^c<Xj_ zhUVQ{S|@|cMbjRFaunkX|BL<U$(K<b!C#9%gbPid!IE|r$?St~niva@#fJA{6+-ao z-3oRGLPev4tYI5G_?NPbzV-=F@eO<|=Sw4K*bbnr(_YBiA(KHT{^-e8HbGlj5vWg* zZ`1M+F-Z84ssTD%pS334wE-BNncX(t0i@+9{)LuhlJ=51hKBX!flSZnB!0lCZ>+ZO za%tG8{+LgDt7)WkuG%t(Ro+v;A~*P``Vfa8)>z|-e#j8*i&it-A*lUQkp_dH5bk>7 zgAB(k6=SxI0gv_PKB7`J^4dWw@ypBJH97UB!!4`0l+~ZM`}h{9T&WIN+Q|3CW&Owq zi=&jz6_-%Xbt`Q#!=8`kb450rLB97Zy?>F8ykwbHQ!i^7;PJ$>iQm&G40V0!N8NsQ zMHGct_2_ZW9e{2wQsYV(uA$7K2MOcU%_V5}%&T!nCw7RR+Zc_zwR(Lh4QC)e)!Fl& z<iiwGn{xH2X3MG0+*4oE=UopFrQ)miilbqVXHJR?(y(<D+gKXj20EJy`QJWf@zf6s zCBq)fDLHWb2z|-<<(0~wNPztgo<7Yh1yXK<hzn?`>H@26XiiH(t?Xwf9wqKX=3=Z` zU-hmW6C$(Nq35}w%8x_wUh2UhS!5JR-OhnK;%g#fC*!w|rq&bfN7g1LXAdWqVtaPj z1Q0G#hgmtOP&55j)xwG4#`@A8-oo7W3*(sU4V7cSZ>hxe^)WHWqKS8`@;;%O$seRQ zjDtk)Tr<qJ9Oxf^En0UTDT(`Tcv$)6+`FA;mW;pb7QcMxC--t)MZmHHyc5Gp{D4Tm z_{=#`!-6IL#^;&EgY2qH^}Z2()fB<zWNZ&(9{Mj-B)eUEqYchb={o=}>YOD{NqLh9 zEyu5nR1(61;m4)AhX%Fm=%$$A%3n@fq^qgpTU(U%_uPMx7BtD#VxofJUv9j{ShCid zD7Cpk{}>{(8vWKJ)Jg?4OzPwtiG)vibh2krLW?G2-f2v~7Z(P;lLks#kZcvvU<_QB zF3FT)`m$6|L_fT;A41~ZuJ-W4PyAMn4WeMYD7whmQ&*(h-fxiv7j39cRKl$syYy#) z;OntT3^BHwjHXlm<I}YO=;I>sqx7a#Y0!WYwYJb2D)bIs*ibjQsYQ(Tu#Z>yZeok> zu1()!uK3%Ek_z~rh^`US4pY9Md4_X*#Di|bissHt%x@D`&3Plsovrk}y`yxzO=~;x zG&l&ib6l(y?!hFI_7RKjUdM`(2g@*d8`%?e(YDR8(aPc=cPX6kDH&H(lV=aA{4j{y zYV0gBpyp7!WjBFEw1+L<Tbz;>&3$f*4DIRIrL*Vqp#H8Ov7Z5gA}_<5>kJhR9yehS zsE8WwyNVz9w0|MUtvJ-F3kemHlV+6b*cGuS?SHv`Kp?5`&UCOWZc=j}eUf0hIfPJq zebg;1eIspOriO{7Ij!>Xha#w>D^8*tn+fKGx|EX6;VKnriR3B=ha_WUC(pz8ZEwWU zJT+YGn^mcQk|C;jP!QcJdFqC}_arat4@rG^p0X&5F}3c(9QCEm*8V2lDS)Fjy>zAd z>#mxf7I#xSN1w!Tjrn2^%D8?_iFxPyl-Vl6q8{kW)`iW*bSSjCZc4z;(Qv@30xzGg zYB(gN@9@bYBgqnPyC?EOtz=%-SB_Tk?RjSKad7euvRHlyop@{1F(&L|bxZv{aQEFX zBj4O%$~f$U2F{Pn{dp@D`3JJW8Vof9*GxiR2r@rd*P=t*Fp{=3KimOjEFH3N8)*cb zuC7<d9FrUPNc@d(RqQh@lnjje$ra<u?>opwj?b=f))YfoKD=$=YTci0DwwD%%`cH4 zo0WS*q0mwktL9_XV%16fp6eoM-)-}IPNVSobEtr>c}~+!Ax*<bM#$@;q%)=kf*Hn4 z?PUWY6+1!;giW<4v4fWxZN2Ne1&2^n1%B(+_F%lqm$N_b03+dtGfs1@Dn%cT6(aVO zk$7I7ZV>ni=C115w7ER)mdxDu>%bs6*A%Ht+TPb-8i-wqF??gQvZ6~7h+SnvY}GDm zcs0VZBe5V1zb=e^&9^{~(Nf71^`a<cQ#RI7ngf+XXmy$+@|BBDZC>-~q<U&@X7ASy zrnLl`Vyt#$71~f81r3OL_A^)(0z!HTzN`Esl#i|2G^!JOmqwv(TWlTL2jQQ-3KUMc zPL>YbQeRuw`Yn(Uan_Wz6mEvNq7Ap<&1$m06+m2;h-II1v|>a8!VxIH)glyB1S}An zKZ7uIkyzEfeTKI<wu-jqhjRAK3bG<g%CH(Xg&?<In0p}Oh6bM*PF-;aOrn}gGFUqD z8C~~3dPPVBsh#;ma@~?zS<A36<FO^fLYBZWg;l0L(O-_6p&94xEB1H~6VSivmMqF` z(!*iUTH<4{HJ!Td_g*A%H(JumVmRE$l~~08==OL~;3`NUL62ypH`-Q-;RA`B?hk72 z72dZsd?fo%32>XP_4XzFWdqC}f1vCu$eHXgfwrN$<;lxoXt5Kl4c2il+|nvdKou(w z)Qk_boE^I}!*>10KhV0jxauaV_TxF3wvUeDC5}eWZ^n92nLDDei?=;!Zl|?wrs(QJ z0wN+AX4AzpJrL|yJ)A?j*5B1cmYSPqfve5Uj`(Z&{ked(1B2p46jLPH^0Lrgy?8D9 zVlQgBxmFRV9_$5j&%w?QMPXcf>X0DuIHRCQB{;FC8IewEc11bmVYufE@<WC5gXKzG zbX)|HbW7p>`x^wIA|%zXWr@9(lTTM`!`d4Vp%SKx8*b_-BDUIs)32JJh(zEv-z;m@ z8h$U;Jt|D*QYnefkmIiC@Jm}}&4Fj+uvvBVkiaTblNN4AN#G8dn~I3U!G(`paBi9j zX|)haSZqk&!`f81)ZF%4(2JdQ)=rWc)OrGE&atZa(Hyy&`Y4oN@#t(}2ICeRBS0lI z&s8{j^!udbx0b3Ze8Shx>YwIeUI<n3tsSejG+?plMoE7=sK{~)F#a+zr934<HC>iw z5X*;0z!b+;9rE1#L#(wAG@PNkk3(rd>WSJ}6~dF~i<LJM8f$w+J5lomENyo{X==d2 z9wz*uB~)TT2Y0GRAoi4yRfLKfkR<ayydYm<X{K8|@82J5btGdLNozhjk70^yK6@~C z#mqwAt~2<w3BH{je}x^BPeXp*zEYE@9DF%KUOMNMe!gXzGifTlv_m%AH?qLiPm@(U zKQ+^3N&C{AT9Z$oSYoD&VhriPvgxSlO4beUydiH(=-o%6nAy~d;?}G|B_<l<Or0jb zINFiU*Th!TBy2_Dy{0{zM~OocL!CFO5Da(mwf;MxvM-%G;Q+sd=v#5*;_h6>cj<|i z_z@euZ}xud>~v8-><MRaMN#+BJmRij4_Fr60rNR&aJ$=vk>eX4cn9`3&AD*UCtR5Z zv?ReCeVH+9bgb49nz*+Em5H@!1ofn*vWBR|CaLVPo2*$rJ;V$%0(vhnb~__<kz$w0 zrLJ`4N9L5l@a~fnJ#N5GX34qfBGUU9+1}GS@s8by7#e8)3yvoJt*Ijk4Nb+*>EC@6 z53P+ZpYQOgeixiukoBG)^0b%>Ov4&9G(N#Va1#HSA^8MZ!TrtL3bSq#g!{d>@w5c< z#8v93E}f887s;~qg<@A4N;Vj%Oe!wgeYZR45ll^42vS}`M-f**>8dF4juEayh?rI! z-k=QWp5|saO750T<hfP4eQ~<Z8C9G|`oq_jsMF=xjI~b~>cPcW$sTc}`ym)zI7PQ< zB_Q}?N^?-`RDwir=*ZG5<~23tXBRr;Tj(Qa8y91KZqlaaguY)YLfk07SEiWjKKX7C zhF1JC7?ZCZ-x`*;i_~<&Lf?EPI^6SeWTgQUW?D@dhKJQ&cP}`#WwH($F<C39xGMH; zSMq|R>6XSRO1=*C9Ja}1h6;Crz3u*c=ZeZC<w5S!*Xy&Yn1tcsIggDgVt5%eJFlNf zx*2Ep5EK014zKL#IFN1<e8IOjc2cx?wshc%aZV{zU^0l<3jX)+_KufiFo&ATvp{d& zi-aV==9TFM-;lxE#V;BL$UBA>8N4W6@u@D>TeA)2G&l|9KW|kRSL^ceb1$#<5vM!$ zJ?E(%bRGdE!?fYN?wi@8>NSY-H{cgEJAF268d+ptiw^F9cDxlm#ftsxuvk59@?PsN z-yjEN$!XvD2zs5<8k2&QZV9hphje1xz|R7PXJv`|FG)lnxul(>NVpvLNE-_;SUU|~ zg^P!LPH$c#FkR#rs=>%|d986;7si9MJMiZ4Mz*Pca!)?hGDzr=Ym&5Sl0<dFe58Yo zUW}9&wbYyU3V_AM2ZX80x32RI=*FX%=Rs<zYofJd%(fO|D7d{@;~#YWOKPz>D*}ZB zc6E`O^t%^JgpF7bw#XRI6KLv^V}FX-eld9{%UOuWt6hP{d4`<~P=>tr)p3c@$Y)sh z3_#j{{Iq1hFysKEg@2liak!Rap;u|kA?~2=OW;8Q8AAy7(`vS<W~=>g&NS`2kV562 z1T%2~mSmC?qbY-;>=2{drK1HVv8>T@m>$%{NtBOA1uI8d(bVbE?Mp^Z<EVLB7H^Yn z19$7ulxfyNp`=+I&{6OqM#ea>Gf}Y2)<x9i3ga9>!aecu(a$AFV<*>k?mqs!W>BrT z9m~YhVnJ%rgKA?ZY!)1qiVxO$Iw*`Xjtpf3CEcD5`4QQp?KU!s-*4hQpx6AB-^;%b zvRE+NnI=hZSk&@A$UbPXA(&Ecu{Vo)9)UzDEWlo3KHX%UxZPcH;@>JB6i09A(a}5D zIF_Nn@n%(0uugVk3EWM+1Fmr}#A**3f}vDP=2RX027ZN`3JwmpEJH8fZWbHo(YNL( z4hBn_(+lZDq_)5Q!3)c^-E{}RKhlK1W*DgFx*bVF;|lY;MDQ=G<6kyOG+*)a-_}Zc zJ8|l2{HQqT>gCI}Mut<$Py3o&=PTfX;Nm8@mhIqd-XhELAg%S5zG^r<>0RK_OK<h> zU<{8}>4=ZSbwx!r{X_3v*W2oEBF(Wyiu-%l*rlgW_x-ku7c7J3Fpj@yjk(F*0f?D# zZ#Bipa<F@H)u%e3u{LbJu1;CXNp{wqxI-w1p|Z3bNWOk$A<ly2&&y|T>~_ms(#o`p zBTb-r>cT|{mtp(;r_DFvLi9?Fw@BwP3o}yAhLt5(?3xnri!*9fz62VBHc?bvk2?b! z^{citHE6@E&3yFbLLv@3k$DzUG3HG#63@>-qmFM<sBS(B;hbAGT1~eg1Qwi__8JVV z#yUjU!CJbxWydT#<*!jRL0#kFBc7E+^iOC!tUTw~_g*4zlSN(EETgU7Z)f6BDytsk zB$knyQ?B%F+)${*N5YHC75maTx?xSVdkCkYBmj90@5y3~fiSP#qsWr`m@tQ?m(;ws zr-(&0XHN7axsp3ij!B0yI?mAcG{Q_jlqs@^uakUxq_gEBvNmVc0pYl)&C-v&!gFUT z(~bCNgE6UYqXW1_4&}*J73J#7$eiHuktrx>?Lx&?$~qZo-qbW=M_^~P68{uxh2}9e zRU?>|WJ?}JrR#!Ctg9O{UCTYx{<Nvxbji9}|0TytlB|2m>9t}nSsQ=1X#ysF0I!8_ zz17WE1K3ly1NIl`zE=eMtzY=6pYmydU%<Mv5Qtl^9ADo7F>bwAO5)%+DLwsu#2&>o zn#%u$;7ZPAUnnO`Wv!)XR?Im=yv(q*p*S@I=MKQy<*Z&z6iCmJVN;G7dr~crsi&i~ zmJ7f(71co<lFF(Qs$kyrx`|v78+$0WF%(!lQE;ODmhv(w=0`}ixF~(@B-@8%?`vL| z`i*lRBy}<&-lGfzvTcNQ(;ag%g)sX3IKDx(Cx<ago)}w7E14wdX@2LUD@#7Xu*3F+ z>P1@99=4ZboN+qFJ)(C5H{1jI!x}%S)SB480F3*bFJ;r6;tO5LW4{ZC*V(ko@ce+& zP8?mJUYgLy;yEhR6-%AuqYX3|Z*XE;$Fc4wC}0w@tej+=RTg>t)FmPka*FWfv}hSB zHInx8&Gg3cj<ocL$VpqlQq=dQO_X8T`&q&VyQb+r8CBF%FCsq-XTV+>a`hXZ@i?6B z5%D#XW)Q-mPY|w_@7TK3>rcPw%zwZ`8EL&MxaFltFP+D|SmyXj-pl#x+76cFdq0M8 zmv=$Lyy5u%J@~rCeZo``mkQy&Zfr-6J92Zpq`oeN3}SMfYjW!b2-Gp*=DfRXO?jBo zM809dbZW3$uY661EOCxhB<Q<{I-dy<uL4Wxf*5CC%gYp&>Em-M2(Aj#<8CkIn!j>I zA<6BUv{Jn${v>!?&Nb!pJi<y=%BRT*mubQ_ZE-O(62;pjvvBpzHS~~gv20bGo`1Tl z)-)X%sU0pJxEjq)G5gs??@5#`rtI|5i-qqMZ)1n2OSQ=-lUE{LDBeSpMHn<YSoSo# zoVGj>aW4j!4JmH<aHa57<(0Hymp9UKTy~0<-Wk4o{Vs6npwMJhz^2+?E3Ga<BbLp9 zFW1cGR+X3cmQu1GclDO0G<8e9ER?ZSyq|XV{e@`_Lhuo|ur|;;Ops%?-E<e+3aTwL zC6;kr)buahDVxJ^Qfc12y}aDi^O~I{NVlbq?0NJ~?A;09;|+DfcYJ-HgK;Oi;=9?h zr^_T3DqAqlnG{=gp3Qb!lDi3wajwR^%Sn4#Ra#dW60cueFYOwO?789pcnFG7e@lD^ zG`()n0XNomd@V^tKdJK}esl6dI<7G25FlHCd&Sq$y_R^Z0u|gZu;d)ammcPvkvJ1& zt0AC$6C5szUJJe=Dw3PMW<7{WMxz*H@%lpT9^=z}l&q^Oxsj~pP_!OcT;Q(b$uin^ zaIEi$l5rKZFWe4((!4L>IFErdIZMTSV$Od-i;7`I8NPNv?&DgJ)|N(Y?2Z30>*rFC zf4gjjcuQJeL*I;@I*;@)_Rdn^;QDnB<Gy>UWxU<&Ga=a`l}p`)h8@Ez6*scOhYS6! zf-VFZO{&g&;yDmf2ZC~%lxGKF;pwC}p$w_2o1xn*WQSWS+{a_b5@$`?2d9i5@{L~= z%oMD^dA!2E7*p_Ib`u!eK~E~E(6vByv?|T^_{2*7MzaIICGDK)@s999jO@9J2GRW% zX9hN~hvTTiSc5^%kX|1!PJW8>aGhbt6W+7QqQP*-#FC}`7V&`gBd#>`v_L<%ITNc< z$w1o6b*Za!Pi`^QZ(zY`2!Y4LRk-RlH0=E?ic=1Twz<)As!U4DbKBjoV1;PTedSlI z=PvdR`@4Be$+gi}@+j;_<0Z~!64h{HD`y{s=QGp3`L!C=4;UX1%l^!w&lFqaT^XR& z=`EvYy0*qQJC(C;S{Es*azi?x?{DMA+SEj?RW#32;e{t^zGR5z+c?Z<I4q*A5b;hr z`&6`&v!c6YrS@_*Jl8V?d?_BLc#~95x&D)`)N4pyJzcUSMs#1GgD&{?`B=!N3R(F= zl5ffAPIg%gyOf&vK=DbtI58>shIA4m;Ff!6s%u!N-!@d(9ZOtT&d2$hA-mx`Bhx8P zJnHFzgBMHw3V`#_ef0L&tQ(niTcp=1eikFga9eNaXzcP@))b?a<&_>7BqzW8#EkAj zULgFsL7`l3&6=7;3vo|<HDh1SHEDvmmdPUs(9!nYA*6n{O}IE6Y(4DrW=D-Du%5ta zPkf+|OSO|Sc6NlIdvq{wTfEVjz%3tFq)Wi5DArkl5@Rl4Z>VD+u~tuPp+kQ#(wR6Z zWGGx#xRyF>2siUb(HY`WfeoIESZ}8Esq}>k;=X?<Rvc{lI&qrX$a>-}_jnI#Mm7B6 z<GFLcjW^q&VMY!=&0;Bt;Z7DS7UTv?i;w#k)R@XwX1>Roy86Hp=%et@CqFzSol9J; z5UynG-D-lLHm0z^7C(#+JJUl^8`&s{9+>10Nuy}vm7w|@NBCyz^`yEw{pu>-xD^j1 zBCUwBa-sUY$1>*9(S`<>-KcM|JBo{V%BkxI{$&nKVdTWVJ`QIc`CxB!*(F7Dg7QwP z-PE+c!u2;C>QnC<8k3y5HWH7h@&`s-sr<({FABMOHdK+Jr?5gT<hS1&N9^9`uDP$g z>2tT9tP^-Wq$A_7LZhP;#r)$AaDr8;<SwS<#118Z$(j9Lmr+wqud3AT&d+D3&W^+T zko_CNB)6Gjk|?SImXE&D@JawIDPNKC$RqthyNVD8HevcZ;CnE~`B>8Qvw?>Ma2d=_ zf(M-)<t{cVnfio+uS8W7N7r6el~lf=DwFL&-7(LKzB+usVEMcva6KrEEnbF5>eE8~ zIa>R?yQxSbfmy^OSg)-2q<*|#i6BOdk4kj?Dw&X$uJWJWu&I?Bnc5kB<tVNkaZ}Y1 z9pA)$<hLraD)c}QCstF3l|u<%ZiC3@`b=df`pK7RFQEx+VpA^+OYoB*iDJ>P*3qbo zimoF%n)U}6B%?7?FLa5m9M%Yd(PQhF^`e=s&nB;PgafFO2Cv!XQP8+og&(S$;B#M0 ze<?uSz|`%UqRf21Mv{(ju$p%s*35tVad6WU{X~#V)j3PS)%C3ITlCjp`T!c^3}#vP zZj5rJ(Sk%-jJZ5ksxAit!mD`84HcPBwI#)Y&Wesy=smmqWT~x0J1y3Dl*~ht8OYT# zc-5aLIqcjW+gAxKpz7%}#y?oo8=dE=(Pb0hZ2lhr13~=0CI@r72dSxG@xGHgHHu26 zMmdi^c0@nMr>S3Z1x0sb;*B~sHjI*F<Y7X#M<A0H#>dw+6_<(i$sSYU9X=c1Gz22z zF!{%D#a31I;!JyHy{cSGN$EJWa8$~ryj{;su{P4e9b1M21RA5Mcxuw-Lvc34As7c3 zamV$n8-EdLI(k~f_AhT7t|3*1UhUio!=3;qi7TwOo5R*9(s*`duz9l6E$y?&Bys#r zGz{1$)T#Vy(1vS<sFy7N07HhR4y;|=e^btGG^_hi@LSw7BV-uZf<Gb+ZfKWU_M4`U z>=3cZ5g}ALi|e<CLF@NxSX}s<QlDaIORB?y{(h5j4anoOLm`52ao8cN_WGr^i#W6K zRA$Oavm|l6a&8EE2L*UJ`qzCMw{-4fTGq2i3*rX0@pZAc@y3m9tmO)@)okIqQcoFI z8NvE3c|N7^C*dBi0_gS{W%idWU@My|`DcKj&jQNqO>cq@2oa19mGxbe`WCZ0E|GB! z+beRhFf5q$UKoBNy*ESfu9}juju8C(#re;!Nv}?yGj>NKs|#Ak;XjQ(;FaIAj-ld& z@lK93n;9p#id&?YNfvI=LdB#L8%9V<u=#nnC$CY(U`_irT6kl|a(I8?kBGGo4r!|w zm~Er9i&(UZX&sdzh+2zj<BMQYGYhit4Sz>z;N1^Vv2l3<6(kQXL<Mo*1YqEU(<E1y zYX1PU55k+<n~hT1#A$kj(isx^#CbEuPBxLZhAV;hf%;;-+Hl0mI=lLuT=dhukH;G? zf<Lt{hcr7~Q$V)S{9S7~UDokjwx4t`Pu;h?KpUQ;D&OqpsA`|IhNbYMRGUQjt>Nu| z!^sd(E@jg$WYdW&mc{HS@bo<7jzJj6uh>@j0pn{|O-dgWEY{-UCMx#v?~*hp3hc_m zc{urkf-%Kuc)!LzA^3mcX{FcYRX_++C?m{#;Z!s%1{tx=+*Wlm=(YRAcSA6<(O=U~ z>+U}-yc_#U{6F!PuKxfG>lRvrt~|twRAxeYDO`sK7&t0A)Y_-Ss3BHpF*s6LlpGQD z8O?iti@pnd67ipftu>F0{sFbR*PN)lyR)^93y(Hn1njRG+g!9`k_j&3Xl41U$Mp}` z58+j&b$^5YG4Te4h}6Srs9d(MWJv%6JU6PBED6aWE>VI0A=12wWfbo0&c%&`TR-di z?0!am-o7Bxd`a*>Q@FR0UhZ3qWR7mTBc5=xDC{=^7d?46AoE|A-X8d!acAHs@LYOi z!gh5pGfXYpayA1gRF@!woH*;+zkmM#XkXZK#@3z^)#KMBw7k;hh|6(zrG2g`h(ov- z?Jfn%#?O<Mifj(Rn*1*DFTt;hUKCkxwVw!UmijSp&|lkGzNZ@ubbsvgaWEshG(ZlX zwfZj%Q^Q9K^?ALW&y&q-)m8nqG<e>-;(ripwykNZT}wT-;OQK#xF+7&+MxY#E8hGs za(}X|HJKoa_H$(%FubXe5F>G9C{U~R$s}W_HR3vMtETAQE^7-}v`ubEN;%UmW^}q3 z!6I9H83O#k5b>sRE7-h6;=NZ;v=*}XGf&WGgyh_5;^N$e+BSKLszjj=K;&Ro+*7TG zqZLjoMtt@o>osPo%37m=_=)h(Lh+5Q#m(-iuIRV-QKGr9YgsJjbO&jgJ(1jdf39qC zfn05$hV|_yLuS)qx`Dn`w^-be7=7{Op(OPAiwykTPj99C3!}@g+ej~baiN#N+Zm2S zDED*)N`OWQBOUT9o$)@Sr)f6>NtWuzRdP@7beWCJYDXAiQFb}(yq|jX@L7#7;lf&Z zo^C%4TBGKgSMGextzI?$H2YZ=Nw~momP3!c4{g~Q4ZvZ?TIcj_HYxPww9}87e|GE@ z?ieIdCL7LBc9vtXKHRo5#@^@aSA)Pex?<?QF1N`aDjUdTg}@+v)_gGZ7{(8Ju09L+ zdg|U&;rVtXqYS=beTv)?7bSjR0<!_T1M~K%)Ljn_tv0l1`Nvk!v}wuItz=t?b|}n| z6iF37fzhzQj&MlI=ZuQM@SAGdKC?cfq{neJsVM9%9GPO<mT+NK9N>;h{L9ew74$cW zeh>K5K(s@l$7y{ugXB9zXb*fOU?FBb&m8ox5%6w}@x#NnT9wC$A-mHrWYh^sB6!OA zKmeNp5}_Cmo8$~Sahlz<;?>M*(rIjTZ+EUotfsGNVs7PW7U5-kR7oT%LyhGMGXUMm zIme}X=YYI@{i&<z`d5m?ejbCvm*Y~3<|z!q#pjg*O6UUlNYe#5V(hr;5D+*Cd`aSq zpEb3~<hTokIYAVqM{*MZ@Oq4A2ZNl0!s~Y$P2J@7*Rr*=5=5xcEMie`8MniPW<+3w z76hI>H(*zbio&VI$FFmn2bfNsOGjh&BTVsh-Y3_*J>vfWiW<G8%)S<q#ycpWM~!s* z8)cEEcFe6GnJ{IRSuoqk&PLkqJQt#PJIC73!!Hl`()L-J-s4znwvOX&c3QuZ(3qPi z&G`zy-+Yd9#e7?*_`k#d0PuwPhe3inn`^|;CTI~#;4~$zQb?E}z%k*15!)pEz*mPI zaOvL?ydB{?D_d<c`r6{w#_nYdtom|k;z;C<L>r7@!$wrAwlj=<;qdfn;w#3b3Yu@P z$omX7XUSGPy7fO&e{4N)d<##2UM|+&Tf2K(i@jFp`4e5tV|$B2Tgr`=M`*)t9EN?o ze8&~<{{RL)H253hr|rX~{7dlWr#;obhdvu>5wcFnWi0Z~s31gW=8;AvMBNg~%0VN3 z8BRZ+JAaBA<QFpCEdK!7CP?E(mhGo$V{bEZ4aiighFqd!1Ojozcb*yXg@(6p4xRDN zDDU)nukG(Ikwhslg4RzmX(N_xfg58H7%jQ6$9mzZ!m*`BFmCNBE3VRR`h5GJSB1=_ zChEyqH*@;Y{hIZE40yBS55*4~X!eU~cd4(2<Z&!%9pQv&nNc_dwpK=EIV5fb17B!1 z;7P|g<39EH75@MPb+q_zto%#y=B@DG#5eakPK^vPS=-$CD*BDR!lEtAo=Plgkh-#n z!m0BKaq^yjpbxX8hzb%0G0!#l_Y>v*!xrhT%koFnVXMY*QiHl8jDk;dih-sj3oz;` z>~?d6V;d`wFm|3t)K+E3%3E;TkJ7$wa7TKaUgtY|HqgwyHwy3{+FCCYOYo~(xA0V} zZ>z~;a+Y$kG=U{Bz8h*w0~~uwhy9^m?R?1jiBEBw@z0I7aOvI-y}Y`8k-=qkDPnjV zVSio+9<|+;E?V^E*{{r1W$w$+`0wLShxMy}_#qaVp!lx(;yp`6@CS#lCzpJY$X>~9 zrSjzoEWTz}3h2@@NPhRqa6gwMy+_tX+;R=DS;SK~BYLES<RABjLE^uvzuN-z>EG~5 z9aBM-)(K_seu-d<BPs(d!qPDwTaC<4Iv=6wU&=3qA@KE|kK)sONCdV<A2Q|uyZpcr z$crPig+dZ=04LhNvf%}?KbJVJPIc+6mEXwwv*Evmejt2Y{{VyoO!0%w;lB-O9u&IM zwAHh^mfr5-2#vII&m@te$seB~0R(a@Y(RHmje4Jlehymrf8uwIEj%+E_O^N*o}D$M zwwKqDT}{3gE*eHGuFdltO7fu~WmhE8@Ymz7fP8nVcx9*7?c&rl-4bg(P8-PIPZsxg za@zTE0XoJo<|h$gm0+A7UZ(F`@svI=*T3NxwY8ec^{m$7;z`IcD%&Z_Dh3V?d!D>| z*P}0a+UF$<LrTkQe!t{=52JiI@Q;r4PZ4}t_=?m20ApyP_G{P~-W$b4W}VVqrJ-o< z<#?fZm*#f^XxY=S{iAF?*Q5Lp)x#vsd*E0tjELdGHk)-kLoQpAJkMPF^IR>L#GeWH zFX8r^;BOX31^4_c$uB3??m#%Rv9f97(xm&_R$1@Km=F#l3J*b^v*KOcn$N*Mfc_<b zw09Oy;{6tB3o^Fr9Z3o(E8l27#C6ScR;1LFZ`bsH<aTBgRjGT<_Wd-m`OV>XGiaLA z%&RAvV;Nz_GV@3E&Q3VbIIp7r0A@XQ<3rYbHR0_eQq?ret#`zKVuduzhqaB-;ZrA` zBVpzusBN*3L1W0k$ocEQ`i$2;6!AUF4>6j;6*w6L&pM3bj9`#K9S^mAMf);%Bg6hA z@a4CS{8Onxq}q6ESTo0QHP6{gT--*f97a%~(LP=7Rf}!la@em&F2qWWMN$gwcUL|K zEyK#CXu-F$>u#s?Z~Fl0ve|yl-Zay+k^P?>x`&G=mgzPbW7~6lLq@VAD?8&GijcTD z1mIWJ{{Rs!_01FZR`3>&;ajMM{4;nG-YcC(Hkf>qS}>8Lgv1$vT;Oe73j8+xj(=*6 zbK&QKzAWoDR@2}3Ueiat)Z=#CkUTe%T*V=T&WO=8LS&iMyB=~$uh*SF<JZGqi@yoH zBM*Z0Fv7!H@U5Kow`gr{Vv-Sox+!o<xrpp_+^>(6n((tXD8h4oZ|AxDjuJPiA5?tB z@Kg3`y73q7bKwR3rmyArnRTdmV_mzR=H!bVI^5gc>G4Bv1%y&=@*QV=@w>V+9KP%> zJ#+pEiJ^EK;b(-uYJU%WKGUqUeLqY1i{dEl?5vhJ<AT;bE-@TRiT5J~7%ChN;9!Ga zO86tg^F#Ylct=sRJH*}*)(9hzH)=XyBcLN7cl584KVwaD^?zqi+K<J0DHfME9yamh zh;Ad!$ATAxG>WVXV_@JmagJ;G?=sFS<7m{KX<tY#i7$VmS}hkt^om$oblOl|{Qm$K zc6*n>*d($40D?t)Dbw8G{{X@p;Iuj8{dD?%N3Zc?+P_Zj!zY~(&oenA)N@~$x;}$p zrhmaNJ{tH-PnPFSw}(jZ6}mOMFPaD2w89Xyir|MQ4sntR!3P9>nO?|N?&2>=ANkkA z=QKU}HP&<e4}S`hk1t{?RLq7}Vu4R@rFoCXZE{@;;V!4E`AK$y;?)dt?!XTw82q4< zfyfv<*QG|~GJ02t{?ivD{uCy(lCurd+JILX8FSM-SCfaN)kylCS4|!t`#gB3z`iW; z+_ySCoL2Yd(TR13$|W<-a~x!VMmvH0{+;pcZT*iL?aA|y{!A<3FWBnU?7kyktg6X4 z)7jjx;!Vtevfy9<2Lo}(w|~0)ZzDd6j@ihbHRGSW-~DR(=zFQe^Q*`AsFq8h@RpEr zLEu&iTXJ$$bN=F=>0J!*s;`ztas2Bf+LCe@ek1<?uT4#v@+1G!{XNm)Lefs)zsjmT z5AhriUwY~8H22e<IOG^{vx0JP%eZnn@I_&G2S?Kq_fI;+i(w7L&^K2SI8u?jV3N=B zsq)6qI%c{z)efhu&!{27NXKFf4Wsx+8007b``7YLCZ4UI&@|>(n|e<a3-Zr#g<PI9 z$<958HPzY1nsvHcD`jF_1JjO4Kh)Pdb89`$wP_{@@*`;#yAb3j>NAg}Xia<P>L*Ns zBO<5GD-3K?)li)0C$0eKImSkO_C-mybrv@h3v(o^%W|v!&ushFipUx{G5yBR;-;y6 zsu|$J51ixhsqKQsW@2-_Ul{BP)^ga*ZZ$^8;#SVzB|i)RDe?mviII*6T3F6vjeR3u z{RCB&3S%nV_9C$~XtNw*QUl=g{&}mCK@0?OjGiz^=BTdSsxi=tx&-se9$aiu$35!f zElipy%5Pw}SmL{O50Vl@Mj0KmfI$3BMPqR{+oYM1OEBjgXY>7P?fh{{%Gtpk=(beP z%Dm&PZ-$@ml4Vp&lH|83_QhpnVY?iTM;$tI`c^I8otOy{g<;vw-hDD_sB+O-8PI2r zohzNxW|hfOS9W*=anil4ZMkl6VcXRlJ;sf#J;Tc+1>xgwmO~H62EJtdzN4Q{{{Vtg ze$p_qmHz;WcYY2=L6Jci^f<xxudUspV9wUD7Y7BDlsNUuVAst50Jq?P{{X=$e`z_T zGPph$m;odCm~0GfC!A;8*Vp)I?`HI(`%C`-Ns;04OKS%&Rr#a%&9nPmv&czdlgF=9 z+P7@{L#x=cG&eHEo}~$2rf^hNUA#$fT6a(Za#OEBPjAMw(l(Qo1p0I9U(st$hvU<P zQ+&s3WARtTumrZ2=w8HBg0~8?51|eYf0xpUuC!ke+sSmgRgI10YSO#eN8}e6Bj!~3 zNC5H2TH@D8yxd4AtBhkfIQ)fm`fi;Kj8{8k^MBEwa6BA$=l=lJTzJZH_HuSStlEt~ ztIAgBdHZe_&@ssQmy&th8#%|}^shj;@UE2BFul#)p_za!9n@w$pp5Y$1x_>VTq%lG zvr#bIOo{l6@CRY(gV@)oU0mt=k{o0x3KRe_v;o)JyllS<8jbTG6T>-uEL5hdE7;^@ z@Ep=3Ew0BSI5xL?z#T`*NFDlOxwG)zT_06%5m?z9JMwbZky{w9x#aD+gAxL9)G#?6 zM-|*$*;(D@NMcoN<Y0eZwdp?z^p8HvP>v>dVJhtf&HyX?IXU+}_0v}XqOTTxMEF*U zccj{8hk!q8-`hXoY*1Nv2jYgm4W+&Sw7R>GQ$jleHCV1+Z?4%C_Rj+!W_S<&3p4v% z_%cO<;%A5aKjPR-hzkg=G-<+c4jvY}hDPg*#~3FAfnGu3&xalu)+C-U5n07|l^a>t z<{ildbLrnXuay2Ncy7zXUL~7I)4z3Yw@48S7TS0u0^PC5=DdpVlwI37@leNL5~~`w zU)OW{4*in9Xc+$hYM+AIU&gB~F5|=TYI9w{Y-g4^T^iDMfsdIV%2mqlPK~sUz#M_~ zpNur?OK*eTCxQ`!Hkoo6k0<UL{KNkMf<@UpKd~Q&9z&h_rnbW;Bm<~PfnTV;FMZz) zb@UiH)2;x|O!;kIHXc6FIW^Gzdn>QcMx5U5CVp;sPg9xgW3_|lP*~)*Knbr>jk3G5 z!RTw}{{R4n`|Lc2j#HF8a!yWur_#QHbPAhd;Cpwkh{VMEicRdz>sZ8_Hhu2(T2y)N zCbyds#>`NwjIIZ$ITYPCZH^Ut9M#1G&vw8+IqB|e&YtH~QfPjeWd)tblW75jza-l` zL!5uIr*BVc?d+Q2=L;;-2Rwsu40A92^&ghw@y&A)tH&>!3HgEGpL*QU?`~tdBIg8j z2iT0)jf-7P;Ccm-)CcdD-V30ohJs>^>GvdDf8+If#_}CHXwKPTbVXb=WQ>8>uHjj5 zt9gE6<hbMk#%pdSm|>eCvZVeekzPHux;Ii<i>dh<j-qutSrSQI6-W#+HjH%Z(y=uN zrbR0(WpF>8cKYDcjy$N+U8|fh4d33mV30*1TX@VN@CL?hy??q%1MmX6)HT)WXU*8X zt;cM(+H0X0jzAY3fm2>tDr}XRafc@v=DlibOQ@_RwYdU9qmA*Y;P(utf(Jv2<7Kha zZcv0dWe14eNk2f?{&ncrR+5pODf_JRnC+d|j_OMNeZ^BtON6<&Ert%uAOp5Q1b$+= z3)?$wIX-D#HeT|h0gk!cxfRb_YjCykirkBXBxn6o1{p>jeXvezt`zx|(VLZxxKV<I zEu4QYwXBDM$6Dg8b-_FnHP{fmVTl0o^7QN8x9n~vkSc{NO70wXq0@-@u5^Fd$$zKZ z!a(_<kPLPEq*lvYqQ;^!e&9U)1yr-(vau=(GM)(Jj+H&E%`KD?$UbI?I)Az=f^?E* z%1*|0)N^jibp2`vK&j>_>DIR7h%sTesOl-kBxDQsdsa@GW9K+MXHPQEr^pB0x)1I0 zMIo(=b@PCc#~JJ1wdA!gacZh~N13vHe7&F#`|6u<8$li;QJnrAd8VLk7MYsbY!_|0 zz+#7u!#~fT*1DTp{{R(OS_@4#QJy<;Fk><oj~<02-lTpNj+ZAGE4LM`V{x3udUdTS z#&FgS#x)-{l2<V$k+1b;O;btJ?zSS!zBro7Wo+$Ivs*AZz&*MSmE35W+?H*=);F}d zOsh`YH4`LY01{2@Zz%()Ad~M{Hg3%|?9yWmH<XzE>?#-k075NSfKs5a7$-c}yMxZL zbl1gyT~9X=fuk?8_a21*01|v>r^n^V9+7nuKgv?>O*VD_@&q?=yg9+o`s{YD^TU2R zGF#kgI_wQ?6JkWli40=_N=q%fO9t$WjjjPw4S5COi8N?jDE;HUea9RT(z)c*w96}p zxYOW{-boJTcn6Z?;~6apLVp_ij29c#rvCtW1pPGs05i?0lT&NmXW5bJ+HRrY=hQ52 zA-NI8WC<LI<dMi9DLkG9dGEv>Dm_---pb8U<5o*~WDS>%!>h6$G6=`8=Du9lrq!-( z-bJ{OjlVQ^2^8qTMmB>Yd5RBxk}3D^SUx1a@m{TMXD*ql>RueW@`NIN7WznI3$(c3 zZ+e%IwmHG$u;2k-Nkfh>bu^l5)qj!aJc_JeG+ocBJYiusi9W++bLHOzypB;Ekq7xu zNxU|ABM1B`d|TjO3N4JQr&z6{Z6R9Onk*LJaKA5JdRNDu8~BUyhvDtSL&d%@gT#7S zkr)0Zx?90>&Ucr)(<GTV1Q1QA9CLtp>b!URNotxk>^6&Gb*@|9sybX~f-AOwyJKTp znG)gg$IOv;<O=oPV}z><!b#l0;VVJvjBgEC>$;8ZrFpMiOXk>4ZG<-}5fwHm4Z0>x z<ep0v$4qmY`E%l*hA%aJZs%3;ABFV$$WWDvcw%U#Mq|hNL@bkia>v)GuVB<aXrG1F zI-Q`=btKXx)MtFheQ!Ond7Bw5w*od?oPY)^w6@nYzYyzF>4}SpV*T@doq;R6l|JK> zj@(y;h@HL@vYamOBz!@wd<pm;@p8u3Le%t&h^&KR;>TNx&su@W9Z{}Pt`rsoZ8HuJ zAaP!M<Dd8>pTkXR(rdqmlF6seW7@yidcD@3v8g!$G~Ga7>7~cf21YmskI{Ww;r^W0 z-)yyW6!JDhyAVSVGnF8(PMEH~I~gX@&9%mIR|Ld)`twT-o7SfN*)&aD6*((d{$YMF zf59z3Xg>;G$*AahkM^uhhVr~mrMnpzXZMY$=(1f~M!osAKrzz3F!5*X=lex?ZrW`_ z{t)YpSuKz&>K+u-S6ht+c#K1BviVz#{Pw^v_le@avURl7G~#Y8U4ry|#iAsCyqVy4 z^sYO{>EN5F(^B#Fi)nUXQ!kk%ymyZ3N`~^JjboHQ-Q;o&eI5^tYeVBno=t3)65B)g znb$mjf8om`;lCMcm)a%l=V-9j*5gZ+#(rfnT}2GCbqlx?&wSTw;SUo0F|@Tdx~GSA z3yB!<HLdi!Lv$uK20yM?VAu8`;}6-#;UA9lD~mRJ$TZbmmln4(!>QU14&B!Jg54PK zdMtZE>0h2+F#iC8O8(B8^2j^~r|A~AClW^51;(S{iHJDM$rY@Z7EZv91KR=HBbxdQ zCmP}8tyMJpqtBj6Rx90iKM5o8zOQwzN2hpWP&U?4NV$t%p5J;iH~>UZ6^bSaIV|J! zuVe8Ch?l{7V&8a<O)m08c5@|-(w*laL0BhP<ZO(Sv@q@4HT7r3U-%>c0L6<7nXbMb z_@7;#DAch{XHK-%VHp|uUrLtNeoqCS2Rvl=uYkNo`yl*%@Ns)x8$r>$LnK8;-wf+8 z3x+(gFK4JFoPm#0s$@CHIqP3Vh0o|zx3a7E{{X=}df8;-cQ_qNUi={O*Md>4E)_K` zGDZa^1r}>F^KJnAp{<)CfIOoH{u5j^$HLD9+^}65X(LFBd148{+Kzs7Q_0#+GClag zt}6ck$KM$K6B~;Uh+1XuhGBN*U2jFYg57`s5$BkrwvljqmIs`1T#ldPZ7Wo~{{V!7 zd&ksmWpEX=HiRb7bHXYjgX&i-J?q|~ijq&6T^>bTzMP%bkI?scZG1zbTHQ6=hfuke zD~Kh3y2U1tFe}qx9WjEwg1pbeHhwCy*Y12p;tM-VEw>?I2<B-Bb!ef>0le(sxXP%` z2N^Z9seDY*H0wxh{3!Z}xRHcqH8B#vJLAo7-e=I@4!qZ;X{W`ywt)A#lr}RXBRMH| z2bxzsHWCTr(379kl}b`q*f986QF3v!ZCLq};tz}UOB=}M@eHs<Zv^2Zl*Ey^cU8z> z2F7kMIQypovJHFYgW#)6uYh{j?ICBWTCni`x1?zBHN<NqFFv9q7eV8ZBn9Jv*ULsz z^R{>(5yWdR;Jrn@$$fEcIf?m>XI3$|7|7kw^MFC(sh<j4+NH(5lc-)=+1}4@adT%4 z!~K$ZZIAAyc!^{(AS4GMwm9eobx#JWxXLePzJ1ZtPa5G)RHdcQ+fVo*Jocx;e-!4i zhsw20Pfvyr`79$4yQtjcxgRn6#GTp6CpG;BXp?TUxnOzfJ&w~~&;J1Y5ruBF<oKDU zHM$sPZ94E=@53uGo+Y*sb_gRbU%6~xV!wN|8QI~TP>zEfcOcjEw}@)ly<eC9l8?~1 zfBnuc`rN*{ozx(LRfl|m&*M-@t`8}e;u4rY!^r%q4>Nbyxvaa{;|S!Rek<b~QSW;) zo}+W8yrqLGoQ!rnewFgy?L#acAox|{p9$(n&mG>8sYFV)-;u1QEz0sSfzKGPPw~#F ziK4XLVQEJV{pSAY_pi<m+W!FKSBHKbd>!%C--xwH#mo3_SBl=;%^XrqHO;HR6fuby z7I_`80_2{6SHF>9rCSjQ#a~tVoS3SrFlzk{)ArrB(JjB=mzu7eAreDvpy&}oCMHrO zS#1Kg=?gP3C+`!x-oKfz0BAz<L-AIrGe+-ibEn#qBLG!i-r`e^G6BFR)UUOE*Z$f6 z03E&`c$4-+)Vw3`+RMZmv^Vf*sdn*cSFma7u)H!qm2-0nLp9It_N*4hNedoE0VDA* z;pfCXb|^JZ4_LF!qw3cQB$gA$Zgx&#@<htb8#sNK{xG;408117Wkz1(f7e6#*F3^| zTJgH*{__Occ!BhtPfpcspHP(C+QkY=P`jfU8I@d?Srd){BLl86U51&Y_^ZJ>rjhW^ z;r6+GrCV4}Jh!c4jcmD3vaRgJ3WYI7tX3f^_FcH#3Fj|$s|^cCzPIq*!|A$@pKmfr zEM!I&B6ou<VUbzGaliy*bmqPP07miJ>YB#2@k7OSHdoq~w{NIk9aW^f)W)4C@*B(+ z(3t+yEU_lkX>w4mB8-AT)|b2QpEHBNZ%$8J9~gXM)@*g{RzI_g3wsG+idYAj7FLE? zB=U0(S)N5gHw^3!Nf_<=A^St>+GFTG8Srhq(WaxN__qH3O90Acg3nUWQgbV+oCIs7 zDZB2OK2gpq<sTFLFYxX6hxALWLihV7`deFDi)-1f(p@W4jhUodcS!L*n|8_%l3qU| zO~D9P+mCbcCx(0}XYmhS@#n>9Z==7|=3Nfj7-3&BTRlG2C%AQ1kVH&jf~<rv^KiRH zO9x(8YD>)Z^86c6oM+VeJN9<?IpTkc_IFxz2>NE1s|#CmsXFeCKeNviw+Nsgnm~m@ zsTeHa6T?^6`WJw_A9?Zr0K>lyyhWkOp!jo4)kdFbqg*ndv`q!ReECY25<9~S%EXey zHr70lFu!Wgg_i#SvG;{MG4R8}dQ0hkD$)Ekrt2D~h|7U@ajI&UahWYtC@865iy9Rm z?r8?$^5wka_HOYPiF`@%yWvgminR>@@$Uig`SExX8)HFjVIb00yB1>tZwJv64; zZEg6TeiI1{Je4-R<!koW{t5d5@F!02<evh5Blts9h7{88wEqAR#2^u--ICj0V`4h8 z9Bc#zQ;Y-Jy<_&N_&K3ydSAoei@pg{XD)%M=u%zj_V+T_eXlS97RR<KV<nR^C>tD{ z@JnaGejWI#UkQH6KM{Oes=@Yyr)hVW;tOM!XyjYin6H>r7ue+B;2d#Zpg*)Oo1&c` z!nzK>9Cp%b`p%VTsW4ecbh4gAPBN^>$`7VSdBu2``Q1wUf51OMz(K1?9p{3gzVT=6 zz3}_u?v;Gcp?|`@)KWPA0C%_jJ5sY`AbDlU{n*J5@{xcrPJT%Jlss~pFYGz{U28i0 zZEL4#-YocsG*?4uBsiSO@~&Uyewo2J7#_bse#ScI_UDZ}KjB&BQGMa>3tZSc23Bq9 zs(>6RIoqCj1A*yZ6#Nm<@8A9i&HG1bJ|~^$x?7)!Qq4Z*1?IMvR%iJfXLHBM+*I-o z;lca@SanO<QJc|9nqHjJcl*CH^vG9oN=bBQ-@Y~Yo8i9({{X=@J{Ne4#wc{fx^IV; z?+citb#~PB?2J6SFsmCoVaW&y?O&(&pf&XJFGh0SnFsW*&tHw+7|``U**D?mhII%r zX9l(K_sWe4Of*`ioKqO=4{nCPKqb7L9lGwx{6=fz^Jf<YDDTZL(DrDjt0eN|=-4^# z4SfFq`%~RVW&1yC6Fv?uEx2r8lEeUaao5z>&~Q#0jsf=KypQAjT0O_YE6WXLXM#Dd zt=2b;9m_CgXwLz-;PnJolR`fFI-{ZSckE^?SH=2)u}~N65)~|0dv1|3#48X1!5nds z#%t~$7y$Y@u7BmcKl&K2oIhtD1ls7@?e~am^+dlC+j%BEs2v-2T(;e<*+2z8hQ5;V za)G5p%06Rr2>$@b>**Y>bICq*Y2FR753UVlg&*F<bT@FU=m6uMF<FMuLC4Mc{{Z!= z*_kGP|I_^(({)6G-|hPB{%y>XJT~wy2;GdHM-0dKn4Bo->s<wv^}VgYiKO#dRUr|1 z3_$_hoODz2{(M)_{{RiV8}N_BzXhX-G_5*M5!-3<U22-F279YZ4TYmguHsvhGegE& z-YHpI?}DKLZ!YnN!%v9c3R^_D@!p$baUJ}V*~52dKHbk2TV@?XsoFQ7C+3Xg9<}_0 z@${<7Nodn*$L{oMrgK~GE%jvCJ3E+FLgz84EKcI5xF7+~x2<%RQU3sEsf_>$xRQF7 zX6i}mN&f)r4l9xH%<<|zBGz?Fm}QR8Ngb`Q2qZt~!Gx?zvH4m@V7MQ`bIo*`oced! zm>a0jsn5*Y4;-Et59e4^XH;Ukn#puym&*W>K_dY49e<w{uWF}rO)6lbH$9G2*CFA_ zP4JTTX?OXEGO9rlf%jLA{m;F1*7rVQva4^(u*cM5v7W-^SJ2X4L`tV0yF!2Okyeu2 zh<wH9+}1?50z2KUjlM!>p5Rkpb}AV+1&{{8^{hfsX3Xy_IAT6tGDT`6YTIPV2h+AQ z*0EnwTQ8mB^A{i=Z+hvVDJyJt7(GAF6;VblX>u#IQxcWxdQ{p}ThxZ*1Fz#$uT|rN zZb2Eyt$i#HE1KU658ftCNA5FG;z4N94qF5R?_4GBl#-wA1#BE~&l#@n@UlQAhz<$d zGupiF36k#CSAkhpGmI0Q_u{>*cfxT{TC*Lt85%CRP#AqiKh7)WANVLmsIdP4f=2$) zYaT)m4zdsX>2f*x*VH$65Kkg3VEllRd)Ld~@KKAEPxvH9?GF)c#k2zCo)66=YB=`A zeSd||{uU|Uw7>M0c-&cksLR!UX#OkgwM)BV>nKLr#FE7489o01&MT>dT#%xNjc~jI z4lsRwm5FaPw6Yl11ahH|%so$joxjd%SG$23t!^z!FdxH{*Xldh^pk_!{AQ*3wK~f! zQY)k~IuI8m?IFk1;O8HOb~-)Gb4hlHL1edJcJw=jI{t>dm+hK(BHlG@xX$+IpmjZe zrFFgo)NL+xTl+gan4z<9j@&ejxNbi|j{SRAE;b9;$@v~mb0-`u+U#juL}G>#GQ`Uk z21ZET&;J0bwY5zxMa$fyZY)nAVD#ucsympzTUB7c>mnU-fKN_3=DC}#UTa-m<vho2 zuIP7s%fZKPgZWpJlPzSAnBZwXdY>a<h26O;y|KrkALq4u*TA_L>AIwhLECVObHUG+ z4^K~8@Vk51WdPjqxNv%}zE5iUm*8X;lW3Zz6nwWy_>U+MYt+S3wKmVusa3l^miT`H z-b*YXZ3!9Aq38P7#-FrQOK;<Zw?XoosY7wc41{*{uev@R+lY0Cwqf$g86<u^e_HsD z_K^%eBRs0VDZG;h)Txb6^4*W{ub9Lu-5xI%NBxriX#S2r;E^`-C+tO_ODij@>iX$S z9PLr4NTGiWSL|2AYj|%j?jAwA$&4HxLEd(dLE!OUjsF1fNKF3#!wu+atPb68!~=tz z5A7*`r{!O=9}3@W_vG~vr~ZU%Jf?(nk3;OTs;*cnQvT}vkI(-Aj~){6_kzAZU1&ZT zwiecMM-|7EpluB*Ze?HgLFwt!wNqFa+l=6Y&%Jh^wB%xMj~CaZ$i79jtb2rI*O-Ah zE6B!sisE$3+c}{S!*d*x5^%Wyf&S^iug){nqll=YtdnQx_y*l5x7iX|M}g-9$sH>~ z-A|lKp1o>y(dJBC1Ph*{k&u5%V2#p7UYR-lYv(FdUC%}e#=J00_!#+HJdU;3Xqt3! z{L?n#d!K5<vRTkZ@&!5X_5M}UTEcd-zZ*^f>s}rvuS0luIvAccO@MS9esyvwS^ofc zj04d3sy1J_Eb0pvQ@8wT?VcID#_o9b?OZIhyP9_xm#-LJO;eK)pkbW#01i!A^2C9G z$r;5~ynXJGAlfiF?lIc5r7JRJ9S=cp1O*si6wVJL?&RjYR%kT#SCocW`T1Aho-<zA zbenCOLc|jZ8TTv4UwZNNi6oEgZllcGo_&9<dpOx7(m8PbPcznyu)#-oz!)qUlNda5 z2*r4J#jlDwFT$S={{X^e;&i#5($3-t<&p(iB@1;Rfj|VN;2DD+bAjCPUqN`P*2-ND z=Go3k!8pbS)1ONG%>Mv_f_TP1g`cxGi2QLKyq97--4O&xS2>$fh5!L_2Ui5=wR_nG z2-m3!Pph%bkF4pz$sa&?Z}yA$5#o`HFB4nYv+!foBa+vX+jNVt{{Y`r@6h~1@K=YU zuxqR2x|2{>@&%Km>SK=^n<20O$Q^6>n)rSDOL$vfQxA!BnRJVlByH3h-ZFk|ge%1( zBM^G+WA9&F{6F}MY2bP8o5J^3dMjTAE@4>aid9Zm{cLif#(3I6>&<<>W56yq_EKs2 zpF4-*NWYDJ$M5Ea;{N~$>T<@`_vo+2R$RuzKFkJx0&Aht^wDvpTFVm&6vVuzAQAM< zeoJ^i_MY)gm`}DgkFVQ>7>4TJOF2m#b2Ym<bDn>5kEMIYllwvVTT+EDB=F9wq+IRD zlS{j{x`3SaQr7c-<EFkN7s8p1JNt@D$^QVE?@`Y1(^lrO_oTM6!SXmiUcKtOET9Ge z9Gv67<zF*s{{SAmJ93fQ+4#yUXFu}KT8Zs2NATu!QTT}n_pe@u#eOxG!aYU}Hp^MI zlNg^&xmlEtsxz-YTJWl2F%WjCO|O$Z8hDCw+DPi8n9q3(0Fc5ty}t8CD$LO_UAg&& zMo+zP4e=AhF<g1N?XBjW<;GOA#$0YJ81k9pk4)D=r+B-<y4w%zJzCn~-;o(`j^4o= z2C#<un#nsFmxW+#xFBuLM@ohpq=Ee6cu~0Xi~-LzR_|64FOeuzf4VcDTy?0gVPCR6 ztYkAuwlGExJjM!n`ewUf8<<K~HnhiUeJ0q<2J;wp{{VVJy!SoLbWt={7+?VeW7t<M zeQ_Hdv2dXD_7wYRSVy~dG1CUO_C^j*spxHN&7)hxG0O>Ck?FUQ{HvI{w`+OJqY@aA z&u%#tw6{*W9ifw!%N(9hPg>{huMCm|9S%)q(Mn3?Th%fmGd4lU#YY5LhBGk8jWT|s zCgz^t1O-kQ=jbbL&INrwBaO~?1}E2H7_NDHr%WfI;{GqvZLf53a(+gQmA(D{07{hU zYkA>kiUPi9ggS@haNk4Px}9z<))QGyfTs)f1pfd!r>8^Y{{W+o6(TA)-~us<?Zeg3 za*ee(`@J7qe+a{<d8Xk7ypotC9%5u}A%e-hGT!T68KUUgELTZ<+9KLIF6MnEd34#q zI62>EBx-r;trICdL9ey$;8*a=!3Ynw)Z-oSn6H^*vsaM1xlDiv9mRVptmE*=;c-pf zjXo>*hi4~~;SF+I?V*2htH*C}-!^cfSk}@)M?APcje9?ab-h<vv`O__Xsz#KUoGs? zSmBONgh-Olux}?L%ioWB`Q})Kmx>}W^Y)0!^~h$8vN7qEV_ob}$1)wvS3N?W2>dF( zxmrH+)fu`FmWx9F0EqRE6vKQq8REau?W5klRnng=*E|s-hJ@#@GH^5RUQyv|KN9Jd z5$IM}zOtI`H&l6%k@-9hPQb(xNB|D}SFc!I>RLo!@g=x;7>p4cvTpwXduagvAk|y# zZ|w68S5ngLFRvz&IG*Ihzi23U{{UK^T)!`GpFZ^IX3$Rc6GY1b-po8pZSb>Rg3j{q zQn=IgX%5KWOf$8@N)PV@W(6!$AcMPfWOG?I9u$X0d%N9VUbxmY##qIoUEEIQ7aO;S zgtUCKa6UjW!OwWCt|QTPDD@2*_f*o(7%+->?-jvdMpFJcT|mc0oL5z=YPzS2?Q{L7 zrAsV1bdOTAdt-5qku>OMjx6v)qb?6Sal!WKW|SwSW%uZC)WOa>qEX_VM#|gI(#t^& z?5dH4UBM6lIBap;el_PG7?Z_*Gw_G}A>InJv6|Qv^90tATr`9*03>e8r0wAEE9+2c zo+9|K;rClzN5Xo%x@;kkKAbIet77}O#J18Kl~BFf9zAQgweghtq|l3v8faycD7Mo) zDKix~&y^!2ybKe7!~!_Ybi#Ea?u?~ME$VzCx>tiVPZH1JUlP8fqP)RM*x56|@(e7D zu)E1_6druFM&SK3;##llk^3)vVevaf;A<T>QomOs=Kf7FEag^Vg?aC^`7POx_g~3l zz~jAsn)u_v1L7<Sy3d4K?GuQaQX-H@yfOuI9NSoQAmIDgop?jxj)~!m?Jn~`w0#C! z)}Aq@p^$ln26woToJKZ`sRep~a!xDT!)A3U#_(-6d9|=q+t~cA_`UxC1eEa_cyaar z003(GsZSxyQR%mk>K3n@k|r188?_%V9!<d~jxtStfB4V#3HaUc;(sFPwCzeh8c8oB zy3r(3aB&)3EzPXQ1Z0b)#})lEc<aC)7CcdKx*vk|8N4|Y#7f>k0h$S;ZaLUPESV(Z zI0K$YuUznV!%LqJm5WW))us@g=5poT+Xg~hmOnlLC$Do}{sW3JaE+V4uk~|+wo^sx zvp<jz5Bwhep!^N3HJmX);m0tSS#{ZMe$HW1xd}bGP6!*h!D0tq0TuO6!r$0N^WwCx zed3Rbx?;xc8d$tBZ4A@KPeu~R-dh4V<^npNPBHyD_+Q~qh$7T~;V{%}G|BIZv}0^( zaL9)s>~HjTLRYQ{KDn<r@yEeGhB}{vrqFy{;AsBNZ=X?uTYomv>MOZdX_6_5D@W9a z0&=8u1Xrr~ixDWd7s~v<;M~GFeFXJaK5G4vz5@Iq{h0LqM#sR~mZ^JrtfjcrX4Pel zo<_Ibu%vNC6iN5nI~Sh$BEJ6c{<i|#&LD9zlfhGw#(4ZI^QPzacfX45CHNoXFA{iK zXyuRXI##yhSg=^wk2TVHMbw+N<i?(Arg$ZKS7+k+KWI;a-W1e)Z{e$rAIJJGksqIY zEdyz{%Nk>GSe5QlM;X9X37>uid?sm@&k;9PQoNsY=x~^dP=_MXc0TO5)}b*N_TiXg zAoe}$ox0TRA%UJ*6@0#1C$>1RoO~za?~OXfg>kHS!{JAYd^jxE&6Hl-MRZJ9$dOXU zS*F@S=wl8$pgdQb+y2yl2t0DJ#o^6=Pm<~1{yoLaWzN%r3{Fx&eTvtB@_NvI@;yaf zoR_-Jui|#Od#>qM4Hq(7@_`9bRYAzl7&y-+znV|kPWikS`$=ftF7WNWhN-NLerrn| zF}_KNxtNGj=I&)^tnK58Lp+Xm959U}nUzoUC#d-2Mr}^+-%wq<;dWNWcPT^2_xAq) z8vb*B5qxR!2f-f}T6o&fMXKphY7<^b6zWRc$Y;*<4xF$6DJ`9u#?i%orQzK-A8MbM z>U>`kJ!5|}`YZ82fG>2#)jltLVbsrw{9Lv-enSLh({zXpynw-^TDfm1Fh9Mza@RK* z`JG}B!yocj@RAKJJSPPD+#XbEYi|dZBsq-vQ57KL=D{0!VCOaZWAQKk3RUBu7TV9H z{5bH9zl9>YjpCN(9YRS9EAZ>~FCbd{%1AB_@Oe@VetLKk&Kuk5Z0CU<+0r=FZv<~s zfz;<adVMSQEIqkeS|6L^p?N1AY+-no?(k|-TUlC3EHb2VeUbvw7u-o=3a0EQIBXA7 zitBte;eQrhMLarPvKU|`OuuQ48;BJ_B#noA4C6aaLBPj6dY_Jd9&27CNzR?9Hkl-> zzi5s)!ij>ZP$b$F$nS#NN#u(1hWI;iZEJ6FsH8VCSvFvFW`*Je<%u{W1atn^df7gQ z#={L&R+O4B{3D_G)5ZQUhSycq;4#^uyJ+<V`*qd5y`eIh3c}uM#-t1vkO0I0q?-57 z0)EgM-mRb+HGc$Yx}J~VOW*iN?(T^f7pj+fkekYbdygz#k>vfE18zm~$>3K7{iET( zg*H0hgmrjEu^zpoNN;W}VmT6k-(=I{x!Q{)4CF~W9FSLO%C{aBr6!xITi9Pq1XoKG zyCF@)%F_9643fXjQJ0}q2u9*CI@f(GNjvn|^kBV|eeS2#{{XeW#f^94et|T<5w*BR zwXMrOx2L`A)`<j`SNCvSM-+D!rJ~uJcU9cmmmY?b_G<9nvt#kM;kCu(vGVP7`?Prj zZwWV&*;BJ}4!jcI?$^PId*Y86YZqQD@q(MHyQ{x4Tjh!vB6*X707Z%bpeO|+QMVk8 z#FO@y!7qni8`b=8pxj?ir)n0-<_o(!Mlu$}Qk7Ye3b=B1$Q!DW$E{zp<c{Y)9@vVm zNn7<k-|$z9ekjBHIs9Yr%sL&t?v&mizIg8LXH<zHcy5&%HC1CNT(J?7x!`XZ<MnID zy0?qp!`~0}UlQBf+UoLa_H8A-w9Ro6$hv*$Bh6%qn2<8xAOPeH;1l^9<F5?peh~16 zv!UpIHP?I-rE2zb>G5f>#M-=CjMBjDZGO)Aof1SwQRL2&lk&tjum`n+_ObZc;x7+) z1I4~1o5Nb83Ex`O?XB*<$*fo^+uT^dbvqYnR?#GqM)Kth=XaK}#~$`6;o~WLT2Gbl zf5`i6Elxy}KR|zBW`^7L<M@?fBoMIEv^^qtWmE!HTir_arcKA4pSw&b$4vb^hv6m3 zxBmcwH2%?g?d`#m3+a9&n2<;JJj<Jyz{=#d_iUCp3J+x&tUuW+_Kfg{z#oo2DEQs` zO6Z!uhdedo?K;y<veo8;`$7hrO1Zdc(pA&U?Fu7Y5Ysv=Ss-VnWqb(nm&3pKaxcdJ z00-$hwS-!ouAAeT&Y2y=0%)MUxtdF2Ay?nA;dClO<F{)3Yl-sOp4xRHz1z}P^Gn|Q zp8o)e_c#jibd+zcq<*^mR<qTuJ_CF$(1Zt8yPIF|L^CoN?br8LHuF5YT#y3!WbFi# z+a|umxGJ(0iN5b053gUwzH0IOHu{HyJ{Ci3GDwnmi^By<usKwLr389|vxCsr(R19~ z!!cHffPF{uugkIA%_O_Y{zuf%cUl^OFb>nn8Rouy{i(0o!{BAb$`w``g{p>gfEbA| zN$p<Y7NU&%4=3Kfe*LSi5-)-hO(|tm)oi3C2?PPWdK`Um#d1-m`PI(0&zrwvh^^n^ zR;4e<Wlb=%6msJYG7Mz9b<TQzRrhC$f;Fw8jtRVobM>!}{{UoEl7ANJH&Yfb{hhSu z&0;@%nHiK1{B#9B!;m=o<HnK%x6|@@7qQ@eHSfDUj%nRa%<J~~cuz`%o=sf1V7q}I zbdg!!Y<<r^jdUJS|J44BJ|*}MRrn9^6GFN8Q!C!-`ZeXWb`}V!47M70A`6R2;jxJx zOEBP@fV-7Q-+%#X@qJUp{y5US9@-Cpd?Ovsu|BhJcV^CrAX}YEIbx4wS3hY*hTZ(> zAIxan!Wg=)!YkSSCHQ~h&&3ZB=^6~0Vz-O*gqu{+F72-&vb(o{qT9<A%#kcEv0gKl zKWAAT2obt&$*;`69DGpmzM&kRAMuBZt*i}<v+CN$pQK)_+LZUum$H&8nH86ECA@4l z&Zcr4`Nwe#e}Hn8imgT!lvgs|`@3!D_@A^wrInt&f2$u&Ykv&9dEk2|)OCF&Y%L7! z7nyIdt<}lg7cny`0!~yDj1i8)yz=@vwXIUe!-nJc7anAiBXnUF-<Lf`OA7ms;jf7_ z%{Sns--3J~ZuLz!!|?f+vg-mA`z@r1FC(@{Hlp1{AU;uI(J7GvCeedm73$jdi{kHz zdd{t&*xK0J+gn=NkFkeKcagVEEU`r)Ee_yg4;JUx%1B}eucpc~PpnF$B^IR(^zZ)w z4tf+Z4r<a`kj13^k~R^>iWlzrV`#_Wj%wwCT^Zd`r3F_YZVU(>#2TaLEsDME>lBO- z7XvvYfsQL)3&Ue_Sd4}k$gg2S`W-jY#LGSP$Ii0GSp2(XjHwv+Mj86zx{DcZc1Ih) z3ji`>Y>%h}3g;c*mE)A41wp|BrD$6SuDrOVRv@<ELB`XL^@ONCgvxym+%>Vt!5uS| ztGPf%*HP`99-j5ctatWy>kKdEK6<w}2l3{*%W`Cd3zbsX!S6(AobF`z5nMf)j3IEq z;fEk`*Xd5u*{zvkm=lru)?^w^o|2i`BNOK&#>|AD_z426+uvIO^1BAkK4F^d!_oJX zGpRi+j*jYR&AY4M3=@-Fbgp5tDnf!f5#G12E`nQ_<|^HIIT;wPV(INJqVi;hRmi|G zGN1f(;PYOFE*#M@!|u_{-3isi$~O*xduKSWn}6V=@U74M5>NJrW&~%$<d0mes7LF? zeNlaFW%gaM%O$(6aAt|e>H!~)abG_E-pi)k{{X=;{xn!f(cHr|rKC~?A(X6_PzF}| zgUB`Yei%Dv6z|$!`b#`cEO)@m)<61EKZwl*&)e84FbZ2chaR6!_1fxJ6F-pvI0W?X z$La^IeNW<Fh38f9TkC!ru}LK|PO7Lm1~*LO{gMd;emvLA@8OMq{t{^XH>z97XK*(L zj&)>o{oj}aD}Y8<1RQb*JqXYAl?+rWE1!_!C^aL*ZPrVzUUZG}h;t+3sbY5H@c#ho z*Q)$EjTchAxm<|S)<_WZk{N+!KZ=1*@W;csCh$JB;_Iu0MAN2d21nj8V{sVc?=Ttf zO!#+mzV}cp%-awI+<SA+vClsIR#}YiMs_}bKZ}kIrTZOg7i&9L9G@~Trv&=eey<jf zcc@4~K*mBGp&8)wyXt$I(1!-vz%yX9u@Xo*>)RFbLGjhyr;T-Jbut(xp>(Mr7&}&0 zRaVDr4z=ZEbmb>DkCEVdytAmEk@R_r^GpUnM6mA3$KJ=f^slY|0A}lzmqOK=6VmQ6 zhU5NOgZlf|$W|JuyRli|DpkLTumO4uoM%4WGhc4}0q}mQqG-2~T-r}&FD@c6$#9IT zF6i^UTNohp7~_iW#z}Ho=jqgGv+Mr=0Pby8L;wIIKD}|%C$Q^Z2>#O&L;nB?*pF^Z zSC=Kp{{XJ5w;x|>`?KNN$sVP56~+=s<3B4LF~=Nw`t`5R{{Y%T>K6E+aT<e|?<Wqu zxgdehu&<k_x}G-|%`77INA!3900fC)59~*zoD>bN>+OOuz|<Xc_>r3ZiuhG2d#ylc zk0}TKK5Oy|{s~e_e#0IZXTU9}YfZ=fgk~Sozgd0~+%iw76W7X2eK#80E{&W|t;yqT z9XR%i{EvwL0BK!j_Rsc;)u9p*50!2Tjs`rH!Q-jTP_ep-?jJ5vu0Y{jZvJ%-?K5); z{h{@vIQy{MFXaLp)*gW=HiA|Arx-Q)hY-j8qNl6;&(X5k{_ZQu9sE<qtgyoq#yA;* zM~@$XJAX>jjwUxH&D4Ye(rA)J&($_J>s-aO$Zk`21ozG>O>bl~gplJW88z|sVPn}& z=Tf&4P4dYdyyJj;xtbRr@EH`0{{X<Nde>050JX$75aS$_^9Mfw9zo&0?L=SsS1TE` zc#Kb$a(|Utw<@k4E-}XhgO9?zn$WvCVFhgt=F?Jw=5ZC3(lH0_?h4<CY#Q1LG->8- zI6QxoTx3&=sM-t1^Aw|CJ`X@odX~^Z0_?O#h@vK07>tsDo->2_R|J)w=8{Klx00f; zJa?)x+~pYL1J^ZLM!OIrH04Pj^3g;804yKYnCQ$ECK10QCNjuz?hfJl*3|bQqtX0L zJddM9#~B7N*zd<`;ABB8!s8&7UAY}_3F}=JqdQ({!rD;D<q%hl^x$NJSVk3&F|m^@ za=@@(=U$#RT+JNNR?y*mQ)dkJQ^4hRu^Bzj{{X7L9e?1lx~GLSPuPE4@Mf*6+C{DS zlKVqVCr)Pq>g8=UI4&+8G|o!L6mHCT00ZBO{gl_@m`xi;3pySN1CPvC;2-=J7s48+ zi+(EnIMZxmEduG+5X#J(;#ZpDHBIMmE5Tw84@_~!e#3#)@wD6N?|s^yMt5(k%Kdcv z&*q2wKJLOJ9p$(PtQ?m+fNyQyy}<sJv8VW=`%Jo#bQ`;kGB~;|q|!iuvB@kVDx~MT z1L<E}pN5M+i0-soD|>mq&v4euEHj8hlr5G4zzVohPEX1^*8!>cN5e8mBxz<+@-#|h zj5KACkW?^HxNt~2xdR~Mn*NH0YZ+-cpNm%E+Kc#AKd-!@;eXm&<7b2!UejF~v`PRF z>TxB^VONeCKPq5x(3uauYu@}n`+odSu+#_IbX!-pWW=%CTuy|r=*lJ%fsgLw{cGl{ zZ-#nSyLzx_Z)-6M%%&*_Q@11*8DI~-Yt8Rt(ClZD8=0lCb&#Vxt0Jc0afKulIl;jl zb6U9J>geKgO9PluR)oJF^FLN}5BMn-k`$j7X_vM*d=D)|=tt2Uk@VU4*Rp6IwlD1I ze|R;kZxBbK-E?;)?B>rO-4V#Z9yfaTuf(k{OZ$9&Tso8&I0Tl54t`VoN*PZb2_5@Y zW?TIojM7CXnHv(jMmk`tVB?_~!Q-`KJeGvCvC)Ojaj<r-wCaCMo(%o3JXPX*P(B@e zPfPn4hS!QqsPCg0`LQ6KU58$Umb*Kji#{~gVi#BUI(*j=?R2=ejKopVgDa>;*^o!3 z52b%CFnn6^WtOOQD=l*4O}O68z8Cv3V#g<XugNDl#^pG#sD23k&|en(L*wle!gqR< z8kL5pcNL+T;aIM7Bl7-bxk%e+$N{51=hx?RZV;u)=gOVF^XM}EE{vwBMYH-^U)#UL zdVGq$F!27Jsk^bsvU#oC_a^|%0nfH8=#PV+v}cF@Hs2+dm!w~5ZETNx%`}m+H<H2~ zh{=ZBuP7&Sfr|W-@LriOi2R0oSrRFMeUFr9T<r%Rc;xb>x{Mx``XBo<cvDR96NZ7q zO9hSWZdm-y=3T)dC$S>|ax3$U(<Gq^QmINdX#EQZjhvcNXWr6DFl<G1*+28uL;nCp zKdnOAmZ@!pF+n*00H$)7+v~PLkNkSDwB2Sag^|PW3foD~wLbd(0RI5H!6atBUKIPI z)st2`iF{HMNrf(!NEde-mv#;h@gZT4dd#%eR{COW<VktpD+VX<2Q|ywTnKciWryWr z-9h!vX)LdjL%wxMM_-viJo+BLTDf82VL_wNzSVMv5=219)1`E}Rm1&(V<+az_5T2J zxES>dSW!$(Dja{yCnSI0Es^?HTVZn~kfhK|jyXGIOlKn;lp`ONc(|yfj+$hb>W0CD zqbIM>)^)TJM{e>1fXG4j6|+9+ZO@r+k^cZp+%Wdwg*6(8)d~_oKBN5q06NDE{o<-h z>c-HuNNhw3cvzKBzR}Hmy>V-CV=F>q$OPes3Nz2sj+ON^7ZFV=`D_>faxys_^{)}v zwDSe7^(O@F+x6*>TKXPjq>eP1;+`r*OM5$uQRTE(3zl9EA1Z65wZCG(DfIkD*0OcI zEZk|=5XZx+?p@tCA>2AsZ5JqvqXdD)deWktEO5@FQaa?lLd6DDf_n6*HTi9hkLSz= z7HCLe!OxhZuh5*<3rvDWj#kDA2B_<IAMqo&P<~K10D5IeBm8TcST!eOSmK&J0^-iz zRAnD891+^NnY61g%Or%iY$+o=_3hH7vA+!hJD<Lw{wLn2cM@Q)Zkg>|Q^F+mHdvQq zBT}?&Hre$ZILMMjrT2sLE(Ul#e_FOYW#TPs!;xtk>y1{%NWaux#+NDcE*l<tzS48p ziicU2Xf%7QWrIf92d7T7mhiILMq2>_jCbfitq`R+zGyoQ)lFVV&(NT63+eD^x*e>x zmQVr}V!F5uj=5$tK2N4orykW(;e26lc$$xayiY!faKsy%eM;3eOF5VhTkpXvWPk_C zIO~p0b+AQmATp=kD~_EgXjOMKfMdU<dQ>rW<JSJVoRulldf1=CUlD#GX;MhuDbX~m z_?fmFy(3aK@)jLf+TX_x!aWjaIj=?6{wnxZPX}LXUNZY`nFKbn%M6pi(?&Nb5s`In zjT$lgtc@qo@+-*nSZ*zB0J3IM?(z;u<(Qs5ss1F>Us~|&x^|@!GP01ta~WX3f*GSI zNcJR*_OEvbnn^UL6N0`DEojc);oroM59{`@CWqonYuH(qEG@!IA(vrdj=+|{^k5r3 z>*+m8&hlLr=I2h;JjfNqA|?O@1auN9Bsjs{o}Dl{*XMj62EH5WwvbzRlSj0_du;i0 z&u<ixkK!M^+OnJ;awQFs*0i+0g){h77GH<nCDpVS5*Zv>UP-p#lauE|dY92T?Yk=2 z02ADO4IJAJw4KrB)WJ&kiS^Eb;p@#~#UI;R^0b0D<U?(4k*c`dsw8O;d8M}W!>@dT zYEKn>Irv}VZF1X8)lx|s#S-L+id{5Pvyl-3WM>#TAch#~Fh*;@d^6+Scf;DO8jp;F z>Q@kn6YW<PKsMGYSTvek@)ieZIX0m|&jUPln%BnP4*j-!uMER3u^G2Q<4&I5S*?ga zG-lr7SZ-UMR4hb*a7Js>jv|E8QE8krrBzE~(C>Z>c){(i$A$b?E@g^HJh3c@`y>Rk zd6Ui=ImjS_4>jX<U$fjgUw~xrcZvQV=$h4)#k1SWA+n6fA!XVCol7?TxI4^hL-U^X z>bfuO8Sp<;vYSiscCMNXlemaMuG>wd%4JY^Lv*nRa5)T&eL=-~O@@)7Po_bp=n}2q zf)HbWJ*H(wIbL_MBd!V0r%ox<!>6oR)mg=R$K_G|jeldw^hq@RFl(Ac^E!xG^^2>Y zBVgE2LL|Wq0o)oRgU)O7tK*ma6Sm_~iM%uLFIwB-O)h^n)ZC!EkX>97*J30xTD+07 z1q=fntfv_x75xPKRkqhOLmbd)_j;X-jEE8l#P8-DhY~61n{rEI7|waGA@SG4odO%{ zJ6k(ge4?N%aA8yv(`t-yk4nZlg?u}`IcjNED!R2zPvtAe{{XT70LRY-YA>g*m1U@y zmnX`*lFH&n136oJ*yDucb{8xG$30DXUx<83`#}6N(i2DcgQsi$9@E%#xzh=@Rbqbq z)Dg*Q2mQ3~)K~SGz6;fK8+(|nUPnQl(9ek@Ax>}-P|7-TI#-Ho{utABC|M%VtnDvd zw;6QtErD(AlEorsh0k1)nEvoRE7ijBwMS^yifj7$eg~UVhv}vJw`2Ka@PCi2Z;|dT zM7pSziAn8m@f!R2cx6ob0)Ca#S$t5|?X?*qyLc__n+gTq`3^m$NW%XB-#~iT@0Y~? z0NBU&U-*p#x}U^f4`}JBvc5&`lMT(p(Sh>$H?}`wxJFhZmLx87o^xL@>R<3jzXod- z(Q97?bvf-BK!3AaY7lBDT#xx{ZL1_VTyz01F_F_5&(Yzy%L}S^kK%Y3yo$4T(Vv-3 z@l!#TMX{E~JDD3e7L4vlQ_c$~{{ULI<+kt_h?gE9vyJ@N_JzE+AP@*39l#8O)4prg zz9oObIsX7^Z-<gC<Zq_k%?!UOlHTXT^D?j*5j@{$ws{HXV%(@FzB>G)<Np8#e17m1 zglX{~!Tv0Y*oS4DM7oWxGxGyBn<dO^kM_!w+o7+b!spPcl7!R0-gz_0?4LYI{7w5m z*=oAl>(c5sp{?9BQO&knXwh?oNPtj@f(Fzh*OOg0!~XyQXnr5@EH?fqj@}Izv&}U2 z$t-hu{!_+0rhs{ov+h&8IM~sK<nlak!#@yy(z084dgo00TrK;>YndA2A~*s|c^tA8 z=tB{MkVb2=(LN?m8XJETYB8*s!lZVN0~I`+qeuxI{_hp*e`rlRNjn_$vYJu5r@KDY zwDEV0{6Q4o416W3Y4^IJFx~0;wcY3TV@nJxE?F-VA7#`nT%)rt&ps{QSa04&Grj`r zuxdI+x#Da8014Pyj}*fli_aabR+jT>dW6v}{k5{8W}4pZqJh|47m@}O;kHPqzd7i> zBf0TZl3QsyE#9F5uJ*XZYM36X<Pna%fn9fn{vv8$418H{b)?_i_;XOVlgzbp$hncm z8I>dwN66rkq@FR_wWo-uC1h0SR9mCid_dn1{v!Cx;rHzE;H%6303F+SGJR$%jV{LC z{{T(8f#ijyn%>_0D#3cOT}K@8!L~**qej8_E9_qbd_AxHLj8jD-`Vp@(L5XCd)w>l z`LyfOKeaXQ?Hh~pb8%~BrLDS2Vm^5xlIH621+`b-CI)NZy+=pWt~E*ZO{UiRH@><T z*3!!j%3faGE!$lzkVvFY6oLGf7!ipZ1BJ)hpR>2e4}!k|JQt<-li}>wx);SAGVbo~ z^HJ1cHx^p_7grB)CYPvPKqZ(!cmCqyNW<ICqFu5fk~uzOJ;F{D62qq_%%9HkcYl7r zjrx5S2NM@k^LEnTk$d0|jz4HyAKORaH|(u1#lx!U5O}KK>l!|e4aSwD>N-ppS1oB} zHS^DLEGy;9Ylbnxs;}iltf=YzPRFh^vK5{oA5u1C0r(pJN`GJtJ5|@eZ_fyPQ`RPo zTx&PpD)9uGd>GkfB#SoGkSWA&=I%vIjn0vIoga_tNNTr|=4mhr{D&TZbg#;MM2u-- zY12#W-RZl#zvO+N49V1^Cf{H3JLqp=Y4=KY=Qt#Pg?X3l7va1A02%xw8b*x1Y>%kg zIT;+RWy!`>hJK&}>MNkK*L?ZHTrR*k1oX{$&+RX(Nn!Ao-b+PeA=Rx&2_wcx*)B+E z&h9$#_}9QfvT{C+!KRtU{>)w();vGseOvoR#M%$+=+n#$j2Zmw?fF@bR1WwafMcJd zJ|Gr|>A;-syNsy(MSREmE_m0)9wYI-uVb#r(!iQ}NgM8GP2y0bBRYm4401`&y?r_3 zd3^Jxss0<d+aE?1>Ox-a&N{90-JPYxj2!dSnye)~z#ok=;!l~e)3@hY=0?x|0A9MB z(Zs1-|JD7~{iiiUdHXvzhkhk^j%^3V8moDF71WNG5MNzAxOKfqwD{IZVuCpgml4}d zm^L;Gg$BMY*8U6lw))#n@eZwPsA)Euv|fGP{mgOP-rfwsDVO_DGkvDs=HNEOmomnL z#xR6|>pl_q39o!Dv%m3Q#A{h*(zS@L^uG>h`n{TJ_WBL9kVf~rE$y9cEvA^Fo2Xhq zvIPPb9J76gYvT_9!}~DB;eQZEY2j;)QpFnDz*tEVLem95=(fZe{Dwv==f?7RFM*w^ zEBJQ4Y3wAZVPnj$zaN+5q5Dl0Yd!V;t^G6e+r)k&@Ylni3u=BO)$T4Xt#sw{ZdO?f zdGcf|Fzoqbc_opRA&(di!)OMZ@XtcjVDRmxv*I*EtlS5CrG<;ak~tg1OhWG*1riW9 z1pr}s`L~Q^kH-En(|#F7$#0`*jTQc(6DVbp@l;C`M3C8Nk%XtXa~pLP^wz84Zye~~ z4Pfz&wug4wc4Cg+Xrn$;?qY}wjQMH^#^>A9jFL0;bF?X0?)5znY42)s`m5<DQ?t^w z*$i;VuRA8zJG_=qzjPiqFgWjyJJyP75M5iSwh|)5<P#$8+&xBl!Ov1TtJC;<UhrP0 zbD;RKBu!8Ea!g;ibPSs@$Cd%Y;GX2=vsL7`65BMYfT%bkv!^vEsYTryUA>Nm)<q1e z2*x@dwYhIGN8k=?gt2#)?WU17kP36b?Oj#0?;~uJ@WpQmcQc!3PS*^u2^Rs0$ldMM zx(g}3(7V*}o-2{Gh8g!6l%Fq!&rWM@+kA0=xKJ4MtsD+sYnvBN7jaYkIQ(lq!rZ72 zHzc<n!jooHg4>P@W~%9HEO~}k$z~_mdT~k-w5&Jqwr%T;YyFcm$UrgR?yh5M&1V$W zq~W<Le-ZVq4R$q`No#0aM$E&KJ62-{x6zi?Su#;oK^=fOu8d34#9`K#MntWDX)DWR zb2Lmpggb5EdJ~V*yjS+@xqV0e3A6Ed%lG_?0&+8uFCgUcUe9W`6Q4FylA|WPXZFlr zKmG~j@svrAmrl2k1OCm#NBURP_-h+x@P1PN0McZ5+*khPFIfKo=}7!>{h2LdgTRv+ z&`ah^KUD-}r6A`%%U>Y=*q2c+$K3|jIG4?q31yYQ%Vb26p>jz$3NSr}I#=6&v$dKJ z0FZ!_=DMlR`)&NqetG`Y_n&M1tYXsMQdY}Mj4<o4x;qhr>5TgRRr^)~Pufaer{`Fh z-ZnfM`%1a6{h0-rc8uyejE+j+7E^G?ub~J5uNC-F6T^9^JfAdX00Q;ro-xO#y?yiI zPYC=me}no)o2qN9sBI#W1&Cq%z?;qn4?x76jycY2<Q*@;dIyIllK%k1dXj2(vcN== zM#>pjV1Pg*jx*aIj}__57ko70e3ukKEG+#C5p!u^H)k&q2OM+!tKmNpWxQ3aW4-;z z@0^*MzT`>R=~fMp321Te!LN#SnEc-pYLkvX((VYr=N@Z*d}Es5g<ritk@?>U{B=DS z>TmcP##f#gyEfOXC9snuDC(oBBeQeP59eRApRxzUty@R<f2#O?c;nS{S??og;E~CU zBgCbGAK=dpF@PJMroRs5iDZKa+esjj2fy{N(qGt%TE4aLMzL=%&k|}tCVz!Y5$75H z9Ov=+*JgKzUeBE$sO9x<?z8n5!}4iU_@d@*5oSwq7sw|eq#66lSRO~A>yEtF=0EKR zIg{f4uF6T<sJOuA_(33kJXh%_g6F!2Q83|rx#KJxVSy+K;EsO1EAvC+-rx9KnwmJ^ z>Q3Nw<8Rlke77Uz)bRMr{nalte@{Q~Om^A(4)`$_<py0*@!XfxCS#w@zf-;xOTOy) z5B%_6{{ZdR<=6ZZkz%*~h<+bDAYw~9i5nT^n(ksxJm=QGPCgJYd%Z;W@>BBNUAP#f zB+s<VrT)zec1OWqwDs=K+D}+ajv%&Q{DP++uUe_$yO6qis<z>bW7FFeFYPgH9mnk> zs!J&#I!3%><|zzd{$7;2TsGc7Sk5w|jAPorCE_ZPc#4+(XZfF_WzqK|=#HA&W?7>M zI*<-MD@t)WB}Pc=&{j+l6=f%&tuHmPgU)N?>PqrGm~3cR!yuOk=O50xcwRW;!}11y zD&YLanCwQ|n&>p*h^iZ|Mt%KjgA$IaM{{Fjk0;t35w%V}gjU>fn2Q|p%D4xx3I%f( zdepN{ZOZM+x8;iHq0~{Xglsy6=eOMz<w`G`Q&)3+vvF@6Y;&=2O;VK>IgEszfq(sU zOMH>8&@<^&<jkiVvAd7J)yH!?o|hzcr%Xv%aNBvusjf14fk_DYf<8IH1Rk6k-@AEj z^p;d@<6@3IfUX&Z-MsQ65MphtG1sRx?P8i%IH<d(*@Lae4YaK!P$>C_`n}Pfc<O{# z;}`rDBI@Hp@$Z44wsw@=nD&X-k_ybSWVz>J1SbZ+X*Fjm6+>fi92)#E{{Vu*-Rcl{ z@4#`bwD%Uzrd&IuJ4g;403<UhKPfoIdYby42Uo@<`!mhX<9Zf9AI__9u6T!3+NffZ z;_h)XVFunp=h*g8IVYj77}c#B`%X(h#w8ECX~;Rj8SBSit$QQto*$kl?XRM1b&qyF z(HlnUT#|D5$J3Gku5v94Nxw#x&ge@XeqSW3eL*0eYxkT!Aw}!C@Kqyof%sjbL8p91 zh8Wcge`nk<VA(%<Fa{65Cbe!S@ZMxsYl~;x`7x6s9!_$s2_He4>3lt+oh#xLI>asv z3#ZQzXFP^?M#cv?Aa$-wTJYwgEu_3ntptUbfWsg$Bmxgycdfm@HAg4aBPqeC*&NmP zfczEW2o~yFiy0f8qIi6V1Re-=+J8#&-xhdG=p~m$yp}a{zxNj=c(OU^CU6EiSJB@H zJ_vZr<2Q`7{{RB`E&%e~INu?f2x5X2KRnVk#L%ynnHd3#bHF^;ar;&N$~yl5?CB1Y z`p=0py?OOe>QhdCI9o}#a7L9LNaa=lkntV37&tfwvX)~?HB}__XEVV~!O6!%^SSQz zSSE@+NiFXpoH{X*5|5Afl;hW&4z=wcvfh-}9~?Xyq6Y~kvVq<`+eSAL*RBWv_s3fD z?NT)tmJtDrthxHFeX;u`S-k!{_(ihc%JaNae9}wHZwqg5paM9++s=FBb>_W1#$UOT z@_&;)dRTa@Oj_MP)cvdY84cu`Ec%SbOPQ8g7?KMy0PIB_&p@g^mG&Qk?i$ltx6ySk z^h?b~-tl9%o8)JdO$?0~Q_q+YSnWLEA46Vc`yyGUo#Cs!dUe5BgmE#)1}AArACBM1 zSI{0G(csm558+LI?2omth%O!FJhKBk3}>j|b<KW5n?*u|n?F{;FM7wTcxzEavUFv@ zXD1lsbQP+fXq=~(+lzCaF@f}~drLUuf8Ah)W+V?nPftqfY%Ji8LIB<_^%7np&RZ z6K0j#vuL);dhTF<4AfS(v62gnaa#+uW3`8<!xOuwU*}q<1P$21;<+l~98KW`a<#N9 z@#RJU9DCJ-zMkJ~DW1KLt!P1No?hf*$UlWWVS-6Fzg%NJwd7T*o7C&3jikGn+q5dj zJ8_ZgQ(50)+2WdEzm^-h;<27M-3kv}j<qCF<yhcwIX=~uC9Z`@Xm)n#1hW@l4%FSA zoj#SzU))+LR1!@ZHb~pG*YOS-wydQ`yEe`WgApHID~;6}Gdo+3RY(DTwd&S-CXPtQ z-e(D~#cMuex4ySYF_I^Rqb$7%$`Uz0?AM!<eQO#<u$K^$j#Dh4p&<Oj>E9LIc)l2> zjW>Smf)sJoH*ER?&3+a9Rrrr5g}-R;9>d{nbXi<m>$eLs!Eo`)tf5o~5xSn3;ei;( z<Mtdkm&+G;MeMG4nZ7MiT+%;aBGuaR?n`tTApFGeI{VZ0XfNKvRgoAI83T?#&#iuF zct7@x*XEeR@fzKHRbb#|Iqn6sqbSI9nmF>!(*emIhbF#+&_8H@f--D|#(xudLS_Up zd}@}z_smV^^w01fI@hm>$gxzOkh=0b`Wc-WYUN|<jW*`(Y+z8>`9?;6O6u+P0#laj z&o$vzUlDX!6K{sRZJ=vW#)XV`h}IK@1LX=O*h?Om2Q}%p7y90l9CB;^AGz|RUBYcT zRJ)HJgswn6@J)Q~D-SgN=(KuJsTTd&T<Cm9dQOLOgR4ikj@hd^cB2xYww&zPxg2MY zO5^W!-w4ZY1oyIA?jcIe6Q?-`1mLbm)~~OTeoN_c#da~rl<Manfz5K;Lr2Vd6iy6c zUI1ZP8pY3-r_AUwcHn+IXXq=Ek6c?=gf|D27$9~0jccZ?w`&wYZZf)z`Y8FE`C_)G zMeanZBfGSXMU+ZEffRm1scNiN$-vJb<o*<~+yca>O!oJxn$^URM1e;c`Gz`z4Rq3n zyo~2pOBniX^FE&xg!0+`b$Kr4LxG$gm6K-_g2p)`Q|0411A+DQ>5A62XxwhwmFPdl zwZusyDrvI4?5wfG>T*aUo@s-_cDmk~Zu*o_OKy%?QdC(NAx}7PM?Xr_mKdgk%k<7Y zkLz7NpJ=B+SQDb|{Z|#{RmIt8b<?8maJPDO-k+q$d!U(MK{!W_866`aj2y+27J75A z@lJx%SI{JDh<?vIM}xoY=@hGuawN1i&Tw(}v(vqGlUpQyANx8f&zrpC*{~`&%N^=_ zrhhUkDp{3UZuI2QPYVfYBy)PN#t(>T9QKht%gZcoi4;=BBDrP8@AQZgNcQ$3cI5Om zm7si6gIkF&^{HTCZn3P1<jn-gRR#bUmNp~12|zt~uG>tuX1!VG0g9^u+XMdq*IqBF zSz1_Xch@$@4<x@#a0oeH<z9t6^1PS4?sLxpPoe4Br;CKPGwM1ejQ4Ql29SADs;i8L zAsxsbpnyhlc&{!xrkScrma2&IDI`Z5sAM4X!w_+v!>xI~sBS;BV$>Ld^5qNQ2EiZR z7&!LLZ+~y<V!&J7M3<2%1PPKk!jaPgWs~&9Z}sozL@XP(y3GxF?_{u&Tl*+wvW8DD z_r+z7NXf(Q;NTD9?bz}wR(}fkJZX1#o&;E;)*`oWCc@T8$`;#|4Fesqq?~2JQTW#j zt6AE3$TT{vlEVwK$YF$-Biw*({o08m#(68V2fbgg(qYr=WU<j?wz#=g$xDb*45<eV z=i37&;CSXD0IewI6z^_tyvnWyTb#xH@5W6QNFMg#R_bPjBhsb5mKY*q9%ML4JhlO{ z2J~_`Do0AzZ8O5<CK~3CX${1(GqjLwN!tggk`olU_2iy2TKYQc65B0~so~$X+%pN0 zqP(`aWqf_#HG~q7dE~}h9CO8bEV{SDHS=_xQDL*bjXG)(ye}DHfWf9kU=L>pn(vM+ zJ--8);hc9qJNTFI6ZU5K#bF$NF4C=a61+y5v=;iB8CxL=J<2V{;tmEU&N>?TC&s_< zOTU3)DK5SrPj{frB#9J~=~|7&lxSEkRV?*Hy|XGY^A%(sjn5yh`d@(jAtbF8f<<<_ zR!=mvR}2)A2G&px(0XV2*3{kzw$n7z29X?lNd%-r%VJL%BcbDt_1%Zh>(TdNHoj*q zTm?D&NgvG*#E<wUU&Y@JUA51IHQ6u!0CvogYBo|qIV*yH;$fq;)xOifBgs!v4<P($ zt$Y*s>EQiZ<57dcseWv~c|5vwkZU&Jpd{~yY<Gn6G6Vqbz!}AVTH5~rhP*|k%WVdY zESAYMpD{a^kTNh+7(ME>{{X}7Q^kf)_)AvbS6!_WE&MTD<v#WnM?oSS@(67E*U{m4 z;=FXKl$Z6`^Xp_Z<*If+kX?Vrn)+%GS$MBfj>2%EOflLmjnV;t7s;JcTn?Ww8R=gA z;Xe*|hvF`hr{Q0P{AJ=@LSMSgp)%PvKJv$O-b^E&nVEqc=D(-gui2}>dVEppdWVB; zwKD(`eVjSCiA#(CBDgLWj<^7RwaV+?2EG{H{fJrke^~HjmKkQa@V(F2nadBkBpFy{ z+IdpZupErw;=P5&j#gCTZ|l(<pV+bcPUqzR0PJ`B7XH>cXUAU!{8;h-0D=#O^eq!u zTbty*)NFj`g<zEfM-9C5GZ8DJZDKf5c_0e@i9|=sEV5&9$=o^j{A=JH7f1b|v@a0o z-VyL`k92Pp9Y{#WOz|C&vAb=oFzYl85J4JbKki&Jx&_BI)Y|^ge;qsx;!Q)rzCQRx ztW26rK5X}T4b&Qix+XW|EXLkuV4pEXR&VZxua)9YZ<y3oWoxBvKK`fB<uHaCKF%Fa zx0cuh-y3dHe;V;W+Fe;b6k9kX?A5JX9RC2%Ik@11$*(Z*XYIrLK6s+-^jp1lEdx_P z3s`G$&8FO_ZNz@&?IL{bQrN*b8R=ag$1fCkZ^R!AtW!zUpuCRzQ@1fZGNVR9MJs|C zSdP4Q{OjW?<yE0SdMCdM>HDm!`ypz>QSr8~BF3;|PhH5SRs%B(eA2Nb5C$=T2T@;K z_{rV14J0p5wkAOI1XssDvMq()o8ygfCs7{zKmvo1F(}SDkU1O^*Raiff8xe?^&K3r z`C9b{=bGw*NgVb5Jr2(8iiY$Y);XSB@PAMKy=Yy{8IL2ltX<#d{EDLk|JME0zxW+= z{{XYuUxwP|r><&VJ4+2x;J&E@_LusdwaB<;jvJ?rSq!nMlgmjR;|L*=HdWfcGydCu z7(N;3UM<jkJ8OS#d{N>J+GX9GuN9@+T-vIOiK4Oui*Oqe%oKqcba%r!71VyzAGB|S z{5}1Wnl6zQjGh(KG_7Y<7UJS1vb+~IvuRfU0BN2kjvI-mk+w{*NxfW$d^twPz5SMS zPmkIyzsK(i*}-U@B=H2=uCcD_JFb^dNbSthOy6jl6|u2`Le|n-8Aka-u?qY@@itFZ zijuF0e6fdZoz?Zz&gbkDD@r;^_x`^R>!*qQA+XVWBjL?QSDG_C*N`z6ZxNVJCBrIt ziiN=qwB{p&ljWe!E7m?1Yl)$2k?R*Ndp*Xh1;ke?V=Qs4q!=n=yJrms#bO#&kz0Eo zmkbwff5QDI;OEEh9e7(?_<Q3WQ^huyo^_V4`gWEy$SnjwlW_&JDoN!#Bru}`ChW5& zKqa;R0BWxU>OTq{d@1maZm%_c7Dy-5w5ihG*jOl$E^XyEQX;~(vu$NFh|4Pi09HGP zuaCu2#M+YkM`FaqE>*egelxsnTfi!HEh1Ph^vk&I;MDF!FwJvgDzwIF64-eY`IDC0 zFcG*14-%3MM{Dpy;wyY5pW`65jA-%gnZc9y-a|1@v;@XB1_U3QaK?7xzH0IJ{1i{Y zx>kXw{5trBHjm+-9-TrhQ(A8c3w>4z9`;z4J4yb~uNA?#6Wf{Ph)U`mq}dv<kv_Tj zP5VRq3GioxyeoU*Zy&|tE9ow6H2(k*=?>>n)imXnS)_swuxafadnEZ{k_3f`Z=Wo| ziQ%h8cpN0=)znqiw*32c(B`L)sFIDk`sw|3JV#HvNp7APm5M|_mA0L!o|$Z5XX{-Q zQL;0Xa5nz6?w&32r;Pp)d_cFl_#LGkTf)9E)vj&su5YYvAkuAML%-~DTgvc+oxxxv zc-<8gs{Zpa*LCru{uG~rb)OITTjEXbhv2Jgk#zPkHN3(*ksM0P4aT6d#>{1B9$N)F z&k93f8-oqT6jf<asH~E@d#CAc$7JzvZ_E1Ve8p#~H;_S*OJh8Aty@QAk8=&hv%5aE z_eQg;cwbzw()@9$=+=;3cy?QO<(9`$jz_qS<03UDF_~4^#?h?1WOOVxpSs>t`%Y<} z3;Z?Wn0!0o-3s%=m+@Jx!!oFAD~~m@c7ofKE)FGJu6|ZgfnLT@#58ej#wn(fdiB3! zmNhQaQr`W#A3oc>XrvY67&TYz(OSrxLFA5}^;#W9$IUhka~GOZf0kWC?anuCCpgc1 zVyV1aqzcQOrz0GWE8XjJqWhz))FemKWgu?jgWMjO{41K7$goJ<<c=8s0QIW#&*s=N zNyY|$D&=k`I~iDk&lK@dy_r;1m4Pomv)gkq8=Gj_GuJrwuNVEW?tK3M_$QynS#WZ6 zb>MZ%+$K6^y+%2aRo#JQ7$AEZ@h{rWcOS4v#w$;~ohfj0jPANj1L?(mUx$j>wLeM! z0O=AuJ}7s=%ho^oQa>(#XP5r~iV_(C`|RXrrhLK=r?q}se$iKx+<w}AB93Ff%05~T z_CCcC9X;6N*P8t=_zyBK!`o88oX4O0>Dc`<{HyZc<2Y;2+h4^>gLq4@suXlqw6<Oc z;(z^h`#uLpKSq9iU0oyecf_9tei&YSFuapl&~2^_j24kVlJ8}NvVhE-{HF(kr#1Pp z@gu>$67W}xpwm1fWVUhKX_Ct~EX9wWpl)|1v9~)$PAm3DU$B<z;hwDs7!PoWFn^6g z5!a|V$EAKld~1Sn<G;4d_=+7dVJVEBWOx2mIC`JEmCv2x>wQ9PZg|bSp{(@8Q`O<* zdTl?3dF@{oYXwJ$H545_*FH1vD}I&sjfh3C(*gmIVb3@@+J8UG-o7-|20TN2!~y=7 zIripOAFX?wF8%5JkIZ;Qd(|JO>LRXC5s(P$o~@prTKxe1idkXs?zpdwji`;FcmDuK zLO&dnpKAC7;6fN2?dk8{zW)7+_|bKCA24h67{Ke~FHgh0ds(c%a?$!81zuJ^P5vLT zT~Mhx1~S9G0rVOA*XG~HyS@Ja7;mnWfKBX~A639S^yy!vJ`_}r`cW9#3Uwb(&c87J zI7<Hj@VE6Xy#}K&=e7qJ{0F^!m9#v*FkkHHd7sq3{1dt-v;By^9fs*HpCsx%1lJO{ z2iybAewutAkR+Gn@_eN4{@s3Kf5AUyF@D6~46VCIqXp-#7Fht#;a{Zx00`zEXw(#S z@{|7nL#^;}vq#xwcX(QD_Fs|mf5&Y`(@*%-twVEhBDKZBY(pAL9(<%2`IjTtgIvv( z=9}jTOtzBC*dI3BpUZlZJuy)J(RUXx{CK~(NQ){;t+_`lwE+HAkE7l$$gWyF<<3J9 zj03^_JuC3+_1h6q{{VVln?Fv$J3>B-@;x9V%m@~fumh|u9Ke1AqkfeTHi?9q;KR4C z+9Hx3J<BfN)}dk~jCrModxOZ&rCYST)GX0j(&@mA469`1SItgmu#G!dt|SBOo?Xyy z`Q+&255VX2tq5&qjj&T`Je>Bdk@kI45?@)tE_<|VpKqHP{c6>Xq){K-NpWrf=^W3u z{`qpt`d6J+t<I>m)ZB@JT`X(MFh9uGRccg9GQ%J*@)gJ1>IONyw!RL_)J+QK{`yV7 z%C{oAifPv2BS{&5i6p_}*@yM6cFiwyte#X@e8d>XYNRGYz=Ag(N8v+UAdk#=ri_2N zzyAP5mZ(x)KH^0%&lqu@80<fjVAGD|rgt}2DF=q&oVGU=Q}ra*J9bt{M&`f(06TG7 z7jr`{feo~OISzz@$N)A;<I=gEURZIx*r6-{#dqQ-s`NRb1!iSy1|^uxTjwLE@Z!G@ zKj5+VcaiwZz!F+p%W)gn-0yf>V<`RE<dOj&*A@G9sai~-rICU8K11|8iu_;y0D`l4 zW5qro)%+!@XnK6tmfCimIk|Wjd5AGhxl!{Far_|T9M{_LD@z=?pGJ7O>VCnvpNkOd zw@_qEE?_Ow%!E1|pYKH3s&{vqMeLvHD`_jQ7(csl?emO}&b>Rru$i>vk{zUc!PN7{ zNWmSr^{zh3)9sVVW>h+{+NmKsd-m<pzjBQ=(Vqz1w`V(J97gLFaa~(nV3i2VDzF@o z12d={58WBAS4i;>g0+d-&qdd5E+#@%;q&8Z5wbxHgrh0QAdGdcg4axg!~XymAhEZA z+C?stGx=ct>5rI$a2+=ehmQTb<M^lGuY`3wDdxByZb_A+ythdd<dfIrZaW@$_pZp% zzLL<%)wZnKlE+=NWx2IjnPVbFU<e_HA(xB-I}pH%<Gg!u;*D~~H@mcJnWJFa)aA&* z!j=Vz#&`#wYnZV3D7FeO{4sXcfb?5i%bP{W{{W^zj70r<*Dc~R@pHkpOwX&!dKm4A zbr>z@OpeO%ENp%9*)^>k6n&y_+`_ISnl?PAT6v<??RP@)ozfHLfsDvHXQp`T{{Yvo zw0~o5cIt18e+_hb*%s2*T)37npddz;-hITMali+P_=$XF;tg7M(6xwdw>(BuEx35W zWMT4{*_da)UMuW>*%HN{;|GC82O6BskaPb4EawgRezou7)AmmNpX7XwI;(h^N)PQT z{pkLczi00%)8WL*yGQz5xCG!Fs2~dV-3i{u;O2uC@7}Je?4?HGm${RYPalWjUo-q3 za|gpzY@Lg8&C~&o7ySMe^p1(B{iosYgRM?NUF%YeAG&<GCOtd!&umxZS?xdecD&L0 z#$Mk#Hm$XNRtwiEVvqts2Pi<#PBJrH#+R$lGkMd(>N{*;;N$W&PRmKt+F7L`7-Wz* z<2`Glw$d%(D;!6L<a6s^16pv}$GJ`qdz#bg_R&QfNidIgapnTQ&yUu%ES;`bC`0?9 z2l*PwXm2BpLcbZtIqQnfdmCRr&$x*Tb=;$Ceq#o_>Z<2$I*jyKjIqRHMn2u@OIcZ4 zWVMH;N-^?WOBu&TZR7G_f1PyJ*E0zfaU8qyOJi@{9>kB*yo&lWwhXrnrBh%WgI8h6 zQ}4$;#X$ElAk6m6IQz)KhJ8C4d{@?Z`HsMUya?y(j8-sjn&_$QXxUFM_L>(Q4B&nh zm3WM@nTQ8#5`LMjyLB^MB=D~ELUPIT41wH_O6M>47>kab#d<TS+)>LFt<OKZ(`UZa zAb@VTc9W(#9OQd_EBKlHuRbUEgGT+czAb7#7u6R{XYp>Q5W2MpuONZe21jD7vSLWs z5WwMvJ6HCD@ox6|*Wo{m@4Pv1Z1p&_4N2{;1DO1|MYH*DynW5BgS)p{{y%jO*&E{C zo24bxdU({9RS&)!sP0}&^<r)cG=!2#ZOl$d$tJ&N@UnE{Dz$2DWWQg~{Qm%tsm^qx zN|dbIzsT^<4*t}C7c|K>z1@bZ5@ABzTLqESa^Ex$5Do9J<I=t7N&U4oTMdU%@ax2* zqFdhi{RkxDXyQ31w&V3R^QVaZ6WwTcvS`}gmG&!`FpRGo!zepL5`41CTWQE6JXZ^< z_&q#3r&?<=&v6Z{)4HHPzg^48+(6u;9XoztSM2VN8m7@-*P;1Luvv^Xgzx=%pQYX& z{keW0T*f8W7V5@Ks0nds^5h(U93E<nA6$C$uXFGp?Pc)(dCcAn@e=9ss0`xL<?UE? zIbg3D$n?Rl!<BP+a&5G|LelMyNK)Ha;Af{FKz(>Lmo~bEw$#+L_9XIIaUfqpI`TU4 z(y^<MP<n<Ni1D=L%T_uc($|H5ZZ8{ZFu(Q}jN#WIPrVKD+h4Ez3vd#Q^!xe8di1$} zYD;})2v3Q;C8gX+A1gkeJ;jq8_xVhKj&eEc^snWXFCF-cPoM4ZYExO<L;|hEEMa^O zfrNNc0QCpnzR~@aJ|lcd@sGqr(RJ-b^=n13p5%!_5>`E+Fen$0%sD(@^U2M8#&N=Q zBL`EJSo(~sise?aqOO}iaWwDS7S~AAptJFAh}UlfYL7j=!x<a_fYJv>Qs=%1&nCWu z_$Tqp!k-sK>-bjM{{T)pd5dwpNSryFa<0J~hm5JoZKu#z=Q8+G-^FdQATvg><dCi- z4b-n-aCpy3`lI$|@bvx=)I38tm0n4cPGNz7qzR4(C!shU>+|fxFQpi{Q&v9n3y74o zmgngGyn6DgLdM?jxn(U2^Vq8fUO(QgZA9KZqMO*Igah}m9CSU@w-v|fT9w4dFUbUC zWAv`OQ@du<pCpah7#_Ga^D@z-cO-83Tv`2uLldD2xW-0KPjG5mtu<}Om=kCu;B@?} zKf?DSO)RX~a7X|+3^?nI`_|;}TQELMW+TDOOv(CZAEkJhx{XwKJsME=QHvx)hEv8l zu9Hnz<I|Z}oVh3d`Nk@hv|vrlrv&E`C~SLVZ8f@)X3|KI1Ia%x9lh&@Rg*T1Y)1%L zwD<WkJN{y*MHDMMgs49#7(FXW1oAD+IAu5>?jHH=RA;xGJFo%N{{VFV07{N>gtLX` z)_jqLPbu7ip4k0yUTZdm9FW|~F|}BM!6c{y73%sh#;b)GEfcOjqwuarOONdl$q_qF z;xK(MILEDN&f=AfCa&y!{i;~b(GCVxl$OVChmWONo)_B~0ALTwy#rFvC6XD^GI9Z7 z#|OSEkGM%z4ZsW@=Yd|NB^fKDlbxdtGRG^_e_G~kyvOlG!7vBe)t5XT802%;pXXZU zd#Pps0)x~ZGyXL7v1@&BUz3xtt{0rIAIhS1(a{>Osc(JMd@GD#{IAOM>~cR!=xjAR ztp>_-Xt_zi6Gn<QI2qyNKO=QLRMkk;9YN%eanhuj+6#7N@5kp{a-*%$qO6{c6!gs- zM!c0ZOAS8PPjr>s%V8O_a>FT>Yi5X?b;AY+)4h6qz1FO%AWc^5Ysay}$8B(+<L@CW z1ex^7Z+zE1prCCQ+Dvr>oO+y^+lq3mPBH<>;<<jch>Wz5<w~5lMtu6WjI`}>8qUW{ z)GQJ+mwD&0x@N{cSm#MC_j`#zKGo`86}^jB)BfFerQGSxfR>JN9EDkVKQs*@ZO0() z=cWfr;%B@JBD7u%@}gk(Qb}+8bxl#cf*Ey7OK_W7c>pY#N92w-E*r1CdU#ysqWI%; zj;;<ZXwOo()U^G7OVlj%Jz_uY3zRX%<?UZ7@*6u&=Hvo0+#bTc;@3=@Qqyg1w?i<G zD$vg!Qz`%oLC@B{D2RBb%FYczwHc+DyE-+>$8^!DBy0^TnK6z()?^L=6{@}|@%D;8 zw5;_zn8Zn+F52QmL)STm=w8LndMHeK`hAWAJj2@4Ry@2;Uprnb^$kDacf;QiT<e;b zi1fQiXZumM{mU>h?E~dkCj}V%!FGX@(DkfMH}-7PMUx){c$V)=j_fkr!@FuSC-4xb zVFWe~=*h<bj<w?2H;n!%T=;KN)BH!LS<fxq*}lYx=zOJRXz@L-+7K`*GOY+0C!Q<a zd;#&FP1Oa?fv9QIL3qen*3x)ym3~k-5tW~kK2Xr39!@LTrHI2-c2Zw?%_=owv^;lB z_zm$kJJaGFXTzQx@j_3&DdoDeN#`)+Fie(AM%xs+fWV$`d9RagKW1Oq&%@p>@fVK# zQ{Y`oO`BMAa<S>I+G5!{<TJ&!;SacDj&Y8duhh>5{9yQ4mS;t}@g1#=`3_Rf{hG$- zfwzcmgl>9v2dzQz2T=$1Yw_jeQ^!A*px-HsGQTF?LC_P&Am_bwtTmP6E`+>H({bCT zhrxfbc9-yvL%!B6eidp{>W;Q{M*4e+9!C2^ZZo0=3561O!6*C705$d}i!K?p4I(Bv z0`(7G_3$t3F>3~s;(cb=NEw?=flfDY>nSB$EJi|sf)sJw*WErXnZL9&au3RH6Z0VA zzDBgKHqUi@TAlUN5!Zo=&GK`|&-wf+^vo_HQV8UBtm6!S=M@)SjCDW%*Zmv#!>D*$ z_Pz1`zP}3oC1|(45YcpI2`$~tsaX80R<zcxZ)XYwS60^YgfLEqLo|V#m{vjGcxU51 z$HAemcn-@=wfK49t1C;(pAV(WDnPcEZynXO(g>1h{OMy4v^;E}zQ*~KwS0~L00jR4 z()5oW{3q3XPw_j$@pxZYu+jBBbHlpKlSM9}rQ1OOYej}xBV?29cN0%}G<Oj@B$px( zO2nAt{y6+!@rUh;;=5g2P|&4=P4MpPEm}<k#clrp302Lwg{{rmW`wQ0EF_9lOu=*u zEQiZor}-wP0+mYDFw%bHe3hO4d;b7ipRPg)B(2l#{=cmWtp5OPt34}JpToWq(<asD zwHMbf7L5blYBrj!niex%&eAQkcI=K-t(X~DvK*<}qv-t?;~t6NPlq=@wGO3!J+xQW zYip%7?VCZUYB%@GwCP%{t+Gz7<Qr)tg{BDc$2Q{etBicP@vFq18~BUxqe}R9;TMBe z@hrCj)?W|kw-NsUqpWQltv$^4inf9X7CrMcmj$*fDF-+{C*iFl?Vk&ei9AW;9Rkx? zu+;QR+q=Cee`skI$*0`N(nN_A!s6ih9&=B15=AWF#~YwkSku;ySB8Zp%^eIUJD%y_ z?~DE_`1AWgMdNQCd=&6`e+x<B`-=<fYsmaBt!TQYp(?3zs@D+QSj99$$!VeI<ny^8 zpV9A*Kd=Xa{Bhx(A6fW0sz1YziCW<iU0b`)ezD%!2fWF=g<fqULgGeug_SN=PblP+ zEBN)|2@~NT!ds6Q_&-+Dw9gXwmsFQlgI2cCW;a@0s%j?IJ1sZQneGzX8*YN!#&=-E zn992SZ}GR|@5CK5L4(E`pNQj64QrYdI{vNV&kcRD$HbaHiENNPwdSK|gtMPcm7oc5 zzD^O@aO~rCeBN(bt$MtaV66H#quT9jze|6^3CBd^D}P^+^FP6l+mpv01Ncp>_+#N- zxvv;>saE<)d`o$MtY7ND#>&$}<vU#3!7-g9@+FbLi9m@ruH)Y%KNGwK;6DZYYVi)G z;fpT`O0PDX;F~M$S4dbdJecH%Pqw?3CAgM(WD`qpix_1{hn8kyu^*FsE8w5nr&Rr- zJT<QP*2ddW@dm9J(sdsec#A;RuUhX*UDq=~ccx7QM%vyRYo}P<))6eKL@90_6_@sl z;0K0&A8H;m@q%4{!aw3`Zy(!Q+jwilS{|QwrZwDpVn{UgyM}pY4}St?dtF8pNac<) z&e<i8%;xxd7)pxmKCSm}e@A`)0ITxSO}~AfG2uUoZSV`?KZiUG@O`ytBeA@>n^^HS zv81J@oj#X+^X!Uy_lxZlEz$_vQWmbV+a!xJEx-+5e|#YLkK>=(GvVF-q48r{(QfqX zo83m!LA|%%JW^Rl2_sRwn&KE<z(p#sx0WOp^QO>HmtDU!&7pXYUhw=M3huP&HIK2p z_Yz(RWW0tJ8S`ClE!4sUgZGXi!tcpA2QBIz2Dtb&;ZF$IXlvlx2^lXf<DXNGSG9Mx zkwRQYEKvd(Q<-51z#|1<H-cJamQJkWUj&j$*L`h!+vc>}=6dTz=kh%FN7D4a4(W>y zlWv5`kj%_wk<NMFD;9S-^<!E~D#<7%6-XT5k^He!>&d0qc%xC${5Lw@>9AeSmX{a< z&4nC<lc3J@!OjMMO2oQ?(p!M@IaxU%9N>?j^smt=tLo0hC2N~f>LS`5!I-Jz8P8ta z)@|0f<~Y|Ww4Sb{f&Tz}kyW(`zR6|gFU+9)-|qFuuO!qwRU~%lYpTZ9=;wEz_hMB! zE4j(S<aZ<wdg^p}v_?{^WP0pcwv{}7UfA3}A0uO@r+V>!+VCrW!k-vgB{)qUCL`Bv z!V~<f=HH0lx1a2T@M^;P=f<8rw7ZW>mN;*Yjc;?UeTGSnBNt7lMLJuSZ<T!3QpbUk zaa#WXv?uKi@QcQOuusJ3wB1%%&b{IIB-58su)fnp%1a_T6l=?PP=-^S?#4RT*l<Q$ zUY2D}tl-kLx_@z=27QW+OeCV7w~zjmkB9yXv~hR}))I01phuv|CnNK(%WsJCMKA5E z;#q+rF>?~I9P%Qy2S1iZEA;2!-TkJk@b=0rF6JAC`#gNZB1&@0yPzbI{VVd*#`jW5 z`)+u$%z%Vyh^0qR3fm&_?djhFzgWUXUjG20@ild_KVv*Z^0&j6wT0F<pHM$B8RKB@ z&#r6oYxae;I%kUKfhF@o+Kh}~mR4;3nXlBJ65d(b_!M8uERh&5W*dP!PC|}XoRUDn zIsB{g6XU(+jdk&3QMuCOQ#I|1PjecxvX>-{<xdLO+6WlP6^0dF5=YK)bN>Kglut9Y zF7~=!8|EzwDeKU2_;X(#YZf|z)vvG7H$wMU7}yIDiCfd_Ut;N7WB$)GVBkh@dK0(w zuac(LC4&82!l9Pp<Zg`Zb_PS7k?Gs~E8XF{r$3ST&j-?1pUd?zJl{6oesTwYf7ZVI z{fgvN(sgAml{c%EC%=$`>Ub6M4feZXd8(T$R`ac{B!zcg!x&^zKw!*(K36&2xaX*^ zvwvlF(=7i0wj$H5NoX}6DV7OI1cU$(vV+Gt%C|YMTOCo#4lMl-4-}-2(@zS>t9#CP zi;u^pepq~ByM+8#)VqU!a7f4ZS%4?s+P_V_8GRka$w+rA7}R{rj{dnd`CIW?U_LGC zO5Bg_3$u?=z5f8EeB9NQ&j*Yr`-t1RKdUd;0$sncXTw14yp0kvTc$~o$v=&Ll6)SR zHO8Px{{WUqG4*=<!T$h)d|dARh`tv`oyI*45u4PkuD{a1M!phUyn2Q3UULE;#6SN4 zUb?W5(I01)&8##N?7t)B&yUy3AI6<(C;Os6GyebpUZ*vQ;h7;3MH-R@(!_O9{uM*x z-PNrB02_6?Yk|3hp@1X(kb6{iGDGrg##fxF#(xU@BRx;+6+gu<%>6?Ql7t_UJt}RJ zLZwbOe=$iE^6%UaBRMsNZF<QOFt${4f;m%;gX=^(ggY?*0C@Er{{WtA<);JFRT139 ze+af#Y>bQ!^&09;3kg;6*srL~WC<Zf3Z&<+`TA3xqhJFtBRn4U$H<oFQg=G2@2sbf z?JR?nk}=;k(_1~9_Q=sF9Z%CW<}m;+LD9a&aEgh~^T<6bQp)7PFpoGH>D!Z8x@zUd zRy`>$B}G`3h!`C`s#x!CzS3>yCPZL(a2S5IjSTF=o}!#2mF{;&z;J&-)~YnS7tW5- zT|NcTUh)XjJaC|=L+ZGy&mzWfC6od=A1sPL@1TF3L~qT%h9aGFwoDv!$z$nU@7vnu zH-~VK%mf~J=Yj=v)}v;Osn2s#S#9oN6FiWW2P@_y#78*$%EW);weSb+bZ(o*nq|eh z>=4=EnH-UVc*g_Z^RKffxr!K?bexN5(D1_<Ve9m-j=yR9m6H0-e1Ijf`52HhkTM6Z zKdpTq4Mx?Uqx}yzGMBo1U8wjYNbwbzyVkT=?vMgR>k(EQ@<fqgy7kU$=6!$RSAl*W zc-O*u&Yug<4y~=*+FaXQznKwMIUsHs!Ca|cbDI4e_;juR00{N0x%=DjeS;eLU*dd< zy03=kY+@e}K<(2iLzA9*W7fY(%W;(zRRt$w=J7aq$~rAiihpa52lz9=pR|pJnc!_d z>>^(eU0q2Y{m~L`5l~0C{G*1*=sRM)j_=@Sg1lp=?D%8jy(d!hBMNP<j>(m_f>eNd zZs2^G_Nag0p&E2Ce$qMx>?#8v4_(Cg;O$$OT|nvFlla%gUMleN!=Xv6s~zbGkSPI% zasJkOoSawaam7mMuE_bhVdFR}pHEzV$KMt7*vh_}YbvSX;JQ`a$55}Z{+08G?NRV{ ze}&%+{5Pn0hzPZPTT;0#515Qn-ULNW;WD`{#eoN=0rahphMyI_Cuv$pmqypGtrjN{ zgpOe>e<&ZpD0Lr93g$m)-xzqa;$MX{y-UTn{{U@$Do0pb$ciR!v}_N&#uqr+3h`Z( zF*mCizUC9cwFfkQVBBwu#z?lqVyrTegMpp=dh^f^PHXfB_BM&6__5&LNq4@wXC(D; z1<5C#c_W(q{JUufj3mh;5f>eZC5IXB#~r<E^au7XasL1dm%<J*1XAD0&#AV#KhM2= zCSf1lKSSbi3fS6j&-F*|$HNPWAK{_X;cVQCo!(A<U>FW@o<SnMlCrhbq4-(w?@&m# z#SXK31HS%4`O=IPAaZfb1MF+%AA;I#<-dk4wP4$x=Z?It%p4!CbBg<GOtYW<6mNoO z^9+bJ`^MSH1&zexJaj#Bd)MUI)PHd{&(-i>9DlBc&V{JPjWXOZW1Zf-bj5e#VY4cJ zTx4VPuNBZ4?j|Bu+MsfH&N;5`#%L{-mvK8sRyil!pXXngVxxC+=;JGBcOPm007U>C zuq2%QDI&g8DB~(l2d#3gda^{VpOyIo+NZO;fo?z<By-8GDayvw>S}k;NC4ctWY<%s zNZVrL3Kmb-73Z*DTZKE1e_!ccv<^0+Mt_B|^cb%$w!5A1eNCIY){TB%)mFy#b_a0d zZfiPgg%OhciXpg#V;DK$RxoR!Qg=Tt{AUlv3$KgbGx7I@?yaNK^iPP|CWANGQfMwx z4NBs{Br{w?B4x*(Sr$cPF$T^;?LVRa0JUGm?}~p2{w4T&-{HT*>wg$%H}>~$tGrUr zY;9UO6>a>ZZ5yjIp=Myf5)=`f;QF`Qe`ntV{5SEAy{ve4=1be%I$QhG2?cI0Y@l~X z+vX9toy0!C!*)6f`BTB)7-zrNt+j6(d_VC`thZCzdDCc9jY`p8<^^cft((Pi`$kuY zTjvZ3;Ai&U8F(txB@9YV*64Z}<~FW9(v}vMl+#wxU)_q?G~JqQJM~vSjs2(mJD}-5 z1pG;<*#}5&v~5Kuibvi`EE#>0F2cDCM>*%xzn*V}*B%1+Kk)AA>%%%tv^G}uT6Sz= zB@yQ_uwbgpLT=7mXy+N`ziNMJ{{V_!4e?LxyW`dH8r;FCX#N=0{QE1bON&d3fAn%9 z43{W?v1D#RZ<rm&HT<&ZzZ!la=!~za2bw5TU`xwjW93SM3>f4u86@}juX8EDQ}(r^ zh0+&VEw)GH8Op6sk~oC<wcm5lbmX4L#!KUG5Ni5_#jcv-Q4EOzRgj(|XyYw}1O*2m zg#eDV;Bc;ksrYp2n!+vZvq^C>O)+6BZ<<0IG3-8Lf-}YmJq2(70K&@B?<^k8V})Fd z1xbE@U_U>HUrNE1W70ecrTA9w%SmQca@>FdZ@|d|yX5^V^a=^{E1w@Ka*B37b@4WV z;q6NDX>2~uVlDF9-F(c6{ogUyErHyUPpx?K_;<>GFGgp!h-4LlR|)|f;dxQ`4uci+ zz3+x>%&yjqT%3X5Ae;_IU$1)dy>~^rw7zLDHYolc3t;p5SJBa^z7)>}v|lykk2Q+Y z{7)P@g#L3fgP8*7JF)kaE^F;i*r!0&ZN4hOb*C&%0Ml+IoU>&8mSU^&gVp@doCCnm zHS$HgGEc6@1bnf8{d2gIM?X$0^k?>8vy$h<w|7x86|(TG5d#BqRL>X;O5+SjIU|#f zyw{JN&HY|T-!0`>xXAr%(X1rW{0VV;ZvncVJ9aA?XD-`t0*}Y}*P(nSv%b@H%a0Cf zR?}KtYPxl{r)w)le5n!*$ufuOy?3rb>&_1bxxWWXsA_sj+F7WJY6Z#Uecp5USI}A= zhuC#(6D&4cXlxD?<d#$OXPz_AcCX2^iE>j%>3AmGtb3+}Ria50VYnyjT6cGfZQ3Op zi8<@&2{nhJ+*^oJH2cg6Ao0&?(Z02oYf~Z>`LlozTKJlh_q9ERvC#N>c;wR|mK^c} zAI7`uClW?jADbLkllX1fV|6Eyfq~k+8&8@fh-93c<ezHsGdJ%xj{Gyw)7dLRWsmQl zQ^4t*Ri80r`?*k96Zi^(IYxT$MM@b-$okie=5-dtj1`KKFu2EVw9A{rB6(8<asJTG zKN^BdltuZ6p#18S%p8&``JI63G+85iqqi!^zuqKcJ%PxqS?^(vdF`4YHnU~iaBy*) zt!a3AHInh$JfaRgiRoBVG-ex@VY|#N!Rg7xcYn*I%rEaVHsbEiM`Idp8TpDhVUz4| zab6p#J@ZTURfa}I8%f*zK#)h*j+NbN_UzHR!5-Nd{H!>y!Ow`_81<h6{?UFt)AU_- z`oehi+o+t{%OOr#TkZl-H$jp!UrEE6JH_)x4{c8)ACHY2Idwl}EhE1D`&+>C5g;KH ze8ETqI6um-8(DtW=LBe-v%DU0jk)5#AvCYr7U#rTm96KE=AXou7Ru1u-V4bruAoxe zn_{9YZgbv6$>S%1Urcyk_MGs*jyro@f5cjIM0T(Cgf`lYV<XZKSdVf6HR|HHUlmV8 zu5-sZp!B)-d>Lsu80Q@J&uY=0+T2-5CO7R;z!Tha*1loTe`%=o8Cu%jZ4+HSS&%Gp zHlKFHe-D#3<p&+f0=;^};+Bo5Lh))^Hm|2MA==_3x`gF&Sz6tlh+p?|dB+1a;#SM+ zM@dBQr;3ENi@EDMSCbZrZ46ui8lRyfCbZO$0YXPSpKnU@D=!>)4^-5C#o^6<3E@ca zt16hJcTKUnm2ftJA=)x>Ps@OKu9DMNjwwn?rFSk)<AM%4b6gcLGK=?-x^BlwY)sm; z9kz#%j!yx05B&<eD@zr)xsF52BdAh49QCdPMARDOeXI^w_iRVqBof>n{{Sgm``1~g z>hRmVmy!pOVpejIqdT_1P8C-qo;@lfN0&#q?peRU((FPgVYWa|{0oYUbf039c$4K= z@^jPB)9qPqbenk;e69-sdW@6BIhor?mewvyBQF)DgQ?NzP{SNwY=SVZ(IM-|`LSH~ zwcy=1R`B!_YLG*B=knfkVfYS4K45To;~1{9M1@A5hv1?{PvXbh)Yh2Gcu!AKdGo^K z+_}YYx_r%@@RgC_J~8-pV=dCyM)LihB?ytT`SC8`H)0vYkpe*jJ1gd&6?_o*fAE_` z@n*T8<HNA)I&^lrr`Tg_Upgs{#SE6ru)gj1#E`h>jlAdYt#mENiK2m&?M#oUUTfxm z+Qtxm4{OsX*nGPMKBWDoECbVmJvvvnfyY*alvJIYvCUeHWUkJ8_FwRKg*2^WQ1M5H zbvW<E&5Th1ih!aQED0!j6UGXz2sQM7h~0m*v{+c<H_QJ3pqluX_7sNh4NJu^T(NI1 z+S_L73y=)blaO*pJaT^lj(*wKf=PL$NZ=B;iTDg0*LErU_BrFdk3@!5SkNC#eQCa6 z?mv}QMBNZzc%(7Op8o)s{{UXJFhBp$`a9xp$8QvV)*c*B1$ZaIdY^{W+r*b&5$+*- zWFAu@zME+k^m&%vOE%*4L6}Ao7^Rin)6Z_dXHON$ty$@Dd_YLN8Kh}(M`_`|4%jWW zlx?8QOK)}dnB%_v++kbGNg+m13EYfO{d?grjvw%a{3O&qA851QN2zOfvCDC&PvlOY zWsWrw+p5S50w&CjkX8OrP8Su~YCjpZ?-2MR4N&WUX!wPr-@>+fiM0^PK9*zhq>5Q% z3lWkA<|5;JBNWf^5976(R-w&Kl{-fMt>3P{*K2kCt<bzux8wbPT@TNQwY^^R;~k&C zKMF+!ri_uK(q7tW&tVi|_Dq{`Vy`pY!!6vZZq)*$yHSvVkh@<UH7^$a$DRT4Tz?S! z32~-tdbX{mTj}YbX|}IzEtU1g_L2)-O=6xax#JfeV=72iTs)B#-M_v4slR1^1?ztn zwQq>NA@J+?-se)(Zza>=eR_Q^;!A5L5hdl-+Nzjr-J+64g#>EK8|7l)x95k0e`;Tg zI_JbK8{)T*HLYvJ{spquUf05Q-aL*LvAHc_a~<}vrCdfJloyU?i$|6jOluP}yhV!9 zmb$pBRpxw&U9ZV}?0DFUmR3uD_yHfpo6n9v9Q-k&{?FbD*Yr<`lV4tGnvSKeY8rKp zmwF4yv+cH8Lzlc%wntHH#@ZPl%nlZ1h0pCqoACbtz}6oN^nVq2iswP`t=^lfKAUN& z>bjHZvs*r(ie|AoWBj^pmDGz7k{E=Za;$PrNy}IB>7;9)0b$p)C;gmnH9Nbze-UXq zE&a1ex5l5^D;$ztYC3({x`Rx-i&DEWBf@^p(9FQIL{ut&N1w9i_CAvwvHsA$5!8G; ztT?jKt*$&x;s(7s!g-Bt2A_Dkq;a&8UA*!~aJGvw2@36+b-@P{Q^Yybofpd(-$i@B zUbg#_TAcW5i95gR`uULf=fr*w(|>2EJ{kOSZBtd(^y`T<TlMhm&Bmvs>GwCbC84#r zYoH~WV)Ki`<SQ!e@_f*vWqH5DFM<9u&~*JP##$YPuaC4V>o_dd>RXGsV0)QvHtI6S zOEuM;aNDfXEF)@pjCL^UI{kaV-VXR9;mvpUt@wfD_!c{>%Ny&xCtB3TpP*RHBSUU{ zySe4cK_sfPTe$hsZ{0~A$5pSQJ_}ra&EE}vAKrMk;l0(Lias6q>dRBrZgnjRNNy5I zH8~o2C)90h%flg)F<^^wOpNM-A1!>HToqhoB(T~myZgFd)vey2<a9;Hqt|<WXVY4r zg*0y!&8mDo)qF_}q<U&a1g2{lA-aKW8e5bx-nW+52Qme60Z9n?nPmA};=dDkGvY6T zwCy_E$9g0>RJw#eXhjl-W6)&nXHa<=9dU~KH}-b;wBH##3jY8VJ}2oKzl8K#-|X16 zNW4d8EH!BF<R%rw4;W;zDZ#Y4k9h-)ssKDM?FZw_KN$FiFAiz?Wrd&oBJ*9?CH9<1 ziuT=P9!c`CwlIV?0A?JWq$vWuJ`=;^aM5(@yT{K)ysfX_wv6qgJIc{szt{E9`Qz;k zWg=V36gCTP&T>5m6<wv0a$VcyKY**Z7Yi(^uAq!#p4H3V%);G_O}EP={{V;UUwH{# z*yxk7ABZKA^F_F^wUL353abJ^Q;cOu<Pq48YxBFs-?HDq&k+1$(sf^ndSdv?{t`L1 z-a)Oi-dYz`Pzkh=zRXI58xNP2Jb(^!_WjGt4w7fNa_%GyPxo?p{DH1>#8wv1;@=4B z3O;1MK42ZeQ~v<!;=Kr0l`UY}^f=~})ugU|J?P#7@V9`!;EMkM8GJY4t3<Z3NxW{W z02x8{O>TQ=2nRgJ94Hj^7|njq{?!_iSbxDizAsqDJi9x84aA;G3`Vi3h;0e?a1>xJ zF^((pGsRaHmcQ^vFN}{n1XsNA>M17xvv`v9C>iQW;8*F-?OlJ5*aPE2L_rPVa^UBT zA1?<Z+r561!_{B*gk=8!ny3Dde4b|y_FJ#+f9XfzFYH<HYvEj<4LngMr{V28P?m2M zYNO4#wTeejj;MhcuH*qg2LyA;$<2I{nswy=0Jns`0@5#T>~we5*c)hNAwoo`Rbyt} z(ev{Sqyg9p{RjPu;E;SS@k}xj7C#v3>7JZ1jfnko_2Rw?@a603AMjEM9$lqVS-jeR zi{%QVc6~4yeQWP1)RU=Kne305sdr|6fqv6EcaMG<{>z&8#NP;bmhVuTN``$zY1-6Q z*H)|{Z{CgZ#Rb59iosjWAQQ@({Mq=0ZQ=-Z+k>yIjM{)iM>gJNx&!4YD!aV(!0D1e zIL{g5^)L44ceVY6d|r_f8skR1CmfxH9h)QE^Iw(!02RDKZ+<ZNlR`_GE+NvSh$6fO zFpBo^IZ+_uKuesS-49B~15)%`XNSd5OAgySyTQIF)4WGxWqGIC-$M*?`8bw1*@2C5 zf)-q#b^{r&1J!gigH(Gtbt_oqh31vwxOTUgM?0N|WRa-B<O930=Zf`jhIbMl4cW%| z1l~=MPUFER8SX|a#OIpg)5cnr&Zh!S(niq}5H0(##H)h2B=Q00^c?*LQB6jq)KT%g zH5f*%NWpgfO()Pb*3^W$Wusn3e5Tz4EbD+rc-hW6jPb{%eU1Ap!6YlJMJh69R3m8w z5x_l9BLm*PPw_>Di#E5Sg*$a?zwD!K_N=On70U?7a}Yl_SlM?gsri|6jQwN#J$N5O z)ULH{IvrnBMomIUU<r3V`+cfG`GnhCM!@5Ghah~yy75v@7e3aVld<|o;5nS?EbWX1 z;Pc#!X1^}}D&1q^HT;S>7uSprAe_x79QqIE`F&seHMhhqf8oxR;vW$B!s>lW?l)&5 z-qJ`IM=6O|qr$E?ZQMYVV>lSEhdg<$>Ng(~wXG{vvxZ45ujNs546h1H=5At4Y_jb+ z&QueQ#=I)nN!g{)@HnCz)K{tfV*dcaJ+7mZ_9*yeB4Z7rBYeF%mCtW_{T}#FC>o{e zXRHAA{{U!L;GgWP`&VjT2R;P+2lzjE@b6jI8^_i&+UOTrE#-{fV_AltVRSCq&O2xF z_sO%&U{x5Y$i;q^X<xPX!ta9meb0@)K3VJD0MZgD(tG`9OPTDTdE{8*6W&=Ht7yZy z3as(~ScL?V1#5(al1-mkmp|N7PqH&UJ;$fqd}7xwlTeP{Xs%i}NeNDh2>F-*at~u% z)`vaTnF((tu0iNybt6Aq^ImiDkM@=LQQ{AYx0l`p@vfP14yx%q2-k7M96V@Ltalz; z9pjbb1adeztv2|F2B0m<!EJfwf%8QYwgx#R(>VI(zYWeX)m|c|nsYzQ{YwWm?BlOQ zd!3EgM-nnRh8S!P2iM-VV~J<Xv9=2K$6Da@J%3DVDDE28=FiOM<dMK5*A2OUO73kE z8=}o)c*Eu0iD5?L>YiDzmaeSrW6*?65f$u+(m?9u90AiA^{cxjT*gOH*0G4zZBF}P zZFPf#<x0^p^!Z&`e!n$LFEt6BR^rO;AcPReBb7<+KX&B*0OPgiP7LjXI;&fwwF9qg zRm4DLES(tsRn4ZOYa4#@Wsh%Z)#CpE(9{gqMP%adKV@{8hiKS2{{Y8Htc?zmCETlq zB#z+zbm<|QIn2AhTnu{FX!9XLBn1yl9<_DnRYV1j?w^fxQnke0j_=QcJs=rbNLZ9% zyXLt?wu07Fl2!~#^gTVQC}x&>7Pg##83;U9eWZ^94?Xu47#Z(fb)$P2#n??kTQ-7Q zN!uILp!E5;>t7-M)VfR;vS`LP+4d`TWd(DUD5H-<m9M9D2~pZdfPzY7bDx-=0I!$7 zY5iYKNVK@_8)ekijfM6Kxasej_V{)m?H2NXq37lk_fhkQhxDHu!*2$o;p>C;cRV6E z&N4yDxZBsz*UjIwhM}+N`VNnEqQqWU^=;CUh4$h(7?KB0M_<Ce&-i(H72k(!))^Iw zt{4I`4&q26zE}A1nS3JG8OukguQ})#O1b<6euIHuzekTfj{yC<H4EKO<8Fg_sV|o! z_<rQ`l^^S%=O0|x!usdMUk>V;9GWzc%?-=j`DzXw3vJpyVaVsySKVK?laKgbS`*+( zsp089T#=vOTM`KzjP&c%^R6f2CyYO4jc3C*M_Bkzq=^;{$u))ctEbGM0C<)wmTdLG z!64V@Sbj^TBjqPHqwb#__)o<CAMo~-Ev~66C(a}r5WeiLI0K>M@vM)D-ZAjjwczom zX_p2`q?H&08>qlya!DOMx|;S~M^5+y;_W8d=fJ)mywfB`^6ntKzn4&66-t=pmKbIj zIR|q-;m&i{#y%%_OT(HUg?`(m+K42EXw^t|VTU*%hHgRq4R=wEKWv|wlc^_3-1tIG zt>besB|w0yE<M1{{{UOxJ*)0d*!JmQ__yISM$esba~Z(N!`s{|H>UvRz7n`BJW|04 zC1T~e4q17xvwvi1WnYYb6_F3!p5=%f91B~Fp4c_@7}fikdLIFet!#A|+jf6NzX{_h z;X7+9L-Xw}SZ9{N&;I~kzUR>G6@CWzDk#V@CZRN&N%={VX^vYQjE<aluZ#W-T4Ujz zzNXAf(nf_&ImQ7|lm365eRrYiQpxal!B*;@I+wYbuy~AINQ;BhJC7iaoh$NAAZj={ zwtlsjJJpZ%(7$hQXvN;z%_rv!ZRJDHxNU~K_g3+4n`Po@JR)qhDChe+&MqFxMzh1Q zU7mVwQ0tAwPhv5iak*ir+MsCKFbK|Drb+rzORCRrGfibH1}ltqHThH>uXKGRk~Wu6 z@co^%YWI++MG8E}*nXIN8k!wPN^7q&Dd9Vpw2RmCs`r|_(|CT`YnBWo+m(JsGhED9 zT1s3<BDM0%<d%r-KU@#+t?E!j^P|=D*SEMHTDmbkaKM~?1lOV17crwQO8IU<_2gH} z5NZ0H-X)Jwk61SLP(bM<7Z#S%MI#nc9Lnnx0-zNDHaR)x6`A7y0NR80UHDX{+u~Qm zPX_3-Dz;*|)F6gq(>R7XozKt%Tyo0l)R*qleu<ql@sNal=8^T4+cAlk7|$lDLnAC@ z^T6xvUzXl6{{Vuwe!%__6Gvg<-9ufHAaVVTq-qkwCmH?S)bd+fAFlnm@0$4|#b5AW zFNYQp?D$*o-&4P4!1HyzVhc1NkGvMbJxHE$!F3${>i2Mb1De+OD8HVcos24Hn02(T z>96E}LoKH1TI?r6*43WI_#0{P#SfD>^5nyR3E0P;-D~Hc2!78W4(&B<FUMa8HD<81 z)^1GtbWoznY*`hVSrQRpGh+<fNyy}kf^+=d_{aVW&HG<!*T(1J=9S@(3qu(NKhP!B zCPr2`VLjaOsqKu~<LWEqFNxpqQ!m@^<6hD61LDt!rHMb~oxIliYN;b1yE;|9i^svn z6^9v9kVvoBxKDtq;i<|v*sHd-duVw$%=;G>zNaS@*KK}B^~L*0cz@!anfo?;L%H~i ztR}B{b>R!mHpI*Yw2oKKIK{++mok8$%;$o44C23@PapovpS2gke}H};{i%Fo;LEFj zhdwKo7<BItT57so{iLGsfoklr-OC~^$@yYC4qGbW8vy<&_@l(Sw}~|qsCd5Z^;^8| z7dPzpw*cfHmV36EMH%cEWY_7p?C0UFJK{g=_x}J0h1Kn@ofLDF^KK(~B84NKE7Vnv zINi4y9g3<ZOA<*LCceuF!nE*w)gvt=)AZ8E!sc8_R}(&3vG<qC{{SR&Gx)bhytp<u zt-Z1rWY(D(_1_j(zf+p4uUu(51)h_89+!1>YpO#esQPd3QZSeUF|#Xtz~|)zaC6h2 zQ~06qf8jsu_n~Q8*NQcrU&NY@qkAR17FtKyG`l%SLgD8##dmcKc>zmA2`=3iAP+F` z$L&cMgMK3Db~F4m@HVO8y$JoDT^q!97hWcg>e+ye#mx72Fv?jD9XyqUq>8P%hC%cr zgy)Yw9bId_hn4ltODgWn;AHWi!{=6#{{T^&No4!~0NNJvz^m+ClVRr_7}iFru<9^9 z-h->!UPH!wi6WR_@%$u_$rbhI?FHfg0EK@Lyk!T(4}zW*hroUu*Yu4(?kyiop6**a zdxwbm=GiY=M~XK22av2|jDxf98vO6^PlPl!)^BXDpo&Q?WMuQ2G!2;gVU#H!hd8d9 z7<Z(${7!66GA-ICMFx+1XW|(3N7~Ss+yb19`$;2_*Bs;Xue*O>dw(-i@mU0a$OgfN zJ?@+N;C@y4v*Ey+PN-nCk-`WvBQm>2GOPhm#{l*?>tCjyuryMAtH#o8KfBU&m@+zi z*E17?><7JJn!!2}{<@w8n$2l?KgplAUJ+<5G?LJP$ZX@e+sEl%%LR$k?{qzCMj%O| zET~b~Hry`+bjDAoKhNfE2U0e=YTL%dI>dPPAoTaIrmkX{Q$>Ufq*@Y$8Og@jPyWqc zl5q@IvQNzYgDZO2^nDKfCz2v%Y#s=7R@_c{k+lA`>5~5dXMKgGaRJz*;Te$o@WH>G zc>e&0)EjX8lbnH!e!c5!RJd~n6!$8AgjeU-on>Utej09i4XwSbWX&47hE;5+3@}DV z-6Z~%F}{IMl@!U5+c^Cg173Zj-At-iCjnRV;C_|VTgy3O%-fXqBQ@q?Y3r%cPN!qJ zwsvqBE`FSk&aO1vb>qEq@w`4-pDYeZ`EtC2?TXm8okU=XWWmo4clvj1p7r6*DC~@u z#g>&^oSt~=NgEx-M^8$61S^w+kHVxD@UxjY2iS^GK=(Q=1LeAtwm<{(&2xw{vqla; zcLW}T<~=J<N1Y(NX=Gwht~nSW=RJCKsu0C1MKhobB$dy~K{(uT`d6m^0D}`3@iUOu z6w2`1TgtIv_cJ#|L55;aU;rmQy4UeH@$t1UjeoVbk9=M5pHIE<3|=7dJ@ndi`W!Od z$#E0S<wG=L&@-5%3Z^&vq%!l9U)i_C0@j`Z@lEWplrU(TlVyfD`y{;cUxi<?zJqh{ zqxMG9;{Bg4FMqV|{6Z|eM|GqsjdW>CX1`{)hT=GqWPr>fl0dB3EX<_|<Mkg7F%J(K zwc%#;TJ7KTJ}Zi{_+p_N6Lwqu$KxiY<L`@J554~YghyZ0wLK>8&0{TNsoR(?p;<=g z{K)R%TY<fPWG{lt%91P5bdTCY;s%=FO&z891BUscAmkoOv#H4F0*qJb{{Zdprg+!l zf5MN1x(CH|xzzqFtLqDHv%E6uCrOc)>~{C_B#Q&jpC@UQZ`!ODV5=Z+#%~n-Hu#U> zba^#x0f<+?COIO(91<Njp*i53k@#Z2UCZ%Qu~7ZwQfo)s<>Y>Cm}J<R68`{asO|lC zKF#p=?JH@l`EBBRHndg*hhWpf&X{J2OlZ;>Hj=?YGq4A0l0dJ$z8UzDz9M`@)IJw{ zD%Gx+SJLcLSb6P3tZ8cC2$AB8=blL=8Hr#<kPXGrYw?G`A7|FQ6{zSpFy32S%XqVi z=9)2Y8o-JEp!tNP!CjonVp6KRM1*jkdS3WGPYif(!#bCOJ|V&39~3s7eQT+Bw@%fs z+fmh0?Y`M<q`ifLiR^9d(%<aYI+PQrxOY);xDAc-+2#hEW$dE)WbbaPPN&diSjyC( zy{7M}{Q&q=_I~)Yqx>82zr@{MZ}>@kJ+J7p-C574+{cI2Lx-Bqd8RQaod|i5Okppy z?T|Ohe5M~6c+*e#jimSh>6`6E!duU$T?K-90=a2QKK-QTG8inRA2SL`*blw_!5{Ea zZ-AZ}{eqzIPsg8$wmu*6W~Z#`s3F$x;e9^J+BrPvZiVKd6xPN`Hmlmj6k9;exQ&A3 z{W0;M<3EAFWX}%8@KfTihZDya7dDsL{kE@b7+JLY`-xM@p3>uEr1nz7BX3ke<uD4U zSm1t7n_{a_s~CGbrxx$gNp$)2(EF?|b$HpUpEmp})4WNeXm?WT5#2`Dw;yYs)rpcV zI9xk<X&IG6q;92KX~sz$0&BX|d|3vU;sw%mUnc6<M9La1=;lVj0p2oI6;+Uu$_`jA zdBs|_wbcA~<1YjF=im*NgK?(#xpj+ee#gZ#-PqXJU51J+IKebfd8Mx;^Ji<(y(5q` zZxIKLuZPy&2k}m?u6R3Hj{fp%y&~p#by%#tvu~*BYvf;ATf+p6_KORtpmLWe<oU5H zuNhJD7`)|DPOW=g^uK+-uS?qJM02WtZCJ|imaA~uA#GGMv{Jg}G*C8!#ut8i9;dB! zLt4=z*==WVuPlRl#@R*+a5oijqyR_<+=0~BKjAGJ!oyFCLeQiak>_$r7$sy6$YlpD zf)07-C!TA<yg%^=;&;T)jasLMBJgCoSBCWcHb!3%>Zvp`&or_k#FnryOvdZD`J9kf zBn+;4rCytskA06xRf}m~bM0*zl3gNV%rYX6oc9iM`PPlP?$R{GW67H%>aG5I*CFA{ zI3m*Si?&@ORxGS}Ju{Jxq-MHHRx#<?dnC`9WMZN4zz}|b{<X@#ue|T3?um8ec|2`x z5F>68e!I!de9ik?DTCnGh$V1US*&tTLyMS{j)%83^xf*+rnZ-I1bLMK1Z8*`9Xa=} z0{x}*ZC}OT2=zS!PKY(-$+eO(DGG!|IyuWIY<#M5$K}?#aPHMr`=LLC`S129m(0HL zDzPmR+gd6(BLsPpWB{Oj-Uf0(&j*8FSZgxf+Uojr7X%fO?L546Cu?K>0Iy#!e#o8^ z@gIh@zY-m0DFR(v*~0|0NQGR9q}r>s*ea-QOE*q<9X`bI$AkP?qKz-a8jYg;j@w(4 zPivTEig>=&6fzQmNS)N2at}f}5^LPWuij{I#%kwUTVjQX<BDgP{^#+oUL9NQ7g1R* z2@v_Rb|7RZ{LNnTV(tg|{3~u~vz@y=Pyf;VCHP_R3rg{98a@0siQ**H1hUI-rQO>_ z95KYf9!c&Q-dG`4A)0dr&@sjcHR*ak>{;<AT<~}NCcY7p-u}v2=76e5T_bp>Xqg)8 zV#6R(G3Ou=wm3LBub;db@uT9Gi?l0Cn=KFfH^G{v(9^BFO>$$gOXUVRZ%j}<skxah zme@#Oo)kzCND9F39_rfs_df@<eNRU5wzH>Q>6(qQX_{57-MzeemBh2O?R6E(+s7zb z;faB@NcOr$8Df=#BmV#nLl;?8lxjQnwZF^q@;_l%nQ3N^gFkC;*>~dXzqB5a`#*eG z@T{reYj|!ozY}KqOA8+nTEL%XhfiDBL3CMJ{L6<xaSQ@0l?ghE_|Nu$_{-uC+XF$o z@mK8s0H<1LUIp-o{>{@g{aWrzrq}Ogo(m~%^t;HTx3_%~$~KG}nOAG?kPy2OoA)37 z3Kjb`U;f*_2rTb(>+ccRTj{#h!+7^kyVU|qb)v&=?=6M9Z+NY(rn*Re)FP4tENLQy zA;v!~J|t-x2ZcOYq5L@T-+{HQ6H@Y|(=>TC+i9ZGQquGz-v0n+N2sgY?~OdQ{m9-6 z4C9P_UNbeIsdC}n-pc(G>ify<*)Kh~s>#)YlheP;^y+-C@hjm!?CEMeN${(|zA>}8 z(lre(@nO|8IBoSA^)C=u7*-1_)YD^vIH8VdCW;B}2yKyN$C?Q}&+Oa#IQXCTk@)-J zYdu$9y|&Y=E%f_e4|swrNHp846$Hm`{g{^)=F(eRTbppcQaZ#O$nY7aUn%@E;|8^= zcpt^qng!kVnWXsFPVnSUD4y3$zk<M9{jvyzpJ0Kfhf%hQ@<}eg($&nKNo)d)yZ->P z{{WAFX?=UaUMbUl9r%uWEh5uXwX|(!#$7v3w~of&eZ{oWi`IE#nqo!4k|vDrX#_`e zZ9X0))r|*UH8p)2+wlIiIH^j`$Lk-)uND6Q!9@Q6XPp+~;z!5-02+-#+rv`F;v4uE zMZUOe5pg0~A+e73NiB7GUS(^KE(nm@<w#cC7C#{PpYT)1o-bkGO;13w@P@Ue>7g}k zb3?ZRIo<B0)M2&MEa7`;>|~m2xo#}xP1f-Sl&Yv%GwVJI{i(ld%`Q(5{5tWjng0L@ z#og_je`afXUaXI&YI=3e$+VImv_{ffNp`b&ZZ8tlJSd<@R&U-n>lM7ZPs1Az8+=F9 zv>V3wnSW@WBJnM>7VwjCs@UnDU{sPtlgK-4lGsaczF5Rhzd2@c^Gk^*N~9Jd7E^q; zy57pyS}m{U{EnE@QGCnr(BM7>=)MluJ_Yzs_HU2GdajYG>AD`BZ>e8+k~4VPt6DOj zK1rHXWV=~ei%j3^)$q;Od7h)-8@~>GNdEwZdE-m#eKH94OC{)vX;om6Lq#J+60@%0 zS8!|?&UbJ!ex25TY9EQ($HA=@+UDOv@bASb#kQZRY4>uxpJNkS3!}bMaCbukw#HeR zhWri8cs_XkFS7ABhqO<OdYUYn(%ZF+-cwIzZ>{0-<Cf=ibC<V@*t?^=f<$bhxe6=W z%{YRl9=9rwGPa!?cj~X}eZKa0;S)=i)?crEw)_6$=Kla1XnNm(JXd|--xb)&4c&~J zBq+-w6+d!CY=Y6a!B)pP=Ld@Oo2^Sm6S|oth#n7{6pE+YcHO_NevSM=@QgNI74Xd8 z5#@$BVEbN!YdxH=d$t+UVQjLvLQ3akj~Qk$oCS7KxcrfQ`#=0t(={C%P19^&RJqoy zXTDUl0rvfw_DrDX3=|Y#K{*YKWE$w<-Z7z!e3M+W?9JY>x#1U+T3tp>t;92-;gwx; z@5XBf#a6OIYo}ZYn3(S(ImaPf>|^u*^ZHfYN6enpqn;ITGP@*DNIk&}I3u_`)+ODw zq}qH?h(ZLOAOvKl0AbT<7_YsRMay%UM(q4%*8C;l{Wtyy?eUw#Hr6poWo@eX+GwMn zGX$2;Uzu&BPc*Sth(?82au{y=#G3s+{j%+CG>`Zu_r|>^K!G8K)4?wlyb&(dMTrzf zh!?g101EuY@l3N?{{X=zeld|GyJWxd)IMH8QqSTWpfk7=ocbKs>BsGnC{Ne}<BWI1 zdXEL%77u}uupBntImc@KJBMV}WlhUpdawSFe5PXu^=6m%KlG#UJK%rq5#b+zlIwp7 z{9B=TqC5R_#QKHI5ZOf9nxmpbC5aVxvY3<ylN=nD&j%h?V!sZ4AO6{T55!yV5Zqem z+M&O@y1nrf3#9#ybC%fcFhr3ZokUK9Kf>QPC)z#}_%_h~(YkCJRFha3_1_f4jcF@G z<)0$e*KXWnf<f*^LEw>8e{W9<>j%WX579NNgw^ApN!M<p7qG=H#)3-@L#oE*)UYVU zn_(HR&^gz)af<kp{EwM(T&L5Yw@1Vu19+GAGS~kA;REpok*loQEy-bNdj!Csw__&X zDVXmdoxF9xHTgy2?-31C<A00v@KhKDp7mA?o8Hz3AzzK)7AukmL&vY_zwL`*W#SLn zqs8&-dVPcHIxdGaw$j=`0BH6@v}8%TWH~vFknl%p{BiKVfUi6;X+MY&jF#Gz_fepb zmX%uGW<k84?<fRg0CWS2GU^a`M(@@Bht6?zNqt^XOQEIk@>^St7Srs~2S&S@Pu>{D zcsqw)nI69N^WKrI>iTA*d#l^KF^WQ}SZ)|HHhIXw`W*fh?7k10SJ7-5Cd)0<zT>NB z>*{k}6@T{oO;+)>t21pQvj>F6*2>Bp{N7l=&N14)lPt2GMcnxA9gXW%`F^LN-uS0R z)aTGd+G|?R8`>70IWpU0lx5>=E9YqF#jtr(n){#jR+CJ%)Vx7^;f+Oa3BQr%X?Dt7 zln0R@1&IV6MnNR?ug(iwk0$F(o+(-xP^uz~<&+Y{2EhZbBad!t?7!Kb((gvM)#s2y zA(rK4jiPj#GrBy3x-xJTxL|O@7{INubeAGgKFWn%edFxE*<}&F7-;N(s7qE{oab{~ zN!OhA$E|*P`08;t#xD^&a2rx}J%5LPx6|^kyZ-=WyZhPx4e1Sh5hXi;F@_1WOD5bF z_sOr%Ul!^RABz4X7+^oOB*`QYRSS*7zdbN(hDzM)`rPsOrT+l4AJFIQ=P@4+zhh;| z{nG1hGJ1c+n(=e>!+urv-|e<6um1pGkB-)Nkw-Fr!VjrR71S^f5JruFJZ?q-l=TE; zSLb)^?c*&r*TTQCwv9A%nXYa1uP<a0$r6RrE+WIqicuJ|FAhh`mgotuyZ-=f8>0UJ zu*b(D<Sy?6YJ-!;cBTi{(z2)U$I$wG3;o44*(2CLXi2oI--x$<5!7s;xYPdt<KM}d z14OW!XwXK8K>!6f<DdX>Ux*(Dd<*+N{4V{H{3hC8hirzWarWbJcMj#$nFZAAm7XR^ zU63eL1&+`^KiWUq9(!i^xqEGMH<Vgvm3H-VZKF5`(!V>uWsM6&@dxb9;ah!5+9_PE z%&I0(`(N#o{KFvN^Iwlwt12}sCf$_(09hZRQinWg_vQZpBjBHdzaM@%cyGjBE7yDh zYvRpkM$|k}qIi2rveo=Wd1Tr=+PWgf(!yiAmUNa`H+;+jCIA7lwffiap#Iq&1pTWm zz6*R-_>HFc+rsjAX7gV&{{UpgXM8RqzFTCq1v8jXNVt`cnBX129=`_M#W#ljBKXw? z0Z)s64+3$8@}!E<K*w*NBz<#VrL*eH{{XhU8;0H90=XN#Hfr%65BpiF;tKrhmN8n! z`z!3NtMxU&MXTNQKEr)N-ri<c1g~-jdbe$TY||L!hbrTP(B$LjYnqDZ%(*fb*cc3h zkL%pl<Tog-`_c1fBaZd?jN*Iom5!@Vy_K!!jw0$ji4Iwb!v!D=6W*^ilrktYLvJdg zqWtioY>+Z{V?BNA4$62|2Dnzql^7q$jAFIoJJfDJe;>-Yq_sPs?v1z-6_08ujYl85 zcORi7Q_^cRLo-O=0twuqhu5I~b(Ddv;gvkXcahJa9@Nh=+}gdh)19aA$n^Z{dIoi5 zbdMl0`SIY4b_7;@zHG?T4hI7Y-Sg?iBE7xL0wo_Su0T`M9V^H@b>oc(!dg?!;ypqg zHYMlJxtcgv<-t6=E<o?b26@GMl&Ev)jtNw;-#w;7MkO(}NzO7deQ{qRe%2a&v=eE1 zlLjUzJh0^9SOJ`4u0c8a8rjjmYOjI%#-($ncz4D2diC9shr6@UH|p0g7X+u74T4VV zy9XHn92)sk;_vNm@IT|<gf!n2{5I5Yt~8T9)uFndO4O|*`$f2q&5v}}>N2F^*FP!i zUq_K;6{**C9A4d-!HmU4#cFDJd%)k?7Eo$hb<)Q3pna?e+DSZaQ~Kh*d;O&Cwf_M4 zR&F$RXyk(WJ>_Hz(Pdm@{{Xe?Ub*n=<7dJxR?5#y(R^K`U0uZ*#PF@;Tf?CtfmR^o z9tiAsu2bUFKW_M0t=vMQL=s!LVaopiuIrJ<Ij^k4LUF3Ok>^dP6Xs9bKH};AGwCqu z4$?@z9mqKc3nSaG=zm)I+u|0fZKrA0-XE7uSR}f&DLjFtQg~3UvB3c0yI>x*>_4^* z>~s83(XLUy)_6|Y!*Vhk%jA9|^sC<-t{Pblm?Z4e!hzqXQD36q?aM2!$HrEZN-24t z9!0Ok;VA{2FbRx~r#@$vK{y_VIs7@S-;Z81v%S+}(JZXvw-N-Dy1sA~v(p^z>7Lc= zKMtaf_g{|Pzjz+-WFB~pbAWNs;<?Y-z8gVo5Go-e0ye0~4<l!%x8Yqlc9nRhifyV~ z*FQD2sa1SuBfbI{kS^1~<v|0m#yI?OUt@m9=+~bYygqOVNG|2)t`^ecw>@*|UlD3D zo1YiSY|Oa`7mf}~0y)9s0N|g>zd-*0V=F0bel+-I>4x^3Oud+>U~s0|Koy5)85vW^ z&*k(OjVU|!J|8fm<&L8z(Vx*D!UUZ>6JcifMULGak6)W$1Ft8iB=h}#h0;7p8vG&f zu8}(BrjLA51CA2$_bxHdP)|JvO8JlBro7iW1+X}ZF$$fz$-@8uCyM$m(crfD1>t9S z%e*e1XJrJHW}Z;su*d+f9Q8QwUzhO(K5Q(}`kq@WPB%G=9}(VN%5AO4PFUlBd-bo7 ze{3JyD@py7bS(p0)%02Qr`K*SZ4k$C9kejKF$q6<?5@Xf&H^Fe5^LyPHR76oIV9h- zFa&y^Tvz2s{1y*I{?q-K^e+=c0?VTKme{z*-b<@_?T!y@7E}0QzB`7nRBL0Y(X6i- zJ3r|j)@zBKIue~d(ernV{{Y~%e;M_yH8igVczeUzIEA+>$S*ZUKlkw2N9-}5pyIwb z@vr<8{{Z&O@qNMB<6Dh3CIwm@HXC~=@J}FZib+7nAM3IYAlK*BwdQWzV|MJY^cXn< z@D&Ba<<1lrJpkvgap_;u_%0F4=u6zAADX}CbK@`=+O_F()ti4iepWp@#lIK+B>YD* zpB-zLy2>%$tEgRE-Xjuw$9Fuj=QzO%IrOeqO}@Xflr@x}WHR#0Y&?vdWMo7Xeqy;p zb0WSt7-7Kd2VefZY1-Uez^qpcGoPD`u5vM7MNWh%=@nz9l_)K2bsy`H@Et}O_X6#l z@JT=9{xzX)=&BHmu0C9J`VX(^SP;uR4(TTWhDisN&$;hbqI@C(Ku|tWjE;XE^^DfK z9Y*|jNhdIt3;-BDxc>kO(2naX$;Yp$$NBo#I}OXMjpQ**5I_WR+w1t%zd2SwWFY|P zPY0h<&T3jZVO@Qpm(S*1$iwck?ZH2o_wR$pYWnNouf<(c!5<5r!6!EQedWws<lI%D zV9FLv%D{zWO^h3G!3P0=HSzt;o$c((x^hc81sN!%zGKiFE<1G3O8RHvSHpi0>K_la zSarCP&ec5G#FsKh6736|g6uMP42)+dfz5Q+rwLL@dmotQc&<!T{hsHxd~DXOd_&=@ zEoSOAmiE@_5cgBfC&-LQM1>UXRop`sInM*HHR6^lWp}GWy2aF1k;wR#>T<$3RQ>rR zD6YX&46zEw9N^ax;jf5#ori>Pycw(8i>n*!Q4A(gx?4tPNd%D=9J1i;QaH{51B%$t z?2n8jyt6FuTi$N6hzuDA+7Ff-k&s(!bQ}ZR^`%1&sY8-)spjIV`+BNTKWlX_*-PRv z@HdCNN#GlCdmYY~XDs#&Ad2D{%t0I~$iZ9@f(}Dt?+%suCF4sA_&i~)Sn3F2xr+AY zIZ=ouB#GS}PBJnXNI2u(zoO3r{?y(E)h10h#qckOFX3g0V{;_7ZX)>+yyF@eizre= zg9AJ<9M|)~<15K8yjid7Z-XV?qo`b*9m|<+Ws~JS)Nc7taf4qek>YF0RUuhg+a9hu zjWm;kJc-#M)!Dc1^5Bn<G8hzL^y)tv{agKnH3;L2#+q1!2N3CQUq5+TNmW<yDo<YZ z`8veUu1y2yA}G%X(HQ>#pVq%rKVdjAapM`7^@~f4vvnXzaKqb<e!c5V(f<ImT=5iN z_N_F#f0_E{quEB<MAwP5KE?~`3XXDX>YYPR{>{|%o2b|w{vT8k^MSYQ<&H?kNjT$- z0bev}ax8uiym-}1q*4^)<>V94divMX{xP|lE87cBH{0m&s*LgrtR<9=naIt4Q^a~< zoAW<f%Vzo2j^o3#!*GiOAPi6Gj=%kC)6{g>QXWAVKb>%X8oRrVi(OkZK|sOp^flVt z>M`6x(UX9A=jmUR*KJhL`b4fa(#@kSw0yW9%C(|%235cM*{4|rXs{S?7mRyUY)0k- zv92oB+if#wt0P4&302Qw!Tf7l37M^O$DFrL+>BQ`T!ahgD%>|1v}Zo2kIJ~G6IDLv zOBCgh8l5HBt}=N!u5K%!sk@--S}8KRd5U`U=CU+Q>oj|f(#Qr$+n>Z&J00+m=8{EL zVD0l`t~-O)wDg8;(z5>mbaeVxAZL*+_5qB(bM-ae{{V!Ml%A&_@sm@wUxVH;lJv4d zo*&fN*s&@UTR!ZLPftqzc>Wo9U%(zI*6jZP;SbfPw4VwLx@70i5yQ3e5J?+t$QjE4 zoMaPUynnQP^l*O8UlJr{KfCaruFd}dfUncuznj0=UR2TiU9NbCP%_CLli|zT)?LXf zH<V+@UO^<NI2j(~b+6TYJEhHrs_)ewC&W(Di#^xlK9@e5`&Ia3NYZW|S#4r=j%hw; z1?P~i;gibj!5OFgRPcAkeGB2;teW)jUd?$hot*+i<wwZBDk6jc2Eb<To=tpJ2Z{B_ zd~K=t(?z;A_mk=uSJBBJ{p1aCbu7#B%e^=<V+Sjqg1vLZzqL2Vt!~Awd|WimZXYMg zT)=J0jyVqls+PdO`7z1JCci~kS=}hu`P#5fCx+SS9xU-U#SiQo$jV&YK#AnxPT=ej zaK|_f&GQY|J?rc*fY%=fr}*vRdrymchLhnNOD$hb)9>ZhuEEkKiEe`2O%K_}?_en4 z-oZJE5*VeHH(xAo`4>$1wAydPq2v4g2IK7?WBVL%+Dwe8E8$VYIgI2CoE+qV)0+D; z;$MU9yjP%G{9n*5b<2BXiuLZJzqPVDY>!~86vEm?a_mx1n8!26GfL;nQi=t0=QD(5 z1y@CF{QD7yhb$X!U(oso#y<zVXZt<s-w!`&kA<3_!`~Tb{yXs{?3x$$7n^yYSWRtk zCZ9=~37uq(?Q!I)86BEE&IlhU`)|cM{{VshHK&WeXq{MThS$Khu?c)nHI$lnhV<*L zKT<(+3>rP#ulBy3robk#yn@O`S9Oh|c;<F!zXv`Z-FW)*;#Yz^J@B@BPYG+0iS;{8 zPfoRtTkFf4b&_b_?c`Y!Vz9#T!jBk6Tr1~|zq9`Uv%kgPiXIN|?~hN7d{N=wh<eY& zO;1eHuDmm>>4MhAMY@x1oR*0TrIa6Ikdo<YEXx&*<&t&^N5N(eDyoJ3?OnRHt)A8| zF3c@CMhMmM=lm7N;BSa;AI26x3vR7EBcbavL#60b>aoWS%u^X8SnTAAIWH|^yShl- z?8F5^%z`&*%OLt&OR|IESByM6@o!GhZ}fc~tzpxyY=5+M388}W_T_G7w)<4paN0C$ z7T1ZUiB+5wB^a?k0emd|k^Un5F|_el?K$C{2Ts*|dGPnfvDoUGM~JVZ({41$Z!KC| zyUQrxmf{UfU~AbCB3Vd|Sjz&>76;fr1i#>?-wiw)@ZZB<3qNRmYew-twD$IzcCjv@ z9kNfS*vch`P8)PJxVXI3?9wRy-F*~K6i;&mipvy}1o({Wgz)vBHX5Gp@=tc2nsrHh zmt=H%s;X6WN6_u!?*m=xx85i54UVKDww~pz;M49crMF_k%Mee7iJnH>RUHc<b_@}+ z9A|tkUx=0(1>cOOv5Lz@yuCv`i(JCTPPw~w2^jg7R#sS>1R?vNlg}O<`#tzuSn<w_ zb>pvveg>ahwfKAEX{_}No0)e;&{|u?Bo?}@oN4Ewy@}(w6Gtjrz+Iz2{#Y;d$BVoP z;n{8M{wC`;w()7Ygu07a=~`Mvdp4b@X^SK>!0RNj&Z>%hyMh<Z18j~61SgY@!$ntK z$yq4b-8~|<Yo`5At%fcNX(wgp`W;2p<bEB}?!M795&fp#KeHmZV9e~HK?*?`EIBwC zI0rSkq-%D!`hJyeTj#Zt5(2EJc_VixgM-Hefzz#c{{X{?{wMr&oxB_HLiQ^UAKK|M z>l!AVtjd8cqbVVWQ@n;TBreh1Tf+YUWfFrdO}}!w80)6^S0{*N_-CNsd_%sz)O<x0 zlm7r{-)ajSbKTzDTr`(5GC+xLBWc~52Dep+#>y2CC>7>lv2s{w%D(NjqVxINr&H9z zW4W4zwLQAxMm{dLO#RpiBh($=)K|<uwtda+oA7e#?@yKCm(8#Nk=iyJuCQ>*RE|2} z=N`56vd!jr!I=(9S}Nnyaj%kpYyE24{{Z0>x`m{xBu4v6RbYNh8-fAI?Vd^WuX_xa zGXDS)JFWQ~m+Z-^Y7_iExz;>Ut^g=O*S>#fO)bpPCZBGm>f+wo(g$a`n`zvsET6lH zBpcu6WZkr_dp?V4;0eW|cuvFn3H&<^%zBm7?AI{gA`~#(!26B5MI17yl5r%5dXU># z5I$%44WRg@+feaGiY#T8#$7oqV@#FAx9HN#`?6IT$_R@_%65SHW5@^5#9t5mH+N&< zFB;xlXtp}^)~{pY8<`!Y(ykh3xLe4ru291=O|_saA^=N=T#!R{<``E}rR;f?sJ+uY z55yiW)U-`qygtxeBf$i=4RWrR5ZOFWBRtYbM1D*~vmxBB7w(61jQvre{?MPXmY1Sg z>Ao!Zd*b`;R^ABWyt%cywlGa_iWXTS&C;JO+!jozJ4oPH$KMhDHvC!m(9&o=3cI(m z@n(^zMR3~X)y!9S8ia5_$#l}#m`pG|)rokbhA220aM3p-#iQ`Qg0;xkTF|^xV`pP{ z1ormh!<Q2XqLb!G{M3xBn^b|lcx+^FYG;a+HG=!}*x;#F68PEw((zv!AKTl<7dJYm z!ksSD;S7Ieh7`Wk?k{B4ui%6<O!37lsTVfsChxX~idkDR2TjF?)mn$c{{RH|FUGoL ze;cRMZtmre?B@Fa09p-keLb-j<l5=cBoQ)Vc%&1waQQM7!J9J&^8Ww}{B4WJFj`0O z_gd4ub!Xx43QOWE=aPH7Ek(3zXgtNZv$wt<WoQhZVnhx2^Cd<BPs|7AFYPb!pTd6- zyeX(_7yb@{%J<2&dz-tomg7*lie@Vc3q^8L%%=8hc>ehT!)*<p<{985m$H>L8+1!o z`M2{wPK4E!o~QIr;m;Pq;O~ho7sT6b89ZUGO>N=Zsb<sz-d@^WB(HKc8_RpCypo8_ z9upszhFRiswbg#E{h@zkUlw?qO}_BQ!fjeV5%^{=vUrM1A*dPe7I1}9OL%SKh^$t` zph;~G>5#CMTSpZpWs;J55OH-WFrx^A!HZy4yaY3IbZ8m6~q*BU+C(i5jx++JBr z{hMgAtmYY37m?++RF2`KbyPo~e+&K-=pP6?C*#|Hg`W_uRV|Ir*z~Clw!5brU9n#n z^$6D12f&@Cw}p~j#ubYWHkild`G#3Wo+4F~vToMa_e;*pU+TuN#NXXtmY;`X^1s91 zu;!2B-xk<>K=`}jTdfPlo++9ed#x>eE2!H?bPLJEmzu1z-Ai#al79aAV=>4;I|7y4 z^{2sa_#`Zz5cox@_%p@&z2E#NFMAfJ9k-Of*zjC5Zzzh`;x@RtUGC;>vV|iYE&#XV zAKDL4);tB{ABSEDzPHpYwI8z09oL<EEP55>POax##X3kMf_WLDR7rqfj1+DKYp3`( z@yo=%AhbGWkK!FK{t`VD$tIDg>Ts&;nh52@t>;Wxp?E@#rZt&KW-+-cqYPix=+9Nm zq_yA9_SfdR9XOh6?CEb$>&QQ34+3c432%H!@KeSbUX!e7Gh8kAhp%r|`$*MVE9Ph~ z9zhkeNA|Uv0C%jRq>*C)DF{!ee`ffr!rv0@Zu~HOMdLpUc&SCj!p&=WHSwNz`x5F4 zs$0sfhJ#|q9B}0pHd*6F#&LW*@x$QHhxNZ0-+XrQu9czQ-d;tn>T7Pc#>Qx&jun<q zw_XCeg2}l^ju_M=Zn2Xaa6LOu{iu93H^GPaoA94acx9hYzrWC-(4&$>`#f{8kle)@ z$|6}V8*&LSn8=VMfosX3LcLi^6%yo&Z=!egeOF8OJoi_YUZ!7*d^hk<#2!Dsiu&H` z!&fV*#cGzb!h`!pHH;*S6^pXE%8mn06;dZn#R@k4zct(bz+V@B5`0Lt@kRHFb&nP5 z6Er5v#8Fw;E~BKi^T?Cww$^b>V$>azbkd2*7WUzGv2sIjci#~8PmG=x)E~#65A`1j zc-O+ZkkkIqBSfCo<l94jx37P5Zub8GWV;Wt=6L0hvMZHFo;~Rw>`VJY_@Ok5?Pubw zO|97?T&0E0mZM~ir)qk0Lv0*ZPkz`%o;d~bM=>tY=5^f~GLHN;EJW+5S65A~?wb5R zuf*BnC(C$C$o&BD{{V>oD*QX}>U=!Z$(zKNi#^@-#1`T0B72r;tu1BSC}s|2^5T%Q z02Ppy2m$LgW$`7b@aCmwq}%@hV)##2OZyA!a^m6bF5`8QJB>XgjiPrfT(m07GAVp; z!2WMq>%X<Gi~C8+{{Rv-%{#;zR;LBWov3N6{iCPq$qaB?M;xtS_SV6-PM3c@s>mdc zMOVfZzf9A|kXggxFNz*0zO>UdiwkeCNo`{=p7vFOJ@+OLHaN_aMIKCN$OmgOoV)Sz z8Kn$H3lk-Wk2U+PZLQaBG}_mCCU#Jt+Gob!wO_;CSHhk$pT>8(nAMKAs9r~S+XPZu zUq!M;w~;bIQ3R2+PCoQ_EETKd-DfYQV&7?)Nx3(Zvvv;M#eQsOt~vDPze&C=d>GQc zA=*!Wp!k`uZhTLw4Q(!^+|evCNVc-=LO@G_Zz`vjNE3)bM#lr;FN%K)d~5KQ#@6S= zk8N>hd#MXMd#gE2k-Gur#z-oxo@_wKokjx<+m(R*XNLHuhANVz<h`V9n(FjSwNF*4 z{KRS2J~7w-0N{=v7VLaMa}zbEi1lmWkWDQ9V7Js&?&6r;#;&on{$WCdO3Ss`l15-Z zc0MX6hkQHx19<w!;#K6=T7IA4=%CfErh+LYk{IJfnn!{#B4dC_L;+7hiu|D0biWYm z-|$XvioPAtp`THkRMmWIYinn36U{41{vo>BvBwx^c4N^%B-ifm#Qy-<3&wx6zx)$l z;?sNwyPHz+9<!j_Xx7?Y`oU(mx2+P$iKpDO-dn4481r@?F<25YU%g>7>^>hKPOc_O zG3TkS$$N=>kCVq?r#vi_b#{;De<c3^vp2`T4|qr8<QIM~y|tPv-xKR{32mXfiWp&% z+hR`W=46I8Sk&wcLXugSftvPT+neKmgZ00Oo(s~n+qi;S=-SM83gwuYZl2$W%795o z;A0|?Jh6h@5nru;vbX#a_r`y*@9hoXFOF8;B+@=JU0F?aae1crPB`Sb@aDC3Y{m%n zRhs@gl(z`-skn&?76LgfOibDR?)|GY582!HllUvB{1y1$qS$KM5012E7xvmru)%Yo z-`g-qE?~Qo-dk&Xk2pjjX;}&|$=(Q4%fvn@Ver|NI(T|~@oQF^()w*}cUpY*Jd7S$ zDN=sZNBw`nKbKG2A-p>W?0@kCRFZ2qS#)s~tddNK-)g%l906aP679ma0~`$Vn*5B^ zto2PZ;Fp8nQMPE->Gey9W(*`*VS9!#vbg1e4U$Gw9Dq*-y>s@^@n((i?^f|=!Ec0D zUM<oz3oAMFom0b}E4Z`1xzjK0C3vT_hW6YvSC&#D$0SlRq@Xhf&QPz+_x?EXCb8k2 z55bz2qj7bn=rK+$E$1MlB78{xUOwvQfS?Qk+}G*ZeAB@vAGGiIe_!T)bHzEe4oT6A z*KfrhZ{fRvYol4QW!f$zar0*!7A22S?mG(l@Ajwtj{YNj8TjGh9|3q$B=JqxiY%|S zJ6muQ&t!zgq{$S7pae;kB;od+;=V5Mq>8#-lA|_0*DGb6-);v%xSS7R$KzjK=pVGN z#3ucx{vUir*YB=pxA5Y;D{RKrM1tDknPx~XB+Q7Vog^Xpl-j#<Uec7|UQ&-l{{SP$ z;fd0XTB>igkB@w3quBUr(#uKl2ZuFX6JD~s9%E`S&u)nmWVe=~S{ZW6R1kW6%1$tT zn*E>bbSR|NZoD6<$9ojBiCKw_2$RTARAIN}amZy2Uuk~de-yke@tgL3wAXwgs#;#( zX!`D*FP3B9aAT5XfNcoTNf=oqR&jzGX<i8qJ>NwApZq4i1lF}b68IARFCc}cjqRH( zWLs>4sz5t~0l{KBXNueVQa;KqO4o1nKGosZGg14`nLlQ<v9|aH;eA3P>~8l+#N%!j zNtb{JQgC|X8L!O`8BCJ=P}e{s{y(2RI1bO${yF~uJpPt`&eL7pe#d_gyje6C3U971 zU{{tg9CDZ)@X=x2wvbMDZR8vba(^uRMSBF_5jEC=Sn|4*+tf%4U>53_3^2zT$sH@I z*K@z0=6tslxqAyE`V;+=wJ$Hgf3n0V=K?Pg=Nx~_ocQ{TSK8mUf?8_7u+PSuJL`Dv zmQM)Yd1)$cQ7CwfP6zjq@XALafFi#)zh^%fX}TVh`zd&GbdjgLx7VasK!s2}tjIjU zxH5)g!P~T-lpVw={SE!9HQg%D_D1-g+RX9WK-w3Vx@HKOlIGn&B;&4qYN^BBN7UsH z_jJ?pJrnkrTWv4nG?tOa<XXa(YZ^p$C|0#d_9h6yP&mgy(!MtRh_w4X8}?%GmA!<s z%e(CaHO#L&?Q6-3sCfx&0l)<CEA8LfS5RATjV{T3ENgWIn<!O{<HwW+<GBl9`i8HF zzhnESv;CVqDVgmgREBliBFK%AbuiDEjB<0xJ8SV=={|f!SM#s^xcwgkC&^CzzsUKQ z$J1*1PsYz4nMKa6Z*}o|;nGDFyb<oUF(s_Wc`U5RQxUEK`G_aEAAh;=RA0CKrNO$h z8aj9e@g;!3{{U$7Keb~3q@qovGvJ({+N-o@c30t_7~i{mX7Tmh_QGi!;}3vA2`FX6 zT78Qj^?`Cp8-e2u`PbYxnzRS@-LsnVD~NpG0$rRKS&zx9LP7n{o52nAtg|Qkwf+bH z0Hnm<4DRpdeU*4&nPZOQf(YIC9)C*c6HttR$;$K|xUMhzYs2?=@~`5F^UBEHS^T65 zYoxTd6M-e0tjNRfAr3nK0JD+$*XNaAbK14e%HCYJng%{XKD=hP)>w)R^YV|wisbD} z#H_N6U?1g7YssRMa5x-v`hSgilYLIgb7@%bqLqpSL%4Sbs2!=dvLeF4j~#jUu5KMl zGmsw)M;)q-#nkNKuN-`%9-pmTCS^9w+g(EPD`Dp@4&H;P9_PJ$WAT^a&w@N(<KGT= z`^1`TH+Q;a)S|}fSfiD#npn1%Lg1ArzB<>{w^ul{`5PI=ab8v8`)DV!5UPSA{o;l_ z!8!V5cCTv*iEx$TbIOu&XMq05ejn1jJ@L!qzNKLta9&+_&r62lScjHnL7?fg0Kjp9 zB(gtGyyW+<1NdPSOZzlfq-Y{!@o$Y=_hV-*uiXvbE;+y-m3yb`(XHt>KO4R}NoR8u zj~|Tm<07N06jku<n53`-kOQNyPrRgc1XtwO#BbVHSnyBm-{EQg6W`fgL9BR}#wzzE zJpTYCj;}Sslu|;gI?AM$Qg)Gn&3>c9^s3@#QV`v!f9WU7<0?X&6z9>u)cR-OU&3z! z>z*a}qjB~{X=L$f^NET%RG;j-84g5>;0^LKagJE$n)$0=@L$4BKjII>*d){;)9!9; zG-<4?#luGgR|HMx8(3jwRgzCBOn_q~<nq}+A$T+6=B^I7{xj8Yr2g5|jr`^|VH~o3 zo)|Yga1~tQAUHxW1#sR4@h*d+>bl3;?jyAmm`EohcMivZIqE(AYxD{^HE2pxl=?5i z-{g2TadfBfqtX5-_}<$4;;edCh4s7nEp+V$#>V0+q%wb|r_UjY?!>R<GO`e>gav+H zGguxf_^bOsT=<!^Ull#I)E72v;%13fUnV25_cU*Y`^qvEap*V|;+mGVX?yXnQ@pT{ zPOmkrO6X4CmN@gzVhQML+I(>&Y2#R0GRJO<fA9YQEurdvTKZ}+<g{A8oxG1Gs#d!0 zadUY4#`*@SX%3yHy~(?FDJ`>?A>+Ypi4}Gbobe&!Bd-T@<Cl;1yPNA<Ul`lZq{li( zBnd6Ko6IT+!pm;*C?Gc~$_ee7z|&ewjc-GYjl=C1jB&{$?D*UHjQi7mIO?~0j)SEA zx>lFTyjA&!MOa-2Vbj#)``1E@9cV?zdzoFTQg_(-b5^srZxh^2Z+UAj=+yZ>XpUe5 zZet{JglqwiUOg-HqxM-Ed><8j6Mt^eIA0B28>wS;U?+H;b}<Kr#|o#AI3E81mYSej z&lcX^Tzupwn5RE<kTP?hPQKOZ+D?n5Yg2em+fjubXVi4Kj?f3oEb+$Ua2dm+5OM2X zg={LFG_U<w`HWUM(#1kHz0c~q;jM<PABSO%{dXAPwgrN^?p0mP17q8$99PpGJJ<9p zKZcq{v85_WW-d>ZkR70Y@=iL1Il&{augQ;&9vFwizq9jrli}pI9t+gQr=!}%ccI)* zZbDw_kXcHt7n$U^G0Z^RhiStB#e3)N1#jc;hkvltJ~a4c;%oD$Xv-Xy*4nX#_fKFh z+BXsgfKCfXxPr3`HZzfse>cu>9N1Y|@2BFA(em6+?-rXL>0z#TYS2$DiqC3}!QXm^ z1G&eRP6y#%6o0`-?X<5P{>HvBj>6_SCeqf|R7D|`kJ#>Gb^{=FLc@yWelvKR;-A8Q zhML#Jdkd=%5VnbGZf3ET)=M^&DNz1Y(azyO$tny)oMR(7uO|5C<3AbSd<*fNw~Tb? z*H8Y(xJ$__FMiU{iDUVgTiince=OjTB*_5abgz@h^0y34D)D!;m*COs<`vYbN}F8| z=S@+T>L}EMwEX=P<DNee(xbY&wk~$Mf-*7B=g)fm7SsL+`~dLon+)F)d_{Yv+enLW z{{UgqlHnnaU8EW3ic7N)Z15!!<EAnz?Vk(&#ox2FosF-Etu&omTD4_MnGjsbZzR_4 zpowEhBZ%%nhw{piAj*|3w!e7C@qQMM#-H8(XUOH4TD0M4Bk)ZuFYaUWpn=_8N!_uw z<JW#R<MFPm!rlz=H;kw9yfb4ip(<cBR%$L}I5+`gxAP>=PvIw=*Y$DmkM?{0l>9oj zm!2B%CXIO{N{t?&s9GkWa>17(Lvc1)j?=?>U{~o+gtfgZNw$v1LWU~{f^Jc52)951 z#xRSF<oeggW<D&!n&qQKzgKVbJ?Q1Nrmrbm$o?SwQ~Nx8PVjGr>^x`V>kFR`X?mQV zRlV+`Z*dG#zRmk$GNfV3#tShVU><li%U*alNYL!9wH<Qu^xEn{q_lLkXp(r>0K8^E zcc|Pxb>orGHT@5N!BnBuv<rU&Twm$;I?smewQWyRfvr)e5KD0YjN04{yJJ<BSC%Om zm39)G6dS)G{7c~<i(j=Kv*E1=z@8A)?|-wb=C`$q+Bqikgp984Bvn{d6vnC;$Rh;d zm=Y`M_;ZQlilG|S?G*2QbXGoNG@*%&M^2k;`F=_K5o)S!>@F^{3vQBgo;`u@{{ZXe zw=|tv(A<Qv)9mc`sa?w+;&{m1NY8Gy`jPPC{s_tYR`|7&>&BN_4};*5Lt^si-rb?V z!ac2;w0^xVanqAucK93q2(j>M!!}ZC{{R#GU9D@k7O=dA+fI%hHr7T}Bz(kAb_ROl zU~3$IA7wNnZhmh~f8c&64K5$dD?7>C)t}E4ej)KhkYF-Ihk&ZQF5Zf`=brfLD(;cs z&k^{$P>NXWueD>#Mu`-%svq`Qw<=?|Omwg5C-#f|jz45CgP*cjjyy;3*TFUxTE?Ga z65DGR#$7`G-Q>85OUHF|(n_th$oVnBz`)|a8N4^IUFcImCZDd&1-x&#!v~xb9OM)@ zPQKN7HyP8%Qk7Z|vQFCiFY`Ri*Cn17Y7>>)S3Hz_8Sz(!^t+9J#1;a|J5((GXD@@m zA$$E!Kb?F2i{R*dF{8zK_LN4MVwF%LD*1#fugxK5EEo(B2hdj?<FAR@hO6QIW(%w1 zb7<(QVQX!!Hvpp&WCQaaKpxqyi^X3P;P5OK_FDd%7Nuh?syCF(rc&E5#47?B6-PXQ z&pj(@_^OkfW873yjVAjYRo94oK@FA8xpLD>9kLnjWMW*R<SAw(=K!!#^&P9^-BRW= zZ9JcJ6_JS}fDTFGzMX<khkp`$DW`a=?4;UWppmWo)<YAG!B`byt-#15f({7cygS7H z6SvZQKd9<)$uLN5q<k<^I(5h&&%JhG9AkdxJgPY~j}M0*+ggLZUPXxQCp`pXpL1WR zKe3coGiY8an$#2im#3-5dI;q>`T|XUUuklo)pd7u1gu!g1C=<B9G_xq^+Waxy=!j? z_@3dEvo@({pIw&auuss}CTFb&bBdgw_Pk@|{%7m2gXFk>30*zI94suj+l&kzmGs}l zxZttZY~cANnoTJsXDNYz@ggQkJBSDG3ixt=6l)h66~q?kRtV!}eY{{WJ$dKfkHWs# z_>(jj-Y}0$Mg{FOTSa0UKYB&uZy|o^&#!v?zlv<IzchZWlgIa^j}Kl-8~sT|VYhTr zGV$~WAEkEbAj2V=O{8)hEQ6=eH|t!cpXDX00H6$x2TJHtU8;P%dVUr8O-h{1`r2zl ztFpLsLg->_fIe->{I`E9(MitIUItcU)frfRTp!Z7h;R1r$FHw$)oCXn9gVxEBE0If z^)AOxCH1UtnWXZR{{Vd%dHU_g>sPJrZLVw^?9#_JT>ZvY>y9`z!@+rSmjFj80B0lD z6|o)G?oJr?CmF0|PeA25XuQCHKT*@@D$H_}gAIUvYbq<WAZH^UhO8UNc9hON{<JE6 z!&G(}MaJkSk+{m^8T8F_6G&1oF#6T2Tc0ihRhJyrT)$_UBD;?{A1Mc|ZBn1QtVDHZ zpL|)e(skd3zAw<V=aL&6{TA{GrHMSoSfq%nm0XR)1CTN^>tBz)9Q}~&wVxJ4q<lTq zMeH&I4b0b8I6-eHD=IeQ9Nebh>Y;%L7&ZFk@uNyzW8lY(bSUm*fv@yyyFntZS~D_v zd)KEcoQnLZ@Mplk9{6Kz$A|o5b#HYG2C|eZpo#Z#To-(<J1+!*xMIIj;1?)iDmcAw z`X4W!HSM6KvGX5_e`9T0{{Z6lq40dVMGmQBCCAx|0Uf(qtn&F@WZ|(Jv_V&P?Wa8B z72tmre_+3ep9buO&Y=dS;pdXZJEcO!a?GKOEB0n&l32m{kc@yq1cRFWCY!?l0JTTP zAKDXCi{PJwt~KpLPSYWZ`sT!zx3{#A&W{|=a`DA(?IO$bn}umZYzlT{@E$Sv!|^{* z@FaRS#H}{}09NqzwD$1DsM;jw`#xNcGR`@Qge)+kRc4Vkl@Y#0eYG6IvT3Gx_`EDR zz1Ds?T>LEfs|3;6Th7<hm6Oem^K4;~H4gcZY{4L$Fvc^HU#*`4{w#Pi;a|hMUkCox zUKP-MW$^Rjjmzn)2BSQ-_L>&DhBz%Rh45#YZC+&%Uo4QiI*8=?L~@yF{>@(qyk+sX zP4T|5quF?J_52@UJ@wtrtf{AK5?jd;UoT0%xO7Izh?%Vl77WPy&^qq<Z^a)KpTVC1 zeidrp2=1nzP1Wx8lXqpRtXG!TmXTb-(&^fjmeh)Sd1M=>iI_@q=p>JzGa9qUzpJ(P zY15<V^f;|5F?V`1?u}F7ckJ=-CtT4yN8x4hE#8|3pLKH$rm1yl43>#;=ZSRL=8JPk z>2(~)Z=jLw<b~sSWsm~T=iUtXS+D$Y@O;|u?E7`7>HZ<m;h)4h>}xDnHkx*YXs*Lj zk)eiZS(Z_<-6hJ-+tD$#*?wi0z_&jdEOal5?|Y)@8inqiXQkM|Wo+s+>sw2yAw;y( z-r`qygl^(E!w`$L5N|u{>yL-p--Es$d^GVF#7zgpI;5IjscmuL>%BT#OO2Y{;zWY> z)>kcPVtauhUn=TXv_p`05rO%<u#>>Jy44)&H)r_h`afMRd6-!=^;@3f{{RH!_;2vO z+ep_w8MUpQs!8FkS3uD`MWMC*&x&jhiKUwU)_o?+O@>&V!I~)L+R?SDDoDj!a}PiG zY5O(!Ewqgn!Tuc4p8Li=4}wi+#;GQidpk#}JcZ_kwFH$O8-3BV`{uSGxeQCon(;4$ zciQK`%`$%!SzFp^%cqO!G#x7WUQJwI$nn_QHKnzt`}uD%6GWF0BgX<eF$jgEU)2xU zf5o>tFYNR2BSrDwg6(`Y;%^md_EBkj^*^>gtYf>2Pt@;LS=|=eTU%#0a9NY~W}RJH zLnQCD<L6$LMa@^;o6}oA>-Dkp7*1JMQIoqot54QHXs_AV;tz_okJ)QkfqXUb2HMQ) z8b^p_^XAfYcp7V_7LnOp?UPh%p>Y+MxQq9e&lGntNb2uja$Wd0_HOvK9*N?sPY<q@ zt9WKhtus=&uo{1tcL9-Zq98I$63C`PAI(V=N{nN{X&Lwb0Bc`_bLn0t)%<<o&lAV2 z{5sM#i*>rzBn<Z=3%dloNS<~w$t0U52@~7GtpcOQ91zQ11Mr{Xw~l;6;q7<D{{RE8 zbsZDM`U^~8)27p2<4KBZ2-#I)^R3n?R_+yfl5aQ6KPlR~8Ar-ylyNmN9@3+-isfEP z`{~!Grk6d;J{d*2lGOHpg1TReJ`QUqPY-*o+uSh^sk>TO%Xb`MBatKi%@8VvSCToT zI5|>)Z2%vjb=kZFs(5!opTk<rms*9Z-P&Af@{QkS5lRemMBo5pl}G?L&K(=7;E$2M z4PE%3S-OfV#h6{q;hQn2!K2xEFk9RPk<IKj=*5=Z_r)obag;2B%-^?g^as~<T|>ma z9@Fi-ts_lunRQJ{L2qXvGB|zmxkW@xgs_uiGcux+kzYN7sY<RP(~PdtewVt}*G&(g z!Ojx*qV_%h{_ReyadM5f&4FVl9QW_rlh=`7IeyfdRrUV>!0YWw&f+_ZQLJfpt#cb= z%XcO~T0Hr_SY66w+pz6!hXTE8Quu-3%?JA;@@-z;S+)5MoGUuXX0cp{bFqx7Sp&oo z*Um_avxwYp9Q-f)MErHLljF6&f%MCPHoxILBG|#A+}p;DBr70uslg;6VwcH7%(pB_ zaI2Dp8ulA;nzGjS9wQ$Z$3vv}bTn^<T0Pf|JW+pcY|_OSRMjjl2D0B}Ntz2Kw6nDe z`{bCmWs*Q0FjYtcKJW2M!M+mLegt@*Rq%GbKZ@=wZ5R7G^G}KkSQk=(iI&FZ-u75; zCi5-AeV$k%b&w+!!vYWHG<xp4@yEp<@S$Sy7PH{J7sdKwBY0l!Up`CcD>Sl4cPN#E zf#sdhLno9zMk?PeeH-yV$KMJ56Y4e={{R_Y?^d|i?6mt|DcoEw>)R<Qrdzba&6;$b ze$4A;T*(y6jqFZ6b%n%JjHcyw_Fccs@qW7|p1n@T;x>`{KX~@;(?rm<Tg?`26Hv6d z7g|24b#B)!Z)%qJi$0-mJPOwqw~2FWai=TH*5t=Ds<FrwvF*M&d@<9lqtonkI}6Al zQ5<u}uHQzIqKqr5E}F`rfXGnH05}BouNU}}@l#0nb)m`db*F~z!{P0`vcQwYZ!9`? zrKv>zd{)=9MQ?oa!4&d9*HS1FTS}{!VAYeN{?;D@EOcv2D?K*X$%YuwKjM?n8|761 zb0(}D@!f!9+yh;XjarNMbljJw$DN49sJ&1B)8al4{3iHa`&0Pm#JWGnUx=E=hdd87 zMjajzVJbGM_E{R{Nux+@UeeJZ5xvxr+(OEm*qJuQT>QoHWA<3^N9@h}UTM*MOt#ZL zCHPZN(ypY@6Is&aSJW&nS&|!t33og&TwCo6X{lT05?g#xDo8;4XZF{<I;ZTru6#WB znWX6YH;J_$5NVd$J@<vIKF@n-`fbz(GjVIACzW=Q2|UZVo@SksdfT9oA%D%yeh+{j z1AaUBV_4C@xAl*Nns%vWVXEpnf_<w>n@vcJQX6eLR()LsyzXYUxANkK-ZReD0jv49 z4OX>EKGkU_eLCs$zubMjO4{3@^k?j!FM)q&-`X<EOZ!iV?kBudOM7n{+-Z7Mjg`bt z<|T#V*a%_2X;vW{t;mMo%qUYQGS}|c!;jk@!S#O_cyHp6w(yPZwdJ(-_qw68y0tcB zJdLDXUc(*5l(0lnM-nWv7=U;dMsRcZTc&FohO_aH$6vJ<!S5YOs7Yh1Uq#`c?31F} zUBzo@5I0)vx^|#<#itu7l~`J$&et1?t;0&nJtyMV?OCIIN`HpBr;UCe+jyEC1$D0u z>h~5}M0(xsf@Ycqn^Kcb(_yn_6UK=>iZN;MWLdUubgz=l@;aExtxtBXrI$}s@BJsK z*Gi@1eb3N;jFWsD_}lQ>_rzZZwCyic{@MF2?Tysew~;N}hUL8Ev+*9CBU{a73rNjr z1eWYNt9foo9yJxFrQuHlX`dLrIp1npC&Q`O=o4GtYE!0*Zuax9mbzx6YcgM76^G4e zjGkdP3S(&SR~`-GZ`!}$d;ZMuXkWG6$njK==wE5l^mr_dy_TJ#CZz9S1<j?L_O}sB zWdsR$u-{KB>DLabrPnTegT>mOx_%SsU$jS$eje$*4$!Qg?D%&2(mSJTr}<OcwEAwL zWh-9WSz79ID%?dG5YGueYm`nFLmqT^az4$*cebhbzu&i}n?9vHbAIdJ^FH_SFT{uV z=ito`;r;K!`L!!;f5=-Kd(mfkb*e!eUUV9*mDK0^J_zklgpv@^nfTrWh^4+&_(Q1v z(9y$V@x$RRnXdSD+6B}a+S<=eAK9^3D!ghf&8vAbM9CR3TTaZ<l=Bs*Ss`KbmxO<5 zJ$uI9Eb#Bd{{Rqpo>|w#`p%`QUFe<{)FINmKW8it6n8fg#A6~GYl~^s=De{i_e0E* zD}Hvb>ZibU{{V(Y_+jHek3Y0jaW8<hZEf_e7SiBNaWD3gHPlM6THJ?dmP=WPL1wqk zBaAdn0m?5fCo6bc(}Wzke*XYp&6s;s(b8xi7`z|w%i#{M@djTBc#Fap*WMMlz3|K< z%e`5mlHH<?-u+_z$d}KIs-$}%ws1?#ICl3>*eA!Decp+sU3^W{JS(YK>IeIJ=4&W| znY>jcs#*zJ?&)6Q8^(KySw7a1C?#TmWG;S9{e-`0ZyRbaKCw25tWDwX9BcQmcw<P^ zB)st#hP8XoGE0ow$1GpkRt_V!^O;*V@w_`$XP#M*d(Xl<y-VV+i@ayzuZX@N*7Pq5 zmO6}=SL05C+rw5cUKYGa8sgbC7;OxZHN35QC%1^9c2wHPo(^iNxK9a9sM)D2Ykjoz zTCMf9ncYs6{x9qL{<S?X#eNO=zu|uX+I&v<pRags`tHWk=Tf-5@YL6qSGtywrs@hy zPj_gsX=X%<SiaWw@kU-xFu~=sgb)3tJ{Rk-_$98Qp8HeN^(mfcr?sB!AMDw08f!B8 z(n!(?AZ^g3Z84EvFxUl%KI?CyS^OICY<~wlIiUDEz&;(fy73X$@2)JPk3!V+tA=$^ zWo7oCI9^}1%ztQDSS*fZ0d}-xcA8Y*5xhtHFQ>t;3}{yRSiVsPk9`KAEtEG`a5{ab z5XOr-A-59wkVy|aTW}*TenC~lQ^i6!rnSAAR$RR_=<mNv=$p0QrAkTd{eNH8kBj~Z z{6P3+Z>?L~&n3P7r>kD1rqTm(s4c`3VJ^d=c-8K0);~IVm5ahBMTwb#TKfmbdQXBp zLGbq8>*72Uzl9rF)5eQ<w^BmT+v*d4X2<78I;WF&qnT7ZSP0hJ-M5xF`P1MwkMT3a zx;@^Xb~MN?VAPvU(66<Nn~0;2?2tNK3ulbMJl3p$LS<4Qg@`{hlaC$Ke`~#F{{Z5= z9ufGRs6C7x8(A;o)dNcgi+K&4JMS&uP?A|q*_PFULoK>ZAh=Pv(ZB@5<r1DYSe!FX z&s}Wap5K?3nm4Umd-OgK{fzu?;UC#+!d@rT{y%8?mYHwhZ-{;*mh)VAZlSfef?ZyD z;*nsI(Z10Q%yUO9Q!KHtM#``Nxcz$g`QtkgH;AP8ajaiyJ|mvS*798qY;K~LQM(dH zHLQ@|CB>9$=YZDHIxuDp`^htwG(T+r03Ucq;;)CbpNHD7fo*kbEo;I0&bt<!t6U|m z-Tj@Kl^<t>ppJN5XZ_;cO#zJJK+1U^jK8&2lzK1hx$$>e@ZX5y@dlcF26YP=qLR;1 zvb=$<OpCT~_d;t>$W}Go8QM0w<N|+j$g(Ks*!3#B(Qlhg*4JCFUscyeeBNP=bZ9v( z(qEbMw~V#_0380-z9ZCpEAXGfP+fR`#`h_8;yb+~O1QSvZZ*pb2X|Y$rJmkPMVwiz z65L%pYGjQe4rCFQ{VMo#;C~E$+<yh+@YlsnF5km<{xa}{wwJcP9J`M7bSsjv!F#3I z>h>@z{K|;aMof$@B4UM<mVe{x_GSM7f`;h754<sR;S0?hQ?<2^Q?<YQ1&*&Jot@UJ zWh8Ew5~KndB!)%Zz6n{vvDyUDfCug`?B)AUcrW9h#A$v$=>9a;G_66kSg)k;_2#iG z7dDo+N#rM!r`k2OgIPlm3%yy1eUcY5kzQXG@P;b_(~4=ur+e>fTg$flSss30n9{Fz z7PUSO{{Vu6{{X=ed~e`S3+w(n{g(Vss(eMCLeb*XJWr!)zi7Gf1hPmBmpYw{!5%$M z-f+U;Cgr%=lkGCdo=E<Ct(M@r%LA<T^2TI_R4a#FfTq@72q2S@)Oy$Y5osT^ov)2N zPp1C>YIt7j!=60w1-_$o;VJcZjw7$zf@8h1is*?hJc$D%Zjw0_({0pB<_0VBkL`u~ z7JtD$KWyt29wyRlz8d^(@d1wd%IigwPm@^Gq>9k3)Eb4HShdtwO@Tby%WFv%@T3w; z1Ywm4_xLZxoJ}rF24@E*-^7;MbzYr+1LnAwfM{Z)?Pxw%`JclEi10;WZ;Ys0xtI<{ za=+nF-rikH;wV;V8I`SNP>Z$lH>p2>J!>k)RbR2XJU1~#aWIbJ-^^I<0aLbk(on9c zD&f&tLj@`r2FR<oSAc7Ad11_k)%G&uZZ{|)xdd1B9AkMocTe&^1jN&EtvJ6w$WIbU z9GZL(#|y<NxPu$hZUV>&`MM5*y;DT^!|@}-!bv<Y<2_>0*qkbAcPyiW);VNkJQ4^h zN2sqW*Y7;7G7)eckWT?(fH43#Ambn$k&X>my3`e;Cgdw8Am<0=`WjYTkzQv!aTO`W za!I4xejof<_^+h=3%JsB{{Rq67K`B_VD=hUlW+EMCZ&4NO3St(C?FPd`_8_CzI40R zZ#7L`d;7-!0FRl3&Y)ofvg2?Zk<%E?Dy^*M-$1pp^2{D`M$#|L1At2*AP^e_<#U{M z7_5|UD)a?l2I2yec{n)d+w`wPnch}A@mYmhjlylaAGluv{2`-wg4^~|@lK@;tn%rR zYf*tcv~sx-!7T9Ykl~cZ>A6AN6rI2Z<bC7&YWP_EN&S$#dEvyGNTmBcl*{GZ%Wc19 z{koNRiCmQ-kIKmFoD!!1SHoYk#oo^ae$7%G4X0XM6YF7fkJ7&G`01*$e$JjemP3&q zmmJ6b+1}eZ{RMU5tfLlwv6fv%oAO7{U$tJC_I@wZw5>8}8d&s*t$f+P(xe4qc%x=A zW6dXSPVzUNxXG{0FW4VU)Vw|WA^2v~T3FIXmg~qwwie|R?JNqihH%VTSeD2KI0FMG z^tbku)M1<AdWoEkme#}!^*=fOxv$Sp*=JUG{{Ux?41*rzF-qA3kjCn4{-(bk&1zbB zh<BR&q<)KpR;N$U_~*r+6)rpj`$72H9~{YGwl|*?d?_Su*G&OK1--j7h~|%BM7P*v zZ#0lW!tKLX=$)5}yiA|)QcX9*sT^lbi@+B~IXw84@cM$hjAGg(BswC2y96<8@q_Uv zjPy%Qd*fe;EbiJ=7XJVid?PvpWdm^1Es5N$tfwFzql3shfUmycxikLQmbWpSf5j1W z!#sWcQXKyPAx2{=e$6{;$k*W;GH^1JZC|hXpL0R3Tt?+)K46e>laa@<&1%}or`$|G z&>+b_dtg@2UaA4FFSFIk!lF}xjetP}8tm5R%K3L^oQ!+)ugt4blUkoy2X%A5i!e#H zBXI%$0Agn-NBgW;RIpv$$#M2kblo~j5<la>Q(V5Et6e>!te6g?1QH1!m25|-pR#ZO zkS;y5+PtaLX`5M{ToT<z!+SvF4oD3d`t@N`UEH*)7Fajq`>v-Sp4#SOB6UwZ<l~X} z)T=nNc0xGDRG&)8Ld>Zvm*=~HMo<YNAaF`<10PJ+7pw@svTiP>xJ>M9vz>q*pz~U{ z8iPv`$WL6?J$rt$={HeK>wy^~BO{MrQC;+-p)z(pW&N6Gwuj?q#>p+CKqm2ym${Gt zNpBD7ha`?q%t`u^dz$=o{i5{?d4FbK2t#ZHGAD@qT&|#FmDZ+KCm7Cg`QpD-{{Uv+ z5a>tacgE-QBiRRwG}e*6>c%6`Y!S&MV*tk4!Q&j);-ALP8tJ|!_y^#vS3sA~vAgjn zjHfILkXGYZmV0xREC6Vv3<x+N<YaPxXy95kKDj4ukiY%{&xy|}#ZXaw-|BEb4*VzK zOZfFa?QJ?1oo_amQLunuh>lYpx%!{2aNZQqY&Bg|SN_m>NP*$ls=xqBl5la*@xjeU z;9rRn=ns8sHHeg4U5N(QD&yr?_TiLd-~*1l)=!4~Nd}Fo>T=!3A@iOszFrs&s(3jg zk)CVysZyP!k@66fbiT(maTH1MTT$@+w$mTl;fu^{nHPL<3}-ka=E)fSYqZw<C8}tC zERNA`5?I>C;!wez3anBnW!M7)yF79STJs$@R<^wOy{PK>D+#}XMlFCw#EXNB<Al%a zUf1G}5$O7ti;_z#n57@tcWT=XerAz2sqPP7uUhJtGLnyy{D^Nufw{ER^*vWkODRlS z%<7CKG3<0jVn_gzr3o2Q4tVKY{{V}$Zxd*?_CsC1S)!I#F~{dSfXWXbI2`TiU3QzP z+FNS6OJ3X}1bdPTumA%RsQP@|53jXn{94v+Zgib48(Gp&*9FOqgJlXZ&mQ%3s!2{T zxAm!=YH@U%x${n=Jd${#=v(kiJeF)=9OtRyfnM|BKi=GUNuvaquk`1@;E<OQAIAV5 zmGf=n;k;R@MZ=+kU_C&_=EpykeFNazBYAnHL30<I6mnTgir_NulHvs5A7?+;y?XLi zrjLisoBHJ>e)|5>8iPmsGg&|nGV6XC=N*?^vnTbhNd2Pqs3-k}ZM2cU&Azt`(jD6u z&AlK7#~C|;uL1p|*;n>&vaxBULi+EAKh?I@Io2&n=Leje@z8*4)W2y{J@4!-X=`J0 z_Dtr<JlNG8zFYib5(Z2+(>|Qn=b5xWaFcyk=8w~`6Kb+u&o%w7NVxr;d~B+$9O-v( zjCCsPs-OYXo^kyv$o~LnABEl+)ch&pZyDcPG`F_84ASODEfN@_Z@C%yLxYY+2tDi7 zziJlL;{BccMJ|?!b#Nnv2cIXF92=OGw-r|BJ$_IRwN(9}Cz3CKem1=^mT5Fwz*Zxk zN)=)W+DKA!kT(!GQgAEaGJI6&#+{z?fBR|l_~>2@`5q<V-w)X6pYTi>>~y%2D5vl= z_mae`!^?1nSCNJ=PV=8%O8r05{5xR_!7Zw+PRgnR@%I!020CLL4%PX=X{+hhKk!X9 zc`+b|z{_hRAZObrk|QcY0)AHEy*bIR)h`WO=~|-4J+|ajZ#NI}xZVNA(g7JAn~~nU z?j*$2i<F!DbNvl)6c;Rcdm)-{h2-#*tE%{RH@eeq8cA*~W5JdeY_rX5zw*&pi7yA< z$t@m9F}I~?e-J(%%W&E>TIQZ-P)UWZV~$XGBpBpnaNWw4$nGmkPqMcVp?+iem5}-o zU93@9%#j(QM-dFiy;X|y)D{GT?hSm5vpefFdY@HmV<N-EH&^OMg^=Dt!Ih?F^6i22 z^9UwPbRs2u9tjn@qG|f2gr8|^x0Y#@R(S{sl?0I-N~Z}D5_X{f0C|fsCaig@GXUSg z$J5wVvn*LboR#i<dR5cRCGhkm;g<bP=DE2l3N{NI4CCouYw=s+--mt_d^y$pdE+Ph zHkqZuTJBI-`Ej`s`HTim)hr8O5(gj}>a`tH>@Y0(%S9PwQ_kWtM<1nrUwlrt`0?@M zOYu*`*8a@Vba-xHz5f7CxVXBO_8Vqfu?USJjUbL!MU8-#Oej94zK<!w#=O@vvg&!b znvNP+`WN=&)Fe;XZ^n^aNXsnNdSd06Z3bJra1L+}ezpA9>5??<EYQNymUhCnGRL{& z0~xQ^UynX1_}lS6{t3YU02sV?twgteAk(ycQf(Vev4RT}x4OK7WkT~Ci<a`BA()9% zET@cowfR?d@RQ@EuY<3=S0<fn9gI?2+7=E&8E+*^c*08?V}AJ*ZNbN1uj_mhfmE>b zjn~H4&dbpJ^NMP@*NeA9%&vT4;rsnFQ`42h$m=8uq#jv%u;YM-xyL@Wv++i2DEw_> zb*x)Cfh;2lIAEb(9qh@-U`sCnNXJ$g!LFC%XYA+k3*mo-tUOKQEh@qtK1<&qUFrA6 z=3@H??q-Tu5xlj*CHEeB@@va}F1%7-rQW3=vXt8@4ap?g0a)%P1CTICUI{0)ecW*C z+Cu$qeA7}`dB#gyqwB8)>H3$%PYYRip32#+ZEs>r<cYSBt0*q3@*)GZNCc{YPdFV0 z&&7`jS!uroJWr?y^D61`ZDIjAI0H2g!H*YsU&8(d@TZ5hd$VsgrKZNVMp!0Qonehj z7`{WCDF>i9JuzLc$3GExZuj7yi1dvv`r7L5OC|pRM~X!=5Yj0B09W_<!5u5jrsk^h zrKQfgbmMEEnVKVRy4Q)%`n-2JV<bzAbtjIM`gi*ne`!PDuMk6T6PNzljb8)iQY{c< zgU@>W(C{=j7TzJ$8ulrXn&RCT%tnuvyoZsy8<Y+Ysjt?r*$Vm}vUsBAL}fGhk=S`$ zs_lX-FR&TN_O86qwMnCnIA#5$t6!zRGw&79H5fc0Hm!efJkY8(ZNp%Y0B_GV_YcI~ zR7>$MR}w#$9j%?6x^^6Z=O0ql@b<SKi1jNNqY_0GqstpeBz|2L#z0j7=N$9@0P6b# z;*I67@s_6x%$DXzpp^?N5XT3Ms6Bwk(AVXhV<xbw-Twg0{VOAB)%kysvth2<v<nfC z23&#<9M+Y_uo?vsK3gNEdsmEEz0~1mh3#$&54#-582tet*I8<sqT4BGT>|#uxcY;G ziu|@vvGs3Fj_%)6dxS9al_ccz-n1gr?jul$N8?;|y9k|{R`1mG#cPLG!K^0BjIX)a zTVJy<1Fj8jMRZ6F)1`5Cj1c6WK)|ioE(0b>1L;{f+-g=j%X@;#9kMbr&uXwQBi=zg zfE(+Y=i;0kdv~W9e858tHvk`CX(%CF?ycriW^s%Ve_GC-SmKSG{n5@vGTP_;5tELb zkL6tcv#BMHopX5L%CM&5ft5}dB!FCn9CsuRE26Y76p=7?IA4nzMyujqg&rsH_K$eh z6W?jFMHRr@Of2lXWC2RHR~?A@*XO>O;6K`D!?7x8-XpfvRiEWcms6gnZYPU({zb2J zZ;6_}jI<9Dcz?qe5ZmA0M?BW+dwT_=CAgM0`&l!U%u%KaqJmr;E_tt<qw&|pJvUpj z@br4!uCiVcJh4e^*4tm^R)r+M6O=e$;3#3pUzWdC;Hdpy4LH>A`X48sLC&;!dmaaI z@jK$>zl^+X;GI56uNTDHD`~pkoDA!3(2bHzZf$LyQtBAG7$*`(wU}d?=sq2O(ASne z1=TdG%|}qv;=YydQ$^G4qmsi>HZmeHk)Vc2(p!8nRxKPVqYg^~OZ<8JJ^1s$J{i+L zX&;DQAHTcM{84oC%pg0Vx`ODHGAk+h;#mjplOt$9FdPx*m-m_%#SaJ1uV^;9oLXOp zq=oKnwCk%Dw9~Ei8C*2*!E*6$`&^M2PnLzU`<^m6KF$*nhpeY4JK5R#o)na#`CC1U z;eU-U^?h3R;%2p|=~g}&@Q#xHJ85o}*HD8`*)5IdkrXPebeDmcK^s4na*E$K%23nz z-zUM}+f(7^g!~iW4;JZd@qbU$fbgb+v9){e5L#VZMGNUu>y~!578-u33q;dCn|BaT zGs_-!&9hg|UMhpYQCfJLR`B?_Tg_6+X)U1EwB&0@V)>pa?P6&OV;)Eil|Tk!IV@}J zUxPmp^!x9Cn(yrS@P|m#^!uNQ7g{#A4xe**EZ1XIMO!wK*HO8a(V*E3DhZ0+gsZn_ zmht(A&98~4g_N<5=`Xt0*ZvD4qfRf{?0mi9pV_O%mwyDMJ}}X5JT0n02uq3e%S(+W z<WB^lTO#fV?qRo%GR37>Smj(QGhiNvMg5uVym9+PSbog2UyTF9mY-shO-fmA?r!z_ zk!>V`^2#fN_Dgvk(ba%Ok>Ef{JR)@;5B>*!(q9w&ZuZ_k)I3$=9cl!)&@}0_KN7>K zE}d~Kk=))!$5qrNF_|r(ks$@X&*w9l72Q=U+O0ol{{R*E&rZ4Uw6}ui#(oyp7HuIU zyS6ve>4GU=`#rAg1FD4q?c<s^VgX48)>8H5M>34@Zmg$x%i*%oUfp{C0Kq)y(u0yq zW8wAiM~U=56lmH!n!UcO;VT_N(c52xPjP&gPYRp&D8@PEp4LPb&lr(o7~Z*7t9~8$ zm+<T1uB86}3qCboc*{`mYHQ2mZ9l_$8tJTF?t50T*?o1W$zgOMWN8?Eot7Cs`zM=; z3;cQD{{Y%M;2*?G4+cMkHC;2rdW>-0=+GNzbt}PeRNugmTf-)&74eN1%rTEU&D!CI z$s*SeuIpYM@mqLn_JRGQwC@^fHroEJb)@RocD6PazuH=TjkBlNbg?uRHjuTX(Zz3c zjK$$!G!3(=lkH+DDaCt5b+Su;_y*XRIuDwY*8NZEcVF>e?3r=<BisJgp9XaQ01;ST zc(g_3Slq)LzJ0U8ZtYeG79?;|H!zYnnAsVNFmExu2jQQ`T}N8|oi)#n_qq>^yiMS1 z9Z1Em*y$522Eyv#D|wc(%?hJiM;P<kTY?wmDvVf&&&(eNJ}G|CzaM{QofpFX6gH6P z+82oycGDHD@dP@NKx|;RgxlOLzMl+9B1v$C<ZxkD-5`v4hmAjGzl=KP#7!^Z$Hgxi zEsw%`OKVGQJT$k5Pt~oA*9oY-+%ipXZw1?h%6+kAjiy*3{nLEw`PL&RjVW6dD<$8n z?d$oUOAN+t3zt-WmUuhj1-Ha_JT2ng3te49#_OiTsmrL{Hkyo$nV`3Xg)!StHN0?r znm`q@%7HxX?#Jmr+Bf3o?0sqQ8&AHoe+%eS2a8D6G`&qP?*nQ&iAZgqN4BzKEP999 zo5-FqB1IS>+154PUyon47wl>9-^Ecq=Ckn<>rvINY_#iL3&eBj@mYPA9W<Y@X*Sk+ zR5lO?@?K;fQnaf+>6Tdz#;?9SLGa$w_RH{3!LNiLwHJ)MEv0zR#@-#4@B3#_xwVf` zpH#GViYd$=XNbW*qi)wwJdE+PykS-)N7%l02Oy0MN7gA+=H}8-<w^N8_3Qeb4z)-p zeGg~-nDlKoUAOq7s{C^B4Em;};KsN9)6-^(&P_{6Yinm)7Phx@7)Z;nmv+s*5&#I< z8=K62CU`^OpMdmjQ{pbOadDw|lUtuoy4P;JHKj%`E^b!IV_1~lTt;M!FjQnEV-YSB zd)EW-f5N{OJazHL<MxjDS>nB8;x@hEh$PW`ReZW7<(<X8p>gF$d#4RvSytZZ4YW~t z1{38;<wxeZZG?Kq$A1F&tHi$y{Bhwp^}D@hABVQuHRaR1sSVuvZLwxaMx8I0d33QV zGMNiaF7;9gBLz;2RU;@}cTcwe06v%9Bes=P-!zZMjThnWo8xbaml_wsZw+{+>r>S9 z%dZfO+r_5GclIEr=GrBe<|c+>%%(+_Mt__4XyI$<F9Cda{i1vU6|S-33w>(;08a3s zySBH`cHLf0VH8TRyf)FolEQ{~82PAWR+?zCfxdD)ALGZyop0eG)3twyz5vzjd|iEg zYkT2$y0&|Zn+uyLq#GiKK0{njZ!ecEu4I*?B*r(XboGB1d|CL7@c#f@(vwl}<@bzr ze~FsQ>pHfXZFzNVqB~lw7U^ueWtuf>G<6#!FvW2pKf=V1zonH_ohVdIZQp<E^E@}C zw>+!%f&H$24*W*(Ro0QFcs|!&ZBNNt-A4Z2_QO`Ncs$sQl0$7Qkk0BHFkd0JDzqSC zUCB3ud>!zsTJWZqtm+h<_dnZj7sj<(s`lQZwW{{sQdPSsYM0n6Vvitbsl6#`x3zbv zy|>ohDt4^ei4j5gK6(Cu{P20@KIgvAxvuxcM%vw;e=<W<ls{_HQrDESonV?zZ2U8? z8e!v=+%Uti_|)R}N-!USCt5zJ5EhKmO>(;@hr4t!)Xmt^qnYkHb7c*4sopg6NsKkg zv?N|f{2~?-{6J+F3F5tXI=gVknP|}x1?mm?x)B8={_-z|aizGb>g+w>B1lh$LK$c6 zLg1wS;D}>OG(9=Ptfp{iC|0E3Ouy^u9;XGE!>n7xZPACpC`--v?}<TAG0G~7&yxl$ zDN!W(0u;+?kGOVQ(*`2@p4iMT@IG(LR~P8`TWaXZmu0{PM9yvq^#LPdaI+*sgb?|@ zF;l`|<HV<m6z<|p;ueRzoi43$zxfb#sx{#srVl^ts@t_RKkYrdltMcqqmD@fZngKj z6j7xyZUEixg>57{t`t+Ta~Z_UaMA8ew}v`~_{y1XNtSh)X?s3OqY>WO88RN@#Q3A= zdvNO|-A!#~lh6b<=BW-GUN`Je7l}3U_}3)G#2*6*D7SQ3B!WClY8*wIT4ijF2H$Qf zbH3s^3q_|}TB;k&+~K7CO`TG|LfVdk;bCqw{*FVkq5Zma7SQFM8~-8ZBw}4$oC`g; z(67`M>|ZUJ<?AW$iHi!MHwO==O;D=1@0dsGHO@H3i|DR|Mw=BJhZ015a|#hk>dBXx z_5GVz%<warh<lzrZ06A%>FSh}lt1c32yK-y^6aTFiH-8EC0RFeJ*gYgsbz_SDlMC% z=nCB(J-3o*oidnwv|W7LxtC}os)h`4PPCRhD&DE0I{8-<GuMfKwgI#_;3#f8Qb6Mq z%HY)fB!n4Ss@gFn_@ixs`BuH~O*yj`O@^bcR!M^g%MfRC>T8a^j<^VpjD)vF&vis% zHP;1h{Tmy*x4i3Vp69LYxW^YTgxXI&g1QfOJ;(G{<k1f-CcA_H65&_MS==oJI(c?8 zLO;@}t_1{&v;2OoK$_DZ+-)X=HOKAe%ik5^#>wT!i7BCoRUzF4H+KnlO6TOi)eBjh z%ZG<w5s9bT&3~Jm1%An#?F1BC%XiD1nLa)5!o!r7Yt>qS?ic75n8r{Tjm%fUObdIa z;R6{=9rW)soP*KgZEbBr6jW;ib-fS8&2vOlH(<WVb@aEpU!hI_dZ>XWsy0ywCh+4R z#=Bzu@P<2$V@;)WKV=Z&TV^(le^>l1%T-_?t^^=4GK7-8J2?#^`k32!L!Q2F;S=Z+ zEV-;J=W|~1NApUt95aY49qcB@?Ng=qyD6}Y70y6XqZ!1B0JU**9eAfL!zttsS7*Jp zK-D6G;G>F@AeA$5KhY|?_atuRr5%-s<=s5}oDsqn-p|Iw#yTeeQ`p2{m4hp}qpDX| z#y$7cN|dPAiz^1jry?VHvi$iy2Dhmxu(z0~O`)eD699VhSQx%@F=nrqDSl9or#oXy zcdqpOSxbb3lNm_SDAGTbJ5j?#F5y_%(H>|D)e};b$0!?PjyD7Vy?U5K6>~6%8sn%t z?d}uNs1>*DS-Spjdf$6oR@;w7MPlrfCS_&lm?HBDUm+ko;RT;dO|#p&*U{~INLwP) zAAnCtfAy^<R`Ra6Ljeii$V|K_Aa%(U;Yr)nx|2PbF>3JU+JoCORSh{mP>*SXx^B9r zJ>aTd5%NWOqZ3f;!veO$vV?<4cq>lLY!dST?O=QjXMPF3XbWP{?yXVN&zVzYRTFW& zRdYsrS3tJt@L>|$KO7Me&<6&=pPmjG*CJNE`;7fVSY}{)vQk(Mrr~6icqPKXqpVC_ zSVgwsti?by>W|)a8d69NvyK49-vjb|D}@p*DHjXhcMBg#$$lxmbe9bn&z%VnfQYA> zat#<$bZ|S8jg1UxVi>pf7i;w!WZa3>Mh@W4C98^o?RgE$adkJ-LAY=$;|O^!WPdM+ zsRMAAQwpuWkf^CeFo@qu7i!6Qvo!5X+#yB@>iG2r{g9k?A6~X36#vEC5)XvZc9Fse zrY_><kVpB?kP~emo#6|g_-mo?KTFU5*5q?Z{p`@J*Ww$fa4n24Dz=>%BNa2kDB$de zuIu=?!DB6XFCtC@_NI-5v|4BJ#-Nvll%HO>`p@laGi_#x>Vc|AEpX~U)-&cwgw!!1 zjs^VYF793)8h%fkkyK*(&#ZHNwX-{Br=vSfXQ~ROEOJX*lE?3*B+&RLgI8~jFrVAe zD0B2|%ldroCxffKyS?6_ePJMwYw2F{uyvVN(Hw_mt34QAlWiUliU&3fhxrsFJzSXC zz3LBP7v9g-8q1l1&xEe&Rz%kbY;>s$&Qsf}PAQ4~-rYo3&UZ)V3*BYa3J7&E-Otd& ztM>*Hybh2q*?yh2w8afnx<Owhb)Itip?(o@@@B0NtP9Q)fjI9+ffS0|I2!0~VIlSv zSitOlhSg~3fYoigsHw@UNF+ugsI)<<gpXf6x(iIFn$FrUsqItHV3dxN>h5650sWIp z##=lwKIGBxVDx7=X<{ouBZV?VVO#2_hG&J6>+S*+;KKyt-lc0xFN*q;D)Y2fhl4v7 zWK^#6q3-tGf|mcU#+&`%U{WK&r?S6(12?`EuvRIu!elT}h$IFKSZ(TFeBVr^sYD!1 zs`DS-d*oG&yhzPZ+Z)*d84+Bra;m6?y!i~}j;NbJYKZ8pq7;l9x7rdjL0;y6hXlAI zgh*FR)=dTG-s${9e`1kS)zF|EVva9A1~rG0&~Ho*0+tDf*6BMQlyrUH0+C@QW?_nJ zEc5XW=0H*<#qad+Z<NoX-qm$R3|x7{MGj7xuxSNwFo$Mz)5D%&Sdq5qP~>DhOolEA zwYRw*3$g$C3-#IT1KN06tK<nJN4G$?Ezz{9wz{w-7W!R^p*02$_P0_8)L|^*N?-aQ z&*Ku*&)O^DXK`+_`}U6D_CJ=3^Z5ksrXx9fW@hXDm!U$fl(>f(pS)o)Rs<!3N*Y-I zY_>OWM?Oqtj`2HV<hN-?t}QQpPh3Fk8FWX(`#o8gTR)1I(?61vi=Gcjz58}AiZMsa zB6m77dut=Ai#{A^dln8?fK=ktz|K4^<gCXH0;Gd;atqK+$CpUyl*pN$d#8Kc2)=PX z>Zo;NodH8W$i~o$3dBrmg=@v`G~VXPuFXjQ5$w`5x8UA43FFaD#rdlx-JHpf>2bRM z2*9slEDaECp0f!Gmk+9RGDf$J2|Kq%#X_E&kjEhEW1WwVjzgyRT3Q<d9#*|QLGsT~ zgr{7r7-woSwhbW4rBoVn+Wlu$XM&mG@WXAGj<K19NB$(S#8^gtsn9JG?rT_K6_AT> zTT!^|sRW2~wO}DZ>GyHEIIBhaSyLqzdbp3a%`v}7KkLe($FSh#15S}H-2C0}t`+Fc zDxoM03&L>SN<s7FO_7U3YtL}15UgCK*@_m?jNpZZ>;!LtT0TI~km?mcJHz7lt~7f4 zr(fvkWFn9V20_XpPNVN1Vh#?q^RJZCtyA~Z3yw3q>6^ngIh$Iv!_<o-p+#yh;tiwi zjP&`&^1-dOMRO-s{}OATB}e>|4T#m?!T%V_bdyUMx#Tjy52HOv(>mJcdeP7(zIa_A z@YT~nGLO9c4_vEuEy`I5q5drTN%9BLp;)}9m28q_3@o-k@%#|AtD4=*lxkt!|7OSt zyogJ2jHuSe&M;nq>MSnfX!)XuN32^l%2vsNDZ|gp%rK>W^=r)KjZX@lHu;#<$G*o{ z=_u+;vtE&P9$u1{{b`y;`g+~ee<`L}n#Y7$`OK|H4j?_C6D*$B-bpUae4J&<c-{v% zgZO17{c(mRdm=-_VVQ#-zv~X89bBy4`-PQ<$l|_HzFag-)|a|R;VH=;p_b`U^V>ht z)C!DArH4emK)U~V-#DrJj9L*q9nSR~(m2E(G<KvZ^fdF|vb`QOt(T&lPynWz4P;18 z@s~aP!&IMc6=IOfa&_~bVwm51(5Lb&;4^+fdZLVe@a?U!MWel!#)R6jd(ZFhih#Rp z3BtBE4GwKfu0$Eles(bLj-nm3-_dIC)Rr%qi14@oZV93sy%ojW1Btc3kC$e8Ndu_I zDRmo^cey!ytV}!@sGDmR_CbVL29JBnyBuz%gkJ}5_To=wYGp$t(0jw$%8orkj9Fw- z`*siFcOnKJk@!!@8hzQkZCJXwf3W}fU$DlllI2JUm-(tifVU=p_0?xCn$bvn#uY=; zHb+jf*1?dV`w_E+I_FzCOo)QnIC~bNh3$ja_43n|5wUicL>=fb?WO-P7=<8@KOeT{ zTG8uuhfvGEtoiYdp~KFNhp)wPN1F4a7n!2o-PdYY0Y##J#>TR7<|5{QnPe!c+(MRw zpPGE%AXA-9S?lH;=PlN64;|}9Z(X>uESLTtUvS1zY32fKP>bPbWo6QhWn;8CSDg+k zRAzoHXU&q4B=<g*B8r{wVaUSFC7&ZM?4m<-dO{G?b6#H;rpx1q{$gJzDc=!qm9X>& zzZ=ME@z2bt5p`?Y+|}6B)!2Y3-VER{l^ml|`Zj=Hvf=%kB}v!i){U^G>8{>qb$=8p zdQr=h+?L*@yBo@~C}>qUf(y5J!@wZHb9nE#c%vIN!)N+vy!%n@PrOjGg_hY9E+1Tv zIMo{>I-dDuo&EkJ)p+KFF{*ms&5g7zI4hPy*bAr!$}ucEEx)YO9B6|SWz4FdzqlZg z&0dJR(<4r4$=CQts#n+EB4+*bDLF28w${x4ry()vp5oGtF@Jtr&akb+jE27S*q(=H z?~Py4twray=ZDt=Rpp(!0H2F}(~`Gpi;rr(u@#bn-yZY~Ngs*8>-Cgu_}ar+aJG8o zl*8d_hp`-=a+BO&+%D<!1J^zVJv_k8_bM0F_TDVH?4Zp3wf6GasXq5|<kivEraKu1 zywyE)c+56K9N^wzTH4Q(PU4xy>@3;*w$y2xvBuu(Nw2?yjHBzl9~eX~|9qWTkqv78 z{_)W+io1pJy&91<cR94iWGI?wnMFCJ=Y!AwjRrE%ByFpCNF^t1O>lOEvgf)%K(2c> z8@q$kclve%{sBol#0pJw=8_B-PHSwbp7g(N8yh|q!QUmU37C*&Sv*|fk?l6g<ZDX# z4{wGMl~u&Pzh<$%8{ppKPO_g2Q_1f86Waq*FULO#h*5f^^Xh!`@q;)#Jp9yPkzo@U z-a>VUHKNRIC+vVvTW4ZT?B&ZSDOA?`Z|^4Xwk3C^hZ!fp`?X>J;o&JN9s;R%7sS81 zru(c@eF$!Y?>ZsURT?{#Up#@V^9{#ad-t+mo?hxk;>MTN_neqtsxueFajpE931p@- zc=fa@bq=d%&11r9#0AB{yU)A0X;}*Ag~mfN6@y==nOy+6s<1$kbp~9Lpa>1Y85ca| zH^Z+VUNt7F!emd6SM$}nJ-s&$ahwDL6L?0DXHn<a*oiV<QM+cvXAVO4v;KAN#!DQ^ zNeKxU)Vk9hhCfEfc-b|#3$MQZ?I+1WLNs#h`1)H~m=diNmNVO}aBJGD%cgw#<Qd0P znE=Dg*8Rjz@V`w<ujbN!0cj;EebAS1_$i_!qQr$FE>1(G*ZK@dS)%c`e^+J*Z#(g8 zufzxpH+IO{?53_?qWx?kK2x#z&NK3$Lh1G|M|gqDC3%GGXGs8!k9l0Zrs{0kr<5`N z2aLm;mhPw=i-!3QrR{x)IG80>{9|Oi^^}Kd0LxYNe$!!5Q{AMV%B;Vlt(Jc`N&(Yo zF@|F8_%v@mpV{4|8fZKVBs-~^wV0vXAG5REe?Y@)HQ++G+}pDe5R}7{C=A}!vWpF+ z09}7)gk@TBzFVbiVI(XORgm57ib7_5Dn2|@A}A%Hc1?Q=611bLWULj~w8O)#dRZz1 z!_?SQEIaZLX^L{9#>4vmS82L{zbVp~C?{8RJwu*d;xqdO*#zt_UmRL~N8K3f{*6<6 zWp3R%J68jRw1uS%f4G-8^FLNAJ-ET~0A-1_%B=y*aOtO!?7*NP7QTUU_Q#C<C4?m3 z@<teSTSDfUxH}P(f5SCq#lab>VK>uRhSvPQn|u95a%o4lWjE}8GHxV?FpGUF))8^{ z!<kdlGDok<Q|_m)b^+np<EeSeJB_cZigidYWQJZ%$ZcdNp`-HU+?Upeyzp9*R6Au1 zQu3;F-{yP6>q5bQFIVX|6jtEk`Mxvj`^hpXBkt?L53RlyCO;hih<PQfv%X1Cdu%MQ z+I+Nxkc^T4;}HHkxR}~S`{gi)TXKnCBo8B5pwRdyQ0C5;G&Efht`wyxw$m3mV7tc< zFgbsk(4UX<^Xy)w0w4F)S9tUsY4>auvSrDq27@oJ-gd-Z9rL<XMzCk<7iF-+N?9)U zvhUq5$v*`)?j4n^H?aMxK4^yfWtE!4|L)8B6q!@9?2^Ac;5>i-**g;Qt%e}b__+IM z8OhO8fY-q+6{Se45^M{uoM=lQ@YlbqF>1|Vn9m#UBQSdUjkaf-O-w5uDNZY;Pu=dF zkuh^)0s0*v`5aQ#vSf10F+x$ANr$gFA|vm)cu_MlB)vFFB1#jIh3G(!H$KcM$>14g zZ+NWB_78K%*BZNP{j@4JzQ@Ydi$JXRIwAyQB&nFYWD`4ZH7uc$XM6qry?}?7_z*7{ zLadn-n;5EDjhl+KFU8xo+FK{h{P>dX_uQ|JttiHy>N_W%ce01)Wo<spx3C|={nKkd zhrnrx*;)UY#|nA^I00TO>1ecisF_rt3b=1W3B`?ilf_h7ys{*PTTGeGIy)^{rR`eu zeo0yON&%UsBUl{LCpnn4R41bpIoG*xtTXEVHW>S(IeCRm@B=2>^!6ZWSfc{L@vYKv zF6zVjAZe)b4AAkEuP?^K=hmGP>ZiZR_w;u?Y2XxjKAqKcOVUT3&G2PBHB^#HT0c(q z0V0IH4vL90HOI)VjI<;w$1RIR{C)<Nez!Et{L7N@)(~rtBC9UKC~w-=tFU%QUyf>M zkM`AyM`@)Ca!@rum{QHZKOu(5jE7wIepNGzuTZns2YtV;rO;4qFt;Fa$Gpfd_6$XK z_bqs7?Ti9q1nrz?3!eOfPyWn}cXP%6s6PCGjqhA{%d)ui!%_j4z1H@prS+Y&HL53X zLn*C-p~ITD{pbmlQ2~Pdb3UnW)59GJI`hcU5cHeomUpkV9zR%0+{*`VkjFCR2J)x5 zP>`(T5XSKk2-}f-_3-?t%;r7BcXACeBc8i%)fl0QJ5xMGvScIx`)@s;k<)%Y=YPdg zL9CwK65<)Q={dJo!&h)uda){rW**l+;Y>XvC+px9BdL!|c>U-we>B&3SYif>gTKnV z<F-KLf6X;m{IXfMGPz72HZRe{pRD%kVWnkQVz)z`kIiOrVx@+}H|JY3KFI04-S?RW zpd7ZZ2G@XMYt4Mz9(*JF^#W+oVB?P1V2=N^G;-wZ;2GCqCIhwl!;ho6q<<Or2SZBl z2mSK7aex~{o~CvP`Wd8ZnB?6MyFKW_#LmH8lt*w~n$gAs@2Yl0fsU6Bdh&7elym!P z^u=%~!z3u=@|O7afi8snbK|J9=(ul<$RsP(!YZL<K=1Qfk+7Z4Bp!jPHCu6X-DPOM zjG`Dcyg$3Di(^r|6+Q}Tn-!pSWnp~Qlw}(~vhT@oZrWl~MnA3MpZOmiYl!ec0T~wt zM<O9L`MXk*C2=_(nN_aE)i-F*`KO6mpe1H$f!nHhwnl8NrQlQG9{~9!tG=Zv*1D#9 zlb}xACG-Jc??ZQtyvfXcpDsdWXB*=yaEM>ft<X5IeR&y(-HI*e(V=v?KU3Q`)t=W7 zN2}Gj02(?=BSHWwC?SMVMCHF5@t@|JXXB4M&y~>iKe#gZOzm<-91Wk@O7rB))N0Nu z0<i+KObd&aopEpS&$Kh9T{INGI;1f-4Y=uZ`Mo59$Loj&8IJ%OxdyR-$L#gfrC{hz z+qA1`VJ}SEA57)?n?tVd4@)o~A42z&t3*;Xkl-ST#`3`IXWGD3n3KDZLn@*0zJD4= z^p~NO-|^wQuSy@qZy>t3WpwC@Xo`LP1v=7i@>l8_pC5M(A6UlJ{<}HOvD`PP`sdxa zk;S7sMt=wPS~sqHX6uO4HG7c+D}FHE>;4!*g5^Lu9&6!}1dYS6K>I?A-c92G(s<s7 z<6QICy0V6^<o|>fKH#wbIh+r@b>s0f^z7xB?Syq%heyb85&Fzeg2>Gb61I~xV)aC> z>3D&wUPbsvN`Pvop=q))@{o8S3DbE_K#{3r+F8nQnXQF(M?EJo%eT6xqM<-!t<+ME zWR2fD^>{^t#lJ~=W|Ung8^#=u`^z7A5q@Wx|5tktNtjTG3Uo<86HG6y3<&zf<%o!9 z3_0b=|E=5Q-r)$eqipeIoRqkZyH&cM0#e+wVyqE!FeR|PU#gmG8IqwednKV}TrTVR znty42S=C5K;y1u_@jOqYkf;QSF%L^(fhP9wt||loQ^G`i+h4=O082X;Dn-Y+3u{22 z#>TeDm!qzAp9HsjP6nQ<>QRa1vKHM5>b)i_GSp5IW0c{%CePov`=Lm9K;I_R*UhF- z5OaKC<lJzW1v#$uX}Kg-dP|_r)uiEOn>r=zRQh-)x^{#>a&dZ{<uZv}Efiw!SYl@C zTuI}-4<AbR^ceT5A3!GXx(QZq1Z6~lHHj$4N{p!Nyg?73mG6+DJ+)5&c<WGHViC-O zugAS)hTrYGaB+Lot;FEm&Xj0M^0MC2*RGzzM8|<?r$C2@3RCFb`?-r%%@J$1%)$@a zp57Am77TD1!<wBJw!AT6Z^~F6UoXZ7&v{k6hgWKkTF5S4Ux%pmAw17Z&GWU4Ldvn? zceNq-S{r4Tp>QpIS!!t5!M|m4l7H2eDnzl5KfUpARyF*k$Fxj5pHIYg;E<|<5aq+w zDm={WW@I65A_99~k9>T)ujn2l9_P+<Jll|S_yga<B)H+VAZN=Q1U=}G^qk)vkh4AV z{d;XLL>^p)`47(^t`D9o+4ez_E~3iD6i+K4oFL!8<J~xWOM15Hqf}{w^aKyQ>YP=_ zzBaW;L2(6;=1+)$ep^b&I@)*uxm;$E(L8o--^*>XKs!WP|MKS&m%M`W`_CZp=EZyR zZO;y4@z$j2P<$B6T^10WK#VAe31QI<Lhk)eHieR&?6l8cWHx{qYK}XAg5S=y9>*_G zwo4Re4?prUZ=>-ah%FGu9QGN3ei`>o;$aO?mU$bebZeOYK1xP@taHh@FEH}5lk9z4 znr>6%(r4pgJq=At{{20E0z=9i7$6XXf2)fr98i>*>Co5`qCW6vV;^jaDsf_R&gPtH zh;w?A025!8eNx3UO9$tze%v`ynzO5En<d|Dn{aE6<;4IILSfS`AUx&)qRl%w?fN-i zr|JypDtg@+yH)^7ps~%zK%C8Q{%O%btaX+Jp2VQJWCFjd@MYeYV|(zm<(*JT_L2Kn z1pB6oT&{Z$4oHi2#r?5Zsrx}BFxPCZ?nLoJX_(5R=W=nlxYSogBj1bIf*S{V!*a^Z zeKJlk9$Q|4nSG?1Tbr3^$yQ{Yc(B1+q+3DRfuEnjC-h^wX~yT~pHirohBh)8K6q7O zQ-P8&<EldnCrL&6aKr9!wfraaI!*b^PHrLNbPp9)e$pwuVD@j|!L^Kcu7kcIBy(0M z)zVVIg0j#)sq#sDlS$u_s*L9o4+|XI9wL5MHg--w1b;PY)8@YXDgq-fsf~(luS<A2 zfsL90;48iWcjIP(o6NZJ=4ro~%9rVJ@6bvO@FO!D_~FfffO83^P*dGKe|Lw!BRz)V z37nB9XKa;VNLT5uP>}!@h*L>2=P3`}3!@05f6U2i+n0j_o1@?8TzOiWr8+b=T(i9> zYCq!?c&bLE#MR$kvD3wk9PV|;eJRE+T+sP{cr-3X@QD2CN>k@OP-oN?(&X=&V9wol z8-Wa7j>Z_b85t7Fon8~u>1L5T5NdC5{S%-O(3cmqQPZ@j$TZW%<`P)(0h%_@mYbP& z;3uhrT2e+kai#h=v^EFD*d_{xG1ATJtB5|vByv?Bxy+WU1`5It;Ck1GXL147`hd<h zpm@VLU<gFf0Ez-Wfk~8M0KIJNnBd@2QsCRhHiMeO#YyO>Cqk}}tJN-pS;9On$66#3 zG5_^5zv}6d?qjSRrWAL26J*iVD6!#CLN{LvuZc;MX`Ai_Q~8$}H{%xtOLa@8W|NP1 zy1s`#ojA{F&(gDlb7ZI(6C-z<H>-uvKjtq&sWDn+Y5iR+jqQnxeN0DeECRlFjn1w@ zM(C4)k-8$!4{xT#8dA-*xEex?N7;ogPLKAG>zkoR3HC*p<}HEz#<C|uf?bPM=8X~M z3&!toDx)lc5}fY?njfV3^O<vDuYi0S)%<AImO>|OXpB$Yd_?bvz!{9oJ>JZ+(G!_C zJdn?gT&t#yH*-SqFQAdD;!G>w<O6;0(kmh(gounIO$rHoz0aR4yfW{9j<jsc=R(r= zfa0=?i@T#>_|~32H=T!-e{uJd=41CtWkG*6bURq3B}mLCEhkb#J%a*O71e-AyLGx> z2%*7%5lIp41{z56sNGD1S&kqL0YS&QmcJS3?BKyRZSN9YdBFs6q(!CL%j=ZnBW+mW z#yD>grl4|FX_FMFJ<T0t)ID=t+ckowuzbkKd}K@xK{tsKw5Ner+pg`JUxN7swLyPJ z4DyQk{F>H*hu<Z(S6U4e;i%5Nh%Q1b{|t<;RQE0hnLTO_q{K?z==^k;<4HMvo_B;> zWY7N)%yE~dFM*>)o{ufPV-m`#nS%xSR;mPlLu`$<&5A=|TBSIEa9+(1H}bE4%FGV3 z+qnx~t~@!B>UC!x5M+FkHKi!7NQ0Zr;R?7MtJ{`Z*sRXN5hqjn$&a)BOooWJ$^31> zrOBzvoa5-PyKQ_PiauY(?aEQdp<8d)e@*uA6+{DQIuvU0ZF4{*`+n}$Xu|A?jcen~ zDT~ellxYkT=of=+(!{y)SI~2%!MJ`cdiu|0HEVHur76WAr_58Iw|Bg4Q>8d^N;UKQ z`G#Y$ep&yB!IWvpUiOWEc)w82cE`Jwjz17_l%~FF^EIc{vY*=ukZAkYU3CX-B{Y8& zcPQg88Y~Rnr{YrkbQ5I+*LF{Q8k(EKb@}*H204iy_KVlGP$oobf0Mbj9RN}(3gD*a zs*1E2^R2~W?UKL$?g=r@o0v;hvA%5W2G7R3@eV%8Z0(+>P01Q=5xBt+kK=orIF`qt zP(!2*`GZx=^K*0=Mj+t(0ULMhiGbO<QiM)iTR?c9zXi^64RIq0v3|Mct=#%W6lFPK zY*|9(_3c>Df^}wQ$fcs(4lO^rv3InJ2#o-+$crFA%OI2P&`7vZinVVIE_`FqM@X<k zLVQunzHCj))!u+K<Hs7ToKMU1iK^%$j-U`*tk!I|^Qr*?7%c&O47J0AtG3S7?EIYP zsYiC`ubXv@O|ATnMfbAV@o~Heqae0YE$|7+feGSpGFRwD6d*?4e^bU6NDsrUO!}ay z{n`=Y$6{~i#C_)7QiC9ZT5+>M@}g$sFL_xDqpvlRf7?$^+<=alabnLv`{q~}2hx8K zo{?7mCez5+6ZA$Ov1U(BQ`z-Ta`82T8{Wp57|24W>VR);^7lmmd-de^|K_nNNP=nv zIXTo|DASS`X<r*D@y*R{Mo>ab;-uLX{yy%>3`B5Cz{MKxrLybvAjDm9A3L@2_|61F ziLxDDCsCv|bH0)KbmVjT5ZVU6)m`uj)-uUH_z!Q0dTAhKrN2~7{F&XHeG64*OWG)# z!)~h4QfCJTj=*1g0i<>U5)1iGJ~15?nRBl?fjNKYPTOpEuK5X4nYB;8OFXz56D^Vw zfutI#q#$g=LZG;1O0O=Z29Dh!n|Yj9is_T9HXCQw$zFp{jhamR7ONKsd6rYi=Y)N7 zIQx<6oU3Z>Yn^cq&eyoCNSN19E4eAQ>n1N)NkLy6wx}szNs|Blg?7T^X8<0BaARdq zQQ?=>)S3<2HVbGl@vXAJ$RJB?2v<IWT4wEv8Pb>Yne3q*-{Rh4L>FcECkgksd}<_l z+;acDFw(Z`yZ2@Rbw6uDS7Yg*!}RNHw^C0xo<wj%bAa&}__MjwR$pb^7hDDHagPao z+QD@z3--Y3&S8}b56uXwgSNmB_Yd_=ty-<mW5s71j(NsS8kNgdELf+rY%}obzb?fB z`N^N%l`6`GEETZ82si(R@G23;_?{+Ya3897&iedprlT{n9VOlNt6LtZLLW7YYU~_$ zJvEVT(SIJ>W$^O%Ig6m+j|58>Avef;W3Zf@Pat2w#VFHuYU+JAH4Vtp#5n^<&ktWa z0|4aVQc?H)eh>*pt5uQgvl$tx)ma@4ZYOGerzshJ4%d;QJJMTioOWhCy4xX?%t_=R zrULvQ9vNc3k?7(MIMC)-`l5{w;%{HP>>TpuHC+4Shm(&S^+PA@8Tz+C85jt~9g2(8 zm>p!JM9~hT7c#+~o8W4?-4p*LRpeb>a+Hr>rj(YyySzcg0OXa^l&fRHss&-!{ckpo zyP`&N7H1H3L)@yI(Jb~su}d3RsaB?OW_#w6p(H4ptCg<)<f|Mm$J6SpAtl1tB<o9X z==`R}tyyZl@p|xoc!aa}5Bix8IbkUJ#0Cg(z;B(!_nDKt9@yu`Ez1hez}8(Xz+Ixh zLI_S}amI%oGc=rk-NbiszIk<wFNM2h*wA5U5r7DA1!ixvaXfiOh`&P%2a*~GtIS=- z%xXvJ+z%(LzpI<cz~41n;rUt@&1q;#2uup$#e~;5DN4jbf-Gc{;u;bJd`$P+8XM9D zFSZ`4;dOl(f-V2dG8K9ruN^ivD<AH0S8*4MB}Fp#0B9QuSTU~&Vx<*_&}%ey4Zpat z0aCJ&-^)4|GXe01{v8$Cs;!Yk=YG~T2VFt?ghaNq^3n0)`O{f**nfBy^AWELy|g8R z{(sTLyqJswI!%UU0Dl3J#N`x7Cb^EA!;775yIW_UCx-r7UxF5B>EVF*4h`ph62Buz zTnTS}R9&XuDnh$AGm>~B6)AD;jw@rfUp8+gkoB%R2ik1*sl&J{`{ZD{Q1}nE+1Q&W zER#$nk{Nl6S_nYAyv!{>%p6k)LB8zMQqUb(6T*dhvQCs*)wDTOrP1I}0CP22KN4qb z*qjg%Z|!$l8mV4SbFa_HWnm>y)ctErm^x&Rn#LtKPZP)ho^cU#MptMpaeazCK5~04 zf!M!pZ1RHD4+$T){F2(cz6TN!mFkeb_G_-)YaThQJDBy?Ro(?MLPs|)_o89ch5y>n z-ND7su8Ca*({D|!O}IcAs2Lw$+;Bsxw9OZBHtm%-?$NKdF%M4wzy&tNyW$X9tOru4 zUpGp2?;}hO!D>55Kk84L8S^9TR5_N9*hg$VYeNs(tUM0=zRZ}CEUNj{*n0avyoTn; z5K^4<7jI5c82hxnqhadUb!}l?102m$pMk4gMRn`@S4PP(&;RngF@Ix9@|`xb1bf{T z7aWR{lpJTImn}PYk)!ZkX8+y1hexLKw+T$OG{(IPhl~*`^aW>Vmr&B|jD36Y$6<2B zTG%E1h3$U(!R)nraDG8Xmr9>#pcbx;y1Orx_Jsawj_sgF6hwxQv><oW5UZM7nu{HL zKMr574Z%aX{D<8Y=K_3gZ=JU?7`Eg77)KZV;06eN3YiM61AOi<M>g%Dp(vwLg~8#d zlcS5@h^e)iU^iBqg#q~#xcRFY#nLt&0N7OIp?yS)6h%aBO}DFiOj~pBS0CL^z($^r zSaK9!uWUjgCTzH$`A6e|z@?1od}9!}@&zKu$?+QP8vc0u$&ez&^?EF>wOTNvHKU=K zed{!2aU1R=hq6)w<kX|3CZlC886i~DwKj9dRlAY1qX~kzrhno#COT4VdyZ}VFbwjJ z95USg9$lz6r29Vga9PFg2I8<bvV%ZQzn?2zyjj1wblh;q((swihB_2Hgt23cZzVCa zgCTw?8+n?fYVU*Ae`$Dr!=&EGwZEX+(uIC*5`3Od(A0B=4sgwRHQX0U)?texIPaHK z>ofCNG|QrHtX?suLJ(JaZoi5gd*CACD*3{GbU<}cI}W55+G~nCK%}~xi^D<P@X^iF z=!OD%m^fyq_OR>Ol&=tZ3fl0?T9%tDkD(*LDaKKa#3ZJWYfiN;9YBOp8_t(Sa*g*Q z$1iToR;}J9J4o-o6mFlx*~?Tp6n=dIE#?wsS|9Gvl<It#32d6r@o(>1mfJrAijRAy zMVP7{tJ#_X9zw%4TY{POXHQ*An?8&6%0E~#j3RE5ba1_R_ic}M(FynDROEvxB8`3_ zYy0z`&HF&`P1@?)=PsHu%o&PXX8~isQo8iy#a@juva-pDG>AC$y(r&wj}HMN-~akk zr0^>)Vx<pCWzgcCw<7(AHJ5CQaW8$rp&nIIR{?IDQ5TZnG0hoG>En1|smGY8{*q`l z_dK8P*hoY2SdY8gV9Uv>d>S&9_V!Pl{!D{1cMex^@fW`rHLRM!xmBMx!k+H!P8^jD zdnRi0EzhNy;On)-|Jl*_96%#UCQ|3!!;?rLW?70H5hBKD4K$hE7lQ?h(3@EgoCZ?b zb5CNHpzM2$Jj^+SgtUi#Y@%})aktgL9zPMa%|lGziu0tc!&v>p2if#a#SgGQmCq`l z_4eg9dfWW;`dn*k>ap!fmz~k6n;@_3Sngs*6T{!-_T$@^W~G)e+rML9A8Q`FsRrUG z1!=odzxg+s5-y2@2<+KDIKeKX+$h3E^Su-_hDrF2fD|y^skzZo%xk_sN6TE=BjhrM zpN#a2KI-&;I?o$ZRcCd<oTJsJm-`oPBGVAi?etdl`w<o@kBTa*F99a_g(|sWx-J+0 z5Hxh9g^?pKXFpT}m{vyp1H^Q$=zfhC2*0v<Y{K>(XJ@CsWew=zX)c5Ysm}>or&oW^ zXB5=jv9)E0uZSRJ#&2;OI(aqx);1fRpp4c=fg;2op#(<$uA6<M8utd~>t-loV)5~s z<y1p##Znd%afDKGjMnh4CHOzdpQ{O~2P%mpeGC?B&QDL(*<<K5c>G?ezaR!8%UO)( z#TX<C`Gk9nzPz_d<Q~>p$d(>FXAq9%`dVjC_TUls#$aS1-V<!4{&Ig?_tJnLU6_x* zGcd3s-i{;w5ngJ4-Cl9%Yd}2!%iMcw4f6p5nXo=Vzz8-#3w)>X=apFpDwXK$qQ&Cv zv&HnFm@RvGan{NkHViIE;1K~%x$2B%Ok6u3zEQ120SzNXlW;HUe%9QNsed7oJ?3!P z_zgzGWjy;B##*8+cv^ky_{YrvUT-5mtnOCfrhDYQ3>ZXq&kU`^1&+kH!8lmzoS7sm zj;$5$))r!qm16*7DsPM4?lae|nY>KaU4id?{twT2GO2(>2q*X3Q<?eEGG`&Mo3U&0 znh~-cY3QG*<yfCq$vxF)Q}tPvPQUej@16<EaF=^e?zC`2-Uq<LxcAffxp0IDNWE?R zr1#)A@n?R5fWyV?t1@|m9riG(CoMx158{JG3@)$XE2Z<w<T^x7p$~74*M}8&hGoYW zqeEz*O^98sdM1dRR!djCSTuIVHdVTxVbm^aDQRN@C(iCT+<XYLL`wDENvWXdKf>I> zLH1ld&jBQ0SF-DDE2UdTj#J#h{}|{E`j-Sjj23Z>wt5g2HfydoqHwN#a4R8}w0o$_ zs7Z^6yS@EBB*d|f1x?wwzrKeXCjN&fl_2yQ)i^w0VLK3b6(v#0PzwwAc1S7tz1Y$$ z&C$`ODOG*Vhp2&L$h4jSpZ65>Y6)7~dmi#vR-xj<j{=N}kbv^QHis_PivL65ksde7 zHv_dLxKQqYFYZOtDRQ!|NN|}Sd)cUN229#!W;}~?7w`1N?WI9_s<{)B`tmKR{n^W{ zGWJ`RL|(1P&U#PX;%?%Q&$EaprC8wb{R3=<88GV;#1A74H%%G7mnR1#xR;{Ce+y(I zxDSMpxqAmSd^edtF^)*kKySk-1BSZ)e5I$?{@iEOgHvCMv-~qCL*-edtX<+<Gj8Yx zItr-FTPz^Eu#-M~<W2<86<FxfqTC$U3TmW0=#PJK*8=Rhx1>G&Cg8DvYWtC@sctNN zQ-1GTxVusmefFv+>2-C|obg3m@a>b3q2>cWsF}H;hZ5b@mAWwQ5!ZiF^ZGx$d!pgn z7i%(LiG?bB|3r);`HVV_0fF(1)722_zJIXDCe)`e3lhTcoR79-0!1c2Py`46(pTso zB_De)DYjyKa(9JG7TQqQ%ACO()ZoB!88dqS;r*CfB(1=`l3vL3c`}FEVqayE={%mu zt)A@86ul2?1>tS|K<n-%rVmQ<pt}h|Sk|;WtbLbK@$gx;vj<}G%}oVrCdVj{YL<Z^ zhPMKhxL<lMZz>Bo3T4~ZC-dN`Yl*uw4m=wN-4pTNzE)-?1y~}F_gLK9TB8*ILZ95Z zWD?n0cL1M-x@~e*lyw8nfO+m=W`5!JsL3tbepSO7tf`HngM$&iTD>2$NwSn!v(kiT zE*@dejcRK!vU{-LDNJgER8A*s(r`|Kfjee8DwE}AET!%<$IGy?B9d*A7lWZXOgvc1 zH1q&6Gyw)efWg|-@1h0*^O}A<ZmOgfK7%}KWUrbY4!=zf++w>#F2({kBD<T5OX@a+ zD3vw>gdC9*<zgR#am1ZBbl&TYhr)Ll2P;1$p^U^0J-PME%|j_YIq~i%jW_uOjz;Nb zex(vuh5h%`(1PC3CyH!X2qwJPv>(D2fe>)iZ{^ZiVk3USW${;L7@2F^9f+O4=>CWI zm><(^i&C~kHST>D$DKJ1#87iq75~Y2^6YrLmQx>*886B5Fi5<HfwDk%r52Z>&?|`( z<R1%dgbqv+nPJ5jpU-ue*L+w}*@h2F-Uh%QlljTVuD8dBG3N^#Gt`bg!&Sl4yRI%= zcwtZ(6o1g^Ox$(*U;UV!p}-Qv;+0BYyzN5Q4OMtV5o}xd>`Pu-Zhj}K<P@DZrznQ$ z3ubYa>;m8n%^P56Zu*2>xC_0po4!fUYcd4GgM#!xCXA?gCoRmv+xKzDYwDsAsq&|N zswq%-k3VbD+pFi@I^B-AATIEhZiG)#T%b@qR-t-7lZ|I))5)Q0)}3AGx%k9;@u`xn z41A~CZ=XJjfVdAr39&Y7FM?m6YMs5w2vcaDYI`PX^|SY#zo0NV>$$l>u9eKjc8&%> z3?|Xg42osa9D9V!a(MWjorjW2${nueChVntlgNiyiz-n@5abVW#%jR*Af?Pd)!rfl z?=33-ty1@xl}2FAX(!VeMT#nDEu`q|;h(*)w->)++WVOn>H@FmKbd`K1<Iynuv3tE z1RTcBNQ4F!<!6ZGKXu9Z&{jZavVWxymbw*5!xw{GP^Rqn%3L0URIx%ogDO9-t#_E` zF(eas0UIIp{j)9!OS>KSp^w&ky+glp8bTRtSx))lw^2POa#o1WoXy(Ls)d#P=o~Sb z#6t}cH%r6B?@w%qwqaQla%|9AQ-pqG>F}2D_}0E|-Hq<;tFdb2qV6Qa;sy83<GF7f z=f}A63A4zzyGw2;$uhOnI%IEUuefdtvsJjp;W#$BSueoHx;+_2?>bU`XRoC_d--5f z2q7&O9%vUx!MCI+muG&@==dgbu1KX3!Y$>fjRC+t%KB1ePE&)7e>?n&`%cqd5c;v? z?uRzT{j9bOM#~>UaCz2P{j7P5akUbD+Iu*Q&F;Q6HXkNDD&5*4Ze3RE<owA(E=&@l z*jaIUtk|4{^ztt5r<oP}UMNk~&d%wQF(zzivgg5I(ECqY?N-14dB~`xSW|P%*FTP& zRMsEisVhQR?3}EFqBxVjyeBBbKB3(DKfK}p@O~FqSO}U1hGq>y)s$v&UXU<%jK6CB z<F>~3sRkb>JG{vAlj`t?!Vj)<@4%O$T6BUc718l_B_e-W$ft~V1k(_CitA{)DabM8 z#4&PVv7heKM)Vlt!p*YZe3HON<3}m+TWL73HbjcL!>Ps4i!4~}vQ{qISz|&!bP_mq zFuFs_X1GKJXXHqf&hn2xzG6JJApX!d%lq<)-lt322*5~BWY6%Sex(TeHWistZAztz zg07M1KOdFU*ExaV?cvJpcBwi65?}068NT3YFwokUGJEOnnY_*xPpjv1q3cr}`z*{O z|Irg9eLvGy-5sS!jY%62J<_xPaUd#I2glQLCi)}IdiXD{6taPzyEq)$tWYJjUY|7Z zJ_jfiB|-Q>jCUnjjJ!pOJy}$SM4CNJ>FTVk)aa?XWVhI#At{IH^Tp%O?9)J73rXT3 zf+w{w&RDGi{tAm_kzTxX2IaK<-?hI<)zArZUA$OZWW&#YQ%>2INfip09d&;MMx{T? z+y93*Upk@}gU2f~ERTz<D`<|2YN#egOU*XKMW&>w&B5eIya}9nRL=DY?NU`&J`9bu z+IW$Xn_=G-^#6xPA|RpgjGv%s>PMS}u%z4?N9rk4y=+Vz?FKfS5s$_8hP=Ni1H|1n zfzyaM(v|bSh5WtIMc1PC`rWDjnejwniK@(87AX$gJw0j5*U`|ouEoXd)(q_r8aCT< zJ-{0U@dN_8W^?@3>CeWiQ#(>+-s?{+$8bnn6gkFT;B2tYmZZ}{?CnT}g;GxluX?tC z4WGBTUCPL)+iS|nl8pe)3pV4eeQ~f{p39YSGd-?3I_Po)^>fD3*n+Pi$sw-CR%!}? z#;a5JJW}QWAVJ#|P)D5a159OF@X1nh|JlcI8GZYY6#ia{8z<o5P#4I%{=4E5Y8>cK zQuZ|&5gu`SOx>qR?q~7-wQr}~-R&`T&nIH7!j+qzYNcCQ8r`#g<=_j$-}^KObwB3i z&-{hS()@X5tn`VYyq8G4KCNAPUubl_26~v!CY4eA?p*O5a#Y<h8e41`AS%NXLk`q^ z>&15oM)S@8Kwf=5sj;Dmal4GsaNzOdNaSQzeU0YHJ<|>`hq^sVoEfs_^wPYd66`sc zdBzp#_bGjn@qq7A49!2)0HlD@@jhzb{W)K=V5os_)v7`5RqjfWFtw52QZ}{&m1ENZ zX?OH_9d-Y{;oI0P^(_gRoMiFW*Yfl&2WM7_msNRtmRY<d!go^m8h^=Cs-!k_<9iy_ zZ3P~Gy0c(f6~fx<_Lmv|<^F#1>$EV#y18@HE~<s92H=v55cRlpBAl31^$-^BG<2Iu zqGg+yo6q<6Uf8J#88YsF^X36p<W_&6Z=vK7Jyowe-TRM9tI4vl*xQ(8%aQ-^CX!~( zEDUv(^Y4BD8@4e4Kb-TG@|`=>HXD2rKH@tRx<8YF!CK#voKI-G!QN$W!`v{c87{2f z7bSv9-fgNY6;Cq4*whW!S^U|J4NzXvZuZFe+^K>!+!Fr-ohqO$y?ElmB%5WRUsWh$ zNxIZABXUEVDkq{2MYGSx&8TP7sC<rR&YVj{$aoB5jL45M$2rIu@;eryen7nq8(Qwl zBn|=MSppr;iX_LY9>&z3e#QQUYy6dEx!ei|**RA^^lkh7Mh}6vk{(3kLImZVPEdbn z*cgx_?vEg==mgVP9L}qSC1~+4T11;szd-TyBp0b>b{)UZC7x-2%`x9Q2g}Z`p*3VK z*B1?CYpFgA0Q$5XyxIer?XnTgcL$}jP>C$m{(*`g(>5~V%PJFV8q#~`#g2cJtHa0h zmq2j&+g9fYuhHd<q(l)i4zqR4V|W_!hzCc*7vWt3I3PV3`w;UBu`CpML%Lg7f{A-C z2dR>P2%d}>r`S51Nd!;~ncAw_o|Ak^$-d<lT6tBmZLcQr&&GrH=h=2OT|t&`Ib&sS z>fxju6s)K9D&N-pH}%+`x9M9R7nARRn%FKBeZM=L*aY*batXsc(3CBhBU_prL!{xx znIV~|+xQ`p|KYReqV(JHw@K5wv<FvA#t}7_W#4b#`qgzLeoWpL0=~ct$0QSa@oktF z#D)l=q@uH6yqk?Ef&z)$)OBT|R_Dz`{;G-}Ym7$9J0a&g{ETG&f?}5FcY7n-nQH-G zM~_0FSeg0Li(1M*L}7~-jTWjiB0+wq0!t0EHA`Rn<urRFMo5cyG&FSRt+}GWD4xM= zQ79dR>9DW<KsNnyOAMOG>bEJ7KLHQ;{3QF0UxEF|z!0E;If7ezGE$G~i6WONID{0H z---}W?)P>QJ}5dcqOyGP$*MkUEJY`U_i5$x@X?5#e~*3t!+Y96iIVHjC)bTvWS9{= z6@a*nEuKHI36i<kd4C=rW4QI@xBu{nZ0_D8UfP>nzE&<tn8R~{<JRI$P!tsmjG9j@ zFZ?%wbU~U%pISOWiW?Is)2-=#4%0}9zV#bsNXVqZE26Ve`{rCYz{c?t71}2dYT0p? ze?KAK+}I#n+~I#Cu+=y9ihuq@;C^oUE?3Lp54D@E=meet&Vi>$gUsyJCc3AAs=e!i z7?{j+buE;1OQ!Dgaa2iWL%NrYU8fltOH!?D2uaDml=aj~ZQ$NZpLr%xTuqq}N8jS$ z)D@>x{wrROBhb;=az#$?kLg(-L4O9ut&}%k`7FgNM~#=QhaZ1G0M%zhZ9+*8@5wOB z!QjoN>4xRe?njt9y}e+9`+u6hmKxs4i@Nwp#V^sF@oA9ssgX0wt2em$0x0ii?@5u9 zN4VNganVhLp&w`){~{SRaBmpTq#Nx9VKe`?W@1|Osip*Ha`@2^DrBYV%!tj$X%ZHP zOc1m3nzkKvvsew5VHF(aqS|%)eG63G^#QYL8ZI|$Xa^wpzUjd&M=wr}<>MY{$=SM~ zNOE{J^&$G3QERGnO;Ky==A&lG1V`6Yyo2Airi{2`3wB?jrVdw#EM+Z=if)W6wwacn zy6n_;H<SWPHZ9LZSG@^{_VY7>cSS1>dN?|M<TG`T@tfofv9n*Xk?#|0=OLus>?ZJi zaha#ucRqMyfi5mzGT)bF$*5DUbua#hd?~v+zVlr5Ovxk8$tG(`+#oCe^&zNoO$-;L zO+O^No3eGvGA5w_81Oe12wAr7^8ebQ7Y5m)_-)6WPWgoRg<P{;s-i6B0cvCzZKNoZ z)W<|0(_mqAa<i+T3V8-OVbi8Ij5x}kIhi@qVmNDj644{9jE)fb?Ce*`7v$@?w#G8$ z-}1iaY}|AObxMu(UAX6l5ukL+HxE7iD>1t7+KC-)Ih>k}jMrTvwLbZBrD@uSQIwfH z)ZenRaatVJAg4riZ#GAD$ie`dr%|#NgKObi+Qd32O)#E@cg1RN;8|40#cRtKdfY~- zT+VvPQm@MGg4%8uP>k&3y`%Mw0x}GhfUQQH&I}wJEpGsErjKPKb+Ds1k}@#ie7CaP zbLJLi`dkBDAgJmv5%O{x=8OPaXsNX$C!?!;a)cg=`?dLfaxYhNgGY?*s&#iYH^tC^ z_-82=?dXJssVJnf_>vxf+6~_}YP>%$Wqi`kgS(R>>uO+JNL@{g0Rns{r#mOG<Z6YY zToJ#Mm1q&+%=D`~*TVaJ9gko2z3ZG-(0C8XyoOmsd*H;qT`W*H05v#-W6m|SLFh7p z>Sp-e?2pzi_3@4^(MhYgMlZbhyM@nnHkF)#jzjLmFwnd&IsPiff8a(k7abE&s=ev{ z6Ph8t9X%|M{C(5kGus#LsSnwM*=aE<g<p2nA-XYKWbJgg>~uvC{Q;9?EnZ8GDkjLa zjYbx1KEj!LfA}_4PP%_(vPpHOC-VuLI&6wlZ^!y)>i2+!#J$jkeN7^ze<5!$nOlTO z?)*RI6xm&_GAS(Ma<slI@HEasxSJY3vgBmZf{u;Oeo*pJ9kt_9=018VN?}fh2Y_S^ z+Jq{hz`iz#TyUk+6_~ETUSOr%W2T{*l8=ai=&g+xNpyr%q8LaU%YxgV@L-ya<|K5Z z6h))@My_5i!1HF{0nL_>r93lz6vO+@`T(&al{9e1Q;#Zn9Dp3j0>JNfR>8Ep7pqur zKm|jmeaCg*2Ad6`s<*<xb&s3AOgF^a5wO4GeQV#mvA2(eRwyp%xQuh(!8(J?4So-( z@M#JKlXoiOu4lck<;}MgyvU!z_%ZguC<A@jH?j$XixD=7@+R=5sx)nXbc>Os`bQ3* z)QURB&y=~|>x@`CMT!0YQFPW}O}%{>M@0eYZctL`2B`^3gD6PDCIZ5kbdB16(%m5- zOiDnyyGuYqx?@P!Mh+PB-TOD!buKuZ^PK1T-uL~v)8yBp@@5Ltgt?Rq)lu7#A8LWG zq*r;SMHFMD3rr`~{Jqn3N=VdVBoat7@q+XsExxjbl1>Y$zu38fh)Et;1Vwq?E_Kpi z47CCc_3O~UgtE!KO9FG^zbP6n+!|s@S{8oW^bsRZDwXlGF3}ioAn)83nn%nO<MKMJ zJFj-)w-3XQ9vxGor*%*2Vx1nn7OAjpGGVo)A+HF~w06H~tI0cB9bLUTlXrvujAF<s zD#H@p{p=vd&?1RKvDQdE$h!#`D<p@xM$bccvP|eAw8=s?XLVrQVCqP1xj~=jj5)6< zB5m4K%pr|9nq%`dCU&EeUaKU4ej3KH>d0u{dxUf{>;XQ<jZS;6u=dKNyT-l-HyX>x z+!SIbwY+#{#Z?Jb$4UE!IEb<WSnm?+E2Ci#aD6EIIM3*{aC=bA9DlfRWS!1|f1m^s z(3l$b36kED^Q%SUv#y7@>2J59uRNT2es3CW&{qR60W{;`0efepu#`fCC%KU01fgUD zLb_*(e*vf>xjZDbs*8U9h)*urS*09Z_sk$EmH0~UV$V6pDIjq!-MYOaUWbzrjAy_~ zmv*w_<@Jr+Df}k_D>l_Jn!hHK?!KyP!qNs|0a>*@8TSx45?|!eqpuzBc>aVWG`<Go zbgPN$!LebyzC-;DFfU3Lmgm6@4W~=-Opdc1hW(H8H7=n?e>J@m<AtqK@jA!@{#7_Q zQ0FolgFpuQ4|vZ}2QZ<f@yxeMQaz9F!tHfp^Ez8_yN0|u6OZ3qRnxdBCugqrr*^3! zRZ;|_zyl=bVlwWr3MwDefw9>5g`*lRf;u9t1ZH*CNUZeSCl;E6WO6j6(;~M7{%cj& zmb5K-615wW+Wu?p$I<7;g=0u$-z`JF=o#SOET-u4E1n1h+7M*~)8d92bs+02HWCMZ zZ=%W}d8Srr{${pSLHo>HGL7$E^JWa!4cC0VS`PtwAQ7?3(%n8qxG^{(_FWNh|0b}o zerwu~z0Ulcv611=!&=-@Tl%lG*;C?$kpJ{(zT48|2mJ@#PA|byr}r-MHpW~8vS5L~ zZbD`=8S0&gYo`nEmV*|%3v(tFe6kG!mb+tO@!i+5UukjF5IBcUakMB~Wh7Qj_#EO@ zMCxlZ^C;VeP}w%B=DNey;dPMUe@A5V;<-IxoKbdd)9w8}&XpD`IR3?LQ!+K8Ta4UI zDKmgf5#)lF)Skl8L(jU>8*qYC^~6ux;0@)oMGu!7IsHiZpcCB@!-LMJ5jMO36`NlQ ziqfuN3^$D%Z&jhJg94d5VfKwvQgyQ*m)!i)_i6&)eKa**UHJVqA|i>WvB^Y`VI_$J zvU$}jN{)YLK{3X98=W)`e%0w(Ig7ZZcTJ6<+hkc?ZQ^B(+Oj;hR8=|J+Klw4;X!Ry zWgydk1U-V_VoDMy2-w6TlaCbq!@X$XyJ|W4%C(n-%r-@$`ANUCZC0v=VS}J(z)6Pl zKY~)2`g^<Q8rez|`AGi$P6p^&pK%MQpIlHA{Ug7~p$6)ropfE!G2Am+Xv02jxG3Z- zt)l^+WnGG|qpHv$F%?;}#}J_*$nmiAY<r!%tgTKwpe9=MyxjUCtN2LRS*T2EemTqS z#|gNQg6m_AK36`oI=3owVu$mzlcIDkCSDgM8x~M{%_lB2=Q?i*Tw47V(l`2JxlRm^ z7EqB&9Cp&HiXV*;eAfG{GGCb;D%gi_Ue3m+rf~{ik1DKZKeo60;l@qW`d?R;Ij4;p zJIQPQjkl%MELD_bcx<a$#`_qu<zcBLw-_9o;&oe3B6AVBak<Kd)`*vG?PP<n^z6yL z-Ae@f(G^E3-L0&|4yG3^^|ESEee3lXLV)pE1V}XlD1{tR2_R9H#(4CC80thBAs|$W z<7{U8b|J*Kz_Ry;BT%m$E1`AQ;-%o)C_&oz_{aJSFB+<1na_X>AWJ7E76}UXOUCM; z)$03kv2g!K$=~-ntVZh*+5WtD*trfcyyn&Rur2p*au04zBmI>5J8KL-s<aQp)TUJC zs4PAyZ81(8plLx#welm|59uVTS~E?}vUsLD^|$eT-Sq6(_J)hOwVOS++HHJFF{;)a zxZuy|Bz5iC_#<<-?)E%i?uVZ&md*yLA08lHW*$I~N!$=z(J;-KQB*6m1ShrUly6{$ z;*?Z41Aew1bH`pa1hj^y41<OeLbq`g0p=LIHfs>ywaSIDvq!?|mUmgga*HhY{r=uK zl~m2dFMdusV7Q5H$V*t}Z8kV?t||-DVx)drjuZ`9RX~MDi&RYMPRxkpL+eHkNQ3=_ zZd?;0W+6kF&x_vXgYBKhG=4{aGciQX;U{oR9puoCIV4}Q<5eSrZkUeiDQCR~<w|HI zcz}ZLzlC@8D(fb-39d?~7Y3w=pY2DmimQ`TIycyvf&G@o5&TvVHhF@K3@~&-11vD% zj*G2eN{Elo!<F)($q$q+#cFsFy<FrdU()y4kwY!dZGo|EVDDPz#{+U5i@7{Z;O%Q@ zmKo-Ai%cwCKF}g7I%}Nzz)8NBV!_L|^8D6pJyzAiqP&%)Z6@pqJx?V(zOO^Daq<u! z&}dL&|A`P-^sTANAQrj*yEwY(Kah3z6Wec(cNJ-oluWD8hK06!E&+=-rNWJuUd2tV zeZe-wp^X{*Pu3HfIr7V4q1krseOu#1dFdK1fL0e#39+fI?AbwI`~*J|qj&ouz~C-H zYN_%IqaR=C1}m|bu)&2;<)<w3hN&`VDt+npZ(lNI7vBjr>bbbGy;5vA0&@wxz^TDR zF>99@m~ekE<-narU(U1WH+9MSjfwnCpJYa>>RWXbr)XXH`fXUU%U*sg_!577uyJyz zc54rfHg#cnWo@(W(qK07;mFtH^3g5(v>@Rh;Q|0S(b%->>;a*-Vseg#PtpHn8Mu8Q zm)sA`_~!f6+y`Rdv;_5^kCfjjttZB_*^dy;=5TJ&OZ*n-H4aK`07ELSTyCmggfbeB zNi-(nJknXxV>nfmDW^WpmPr{Fv%k7k)<}ccKy6O()woM_Z$2uUC9^KPnH3_q4<a8y z)Ap}EiSNPPmzAH*m!#8q=G3vKtkQeW1;VO7sDEL<+BqpPe)$|fx_txXd=BU>)o0d8 zF!O5Wn?`;jQi!dkZ#W3XRo?H&o={fC7;bc=wNQ59ZRJqsN%01$s=9`$&9_8ss$Z%x zb9*V((mpXlz9-K@>XUIDXBZX?ekVux6@TesEVKsi66wXClybq`p%(3qJ;F3gY}m2I z)c%57dF!;5D&<{g$(vTx8jigD?q_A54xahnA%kM<T>`Ul6Z1_=?|u7^<Z(4A)69Q3 zP8pT8FL)_Q7R0VBipg6a@%Nx3mM2`{PTp(2F;Uw@FhQ^Sa>!5xFqQ_!t3~qBzdqhQ z4%SJU$06=KdzX=18jHXFG*PyZ7ZI{78o9-Kc$oPTy1oZ@hQf8mZ>F(G4EsNVM{}?) z7_sJsel!e#2E@fI*-|YiHN@M0+j-7g_UQn8^$k5(4oio=!jY)p|H@z#3_+2_*qzO4 za!NG9SIaw4B-+Z@oOr75G205dZ{?V{Tm7n7-KlU$nB>Xz=Qn2VBzWd}aMXoAv#E?l zA~34N%g6ubtG{2OcTDE_)Tv@6jy(f^UHCL;qy<B{!9=ndz`(`8iF)=+sT~rI`GWr$ zo~Ib}4w}`QE(4^(7!|1%|7w06c6l?Cp)yjY&$jzIB=AoH$)=Lvfr0@i+ov|c&GZ2! z$cA?{q-d{d>38~#?PP!Zt2Wuh<(^_Ykhp0#54nh#WV`&C!QR;gQAD}y$@}CB`|ie0 z)T>GiPiMH)(hMeaeU0A1hxL_N0SEuAk5#F?tLAn~VAh)lY1giS(DKfO;7i53IJiyV z$AkZWcdkNVL*@D%au<Og_w_*U8yf<P4kv(?Te;x^B$`2wxP_CAyw)PkaqY$9WsVYc zbCL~aOL0VM1g`Xc1akCvrw~cSkJ9lM?3CKGOb_Wx%BsD1n(g`KO0Mu}BjM?Cp=1XB zBoFfjoD8jX@J<vaSR0+GJ>T3GHI8c~;{Hd#W?ZQ^DZTc1SlkV{BEto5OSdQ5e<D}j zo}?km?YMiBv(_KtI{0Kx#UAPY2yfias6-qBHW*+wXjsy|##Kf7_0n8m0eF$^uP>1A z&o|B+U%`I_xm>dnni;*#N8UiL)$Y`eyw+#Zog$RtSq~2Sec#}@SL&8a5P8r1${`;{ zK-S|diz#VLIhmjTpnT##0-+!H{na^xG(uqhZ;FTky0K4Ib5)M@%iwGqTx;&+!b(LQ zx-#~BZj}-(Qt7poWroff*54Ow{DZw0n5WKS%0u2gWX!HyKlOP3@hov~;W#9{-v`|g zUjce!d&cD?e&uDz@Tu{|F3i~TV$bRxI>qUX8}|Zd^w&H_))1<FIjSN|5_haDul3+T ze7_d`m~O4c(`Ur&9pRblmxY1G63QVUX0pJO-&0uwi6z&X4;tL{0+4ei4q}uW??pr_ zsg6}$HQJ?(yi{@HR^!F#0|`5>u)tUVj<!BN)b){n=JoRn|J}HIfO2)O(U(Cwv~Q$o zCDTYmiss>{st<``zwaq$x9=Tnj!+djb+7Ejc-+kOiz1y=Uhp9Lrpb}FZ5z=r&*fjH z(oW-zc;i|1`PWmxxML?}AJpS^5D1XRDBx&G$8yIvv{x0U-@6Y!n5Nu`qU-(u@;HA) z87Us#og8n22OF0cEAxHs<?Z!be=)cVIfG(VT7g=3&p%>feOT{Px~KxmMZwg8Z&vgt z3o$8I<PBO2?HRS$Q-Swrk>rvu?2{HlYgg3+czJ}wa1`dIftFWwU;4t{OMOQU3`ds# z2JMgdvrT!?m^<opkK|sZ<^Bke?{qmoBGUTWXviB|`;S2G;CFx?>eZzU+ADM*8F>=k z!8Gl3{3k!dZn7NaWgR3d<k%ax{@3eK2doOyDgFC{<=xgg2LeI=Lz&MP5r7Eb#MLW% zik8k=>BnEJVYqg%w18J%mmxX#n-Cf^X6Z*dKS8~U%yPVZaUV3}^PjVcFnPYf_#;IR z@oYFk6o&Iw)p3nnkso!UJ8eCcGd|KjqnjB!(ez%Yyj*C^N61}F93_)Dr~<0sq{6zU z16iXkHF!OvLz`@cG-b|GgLagv9`J<Yn&<xd44zQpml#e4FDu83A4v+gKbq=WV6XEZ zFZp;1bEs0!5pY~grB9~X$vYd@OzayZIT}eT_qX5Scbw}Pt1_sS?4mx(P|(Nb*u?EX zuAAdkZbcz>ptM#^{u42v+f;%e5q_PhD#Fq-4z99B_k23&_oGjd=#>J~@8r;bPteXd z+jM{FN<w(HS_<XZQdHT{Jo$3F4(QO1-xt6xf@8K6<`9R+>Ect&asd3ZI>tEIiPAoq zUqZeKTVxE!2|H#w>bSYMWsL}e-`s*HH|`ClcY6|SHtKRfQZe}d6rpo9rU=z&hVj^- zjN#z$oY@o)Z>!Cg*;Y&V%X5_Ay;)pobxNsglp2}hM2Kv=NVc9%N%5X>!P&nWG-({b zf#Hd#%7ysryuSNh1|!--kOnYUKut{2^{s?;(Q8AWYwm)!NwS05_#e)4(b4#F^D|2y z$d6-bqc8CdFJLDuUt_S_i<-9jln+Vnk^;2XCM`=kfed6cZLs}*c&g_tOcp(x5r24R zyf5UZ`;TBmdMI+Eg&rm<+X+vW$<0JQt<~Sc>0;M0;V4;TXZLNB5bpV|Nha;ea|hTQ zM_&SEd(BI2arUl{8m^K+52yPw>y}haFMa`LJHN*-^de89F7!G0L)#z$H*wiMPJm+( z?@^`<I(ab)3W^65^1)-!%E}A<#{m@RN7iVfFe(4#9c8D`YQ@__!ntvib>8OydxMct zSSO0&q7OH=jG7z5#bd{}=z1jX{Te#wmuCB_#uM{l6N?5-tF0Zj-aduKHZDV1)nePN zL%QInw8C!Y=~&v^ONChz((fY<AnrTHcP%lLuFUf$S%$s)d$&oT$QtA#rIuP{D|UPv zcof}W5^n<%fz2&?F2*0uZ2I#U;1523ob&KYv(<ZbCI7~DxLM;GN{4eH-jGj;>%_8- z|2X2rCYe)Th5_fb-boKwj|35R2w?c%p_ERdq<@uNFa>GGlYeUyd_-vdc89CJ*ENnW z+qBtysG`GmJVLBS-{cD3ix^rvy4#3eqk)Zwcekjh_!L7HUo#-hWCZ1hEy*srmXiO| zWSiS!$hv(J;FJaY<LMLto;~`huM|S_N@1BW!)d$uzL6m5XD*t;FYAeOh42sfxd+?^ zurT-rQwm2}ASHm%IKX4a3H=9=xV}p1Hplnz&rNe*ZfTA@i1`*LxJ!=TY24x;w7+QM z!hB4aJ`JW*FH19JWwBqV;jD~S@ssTMjhx8Kj}lr$=*mA$enw()pwc0THx6$dx7n^O zlUCF-GO@6z#%k|(R#6_21>pNy11Um1;4oW<{2-)70IQLf9gQ|>eS?CIyjN-P9TLvc zX*<5Cd|=M;2+>n(wZilfYBLoh%ei}5zBSHG=W6je>Dh~W9o7RcI9Jyq@h^PVS`EGj zNUH$a*$ZNo4iq@h(23ZHLiQ{=*jf~-!KGz>xYB(nF;LR;Fvh>7a57MUO88&{g56Ug zDNVxE*I<wG0n^`9UeRWeUu$2dJqI2J^06wqrYklo+NbsaNU_XVr$w-NHlm+ho%EM& z=+SwrW(J=jThyxUf<bH$Yaz6Aa7A{sdiFT)_1WJnjfm<&R3z&)3vT_Sa~)5Lxrg;Y z#_A8`@MB7)GUM`$qRo`Dy6zLu2b2U26B**_PWA7%aUu~|R(VAah!@d+IHA4WImuTN z(RV_>#P8F+HD5jS+j-*Z&$4vup6T%Z6mv9+FYV$CtFwqW6tezW>y#i*rA3<jRPOJl zB5h7n<@Cvd#_MPty>JakLBdKOHWmjn?C^Q>UtAQ?^eN;r-1r|sutldMobm`x0gdlv znTU03((|&L@=*XXYru{S95_+0{}C*uZvaA^>WBlxAwP#4Ypb0U-qojjXdZ4lByRB7 zUMwo7X6quebq4U5gV3qs{UQt^A~P<7BlMO)qX0ZfEdc#!kt-k-;qx`;trpq%9^z{l z8+CBhP5xyX%5DTU9=}dbgM>aTMqPeOQYfnt(}~usv28K)NwQG*#=t}2x1+yVdDx7G ztcQ19;x!8$)s~6+Qg(7-p8EEeF&b&y!wLO7>VI9-?XJe@_dy(<<R%8FlKQHc<}6DT z<`?1Cqg=<GM!jO+$_%9TzCqrc7U&eeZ4CsPgr?Z=Kz#=H0@OGoU>pm3LazYP!jlHW zf057lod$<(A3S9(7SLiE5c9xll&v-%eOYH$9^gAIuM>7R(;_2?^A(<6KYUvC=ZV}0 zMs7F4?=F^@>W$lLMW^-Gwq43xzN}kHwEFEIJTADJM{QnZ031#z9kpoM8afzfs5&Mn zc-w0Q$AJ;^H<{O;c}<J^;ok7raaGqOzifCfyZ7zey8>ly3rCq)_VU6X!C<mu8@rSO zLrvnxhx5vA0Ev>#oQ0bfV$b<w#epx>oo&G`Q-uM0sM9es7%z14Zz+LDUDdKH@zexP zv2g=<wq?0&<^1xucu=-jAf#v1no;WL4@~p8x6|`*y~*L5z^DLi4E0mF&8p8)3t?w( z>kUMB!E?+bd1TassL(P}3oz%yfo;5Irkt9~!{|XpA~+v!GuuW)>g@9~lT#M+lpobN zcxQZO)fh8~jE>-`%?^H~Rqpg#j}lEb#B%cL8=J(%!9~`J22bl7A|+Xvl^akC2`8|` z^y)WF<|ZFbg=slC%Lza16JlY0sT@bZ-IAm*=eEA03oY%X+D}K5`p<j{I_Bum>(lsL zoqV{yer3rKVgeJt)l@I=bHG`!owEej$`iJTFX)hHjGz<lJy6ER|E2~KuM$k0w`<S! z$+V;nNL@BNOq#W&Qp({wHKZIfuFaAYW2gu3x8nri=NddzU5JuO#rj8Qpq#$t!!I*d z9j?Pk_uuD^xy}>RY|8ZmLC?E)?IYuri?$HG838Zw(~mR|l_IBGu^Etjtg&RP{Y=l1 zygj8-`asd}enf|7Tr6Lg&EgKBH&KtdRTrG$AV{#>@V%;z3Jv$m9#v*)>UZ4Z+#kuK z%4Bl%{6fROc*fHQaN;>`;8;DE6Kj(ZfkQ?~NdjVKid^V`37bbEupd>sjtFzcN;2dl zmDD#zb0zd_Y=72BJTf}n%=ut*#`^RdfwnpcYZfW!hhar#jbAxs#?MSUQDOus#-wW^ z8+asg0^FgQFYp*h?0rns*eYvEY-jfJ5zot)1jqgUTGJQou>BE>KS$-~<vN;4{-HC% znPB_YG!5e~Hhn<7>Ntj{>W5-Oyrwa`4uD6TmKyFsa;^bQ(as+z1ztRO@*oDCyazIX z>aQp5xeEU#{rjH>Ysgz28}j63+G);8`q79|rv0%pUVga+PV({fGh~*6sr0CUbzp=4 zRtt0|O+C}>(TCH%Fs3mAQZ6CuU%xXHAp4Y|2+9B#(a1L0^|eO}oK*T{d*JegQQpxu zMxT!|o=suHl9JbxeG^FJs<BoVMVSmC(S%oJPy^N8M`_zL9)3UdwqnIQV&$1l1~{c~ z9fA$)6SQ~U>aT-`%us6{3lo2?tJdECRj5CjL_9`9M8Andd7|ICrCuC*%=WljS?=Rl zvDTP-9;m@V7QW{1<Gy?yG^Cwm`)S^?$vQrl#;5h9R#Iw&Zssx~)=g(Q3Muo=#;=Xp z7<)ngA!_-*D9bvqkl$^M)`zukNX_O>J6C2}X}_R(L4U-X1CSAnu4|7TZVm0L{%uOj zeP6S46Y)h0$;r8l9}5GldCD(8c=?CrC|vW^etO^8reXcr`LgmvG3D;KyI$o%j-cfP zmKpV+PkuZWN42mF&IAM>@<I99rgm~hJ^KaS8yUm)+}PU+KB<#Z4Deb-j&Lvrm8!DU z9nY!Z>;ZM9`gZ<^tWGvB2q+Rri)Ls=72#+elw(|Q>d}$BT8A!WCnDeGyTL9L3&MZv zRL!?v5Jn)Lt0bP{GwC39O#Gm6rb!P;U9`)Qu;jbeSx>y64wRZ}6%r|%Wt^-yUl51z zR%WzZvi^tu)p$>RGWRR47i)k%iLX?Aq6n&l26Q7`s1BzCwCsEwt&?@)-<`@_OZv*3 za9J#E7;EJ#<dbx6Z+FVzo<oy1d)L_N6iz7gek{i7sJ1mu+fKia;I8-8^yMY~)iqcp z<o{+{=q;*mt~q(To+XFFP3PL`R@mjNbJgDP-n*gctjV2rcsBrGs~>^mn>sEltK+0L zw}PPf((|=jQuF)emzT1Z1b>)ro!y%j`h!dinBQKh&(;*Gw*cY$OUD-^H{sE3+N)Gf zqJt)6r$ZaJ{(>()d-}d3N-R=)IMmK4SLcvu7xbJ!^eN42rqFBF_2bZWLey*te^>(8 z#P9Q5OP;yuic(fxT9uf^cHE<P;#!;my6bIZUAe|Xm6MbU9+$RglOxbZYangk>HMqB zwZ{%xm0%)^X=D?kk5QGx+K??t0cfR2T7&#>!Z~Kst5p~Jcg)dfCuL@3wZvQ6)O4!o z7;gTJcjvGW9~e@8fcI2fZ7L>?DBkohi;*}R85Nk)YwGyR<tNQ*X5>5>rRkNSM;f#t z#{UsS0m!gmRB}HHfA1Q(!`!3sm-RE8uNvkUUd*DU!SNYxN>M|#kY(=JA95V3xtAgH zkQ4ZVJG)Jnxiq4eC{Eaapcc4)X(H=qcP_KIQrQ1Z%ZF?cahdTxT`!8(H7+3(Y?cSj z%kJ`+#(um@X>&rSBkR!Yp8{c%gZd`zP1B!Pq_KP?8FsaG^{4o3QTlIQq`R(N{%0}z zk@S!DA$^@?@2}*A;gp8MeN!>J9UA51<QRLjML%O_%~c#;uq(}PM&&`H)!Y7HMN7eH zz4}!((>Bz@Pg_FmAYa&aLvkAzWC#=UOA}^}85?p$nu3w|0~*nI1r*ZDU~}ZBSJ5im ze)l&k>0yqsn1(!YRootT33S75?RF+%E*kq5Be)(&bom+G8F`fdr@sYbywk_97#Ci& z?`<GGqSdf!G4y-w<5%hqov%2Hh|bx=PoGV`2XNfw<GAn?2u@TyR==*X8smf1p@}bv z*7RhO`pWa_a{~&zt&^4T31+H&N=Mn;;94{>@NBL~$e2W!qtr>t8wj7AJ|1~e^zL0b ze*+Ho5i5(<1<|F}twlEYB!lHsTcu<6c&PQHU~m2gqEtIRMB7HiS-6oi1(um2-cI8b z&7sLXEhiDeFrlId=_V1Uhd&U$8*_CH4O6qLnv0~_=6{}q(9`H_OAHCt<_(^yXO$}d zBQQWQq;Il|OafT<<n6zV@W!0*w#gc3{Ipbg2C?`W1IeQO`!FT{X~YQU<J@H*ekADd zKiG4u(w~5*>mymw8<qP8BgN+C7JDX)^6T}ccK7#;KDLFqaH&H~U#BIh;gT5zSvj76 zBCku8Ij++wY`w|3QzYA9=H)5xMC6VIXkY+noy&YodWnUUOfuF){<BPMp;+9MNqg80 zaSrRP15k!frzu~{o?0_2X=UvyMC`K_pih~!u_}n%zvpz<XNaYIAWJ0tyLtP!@770) ztA=a|b$Th{E!<C8wS&YIPjoRE$e}hJbn<09#%NPXzduJT+Kl5N%4q96&D^OW)jnUk z@GeT-E{=Ka{ghpEikaDxDthR?7X6|QT}aViP?Rz$Yyl{W#%pxrEYPLCWC%;)^qkKr zxxrte=Ir0evd2YH%2tur+-kV};x3Ldk0|OZfteT<9W93o4ZM=|T>9wa$|d069L~^o zN~FN*kLK|EEguF;+5weK&aqa|J$zF{BdW+O{w>P5HLze+jcnG<a_LtdG#6o?O=qB) zM6VT4KqjU!EFNP*o`>bW%NN1(1t?j-K(@KD_zk99glSXem{-&QYr0pIMM#sHS7fHl zBfXf&AX|q)e!*UxNaM^C9jkZm?A)0@y*iaSR+kUmWa{p|%#Xyy`&L+Ko3_=|ROFVv zo7BOr%>E<bTT8t2>P2XYu#W%K5E(-q2j@iRjFBIq1Jn1@OKx~K@ZMS21fssMzZHW# zKIp?Sp$b>Zu5y?fI+`r9zW&Zg+jOcEm2z=q!t0*uJ)>K`E@_noQt{y&jOiQob3JQp z2Y%kc(v=a%QduV?Rzl+C<?VlUe0KB{CE7}btD8=dl3GtRqYy95zHtV1&|vZ{F(wuL zo17G%GmrA|@-m4nbUm}@Gid}LbhxG9=XXX`X4B_}iNRNeMLqhD@TuW9oz&;g5N0iC z!U^ynOx`~NGlY)SQx?pK2VW_D18I3^sg#%nKKW!9$D3sQ$y*3OpCe+lS?UAS7{rur z^wl^f_H9V#@)unJFV9Zl-1wfK%KkNcY@z=j!J(7KX0|k7gEnlWuY(b-`)7XCQK<61 zrDB0T-4Ad@l3s%9ec~0Ms``5UK_?Mbi?J`7Rd6j5M_r9>h+a>wHL7lGzkNPU2S~N? z@Fjz(+_FdMNdaw5s9T446ecYhEAe(Sdr;6KD6*d2W>X_H(TkIG#W8)6BGtz&W23FE zO0=l|(vwDy*^GtvD?<X)>A;H&M!Udxl=9?KH>3GwRzAjApTd!5M>EU<Y<$kDWWX18 zvu~yPf;-cJFXdrP2C-KY1&?Vrs~o0Qq<^NMh-u~X?Hazr9`H2R2)MIL*>y5sYKRu? zgHs)J+(U)d&xLzMD+pV3qgGcG%|iemTSJEE1`aL4e04_H1k69>aK+t%!j6@RFs%KI zpgKIDS+eMWWF5L)n=|3y2bE3NA&c$UXL7lGxm)7eqww{FI)nE#MbV$a4CxYe5{Pn~ zx(t}9w<rgxPZ`h7>Ce=&#u{uNvl?(gzS<=jft~3yx&BBM=#vVRq<Ov71xnl%E2{h- zGu4Bj$I>EMt@!)=WMVneOQbh~pk4|giM>{O^ga2lman;Jg4SyXNX8^!KIC23`SHi} zS?01eQ+m>~x5sH=GlG-1x?Qsu*^g%x;vZ5{^ZmS0&J|+#S@XJKgJP>C(Z*v(O(==S zKkxRZQH?Cww?~cc646cml&DI!=>W;iK<88ccGVrNnZoA8?Zo5H!asbHj71Iun!k)l z(!5bX30wui9%F+0b3`YxPZ>fBm&jE&xO~eWu4JikcnE#hNF9FiiJ*$`KS|IZU%yZ? zMR0w2{Zu8W?|ScTN)fbn9}x;7ap`!vT7O(N$Iv3&nwn|qeO=Rp&+5JN&3FrMJ0u3F zLM#8Q5kb2G`2WDGl*t`rI9NivXvU(PMfo>be>4XuRG%crzkK-qkD_QU)I_BYH4sc4 zHZZ^&M0~~Yl<EV+C*F*#QgNOnExyXYOx^*;%F2HPz`7E1%EEEy(1*keUo!`zU{9f; zzcU*uT|H)O6!1b*ha2`FHMuuZ;kf0Iy^?N`+non6$%%Ji+ezT-5YGn!B@BHZCcGa< zhH7tWLO-emJO0qjW8E^)O&+JO)A~<q`D~O<TRiFbyE}NGuCRb{*>f%TjS{`J)pvm# zH=G*(eEL%(cRvp+-D-Ld*0}fUIQrZ?@Q>5Gx9%p}xZn%v@L3B^<**-LzL(O)(uOdN zmmI_8FGz)nRqv4o0R#>MWH;2}#Im5Aaga&jHVKbVV7nynFaM9C=!onsZ(m%NodA`Q z9Q~5n%PzappAD$Fv`6S0qa}<~`vdLf*^5Yq)yXlwOfYL+9$E6mA(2PFvZsfVw;}>5 z+UKOO5gwLh+NvV`cOh<UN$$+{La7ftGd@9~S^2x&-*Q$_ugnq}49ci*an1^;Y4n)C zHz5#5uR-8uh3Io(+Xqkw7y%+h-w$#qmYR~_!&29Vcbiw=u0HzTi+ebreBon|8W(S4 zqclF!1T!*<3*2As2ZY4?jU`TdD$d5e0-J_?B;INN^ya&W2B&tzX^`)p(b~@Li-MvV zTD$5TmwHx@h);I?4rZ7^%Q}EmOmBrscX8&h$;&>ki=PJIlbAT=lojB%v+Vr&C?j$< z*Y38&^2@Go#px9CVDwbx9{-oP`ZJw*IR$vOj9k%|Fa;CQ*?Q3hkjDup5mq$`j}}cR z;%1V&IhVee3x|n1rg=va$|kwZH{%NCwunM6qO*+I5~D7U0R5ALG$$@^^sLQm6G!Dq z6gUeK0xWX&8Kd87R?w(DiR6xLd@$!Tl6*a5<v-BDsXkdx?70Ns^G+M{q_z&|dC-F) zq?aQr2o56th3p`yM<1qbK8--uSG4)fbuhMxD+3pjHdJ=Lo<c|;)0w<FGDOA`buc(_ zJiJs-g<pCY0UGc%u`FGel&3p{V@q+S4J3;mG3&HRboa&tH{lr5&zRItJ)PXj;fb07 z0pnq3(-ZG^`@NK#)AYj)#Q7Gt04q(e@FJU<*^v`!H+$G6A8T!maTVN>K`+@vK71MA zcYyzD%m&%!C0;=GI4LS#SR8!)g*zu+8|wem8PfLf#ocOk72;$`_S^;}iii-8Z+|LH zjR|Qt(C+Y7R-3r7#VVrO%5SsXr-LWz+$(XzdiKi!A~iO+*q`$qfwrDFFbK~spjj?! z!a6cwV!2#-J_NSBV_w*|7jS_fQ~=!vk)6{ZQ}J^~!Mm3~T~IETocjg!E^Z!_7uG-m z<!8%J{}EUOADJg&Et;3YngF^pXM<HUBtA;tuuN!3jM{xo_<SZeHs?D$m_sQ7{!8K$ z$CAZ0E$}UZu0YQE`A+9Qf{IEFw6>i>K7wfeaq81k{pMW&s<aJEHGXL|@sFV4jm9py zu`(5!N8&4R%r1dHqbmQ=B9n+}0trC^h5V=H2%OmdJL-ll%oSj=eglK9cug1Bq7sMH z_(#A3oBH1TDY8=W=}(BaA;$TJBrn=92*USCorzJr&WxEo`oRVL*-0<N-(`_<y*@QP zDxZ2~b-r(kq7qWFnAZ3$=JfG!S)AOjU()9(Al8$j>#<x{N_PGL*y}m)MrE9gn-m)Q z^St3J?O5uM#alC`fQ84V_TCiAKk_8pl9HBr3f4DmHbp~$6f<>JEITUgG1qDCb+%+V zF`C^sNrLTJy*^Po@@$mvKqg?I6sjV<c&+HtILk{y_hXW;({$TUWru}`0SgG(H?nV; z3vgEGBk=0>j#^`1#LqtilRO_v0AlwdjbC&>S&y-G6*K~6$o%%*3gimV5D9gcP{pO{ zoo7tgme61RUF__E<Yq{HdL!SDKRFN0lnNigC@o`q$ko^G7OdUy=7VPiKcA|XRep+3 zcv3G;UIx(4&g<f)zffFd#hAG+eduV5=8u<H<-=b70;C$bgm*k@RdBlag;WY@n5^7> z-&AgHMNW5{BaE8dw&EVVvBGjcv=dB{yZ)0-bXMt~h14zHvR!8KV*cq3e_S_$Z$<lj zQA(m%LXW#0fEke7{t{R%MGf5SoAFQC1#Q4=BDQ1F1~eC$)06iO-U(I|=ykVimE)e( z*@r8)L%ug+nu_ifc3~l*t$4oSua*4921x=}78zs1^S_+GANOW$gvXX&JIQQv9_G4i zWrFKO%#Ev$y#dTTjc!u1LKQ`EGi!Tm?EKAYqq9t8RQiU8kiY6Em&kJUk!aEoz!825 zy<xPZHSMG+F>nyPqKW&ME)FmX-iP_%rW#hcQFBN1m6#kfbKZ;#!l3@^Y4R&^!XxFM z?lJN~FV<sj!@h7i`mvc1yHh^76(a+@0*<0Bx@Om?+n8n2y@I{$v!c}jzP9hqo+-yQ z69!T`o+83o=y$N()eE6QA2=-FT_gm!*CvHAeLa;tleO9dsNlEYn$pD&r;<jQE0R}& zf9z0qJNiPio-K6ir(tb4CvE-Tn;$LZ7W*DA8c$nWF6nXkT${!p7!2j>WfvFtZI^cw z{`s!;h#(IvUQ$23f`a#nQe#Z|GGQei#mjeTtY7u|V34CEs)KEAvW?UPDwXx9JL5)l zdM`X24{c!Vsp{U|ZCNH>?4WTQZ6xp2<GdTC8Y~R3-YY2Ya=;*Xhszt&ZK-*cM#u z5P|+Yc6qp$BPjAZ)4IOp(>S&!+hBE*Xz97=to&vgi{h9C%bWbncN+UHc!M@>6hQCU z<VhKsgBO@@b-ab?%tOEVkT5H<=e_ja=@19WL*UheSlT(fYT7)5W81TSRaz2h8$$Fd z^#ivTLCLPaNs0rUmUpJE$z|uW=C0!SRXEWFeLdbu@$(x#E2zB-m6tTJ&tR$FM6J+3 z5GXyoI>cWT<@}*F@bUJn4wx*F$%`~~eoH&;UV(LXL0mSu?`1h&b&9?VtGB{`UUjFv zN(FQ8HPDb27vAT(9Y$(e#P&+>{=p2$FiS+WQpN;{7z33gC#!wc9+f3d)Uv(ztKBZZ zPy8idW5$^|xusCZU}kLlKp~foDB@vTbj!04t)7Un`^6__i{V)6yxEta-Zd)W0;2Dk zzhdsR$Ka`fc8qbB<fZ%v#vACnWx)PlKrqWzd2b4TDR%8TTWnk$;)CJdC|$#F$M*|D z{}CXKkX9@QRm=P#2&`Mb>)byAl$Oh)d_UU$F4a4~%_mfU?kceymSZ09ZssHYmS|bW zeN{BkU>qR-%$atn5`S45iz?(mWVAtpI!%jC0c@i1^$d7DLmCzuU?~dcI$o$Dnwg$U z$4?2n@dtNsCj~TV=Y1o}JJ0FjA*FjFm!=|Spg-mFry<Xt&fBO!$komGrhP<SmqiT* zcS(6xk+!rsP=+|jlu+`H-?JPKK~{dcIG455Jm3D&$$19ITCuq_!i*M~>oHVs2!9k) z8NQ3!{B}bJ#PylvK;awqefptSq(ytHH0|<EJ@n0WubZk2f7u4^aop|pzEG5XTAPV0 z`iQymK&-0K!fbA4+baj7U&u8zTKe>I9%!eN4`=<saiZQ7yRkE(Cp+)jUH%|`{b;{c z-t*&%20Y~LWATjQm6>yEc#>%h=8cgm+g4MTGb17E#b^ZTlVhK^)+9cqR{Jj(`h=t4 zd}pp6Zl!@l1lK>^0-5H=Z3I>A><gHlC{s9=ww!2G+kCS=vUa&kYu(#`7*1(iMfo;7 zDjIxag3s0eBlxSov$NiLcv6Wuz7{%HQaWZLtBz;0nNIuy@^#>>0>!ed0RL(@ug2CP zCOeI>@&Qksh!QuNj*b%W59G6I*nf}rn<_}`>IG!>$5s(2XBs5&)Rk-9B+#!GEsLBx zjIYGVzVSU4cY`o>Wy-03^BE(xNuKSLfjtR$5h&Io5c!gj080Li`qzM%-x+Au?k+T^ z(4IH;MkrzUaZS~FFbDy_|CS#_DKL{a{wI_NAnR2vQ@ci*pUF$^Er`i@YxCrKB@-mw znSeBMCXn+7BCHr^7vQw6$Jw13uxKCi`M59rG_fd}bOe;<`7(c;a@+Y!W9W-##5}n| z6pD@7cR!UC0tCN7K^qrw(QJ#cQ))lifqg6O!>V6sX7@t=6eJ4RB|m;#&AX6->@<Ue z^)dWDM-Mkj9V+Ye1lI8M9KVi-Nzp;nUq%8m+L}q2cV%P#gLRH021E%UH+px|XnZmC zr6{-MD+THH;cJzbM4@=pq`SteriXtorvgq4<7u@8WW$PY($^(09s1#`GMHNwa-XTq zaAU-ODQle6EG6x)xkhnBL8FX$(sI9Y=EMW~X|bW5vWEuGZBm|bQbGCEYcQL|OIQum zcC?FEzJoh3Z`sOfVPP5H8tImRU+x~;hsm}W(G*k+8`Uz<)%$ja!JY@`V@!})Yn)h_ z*^_|hNOFADrr^@5HfisZyN%Dz63<sonHh9BJaQnM>!uhx7c`^(gtFo;3*KZAF6_*g zwjW6T{Wh@v_pJMpg(9^jl6+&H$k}3quwtdWHUB|kfT8{b%04#9+n+-ewb^Z67#`$; z2ktMC*j~xD+$=8F$)+#reo+ZyzOT2{V-}gDnYY5M@O1++*YN}bAX0o_y)hoeK{k2p zg<zYXUov%&SKI1K^C%-5CE>D&2H#izc|zx2%sS%Q>t@}KcWxu+x+=fO7w$wUlDfET z-Z_t9mDAznS=mp^%DJO7x4rA4Y__9A(|={o{`D1UYKiRSadcJGK(nsLM}8I-QhwI8 zSn?-7Ngtze;;sCfhT3Sp?9&VDr?x?=OEq!tzg1u1N|?3y8ID>^X1rk_>3L*UQn0hd zmEy={D84Z1@D@EWvQZM3u6PsJP?u16-V)Pr5=i<8)G$itPJ;YhtxdebDl+jq#6%BO z`yQ1Zf)m*7WPyoCcT)Ewm1xGzEgIX}8q&s)TSG=I78;SF9K0c)m~BnzL8G2219aHi zO?W&|2$QjyrB90q>KQveQMHy1;hM3F6MkVw(@*|KC}2%A^o;oZlk8zxmMc!qeHKKI z|Jq}$$s|^^aFvo3<Lh<%C|iWk1-$(tP}`Koa%q@{Re7|5sUQd-PGU9FAu5srex@bz zsr=wfF_YSIvV{5bxyBw*6igYyGT0mVswd~sgy`XBO+yuaC{{1>&iOp0LH0oU=x|PE zKoeVNtoipkj&v*J0}aePQ&3oRGbd|Z*riVrf?r?S@I@uBqu)ztIY|ODl<iEp%&e;z z)*PO5cg#`I5s!v*N<#4=BD8(?GZFr~%)|I_uk!m$_>B(lOqqxX>=(R2q*uk-jW9^g zoVh6MMS?zA*{D!riGu~*2<2k_rv88+fC_6iE&3xJ86M(u!15Ax857H99w4zaR66eG zt;b~{mdM^`(8r+}q#o?|<#a~QgIW(>Q;?c-ySjSdZQ<p3@M^`k&pCN*;t~)6AjJp# z<uJK$RDQQ#;M4-X;c;qm(`c^3<b87^Bh=y3N125_oQ>E5ge+>dI#~4NRaJcftXF=k zG4vcx5#Wj5iP);eq}xGTtOg?U^^r>Qi>C^qjm^mxwn5;$+NAdp5t}l{!?M3_i8!=w zr2|Zxat4vi(_R*L5BgSlYNjhiq<^tz>D>3_^%a?YNH(!%p(lPC0X0|pN6_Nh;ZT{| zhBuZy<e6%-zhyJU4R^>_>4A|Gm7Yi3I+JzT8gJXtGOfkKPoN^lxls<bZLNt@<JnJ> zWb99)6vN{w%0F+XHzj4orj(^MHk7n3I3JxVwFy5K$t;QRc7ZfrQ=p4_%U@lZpdRHG zjH6|HVO;2eA|!LYLLfxb--^}r&zrE1HEE<r55Kq6rLmUUgSlGFe)oFv`uxP5oErAE z=;rXFIdYMDs!J-eETO*}B^W8nfF>eK;ThdSfBojB@l;H^4FnNzWZfkshjda=X}yyg z<Du3#=V@AQrxP7$^17wXq96{bxslVe!JnX3oEt9rkDw&`mCN8LLnX@R@DCobG>W8e zT~u68T$G3uKMNJ=O8mB-KprS!k*->%)Nby0dTIjHU;v1hlHAJayU5}+{!L)lP()ZZ z{ac$|Wscb+<tMu^PPB2kuM3;JUaxt5XnjgJJWKdD)u<pajP-sO%R_+7&I1CR03=6j zrp<0M+X4xX{9fHKEuA$Iy;DDRWK&aT#?R9nw<wy#RP%-#SdjcJNeBCCLjm;Q75M<d zjpMtE&5$P{(;L^12_B6^`JTx?(fz)szkHIg$<sG;SBOV;8FagWaK5Om;zpA@@AC<) zWV}tbwYcH1hl9Mwj|+Wxx_Ya0i&Agb&D9b&Le(40^)6LJY(UW_$9H~3smgD=V+4=I z;sb$U1ZYH;C^cw54M&GoOq0!w@l&c9cYji!Ve*ce%0OQNITVok+O^Nw?%uTh*+`FU z@@~sYM@u)u>T^POX4syYvIfY&``c!NBye%=1)2}xIQM5Bd^W=7q|h4j`s+2V{!^8v zpWL;{L8`$~IF1_)S6vCqQ|2&wbNc$mH+Ja2EB%?;JCd6hZidKJ(mvaT;O&xED+Ye8 z=BU8qOvoSZtLSy2L6^t|yy<6cgD5OOwh;3l{=R1Qb<l<DHl<C@Y1gMIM4otF2C<6M zy~~o7SoV!8eNYwft4r*nGX!snBrgmw_=9`y&;o4fkU;Sj7J*yr!{^?B%O|f)+v66G z$9#?Ye|8<v*Z2JDQd6ei5Vxcjz>0M~>=1F}WOhD3sEkRUga)hD)V!ZLkL0eMESzvT zTqNcW+P>$^_wiMIpY0Je<89LD=~2KlOfw$FBYzyb4hqISpZ4s$k5z7IX`S=3u&^jD zn3i(jf;uG|qc%_CENVaP#yX1RC+V1R4(a&PFmR63jO@QFSYdxEv*y17nY*}M#Y>9M zpN$r^0CNBD$YQ`gL`(MIBxma?36{ZzKppvtO7`})<ceHte->@82X?G?NycWci0R7g z?j>#X(nO<`mh`D?TvtCn>m~YoKTu`-`oM}a6b@bsrwY){x(q<ceqlMVXsB|s@5_`) zg!_=EWjhsH^vfRGG(>{T6F)RZ5&umM`gs@+&tQuNX$08oe}OTh&NQnXaJ22H;2#<6 zAwEv-BIgHQ-~vbu&P=wtmrJuyglD<P=7m6+Vh7<S)NZEmzrp9`1xqp6izeDbYj$=; zDw`;Z%645$<=ZJK|FpA;&qtB(t}>afzD&ClJ?M12ox9Y-0DL#{W$|sK^A>>>OGDK$ z$CNdyvco2FZ@a9aWGXxtJJT>y+}IkWqLtmJkvuVj4{hJ9$j?ZAJ1i-pe)Gg<ciVgj zNp9Eb0+nE0?C}BJ(rk(+^q*&+#mNzbkgb)P95d+-9!O=I_80mKUYwo35Hoc)yIsmr zLQD3OuUFo41adV%X}0M!k79>ZsGBlo<${UQR!p6(Pcv**u3p{u00}^EHwXKpK~xyQ zUOYVDxKMs2U$4XxZ0^<H=c?}`1+ivMi6nf?P0q75X2fIi@n^x@d}jSln6vQexcRO0 z?>7|I83uNW)Wc#QpgitMj(O0Z!>n$Q9|Ie74@qc<Cms?IJfiz>?>{0HVAuo3#}eBq zFWU9Z3zZ$*%N57Roha9f2K`5U-p|%U*!3-|n;ZQ-z(_0bZ&?p5-ukWj$-YsEuC&fQ zDzQ@<eYsLX+fZ@`jLjv_Odh%%fj?}r;@jaaNE@p=XX|cNuNaa+;5mjlhQy_;AR0kU zU5`g3k98#5+-plB1OvO3+l$|jMA5}74GF<@9}nhi8m8ab4hADqU*acFmv(($o2^ue z*EH-Vc1%qN4GS|*JY%2e{!P-KZFRYCWoF^X37#p?<R*KxNBr(I=0bV9&FZ_5<Z}_f z*uEUK_c`P{9x({R@qI{tQD|-Jr{xh_SkxZA*-e>Z7ya=TRA-Q%syf-Y#Zs^AvItq% z3n%sWeZhG)JZuSbrZU-iEg!hGdF{PxaSabuDRE$A7@l;dFidKCg73IIj^j!SsIe#4 zrBTMV-Bsi0%)~6%C5_sM6tCa*$^9dMS>jU9ijJsnbt$6&l(r~%@4<^Y|6U2b?S1WZ zhRM&jr9$4PgU^isVvje47!@C1XKa3K^DvX_I&@d_n+6-&vz53X(3fncKe+ra&3G^Z zD@_GhnQ&qKN1!?r`pRhoz8DQm7|g{Ww6bfv8c}UE6oF&K@NB=tne);6J4czB1(8fb zMq!8d#@w*Az^Pk7+%)2$vQU8FO#K>%sb1ke)xK;)rtTugcWGAAU&6}*dfV6H-#;ht zsuA*h*(6&c<!EV&QRK-TDZP-4m7k2xKGzsC2Gsf-jZ}(JLDS#VbJSp9vrpqO90mHj zkgDiQ&buaQdf|Trq#C_4%zN9r)W0>R)x5@cK&HEJI%J{=gkWKZpMFmUKucG=s=j7p zrk~n6AanaGW?vS9pxEm~y#X!BUv4-{b1pLWimAG_(4!Q7E#NT%d6Y#XzziZRZPDgY zo8}05Q!nY=RWwwBn_Bsc`j0ZAnbJduD4Y4RI?D@U<q!`mrOL>6gTvQyd#3O8($JDi z`pxh})H$LGexw5?C70b44dKw=fOHaCQDe%?PyNriDhF@bU{f-Eq-&f|nrrc~HFC#> z1+03x41gQt3W&%sd5j+-e{Yz<ZZ<V4r^Z*m)}dGMyiG*o`^@0C+S@E-D?I|QE& zOr|2SM-^S;n-)Zuf_EjZ90%PT>`iaBd;3LOQ5M-EoHL~-okW=bEXJzzCUTl9E2P*R zColhaCpO(1gJhOVWhV{^Icc`P!-U|;gn%PTynAh<qGH{rX8Ih0KhX>xmoJ?c|F}co zq~`g&C<!rfOAdRNOcekNh0++@{Z2od=EY_M%5q&7#<-V*g&&iT?JfrAalX==;V`+W zdsaFsv*i(TcbADJ{0EmG0p{rOs19j(Fz7MXXtOm|`O2tyN~$$0LaG$v8@qB?ox4OR zE+Hrtqfh$fn@tohcgi4zjOepJ4WL{%v!Lq^85qfzom~bdbJRETz@9tdExn}(sx}2M zJtAI_mc4bUVhCs|4G~Hupp6v%(KW8`SYH6|wrS&*p3t*UpUhL=`RvzM%BQfdZ$kx$ z#@}KU(%o~&N&4IBhHsqLdo;4RkotZ{1UZc2AZnx>qodYFKCN%<#0Nhq9(|@R?uYw) zjGOG$T7AE^+IdZj@tlOOmmvtf>WwX)OQ<k6PS;(lYgo5H&#q0p{-2`LQl<d)F_&GK z#<_(;o_BJttVqK_%G`G`{|Ia-nV##@2JoR`cbzFS@)vF6d&Gg9mGEvp`1)66p7G1h zF8HIS&pV&8=&aNMTRE$47U~6R7j4{gsg;A+_-*%b++#+R$nMwd3#g^Hd_eq7pQZ66 z3_tU^Z_7P8eL?(1j<v27r7>N`V}q_-)6>BbyWocs88g&rfM9v6u*0O!MXe2EzJUF0 z_UlTCX~6m#Cx+MStk&%RJNszQTfX+<0ip@!udt5@DbezwON{Y(=L-G`Snr0rI)Hs^ z5_Q|#gdAL8`7)?1A%3?02;exruw(4h&`E_=B7G3sXr9_$!aqThEde>-KERQW;74qp zgRCN7iZM$%D@g$eD!u1K2NKO#NuU{$5+j4SG?^}x*agtTp6oR<Jvd5BzPAhay|<^; z)OegyYJHLq_rWvtr8+rrw7$`FK<NoP5n0jnl0~h=sn{gMY=aOUHl*?PA3=h1=a2D3 z#LDXbD7wmkrrI`)iXbf@9YaaUmu@B~B?8jTq#FdJV*=6*(k0RolWs<*h=g=^vyp?1 z`JM02eyz^-oaedk>%Kx^4J{imaD!oZjyUErqud&b6%q~!uqgXYhF+qONj`}=7oddp z!01noGX8W)c5k5+Zz8@WCHAZ79iP@@2E2WVfrkCVd9lpQpK$nGgvMP8w3(o1aYw;D zg#w60Si{ypf5v|}+=x5_EQtpSa4IX_U!%dWOKpXSM-ubp5Bbv!$_k?9^4EZc&`^MQ zFUyqG!Gomf5iYZc9pl|94Qxrg{1MMkZ5?Vp1mKV0bGaU7&cDxyD?z2|AVj(&>sb+5 z_gwEB2qCYD;yI0|yw9ugH3#s#?sFN<O8MkVb{x@IASE6b_?DroC|gO^pA8WQ-j@wX z=To}KcYf0k@z>?@(~iCBoX#kB8e5a^a08t@B1wyZct!oDjIFVH>7~(rHl!LQ$Syu| z|D)6Sc5n}XMVcq#sInfck|J?G*G$bWmSzMJ=F_@#283_>5Vd&GO7!?4Qn5sK#TD?` zV0zzD0-Qw(K56wlQkus($B10Y!_M0QMPu#PJ4e5|E`xug+%|a^<D7m-Z?7&aX#mTU zK0@gq&L7231W3>bpca_8vxRfG$jM;m*T_WF0s>$QdjrYU9ZGA$2ia*ouEpRx8I@;v z$3Av5)^oXskmiZOJZdhT{<X(}icZ{d@6L*jqL{k3!>P4zt>)A3vR}T>>!LK=;0A|- znpKh9BZH<%LGjX9YW7s7UQ4o8SnmbUB?_Y%03IXZZVwGZ*CgM4>)!P5shQx0GZdg# z>?U%8*E{{>tKg(HGw*I;Er0pZC2<F}S)rYAUT5{WnzPslU0(3?1in{0G$&d@)-UaS z`(<qwPW=gvdMR*xRP|GrrZx<tCYC2Iml=bM_sNEy^dVkcg7|N=<F0`XCtY)vlAW^7 zyB-}^7WN~*77QswMJK%Jdo=U+0!ah*e|LjkHrT!@I0-^<>lvh)w}dA;91Cm>wXV1V zZl}h<v!I9kU1xF5-#M`XbkAw;hGQNp^9|8^bmnUQ&4EOtZUfJDfE3_O=c9<2t*aMs zfy;tKD4}RB)W)|@IWyPF=DtM+O+z(L7M)E9%OdTx92<IZO3l2&Try-rGHs@HCrC5M zWW1IWaA38EvbMN)db_qY7wz(!Qu}McbuM6{i#cdOF0Qz{1-J>IQ(2)LqD@__@Q-xw zf69vG^&Jg8yVXjK3jh@sU5Ct;bho#twjQv#!?9mVOQx{=2h<*P>(ifRe7usgT#6Ko zBy`RnpP-npZkN4|mhoKHnU|4wI`~mF$aBeISrX@x-FF+LLkA<M#*NA(>Z86zwMwY> zav^4N@TF!yS;T2eK_9i`Kb%sJWo1mU=xwdlmKs{=K{RWpR})skTQe{B(TSed@`zUS zjgD{52H%jd@28<9L31@g_{l?<X^Nrf#8I;-A6UEb`Pht&d;*KWPtawyVZExbM6SPX zWv3Ev8jzADYqLVE^{8!z5{)Y@XP9kThYwC{_QWM-dePxBe%O*E+DeQ7;wb{v*G(n} z9GF?sg8$mFmphy=Jo3n^&Rj{v$EQ6R2s9(>*OigUtce-g<X5rZeZ=%cqOhz*iAhHe z&@EG$E}%T{e$KiG>_(?ZhsVh<8-1iQ%?gc&ap?Lp`p+o^lVcREN!)Cw6Ys2%BmZ!| zwZgI*&Z6p;t5<V)hirDLY6VG>yH~+4T5Fo$phCR(z6iI68p+FC08F83o3VLq?XEqT zCSrP1wCrw$<AV85J9M9A);XUMX;wfZM#H6iQ<x0Ro|Vn$?^Ifji14GlA7Z^VFtb3G z^(T=xYj>EsCj!57`mxTArG}bL!GCN0&>)5irYP3i86~H}`RpqO0Egq25i1kP+`9P! z2LA2Fxh;)q@1+{!Rrdq-1~SaF2v>u{iOoE6rlkW&a!ssOyGDm#IIm##iJM;G6PO?e zW9u(oD|WOK_vh5GviLw6_b|_mdy&1GnH2Cn-dk<Bf^2bWNAe~)U;;ccj8Un6HoGf7 z!g^%>M-&=<aSvFFD*+YE1W!c<P_6Q*>!Y-QId_uY6tvZ^;GR%e;p=RlSL!Nf>g!F( zNcNVSYT7_$@T$I!`Hwb8&&V9JehE>48d2h3MWPLXaG{4|UgiA$!KZlGcid)v-&~mt z*8R5SINOG;!Y-@F+-Tpz16b^i%-#g!p)3T5DwhYa_vPR_qUppw*dxj)8HLZ@LMHFv zcLa_ZF)4HJw}I__BTKFTNw`V%nD(=*Q&TOfr^19wuhj;mgBAUK0D2<BSw1Al%-x`* zb-pgKxAtq%{c_y(0Q8{xiYUGb%T}8#|A<^}m-XOYvWnY^^)G#I8vFO;LO*0W*7u!` zX*%wwkst1XS~C_QZVl+rIAO*d6HZxRx(Azq+R_<66*)0<JKI$r+E@3JKv5xS-gb61 z2r9Z0ad909d5reaYRlt>dM3S`hT%{3Xvd4y6#MJPBVqa}TBOBeAH$LuiLq9=^c!8G zSbz{*4?nRgQZL4+Pw9CP6xtWfxMaQ#q7DA`uIMIqS`bJmb~jCf_X7Tv(T2(njYaGx zH??*ix#TxTmD7RvNDdmJYt6E=O#sInsw_mm6!2q)vVFfTWW5D$%Fr*+p8vYUu%rHg zt89o{z>5J-^;ddZ?thj}KGx@$$}ZJJo@vSW99+g+gN@(yqWw1?9ol05GqNP|jDF}= zK>F;|^egQL(sh3zvGWp9hZu@tLrfp6iq%D&k6yEq40LR;tG;j#O(`6<VXg6mjFe%h zZm<M8;NG!-g2aC~k6cPy5#HnV^Zi8QB@+5P^l^c+zvkzM*p+m1Pky%qdX|*EHUPOb zrDA}xvmne^IYQ(t0#3@;#f1_W&;-Y8q_tMxEUNq2c^q8(o$My)=8K1)k8<#&$MFlk zm>U$QXP=S!8<DrA!tZ=?x*OMZYn@{CwAZsC>j|3+=NZ3eSVC|$l0ET@h})B>Kypv^ zqqU%H2kPS=D&Y^?`*wbWzucuB(Yc6k;iTHRyXp5kTTfJKQR<i)IE0wbH#|vQ5p6Mg zuj(BJwi60058In>Ng@w3`#ALXiw)Ni^hon)*LNX-&SY)nlU(Y3mK<yFZ}`K;L~;y2 zsseFlhOCL-3X*c-$(R-;cky%Pv$YM~dKZIWBk^cvuu4&jNRWK-0f)uK?E$K_1h84u zoxwcVkQF<f8(f^NwXHR3ENPsX^L95}ex5D++WUfSG%$;AI?%cN7a{kznhdk9_CHwA zGT=HQU5qjx1WZrV%FXEVr#4mh{^}VE)Eh6WGTl!ta{p8SdlEi=9{e6ZX&=hude!+_ z6DcqNBi_&cI%T+OC|6y)G*asHaMglaW!kKdEd%dUj?<fgqJEpXaOXs@K!tvBXG6xw zSun5zL;}1NZbz}&KY`XQNC38?U&e6E30z5YVH7zE0(iA^d?M~n2YNWp9jZ55(>GV> z*T&`z2QBB1SsySgc%7)Na~@Zh9zdUddQ@~I$ChR-Zmf~azN}dWwfh-E&U9SG+7d9$ zYHC{fqj;CyTJVS1S!$yuA;x5;gP{yVkg8&0rZdnM-?^Lm!->S5sACrS{adKR_6sgH zA)a@ZBSGi~oK&X}I=Br3G~8Tr>MJVrsDHeC$<On^KW1=_;|+N~-&O#Gn^QV3@O#v^ zII_%ik@_dSu6f*P&M=P6jG>ao)wQ70=B9|BJu?|_br&nn&7pn}iEsTNRv0mKJZH1v zjledSEjp@0w`?M&jb>b*oppw(kB`0v@@*AqTN?;>iuAKW1($uv79l{ESdH9E6IAw@ zZm8OkJ>Ti4u#G6TDVK(duQ@4v;a>~4S{quSs9SxCWg*tu_vIBgiM;{~&970=4J|Ju zjZ$QPcFD4TaG8}&rJ7GkL|b!Smh*NtUN#+{v5Jm|svD~{(<t(%Jm3{U9EO(c+w_`i zSW-7OV?I}l%wG+9>y*~i*2Os-Gb4X(sQ)Ccbj5%{;fw7U|5hnpHCLI|P&)b1>WI_5 zU(V)=GIjBl*&QffOpf4h7q3IGG^!H;F^)ir<itwyi$I?p65Ti1%$9Ni?U%5XmX<_H zKxIQ#9RJ}2V|8of3~)xnt?6VG5oiS<{juP+nF3m)v89b{^PYd@%Tzy%#a`8uZdpUe z(?!O5OZ0r`ga$F!2PN$iP%RA<jWL+n%;P<&o}voTwqo?|(yQ(-iCum>Mafzjd{V49 zn(uTaurY@rXIS5h#e(e3d6D=7PCP{SIvS1btxbxP*L@;L-V`O7h4go<f?6GTTe~>B zorI}HY{iF0pZ=T|y&SS%{x^x$|Foj~ZnmLSlu45ABsV;tfVTdXX&h@V$-d@Y^Lpy% zkA3-0`lx^kdt+-k;h8}Zr`U|phY8g@5}N-#H-CZ)Wfse|s&@A$EiCs9zW3t$FH!oj zn9!*zd5d*2G@8~6l!$B4i8ARo2icR%h(YaVH1=JqPKy%k_5XgYq|Ho0M@yK7?I0G| zEaBfS-W7nl4O?yf-kH6_T|0Yu6`6gxkJa9vXd6Z4a3fy}B&g@AYX4fV)+k+_M#JWQ z+z$Pa0X7DHF9RbJ>H|`l2F*09?yW@g?R@os`-s>|RE#XA>g3mva-pZ0bc=nQe)z0} z8oLwbdFp=4UHIaQmqIApmk{-IYg*}Irw_jshJ?3dlBlem-DK{MW9}(YB<o8qU_-z) z+CJ_^JcE2dy2eL>mx!DBn+rbecE11IF61r0_*lKE+#|G{BfyoMdvohtke{f@dbL)# z7D<<`$oreFL|px)lGO37ZjQs1eu~fRUhP5KUIf@C9@5{mM(|>)>o5EG_^(ywuH2R7 zAwR2YON7ahdw;yJIZ+C-KWfU2*IeiyPQZQvF~$$2gMMd>iaGoZtvk3|Td-)WC9H)U zh>LMZ4`yHgst|g!tAF8o-3fn^qWUb13RxBkxch%ZPR?B=K8pnt*mueN6%awI+nKh~ zo28{!Sol*P?v2((r#KCNCtrMPg_aqfv^M1#NWb?$?Ue-b&d5-$yU_=ab-nl_y0NJa zK9*Ab!~Z<Q5*Rm`&^ZT=^9(!Glo?su7w5m`jeqX&CgdYHtK3#kkNt~(Y2KQqG+fqY zKUg&JQ(0`Dq4QF6$)(Jren<mnuVzHoe}6i_WvFx)z)R{&{1rB}#!+8o(&&(KfLNUQ zsSTm|=I>L;>cZP*O1~^as$@M@*z{UBPzLM`!eZzJq5x0<kois!@0*Lom{h`veNEmK zXaod|Ej@Soc*3)4sua_c_lto|P-UPfPu&Cl0BYw3P?V^!oW45OWq;pf%mp(~GN{HF zg??@EwHvR3(G43NC#e#o-aFNUL^HozT|KsR`06sO38~gMNt*2M(H)c*gKMms=T!fW zaU4Y+y6l6<W%Sm^h4^TCI7oz^JbQ5~whsxJX$ZLm!g4sXx35%1!Q_yMDpbs_T6<-g zkQ!Sg?{ELqNhk}?2a_NCf48XU;_O84aJfak`oDOly+Hd~qwyUs#J}!?skL{tFvVW} z*Q@Yi+{Cn?ASZu~ozmo}4<ok$y6UcKfOe7j^F!4;(#DmA{cOK@>lsc~A549etJRg& zIc!(6QI(_cT8F(fmf}^>4j;9-5@&5%D?pHbRq5OIabYE8i{o0N_B-T5P@zm3cz_dB zDy(1K5R0F=G?-$lBHg8jbA{u5mpyMd-<<W4D0!Kpzd*CM(MtIC&6_SQS2b}?<O#|f z#z~bulOCO;6l$D%f7R~bec<L0&X<BGjM~l~jTtYBGJRJZAwxdL49_#l-Z}Gnkj^Xg z>?s&PBbht0gYJ*j=~m8}yDvhfB`@XDCf>Gpm7G^HYLvM+1<4JMR#o|a_>bWa2<pG> z$|9Jqibv<mk|2LsGrRDHfWJ`ek;e=CnxI$LHQKvkBNN7Vzwn-yi~<l)aef(PB`QGk zuc7Q8i)m>MA$*Orw@dGU$;gvWLCjB1`1pDZH=-3@gsL%ef0ndVy<*EgVvA9deoCQf zF;Z1oDV@gl%sF9x?;PexdsQYZVW*^O?|H7tOVahifJxA}iCLnn?g77HTVl1X>A_7@ zmz5IGVAt;cY|G$dw5i<}HcRU7sh$I>1T*IVjtnIC+DH8i`^yQ@Ln*h!t(5;N1y5$? z257{5-V!{~oNhF3nDru&dHi9X%BAP{7Zc|sC}0t_vV7|xVD4l-F(~|+e<AY$gm?jk zeS%fp75sUs^w{SP(oe$u@w-}s%txOP%s9J-Km}!)P3=uY^j1{gOS`SlDv}tdLr7$> zB(C#?kdP$)oxx6U@@6@Ea$xjU;GI;#wCE+YZ;jftYXACJ!{a|+nSdZC!iLoOy$Uro zP`RLQ#5?M^*)S*P<RP}tCrK0p`yW3-Ss}9a=IrTCB7Tt)XW0v8ex4mEJRz0Bp|i4s zd=92NJg*Mz$6CaKDtk{b3bi}2*8X#^9X7e{Dv5(XMce&gdPC~rTdq`3=4tL7_!g&o z?<l6XZMIiTuge(cI=Si%sqRdeaTII~MgXV-<Gpt>89$YAMrnA^GNS(^O`ZZWfAVX8 z($XsBUnIVf7&Z+&&#<cso&JPxOh<Q<>{g02f3Bx}R#d=m9lDqZU<}M`84R)fWUW{| z79?wGZp@1mB8ca_;x*px-m@$CJAe|;mDr#A;pg6rZHd%=V7dj$UGdlIUIob;QmVH1 zqLShtD1pCh$Ick^iTv(Q+w64S@*iqh!$Wb<>b*nc`z$OH7aem!hEmA|2#;I(I{g~T ztBgL+o?IFUm@Cj-ZwKgymtfMzb_aFsFxN0X><UAd?cR~T#ayz+totkGI?<e__eM>7 zxvm!XjvTW!WW=gN=r?mYWl_)R9=BYL8_{p`4X%R$mm3lK`J+=4^$yU1chWELQvCmi zAyi|B%y=lPs)ubu5uYl*_2G}#HU)!e$3>jD$T&+hL?trG{3SD)&0xV};5tYQt03US z8X4{uvVFU#m}B=3=Q$w)Mh?J&{P6XxV7`oTB!0Ks!{yd(;r*ti5Lp$Lhh$S-!|Dnv zzaLceBgLPGYge$>i<B9E^ogy#y#TnsxImI$sBvasEI9P;ap)eqGi&xFl*`8WV%!S* z1lXK$2mdzbKye-E-BVMqNdgR-24!X1^LegVmX(jRi+FM$jf0)|cj2bh0T=Mjf}~Vv z4?cK3--MotPsYfafs<!b?RHSJu_xpF;KbYuAXoNuLTX)ql%Y8X<wT~Vu{$eY|KZ$e z+1_HDZYbS4Rp~9d9I1@V*O86Q9(EUbHPD_$aQ$`B^9&W#_$Jz{ll&6s&NaYHcfM9< zp<u$kFf2*upHKQ1GLpzK9b&nIwn>qz?n{uB7{=f-*OKM4WEo$*xMZboG=0Zlr9ONe zK8&>%0D7)9*y4-c{bgV9b$F=gex+PmMa98jV7!?D3@w@?j(K{9C4Bs$=khG!j&HM^ zL3gOygfY?6=cD8uXb@hmWx4G-yjwz@!i7tIRg9!qh_}_#ZYuBq+(d89I)UF)5x7pH zONn`3=q6c2qc%RXYlS=6G_!XW7%QW>r3>Czg&>TXD3%p05DDLP5nK9=Ut3P{?rdr? zLV`z-ztK&(pTN~DkvdvwwnO#w&&^jJ*isxOV{$antiU_lTuLmj1WHbNIWv|ww$uj8 z!l$cIcX9VT*)1q_0F!k1(>G9wdDz;?vKQ2D{1pEi`QbTeTJG<?&x0zv9U<u2n;CTD zz}}vO?4V;%p_*WjB^;K8`3M0J+s6!(2Ep|}<ZJRefc~4lCA+`9IEtCUieqQ7&(yK( z_XUA^^yRl5l_Zu5I7cDOX`C0L_mw#(4kn&FWGEcKGv063>)X7x0=kB4k6Qv2RL+XZ zng%<OC2CWl#d}U{dvcFgDo7MY6j~O4y}7ew<W8NVV<Ek|9*jmSV5q03$jFZ5c$@1x zS6S?9_}u;wFqEAs)_w^a;@<X*L%83oax|BJKl#d&0RNApa(PYBzXXtk+mg)4$k*TQ z*8W%u-VN_#QmX=kQ26J^0Er5Iyk^_`VC(*cX-ca>-YZu0po$L8wdfxQaAV~0ZTYv9 zi6MW61gW*&V#+^He?7q{LRD$Z8Bqb{J6>)i4hD~E*c!s&mu#Yaj*v%iI}#_K>$$!H zQqzd_jA<8DR%AkjZid#qN7$;s**~1m!5{|+V;9|_g^31|Kf^sAZ*17_|JcNz<3PI- zbB-gPF~82ue2%+MmQI&w?fYoBMdDMY#i3qJ65uGe)A$U+eByKWSwm=mP@Fa2R;@66 z(=KbJM-VCMM@P>pb$+8sMfXKr43+~$9e^M{5O1bz_XlWl^?b)`{*NJ<=$EiEPGIdB z1$XOMFQD}Ax|;)nH11XIg71HDLD$nEb)sDiN;5KAWohVAKFhsC^qH4{gWV4ioxVmS zxD}dpvD4KmjYDT7e-<;HXv(_7FMk7b1=`;afh-A{!f%i_v3$d_^w*O3SXr8@>Pj*c zr^NIUy<Pu`OKP1)lG+e_g(LMxJH3Lg)C9urOJC(U2O*rQnzZZ_!TnAU0nIVbX6&<v z6GNUV%9!gq1@NWKCu4)-fXy+duP$l>f|?Zh-V0ooVComGds@}nQqPa2#)HAzfs@x` z>%zMfWQ|H*(k(rNYe}$9zzM0C9iB>Z%NJ+!P4ggT2RKn|mg-8X8o7wPZZ}wh<4upq z<!Y@w`$TP6H*M!!L)a4>i+r<psUH*Q17N8n41#n!K0x*k+M0n>8fS{|BO`XK*r4st z@j9FgQNn0NqnE5b;yPQYJEpJJ(&^itO&i!ZYpmgBtipf6#rt98Km0r(8cKqRf-Uz> zk2{<^cm2kN-DI{?v#r4-7zgU~$bM!b<X4)tK|W_bSBu}^@UE!@<-f{P9Y=<f9X@4m z)Bm7Y2deLPGu|#FmW~vEPc#1LZ~t<tg5B*e^J<`V{i3nisC>$MWb2@+eH4)Hr1S_; zb%4?6Y3?_IuHX=!+lx%lKpaXJ0YChP0LdGn<%My|2QR$nw4ZFHNYRf0zAp`+gJ@p6 z`$ik=2ZKO>6zmyMO7VVbXp&xFAjq}%T*N7w5T?ji&=&?V_EjFD_laq!_*AXO+TPq2 zU6@bsRZ5*P%xUn@*T$lU>Q>FIs_Mh-g~>oPUFz=pjgNSAv7Wis#O|p;=9C~Ryl6?C zLap35a*Nv*@a)>xn^T-h`Lyeo*&*HBkg$(6gs=Z7_&J0TA{#PO?qkNU50PQmvQana zyNf%D=6%te+%;*>vEQYmLVl5gY_NMA!g^sf!2ECuFvAf0**WJ{C2$oxmn$zCMo`+6 zExuUc9pVvNPcb;&YA(b`exrN?v;dC@?z0<UOW<pTxem%A(axc$2EziAKMO`?*uSn> zzIdbx6Hl#Wf=<fHVViyL5p(@ZWP}UH(|N_M6ei-C32ad;xTnN8gnD7DxjY_H6)^VM zG|2$5OKGad(V>-Y0WcVba$RBz!n9)UM9)S(vdKf6ekknV)@HQc{BrjhE%-%VaY$V4 zGM?1EU<HcVEe4F=NS44%koXq)yW%^Kk>kZuPmX|)IK}dWM}kH4nMH)wF29EkY3<n} zsn=<8)q>;H_y(O9glx>gx+!7fPseB#&}I|8Pzu)mQJqh~_V9ssZ3X5Xl0TLv#Kz%j zKMuxY9EuooXB({*s%R2y$hRb^0r_OYUsevN>*m^!7EGH*KIW}^d#csC2c-~E7dJ)- zd~P%uf28~KkJqOF7rY78mJ3(D#wRFM%ckVSG?!141kX*pM+3vB1DN1;0JKVTynt-q zFo+CfLfZ976?_hq-#iHp66zZ|S9kwmI9_gly}KJgVAEPJ=zvgXR9cmH6Mo0$$*Qo# zET6G15DlWikZgiU1K*-zH+b5)K8<Tn8`l4=vVPM}K)wH<Nqc{?PLZw4m}f9fWx4EZ zZq9gZNFcm`LdFeAxe4p#QKvCLxW?O8y+A@D8|h#$^G*4^!;7V5HD~>6PVVwag?2gu z_LNUN7Yn~#5tF8fw$r>T*AXK~z@g7*-2RAKAyU7-7(+4JLF2G7T#_-?*p_x#md`Li zdb}&SU2C5%$T;ztVv~YVOgxv`cpABOB8bT7E2uviY;^yj>hi<ML$%OB?D~wVVe^n~ zyy{%GerHv}SZ0Kgf~_Ztpd+-gWZek+%oIg&p@$$TzDalTa>tFh<|)l>VYg0@*cM>3 zr|MGKxL+8VmxQG^{KJV85+C^g^w^vwe@+>dX2G0QuFfBASFA4eYO+T(t+-Axo`Z}7 zmtw^2nSqedLk?9Rl{FnD3SYwkKG5awz;~A0XRX?9j0gFkKUZ$gFuF*l_*`ST#B#Oo zi4=>X11o)PGTDutap~vM#)sl5zfxF|6!}qc@h=rWFqC1(@5Gud@ane`7vKZ*5sg0d z<K<@Zq$w}*4`0zcSY2>ZxcCtXoiY4W@*58ntvG~`HOOy{llAjd98sFB4JVt8FqNzn z%?r0h`Z0~qEzUe9AEC3~R%Y+E6kJd(!}!c>yQnG1v7`^KXSpmpX2;+~-zre?i}CA* zg|B~N)W7`rU+nY<6ymqt%s=#R3agy)x@+p>S3ITg-s9S%L7b5qcsJw;mcw_+B+i%n zSHtA)t6jw?7V~4nI5N{jXZm9|(G{V)e>me)m*rJk{6<zj={8@y75#wBtv}K`iNQ`s zut*P7ff^!fa(0zZl*59xq~nF;E*q)cSDOObTZ8AXPVzNRmsKynjdfLW`^w0aiB+Gm z6<z#=rzOHR1PT+pl$i)`)A^sqIINPi9@J#SsLkFnW_-DnHR)+;rq?fWW2#;)P9~cF zmNA~76y03v-aWtepH>nB8?)2F*_Z3Pvd9gf#i`VY8Fi}V^+vvivblF#<jYgdr1*W_ zd`_7e8}1UJ-XGYQxDF5ZZ;p}CEHhkFrOwPaAEK&X8BQAU;;kFP)xS<2)vDpQO?m&b zH_OiXGbu?BaQomxuoIvLylPokREm31@&*W{tp2sylV>ElEM*kRZ-`fD<wJ_1Hyxe| zW#wjL2Y>OTPp#CO0r=%BDbt-9$@e*%K2g4b^}N`z-kIG>uJh)AhHBfT)49tyP^8=g zWJV~4$YFCWPRcuVW90*h_r=C;yWI<@jbhb-hl~z?eSnM9n6t=8^7ELb<BxCkWNwKE ztO+j9K6e;wxh=jnKop^>Ocl2#o;vCaul$}3pnr2tZ*&@$eqCXQn~duavlYjUuznYq zf#BRU=pWZV>jqJ=qfP^<Hr+Qtv_loX83PDqsGSqZ)w1WBJVy>wLme-TIB7jZ)yIQ= zCAlcpnRJS5_6)^o*8_THj8Q^`pyg2*d%<N#nwKR9-mB!%)g3}f3Ni~d4ehomF5eIG zaN~F7R6evT4@=cWD;P!;xvqTLpPg;WcAEQz71H(F`BZ%i`e9Co7|h!^p_uFQS2&JX zz_E01Ngc5r6gu{^T8S22IDTIUunOaJsgbILk2r~kII8QCg#5i>En!-3d91n&=1X-` zlMT&Tka!^*vVx6J%GEv#XHxNB^UFb0!51JKT(p4&UV)ELmOkga<nptv#Nbf4G}t9x zvj<Mr@wzO~X0F4p&_3HMBC*`TxGB2gFgqv*LeQjcCEJkU*<WjFvdr;>lVa$(Hqqmn zY?8P7wq8s{o`>)UfqICt{u7TQdBmbwrBQbV@kQTGRm>D^lzeLr_x!L8<9|be0gDbu z2lt?|_gvGLYL;YU*qPkV68oJ&PPa?<iO}`(g1X&A@#qe}>erjG0a?5!p@s|g{s|=> zHAZFm3bQ{uv=mwrL>$=Ek857_Zr|O+g4Y|Esp`{r!N36v)I~oU=+$St&K;*5+7y_C z#%HB-;QS_8uHJ8ssUp+hGLJ=lYn&GIV`nnkU4v)L)UUIQjkdK_(EZ57S2*26jn>PK zb&5}7)_5f!aoRuX!iRg#!t)A%2Drxx>O_R<qFY4qY-EJV{GWjLsqFgkb>R=lk)pOd z18>Gt<;PKqJS-9`?d5}tfqG~_Pt^l7SnJ;*WLOqdSP%W#0FTQ{8S%2EHM8a~m$7QJ zo?eurEc%@>=N|jzWgor%;TTHPyrs31<f`BSUfaCuSjjhe9}v{sFI;vfMLX&Hkn1-N zGfK1<l{0WB9#K6$5qotcD<!%Uf3p4GgR2WBC(JI!2kjp`y+-~kLrw$<jTZIez>(}g z;+0RPCf?pOWiLKB3Xgkq0O9d1+AOWDSW&T^ZU~XaOb8n)@)mEQid!zST820}=Mjx+ zhkj|kq4^zc1^eTh0w^xdW4`sHXg-W064o<2EuVx`tn88b5hV7?bZ@bPrXPYZ{J&^1 zA-?lCFvz{8!HVU8UaTze%N{O)_OfE~=_WkXV(W~Fy&#XjR_c4`J9nyRg^=9G@w)yA zeT!XRW-lusn-jnY^^qgRuM_`lULBHSqK@YG8Q$AFQG6r6c^nXz4sW?N4el5LREFQj zUHPgAi0$DoJBEI5#dagk;u>L@@tdPl1HM=2pk;p9E>pBYyb~Ppk+WyNIzLEw!!D{c z1n*t_p|P%tWDk2$x_sP~qy%gy@p^B@1n?Eam^{&HaH2?_xoU2D#CEZS*=$V{&!<3n z5{oybUu0c+XHjg(%=fNDyySZS>f))OHRp5Fhw|O9>S2^v1P4Wd@D$(uP<S?ycmJ*2 z;olMfkHD78hyo?w5gZx0SctMfxQM2@>|_lisc|j!&$k4&=hbcsLK3iH*?;PQZfGLV zt!s8~s!9%jp>e1FKfr<E@mglPLW&A@3}^j6bnz9e2aaN&k-vh_n{pHL(px50v}7h| zYEXCeBfd_V1$wqMu7szZQcB#`W+v)f4FSyAE=r;ICFY;L!$uQ-^jZd$NQ@Vq!GIxj zj{{cR*Mq?d5C~?=Wl=5Rep&VnMeru{KPFVl_E7zRb0tyZIRHVJOvD5~sEdKp1Ig<m zEvE!3t9$+8F?5mdai&$*Jt6pk22)j6OrYMozuN?S17C$j;aQ_afk~l1eDNLF7_F^y z=SHFQ&c`wkw3M&-fE*{$eNpA1pt|qc$J;tX(^JjN6lx)=SJyowyXgeIRa-Pn49$=W zp@F%tuG3(f8t{5Oh`~BQ%^piQui}<?itE2~cBX2Ep)6ew?6@%P0^p0srKr5`s=Vf` zC>}RQKD(Gjmo`jKicwSM*7M7a^bd#1vQJ>~4b&-aq^RIiN^F~oio_wY)_KrR51yee zenTT@uc9BF9v+{GYL1Nch~Q#>0owM5EY8EG!l*>4M1iXS+P3rh6uX1Rkr?Xlvf2w* zL=$1gb4hi)9BM8~1T+D5L>bYfTM3yHSA#iNq9BCBDg7#X<Fu2pJlKn-%`<JH#?)Zb z5(U$3Mfuezi<H<j&$3My`X<c2$=@D;|23kDQeq;NoS-_diMRNW0ka_f&_6Z$&Cb(B zTQ``EG{|$Y3mxg}O?#lK+UPnou^aeWhm6@};=l(BazKm!DmsxPMe?%c2A^CG?ExT2 zN}CxNOQeeCA07T6$3Gn{F|lytg89(mD(wy##VghaVpkIWBdn^yk=Y_vbW|+o^^gry z8JtxW8cXQ^!1&=(CeA?7oTiX^DwR=qbR2L8xn|fnL-E=5pba&zA&DJ2j<I2NCQRxG zvcT`dIO9Q`2mpI}uq6OOIW7&X;vshi%gUAq_LSLth)ub0liB#+OxAt&;TfcTs>FkG zMd(^;lKRGQ{UTuR%3?Yci6p^BdJ$MhrI79==nrGrwWSRX3XWsfPsDru%R&O((JCnB zAq_yw7u9Gz#piXjB0|ueFG>!<O9L1U9mPVUS_Wfyddp9<x2sdR23p$Z56Uv%YW%`x z1%rSUt`%s8R9HNbBSCdRXw8lLc4GrnRUT*gDAlR4$-h{A!qU3$@c`B=Lxg@6JPV{8 zm(DfDD^}Gwi=g8bPFJZ-eo{<vW~;3GBrJD?KMh|cS3OH`+JoZ+iXlL~u}=VduRJ+E zvBlxcP$hg^M#_*u)kFW>?Nl?eIPA+F>W~WHdF@JU?G5>hr@lk0E0kpHDp%kmO=$c5 z;htZRXe$Wfau^RGgZ5|!I#u?N%q(6SJB_svxhOa(rKQorvU&&3TN!blFvgG1c4`b^ z37L@eK~>o`SrS9V??|C5{#Z6Fm!mM|0}6x)+rsaMkonP<7Fty=jJZPzd<DkiSKxPw z4Ic8ujxke0QUkl+>v7CXxC4vSTM@hYRAk{8L13ac9Yjw+us1_h<FKxSqSF)n7?+)E zaCHubw}Y1UHl@qGV>L3Na~xR5s~O|q)h=;sX4kB;=09)YBk@q2CUfB_kyfKi*c0Ek z94GZ^=`61%I7ix}usCyN_5}@W{`Lz&>t|%YC~46m**nRXN6c087;b7a9!So`^DV^9 z5(3;I@ejuh_KZ73EY{I|#as(>VT{1887B=bib!ap>w!J-xDmtMgVx%Q{%DAip-3S3 z&v$E}$-I+7x<Z$1u-!yp@vQec+^!h~{h=`YpdU&pV{jXu@)Ca|?9I<c*6+}{t6lAW zi<||}a$4ERjWr;NCl137bYm;b%=6IhzWyjo+q=Gb)92tHbBLoN>`E{wVZ$<~7t2xq z<$UTjlI(rUor_5)Z-Uf^MomAo^8`D3eB+EfP<4t*FUzuVwjp5sSn^54(OZ1ZT3#CT zFYc}it;!21#9i}nZ4M)O|MxZ8(*6zhLbdHt*Mb#z!^FFwNg$MrhFTm6FfOf}gEb+& ztk9lUSk{9GLssO(fIUgehgC;kIcKV!5LLb+=dEun6uz+XU`FgRq>-tZzAO@>x>*@y ze4#kAR~r!h>B#G1qgT^~mDh>ZAi&RxpJs<xWA#6$BMHvW$c1aZ^`9v*X}O(eJl>kE z=Zsc^bl$3Ach}r}g9i>>%@<~g$JnLoMwEjj5nDzw<^4WzF6^_-E<+n`dJi&UZ)xuL ztwCr$=<`L$$pP{lzkf(M(~6}rjJP1E`C+>>2*m{%q(xqz2q<MNSmuGh4#JhIFI_h6 z+vOD?*EhGt!7i^49`|0%YJY{Etev;s+X$S15F_0rKZ4zd$*^JCuoE&w|G8JWZowJ; z|38PP34+ifi_+w^bR%^zH<8fy%HL7J{jBjsR%%Oh*b$7-R@Z!k)GyiqQ~ARB=v`KG zq+iR3x9L|B#D`XX7$M7J2(5ZzEwML44k<uJMr8edQ_(R<D09=89bk+G3tuun-OA07 z^E9$i=2tU6s6KPqYzNIfh7V0d)OCTIT?Dby<e2X2C^=DI!r<p~yj@-XP#wr{E*zmv z_T<%J283LWUNZGGOO#J(niacb%$#@6eOdsVKy-+zxW{{O*k?ldB{J3z?l#p#j;?57 zQE7x@UboP!>ovWi#(y}l7Ho&XW@1Dsc>iwTYu05x7+GxsjWT|h%YIcmVZjT<=s`LB z!6$p`D~?CUZFW&uCI}q2x-8Dw+M>Yj&47P?0s5_@aouL`SYLBwjf;$C@yO7hVW4OC zn}kAqgWeXX3g0Cq4*o|iXV&kAJ±R>MFOp7JM4pD#r*Z9T}X!IUIE8D;^=LFcP@ zZk>W}tyGO}0FtfP@UbpX0!d-T)*x;i_!+v^zKs1EAXPB>x_hWN@!$?j^*jFJVZddj z)xgxChY(pQxCAN)2>2T9V!ugqAPnO9hX3K@+t(#x!ax2kg*VwnHB4k*C?a>h0d?B2 z*!4T;THQ=5H<a`0h5{j5av!vJIV@w{M=L6U9DBZ~$vQK4VStZ$_V9EZ4_!dFw7x~* zAeFB?cf)7)I1%$qT|?YA!z3gJjJzr}SH8VX@4FJYwQi1vF4Ubum7}-Rw=v5Bf4?GI zh$3x=_d*3B6OZATXFeKnE~!IYanhQ!I)G=)AdmSRme8OmsR&TJy-<L{x9#q92Ud<> zcY}A8FX{7TKG3k8;#ce|8f!AQ+wtAbtq){ip2-D7rEf0v`^zBVO8o&E5{HZi>Q?Ar z(_ahfuN8s$Tir4?MdxdVrCgz0JQTuu!-=KT<w<viPIMZ^4*kw`#SNI-;wV6SEibQI zy-k(vPXJ$AnR&rZvVz1^e*R2?)_w#!1BaKdZNcTbU^CF>Bdbt++RYqLzZ=`rV@cR( z6x8YH7P?FJ2s$TSbg$p|{J!d0;$=1Y5V{$dUWim`6nHR`e%}uUa<H_UAM4GCJ1%QR z(>q5J;{{0>Y;OktU1d&;jpsigIIW2TCsn#*|E?12KQsyGzrH2I{^DvBuV>$|Z3|XD zBE#@9aj|@$)9~v7jYf5`&J+9Pk;xSpV}2%Hmm^*|3z^qI53&ok|5_ehx1&4(_i}Sb z&sFvguq3lQTWYu7ZPx`Oj&!!`(}j9Ti$ia)-t;C%Jm&}t<0U68R?i>AgfiCaj|pkB zdX$X~#=HdXnGYy&n~glkAOs{*2_v;%eD7!SewtowFoqo`jJ=5emQ-U|VIX?Hw5z-R zz5+{eD3)|c?+p`QI4x5B?oe$Lp^(Dm#mDgQeUhKH2lq1zzW9>R>c>8mSMq^c8+5)z zbaI(=m9NbZPEAD0xz_Fj!R98|sRCl_TWHfW%4xy>Z$BpQv40?>IS)jKmHZ!dK#v=w zUh)lp`oXt3F>TX{_!_q3>sOH`Bg{2Q>yEtv?BC#GE?5~9kf7!?8wR?Z2K~}M2GL{K zM(Jf8r?LNV1W+?*(0|(*h6Ue=O7}h7X<uKuVLMes)TMt^V2;+uAhD|;ulw0r$KX^> z)a+H+K<vl9<GU)(1Hdf+shfs(^-jNOA8l&i^eC_Fq9Q}B{&iB>1uU&fjvJElooC1W zguCF#Y_<T&qwDOK!kQSUi>4#gQMp;ip?%iadmty;+@WXkby3qxlIpMG55sptDTI-D z4P1Y|m#bFHD`M;PsC2Lte6);oGuk^JCL2Hd|Mi>l08fsFo$`o5$?dNXjrPp(e5(lL zSnLH;=wChA!p#rP)p_q`F~4tk#J%=nQ2F*wr<(mQeNc1MkIeNN|9cOoWDvzCxefS3 zlDBYjjNFPE*=U0Dyrf3DNxV5{ceqiIyy)A2quW&Lbm{v0;{w3<6uA~zA|2REDkLO@ z4szHUVrFuEGjv{JOD%cwTC=fp^GvzX6T1wklYZ$FAO<tPG)U<czxjvbF-3lNJnsJ# z35(RkG~JWDm9f}37v4)8{u>zObLzL!6iE_GcYKn9$64k6f?4)$`M6;KUJHX=lPaE+ zj9~MHF);7i;Qgbi`VZ$dz_umO2ZSTCL)#8-#rNNuW$k+U@+iVJFUKhc0|6ejngqk` zkZDsr8XU-seC9$EB|}hX&a>r{Q@WJmKD^B$Lw^H7y={0s1p(-bMJkV^CwAT+tQ8hJ ziZ&#M1_l8=-~N3Z#;?%Pm~XDHQ&=HKFLpHjAC5|h^J%0utx6bfsOoLV8DtE60tcS^ z8`TFqUSvR!YklH%f8`jR7S(4{q1EQfGAZ&_pB|3exl^_FMt^-&TV%hN%*rsC=7f%P zqjLB{)#GMmy4#2!-l0=s<_k4$iZ}(TmWa*S4Qdse_(3`*+NYz+@10UgjWmo0#q9KC ztTb=3VMkV&u`c33eUzx{qFtXuhoTE!^^YT;hf{1ukJMy7XDU4X_UNVhH@h>j$<(=v z_I?NrP(2rQ-|fwx2*~Jc#&*61%;hfY)QBXii-pu^+x?oBO_vE)3X^VKnjXhLs~jAK z)@Y)*Z!i?oz;)Fz6~h}jk4HA<OA!s?5J$KQOM+A93mXeIJTYs&ZGzC_q~_CvN5sT) zNHki}7s#3xLW(s4Dd8?mCF95QYWDJPv`+_$673)85eYN@`sGh-Fs;+C<RH&5*T?QZ z8GN*mFIx$jS1dPi=pt$*pEqSo;mrH;RUA(pQ#X{-LP(qbh?9xObz)Ptv$|Nn4gzG0 zeXoFu23z6@&vlxhi~xs;d>YhN5k?7F5ON~p`ORTqvIAUc_BNe=^Y3Oe`ZcddmQ{qU zQG7@A_V3DC1gUbRga6t<Y@XQa?$MyZ32!p1Wb<@G|CieLs_}{;gjwislp!J66O?At z89d72kO$h8dnG)ef77T5K>8DEkDXj3i(1l|Ye3UIf1^XS@;e&#(t+`3QjYH@bXn{N zq6=Z67D<SkTjVtZ>Z>z9M++)!eT5p5rmxoS_Vi$!S%nl06M0poa9-KXHxmMBha*BU zPR*0mp8$sEQFeUpACu*wy#eowRNnS_xe<OFgA@g&E9lBna^^D+QtKvgV@<T3$DLiA zD2c*WP)jq-H4(iky_w$)@#YGf%F4#W6<qsQ#D-0;hNAiD`^LOb1?8K8Cch71!La3& zd$K-Fis0ctzC`_P1u=3|7$cO$mPxha1N&KK4rEYMe$(NkpRJ+K5^S8Y(3-r%hQaf> zsg<NT`+X$TWyNZXETW4O^QaS{(O4aO(~h=_^va{QunFQdf0JQh4R^4v=OTz$&^CJD zP5hC@?Tpf?puyB%&D6=iytU)Pjmf2SdS)rJBpt6YMmc3(%rfp*T+dfQLO*=b0szt` zDu`Kq5!q8f+rdzHNY6f-`L15w#x?`$OhczVM(+0V3!B9TnD+;rDKnl#K24vh@$99X zkWr)RSbk~s>1x>pbQAI!M2+DIDDl<2PHCCOP$3_^%inv|(1;Xv@S(nI?EF>ikkP)? zl5%*rI!nOO(c(1cu$6?Vd!eKrT<$A=y><`mC?D2Bf}f#ekqiUbrgG2!TrPRdTtW#J z<tn%#YM?xKk;!>hHl<yChmMgf;u1`+YG6So+(|POONi>MJTT`$YDSPn%UChhB$k>u zX$>(r61X^dBO7igM%dgtEUf%EfhA;2#Pv9r5UUAwzIWj7FbE2+YcIyK<on*F=%u~T z+QpUOSeNI959F6+pL@8H>LTk*SC8S<cPICzS-Y;}>aI|2Fb#BlQxne^zaI4fF}3wR zN%~tmlD~+m%Fcn+!{i|JYJxQ_-7s-02`nVX3GHzMuNN{)eO=t|dRdPs=IygYxxH<y z2Li{1A%GrFrQ1#t!n^G?M0M*@>X4Cf{gOJ(erPP^4a*0TrI88OZ>JbfgUHVqO&>3c z1}Em-3BLT#SKS!EtYVMst3}bD!6qlI{ls^uaI|6YbOBXy`Wb+}3s5?-&+VyRRc<`X z@%ZSnna$%?^Bm{$MaOIT=BC&o`o9C;m&o1R-Eh)ZpA_;A;-_2EJ(V0G%KN3^2Qb|h z!M)P4Iai4~ZI<I~s*SoHbQwM#{&q~l23Q6ZSzqd*RQ%3j7PvvQQ)%;Ig7RshZ3xaF z-mF%V-_gwM#V3{m?wL*B^u>1YNBDa3L+r&hFRGNEE%l!N_w!cOW!2_Zi{amzEEkus z$4KkBMdn1Ax#t`?%J&5wTB0*aBYV&NuDGt#l0rI7`*$FZKGJo=rV>$Xdl53=jkN{P zrnLPX_kG&wXx12)u3?p4%rm}SVH}k9w;Byn!HID==|3D>NL-gNim4jK&=XAjSD-@~ zd_1sm!l2m{GixDpb2DX5_wC*1l0vA!FQDSK!Fq@jV$Ov7mGp8hAPJH6N{t(~fk9py zCu;AJ2FK6W!zin!96*kJ0xUgNZqI42sgOP=4S*wyW~?0R(V|!V4^+kgrO_aSP^MGd zCYmnz$xG{gX8hj(t7j%M8b}3L<W#<|2qr_d>mxdv0H%orV#}yC-z2i(^L-6%wbl8o zSh5Z8v(#`?_nB-Iw6_4E3{O~Vw9QywaaH$uGbM83ra9v!&pUW{Y9XW3pMhuSV&UGo zs?c`>=lXqY{b=l~?aYR;aE9XT2>e{En%|hB{v6_SYl>Ar4kq>;-3XoVva=8I4q@vn zWV#MZ)M%yBxL9v&prKT)aGFg~5&J&i>QkQ^_gS@jYY|=}5DP^p@Ck2#LpmH_M_@`m zFB0Xxe9Bhj<Lb_)%nu0;)mbw=Jf>!qKV07XaJ%iDu6rVVFccG5f?EX5^$*n2CfSp~ z4>|hzQ)^1_&iaU6x7zZSkniLfDH5(A$6QPn;q7fSE!B<I7QJv8_X<tM@U33POk6c} zRWPl1&l;JUEuzOgfVJZtj+`N5!ap2-eDk41e{`QV3T(U9Sk^23)hNnfGB%>yl;FWZ zd>^j&^#s+G-LX7cB2Wy~idOPf+we(<D_y+1UL{(o;}O0RpfB{*b>nG>i+kve={C61 z0`)=WUvI(&$(~_<%h94BPDQ}ke61REU&-`EOO;_^IMKD~M*fWdVI)C|csiX>aZ<lQ zbe6kzyrC>~V?sNEKwfky0JK+#4zO>M!avd4l6LY8SNH1;n;7Lgna?fou1bvAq3peL z(D~d&F_{!H?P-j+?T^{w6g_|-bW(w<P>wcVd9TWT)t}<5p825`(7@t>InCF68vSmf zMEG70(&Lpc`X#zXZ?sD{Ul80D*2audKcX9>e1Y&C^xK3xtluT40TPDXL}cwb<7)y> zh3u7)VEO_xXb<n@QN%RHt(<Ejhd;|T|5xat=G@1JUFnE7zk-Fw{m6T7oB4(32q(AT zro;v@&>m41YB;Hkk;E;%nWf;$D+2p*)Pt_hiH&-`n}L8WmOYn^q1OeHPnf`MWsSk2 zxgtofMQjsTX$&4l3EHylWDfa<^MpB8Zl-zW)b_I=mYlBxMh8%oC!u+PX=tm7`!qxo zn56D=lGAlFxxgz5CzH@o&3E|3${Xf$Xfva+fDN(-D?K;Wt|zu6(|D4sBym@xDjKpp zgJ8ExRThMKynoC4o7hLln=kHa&0zIN@ELta%Iae3#l6a}XJ6U(gB&)>qEL2y)Ky2j zXHnr>>=d*;L*;$!zRH6n!C;gMf3@Z4Z7_R%b5a_9mG>N%@En7!#abB^AY9SO-|NlC zX=&2Jrn$Hto1~N9XUpYb&nqNPW;@_pCn*eh=1zgPO<0a8c6QH+JgNpGxej+tBC<6= zj0f}G&2c0FY;c)rDi=5k5KU)VP0H!yo?;aqKm3)M%j-UnhHVcL+#$1XITdWwH79ug zV@t}vy<guCxEhg!H3YuD5kNQ@idl-#C^$L%XYftg@-uV6e{t@&mlK2Lgv~7-ZK0A` zuQgkg8J=1vwJ><I+%DJS6l$qacH_aV5Z4a6DXv2UNG5S^?-&^%S^;v2{=D)o0m><Q z3c`ikxy6DTl;fs*Ktv)=@%l(iQ_dIzYqRnJdw<z>j0|z;nlM>QjW28#GQWp?@)s$v zrH27Om6IdD2yTo;%b<=Qp3KyI_iS-BFg1QoyAzUue>&I;FaL)VvR0qbbGES7tDjGd z@+>hqFb*o8NP8+>9O!Z0ZnKk=uhz<|$u^l-Rm1_Sm<$iA19O5c;V4$OkgjJ$0!$ct z!w$_&34pfkQS)g@^8MbYr^CX$G5%@-?q5~z3>E;?N;6E31_?xzA|JhKZW8b*b|`~1 z5DJ~~XUc3bAAhXt+kMmR*%(C&`v$jPTfA9^9Z#;;Z?47M%^2&|+wiTww{B|-o?J31 zHCMXoUc^&nA;hY|T@q0|i34kk9-CW0k<&Mj)7$m5jf0MFJ(KTbGkxezZ<HdIA<i{a zAQj}VtgYW6F_))`E)brK^P?}H_&f0s+N0DUYqw7G#fwkj+GLGfEX&2Evf~Nv;OPRc zQ07hA(w@uOo*0eQ!;;K6--vd!Dn=0%_YY^`C;XZ@<E0*&ukt@{{dL}H#5nfwMANJn zo_p^(U@nS?sOOK~yU#Y^wAWlHHPZES*4_A%W|4cb+F8FbaiWe??jxcazv!u2BuJwt z`hV-Q_{3`G8TT@&_|w&OubRyDbu5i%Orudy9$7v1xoMz0V(s{19THJM-ZAZ0coh6x z%%=7Q(M#*NHs0<eXi)8EiBYPTtwPEZQ0H7|6_c{#4LH7lxq}m#(}QJ7R7kj<MXPmo zIK>9c6T2pvzA3iov0oD^A0}3z9Udg{C8mHq_*nc&?&_;OmwobtepT@qtG!fKTGH2L zaXZFOzoil!eSlCd`LwfqPu<mXwgj#s(<D#$eToz@R;1FCK%=YUUW%-mBkxK`Tt$<u zO$=u{MFRBpv$-14mloy^2Do8^?n|OfU#?Hto4;;(Y*Q|Qw#E%?wR_r9NB-el&2R@j zsMiP>=I}yu-#UC&8C+)ekp71wH8XjZ(tE|v#~(cQ@sV?y>ENN{4%0`i+CQOBeoN0j zt{LC>A4zB7*W~-YeG~;j5J9>nrKM{yQE6$(0aF_39yz5u1*8R}W7O#GMnXDANy$bI z82dc?{+@qeuY0fiy07cJ&ht3l$1iSY2F^F!NkfmmVWGs9Tvo=f2}FYfW#}ihk7-(F z)T`Fbzzj21zQr2J6M%4g#?+PO`tvTPk*UkOr(2r&Zl&fE<*TB;nOCVlj~sInR}ZF_ zn{RK@G?M06ssar8YYQryq(3n0E2&=ZC+vei1-xvnlaUPb%4e7En!Y5Jr2X6a3<j`Y z-R231IEcQF>E^d6?7v{c&Lrcg%%FR+VT@~!3`Qu*dmd1C_X~zLy|s7|$^iOV9sk7h zE{?OrAy4p(hw43vRI+G~m-B$uI+O5BbA><dTvSX62_};xb%ELy?M%2*>BNgrehPFu z0{`{@bz%1(9>5-<pRG|5xVLP#IeAibljyJwUB*&3+~<ossXk-><K%g-NSs^2|A36S zCHC^(;dp|}>KuPxdJ{KkYz(YyTo*y+!kKq9-t~<T$;B8=j@%%?gI!tJ6e%h_zI<aB zx)t1<EC$Co)wvhA_%t+{Ya5vlji$l%<E^@GxB~L;D?H<{HD8}S7?~=u)L$@b=eA4J zgs#Z(0S1TuoeASYZ1XMR9%g$>U&9c?Gb-4{ID;6{a<dxiq>)Kwz~$v-ISsXmd5K-( z7Xxk6es`5L4p*|@A(y{C4Gilvr~HOqR_Jm(iKa<9TESdbQPlD}IZkNMY*A;G+D##x zfIUgz#UB1d0P=v(gLsV6!k9uin(K)!4MmN`>pbAvqeyXZD7Bw{!*ymvi0&T&S1w;q z7fv=VFspCu{Fe63M(a)F{a@jG<j0^<Xb*dUu~XrCfa>&R%-@SOVb3;F3xsOaS;}yl zzwxdYIHSvlLq!WHNFbbf*M}umEEqySm-q(#0GZM7y`=lpY7M)0Ln13HUy@X~64f3E zi+zh%M%^Dj*YG_}&(kkE98A$k$Vu2USqDw9jVpX+Y$P8JE3m@{RXjLLdz+=OyvkG( z{N#|2ZDmkiG$gY9T~*J2c&6|`CE?i_*)aSfKdsmgLz@f1a6VP4_@pvOiE<)^kMF|y z;?eWs^=xIaU;ZBE>_m<(Srv@g(1`gC03*Fdu9D!dxhjvDlOW!Jj|~?5?e>ULb<39k z#mZORx8`KMZ6`EW@%O*PeiLNj;?<)G6$HB~G=`e8JTK3S5awf+;+>gT{jmYIUd;1k zk;IZm9^pMWyUkhxId+1jt{4ZWz4C8HUWfjS=mS4@_S`Nj%3fY{7;`dwp9y)oIub)W zwW4DzKLyOz{NqKeA{u%1I_OrSS7z4y2nej~a_m~6m|q<z!5E+vo5qQgycj#=_M>$@ zPC;(iwXP<j0N}vJb2Xpm0mGg?jDDxHCY>#4)Eygkva4RH7U_IGAmg+V)sRPXGy`!k zS*b8v%mC@PG-auF#H*+Z!*f#FMo2zWZ||McQW12CciAxs^|9bwn&_jxAo7|0-wg?* zM<!`GE|$Il*L4L4^>SrEhqlGjtMt$*mLIMaB10{y?`Y$A#cB8rH@!v-;@em9-YMRB zW0yr_`12@SxLNnFm$kxo2=fpdg}FfbV-U_%aQBhlJaDh<=ND%JyiVkN42L6h*@%CW z8_Cw0jaK|WeZO=k7urxA9he{BISWsSY;EUd59HHtNTNO{T>l*0t2jO!!Tu~@p{K_j z@4{t;@aoO)cKtixIxg7AdP_sJZykts-4miZ@S`e8dRFLI%QxcYLSigpBaog}Lb4|$ zvepH8wr-~sn#ZpR=bcUvwe6k4b&v7TcVZQ8KKU4#mITHjkIgY}y|Zg_vv)mm@|{an zOzKys=)BJ!#9hHb)RRpHuBN!_`IDS+$hlr3Ajg6~pnH2Z8vPa&DiIt|X3%3m$g8Za zz@)$!%nPMbIT8p<)F$oBvS+X?wTT^8xOI8hYWX#^p|(d)q`WoH-#)J?FY+^72!@eH z%Js*}8}mC|#^4{F-T1ZVjn7;Ehj&uzR(T9YE1Vp!aQv%5DMwZ=;>I9ef*jkOqEl*^ zTTs+X9U4w$g;^NjBXWI=ar&53<#X(d+|G^pvfUc3kMHYw6UuH?x4Kq<{kb%AY|S{$ zp8J1zhV@<XHtNO!E-;h(oK3rHr)HHB-*^0ld~C1iXeUL%z8FIEB`RWDFvh1EqP&$e zwzxdX>L1nl60As@Zs)-Wwx6*QsjDCz`r5+yZ<r-I%}x9?jJ@kUm%4`KsD<o1AFG`g z$5wFKYuLj7G(0o|W^CYR8<?kasK*$+sq%wk&By(EkMG`FVl#WUgJcI+Z7n~~jQt%o z$X3=9t$1?oau}HE1PjoOUXuT_nLu7~;by-rC+}!`hwCF}U>p#zWe<eQNfs1lzsz!c z{}bJ&2Ct>SH4)@t(5*E^+h(Uut)=nL#J|+r<u6Fg!lekh)Y?@m;s~|+tpbY!B0C~{ zFtYv&c@VumGQ`t~bNnl#cxxA3zgO}lT|f6{I(U5r=|%S4TE-Z$aJUL)|2_-AcW1ha zt~(t7Hh4#EJ51o!Brj-9<CsW^YpZILvkb$|)i|`AV#2P~^HJKdqy&DC+wbyh4q@-> z>^dbwc{eL>x$<6a$672H4iY+AMj!8>B*SpSHu3}Plh*cNQbX-<RmaK%iV4!rX}<T( zH)(RCj0tTm9<i|(-afA8AZ1@0gh~;eK@VLIdp_PJZM9m998X)3%ew-=J7Z3W&=6*d zvK^gYv65YheFevF&wbvU&JrpU+k)ZCnCp~4w@yba0rbn4xuhKuB5serviuU<!BSlu zrYns|iKkXTW)+Z=g})B`{uQJd%A73K&Tc1-X2qmN?F%a}Hl;Ikl39y~jPS@!e9lwD zUXW!S2gyP15n;vXuuqlxKKCWv=Ddw`L)`oc4b07e_|#cY&~JH>5IpozZ$jHwXECRs z*^A`GBy$u3NPCb=ioD;5ZZ|9|&M96Tv}tZ_PW+{#^yG0)R5v~#b9x3~Y*}TxVRS$r zyrxk!DF9=Semn7KQ2e_xE0$WgRf@2@M(#;vQR2In8FaWoYe~uF4y2!@0UVRxn@1Y} z$Y{l01!`{mho@v>7+8YwLWvcT;DUf{CEW6a`UU9rXD6E8-5UB^B3_B}oC-LWh>Vm> zT{(p9@1&2ZN@T~fB+a3cCT0HM3Ww$uwwF`aNm}PrDO;B_;0O#wVZYn5HU_#$b@3lw z{B7zF!jmAfX5hsELfse0Y{?SlCm)A8?N28uSfA4P4#OZ9920iaO}6rzW|@?8Y#o;_ z!$mRkaHk6x$z{riI@V`ZE;Q$S#!w4)$A5P9nN9&LxOygB{@d?PAmnhB06W(F2D%?# z;=qa#7WbP>y;BKzC%ngJreRp};{Eo;_k|%hJ9A=poC|_NS?3CZ#^52U@<`DFQ<!g+ zHy4p)yV3h;hBU1hW1Wezu9^fm*$F#}mWSg|4R4>Q?Z&whw-bDEVH$ym9m&Qi?QMNy zdsUUGEUTnRshsj{WV<N93Af8leYH}|B;}o}@U%M*SqZL+E^*r;dql09>7LIWoUB$- zQojJGvky%3R2DCsCtTII)4=H28fB7#_jU+pxqx~997J4jU#e-zn11UznX2dB|DT>B zp5{G4TSFqvd;74y8)iz%vyO#SlUkc=z;PS++~tbp{a>#RCDGGsTgrEw)mZ8-3hRu| zGDAq^zpVGaf?jn~6^BzWCIW^n-X%>*dkxh}O??^bysr~qBZhJtC-+hxoO3BNAH2j> zrexe9g1cXTqHJTeEm^pu#N`QHIz)r0%mCa7vF?zeb%_r+AK=To5*$nG+6L|`!PhF9 zW*u^ZX8Ae4(Ik+UdKD9OF~#qev#X?~bz?uD!GfV==~m@Vbt|{aZ}sq|-0w1g1%vvS zrBapCQGA1LRGTa(Pi(eluji+XnsANuPA>DI9ic%M`rgoeJUjPGT<FU(=pug?(isKJ z5Mugv7?g`U0>Gi-j0`*tM_)a##m7wwDZ^{O-2)#xuLP}h61P~e=k_H0oYT&m!v`l0 zZ8r5Qk;I@92CQBWa?D_O1m(_dU%D(%<@w*qn+@Qb9d3}j>}pctvcxd_+x)JgaU3{e zqHf(P$lDDQ1!;eFfQ9Y^t=Qwn?TulOa^yS8uh;Qs68FMp{45RYF~Z$-DLxI;O=!c- zV{n~whWp@0lw4{LX_^QG)K^Clh-ouI-5Qh!jlJkQTZW{30KX03D~3r8LcOQYPeHhb z<ANE<I^UyPtnH~l(+OP>kZp8Ze!S#{eo1Tj#fN~$buHYBF!aKvY|zBIoZ`oscH5$r z8tluh;koTu;q@ZRLtwq+3IDtZETWUguJOFC>AMZ`WW9Uw#>bbwRYG*Gnyg6q%FB5W zYSLrAx{+~D0m1~%JUvMpJ$o&aOoMUwfbl{eL;d*j|HH#$!6_hKbdh(;VOR1V1o0f^ z;-eNKSKiOJ10NSxkj|&bZ7ezSryWwJ+0C5o?a}4uuB(RdC;p2|{8sy0-2YKtlgkOz z<zb)G_E?#bt>9G}31k}^7@>AghT|;_+0K=Kp6ZhCcz-eMT<DC-BOJuCTW3%i=?=Wr z-8a;fXhKZiCxS5cIBpvg?|v^<@EgptLy4=gt+6>Iz<uD=^6=5{Cxsp=ER+RlPPRDI zw^0ioq{DD;rWqiIqEAu`k#h-b|3J`&a#PUvNrcl<s#zop-%zqDtW7Kd{mS+v>T?-^ z3!Omk5In=WruLJP?_CW{>iU0?cAK3W&)adxsV!g+ENX*%KYaHhP7@b@p;~n^FHO&+ zu0_+!zMJra?l|%4V4=$2RDILgA!Vzp!Hps$*1WxH10;}bXwaIgOahtuZu2ATYadUE z(4M*{Y`SwC>nyhBJ=NR!LOn-R&0)<__ZeFY-Fk$)N$F~37@5Ej_Z&HBe)&44s;aQ5 zsWbQ0wsv{&X24I92iJrO10b}U1Jh`aB|=(|ga)D_=)}yKyjuTSf#03%(yB0|Rvk|P z$TNHu1DYaLaAJHe|BIZG_qb;E;U)<QX$1aE7tOeb48(WYd!gle>~)yLY|?*o_qH)T z2J6DJz%5)<92e4Pxe6DsVL-p5LDbPoZW{SMdK}%H;(Pav2A_9yua%7YU6nmE#~ciI z?vg>mZMs_O=l61Z(W*~ZjZAnzM%z}OYSk>s0d^89H#W<ly}jz=PWrJzbBGoQty)?9 zJzdq^0K{sMjG#ab0elk^N4uolW+B|qH1z+7ftOBuZab^CMliw^OG8#>nby%hjTXAB zGb^I9v4~H<N*N1d85u7Y*Vfht;@*MVrd?JvQ~*xSw{f@ND2mky#)n*96313sFTEb* zz79GttE5da-@w_4WPJKx--gFG)o{Y+TvgH=&sNCU+0@U7@Ya9IuN|eX(s}e$1N+Rm z&^ntAz84+rdTn~8>%f14vGr1!v}{TrA6Y*yHMJ$4Y9kCL1aF;2nLk))H?-bbakA#@ z%C#|aT2+B@Cwp*pABsH3&u0E3VCts1oR@%=or7JtaTQSz0pbMhEjepMnFhA~n15_9 z%o(B<?#$5!6BzYh2T?Dh)?CKeMF@Q&6={jJIFMR&n2OuG`+SY~Jme9$-D2HJ=J7de zPmiVC@+(5xNzj~O|3<B3cNbaE?=Ff?u>jh+h2sOnY54iU^oN!W(wRd7b=3k^i4nG3 z#ZPxCgbb}DZkEDhPw%iB)e#aRyc42lC5q^GDBkV9bSQbHCqrbrpz~Hu-p8l(D??=r zI>5w1RSJy>=U|OqQD(|ASG38Uat|&6#U)y@3-`|ZU|;hnT?8&v+kK0cj(EhZ*Qx}B z*fO=bRnwLL=&-gZc4M`(HY>-?Ah=yuz3FWi=Ee5bMqi-8qVeJFb%JLgNGD#m_J@Fw z3s?Q8GrG4wseccPY$*(l8X-EKUPYpqzu_#ej}7m$0fAfMQJx)dm;H_C*$PA-$Nky; z%KIDBrji~`6w9peh#cvG@Ph{)$~xf0>HlOtKc<{(T0nxb6GDKS$>3VUUJaA$!3}zV zwHLzWp=Rb=d!Mvf1`qL*`?<!-1g<<6zqqHvQH)B`J$lW<-R|=A_Z?7+gpiHeTa0|j z7Io5Yfqmvl)&1O=mivNan#s4bV)q4#0^zvE#OQKmoW2}}r9JARhXHN#V!$Mw-1ZBN z2IeGl7sdfVs(-nTBePp5#=h}r1xgXq_iEv)S>um#O2=ZE7qCxVtf@|WVPuB_tQr5r zCoDDHT8vU#pPRmtGFr{^VIsn>f}l;8+fh1tW&RiEN7wXf>Fo`tH(Xu7?mJuTlk3kV z3U_Q8V)Q1)_iY0SZnPg&#zqAU8N6wWZItjiUc`FDr=H%joTzVgMPkKVA~JW^q66N- zYg?nLbXWqs!~0Ep?_d;G*5`9U$CE*h6kjiKQr@M!fo1OF`a3eT1vG{&P=X32)gG-B zwiE6E%7`l%jc`obc4J7*P%E{ye$rNvkK{hiLB{k#;f~OTg<cpPv{&8NtwKJjvgZ+U zgsT3KTCvdVipzq<B7cc5>}-ja3lH`}9ESb9lZTO;#AU*M7KA1xAsMbRYwq(;;ZtFm zNv&-t=WkmAribYdXJq}gg!F<X!f89lxCOrvpsu_=ke}C%z@`$Y&_mjd_o+ZzmKXMC zKL!%|xoa}sm$ns%07o|~orl$2D|a<TUb`Cp-B@}V^n3}s!9rOTM6x<k`Zrz6sZi;f z_eM2;rbx8A7$IxRX&sv#HpsxMa)5f%+=8p(f*l|X206c!ksAZ5W;<L?rSCp~9Pm)N zs*g$^?f=U@r{y)jy9rXcys->2OMzx4U3TKO`}&|2AbcZqvq>LHj@GZ1GK>|bep1n1 zng<Z3a}RvLXt+a&!3BgF;{p+!=pR08tk@dMXB*kg@X;V~76~hq?R={_&taRr*X1f! z!9e#velLaC``6<*E)?$0ibp0e=G+v8%f9)#>G+`W_Dl|l58RASx5ss!S76<Z6z$*E z>G+qd_z9>-wUs1Be{gyvKbZ>h0KZc($=*!Q+lCJAr)@zb1;=pb7S3Jn3a#x}h6r8V zP4jOqku9}@Ilo#{IFk|-aRAqn4D)q*7|DZ09B$Llws)@sRFHWXO7$UV1JkWh0tq_d zg9LTHZIgczdlBwV_$S|!0paTBEvx0SD>x&H+{Y5LSA1xDaSVR$VoF6GjEfyeVI@o` zm4ggfPC)f)0zRWtafR^Xl!(pT3IwS}fUw8bU)blF-CQ@T<dH|QGf#e~wZ**GG$L=# zro!?K+|8Eo*exqfI>}_WIdr7}r=DVowd?~~PV^D#Ejk133+XXWpR1+CA6mK6?oc#q zzd1<ip7;!5JG@pw=C(NbKTRn`s~z@;JTtMM$dB?p>>nDM>BLz-f-~)>A<*sWnzMJ0 z@+?q-#a71pR*~C!-w|&ll1mB+1`XL`GtZz==Cps>g$wQGTTem`QW}=^r<-2W5+=Qj z*SGt95j)sjqEpY93%_UYp40zOUYU2slIteOIXgHLjkUdDv4Qr;1`uw$p!Ln!@l}4L zz|_XRc2pLa6=qY2F6M@Jh;DI*1ekYGI&;ML+B%LC$681I*zXh_62Ha2!#lV#U?J{5 z%r*7FzMNy=3_7cdj(3+K!S$?<^3e=i*C_~rxs%|UsHR*I5B{&rxdmM$L)$PDI3{7* zRUGPpe-?9<hLntDoef}mYM&fxO!?K-_hTGnA2lSt18&;r1Ji3DgNF3ewUU(bDhD~8 zpBZd1y~xL&N8e}Pmt%N5Jc=RmThFPKg5L^{@fcCnhGfTUePH&b3c1rmYmW5;>;JX5 zxj#5NadIhqpkE_U^UoDBHM}%c<gp9cr=PnsJs6tGOl?mX-H5=Fp#q?!K@1KC%btUe z8)xT+@dlUj;Y!@O86#62mH{3}npkIn0I*B(;s<9M!|5Nm;gI<-ALG@|Ik-BP3Mt+g zgRIy(4Yz%BoV29;^`}*7L*gz3i=>4m0__vx!KAqLWG4XHWYo!O7H5b|`PdHs(T@~! zQ_OO(XZtkv`jup(YsPYyy!Snq8U2q~wKyst*qX;cS#)&RFUa*V?2bG@9bLP%WsiEy zh3w1|KVMb+v2gbmvMkM(lphtt|LXW-<!ssHv&A1&U$B+9dN7v-slgH&^l+M?7fXXo zO%2b0x(L*pX+2NdaxQw~bSgjnN<<7b9u+aQ%K!7R6pR_S-25?gGw==4zU>_EmE%l- zR=$B3qJYYZuav{9^_Fxt-0Q6_E9}^(hRB#JL*q^sh>gS_FVKg#^M0;Rnc7~28t>oK z9Iw2I!yik#YjgOwR~Q}=E6?RRpjO}Yu5k|j1H(sh<VXFdDkSC`J0ANhl|*5=hc&Dz z2jEa}V;6=xqA!okv+ROpDRUV}X`XE1<fpQB5y`+9$>b`y%W_=TFWbTzebcoqbYfT) zG%qjG(tckapy;wiMmoXTrbTFfwi;=D{y-MaHxS4CSCsnmb0XT!*A}8U)7&DxPY+J; zwylp=hk;g?77r?{nX`&h)$MYDQl}2y#2>?6wZthsdusKGOa^kbKO&x=0@D=yZM#3z zPZpg=-et!UX^%*V&RiRWl^yC1kSwHspzD<_CC-0apcJ}msrZq}J6KiT8X+KlA!mO6 z-e=W`JB?(UAy!w!mif*@-?O4PL_7Q>;<m0Xpd;ul3;S7h1tPg2NPgb;F-KRcYhbSK z_QhwgGL_xA@_To+!tck|Qjc;KNxwD&E|}sW+X-iUN6>KZ+*i3~k^|-(8uAVfL_vRC zip&=KuROZa$gNr$!Gh8cbnyuHJ`u7SW?)3nF8*a2E{Ggm{^fi!iq}(_qY#cym=?x| z@{WF9x9Qq5G<V#0Zh{IeG#Zb`DP$hLEA`Cf&}S%|{JR72b$tGqcO@eCGN9Ot_h>XW zC-CuLh1`X=cN)RwO`OwbJUINVzv2^H@)Fm!1b5X554PI_k*x1Z1pj1i4VLs@7QSU5 zB>uRcxtB?sk-+|F9|NWT7b?RX=qsD`+FaAhs#zx~)-sj_iG>%WTNUFiuW5Zg7=%`N zL_ODj_}pEJ6^YY75_i};aSoahY{lkce5Pn`XTLkzo>;H0gXZ;DiRgxVv2andm2V>) zk~arNhjn~EX21G9xR=$-dOYr|OvsW@M6O=eP~2$y&Nje;LgcyOSC829zrY+#7Yfg9 zZ!J?lXqd;{_@@fXm3T;1>Q~m~fg~iYtMX_dG{5MT7n4M*uvN3wgQvNRbW^j@w=0`z zg^w5dm}DHn2%KaG{Ni&S;O`m1Ntsu)KWUkYr8)aQd~@iqli}#X&g`l7PbThXBcVt4 z@SyY+tPn>ziP_2P$>mcoIVZ@ffavLb^;*7el5BlHg&uN^_C2_S)g#a8E(1=9O#Z`j z<~#Mi*UH!qs6R565Dfk^nq75d>(YNmEa6nh#Jl6(><Dv=o!x3!A!a!xNyul^3k4~U z3r|3c=ZaUofMd}O$zKKsGrU(KJsPfH?Dq|v_*;@+0XqEt<MfjyzlNc$^=||h7C3Hj z^S_I~mOV$NB`2znOkl?mWh#eNTrr3oW|T+p+x0@D+9}6>;^^!6C1}&uDD1`*jQx;) z7_@K^IOP9~vxwj#+nNQF+BLy`J}5nJ6dLJX(!7^!Xss7t+<Y%_a4e!tqq!|L)rAX} zakQKY6~<wA9MBJSaAP@zfsOQa;k0Alir*ht$S+wUaB{Tr8^?(RTx+^Wdaf5?dI7le z!3k^2-`um~_9LeajnbgsH0vawG6Cgi06T(|8psn}Z#qILNj;!)6H);ZHfs+VX6rJ% z#HE7?4dE(70@;Mvg>-Fn0to#X_Sf&eXhxATrd(vmjcV*2#qm4#<zWui2kphbAMD>W zBZXoC>bS~ffZiv*oz9;ttHR!g$j91;=%EqUTh~J)@^1bj72e_TSmIj3Qy@;-(W4<R zi>~i(EeSahgA${mdZ@<@X@1phg$GVfrDpF$C{wj>#%t>L)5k+ePKZ^k&v~cw<Ywdo z<OSz$%(`GlNaaC<gMjU(X7yjU`*cJVjrsT2(o2>03z=`rQG-^&jCbe1qi;{QpvS7X znkjnYiKkFhCw)tr0(7&=>l9xji6;8uF1@LaSDI~pXXurKt1CT$c6aSme`^r@3QFvN zWvFY?s)vLNh)5eH)4wP(uR10GxW#Q1vZ87ypL`N++MG%NGIrA1CqZnx<zIEpI6Ch6 z<~K$Rze?cjPj~vpq1ATJX84_eA72=MN7kV;l}A>I<ow8@tjt{HiqB<fasx}5(3=qd zo2%$bi1NsQdKptdN4>o8Vg53rVb<BHnpv18Q{ZQ+GuwD<iYk8UM@L}Gf&8-;lw^Wf z-UBqt09M|G80~M4B8%|cAcZ>Sx6I<m-$y=Ovs<$qxi3qUndY9<fyU<}=O^h!*&l`l zQN<vx2PBZA5D_Oo^k0-+BHEizNb;UpPU6oz2$IbDkRx$88nycE>Sv$48y)NoisnQe z6*GVpooR<6NDWp_Zb=7D)+)UlsngO5PIaO-JKJ!QKg)Q8e`$8*%s68c@?>8Ed5Hrq z<n2+`UKB!Y^Dmj}krn;SeCT{9WZoc@9H0gL^%vK&zkre*w<It7R)VyD@8&L_x>58n z7dg4Zie-zPLI|GHTHqlt;wT0cwAP&x`o&f0pJyf89WTr}{&+>5z?+X3OmYv$r-}~K z(!-wACL^9^6eRNuF77Is7Sz$W<njkep>LNDE;;AkFGx~A{16Tqta1Oio00X-Gyk~0 zV`j9NACB=^@9XQll$y}MK|?lT<@pY&>0!~9Gbhmcg68m<DWw_>i9s^>q;qvHpQrtk zWQ3!tY<v9VCNm!1$Jh0`yAE1M!@PU1fdx?9;jye0j}b1$js2i?8!>QFKAkureppo{ z00{8lI{sBFv-VKQkXPvmd%T0*l?!TNAR(5eDLn?ud4wx90S^k6(6XAdr(#v!95jY_ zYnoRtCbiq8bzM}*+aAXRt6I<?S8yHCi92=d1U=(AE!w!!go)WVc4KLIB5&n{)rVt@ zv##>D`qN<*+lPAOtW9Z58CeH8ggA2zY%yr66M&ScDn62l=%0#wVcszm4Y(7pfyaAM zHy)8TLuG{OjN_8tC*IiTnl>7*w{V81_y<hAjsL8ktm^!yi=`QJkM1dju!GSNh(Pr% zv*rfm?qo%&deNIoI)jNl4`)l(L^jX9{s+B-qs<I%riL*Y8~q+1y4+Q&GJtCmsBH|d ze`+*?k~*Z{fntl&^MMkT@+UkzG6h}8B<(gzaUvV&KEc{(nw_`yHo6}-@vk>uWAFqp zewfR$+s>9wp{<JJrS!kta_<7lFP*IajK<SMxPflPi=9JPNm~H753rD`U-2eh%tKWW z3m&adfCl3iv+fz^@6USI|HB(ijgWiqWAz_i_JT_>Bn=vYQr`aIlBb!a^4W)Jm7C%X zim`(G5zW*Cm6!Dm!M{QV(Y(e>0m`2pKaP29Rhd~B?0fzmOm|DDcA9WE=SR+U%Flk9 zT}Pcb&MU~4lQe_{opOBo#4K|@^`$pke?el%vdr4!YU4`bzDjIkMbo}vY`Aa+0J4c* z@CKjtoD4lg{KjQ1T4ua_H1Z<(nRa2*p;BIf@d35lLF3a%1k-J;oN+?g5qK0BR#}Om zBF%)nmkTkf8zZS19ufIK0NCP9M11%Uk5+o0iSJT&6NaJm7&H;jmH`e50I?KCdb@XC zW$_!@#LalaagFO93j#lkZeN%QF)%xW>^wg9dhqpN5;}ukEvc6T*r4?hpNNO<%S!D< zY7QE22i6|kjy%EhTVO(+56a6Tm0Bub5tp)UcAt>Wh1Di~<Y0cYzpY_y>N&&xH;w1C zYedT*t?*VCJhnEL{jUtruwv!n4TpJc-(;L7+H!&2L6V}sr_lQR>)XGZA~HCGH|xUh zItbs^M*OyVOXbCh6KUm@+UAfuDSRG)_TiJT%)%enbwxAOf73IG$qcA$rOmTJ>@)nz z#DJ8i@)$3Lm=+x}b<t!7d72Rh)8Z&f*I$~&*ryyFwcl@&T5cY>3;urF?DB*0p|o8m zH@fBB;n_w^me7d{A-Hc(;Q>zxBv>pM!6|RV%D=nB81R?KYybkQ7nEoEYq+fiI^pD` zH#n^&z&*P18u_>OcE)N8OJ-=Z%3p^k0hDM5ri82aLClTutDvQ&$W*hBpo2-P`bfOK zohEmaml(n#s@G>J9b@tGIp3|Bx~4D<@*o##j9QET6p5Lc0_6HRy0_1I;+GI@+w`6) ze+<{}N_yPSFuX*w@|2tS^asA{!*X|_yt8#GFUK|r!0SrvN)&yt{#HvF;k$4i9Y)Jw zf|)1mET8hi<%wm|ug2`71+jlT{P!ZhOD+qsoe6T@q1X7q?B48ft7QxcTHo5m!QP>8 zh|$2+e!iB~S0Yj@DihJm_LOPNNt7m*IigybD*Nx`2)Owjozg7~+<APH^#<LAlGK?s zpH-`acm4S_eR))Rf@mUdSdNdVxDVfawGnI;8U9`l%$VqAUQvcIsclA!6AlVJQhiov z$v?l-a5$YB4C-(CAyYQ0<;)nNH+U)C4e(Qpz^O|f*vr2JQyh3FudEFTV5Wckv({Id z+f_Z4`04ahL(JhN?N$#voj6AxQ2-h68=NIVz=`d^q@hWY#x6xfm7^&oD{5ujluGF3 z)JR<61J}n|HKi~cy#bvR^HXqNIi}JrG2nfxnHQqH@qLXJr76TIcz+^x=o#9ETT0$B zTHyl;Up`|<8U!>LhhiS<OKVCTa140&tGMe60itj?)xh8Q+vFQn?FhzyYpI)tI9+1z z<E`*{U{fabc_x-gXYfC~Wc3w@M!V0m<~;@G2Y+eHYaf-0*#pS{;)SbyUPbRw_sQ#r z^V2@N0tFqZHaQlwgd~R&!I}dMh7W7Y-WI0aQXkDUwc@;{U;o3?X*7Z7e%k_-4Rp^r zi}`b<xjtJ+TzPMpy`LuhDc5z0Fv;Ah9J0LEXEY=K@=$`4TrBP*EIpOxRa)9@sExqt zmFJkJHHWLi!U;y8Xz9>UCYhZD&QaU$=)t_S3iwH4yZ<>QWl&Q%6LGN-+WIV~#GYQP zX<;EPlVhf%(ojU1)rhmnU+;^`n-6R}v?Mt<J^ZeZd4Ko@<{jyMp*k4EY|JNI);`XQ z&wJNA6Tn&YS44GhfMYnZ{;`A6E?i6E`B=-KU{kGBxALJ%HB=p4givn!?J3(K40n2` z*E;94uEOy=(NQRE2Atw7Z}jUN0`wyDTh|KbdmJA_n%h;b==)RU$lm`h;)jV!d4f$( zA@8&ZTigzvB;HEhW2peCnpt=on0&>2JVf)45Zs9MY@7F4!B5k-;8RM03`%5AZT7bi z=D~t`m)lt^k#4_UeBJ^WO~4Y`$#LMeWY<YIb1YQt9``78>?$K)1x_#<)8<6_%24-A zl7W5D{mVuemd_5$KU*#S6eRl{(%>KHEk(ez*U<99ktmi-3_uc_^8>~~ZwB0gUJ<le zBS`T<Ee*{LZFAP{FQd{N%+z+wCcca=;SniWCI%c59cq4=3X!KjFejSBjf+&<GgA4V zWqpbL=}W!wCHI7e6|={cWx+_o7Q2)DrA)Vs8djUeRmGKs6QLtNz(~-zMmn=N3LJXc zP->HorO=?bJ=biBwo3lp$FK|-?okoo5n<J9+F4?iRo$aPpKemcab#<dh<>pzQU(-D zZHlV;dVDI{v7iR5g2X<9_PA7<Z_u`3@=p%T$x&WS(PDB6KjT*n=e+dm;~yL8c*&|% z?FF+kT-(hIT%|0C)NTq<dC3zmtwC%DpwGNOe_b#<2vAHL?(fFvVB-Yt01L($R;x!> z;pd-wE8Z{NWU)KXgnevyKU(y3`4-v(jbB$<i0>4F=xqhTs3KzcPrXScG;HiGRK{JG zK&C4zW`L|;2IB;Kl3v=H69evsRQo}X&}}r~09k?rl#>5lhXO{u(r&}?PF9tk!{qEB zEhwNgp9bgv*C*T)-qXs^S=2}OAw`W*`w;=+NaX73deLb(yo=zlb!?ym(KL5~wvbFN zPdXQy|NAy1?pWk)utPBlh8u&hP|3GYCn0{-HT;3gc4*2P3osjfPJ=i;5=ng_cyscP zKVUBXE48n-;ISOf-TUQe`YZAhh7NNacomKgM1gwq$S;W+ItUnsZNglh2^JXj<;ZGh zskiC()s9PQi)4SLGiFjXnDA?<RV@^rqD@j*Yq*86Glw#Vw<q*$;Je^>chUea%kpmi z_qp6j$L!x`eJ~uEag8O|nijgITpm|%48rnS4YPi?`&{ZMWEQriuQ9rg-RCsc^MK36 zGxTNpPFr-<HZ-bdRXBtioJlHignyuP<*)_58r_z*(Ip@n@b;FZk<<lM9Hb{!b*Fm_ zM@7ck;;Dv93H@=)3ovlnixQuhT~)Shm5ni;u><Te{P<w=)i<_3oPS(ON^|jH1$UUx z#l4pczh{h3JYKJK9A<RKosu?^=UR0q*<-mr^w&0>>X(_WG742S9nAwt7tIKNg4`|a z!S*~{F$<;>a%%2(D_G&=@GQczxJNvvy{pZ(Gfm>7*#Ob*(i9+A`R`*N6YGh_Z(CzI z%Ke>6DJ2I<?K4_#p7gX;ziE7}Q>TV2CVhmvPnWB2GbUwN;x>>5Q_of$m<5r~Qmo<P z8n%78uV&Rr2+xc^+jX|t0EJq_k@9iX+>v4oLeD|uyN41evsX-b8Td)J^9v_hclwJ# zzkzVCy#6@SC4kV+Dcj<|N3WNstf@xf10%YU>}H~}Cx9CV>NlT80ZrW!Cj|$|5P|c0 zg^rGy#Ebj2xbZX;3X9;uINXx`J^2BvvT(hpkGZSv`WVD=5jh52bcNpzWdL(B?<#$? zr9oe5(9Hw>Kn&%qmJ1c`1}oVxMY(buzpXacE+_H<MHKt?P!$K@pz4Yo@*GPFr`rq( z2FO?hbbs6o0fPcO8)AmQNOdr?G9=ft)iC1pG|`oKq+o&y<4E*~K#Pyp)m0IyfUXF> zYL|{|Qfa#8!r5bQ7J4gtbP$Yk|KVl+Uq@pvcWeun!Ub~Zif}umk53Vp>2r`M7dUa| zCNCEim>i;xwEomXfE=SU`wveZWo}s=;E0A5IT&V|-hTWo*KqcJx_mA5ZS2QV9&%lR z*TkrUfj|$M<28hFHN1nn|CXcmd!m@Tdhr*@G6xPN#IkHD=bel?{V4sq(V7UYV@k0* zVd~J&)pez&q^D5^+Ke)4-;5+#zpAh@|73Q+)Q;y!YhEIX4xxS)JbK?(YXAFl&rc6b z`ttP)RxGYC{X=>nEW+g)+TSP=&bZXk%P$%%8OBh5ZdJPmHc&;4b%*a5SDLdniljd6 z>T5-?u8Yt>7rh^fh9tlCTbL}t-Q}mR_!i+OLft|YcFR&7b0nS24XQ6S43uRw=1`Fo zD%&fR(FYBLURXwtqQU@j<l0~%cSM7RP>+T$RfD08EQ4`X(V1=LI~VqMk7_C7jYuG@ zu_`PK^=Fs5J~CV>^55FgyU6c6x##__mqXu}t|@pqek403I+?|<ouV500&EyM{!=u< zTviG>@2l9YNi1J~v+zs_kG%ia1V`Mp4!QA<#Bw55!+vN3_~ac@`ARi+qlbmMdrrLS zz{_K+ix3iGKwqacKl5bglh-T7N-f^VxyipoBTu}YVIyl~SmKv=N&)Zhi!L+>x2_7y z0|39_S%J3db#Ux@=fbbxD>IR^ea$)UJpJ?3qUgPKN+Sx+rt!*HuE!c)Gd-F*dn!?X zVtwS(@9SA~kR^RBo>S!P_6xU-ImMJUEqqM#E|+A0!D(B!<X6@Y73qlG$<%PVyxh*$ zkd!T-1RO`PuTO;@cQ)Z1*%)Pn%F{AyP#lfU%)bI@rMRJ&b@~el-3eo-OCj5^0j*`x zD_F=-9+g+te|VG*>GqHRTosjnSde5et@<5D*BsB0^v1}-2%#An1OB;z_bFl^ufZoi z;9*ijRaF2fs^Q(We`uU*t!e{Fg_Uo>HV27YG!k9-_{r8TU0W4!d|*L0x#c$O?jv^E zoanv=`vT*$5I{z=j1etdMw2L#T-6PJOEGMw`PBn3I3~>DtKN%BdsCp8^yhm*DwYqO zd$+aG4PF8vgud<G30#MJZaiNxQm22VlBGT`Fz)93hUpCpZ^HLb0eJHxcW_;0EiP#f zdctS<(Dx4TvgmL(Rh>6RPHSA?ED;(bZMxsQWBXhDln&zG*Hyc4e6k&AafJ^I2ROk- zI25+db#d4Xmu(j=o4CQPXXF`;&V%!KRzX(C+)2&XaevmZM=Pf*!<Xz-1!lm}p`)Uv z6a4MG<t!}G#<o^Gkec8}?o0SIMwzrfjT-wwyRT?{d5V~-In)0uxpZQ~WKoYJ_nNsR zmiWL)z5~h9Z4%1gZ;D>;u~H?e`th#;!by1DUTv%_8+~~&-#UeRc|C8saH*XXNNk7I zx)|;%XV@=&d7?Z(sNqnhe!Q(4O_lZ}d1k?*qQPG)#ob)AWjyrLLM9{yOMHJvwtlco zkb&zL&+4HDBg&7c-}NP$85=7zWrCJ_oER5yd1s<^YUPUpj3O$}zrL{;Gq<6692e)k zrO~jl>wkf*eC5u^xrS9go4Za}p6%5`4_(Qi4UzGO2mEAF1r|*Y=vB7j?{u|zuy56$ zGgy^VlDr5XRJ{T(8FsI8pbZf&(dMKmMt6V#kfMRBzRlk|o*}Yx!pW&~RaWW4=ej3R ztN4TNZr~hX)BXw3HZBP5^c$8Ft*3|`4N;j@97xRx#Z84E8ta9WX{Do$HNV_>2D`K7 zQb$kl@XyoxyU@I+7)rivvcXzp#GBa$K3OuHf@NdaUltU_-O?QSDqPyCb&e}qd$v|t z`KyvC;d1^1nT3&Zgp+l_0&;F%<l5IXwf$ae8WswC;taINAsb?WlMRuwf1Kq6Qth{f zIdeP^6bn=|A91GU3_n!XKVM3gkj=8wZVxe+MU`ykhHQ}$qxrBzBS>ifJTvz^Zk?7N z4Y+=xQA_MASyrY@>94q=Y4rsRzKLQem(BM{*p2!Fr32cNt;Ar7S#WrwEsjn~bSeV9 zpxDwm_c?b+3tkgEdbq9GeioeZvNqn3I)#-ORYx&)PA&cPrXC@uca`4KK3iQK04iHq zJxJ5GpVwPi*CLrulNi9n7;#0-7=6+>t&>_J#}_Gm5Gg;8AI2-=H#%|YkEM6|j1ZO5 zE6q_3YIWM}vh}#zMhSJ3+V+B*B*Sr<N0#SbYL#s(?O2deW0oSOO4B2xMg4<^s{dw3 zh3i=rV@su3PbVp{pU@1rAmAwACulU54t-yNahu69nD$!alDJN9l}l|mIIkZ7#IkkS zCw&e#u;`BE&5pG)JTtBgph71gz;$5E+doBf@%ej{GT9TpvPxM@OP#-GMlIKN&y04j zeDE1sp~rVV*2P0kpP^S~l|y4qu?5T?-MWP^V3nU3#6m~&Qv6>2Jkxlcc|Ne}CU4I0 z<N;1ksF-Jnav5xMi7}vGh=Z58c&Uq8R<4?xRF`m{>N$FQ>lPMFG^8dQFld@ZPS`?R zu2%1}<oR)5mL&#<J>6ouT(8Fg9&8whbUa%s_w5l4?cPtBW{ephX9{=in(nGUd;;6k zT-l`R7)$%(QvEA|`zwv~6q7>F^(i?2KfKz!o;IOp*xx}^sGR6A*ED9@h0vOY*qO)^ z$L%*g1b=j&?mQ$)r1%*3L)LKXR``CW$h&JZMOiZRelZ9rB*eZ6MDwm;OWaU}W`FWD znx{`L*KDp$;7x7GFN7P@F2<q?gK_aa$r9fQR9~yEeyn-45D&>yZ$rsdrx$Ka@vp1( z#_X%iP)5J1Bln?Rj>$_^!aIH($m4Y<gAtqSmy9Vf*?1cB)Z5<5Hf!>Jd24B@)0-XN z!@8MH{K^1+CkMe-tZQnS5%UN67kkC3Qz}@|=|8fSzCEAsve{bo0&p3dN1K%X3JS~_ zJEFZ6F=LRgxeo=1Iu!;ynsIWpcz$1@Grvd6@pX)m+*Ng|NiML}umC&Z!V)RYaQXuD z^>f#3VVkCC!|<6j^Ww{hEfBbNAspruL}VA2>J<(quYbNMB{^M?>z3`fkKw~D#b7Vf z#xi7yuH<G`2eYx`K4GabM{~2nCDAJu9q<&owS5)_1pdh@{+!3p+TQi9`aWL_WM*^P zO|OXf7q1^h%PgExRkL(7sLG<Y5497*KfI+*7yscjPm{C?QbXf04j$rP5sJ9_F&Z{v zd}dYy-Xeptc(+HAIaV%m$^Ob1ES%uP?@YXtD@u`kQx&E^!d-jbr`4$_%Nd<8D2YIM z&;P2f`Q^s5Zz=D%oRHqV2ctn(L1?FHbdcf9sh5Mcxo)LxLmHoh?%_j%o4%KiHowJp z@S!3GzWqX3mqfP93(|syS=_?r>P1~_#=j}pS`1_)Nb_syfq$~V7h*9$1en<v{X*GR zBIrfBPPE1kqt0nx4oy@=LdUMJjpQ*4&Zj^G3lm>)Xz+HD7f)18N*Okny@oAIN&CMl zGnrVu8TZuBY>c?lx#PyJ;<A)%<DeG!NZ?jPjOQ9V0#L)1MQ?s6V?{*v!_5ugB!CoA ztNjnJLc3+v<F`#0?zpjMS=2+M_qxz8;+P%9Va$a;SIvHitt<)&z&T>e#U|X`nA(%! zZ66-!h;{LBT0Y|l01o3K3S5@;`Znre{VQf%M}5=Aihl98@h}p$y{q@%)KfYYT0Sy9 znGvD1r8@=JOMsEaT@mz>Q9HBF^3=-J5D(pWb&a=R%8hh;fg)zpZzqn0$s%D-1FGDH z2%DJKMTzHDPjNO|mC<xIAiliRUxVvT{&{%T5)*x&$}DHBAf<IlGWR(F*#mu*LD{SF zOs#IC!SvFeZK=I9^%$tk4Dj_}0fk#jhRjGxa75Vfq{om8YJPHF!)MUd=p{9D(Jk_U z#m>qQ1R>lpA`lsk=}-3M&TSCH%0hxpU;+Ve&sM<p1}KmKy!Djkt;)}gUm{d1PZ(cm zYCTF;!1Fa)cK`mdAb~gzaoh-eF+G%A+8*!&7}*0;#QvV~Qsv4T`kegF*T4lHX5$Wk z-*0^H;+lVK)F|nO<CtvOK&l0;Gyece*OpS1Uw+J`^xJeZV~GY$sT->h*MXLk7qRS5 z!1pPou!2JBvWBLn%bVQFjrIh^S&T!82@BVPaVtJ8ZB!Ep`E2YJQy1^w0(1s<wo~!^ zuk6M*@gRE!>HXAgu6BnW<qxy%s`g%$3Y-JY=YZj@Pst+RKS|VEdt@_1PQZ!~**CvC zSG*t-jEU7_UM&xPoF)=DB{dszSSv{3F=lV46w#SK^HBc>7(I{W`dN*2z{GoNMN!wi z7C!8es3xMW!y}u0wCR6UJ~VXo>6pIV>3(&&?tC%fd%&-t4u{`Up*Zc}`m)Ih5%>Bc zk!jBA72sZpCqfNH7pvgpOxcs2L0o$=MlfdCjNhf8!>A~mUEg2S4qkUH9BTX(Iay`X z=1zS7qjV^rJ84QY_Y#H!k`VNqus1n$h%+{#+;&AWXcz)Y9^C}6WVteY>z*X_k=(#} zYCI6M4O$c$E`?*FtSd6U(cvnXev9AXW_1srZRO<GE%pq(tj3T_(ECkPX#F@l43|`j zCBJUO6OE4mI3Gp-v3S+w?4%YiLbR-Ydl!=g8B*CT`Xg4iNK2wdo>2ZDUf73q!Py(P zYI|u$4|u`_1_c&C$M>7?zfk1uyhpuWJKqy|t#*l5fkzfVzPM0~wp2m(XL<td!ghUM zgM3$}T$@ieQZA~aK0A5;kFoM-;e~k)?-%FW+?oJGt3|#_yCq#RPPe2B@#%!f*got# zlNUS;DmEvp%zlBw-)_%v%=b+P6<eA#w|b>_gHJ4!o%cznN=v=IZMGe-<*q1)nb8^h zz($4tFyfzw+!(U3eQz-d!ZGE7UHO+&{!X4PAjH?xy_oY09a=dnrx^#4Q@eGyN$_vF z%5)dixZ-3Z76UmcUxDafRH@B47*$^;S#?@fSQo9o3tD)bnl<)ZhCeKFn-dz{sR|8G zLZ{*`x1ruF7lSrdQ4o!gvPa0Do+F#C(&ASo$I6=^KB4Hu0Eq<08OWF->RFhN5Ifts zQhU-{AN+9~A4J4=>dS?_emuQS6-~X?KU*_N^%okmhVy^#IecG0-n{<#iR4+1tWFs4 zHB~=E(%6L@VyV6ml0k7by1r#}$!3%~7&!UQp*ao|&v&m@s4q3BUJe{RHmBFFkW&4U z(}{S`3RSB@i9G%Tv>}UbH7(_kSf-?J_#E!KY>m)p_OCvkyQ3vOY7pSYQn)-tPxUOY zc$nZku2ycV?GJEftv9e_6g%<J4sELrRu$L={(VRGv{s0$A0iWX-_ZFVp3fzas=eex z>5X@;@a2J7P>fgST;Hp)_bZT#BP_JYcQU3NYJY$PORenp*FiVFkb2Y0^%yfg=<}Gx zt!3~z>^!=NZ%y=`Cv@$f*WI_#JGY6CnaYox@czA&{gft!&++xa@ZlRK)rUnC&c{kY z2bF8@Yoj?i60JX=V&kFJd@)HEGS;%re(!T>kl($X*-_>2(=}X<0}j-p=(QE<qi1dc z@3s9m!PGj~my|T&dK;Gzsk@b;)Es<9l2g~Ng-?E{-S7hkXNdDktZ)?Em)^nZTZ!-< ze|TjMq<1T`&3_Rvl#`A+sc~UjUUoIi&n|o9Pq~en68{EuKv5i?(DSLdZtwHGVs#r- zcVeHVh1m&<MZoZX0_UrG+c<Z&3A3-N4iMkHc9kd!CyJ(WE*YjGmz}1gx0O?SxfG&} ze!K?QK8^s7`x%&avY~$Ts&C!xDh^vb7iG>y_A^4wFE8Y~Ty}@+gh?lR3Blm8^*YRO z;hV1>i+;I(4s-_vLCx7-_F^X<0|EeRgt{_|<Fq)_H+Owje!Sa#SQFLHJaX|}A-ZWe zVQlQnJH861>wP-*4W^1U66@D&9E_JtQ&pznG{V&So3X+EKEuFyxc=s)D@OB6O`S=u zfXlX-vn%M1>n>RSvW+BI2Dw-rJT%~!rCG4AJon^X$nN0JeU_7E7FZDc(7=1DdAs^e z&q1E459Z6Q!rj!%=fn4@lqtDrovDRrHEoA2vCy3A$+tq!!BbAo0u3wk?nWaF@5^?- zZU~KA_5IUni**9>TvlH#_d;n7uWw_UGBv}KHD_4o;j#{-qsJ=v;}&FuOn#SDIilU` zynp7@txJaW>+oL_KLduom`hMdF_B6C3J-jt?tgEw$7d^?uA(0!%iO)W`QjisutE^R zUgjb7*Hs1^Q;B}3>%`J;P`vELY(dW9p~$as%^7ZIqEZxh2XO4G?R!{2Dx}TjM(KM~ zL$=2w?*GtJgzYh#D#>&yt@c^c-g8-+L$^QST7Wro`q|w~J)X%ImlJ$oUCK)TlAbom zsXRYAXmIm5_-YR%9jLYr(sGKu{rBB43?e(wDX8_#Nba0>H474YI4qT7ak?G*xqha@ zr>FQx1(g<7spOqyX3)FUk<3?`b94Ph$swy1>2;D93%_SR0B(;N&z%e^P4D&vin&2| z#KAC=qrT0S*}b!SW!>t?_?5vRo)pdu;T6wMSY=?b-$Fjxh9%mhI^U_pZr;fk>W7b; z`z^O$Q}8@!dQ$l8&Q%#eX6ov|eJ9vE@lg8jgQFXLzEg5DuB!XE60;9U3{t7Vwc4Y` zKgzUy@xFa^mtwS~R3|Q+)zvqa2vnyD#>yTTSe{@BP!#FIPRq;%%FOwn*zp^+a5z<F z5p>w5B5s<3oVbdkPwE6!ah;7bdi7UPLZ)Djd(C4`GCMdiu@ezj7|rfbrjAD}1)gI{ zZolOQT=GtB`+erZ;6v}`Gr@;)?J2T@+l3E{YKZWX5-jK2mzzTylI1=C%&z4`Ki*ft z1BnV-kV7&1O--rzPbLffUkt82u{NG%ypW=+hN<4Sw=2y{%u4n<ls-vR1UOZ$rkf_` z|E5!YsYw@cE#fg?O$t_M4VE3w&)oNYpkGY;R_R~9QC>fZU*>jzaXuQ_FA<{ZPuZeM z+?C4ql5h7?_Ph6$^q~7=h!Dfm<?#zkO?87Q&D#4eEUx(e8G=wwrL5o`apQuqzfT}% zeYkGVDuq|9myM`a{(k^CLC3!T00j~F`WEajjxI>IQ6e$a2s0ta`k=+K<e$1n1Dg4_ zU+}(}X(g-4quWOv%uN_Yh7w(4B2mCml>j#l_p)(ZcA4Ohg*Ns@wR<?x)=3mZ5-@=k z&cYZeVe;dSqqPyQPj=Zdg!-RkTz|nvKWLjt{IB><Z_(6)^4>uxIRJo3jDUIc{HtR~ z{{VuFe$vy(7<l65M92gg?OU%-w*LT^YWNC20eD2}FJq(Ww&E*^{HRuVf}M^xArcTV zpI$N#HDGun!kRVIx@GQ@Wg{*(y2Ok@<O92$dX7OgZlreRf7i^qcUz_RFY-T1?f(Ga zqrbEuUElDTOk1W4SrBk>{{TLugIjig@KPU-(?u))0K#I+<c-I1)A51Sb7(Q@39rm# z@P~zr3vjkp%DWeF5J#RryypwY_4PH{=)P};E@Rd_KG9oT!hxciHCX11=OC-EPsXvd zxqaC`ytJd)eaGnxfACWO0E;ka@oN{JG_ebCz(TS%mUngBS-hdJE(z#(_o`OE@KisG zTC~i*7x6Zos;poa@*=R5^U#Gv&ePNrjE>dvIQ^wRXoP|-zBbijP^EB}3fr(w3o9dY z+d0Mn=z8J!qvFrSKZ!Bg=zkDAMR}{*q@c!^A_nrAjyIuLk%N6(2cgK~p}LFhKfHE_ z@~^ocbuauBi}r<J3SC+-Z(9py$NlnDAI`V*fA}bO?F+46TWF9=rps}AB0{Ki_>^W+ z5M{)?e8hG*ugxj-CY581!xB#lc~>p>RpnPJy8{7R*mtIBo-a)gQnb~x&4t7_CGrQ$ z1cBS1P!}HJvi7xa%go4hVD)Kz$LJb=!BIXu+(W#klN)yu>4SrwN6B;4au2;aPxvZF z$J=67D}4^(RDrl@t~2eAwW-a1dVE6DPJ!_s#QGa3@~ri}MF3I;)O&`OJdBgfZo5yR zu0RC3k|M+fED#O==fBdrooOzw?-#R=W%nPYZT|oTZur$|!W)}C0c33LU$D3*Z(IX@ zGux5HXs`Sg*W+v|vVUY~WFF07Hh&ynaq0dw`N#10#`n;8I`6~UXV@T{QfVWRFKle) zhIRAHtg_t88_pUyRH8<#s5dvtSgEf!)jTudWW1Jpt34|GOv5Q_2}o3bbY)bJz#Mwk zZy8oCrzR&#FL<xG{d}|k0D{AOVQCRAbWI2Xa9CN~5Ide0@VDeEb${Tn9~&*>Nu}_{ ziRC*ghc?$6M(^(*wVk8f@$|3E{{V+R0Qd>0Sv8-Cbo~m+jlr4jH3oHdw~=^QQ<WZ5 zDbL>|9uQZIc!R*+1btTO+efmuic49(Q)EnVO%!f$%%Olgmj`JdF!UpgKec4vDw7Xm zPx(>%9WVSAgW}D*7~8{o6Eczr`!&uw{{VPh<MOL8f5B%yD@fr7g>*T1-MB|`qyGR( zzpZ{k=pGIDN2F`%ta!J>{{U}mxDxW&16?J%rU{lGE^V<s)>S*#AmpNvjE^gQFTvV} zh?i5l(CuTjEXA!Y-dOFnvXB5paCqSI+@964#!24NdJ*iY+RiBb?X~{^g3EkRTiC3x zd@-O}qv!YXt=Ez;G6{9LI0vBj>slKB0Q?p=;|75Qa^CnuLv@&Zj-uypK-tK-IRqSn zGBIC+UlV*K;e8jyvuWCPoVG~O!#TG}?j%U0njrE<j_e6U-SVl*p(H8BF=yfI79JmG zk4w>fKd2~Il_S?Q%S~3?42~KbsNC}0;1Ca9yw-0MQKdCEVtth>+m#=+7k}_ue~Y39 z8h?ZIIOQXUbh~h*^!W|K=jpn>8~FbK{{RI9_|yAG#TJk8Ust+qA_rLpk*8ZFmYiJ) zD=R>fyUxQS9(=L@Lb9r`&3x~5@hef8WQya#UkjdPa0<cj??!?+&Uq$Q1&WVAymuzN z4_v&v()>j<s~mRl-u&^~MIIrG<^h%jKXxqgs+=gu7+eb8ooP=-?hlea^bzYCzr`&J z`#$F4C~o}4ibfkzLEp5IkDnROBi_G2f3<C|ej#|8{@a+Zu3*$-$6qe`&f4ogi%NeQ z{KB@l(51FZZBEhI%P14YDft0l2r%s`>N@9eZ$n>qcm`W*X#6h>H%9(DuLWouZkZl7 zo?9_<V<R#@&a8gUrIo&5de`lq1miu1b<4LjTKrS}5666L!TWrf%dBLd;MeMV?X!8Q z=65`b{R{XN;rmaCU$b|Mei>W=G<u9Wjf9b~46M3_n>2e$kU<Q@WD$d3pEe<x6yyB* z*XUR5O@9;@+SZ+L*iZB;mj3{CC)pwY0KOQC{^ZW^k;LV7slA%F->2$-5M&kI4BniU z>Hb>&hw_V}{8_j0h0c|({6f~^y}Y>6ts3>O-8aEBP(ZK%Ta}5R!mfB56fQZh8`ZQu zQcY6kOATvK5Hzl1@~pK6k6~lCVMW?k9SZPAPAm4a;P?Cz<Mzq;({ZZ&7V)N&sAzu- zJO|?qV$vN-^X!VYYWIql3#C9~X>aAaQ*ZZ-mdhk<^P|S`x9Gf|@NNV)@-@Dl@wZ+} zbR}Y6?0r1p2MRJUI39oxYX1Nyv3Z>&{hZa>KhtRN>#O_4eNX?^`wzw+75@Ne?*x1s z*ZwYems!4+-%Fa>1-3VKer?2Z&lEeuPo&%es?U%ga5&=?_>22r{{X>j{yAuxt9&Q; z1Fv0KrNx_R+QzeUZKb{1$omhIqutrs*?B%ntdTs=6qzJ>A~r(x_1Ep;@pAtF;RozJ z;@fK*=_Y>>-f6lr#pf|AE!Es*<c$2nH;yRT(42BQ=D(Kh4$s5hDfpXVKC@+Zwllw% z4UMES-CW9I<I9daXlH-A4o=VqO7$|Ta8tc!qBWCljndZt0D;^1v-Y8}@E(sK(Zf8~ zFC^w!9J9|ev1ufEAAFL?%u7itmUnZOVo5dRpA7#1Y2T0jF!;scooC_oui7<>T~^ub zAW}@17a`OnG4u?~4%3l^4Y|swBz?4>@JkPjf3*k3y(DNa7lm|fZg}l%ZMAr0ONi8| zV1m_ME@Y9gPCTg3Kzba1K|ix+>_y-Y+55uQ(|iH&qFfuBba&N5K|ZH(8=z%*A9-|K zF+NNxsDzLfyYX3;wt_jKLd)Ji7`_C4!9G3xk-Sx)YQ8<cusY9)p5oE0Y~EX=Wev5v z$Yhr52$F5{6+F0NI4AvM5njpho*Tc168L+?KeAL;k$BF_No^BU)=KH~Pc^2n$!k19 z*5F-4k?>gNJ<+U(4d!Hzt$%9y^^Gs$$AWa7M#ka=8V8B4r1RmDBCZ=whBYEZTy6~b z&j$w`4SdVtX%Tg+n@F$~&Yq~ljBK1a{P_CUhh84hd)pp<BD<$iIG-|U{{RMlJKvVD zlJfq-(oDf|95)l&#UgZA=T(*jnlM+G<lcn!1mishk^34Y&Z2dlV&)aPbqOT7Rh9OP zC@ma&*bczU#eKznAeqIwfCkWW!6&%>U8)(cR7P(BJ7dF@>B92E@gK^#<3b7DBZ=m9 zrtY1Om_9Z97t_8D{06twbd<Kex;D{Hi*pmYm%g}|uqE8H4=fCE(E4=rFWL6a4O`&1 zfi?M-C~mDc-5BlBVvKo$SqICEfCLx-ob(my{{XjEn6}@utd|LyCa|;6EwVZ(SfYIU zZW0m4s1@bj6my{XC&TudWLQ`<WR3s{+Rt!~pyYKb&(E)}4RGcXe7YWv9;}@;C)J;$ zpYT>~XI0Vv0B4Vez8C(`xq+@U%?LXoQRIm(VpQ4(C4**BxD$jpJP>>n;_rhz6Z<EA z%AO_o-|*JOEPPvkcm0Q<U8d%^Tm4c`C9mC^JLIvmmP?{oVWyQ7ki?qyKlm(;ll`;t zm*IcHYe>Y>L2aW(kRTpxlJ4^3j2z&3hF>i}9G7F-zDNH6g1UTMwzl|rci}w_Upq_q zWY(5y@!%!apl{=wQ=dHK2|$i8c^*avas_3P(u~|=Ew6S?VO_<>D|5r+wby0%CE%?; z!~$f7!%5j_Cu1YD4>QQp?q*`fX$vu9^EXq?dDfTU-78nWmsQr8VX?DAad#^pl_7|3 zZQZaG9R5A)-aJjHCa0zNXTUMX<=pst!oDB3yI<n-XSDN(;B_qj0H4;my=zJHuHpD) zYy%~@i%`~|Bn|9CT3L=c-H$p^o)IGq2$s7l)sH*m+3aOrSC!|`^XqLk_g=f7#d^FS zXPWy03w(2JXBj_dh~y8S1j#R?j><9sHPI)A;$WCXC4tBA@#qKB{{Yusg8DNwfit<J z>HsAEb<^DVX|k^vBWMF2pGwAaw&xR`w>)8dH1eFPeEqTxYwf?;W5UyEelN7wORzS+ z74b#LP^<EVUnHq)Zaa<}oQ1#wym~(m85BHg!*PSgJ<WY@`#V^hXuN56BNDoQgSA9K zo)^zC=N_42N%!kqc&YP2qq7G;c>KWe4}>K6PveHwHtz7%`L~XBjaZF7=zu)YjN;aB zlrR_&$@3hmlAod4-h~O0*3qL@^R7@1hX-;K`Hm}))pRH?^}%m(3eOz=R5HfO8aIu? ztE&USQVs|;+iKQL@Y}~)4~2C`d9+PZ_$HTgBW^Iuy+6>VC%73fG5hP4KQiR~R$pEH zPO6uY<Kkh@h=h*c_CdDPZhjA4q_<OuqL0KOBUuUnWYy*=f;wemA4<3TB=|*qFKh8m z(g5C9{3H@2WwW~i)d1xE>@yLbdSbh;*;>!+-v_6+5ry4tB!CWiy1u$){79#K7S-m1 z!~Q(HlMKtPUPl@2h?!6^_5kG9<yGCITi5kJM1y?MitJ+k)BY)gPx#&89V*NNb$Zae zW3n%tfVuoo;CCa?SAzcAI<B$ckA^xQ$93VnIj9S(c%Oxqf3jS{hEC*u@Gu^rSE2at zLT?%V)}9g9bqR;qtX2sLVgZ@N)3Ew3K*f2t{1xw0wbTCqWSK2XDwgpDg|^iolBK%= z*Z@solcg*~BKot@#wMW@yMCwhUvGJEiWchO?qpCy%^}?Kx#iv1^=E9e9_)Q;RFMh@ zw{rY_asEAPnu2L0l!ARv0=I3Oee6m;=*h-?xaPlLO4}bjC(P{6dH6A;T8VX?W>o@3 zwuTfwo@23YzM%z4uUUk$c*ZgJao3D~6>H(V$p?q8%)c`{(DnZSWg8!sY5Mc;wvZ4{ z$bTLy=rErOJiJ^|n@H$BDO&Ei)DVIsxbVF0bDWimXh_G?J*(hfiTahsh2yK&vVuAM z`x{w`$O{mBgkFG*=N$VCSLk=e8*likZDYpoKf$`z2T_G<EPp?0{Mz{AB#?OS*`vT0 z8ZC*-WDFSG_544jXGJe*%6T*|&3_~0mSMZh04X>jMRi^wCg;Q2bm|Er+9b&Jjpaf= zTIRg4C))Tq+IaUF$F+SO;=K<~vG{M`U1rK9j!T<8O($SK);+$dBB4H|W06PD0bY_( z=H-1)Mx%C8N09tBdx(5rV<eVB{Ua_-yr|BO1W(igr-9E=(><%~?}a*in#YG5Ow(-( zUq_aWWq8%5=)r*m{MgPw!RT>bY4C!^U3cP-hxC2N{U-6D+@yy2t>#n6<Q_VIjd};d z{T6AwH*QjMxozWd44^tYGO6Wp&IcIoGAkTqB?^4EJZx<5HB!f-TwGs`(5Bd5?wo++ zU|@n6<MHiIZ6V=bw$FCp%9tS?I2r27FnaPir|NzmydmV&ZX$pXvMQ~<#7;0mg8ebu zpXpSsv@Z>yNhiH$d~RVGBsO~$RU{Gh>BV@>>8Z(5cUm2dw7wRx@r9M`&YHFskupe@ z@=RL?%E~*-B9am2D>Q>?0U41&7_9w4v_-VJw36*^red*xh{}wKy_!U3360MDCNs5i za4-&)qIfev)?vD{vyV}=iGO$}i|pQDDYftzz8^e^0M7560D59-`o*-?%^sO=<Pfc& zHw-X8iz*kKADDWKjt?C1gj}wIjJLV)Z;X5=s_L4x#Clu}BEd0JjyZKx$4<EX^Iu8) zKlnM~yUz_-%9hKWgZ*O=az{N0<NEZjb|tyD)in#-m$zo~p#>3$Y&x-45#@;sw1#3x z1b_!M_b0)tsINQ^ZzC{R<8Lewa9e5T0QJZD#e4YdY@-B{JL_SSrlT#70)N@l#W-7u zCAG3xvPdW#w@`DEI`P#0b#F}g8zSArFGB5*5Z+PyjkN8;fN(N0aB>D~?5QsFX19`5 zibV^YU<02_`uo&2*Gn{E-2#Ki+y+j2{*~l^XjOV#;&=*a-5dvn`~jkPXG4=ugaahl zGEB+=W6*kGM{msYTtDoqs4s;-YA=Sm%-fl5{8gsfI)Dck(|=|*LFxdyVtt3_?H95U za1;0fs~*GD*UJ9@+RxxGi5C7Tn21+E*R1t7C!)t;e-+s$8U6^fT45?me97*5*lKZ$ zRzB(YW2BD__&&qJ7ZQ1r=!n`=x#Kcv(lwjs-*hKFhP^^K0UT8?6=+g;bK<X$d^>WO z`zMRF_CPuWxzwk-h=1R?l-7l;i-FG-{-yAaBiiM7da3USzx<US=BFHC)g0p&MRch@ z{V9@|0qI_o@Q%?Y_=%(1zbSPrmaIC0E+Cd3eX`=XPf|Iqlfim~dS8pQZAF`Cx72Lp zVn4dGrhiP=vzgNN*lM(Ynk{|lqrl56x;UCum)Vkkb4>gz(0nfXO^kXy%abLDHj)rF zlJGH!xaS<H>s?$nqSql$EZIMR1Nql)@heJ?!(SLYYvJIbO|OY{g;gB_8~NQw;H(GX zT-WZ|enH4Tt$&x5B`CWy{Ya8c-E}M@$f@%Z2<z|s>N%wuR*-JmbF^{D@0|3hBSKe! zgYEu*r9I=ykU+@?f%?`;N<9b4+1Xo7Y?i3;qhY|t>33xR0N*36Z9%E%@QBH<RwLGV z55IA@k4#r52#QN}jDSEuKQF_I)-P^j3hKjP$UFh>lhot2U{Ty#YQ7u2ji9)<yovVY zeV^>@k~<GEQ2zk+>5<;}PAA;)Y9k+cOm^FkrygcGKDe$%M`_r}I~I0r?8Nd(&QGp; z*4~wW9CC;+A`?aq<CRj`>(qh>JqSHPH2E*7oTq1F(xTNq8|pUir|J{kLmQ4HlEOJ0 z5<3{=Zim<d*yg9wbbp4{)*{7xK@`k$v8B>(R$fWqoVXbE$jy0~wt`7sXwb&4#g$L+ zf^q=%9ji{l(lLP>90QJhd-ScT;rW%W(lMNs&s5O#AA`C(TuF1P-D)n%petB9gd-%8 zxQ?fT?N&7_e}nffvMkrg6cMu8(P9MSzV{3Ky*=y9WrY>@7CaiOGblSj{HvxodurP= z=JGu*(^U9dr(1b3=$997lHP61sF^?RsbB}-O=wB+UK<NTW#Nr3(@x1JE&IYxAHu4M z+dnq!`&W)_4f2zdo;^vcQQ7&KJdycUikd*BW9?4`{@Gf7o#DHG4fyNf$A|n?b!<-C z=>W8vMb1<_QQJt2<EHg1p6Uq6(7OGn{s`(0X4U=ycwR<f^E1i|AI`|<^RJhz^vLbB z`*pByEtm(C`nUIa><6b`tvw>tBfEJ7fNkIwRcz#S<Q{&4xg&&+HR8V){$$nFXnG&U zPaga&_>bXBYYzi_Hq$&0aSY8g*E(rZ^Cy(a<TfCSfJkt1c~Ql1N#MO2+R_WJ4oPt= zQjAE~UQ=RDqiKmy0k^0*JF|m=0N#%NW2b$N>O%31ou?g0#z()cMc@w;NozE=agZaH z77x1)tT+q^KBKRG{cF^v2MAc=oEy;^dM=%(*he(i4Y(vyG@Rq*3Vkz*%J|c-#Sg}B z6-8<lRka^EagmXCZw=ROKjpXiHK5uVc^*3%%u68(W0Vr5PdVN)an3MD<6dR)a^zb4 zMh!a#xSq#Ld2yaxTE}kQ`TfY``U=_@j!U*4%5FTU>-8-QTJdI?WvyxUR(fm^+aldu z1{Uy_2jzDR&6!wr^4BbRBCz~FrT9ll@o=@(B|44Q*~7&mAy`8rx|rmOZe2-b!vGj{ z+C^<$`0r5g?Yy23@jjMb&80WGbc*6PQM4xY+!#o>z&@VYuMF`NaLcLb`mUB8H@wOe z;kNLyE)QPDxMz=)(~Zwsju|b_tu+seUk~K9j>}N^bE0VyCO}OKON&j4VsVKiTXsHl zyaDECIO7AF@Shp$QLfvFwCU_^-NUL$8zL@7G6@*(QEC1^@fMXCX(LOJqX4;d<0Ot# zuU>elwC^8W*|<rp*U5d#Q+qQV-AUb$-7|yzO?h=EChpHhl2O?8?*YlHTxeGR0NL`u zV7M(JMR9UsW!v&d5miaX@t(Z&1Dw}yVWR5gllxj!xp><yib+-(J4*&pkLQtIXW+d@ zM7Z-bjXp_YjsWf&7dEUzuq-fg03-u|NaL}t<}VPzqv|k3w?xE^`@}N|vW%o{GB#U= z!;eBe&3KrW+?|f-%c<#!;c+AnYj|y~;$YcZc<{s?xnqp?KIXo9@Js2heKwb>TShNY zBYaAax;I7HDsWVF+Ii{@MS8pZNQzcAuv<yH0KBg8?F-)stX+;f1^jF0KNslQrn}?2 zxwM%K_Zp$!<*C@f?ObFM01boJ(*)*>EjK3O$5wo)G<6;>D;~Bl^u<O{h{UE_Yes%x zP?k7VAoE!sE7o9&C^Q=;iVI6zut<i(GZD<Q0IFT_{7sy80=T=aFIezvq?S`h``F}$ zRYq3|&bwV$1I|Z7*!MWC9e3iKdZvJMS?q&cmW(yV6fVTZ+yRy(05g+{?sT5Wg*&UV z24rOlc_)x~`qis_L7`#fKGyk{Z*no*WB&lv+POG&Rf<0^oM-uG{NpsmzGsnI0NC6P zO8)?yQ&gl5Ry`u$RJ^>A9^vxw4W(5=fH~&_gU3@*-D<l=Vvv^{f_cFQ`Q%qK6j4at zbF1zIj+|qsPw}fODx>TuNFe8rT9-~m9nQ1jn{9JdzLF@J5=ojw^PH(fkSm|v-~-7d z5_{J@e{l@fa={z1c@g6qa0m{iax<QJ`d3CgS}!$AKL=`Q9G04mm4@ubhT=J0KF{Ys z@5m#{9DUa3j%r;-TWw9m7dMDx(t^eeia~f3lv1snZA^QerEm@jtSZl!MmW1OPvbdj z?~Ho4h}PgF9wxNXb-3NLm5%30w8#Jh)>x!C?!@}$xJcnb!KRs22;G(B@J3GFyc+2~ zBx%TF@F$3^2wQuf25H)ICzxbA^n1(eNe1EpatD?P$E9)eD1z60+LYh4p&d!;I&=s1 zG)_wB9l9BQ8y5*}HIf4&!z|mk9#EvLqaMc~06DIf8(k12^Iq?YWg;l!XDa2+a!UDZ zHph%GE~k-<^Im<WNp&^OrkfXHT$TfFNHU^GPfu1j$?4EkH}OvsZ(z)L$ieIAMPJq2 zo$e#i?{yy!2yOJePRi~ETzS*QGPswxaRi8<U>pD?!Rkotx1KHV<&;*o-W<HVp4Q3b zk~puSg<L$P3mwpw1U}GCNehlSCcMMXxLu-Hi-#RPZ_~X|g6e24(rK-lNJj6Jf;xf+ zLD<w!2Nk)UNwkk!)isNqUNyDUE@QNc7ug!j11wR=^S758D@b;-jNsq{_i>u!Z0zN@ zjy-*&nIR4(ZzL*hXvimP%F3+S9TYYVN22(mQ+9&?08Te3EhM!<?;&{FTmv+GfFwMO z9D$!<Q`-2Lcz;ih*26}&npP~|YPqvVoS_2?y_L4$gPo**TFp~yL}IF6;xxQ>;!R89 z2Cn`p)MFOL=xt&$QJydrm}e)hGNXWc3|Bv<+g|9m>~x(%A{iPJHM6pV<_s`WS3UNV z!Ov`ST<`X++>*7*f~<^LQ}{vP6O4O)KJ|X;^HH~UxxSg^lZIz1smKG6r_-lT&b3sz zVxlQcJy_e_PgaqNyz(qy>;rJ>J09fvoRWR(kMSMV^Xv9kSF=b^D2?|?xP0iq93FmR zFiv>D6{o1`Uun9Q?^2me&gMrfLgcqO;~4xaj@R|A6k9EXmryOk&l19hRP!I_0PS3o ze(~UQ*NW=HQ+LrE?X#qU;l9hcTlZnHv|~BOM;XsS>Ds>3@D8(U2ZBBt>RNJ2f;c=w zr`!qKb3E4ijCVk<KPqj!V-lWK4n3>lOB-2jWd#^WNCSbK=dVohj->r->purcV15tj zQP{MSOJm~m9PJ?56kq8Zh(J|N()LO+OJwAOj0*i9!t7VF&v5PaZGG`;^*%eqOh2{B zaS>e={^ptYJ&n>ThE@enPr|;|{gf^~)#D4z8X{C`T1Dhp9YZSReR%{NSLf!Da$ek= z<g4-zJ%6Qr&-)->BwrjnKWKPMsan*I-@J_T{{W8kuk<euH}yHD`ZxD#f1S9va%L3d zp6xHcL-ixXU+`0pj=m4^)}i4G?}6H0zoqFjBo<nwuZV8#r@4Sb8;M#6f@F=iF$F`B zkXU0luK=6=3)!MuO4iq(v&OIH#!A1F;;TlFaNz7_fk|BSB|#&wucf2-Gw}Oa@YbW_ zeSXixn%<{trW=LQbg3+@Mf~>B6c+aPH$@d5M~EirBt;BzSPJ|gi~b8G@Rrgwwby@T ztx_xKfJ=mn##c=m%Dgy6@=jDXKt08Ok=$99(8K1KiVfLDa!YQKeb4ouhqEVFFQHZM zC`JA0AOF|<zyAP&p!{95{{V!`;r{@_D+y7w`*>f)7ol)`$GHz_VbJp*mG+i7AA4yB zf)C>7#b1irpTUn9*lJ%3bvdoIX<?bJUN*q;XJA5S?+xT`z#}_(<Ae1l?c?$H;kU;B z0NR24ZSapr)bu?P(?HR*t9xBpB#!A#lyeCk;*{=Hk)+&!oa5%`MSfKLLe(VId})0= z&e8>uV^aD1s-pwg0!@0@Dl&E5`WEVP;i8(<_AM9o$o;0gJ>q*`6!>$;8lIPbWis4b z+*rC>%M_`|bY)V(f$yGc3rGE}ziO=#?I7^)#IF|Gpu$HKI@S8G-T7B<pZ7=TI&)qT z=7or^)yYBzM=E<9=dT<Z>O2<=(fEqq?pPG9+7*S|4XRZ$y-!T3TpvJAde^J<Sk87x z^WAAiEuYZm!@t^BPx$+#Y1Td&)ci@SY5oQ9Z1ywX_@?aM>Q`4&-3GdEHKv|KwsuU% z129DX6&S7m01o_C_+M?}&1TwNe$>6Iz|0Z+#zpz|{Hx9fARhk!TKHS`Oo9AA@Ymu^ z#lFEB=r+ufLUM=glU+%)9mhOi9&w(S0=(0}Wk2B}@eY1f3vUvE#}WC!ab7IxMe`-H zb~r1+PIhPN`}}_RL2VzKF0u&j-b}xqLjM3Nttagj@NVQ!r^l~EWtJCs5XCaH1M-jt z%#a;`&rWe)nyuuB%&3_NqnzV8;C(4HEfV8j@xO+l(+1nijeAJ4P=4!uvi2BuvBAJ4 zz$5}jO9gCT#Aroo#SAoCvHLmue|XQp`p3hs5qKj@)!{mt_=Y<{Zkw{_PqI~(FiMUP z43pC<j=WZn!@mJ)ek#+v9pP(CCS}vaY;ZS3_YlV_@;GcU3!iM)<rnSC<H;`kZ{gyf zy3{4{j=ytvWWj`yrOofyqf?MKBcr*FP6Vn8FC9N}{t{eh{utJL7ve7weW+>rMdhX4 z!Los_u39**BbcH>hjWt4w+I>WovO`%es?rZF;_dG6&po9r@8+C!AO29cvHZiwKs~s zF~m|<_-?u`k!d9EtqS;yRaLjsfk$wI>@Z6$?BrpB08asH@RRnw@eYOJ&)M(9o)ywH zYb|Q`Q)@_JSZ*VlN0w{oqDc<cIQie^C!YOl)<58}zqIdzem(qb)wGX=i9NrEEUu;2 z?}X|jnr(LS-a9ulM}W%qRxrg11IY8_R{_-H^B4AR)9rO1h!$FUrsH?3_<61f+6j&= zYSu?!M?WlT=bpog(<Q?=;oV2S`5d{N`LPgPt@)p?w>J~`AL6IRAB=t=hHJ|!eSXVD z(QJq+w>LU{g|(Cr!ginCw8X2p$|lxk!B@vu;NJ&o8V-y`zjC*_we*d7sNAmLCcB%N zSyhV_j1jgZ&Js0L906Y(_?!0G_*vo)iI3v{02OIEgIHPL>KB?OkzgXqUFsJOX1ivZ zWLFItCKlkvCXsMU5Hht-_$hyZE$-gOL+~!CJgUSWw%^*qxgNexo<}`#oK`e&wVYIK z&{(I>IWzQb%SE?WSpXS0&N}hwU4^xj7%WFl0sjC#_4y~M{{X>BynL3hOQZN7N3$0( zmsgth>hEq2ItZW#^8&iB2Y%7t@K7I$nk3ry!;J$>coF{qbS(6RV<tZEA8Nj4J4Zva z4bWuqTF(PgD)ZCkWlIS;J404}pg~~=o8<)m0CatOSJGbwbi25G74a_W7@u(P=zw8+ z&2X#zEBV#<oAF=%3L~KZ0B366F1_&whb^z<SXygcHaM+gl2<B`wbWLUz>;7bMkn4d zFsE=e)_gtqx$$D_;3w@G{w(okwSRGAW#OGEeB0^6MJ?v7G)`4iqejf3GB&9yMtH?@ z*1~(KsV!~!o{k?cs-)9Re2?2Jtu5_5S)0PJD7cApDOkY9(0O7y8l(F~d`$RJWgH$E z*L+W-$1U#tkUj0Uobp8~Iy6AOe8}BHh8(Up0tm0=uH#Cd#NQqu{?-2gO^)YW^5ZuQ zW+9<Fn*vSP`C`Gr^{;dB&4ef7j)!xmM-nBKtkTF)5l$Irbr>D8ovZF?WRY2P>N#~s z%g(b{$Wu$X{Wkv3_BZ-R?C);!TrQ(=3V3BwTX!KRmJ2n!Vyt-!BbNH-J?gK(PabJH zr^5Y4;_pg{Enx8-@<_@@`by7yt(h~~Lv15(J9*A)xcF0Mx=+F=beI$<7rJ5&yc>Nc z5J(=uv5&^SS^b|i>lyw9Ug;Jme68ZE>uZ9%?Pt_P%2kF#28ELZcgX4uejST#!fkbz z`Jbj?*YA?@I?sxKwMB=Ae``Gxz;-?ux0RCKH#0P$cH%3kM+*_-<^J`2vHt)CXZY!< zc;nzsh2dMBF5ceXQrB%RJm}?PBK@8TrN%t5!!%n@BLMo>BjZhG%fuhIjl9sGHEm#y z(oaD!vYIyU*`{7A%Rk_yS44a@@KV1dYm-8A#tK<nIR0!uO4Em8-Y%M#^||ZjFj1zv z*!-8a%gpDmJu*5T^{rwX`$`P_zc);D>x|YdlaY0X<12tq>swZjjb0PRLk#xq*#19_ ze!S0;J^SJD-KX6~aCS6qdEn$Q&1m?7;s&*uRB))-Zv72#9vRkQ({85o%K<E4bjbNz zKd3q4wzX^Jxl(Qa0Er5Z$m5Sn_V8D-Jp5Akn>~}_iQn-HNw$n-f8iX~?T@zTY~%`0 z)DkQ6Bjd;?#2P&E43^OBuumMRoOADAr2Z<n8jr+F2~~E6ZBp2tGI!a62jC;)>0h0n z9Be%6&kju~`CmnY2alPflHhan{{RXwa{cnZ^||5FmcQ3?<jaL&DwF6r$UTL7)}g6S zto$bMjjXv??XNYPWns<>%V}|rJN)LnUstqvWPw}&3}9q)oORE=dhVSA{{X_6wV6|k ze-K<KE6+0N@iqt7%Fp3mtfLn=x7_t+?+0VrJ_1{=kMU!{n)jHjTU^snbp=vusO{VF z+aq((``6G~ZNGs$9inO;AMu29eY(}mc25vpp<|GtQy%5ryKXXm;Q5pjkzXNvHPo)4 z@g|LXC&*ycH0Ky@p)VnP^T5Cy_8n{PA0GSx(ls9!Ynp}ah3xk+YBz#MhVn*LDRU-3 z3g$Kd^ugPXoMOIzKgGCCD(6mDfTdb5+N;>{J!9f;!_5vAy}a=1N~0T#Bn-pUjDmAq zoPV_E!w7+b*TRNA{{Seq9sNaje-nNW=sG8cEzFV`lHr{Jke%ZS8w8Gruf2SPJ{|ab zPVlwe-Qn|ZL{dnAF#<dis5r*rc+P!zs>)po$#c8wVzIe3C`<QiOMhKYqo@6;d<O9{ zf5J5+fbyZ9-vExC0j071r~EB2^IO9JlsIsH&Q+DT!vdosz8hNzfNnBJJ#k$E$zk?u zXl!jfiDO-|$>uv5ShjLO;XvpB{7E(Ubog%#{J)DnZnA=lasIy(=sk1Cx(|%?`L&M^ z*e;I*R`J5{DN-5Lv%lmDFhR#m``6VU2L3DAX#NvACH0xS+cOe(g~m^*1ob_u;13CH zYrDHEhGyRuLm&1*#(jDYde_sQ1QypYI?EQ~oGSn_ILA(y_pU5%RZUOWwV<n4YL_}b zv()}C_<K)|IPG+!36m!R<T+!;e}~f;#}zJz@oPwu>RDFUf~rQz7!|{eXFEqA^IizH zP&9y;l$>=cGmlK-yKN%g*K40CK^Q-DaqEsN&Bo<4X;W=2OsHa%<zv@h#J1Y1BgA$C zkXdogN7L56O8DP<3TnP7vw$--#k}PPJI!m;-;-ZgcwWvUA~1|(92|^&I{p>npBFT{ zLGcp|fl_OGR$wv6!9)K5px29mQ0Hm&JzL5y@jpj?BWp72pB#K`uZ`YTuXUyBap!<i z`$5wt+`h%j^V1;rtk^Ck0CVqLZjY%Y{+-}Um2WWK{4?-<#EsROSfRYJea9d4=%D7i zD|E=fuk^RVtW&MSxJf_cOYYP3KhJ*|aIPFni;M1`-xU7<Q(bQ4WWlPlPkU@6yo-?% z7gB$`oR8&JQAq$dO1b1Dv72@oRv7#UuhMC?eNp*EUTu%gpW4x2(f<HzPl(ov*p2m( zaD<#-U0K^){-#1rc{CRhI&4=`-FQFe>t5aaYH3h6?F%-sGG+CT4`@1(ZiU`UQ*PZl zpY&{ZCcbvI(Uw1+DP0`kec(spG5J^djl>ugOC4I1`!bUIn@9SAk>mZo28D0tgkRqj z&bBzmNXX;3>6}%URshI=ouIcI9y)M%tQc)I2-D@c$j?GC$@+f3(z+`hGg_UN5h@m7 zLV~26o}Rp)Ok%ueNwd~fdmjG);r{@HdOo$GuZZn@VQRK7e`lt7vS}L8D|>z$?AGt( z+02Uam0-AbMk4{vMtWUK;J1aeJ1e{GZ^u?PvD#|$XcIH&`ud3VOL&a(*}in{B}m5d zr=pIgzC^t6Hm#~ds0r_85$X*HnFD~092|&9Bbdn~k=&DA){EiW{WikqQn|jG@@u)x z%<C^Zc-olf?xNriOq1NztSloN^K1Qi8$3jN9=yH`_<FH{ACGj>ae{xc_0>FkHl7L1 zSYHSDJya}SG}7hcf%Xkte!pP<0QFZ3rdiwF?vu^gx3S0L-mVQfhbloU?@d!n`u_lc zWa`EAI>|ga;mcV#@jjgDG52kCFn<i${{Tu8N6|Lyi^SFlI}-+@`J7s2xpSmRyvp6M zeR_J-@M!Yf$>s71IP6KsHC(HqlWU?n$ow~;OND<HY3cR0)XqN<XM^|}a(GL^Eht$$ zZKn@mVXQZ=rHAWSmcAa5oQ4H}?0tK4T?Ma&;*TF{LEPne1L@wjrAAHYOO>^;wP*0> z!PiVSc<)Lbat(&HkUR9S#dkVy!tVjXpXq-Pw54Kr15MW(uhUQC>s&h7L2Jq?{c%vv z>keEVM?dHP0Iywd3m2<k@ex|`p30sO_;VC0CisV?5CG@<FI@v8r~JeJ0R43Wcw6C( z_Mva3S$ss(-s1LX;DHlG@e3A`XIP^d{>}rJU_CR`*MU!Pi`;MzYT^7%3|gYLn{wx4 z;79{~@CZ8yIr&dU801yLgd+9*Kgfkwx<1p?{s-D=S623I;^-xo>rvEn$RlkNUX06m zq^Xkf01bf)BnX9=6M_fIO?;i<?Nd(|_YrAVLh9Z@F@j+m#wLvY)(apGq1Ox*fMJ{v z2qL_PS~nJ2tXi~pcP%>JKA>c2n<nB&{F3DLC1d$i^#B2$IFm}%UdK{`eiS39!Rfak z5rNnaYbvfOSv#617qYSG4Xa&|<)rc=XN6Z`{Y82Aj_>Xz@f;0tD?5FH1<MnXBa%=u z#N^-}In8y~w#{vQC95$igpN;ObDyR$UR&eo(%)Ru?y@k}&V+QpSwZKo_qa93PO9dy z(Ksa=Bj085rP$Ez<JDppwl|2f`4SKcN~3P*+o~SFbb;y(X6ZVXgK2!4jJ6tXsT@R= zwbyK#`q(x&a}-lsw)F&sb(L|GoPtGiz7x5!)pQ^1d4J>L7HJ{D<&@_jd;0^^nnhGR z<Z;`N^P2Lf?#n~A3q#j#ym6pix&F%Vm&0gR01-Zie5WU<EHzLF&m)1wHhbIK1Ln=( z4~LSeBnd6Fd#2;BQLCH-)MpjsMk1pt$LUa{CM0nlRY}PJkPba?d8kusOPa<@vG!J- zZSamuf3)hp4e*0Tc9nCcU12gXPT_v}0GxDOV<(F16T`m-EEqN4gM2M!$Or<`!sa4y zNZdcuo2l*vd_!%lYZftV)9zgtcI~9@O#0yG^XpyCpW^|28C_~wVRX*Pm!3x}oaFL* z^NuUco*sAH=#5D1kE<><AB37?oh~g0N)i&v>f-G-oB~4=b`%x|fO#XPYsG#i_@2Pr z!48e#Uko+6#;I&?tZ%M^62r_ylwTsB?`<EgQPR9i;eAU}vD5CSSnUS)x!pIGWR);e z2mP*3%s?GG*RXhJ#F}4<8rH;18cAshU){;Moz@_V>M}yN2RP%Nm^G4q#$47mR(f3d z=06$h_PRv3-|&KXO5zI{79n+QrQi85`HEc;ifTk|Dj499cJqJ%tPM-X{u;W}oBJog zeh`8;MPx~|+sRk~pW_;eZUl7sMmZeU?0@W~`yuOpwEqCY{{WAF4Xmu%<502Ed@-%) zM4u`-wOcEj`NSzAVU_M-FKsIWg07<+5nq)4EAXDX2iWynI|=nm0lB=JgnzW!5`JWI zF)I2Tf<YTxX1FrmEW+Zkc#IV{@6mBmU*d|Ae~VtJixWywjoIgR{y5Vll0W#PJQ_s5 zcm5@JgDekk_?h+h`ckjNSs+d4!QKgQPT3FkJ@;OqXZu?Nk)BDbTEB<1SJMs7jOA|4 z)J~dogKW{p<cCmPrtm&erx_g>cdK3u_)+738hDQ9z#bg2mQ6<LSqNDJ2$DMsdz<N{ zcU54hu|W825Kb3AFt4DNE)k2Inn@h6Qs|2Z;!N><-vjsol&*049r64*);jj-QA6=Y zNm1^k_<Qi=#~1;e_<He=&%*WAJM^zIH@|JtY;Pb(MV0{SWJ0Bbvo|VmK^egZq2m?Q zYAI=_EIt>~<QG@W-euB6rO0&vDk)s<Rmmf6dCqagI*s1Ol<GF@dY^>+dEnVRLush^ zkHY#UlF%!Nj)!F}jgq?MgFU-TcFiefCFJumc;RqKq47t<15DK8)in78*0UgNkl~fN zz#G&t3IWOK*l}F$w{3r>cxy_xy0MzkkuHgLQl?2KaCVKuB!yglHTEdhG(BF@-%PZ+ zv>@5Rb8!sO$m;<DMSRJSuPc%OR{Ohp^NRASO{peyMmIi4*5=f1eiVE+zq*t^+3x&Z zrnu#Q*XlNR*5iS<h^AxCI-F;dTy3@eu#QM#2Ow=eVc_GiKD_bY+Pw$GF<NUM32oui zAbV&mz9AnhBBVpeywF(us2zb__P8LBcLI6}@%>`mG|f`t!pd~Gg-_oMB*Eh&a)1v{ z$FF+yDWxr0g-LSkbm`)F^l2uukHWqZ)`YGIlf=3*>enfS+C*~;m{K^-0SE!-ob!R2 z{ymO%+b@8=8%Klx04)3>nfB-HhxM*rS)ye|h_>=Ra85@A;~(Qu=WtYzu_NWiK<}PC z{<YB;%dv#3Gpd8)6qZD{{44(ehOz>rVZ0%3=bug2U48Ta0M~q95h3#P{{RRt!;Rba z>>dxa-M1OsS)_IL>zwn9S1PJqNKjiG4y5~Z>rweqZYWiXqVbXUK<$%RwHY^bzT*X6 zPjk7l@y+eU%g1Hl4~LR$LgyY3)0ikx^Dzf@037EPJ+H*6VvXki0E9!~^}9p_h=;+N zS$QzqSVqPcRVqGzpBY{hlTY}428A}Y{h2nE{k5p-LQ89FDdZ5LEfHY;V@VPtuF}fR z=NxTP_^xe}U-7;6blWwR?JWRU;Y5l2n0Ve$kX_GLBbFyPsi!!pS}Mi4O2=5AA3RxP zkv^5-?+IE;H*fO%FQRRHpOl3*e=Zk;lG!|hI#u0A_KEnHG-~2M4<ckHBJj?Fj5_ni zpV<4F^1l*kw^~ibwWa07yxZ-fxCY&~g%d9Dj>S}&7o({MY2zewT=`JA-q{V*bQnJW z0O4A+o~)NvOGbNz-^cHbx_yPM{mbe0_WF!ob)>_?o*z|_1_3d%>1+<tMn`W-<#nIh z2jf<~q22gj#2V}`V|gEuaTHoUg=k#~2WXntO@egjIgV6sd{-~xe;WA9#ri#tiQ+v< zORHTfKPt*M5ru_ttAJ4yu_~Ztix4^<x#JmC21p+-BO@IJN`l?3M(aJ3(CZk%Yi5ko zgFAf8a6-p|K}Hz)nTH^P6m;gjtKfdH*FFRIffeI!j>hZ48iZ?%0MhCgwi2-9o>FuN zwg*99J3}~?N}<C5Sd8}WbJO`(uzVNs2Fq_8_;D8&^LR$@Q3Z!0T_;h~u460C2mr`V z;7_JG&(iR%UuBtL>b{eQ{*;d&J)`Zgb*Qy_#!K)%{{Zl{=#ttM<cR_tj=eaqu779W z5&r<fG4Wr+dW5bcSamyBZaaC3r2Z;MuZaE~UM0?#Xh1uaMhkJBtVdp$udIF^_;191 zBJqBe;r{>$+0Cfx+JuW8ovpHOnt49<5qslq<~a(g3o%s$kMxfNI%=C$9hIH$+Q<2? zn$fB4`Jk@TR!hClvA^J<AGD9{E&D3|&^`^n_&ee&i+vvFOVply65<%{w5!8ye#tM| zVRYZ~rOab7NgINogTV*r9Si;o`TITCXqI+5hrq8B+uTD0amf~)aijf>9aIKee>Pa; z@>KC2^hVo_%BLWHTYtf4zieOGZ&2~ChqO-!Ur*xi82CCH>npU=8*Z5l*WY9_!8PzD zWiZ@YI?659Og;wThOg%`>-LEFpFPZzMI=!xv0#d_5TKlZ36PQpPI<5MGmf%~c+A?p zdRB36>8`g)zsBeKdBD|b(aEsXaWQIYHfgIhtGD4}|Iq$>zu>O_00g`-`#XQZKzvW| z_u=$5R{kGNCquf^zq9Vr^4e&pv(K3nzGJ@EWNa*f7-N-HDo^7Vhzd5hbnE<czIuNu z{ha>*g28yk!^gkyP#+Qat4uabljzzQcGISg<|1RZc+Orh7jOUu1317H_|4*&Wd7W{ z+B3FNMhCFx{A=hk=``D9W(ip|taEpH0hPx%CjeKv_*i&HTD7><d`GUXjeG%x0$5$$ zmRF1`Ooka2G<<&S<Zd|K++)Hejig*79u5E}*ZgbQH7|sEoxGD6H4AixJAbxH@)tfu zyDWw`J5-iuR3s{bM;Ys0v>K9jXPb4RKT^MEO&-F>_FD0_v1croHpcTw(W9NAFqtCz zFqHo7i)}k(;BF)ka%<*~4(n-Wt!j6#G-|WzF<HLy6b;EE1_P3E%m>rGeVgE0HPHV6 zV<=&SDod;Q$>e56&SJ8(ipWL=IYP+J4mSgyalribpTk=8_LsJrc=Ke`H4!WrE1jm- zBhv+W`rw{8ubyor<K}IHq^i|@KjDw0-E30P<&xwppOnY7i*fb9Kj)EMzwGra7oQzG zBVlDEvRp^5SzN~opaw>=VR|_%0K(g`B=k^DdsmKFU4L!pmb%h1I$gw)4UA9TIQkxP zex8-={{XWcjm?k8{U5|d{>&^i{Z~;BfX8Gyb;>J%0U)=U$^QTX&$zi?*}I(fw7FTr z{@0rAhm5`<{4AOqi6ok0_q)Q4qwN>TB9MBp20k)5!RStF_S3_@J@6Kt;Xf4ki{jsh zKjAU(zLRQ_K9PjqG+t5?6iDczNM=zg<<krY%%o<&5B?=+FDLC6@bAMAHrO<6JHz(G z5y_L8WIXbI`0Lo`>-)LzFX6X_{w(;a<KZWXpq6bP#8+|Y*U1Ep45r@Y+{`1EJTzy@ zQUfjs&jb)F<@398Mm|N-a+H&2;y3MS@h3?5wecgw9yajqiEZI+56HBz(zKgIQ68PA zSVXYF30Tg?k$!0;WjwQN%LEL3)8L$XyuS`L`|k}Ri_?DX9L(NWM7N5}G=-axs?#0@ zPEP=u`!D_qIpF;_!+*Blj65medkC#`I~{Ao+FgyT3KA<=0$JN67~_&-k-L&f^~GBM z0D^w}1=GK2UyGh0_*dc`Lgz!VOMek+_Y+wpPjEwP7E2N!m^5p>RQ$|`0C2hFZG^<Q z;T&nLZK3LAIes3#V;`=`#-CenWvlPec0V!oe*>?9^$iwts>ywEb9#};LX}dep|=Kd z%y52FoDSd$$IyHculTdXQt93uwl_1g%`3AUENach_5k2>&;n0jabI@-0KrCn5d1Fq zE&F8XUj}{{eWJ@s(k*mri<z(PCA@#O+!>~lS1q{YszL%Hga;oc3D3me8a^!e+rcP2 zG2qQj^s8?*=9Fpst=eXlo6c!WTU!oJalqvKpx0gwwN*uP+nL|<XQ`j%xpi#DZvvcX zB&~h+SH7=XpLXbfvj@Ok3rg_zq5DAmL%h&Kqr&!fIwj<uOP$V*CZ{kKs;pE43dHvq zIZ=`gear9{#9s>ZbhgmHW<L@&_2!uJO4l&7kzP#$;53bH(52*CcNGgHP349MBn*${ z@5Ej<@wTm{+DUV$PpaGbdw$P<`{@x}?!vp}$l!8IV}a8ZmEn($9zXCtyJg}p1Kv+z zb*F#FywN#HqZ|fM>&OQfAaxk-GC8Z|wJOH*k>7-?hr>QvYS%w${9pT7{78cO?(4_j z6E%MhY5GO=)sOaEdW84H%yJ`XlHA7;$v~@dI*thn>z5V#eftA^aQ%h9Z9jp{@K5%k z(DZAI%c&x<gterR$$uzdVv6;Z%Fd=>S{a$vNSK0fNNWBf{Cne_d*VK?KBcbBB)8X+ zJ;b*XIVMvf-o?oqvRjf#JC9tP8ulLz{A2Mq!EFynx9~;eVt3g)31eA7<hrp&$Om>X zdj2)%<{3kAQKanA=-}~il%?&KhxK87{{RFa_;aoNVbm{v6nt2R!nay3tlEXPiQ+&n zE+C5MbW&PLlWlnHrSlZ-&y-=m%win=a(>#su$RVf**{;K#U48rmtGsaTb&leR<)US zOQ>4e-OkYni7y#woHB+aFwQfIt?^_23hU#~+V{hr8rOVX;oUPp@i&CyTX^*iC`crj z&Z)jh4%ESr#tWca21Q_N(!MSJ(H<@RsXhuXfgxAblS`XQzPM0X-ZA#XfX^y7c*Kpl z*CZjq$i;Ke;vB+?`kddm-nZY@;>Pf%2CROy6=@`W=kZ75KBM7phj)Gt@bh_h*IM=E zshvUH1TblEqpFdRCEN<+jui3pV!S{05b(~a;r{^HyFl=EryeeBE;MU-kxv2AOM@vK zXCMx9&&oIzgYk<}w6eRiMwj>6rmy17MN|)*rJT0b%tsg@O8{~B^P2bX*?uc%be$el z8)DQoUCo~7>`dc6pEGCbYsAc;p@sKW@;n?r@wM!H9pOE0PY{0CejwLEEM+e>Q~?QL z{(~~x2FV>;W>59&NBk82);Rn#;dmm+5o*^r1E3jrBv5|^kPpVG`~$H%kL@4gCAi$P ztez#D=dM>(0hjOx6`}tC1wV57H-)5(U`S>@yoE^5^y$+z!^2<iwElmSJ<Qh1A0zS( z&Nde)<C46Ak6(ZOwQIzRy0~WTAOr9sv#h~45qV(ea^Uy&#c9eBE?vp{tU*4wJpTZn zYW;1a<C!Ojbs=GO1YnQeESb+j71w|V*1I1J>L%f>(pMm<D#MOXMZxEedK`24*O7cp zm96eH>68*roCpW6+&_<6>%JaceYaJ&gYJfrI31fKjyUc`eGVR<?i7*Z;;LFrA52eq zcX#8BAQkxsh_4|I4oQu)+n<z<$96OC#e7@)Kxr3qS@>n*2jtVIQI0uT++cL|<BpZ} zzk~JTs_OQ)QjLXtU3jEtrqg!@It*o09zXi^;U6EYq=!h*V}(Fr72HLAKhpT??V9rG zPEoBN>$&Gqg{1G$_;<%p9Vu-fF0Ub0>7EGN$^7fkydQln_rX0%-c7_<c!tK|*bln5 z7FTeNIM2-(80u@ud}DTX8HM`unF=oyo%LUn?-#~VP*7<^nyG*&2uMjY0cq)vbV)bT zBc~wgU;+Yyz(hJnjqdKzU89?g95Cj0-#=hKJkRU7&(3|F>%6a<EG1yF^8%i3S9cFU zBJCYL{wU+FFE_;Q1at>^i-3D(Z~pYZ&|ohW&(}Cf-^`EZ7<bLdM0&?k3&96#`4|@; zAUVVjC(48^>e956npBG%50sH2u}o&2TV5HB{v%%T(A*FPu&o(?Dlmy90j-urZTr3Q zO*`?VcQ49fTA+=PV>`#N+8q|8cAMoUfY72>DgWgyrLV5%^7j40v;}O$E!^+11b|mS z?{v|gu}9Ej#%mg7C^4W4OMx-8uw#GgqoEg5nMqzUWvSlGYc`NCF$4XHqqRftuH>G^ zryI17<Cw6C>yG(oi?Ak%Vq}pzKWDV}e%n9=RM;8Hy=kY@Q9-f|Nw>eQ!4i6ddvaI{ zzGc`S+}km#sGzz~f4`I)Hu^~(#aGne>{g#E8!y-|n=lJ=ocL{15JzE<>V$~E{lR>b zMbkg72I^B~xvfn^Wnv1VMP?lXVaH5M<e<)H621Mlsgr1AhSJ64HO^dvxqP#^3=C6_ z!ZEE0JalF-21LCs6S-*=TkyI!sVn!I<co*UhXPDG_2<2OMj5gfNu`yX%cg%qrPwKh zPc3%C)(mlC>wOdJ@;gtMdy-1$Yi^b0qTTbt6<or(5x1-Lh`NWHxfZ;iOo`fRfKUtU zE8v0cjWFmgQWslsBe+L1_}GtD<~Fwas<yhbI4OcEy)%iEjM!CiUOT)4HYV=Zm1bD9 zPh~7!x|6xvI*L75|GGEvXKy@X9LO3Z{M&-MK-^mBi*P(-gB=VQXi35PdY(|CB#1Lf zE!yl_tjFEnOHP$khA*<|y%ron^<S>Fq@Y>I&V?Y2?^wLj!xAS>=r8=!5DrzRdtN^a z#H*$tPG8dPH~Yl<SkJG0%8+u3v384smnyQ0+cRm~^wP*QX-qGB65*zC%xU8B<qfHu z#2Nh-0m`x<G+5vK*S-YgV&zbicer|2Q!7Mech_7Lb3Hi^%GQFp4|5f=&&3g@HQffy zAYIl04&u-2nFPfPpy`YRIvl>{x`_2%s2oGG3-0JNTpM&-ZZ+4wI)6OlHG>DJQmk}B zBO1b1rFM+BevuusL)Un7pm1rf`CDQ0D)Jz-@U8_A$K~IOG6oUdUt){MUgwj6e!fiD zHBNVusY!wVMM3OkcyB4t0@RzGKdsI^JT0z-!G$=1^_Kf@)+CcSF0vW0CTFj?Z{!iK z4BOk~MS@vKgjuv&I$uan@fncezoa8V;c#;tWQfI4lx0)Tw9u=|YLR;n-V{_yo{+4D zd^{O$Zd4Nzgc{%cz8D(IX+c9fHNb-`gl@9IJ9bez<%yVwz{Dr71BxJ962%t34MM0a z@RqQtE!(8j5%~I&fuwrd{g|*YHwvdLzA=q_Acl*#@T}cYcef(D7uCm!8E<e_chpzu z0)jsig;m?6Q)&t#$1BHt;cT}u0hCi?yR|y=5vSQkPvoj2x0#Lz<Y}ZRhM&(Z_^(p) zdH2-tpy-Aw>mqLv|5&}Ot_n$L7o>ufu5Vwz<jA%rs-u@iJ!4NWf_MUG>b=|jqS!7u zg>3EPuf8n27Ha8IPIeWVt0^+)wb}B%$hY!M&!YE8puQ@1A-{8B%I$CFr)eV}pz>sw zy{n+&3Z!?8x$V=qEM-=2pxVlWNan{Jl0OH)!m>0OL53vL`+JgK&xTzY-+mtW`(aC@ ze_WT7)1$o%saYAj`I<^91Qu=-I=(DeJE$w0^!kS!BQYa;(wsWg<D;Sc829&1og~z( z9_=`wTH2P%`_{K&H0e~O9*KhwY1>DnPJ1^E{c1h^|0oOdqrwuA2v?qH4r8z10U54K zJF3j0+fNVMj)IGy`_p9mKO!O(-M$VVtp06mC(d?bAPR~VPUXzF_Tg?lDdU+<a?UP$ z(<o)Kq-t%}i1zwQ$N)gbpqA|$8n}Ix33*v+BPQOllxDxqw%LFq4wdzg#Vhd<iFWb* zN$+8gU^gu#$ANeQGfH@UtER+R$>UfXc^Nst_5y|;4*w=h!~RjOt)DQymvO#7t<dNk zl!MvD>gDqmSH>R%ln&`$37^rLbX`f?^M;*mu+GE=DSK?rnpv{7I9Wo?N`T3{^-~;8 zX+52N*8hmuqhc2~jUrFsl9=$=9dyr4<V`|Bzx0>(NK<_fIF^krrQyg7y|m*n|IwXq zGE!lYQV`nHYy^MSIHB3Fr~<IrlXQ~-u!Z?u!tbJ|)_!HokTdd<!!&_3x6U)teBK-l z51vQVG-&alRKx{qKZAOxL^I!J<PE?4IJ)y;R5C)p&*f~xV>&YmeyTKkL`E2d)JMCN zSSL-->oz_h8_=YZrlsH%-V-eA*gNbU?vwVu5bg2y$}UzxF7~Z+$aqSzPrZ!(h!zgR z(?_}%nRVrIN4+7&N<2*u0qW?n1<Y`dkVod%1Y!>5{3KaSe59fQAnSNo@7Y>OaNM#! z%}~s04H0jq>RFLKbH;bMWJ^X?)^(U>$j`LiXjf_A-xcS2+TXlJWjb;jzo_eaTa<Xy z41Qi&Pd0#Qft5h)Ghhcndn69&9>*C?LZZDeRK_sf8mbrQG`Gy+{Mlbnhiz(^KK9DQ z<yI~N=%;+8Y9$72M>X#fq==U8S!g3rw1aMy=4qHk-Udusyv=uLeL2rh0N4Cy8||E+ z@}D*^Z{@48Y#3VjLK$nZTFUq+kd0dfT>~XMc(O6Su+Ck!{%XIUd%7tM|M2^b>;irq zP{9BR60>%)pOF@&#bztceSOtDE|-c@dV0v9zwA>5J5o^ur=&BjEd>cgiB=gSFB#Jk z@+Nj!=Be<DmmvmbT4lxGbn~*O0E3YSVmB}Gqbs$fG3QhipvSux<}71F9?k*y(#MH% z4kz5H^wl0p1D6J#&!{#?-^J5#CcJc**4i0t2ck7Bz5ps=?eM5f4m5<$xkX?yh^@pi zws`qoRIfW%PATUTUrfl++zVR^!LN=s55I0$#*ls_wEu%+vg~*y82tfE1Ul|A&~|9B zy^L7smAt(jJd6`Kd^wWsAzdkW^P_Fxd*Vq?Og7OS3ttE3oE4f7Mt*ql?zm%q7xRCo zk0c24uL8wp<1g!UZ#uH2pea_~gg-xod@&}ytj8?r|8;(Pv5R^&wNW_%OEx~0Svm~l zqeV;vAhhmhF);CIopx7Zf9LEQ%j6a2IQU+SnVIB_C3=Wt(HeI0cUu<6r*Fgsq?I~j zxGlyx-s0I~#yd9`TF4BBkiPuNufa`ny_Uk}Qma1`CfX&rl2%V_A~mXGCojCe(tqs@ zf*7d&@Z6KRT8|;v)2GP1q=dKg^~^|}(x&0XW_%YFK3qdPIS)8pD&xe>+q_q;MMs>( zE^GA@6n&&d>gMTltbQRs&>9eD3dYoW(3-x|o5-&r6`8nKP;02^`$I@eo{AIJIo|Le z?d*23&T>y=r04_pkbAgy<3A%b1hmnyxL`R7ui(J^0k2G1RRhNJGD^n9_kU>Lh(F!% zIv)Xkm<h~slKc-$)$)ATR}FH4wZ8dJGOl$tASq+~E+v7`>v1kU^8mGf<LakWIl0Np zveXf0&4h~D5k@+BgqK<C2PC6nB&=zK!;@f65j;g+Uu3P@IJe7)3YM4g^Qe-eHQVIp zAG23ixAXpk4cP>Iob#^Je)4Vz^f{lEvgzU<5%UP5p60{2{J=MB7C9m+O^|d5AnD=l z2Nrh)rFlndEx|{3DXH8%;v&;$W(ip3+5_+!V1c7MjesIL!0BdEKou&hTjKoBOq#6^ zBi0<V2noK^YfGK)tn^*~>b_5Xc9(XAO}$9twZKKLkzW}Dv7<h6`N|{leE%GtPY}ca z^Z$stU==CdyvUdq>IuqXFF#wh0xd*o7Ifg}KnYW6SyED1gXB+Aih3iJ_KlvN;#@A} zwH*z^e#JVsU<?pP%VJT3XqZCqnREv<XZ)2uF*O7k&#U`I-Cee^MWiyn`{)O`+h)yE z@~$jG0Lxh$!&l~hb|Z={v0HnTUxB`e`lVaU)4QeN^Wu)aL7&?<H>WH7G5+BM#u(ku z5?0br-eT!M(B#EiLtmV#I?`KJkF7<2j0QgEDIg`f)9qE;iq<=3HCNz7uHN(;E1y0{ zT)W>oNOYe`cS<bi4?opl^_@#4-Yr`#_FDT$fkU>x<2SASFf{@Lg2ZEzv!e00ZZ)<z zr~0#okP~w^G(vZPn?_ja@)2=!=R4a6tPvcomoak0uYvcgGc+|U6w0S!$YKvm#CX0| z{`cW)AE!@`M<1JTcgSxILi25aEd)gOLiE~e686-6E^3@t=s}?u9Q=oK2}@0NHrk6< z_GAH{1)+nt{Cxa9Bac3)#J4jm6*UGt55J?p-WGDV`Jg7^`KyMJ%h|K?$NL4M(SE^i zZ)wG{eQHq#H44_;ve`9K`mu3^{?;WX*qRls8t=+9F^A!r8~MSuQ=Lm*caGOgE!GKd zJWQ|6qiJ53jt=<u^~kl4sGMIOn^|kDF&)w=CBB(odY@QeODSC`<~BfAZW-HIu<lFg zJYlahES4hL`zwqkdXcDY;}lCiQ-ouxsKt<WHNqYmbv#e$BFG14;#2Bxjm=(ctv=yQ zOm^1x6d!pbXl`B5PMKI7E4$6>K`p2rXAqDeynE%lZ{B_*RILxFKK>%Wzap4dPfp7( zW@Fwin%wgg1zz8eKaz2FVocRdC?>T-u;dSC%a&m|g2kfNsw*d~WnCv7teI|lK8W86 z1%Kg2SmVb4)!R{L?vI>WAGNSAwxnbYvZjS(d9mwm8_BD_9dG!uoA1WtZ1dFg&hH5C z7d)FGM5a!7N_0dD==3%rm}i-+j8ocGCHutA^mOphh8R9<A%ruYvcgbiJtMaNd9+|~ zl+pV|a=lE_`)oMmY8}q1582&(Z0qF4qgy-Q=xd&4R+hi9d>0!Wev9`om!9GfBQtYk zaThT2K7@O1z$-2GF17r9UOb{nSYjk1BJ%jc5DxHBdQ48l8!VDzL*8OX_KzqNdn?#G zUVHxNBO*rNm8UB3tum2yjiwi@qkh-T)`&@WZuagwsYuy#Eb$PxjLt1JS``?m_iqeG zxCMlwb|sTi4x1fiE+hGyUSBSgk8wZo;~Es|6~%FlN_%8{%NxB*ZW&h(Zzm*AzOUFf z_>hxq&v}pii)A8gq_qf&6+cA*!kVNoQmZrFD`ZY$iTTme97PITnYj+re#wV<PH*n1 z{<U+>xvhvW*p%`VA```xgJR{K#mG*`8?tshM!g9O04sx|1A-yb(wMpIZ0Qd9#0&4u zp%fFt)gwA_!Szh>bKrP0Py=%r#k|+65y9fZTS940@8!+N_}GjUkA3YnkR4aQu?iJe z$xm2gv{q=&F)Na_Qk5nmlGtW!BhYR&q}oHCm$!zQCUFFsIMS{;K1-0edu1Q^>fs!J zI2cq!**-Zl`RPA@t|5@;SoTG07juv-%WZ-zUDv^X`^hK!k%=cP)pe;AD|f!M!NYKX zQWKeo46bTk`kwUKd#3|Tv~;w6q_<wd`7&D4cCC7?1P>~uF_r@bYd^j#NAuOCiH>o8 zu6<QL$Hs>Ii0G2gH$Q8lxVM#^r)e2^uX~RC^B;c*jcPy1o%jUaZKwIY1u4AC!s~>O zZn$A+B>StTx(b*a2qmlcy5hcGY^62iE?FnEQ}isQ?fXI_lm+w^rJeG`oDxIKlbs~M z@A}E`1pF=avq51S{Cg=!13IqWxv*lzWqUAb6qaO2?SHQHaH05EYp&yB!#RXkmG5uz z{INz&mC=jOoN>;Bv-BP7oFx$=$W{(GrPpm2yg9C95Aw-OjYUQ^$lp0|jerr<#s)qt z8<e_{dU=uVmcXk{z5$`Wv(zWi246(Z=6{fVjyX`|=Xb$yr*T)=s;)bHvL{baseCCN zr<R#t5AOsL@5dH`+m%JZkEN=D6U`?#*)5;CAeKmPPk$-9fh6E7@L4?#Gmft0Q*llW zuI|4rf+;47E`i>_*q{{JzzS7gWl9=jk1JR#03n<4iQ(|sntI@jV<&c9)kxJY;r*LA zWFgT(SBgjTqYCK+t$_0t?6V`Nm+OrV?tKInoC|&MJF<hsR%{;PSyc02@Xq8aU3_}l z32?qqqrMf}jG^n+R^y<?ZY)0QC4XLCJrN4U(ura1S}F<WMYKD27C&Xd6r^Trq|p-Z z>^273d{*NC;QK*3<YyVGM9RrL!;`Tiz#9^ovmP*UqIKeY4&(x_{$ZDiTq8Za!H^nN zT6N-S?W)4Qw7vN4N>MYm8~xm4H~kX+&1X_W(LV9N7*)7cKW!mZ1>4A|%0_*U6rOdv z6eISXDh@9+y#9-E+jK_2huU!cQDDHyvyFd59^LO6ETOuvcgqz&T~f4%kf*j@yNUZ@ zS2H;?oK{E!QhmBo@iHiSM|V_O)VT~~J|TyZL3F*B{Iwaye@->SQkfh4E3B6^=Jpx( z72z*zXiWC$&h+)>d1t5VXR#7EBAvj1xcfzTViR{O4MV|0vs1d}l_R{PHYWM`Ip0;B zwkTQmD1mqg`38w?@Ev4Z$i2xRz$%DAH}ri1<E7?KnKgtQOwD-Z73wuZ+`@b6#=B;G zmXI&6Uw^$#ie6%#@DZeGP~HH>fmhR7NJqVqm5!8&<sZe9<?C4L+qY$#GMi>P*?De5 z?MxEA>^(SbO&qjQ5mH`pouhdA8`U-Fyubx`2BAEjHSNav>e-yM4vaH_Y$Khm`Lz1_ ztA%OE;7XNPC!Ap~EhQFb0-v*(br{VnC84%h7^pP{@gP0ils4;M<|IA*{Midh+%{PE z{Ykc;-m&a9po73B$vOdY;#mlj6y_GuPISWY8a?d0Nb#e?x7`Sn;TL=J@6d)yB@4JS zUmXsmM=rem;){|g1Y<nDV)anC!_&$4FbfzXP`xi@|C1~eKbNoit(+*t#u8%Y8_|(S z=w9FThY;aM@UO5Q1doN^SMNqXp+Un5il)<*H~)xKs#C%KTvf$S`S-f$f!ww9I98k` zhN_nkTKez~3Q34?!H-YiM6>qSD5yS69fS<T<|!qR@w*zUdnc=K2m0B-yp#@LjV@v4 zJtnErW~v=}x{ekKr;Dc~1-e`LPm+gaVSf2u`L`7~y&SA^j|I64pPjmw%t%?Rm*DMe z?bJD$@vh++QNxRgI2Pik_CSju`nb#YSd$zx6#@<E$gLd^L{>d}0z&e1v`VzD77{r% zP~?TZ=oH;dYUq4*)Bn2XY8Ifemo0vF4j%=F8Rr$RY0bgprj3bh3zl~0(V*X?13%z% z_X913Fy_ghm|oMrxULDYmlp&@n;=@@P1wr|)6Cv30CQQBM(&VX>9Omvo4(#ZB0lTp zMtwU1eU1Ss1AaJ6IG5jdFJ(Dl9W5*?h^)wuNrB*kIF{^xM1P~!r&BJTjM8=l-pUS> zYdbRgBvtch9u{*%`?4m0dhT$)XePbLDTj8guu0SBd=43NEg`24Ihc0&bG=SFf%uew zAon)j`Hf@RvGd#ty#mDOgW`4N1uwM#8ICp6BtHx|(!Fr|q;je~v37|YeO3^{rODY6 zNxU*%3vrR_W5fI-nubs1)}Kt9w%Fgpv?w9Qy$3`6)uTyUho8K|d31XNNkut-TTJ|2 zl<sNxV(B+D*e|_a*CPnIEOC!}!_>rJ?>mf0IAISKQ`+;G$wz$*xv#p7?fd{C(jJ0{ zALPs6Gxm4N_pt9lN$WT3djgcpMn=v$Tvd@Y*n};MpBqrgBcr?Vy<9J-_N&AC%Cs&Z z<E42MF6u*kA2dR;>h>nG*i-l8O^18x-$t%CHa}D$ak$hsE>dCnJlO8^TPc`c%)Z9S zec_2cwDa2GOC_;CsJnswD$7!Mw|^VqFI|~oXf(e~Z_<$+Bg=r%3b&f@mMc*3+NP?G zn!FQ7ZnMp_r-rBB0}}JQabn#u9LnFHMZ|w9fSmDuDmE6zs|!B=o6;efgzPXgFq-<C zVcxT?mcSkVu())=^qIIN)w|qaIb@d9%H6|v<2bN0GqoMstwig#B4NbkAJKZ!p#iww zEueZNoz39oiC_zbdUzv4>LY30SMA~tb-v<wTVTDCHN|Tz3(*LP%tO`=F{uHRHPf9( z?7|BGo*49?jM~<qUP_<N<F5p5>z8C=Kj-!qX_hplq7OScS}D62)M1prc*2qL(9ef7 ze>4t1g-nxE^isE;Ld^w^q-*J7gT=a}mcWOZM2>L&8Jeqfw)QA{vjr{lUSF@#FpCf) zvyf3{zwgyxS}a_%2~k@~(@(rxE3{zRF<S0AW~%fl$&b~RvEhjISkD4(Q4T#=SOt^f z7{_oXGJl5)odmBYnqtH_He!ne+lc?%dJPA=t{)R)13=l0frjb#qy`JP#rL#Gzg`)v z8o{F6_xT}DORDQ{#gef0OsH)A5`+U`X^dnTYjC58pNFwebTMB-L{);sY~43`EUum$ z&CtGJcAV~!^2tQ?EgsRn98n;<gk)|LlGF%4`!N$llY<@9NM3d|4|dl~cJK*(Br_<V zQ}SUUu4l1bk4L@WS-<p5Euk{XN(T|*8-X{(@)37fBay)g2R^X|TPJHer(PqfjKg3B zJa0K6!vTg~KGE<Wsx<i!@g$KC0SN17Q%f^+*%P`wuy*7NSsz?uX9xMee4EZ(o3R}I zk0=!{lq`36T;iTTWLYUeF661?0STLdGhHykvv2}l7h2T6HWrIEtA416ORU3DX=gy} zOK96~*xbZLKL*+PE93oJJjY~H65|4+bG{e**pIs<{SfwV0UlfPJofrAF6YR-Y*vHw z*TsQ`y2VQ`z}yDyH%ybcxYEo`S1&gREA?l&YuJhNn6!+?<BF=x$j$v9z&<#4G`+!} z-Yg=Y^L_I~R5<N?k-|bD`)%MhZmr%cP5;ll^a1${;=?73^tG#yT4`v0f+XwpH8_)( z<s!KzwwmqvVed#St-$R$i^t4u+8jEmNM^oX?<Bxi_751ksfQoC_CCc)RMbI3Qv^eo z|3sL#LU%15DAq>D$R-G>E}kBT`Mscu(Epy%V$h}gMyl5z<p(fjsAjq}zCIG+8<E*x z2Y;Q=BK(;Ezq|7P-k9(KlP<sTCv!VO@RAa`g}`As?9BXId+%qno?wMzixq%!5pIr4 z4LqoW=Xs5nzJ5PZ<F4fDunX@XpshvJX$x>v^pe!j^fQsH2LQhJeY>Zy@m62p9Uq!C zFe2s(b|*+e^1K!^G?oZMHH_xC1Pi-S5&XXkf1ydB_9HKgK>XNfug{Ix-h^6KYn8Ne z)>7{eP+&EIYZm8Edk1^k9rVcIP$*lVwsq!g*P;vm29+WEwA8Papa}Ns+_tZ7aeYMX zQF#A<RPc{TSXXpWj)P#CH<=!b+-W8y+McMpEV+4PWXdba8UX7}J3b2(|IEn|56xfW zJ-Jdm3Q6Czq7YMbq_oH<vCg{SmZk!CH1?HhOu}4R+LK1q{kSL7s@!OvDl8F}qL312 z`<j8j?z%4uURh=7nQ8LOxXaJW(|;C6Zfac-UG=R`PHXg3xH2D!n?izGx106o`hDy# zex2ym<5Mq6v!!@Bm~<1DSoECU7?<6)L*2CoDi=)SEZ6V6jT1h`)Av|7y`=LzlWFid z9QGP_;;)xjJv+zoX6ErMu#9(<&P|(Hblizm)*Ar<@eNyUN7+I`nZl!KJ%K59y1iff ziui!PMIf4MbtLE4UZx3MZ+*F3W9@!0slkUnONM|mMAzAb+n8|0RKu@vK2HPeOI6(7 zt8YPn(LlUc*U_>`VSZw9JwLB~=Af6V>5w@83(@HNsfEF<)=ETdmwtz4wz*?<Rk2t7 zI*p%?Cr%1J*~J|^0R}>D#)T7iJdH=<3siQ-3apy_i7bNy@uF<WkwNI&KQHLSxj#!) z+%89Akj7`cfriJ&hX=Kf>H0WEghRmsxpJ&X78h=DlrkgZK2)u4%D3`<njp<mpMDRG z?@JDGZ6I>naK5y`0_1ig(X#h^pf{6*P~k(u5&|t}6#PExW7^wR1vyq`R_H5GZ1hbA zYYstNn@7RMEQ23)mgYx%Kb#?lLi1>+gdK{rksIiw;|R6a5f487Oi?|I^8NwWW+4id z3X7>?joaYx?w2UjLJ344Zcgx(h;G`IPkxFfV3^1W*58lFOFyqenDN0;Dd)sdUPYY* zh|^&<?ptAxQXqTw>~xZz#?qp`x~0E7^!K0jJg~(;l9EN-;zwOom&;*8jrg)P59sNv zfyh`jQ^@qY$|u|&y)4ZErxx-dLjdB$i$v_8En0S>Tc4e7+6Vn?jC<;EGp*y|)~|Ke zKJ7l0J?BpA&grkb*qr;^AML(_kx%k3QBb*++WgV&@iLP|=j)*20<7jI=i-IF6lR~1 z&z4PJztto{!iI!%JSnMoN6+BEH{p)j>7P$Fe`^jG=Ul&SDBHGUS5JNA64Ge_ZYL$E z<~jN&{TF6{_7rQ*i0@qojnMK$4TZBldW`a+;LV+oDPR>aG7owYjpo{ptakkn{MDz9 z{m~&`UW3+4?gc)xuJ<YPFh`X~Ei}ZmckmZrdoYCA;*bJO+_u7A{i%kE+2JkoK;D~= zWvd49DhK)+ZBVCk4HKoYCb{fof~P<Evy-G<?xO{Bqa~%vb`O#;=kC`o4;$WaQY(Vf z#Rc+6X;uYK2v7zmPwhlq9bHJG=E!h=aj}o`1OX<gH?Cv9kq?oT5Q}MDh2kl1^PYR< zm&O0Z@^)Q^Mo5*;$WMvvo-?Me`|7ynDl;N=Vs5>YmnZboOkQ*)&wO3G5FE(`KQFa_ zHuxP3X5mD!A2DJ02Re@a;%Gv1NdbbIVgtFlVotf@{yyAm&~1F;$T{x56=66x>Q>YE zEd;ZkRJ>1xeF5ve0z10Trl9<K*c@Be++RQ`;wpa|G4tuE{v&$d5}Ool``pm*M^~mZ zhFxgj<scbmmcp^<!~?ukOwR-M`u6vHT(vARi>YxAMus0F)|>>}!skpb=+SeAB_X_f znXIEeWCmZB+0jdX_n5!kyHBk6xhC3`2k^7!fbq=$Y(c_}ZaD1>R}r3|u=Ds8@CU2G zsq@V<-1~~#973)jY>v3c{<0ivK^TY7HdS^Wna(<`f8aYm=~%s{u_y-;{F(Fj7cR_h zA+pbK){Dgja=GgH4w$!KaIsU^fj%_^9N;KtJ@(Nknuu1WOa>LCHvE~1g0a<ELKU&> z!>b0o{_yFNwkZGp2J&<fAtsse%{VW`yVbrv*8W?#H0Mf_Y1qUj2jpX?Z87q>M7=&+ zC6E{fH^sA`-LOfnD37DYO4S(;v*MP8R!&Da4QFJ8d<*(ZrF0ONwG!vjA@ukby)h#` zDoFZoJJFF0xN?JHnuz)1umn$K?o3_@@0)efB#)<7_X84V;4c~i>&fF$4fZnPC4s4_ zRu?k8yT%=2f<IeM2zz3mYGb9{$t;=I+hloa`gv<#OiT1~qJ{4ZkJ^==yYlLciTaBG zp6t#@YG%7Xt##(zS1mdEYd=fFJPle;HEQa+xSJ|#Wy!V=Ge@s<?&qW95Vouj8!}7( z?&}W>b=_lN{y4A9E?iC9C5)MQG~e0?U<;YBs6t%Ex`eQR(vCVVd*<^)BO&XR2~RII za`}_kYcIa}>Qdo8h|CTUEnN1HF*3n{^f4D+V{EfQ96tp(u#)J=b}9fUUk(!)b!NCt z+|KNiT<DXp;p{t;@&Fu?=GvtHBj@!&kFV9xjkRKI*c&&}iB_}*aL!ugwy@O|d<VyY zZAKlsHc`kHRA7^BYNlK`;+7Q~YHDf{@bmWqCEP?A-_um}Kddg-avOjBH5)iR)qCi8 zBOauIK8_9%3!=b&%_{vdA#!MZV^&*NOIs6-igh=xn`E)sG(xE!S?jW~I4v<*vD@|1 zI{qW7hPDkqx(LG@x5tw9G`L4@ph>?s39q@j;>X<J{3%7ETV<BDj;g9g=Pa{N>)z9< z#V;oO6^plJt?X6JOOWCS%gY$UsRUVJrPc+$U0>u`Xf=b$hSyvJ6~=s~5%rN;lX2ez zMJSUm83cQ`h95qqE$mD-V!Z!wNLsG!@MpY~!1C;WKk|V~gl1;GH5ZKKNr8ks#x7hC z^bHEHk{otUY~cEmL8mrIe;%|tsiz-iGHpF60Dr1I{u($(*Y4-Ydl1`=G)Qphz%#X@ z7re*KjrUWSZlsK%2t~TuA1eX019eYXPYl3WBfM2q(VAlM+iP!dl?}2^LN66$hI*~g zo+?B)U>yyIaqYLKvw+gTUL0?#h=i}>rR0aLCv>l?OxzkEaZ22YoAYFxywA4NV^9dH zNP<Ijmb-O=|FA6YyRfwWX--1Yw%?+aDgd-<bH+L&U&s#G@V04SWi{4CgfHicgzJyc z@h?&uQj>BoLT(Hs=(}_yY?N3e+K*v_1QeL@sS~r5!}z=Ds_z${Ie!n|=lhcY_SN&O z5x?n;&y>`~3U@SYe@6_OQFUDSF@GDE3^^jd`(HWf7U#=8aq?c`r)b`a!1ACT)tW=P zSrKIDWj0DaNS}E_&~%V^Svjw#@rb=mtz6xs-sav%_01XgM?HS528kM;4Z36^(W+9O z!?ku|Z#X|y?anN>)HGm)F<xsush-&c64^H)jfZW!(>l@?wh<;u(L-ZB@r}TAP91KJ ze#@KxZr4DtdHePj8Z@#ySV|M?k&_!9ejHiNvQx@u-K8PA*~mnBhbvQGdqgV1q)>DN zg<&1{aM^*&^}Nb%JEP$FM`SX!Y64>Z#8F_WdKE3vqq+%2$KjLqX8_dv%H3KdMFUWK z)M21}#PHKECW@?2t}}}3AB7%_3stF|2ur<HXZ@u78*8U7+Tth*;-|3=lJ-4##?!Rn zmSpHf*mMl=+5R5#qNWzT_0@4rfXZJig{I0}*yO>ZUQWX#zU8HpJNHzz>qqX8rZvRt zW;Q?kn-+c68ZEkS_Uar-ngdDbU!&0RJw*Mfm@Knub5jZ$ZUXzUBTieRy;Dn5HS(27 zsJ(i(dpVX{@(F=O8p<E1n@s#ZiKxwUM~SM}=<C|pG}SqhIJEy15Q^9|5hwB)2Km;$ z)>V4?D^5;3AI_0zp}rPuJTa6NRdCESk+;4(&}x#I65eXyZ)W`8$8@Jj-ScgN!kKpN zs2TL5kguyGz9*}qIUQFd#_H3*O&qGl8VS3DU5a)wf}Dndo&WCx8j~f*0>rw8)m6~; zU%d+vt&c&;DDTp@<M&Sa-T2E?-^ab_)&X%=B^0uL%9yj(|8#i<K)W;G9&4$76{&H* zL+tWb;J3+7*bmojw-g9w0jh?(T3=m?zZ6A3%*ar6M?n9L<5mb7%`%qPq#SF4_Ur0u z9xnTRi})K2DV1bs44u(_f6A8H>RU5Z*Vf**!+Z4$V+5Fg#V_0-vefuPrH}B`(=Z%8 z;fjZiyx^|EMkBVsRM>3IG}UB@Hx(<K^Uh^kW`FM2DXp&lAT`EoNE@)ymga;J{j{|b zC(V@dVG=$3^h$}MAoW$fPNVpOjQ+Yjh9a-=VPxjW`wRwdb}QRN@m?h&jQJP}NZU)8 z(l~}Zte9A<Mzqx3A&TFM=jU&aGpemwT9~`|X*<tAWCMXw+{jF4iC0%^kC#gk3;p39 zee%?P)SmMUUeIcDOtPePV}xbtxLV}*VH48s0@T@u>N8rBS<<JF+$Fn!n~4+*Xl3=R zEdX6wR}0cc!7=k6v+GW(EhtSEo@ah%eiSL~akBjf;0H6teMjHVerznvneFu8?kksV zFDXlb3MQn5^>7Hm4AZXRgDDEKow2l$Iw&D0N~czyL+O*&OSoh%&TQsK98Kv{NL=YO z^%3oC`W6S@5eFD!o{2XHGF!eBd(re=mU}AsTB7vZ^EU$${GN|21>1;xWtaB%k7qkg z!t|!L@S_wpQn621LW@+vyxNR5Bct7u5U(#?Gd%&J!c1wzHCEA8+$7W`o~mq=6oFa? zE56de^+H5r#4ke=EteN*kFDN?C$CFyCnY++WW8j{)iV^&jQcdO<DXrPr7K<{Y+J%0 zK34$etA?TawtcT6$&GaTl5fGv0r=moHjKs(M4}anuNrbEGMYSVQjCs3;>0`mz`Vf9 z>KR>7nC^@yt@O>{g31w_Cw**pmrx6psZ@f$%&qhF_uJn-jM9RrV4!|$s#R#ugyCdf ze4Tbh`*XMLJd*V7S%X0j$(fYC69>_eRO}~AWS0`2ifvz5@Fo6jjdpL@V65(4Wi3VC zg|E}i_V@>>>nIfXLC6%C-I~079&4hVKtJ-?%6=g(V@}z8MGgCXy{w)K+D=8gILy)O z5x7>YTMUJHgVJk+$l8e~nBaN;h(49lp6U=zKoIT|dIa_?X1lv)WfmhDJN&y@dC<Dn z^Qc3q3j&!jH;T|{m+<q&L9IzmZvW~Xl!cgLSx{wgc#sVm)^RJ+)9@|caSv5h@gVF_ zx9W#*jd;6n+XyL}Vh9vRxUGk}f+m#E2xvFe*8p7Fsd@3T+3bo5r%*L%PR(~FtNp|; zm4a@O($oP04?>0rGy1PU=K@@?eZlXY(sN<Ai;DS5>G<ZXiA+&<iAvv^%`2)ABKRb) zE4as;84LTgdTX~UB0#ar?1QNG9H#w~xlTdHtNGs#Yj2W2Htm*%G#2!|sd#}$=CJbd zw>STYaza{BROFlWag<Ga&N`wqwyq-Q_1JK<d%L-?nO*0av>#ng3p3_pOVVfg5_j6= zw$b`iZC>=o%RA*%>lW}<KofA?RSK0K9YlvJbVso8xyv;gmEcFmj28vv#Er6-Y787{ z)HXh^ifQvkV+1-&sT2SVEr8wUB2(v$zb)t-qm!a-8fp!54cni7ZBX&_nDKyDiLeEB ztUPX_$N{yg*)&X?JBycDS>@+Mr&~)~qLoWS0yFGR;NnwiglLmUg4}Q}{rg$I8g2F~ zA7I=uHP)mn#r(~USwt#V_J^CAu7fW7mH<c?Qer=y8Q%zAjcFwjJ^tQuzZx4z*grGR zMnUPRYWLXbQwC}?$EQz(w>TuV9=Eu7eRw48_PHy8@iXc6b~nN8D~4)GT)PQ`QyNN| zIne=l<{#v#gt1n~S?LlH*_8L`h9C%@jyCsshPGCc^FSkMrlQ528Clv02_V9KqqYVS zs$vlM{*$A=Z?rG2tGnXsm1?PA>Nkw`H&btu`AZzqT43-M>T1%~p7$sz@gI@E5T<qR z^kSRv!G!I!B93GEr44-6*zA?cr;hZDCZ0|huk}o=Hr%{!RBXD>>&_RSW~&q@)R_K~ zb>a*e1-mQlkC{ILP=nyznLvzh*qWJQ^-CWP&H#gmwNy8ox7R*ho12;ADx=`PMCHl| zrnlvTV0FU#aBq1`n4Ho10Hc=gj*655y5IC$N!$8SG&)WU`iQ*x%t!9<A+EA8&LBat zJ^F$?*|K#ozw4NM7E2g*<gXJbJC3!2S_~I?RYf2AP?sxaov|fKf}6e1mEti7!Cujm zbS9;y(<X%r%><n#(c_cm<qWW12Zn`4Gt-FecVPa7TUn{w62MssAPjET^<m?2k8UAc zwW^NP3(k)Dg!}mJtwSz162y<3&lTE)jU6rSpY@N>TXfEMPlJGhbqVJGUr$E?4p)ki zYg7yN@6d-^>uiXTFfwg_{pixA9x3V+l8y7>kd56Z0ZD|?T<<Dk$R1eiPNt@#eP7B= zx<?Pm*a=CD(+JtloY-tft=$Op;T_rsGfUErkVx=sv1!F9{?&dO+w~yVWsLsviEI|_ zc)Q!<ssIW9FGN1X@Imu)44ZYzMJd{b941qfSj21dkBFMK2v8<(5RdNyP)hq1;vC1N z{fiBI?P{(Sk5WX0RRL)?moJluIH{JyR<dLQ1AyI3Ws!%<&ftfY$WN%j;xD8h-NhsN zcHStzsLv2rpj`yU<CO_vSpxjq>k(NfSM^Tg(h+D;=LV9zELTPRDh^Y-;C#1bD#h<Y zot0%bJCXw^^^!B-AJKJj1L1p07%syC)`ugK+(I?P9g^P+WWU<dAhR@0B8m|F$-4cA zan+!YdRKA;k!_5PR2nZUOF$1jr;$HxJu=O96Xd-&NF3W`&sKbHS`^x)9d0tegT>hi z%nf(*W@claI}6ZZ1<!^ber%|tlSeTm-!9zk#a|8k_jW#l(t&{8Zzqt%AqVvw0I?wm z1AD&s`gjA76eo+VFWkpCzGc35UaWS*46YI`%7DmM7C*VFfCQdeybq$qDy&mQwLBYt ziY*4>IFcjIKOVZ4&Tn07?=1Kg6>|zk^bWQEI_Ig|UJShuS$tBkb}{CvvE#qeBL@h_ zKYhQcE3qA_#ASjv%FRo!;8y{7eEa4Nc*}dhD{u$o*Cn|Xy>=Y+CYn#=YIwN0Dce(O zh+}rVaPM*1N0t3k_R!|mHDEi{-C3N8nU`KU;%6@bB?h5g9ge=61Aj%z2lz>(&A>SF z=AP&Bb7sw|wZLF<<PWRUupW?+f=7J1uSA*J<DXei8aRe}*MXpMS@qjuKA6&kv_;M$ zKM*1Mh)<rPE2E!9zKo$pdxK_{W;W)EYBl&;t`wA_0SUcqp}~;93`;PaV<NhSy(BQM zT=6p#s<+`qCRc%(>i1fr;xCz*p2gX*^(x|=*PwGqEjpaR#DSZNH6eB45zXXPn%UlJ z;;}ho{6a&$5cB}yp4#6@QJt0=^A@<PQ^EFyGyRM5D!4TG7VRZBc2x2Q!`At}A}LN^ zh`KT3bFaic#F~w&G>BvMs^qz=l>Q_t0c3r`Ss(LUVVKOu-|B;9L_9H1d><!u;LN#K z8Ms~YACZ*+1W3G!0dzJB=bD1xO3CX=l@so6ijX{dhPx`(lmoOMZTad}lh-*tFw)?z z$8WTAwP*s>u5*1(rvODD=T3UeQRxRMgYdH7Gw{U2D|Ui728<<a$I%laj#7GLUyh$) z!^;~IRQav7zv5l9{M=p(-5-6xx%%)*xEF{f7%b;tni2aNV|<8GE5pmD4yCk=3dFTr z$y@JDy{>%V1UtP$EB1v}`|(`wYJMdCDNZ7Jje>vQV4|nh-JcDyJd??-ZuF_nA!Lft zq~`t0DzZh1#nN_ocWVrcta`zM&L4*Uv2f4tiq;m?W4ir!gQAmo3jh_pnxR1J8$o|o zu#f9%v?Sw1amWQPbKc?dpX<tVFRN2b@RA|QXRhcO{6oP%LC*|j1s(oQd)FDLzNY&x zVqSq*Sea8um4&u(=3Y$L7h)on?Tg+E!o!3`0&Q9$>@+ZxTP|wJK&>@l+)*R>`__Kh zF3J1q_>nJn3+j+*eO+M)O-djXIcJT3FqMlRgOMOwqiRo^m`iI)rj7447lfA{aUo*O zI_UtvhCO6mXGmP1Qj0NPD_nToM(d$c4jHm>!lO<9i2_;77QjyX4VkGFOX-;u<F3&O zTP&$u4yT1?UAu19JbAM!CJxpq*Q@|C+tLx5qN5C$)~WQO5>T)wkUKi(Cudoj`*H1N z_KEDP{}-GfC$!d~GN!Yum8D5abU3#wZ5zgyoNIp}m8_n{s?x^9vNgxt6m{nn>{sDh zi^=F!OD)o@;)brxLKA!IT!~#k^;=_oNMjMR#u^4)#^3h=&W+KrbCs#{EDkx1NpnZ^ zUuY}Z?zLH392;<>3fj|<e%gO510pzx+5C5poG(f^|ND&j#^u9CcVZk8d2-=@kKEQU z*VX(Vk^iCo+p*@Xq&WEsQkl3w^3(1B`>?;}pE$}bCCO))SSegN-h*toRL(dgNFkU- zgFsaOgL=UiWIS4$LV~+y^*`MsQ?gFHE%+3z=bHdRk0Rdri%VQHAB9NI-BzvQ#+8Up zxFa;Byb>o`l($V&!rxK;2bUnp#LeX3K2(_y-c3N4%_*xK8r<|?;ri4fQ;sVt>{K>J zs7WhHmZnG*1qJNts8;${X8=AjF<ptsg!K3e9@lJEz>IG~2VN_NO3k!`DHMmB%%xJb zxKZ0NcjGhJ>8lz)uoF0;iZ5E_N~}~@Rjr<dLB7ab!4HqKbKNh3KJuP_$1&ehZ31)L zm>PabE=|s?GhD|Sss~z?h!($DKQFy;CMQ>4u3oPSSMnHd{cCyy82MS?CmW2t%pDXs z*k9Y1|D9SU@&GOI)MRfo+5L~Q1UyWHLg-1Y(XUTYBZ7q4lU9p>VXr_t^vN@(o=h&{ zWvO3`U>@AuM6O}hBZv=Rn;sXtp37MUnyf)XSLbi34lM2#2^=V^2B!{Ubijqh%wI=@ zM+m;T=Li@1_f)^+BaSqI&rHu!1{vvSl19Y$z^v06Tb18aIW51$`LTcT>EDgPnGI%L z<5G8-Bj7Hqio|Ec1b=<t(tmfQLz$>ZFe|vz4+3l#2v^kE$@tNk@@B=S%`hH!Z6mKZ z!T7iwN<^PYHN$1?C}Q!+$|s|^UBd$3sKb|$tW~habQ=Tdy#?I@U9I=AH>E1pPUYGj znSZ89@XwM;r(Y6=mO_tDk##bd<zlR}RucvqRe}?<Td_|-3l-Nn67hsz3y62XdZ7V( zO@ZjR(~e~(Sl8&D$5L<tC@Y>u|E(S`$&QU3Bc}~bdVqm+1#hZc<6HOFELzFRcVruV zH<V7EFp-dNY!kLr`f?af2EHzCz~5<tJ5uBW)vsKtV*_?e50-<NJnN!!R_hl9<9=7Q zu}<ROj9R06;3ATWt5YtiehX$@3d#bk1-1k3`d5a;y-YpMPY@M<J5?P%I`1k_5kec{ zoKogZO@;ngX>rC7`dGRkK6DN{)fi3@HEhLq9Xo|+N?0=e+nJh3S<vo#tSVXN1&JZp zCRp+#UkBOx+pg~7r}Db16`yf+TDrP@7LLeO(oPtSnn?6jDN8AoqW|gIw{!sRoG<GQ zbo<OHrB%opLWoV`D?_Q*%^yH{0~mUgwBPh0E#Ez5|J$6nw*3t!h|;kQL^&f)&bjQ> ztzZ7UQivCEU4GlgWZf=J%VV3ZUZ2ma|6yo+3vqK-7OyFXqZG&SbS}xU(B`mb-18zt zo>V8QF0eqdlVs%BdgMxt-s|>^L~@Ya^%OowIt@3Q4J|U|q*zS{25yXSq>1%bmdnWS zm=wsHAsLCj9La`x;EK3umgZ_neMgtCE^{X<_!bQo+MR#t%D-EP*rcjmR?uAkCIO+) z3fN=mK$*#{TH1I_%oEzHZ_JYcq&*f7Ef#NkX1x0-gZay{Yuwvj_sULn?}-Ur?WAz~ z4Tj6y7tUPN4>E2WJ#XZ5{iRHq;pZ4MGTZi~s#jJM1lU8$G)#HsXTObzWeqZChAN4f zv)7Wt<_yG`0}}lI5y_{ie<DyFW@J6gmMf&pkd8%nRq7BB)%~r`Un`lB;v~1uC0J+{ zSIXhNbt<x|mwam(CJ=io)0II<T5<dX?NuN89lsSKY0DPcy2gnOlZt$^S6qKUp|>UU z4=udz)UWp;NjCJW3UOVkJ$%{QVM3Xv)MPl>Bx$h+Jg(4V@(osYK|HAR1{P^SUD{8o z<_BC3Uv~)(`2_7v>xC*}=u1};`7=Hzz{&HtIiHZM6R~G=23!=R2)xtNvg$6dZYu0Y z=GUH=QpqG;z7Md(n2uTSTZOAt3J#pSQ90xE(o%R%yU<5kum|K%*Y}Ja{#jaoTMur3 z*aRl+LSnfQt(_(d9VxO8rhPQ-EVGi<)YN$tINsbRy3gWV(D7MGk4buF2i^vlr&Gc< z7h<zfag9})*f8|P>5Wv^wct}#mbV&Z*>@wXu0ygZ7rr~nJyT$`a2ZnxyHX^SWcrZl zYx_3Xe8kNvIPNH6rjtMswydqL&6MYeVG9_Fw{AM42!0H8u8(3_50y1)gD=CdFX0Ea znD1+VsA}MX)CFI2q8t{r%3@!wRVDIy5bkg#B%8{iev`_n)E~k7!!m`BjxoK{gY?Q| zojY>Y1;}iLX1oe~X=PEJtApdwohk%-45kT`1kX9a!3`Z&^@U3I6Rouj9q=f^`Uh$M zI^YYEt+g8v$)M2P@+ebrG5^2v7{!Ef#lEHcS&p33Ui?ZMDWQyaf%M?j#MT;kht2I@ z+2=TBG>2>|${pgH0;Xva%rz6Fb69?wHoQ3_Lb|-z=;GWc$9xFVL4Fj~Lb>Buy_{G5 zl?mblI70Fp`<scSPj&3<nezkN$dBYJ4r4y4hh;9goKL8uZ97hXh{HQz^StZe4h!0l zNk78yf%E{Jk4;3KH(jS<C?L#`WT4XoB04u=ZO=rkGI>p;)}OVZTUg?DV@%xPVQxqj ziaRv5Y7i3y>|zWtROQzE>ygk9G-w~_WvnyiE}Adc9W#{8^hyo~tpTrol@*^VYjs)) z2T<_m$mQ>b+{c*A3Dec77L}z2d(_XaMkGjZvb}i};1Nsk<`WEPq2Y!hvtUM7+^baz zc`mHks&nmk#q@@ffR^m%j4!4X1Ur=mknUFZg&+7UVI*B}Ygi48Ul-tBlYtl^A?(C# zFne!a_Uy$<f22WG!iYgsPY#DtWs2fQVjjAel*;FX<4AJv7D7NSH(Or-CtID|89*#* zn3U)sy)q|BiW1}4=9019d8H)phCn%Iw(%>P*CkLN*(q9;w~EO$UD?;Z@JL274}~?C z_x?qmFXg;7PrXu#HMllIu03_S1J#1QZ-p>n2^}4w-ad%L(S{NFTish=x1MbF>Y>xg z6i%cD{oQUtWU%hwXwx}14~$5*OMA+wuz4@`hlEgE>&4}56wnSl3trXg9A@ra>tYwj z&aFv(n>=p@XuSPLWLY!n=8`e)@JHVt^}e3^uZDEl<-HXbM@Dvob07bk`$3dgzZ+is zD4?RY(@xU<Yml?A=u7WGBO)_q3O5#qqf%EbzQ^i()m3dJT0c3-z9>aym){~<t&wva zYX%1}f|>ApcN#DpM}tCAI_R2Wb+4aPS2c_t9c2Ad_H$?NOQZktytq7m8pUq7X_gal zGxbaTw?S4;`DbS&p79@%WGp?bD{U(IYt|s~%3d0TS*A#&O=&)MvXETAN0FTVvM=u) zv4~^JtFOo%i^Is9``F`)ySLegvUh_VC#w&A7k50cKS7}#BS%uCRTP{C?4FH-8;_j7 z(WspOe@geUc%~)`-g<@1Ss+q6;8?Deb}(fS3mVww>es!@fJTNdm`(7D#0qku@zC3E zm|q){WeE~?2p>ysu}6>N9xThTMBNfzVtAN)3C?p&_AxSl0qI<ZRXR40*wf}rA_SLb zB`;X>liO%LjvZkN-Jtk0o#dq|2HFW_y!SX~2Hb|1z`5T534y0%x1qB4f^<iZek);X zgV$I}S$f{iz`f{@o;5Q9{*GLw)5xmZ)RvLyFG^+TI@GuDV$AVc1AazUWC};;b0ZG| zcO~PWCw2yKf5XZ0drRHE2$t{t5L^1%^)MS`9aul-#$+pKyD1d3Q?!S`e}z4i<p`3# zZIz`0X|1hv36Re#+vWx7B&eIPbkv5J9fgBE9BsWggm`WXH&k-PNv(gxj69YK+6HvN z=DpUa4pULU2n%NXgR*$^dVA*cN&X<g^(!A0QR3i&-W)A=JL@Xq;VQ@V%mbzeJv+(L zN1rl%VjY*&E_liq4A`J+07JsT^u#Z`U4B-Ln3g30{hiTmnRcx<l%2|J-|8=xX*6As zPpHmSzs+EpUIosr6ZK5wWM#7#qrg~#w+Q!`yGxSmCo{Os)lJYB`ZmMS<4LMRr9wiL zxTD*+l=7WQ-R-`FcN@=Jhe$6I|A4aBDO*vF2r7s<AhI(hKnrS&)QEfZ^>d2x>wsv) z1U#C2fq8FU`zZ3BVf<G^$(bH^HlrOpAppu%dW8(MuQZzYCS@tlB7<4=L)Z}0?}5n| z3*2{9^yfXov_uL=pU|bkkVqVz)CJvbYLLf`2q<wKaJYo-4${E9Sm;ihij1<y1Th4( zl)Bz#i1<!loV*N--r#-Gp>nEzv{=&j-%JU<XQe{m!13liVdtruGYuF9Ns~E_74W8d zxV)E~^5i->-rkiE(|7y*&?)6fyXY%7CUqhtbu8dzmh!>3Y2(&#ykL+iJ5%VghT6W~ z1i}PVW*6vSo4Kx7UCZt=rp)`d%9whjqOTL+y-vR_`*5<!2mL>at}?F4w~eBtf`A~M z0)kS~4HJ=;?woXtMmi?lEg%ij(%p>iP8r?O8#!R?|L*;?kNe%*b3fO0opYUYocn;J zsQ3QB=Gr<)H$1hw!lm7EQZm23JwdtAfJ9OA17)O}rH!ol_7smS7}K?d;^4Z$e;Qw& zR0?cI_@(4DUBFNyK{cxJ%#o}7UtcV>N?x8DY7|iKe0ubVgJeTop)KG6^EZyl+m77{ z)rjT;XfHRnGdi!ASvUDu2<rSc+%K%%$ZNfEwe)9Js&1Fj?GgeA)7v>bT`ce?MPR}n zl~aZ`sdwW)K3j(#={|hdrAX?@{IT${I+^FT`F5#e|Cgg@lFXOa>%qcH=wEFrCEwo* zmM{eQdwwZ<Rf71=mLWztuR~q*dOSYgC+$=C)^m=1;ELL9Isyz^y)}P|L~$Ywx`T(7 z2bXkn$xP(*^v}*NZaxyJGV>{%U52+d7`eH*T$YJY3ADbf=I5K>@$U4ndsK7wa~F4; z;;#G-T~<?tI*^2F+A-gw-~Yk+;9en=RA3Jj5+Rrn4OxK>CG0p$L6?nZ{r8*FcCZXG zmv%(^#$S!Z__2Cb)-j8iHRdB~wz{kKyuCE%$kv~m6h&Zdg~z@}qa9w5(rw`1VI-}` z_Q@s@8mbg^6o^wg?0>MT@J8>P=k|>b9IAJaD7su`$)&0M)+Uiy7AN^4H2xl2#tFE4 zcx#`&wZD6u$u^h;AT}Cg9%MQRq-zh}0XZNmXxn8^&GE~gy<&-bwb-@7&=H#w1pF6I zK{_qnb}gmb^o}|vz5LkFIjZSQN`o~IEP<^WXpoJWr%p(;!@g8(Q;3*5=8_q_{rzC; znBSl%O!-&ZzW8mdLr>p_o)Pq_-UZU;Q5=B=!xKtRsJTmjd-wNmysLMV`LcL@RN5G# zULS8AR2<JyHj!v7!zUozEKFll--<(p@1NW)yWeO^7X;X5ZO&7c6*n}{`i{9d6*7^) za6u-u810f)hda?|6YhN>Ju5)RKHDkm%#(Jmaaiy(%OgsL%#P5l%?d4y*@AI2EHrJt zMlft+)oiuBRU^)p$CpqP?+3mA7^B0H!Zh;CwW-Y^Q4ZVom}ylDX0_B+vOef)Mxt<V zfWC}no&434E8^}!v1pU^V3>B@roC8T3|Z6UfG3}lSq>dJ-cBB8{aBYlaP<rYgOHmn z;ZOQxRzYKv*}sU8A>sB|Q?X<{>$D4Wv)~_BJg}rbIZbO-`<HTWd0MRaI)U+Z^Lhp# zfi~N##s;pM;$C{3%Mzi^qFjE|Zd%h?Mj(-8yYrZz%D^c?$>Ns@<1%!mXK`)&g=-Oi zSXyfTKrh~>GLCO>#;&f6S~sqN%j;oS<d>QAz!8PI=+3L9iUoCuU~miU1(2B`<l$@s zXx)3JE8Tw>{U0L&IpFk>XW4YV3Xaz~A{-b>ZDKzQ_!kbTn7VZ$ZtD?IC4HHmg*y<c zV=wY8d9LlQMg27~m$|g7wktfY-21A87i**Ws4*#4ICd60AiC4%w=D%5okODu_X#jg zdMkEg9ADVHu58fFLOYv)5CDMJjB^a}X3ab~vzPt(pz;u~$^75^S@%1CYnc3i+DgqZ z15u}rM>QfDK!vc;n6=2$nE&W_ri$Rl{aHWwMxDhWw5TlK|IemhCdvS8cSdo`JJbE% z7|949%Gn`$wP9C7+W*Hk7<zyce@y0}Y{$WzShX;mGE6y2_L#G^iD3H=<Maa7(Mx?X zL??1`XUZ}Eee$zHwX=sJy^vK{t!22tmsA%Y-4SFE!z3>9jmb{JZQ<fu*|*94YI;~; zilmfWg>&)D2meFdAMrwOYDrT<44adeP%1}H`a9zsi)r*)e^SrAYX%r_{Uy*2R?a2< zB5-}Uwy>?laO*tVTn5he<<8OS!9}Wr-(mFQ>MapW7S;A>j9}B~P$*5C)@*Ih-Pcz* z;3XUXT*0^(a+&?@Sz~T%%}9P9+pCs@{L%j~PL@xnkt7U#u>kux(_{W$*Q<7PK)ZgP zc<FIp)OCOx$5+E!Z?88OGif*Nl9;HMq<@CNaOZ&*1&KbafwDu<l+oe&JN?_5A4t33 zuU>I-7Y;a<uj0iUF^Ijl{Pt|hH7OVAtG57Y#=bf><zIxdj<0cQl+$4f%<)d4*@8-R zDkUBwqgbe_Xq0?<V}Nvw?Q!;5EecC7B7M+pC4tCb{!dXn|Cx)4$tc~x5V3+nJ%1}Z z@fe{3jS<nb`KP^QwDI0^E@vAUd9ZVV0n5^jiro2zd7x$dUqymw#mC+pH|c*uTU!`X zVly{6cZuWfwG}cPd%>&5+?yrRBIjbui`{r|0blN@EjlL4a1Ip;`P}<MLRW^>TpuUl zaOms8K61)$!Zxnc<4wMr>Y7m})=C`ffpUkTjegG0y(3hGxL!9eA!UkXvA%6Zb}ssV zWELlM!G#4425$MAz)28lw`vQO$<j2(50rBY5m47M(@)8%QYDgW2M}uJ8OIu=-_|5n zc2#u;7F<Z~f{!5&7vpK44Yu1An2%Z|UPD*vhUUED3EV7Or~}tDR)r1K^=M7f#No6i zyNMb*k46$A6@L40fVRh6ZdhBpubVDwJlBb#o6x@yJ?X)u&pA0|SOE-cA}qG#gF0V1 zMFR&7&(1~(`D(~Be8k5@u}H}7d}B$W-E@d<DkRx^4BE9X+9@a5sBhVN3jhoWx9`s3 z5JC?Pw8>H~<!s<vQ^N`c^NFj}mINQ@+S@#4jJy%Ox$XR1avl>jc2wD1C9?46*dsLg z#%>i}_aqWH1jgv3D)i@=MTsJYRSb|CI|v#*A7`_-jsMPBlD4Apim|>NCu3a3Qi;Jj zw0(rnVs=clZheSBRRwEk3hZfs7bsXgFQKV~xU!7@!uxBUF&&GzBi_6B27+K?7&tT9 zft)I$J%jbE$Qn`fVMvKNlDXmU?OFjjPM?zASl#X=WXQNs-qg4u_P6w<7!h{lm;AzM z^(=K;X;gA}t7L6Z)w4EHI?yHOIq0=cA4D#2y-y@8eNY+yH|PR@(+P&ZmXL*)%w4EW zu!3kb|0s|=kL@Wmizl3t);+9Jdld8!nDu{|Io!WV)?fs+^DW*Am$zWzbW=WfzacU_ zAuY+DiAcDuos$4Re(+a|zI*`1<gnsKFLBA)61XaDe~pgGKDU&qO%$qS4C=+46qt^u zCa>B7MOA7TZW=ZjmHp!VGGNL1hZ*CHk?@(Mq9m`W`~&2JhDLM5%5)?}le?PMu`~2; z2h|1V*!?a=0Xsm;Fz_xS9M8@iOCZ`rEJNVDy<RK|YaLBW3^(O(=B->bw?vDL_unD0 z)byogrsIwt*lQI0_J#qg;h|MS1nh@wK}l&)U;n?%3t)?BI)BmS^BcTQ8T7Uvsm%Wg zxK$3!XKbUPhc64AFo0QX5W&;H=TAidTeYCPrkwQtniai1D0u-O=A5Z98n3ZJd4+BD zgY`xVM?P<v*P28(#wZJhFRY1OGkwvn+KB743Du>hnfg`G*Qv{g?F2k~bYdNd0{3$N zhZfQVZ%C#Ow4*{in2tC9mf!v*Gv`^w7cKrqQ1|`{UtBTx6quKV1Id=8zSBiKJ~|`S z7gE%-CNeyL?Ds5j8>|{;lpmO0#no%B>Jti`iN1|OMT6~$BIl7p^MVYKhRY!iNUq&Y zQd^i^%goBEfx)<!6NCRUe_Yh-OFhq}zn|DZn83*kBq@g;8gM(@fy8v`@k=C|8V1yM zgb`?IEwX;!c!T|FzpoABS@zbmAQK-#Qp47)?=2f>8i^s#b;InOod;p0<_8^z=u}4x zLz+I`hIgRR0<4ZD108PWWfD;fOl%u;W1M0(#aFe@|6xkp1@yoPryJ1y52JQ7jtv&b zxD4!VZa%PG$XJ+mpvG2zCc)2ZQdpzzU31WX8wt1inb)*A0H8*{Ms?sgB^v6M_i43) zW$J!(vn?|_klzfExkA8D^jG@Z)C@BXK?BoELaq1lWoh-}A_4|`=n*x)cQRGAYi9#U zo&*5=qs8NzY7+=?)Qj9Zv9ubmfZH(KCnnAF!IjSOX2*Vs?ANh2v9}l3E%DcoroaVL z#;*8ndO=vxs*dys$tZ1q+vx;4HV$18v2N#oFI=0bX@*NS3}P+wd~nX<ABiA9V8IS+ zu@2)GmkklgC&o{O{vZxHSV>OdyWs3^QvK8v#_+lrVyW;petk&g0_a}vA4s;w#s)ck zWo;7$ww{ha_uqGC*gFt>f8}|z1&92Z@BCP!9INX_#$$6u(*%EBeEwYGp6Ytp+H(lU zRiEt^K=LnqL@Q8N<IG=?4?SE`7Sy)4r14=-M5-k#bx^S5({=K`brE5hQR{nUPsfk; zc+T_WevvFL$@j+isV|B%B=>%p8D7)py8CX?-=u7ub9T_FN}yi(?K8|#As>lcFH4J* z$$(8P?VoK&E%ouaW%sJg<s&-_-@Sx8Y2eetrgVsuf*b=23gYggxraVw#RgjN`>U4s zi6m4R(T=p(yTunP7q@Y9R*0*@Rqx+@AYQNPPj!k;SjP#R2gIe=K!T~RH(M!F9Hn!e zR;AvM9jR=nzm!#2Q-{1G?Ma^C^!eQzQE^3oWRDAuYvy4$HG-knl<BD)$%WbPj8p2q zgD~jslPHQgy;JiG{&cw#85yi}h)Ff|Dxk2m2zrLHnf_eGy3^)+Ema3kAIxDM29pRX z1MrU3*G!HsH&&EOt98xDn$~6;eu@Jz@-pgTckNES{pbiE&m7BrLd>5NuBE^9=@mIl zP&)E|w&RSUnwb~gO?<>N=uy?#UR_+iamF`QuVj72$IBe*(?H9}Uah#xvRsDbZka`@ z`Q{R}FU*NtRR3=DOW?AyPBS<CTvx*1r0s|)LW%a9T^_JDRxym#5s^>**!f7nfNyrp zCaRo?mN~;OhSsIjXc3@+%(Ev*V!Lx_lL47m%Hv>LJ#Tgx<}=|v`tF=zw0(brLk!U{ zgz$Irmu0tsfEOU;P{0F4ao~L5%qHfU6s<oC{5oAYe=XsaJ-oQ=o25RowfNP02G`n( zOVUI&k(&OGK@{%#$Us=fm;qVSFLex2dJBPXsCOqD+nr<HP}1z2GmEhap4a`0>PGg` z+dqRiIW1jQjBFM5JT4dZzCH0?0GB9`B&5T+w2Kg%8lr#njEl=^i%4<z>Np|sD2orS z#aWjv#F2Ye4l<XaR)7v{Z+2ebn9z@*sU;{Bm|76^x{EK8;z933__W)4Q3@O3Ij5hd zucfuL9)dAC_`qvS8}FVp>;~$H6wyp`4u6QVbGuOiS;u!%?fzN8_KGi{cZw4Rl|Fd_ zDyrOjrCuY_x5TF-y7}v4v}c+?&JAi#_b)gJo@r7ku*(xv7LhR$OV^Cnpr=fjGSN!K z*M-Up0m~(;G&?uhjVgBmB?<=bmJ7Tiq-E{_<O{$8LT>C0xeb7=Fa2Jvu3}12%gE|j z8JQ(?U;mtaH))TW(NxCnYV;IyT&nYk9k#RnmpnTC)=*AI(|a!yr4-IglWOs2t9;RZ z&TeHzT-+G7(x=;REh45rDlO$*T9erZp9+^E^k(R}-Nfl6^7<I=RJDO0z-n}-|Ba;a z7_(pC>%M{2+q-Vc0OTHRU<_&y(0~OY06Q~~+5sA!`*Zj;An>X@=oXyoCX_n)SQtb- z&fHsmFKbPTW#f?;CCq(b8VhEY;sl9h%zaxt_h-tKtB!gb4c({f;}F8RkBKZ|V-UgX zmw5S<j2^q~Pz&J3ri;NP819*)<@cBXHW{&&R2I-1U39S&h;i%CdE+xPvYKT}`LfeJ zuPC;{kM;Z<ISr7g-c_@*BCl#u;ra&_0mEDlW53r#0b6PY1ZJy}XS~f{(e(5Eu1`Ev zY<^T4`P2IPTzKp^kI3so#0hL#ZON>$zJX$T|3bI_8Y*MM0*^1mUFz<7YLt?y8NP^? z`iPh=SEOo31XZq|)D8Wp;QD!)!8!0FQD?9=nDy0^_SQGO5o+roib#PDk#n3m$8p?a zQT#>*bN68l;Ie_xGqZZAz@IAf<iO@-I3Tn&h3c$<x}oH{J2!nECV78zuymm*%~#Zb zrNug=BOZA5dM!85=`h7)IC!r^v5x<O%?rFuiR|L|G2hAc{77h7_q_#Y(66*9@4W=q z=<Ax7=%&F2qRY5zM&Co&832ON*nBqbO2{Y`_0yT~I}CGLr;^yaPuL%F5s^y0Xpe>- z177+|le$4Hu5bd4iML#@*E3-Nf-joeZ|KEBmXRp3>!nDz3VQu;Nv>DS|1fEuQsVLM zwr27~R?aT(OR3d&f4fJ3-DEk^a0bc6huZ=tYpyGrBKn-}`wlTAxu=cOJ%(`gZm$Xc zZlaDH3Xobd*}UkBRXYJPp{5Mu($e9pJuO#cz>lW$XT8owZL+z5t<P=%>WA@d`V7J# z*oo{+(0>?-j=%LUeQCb-NIy9A-jO}|U3*rH1IbiwVu5S>C|i`<gY=AM|F*q{X7c0Q ze;CYjZ-O*mVEpr`Jn3kRD0yWuUgoCi{jhvPRt**~@%Vt$0yrSFc2?gH8C)yxphFdX zm^L6u>Yz(iN%Q?ZR~lr&s@<^Da4^Ts;6Z{$OZ&XlzLO*OHoGs~?OYiyoC!jR6s;Kb zLECJO45le04VQBkbdZKjf_c1e<o-fQFYp7<s`!j2*)2gYPHb=P6d>Aa;D>M3;M&|M z1U&I+2rwmDowwaM2^f&%7LQBb-+Z?0vco13A5r208kH-2>lT-$+D|F9`Q&>I2=j_X z0h%lw_=@85Ey~n80|~%lDBpqpJBKH9H0>mSBFbnGx*7GoS>Zp7dO`evKV?GCr!<sy zF&u5%C@&1b_>;pCfsFc!-s9BA?Z)Xe`=7=sGe1yKMZ9hHG5E)i&}%U9=IHhG)oqe0 zVNq6*PV+0_<GCCY^|+kYxu3>Nnc_F~+I5a(z`yotL>v1FKdK&&{r%e~JWAFYHB+)8 zB3@hBLst}=O?!Qr3bt({5p((bYv|S}*Y3BSW4U+9s@$yLd%+hhQTs-%1VO?q+^2jx zMt~1fIHHtN$^WG2W<3lf*uZ}jL*cJZXN_s;W{dcW9JbrUvqeRR>5<DH3jAeSV7K}0 zVQDe;p*Yg*27Bz4JaPvX$^FbMetLy=48#&VX3Zf=v&lH~(%xiaNiV>iT9^{KYEr55 zn*4^1o;&=ME#8HhcAdNo5zNgH=FtRG$IHD4kd=bW?`Hm-j**eaVaD&36%{6w8=FFr z=igUY6QMrwMs#=t>#Nq!Bz>*hh2Rmnk8fM%tL_x8FcJ%%cAxHO?))c2*kILq1DRb< zQ#n{h>0=R6nw7TE(SO&&)C+5;!M=lB4(}4;51wjr7=jBFSualymhv;-GGkPUL=Lm^ zFQh_ShbQ{!+||8@rRTpVkROwax%mje$8-g>dPb%wBym)ESM#eQ`ntse=<&ZSIGK^x zh2FEQH1mlE`||Bwa*QK^l}7eb9~YXqq_kUGGSz209aF!(Az1o(q;yIy#C5DJSro&o z<JwP4BKDCs*Jr1Rt*Lq8oU6(#W5uj7T-auslIxON4YF<gqRTa@k(lW62<5KpIGly& z+B2={M<g?8f7I*%PxPgqEIQH}1@SeoIK-vCx(t4qFhj_{wjczJ3#X!%-Nkj1-<?@b z!%B8D&wzf?b{S}PopA#*sIq%IY!S}2SG3@!UL(bpz`91w?o+>;WA7wCn3L!FPp3|6 z%Dud~Ib>YAi%p1F?eUdsv1f_~1$@3zYPH?vI1s2C_H%B%wtjI?Mw?hjwnuGU$ygg8 z#G+}bS=^lcC&7Q0?XSy+*34bCg~mPXUjr?XxNr%qa~9uwhaLts!>Knwq2C1}>vD3j zS5T8iCLsbBX$N|76yser^N>)oi8n~AAr?8eVmu`Ft>Mcy_*rh@e;8GI4mEEL=qDSx zd??vyAABE|)k^<0XAV@onusm?i%aA4DiMsne)H++?hC1uvc|VW@w)S-fpdW$7r88T zC^F;1pl))qQyFFeT4G@ewqwx0&6oCb>qqT(Vfp-Z3)i5uNRA)m2jh-=1gpPX2)>H! z*#tqm%@L{9hVpQ6#YJaFw5pQ`58<xuLwezpXHLHV>-8vumHI1>Op~FmGEg(GilfsJ z%db%<q4s7;dDpqx0qODd*+BWI`0zgiS0~g(s;t51RubPXBtlkOkw*z|EsdGd=y7!j z;aRwL@&;9OnFMX4kGh&nqMH3>j-MV}DCOJN=8=htxb2wK)rDHx?+?pA6<sBFn+CTh zA`V7TIz0JR<<*#&Q#Gt!zJnLH-EBVQqS)0oc4FB33Hca-n8nsv9!|6#BD)g1RqP$V zWM~QE)udzHmp2-v2I2}QeLFJs*LAe%U)Ekf92OK$T3M`X@1!Oz`ST!5;JCXC@d7nr z;1}28n<U;LCW*aPW)?vbvCpi{m<8-ez7+aRT*}p9P_~M@Ka~YelLKIec_9qAr=9$8 zEfs_#Tv@#?WIX7iQ$C>dct?OTUOemX_vXgVbXuQq5mgL=%VtXeFB)KnfE)C}I|X6N z0}M?bNRVp<qT~UMw`-sCEj{R_eoXmZruNdw11oW4JPtniGW(Ql4cw~**eU^%22%Jd zG(1Is%@u4GP#pGkh4#XRj(?6R+Fdd<&^mx-@ua2~Oi9+s1{%K`f|3<~zEDrta;9uO zBpamtiqPWfn=2;}_rEI3YhP^J<g@GJofQYMcD=sX`uAS5>kdEz*eV4#qs_@FcGx2K z5z3GH{^E5AE$q3o$2W$Y?#8BlzusvL=rQe{C6b1tS3|s&U@XJ$!Hl^}ZeD*Hc5^Y% z?ki8%FbMMX3F>9xqw=~P47DI7CdB}IdV+46)I|F$mm$&~rc|oGMit61Lpe8jKh>EI z{GkzL?;tuMihyk8LSUcKkdA4bMOoldE<0L|C?U;wm3+8kTIwtie>4Jee94nmn@amU zt$1YU&|DEPw?Pe8m8a!&>#VN&pqhDCsHCS{ytwLl<GgU`s{dljc<wLigMfH3-173M zo5(<LwKaZ)tFdfvp;S|KGm}O(O=Ft2rluGygKl>f!K-=b9OqNBEob7uX&`+dmcJ|< z?N3EwDpl<89fD`yFj>03##9BB?3yfcSu<FFV?c>}rRg@=ESq=_Yy!YgU<3=GPnkd8 zUljiC$^aTfYtc_nybzY5E^=8MJx7^?YhEeqc8DT0ME8=8ihRRQ1-o-Edcg>}n&#bQ zng+B5Z(v;Xz}WAGD1BoAJ4q_o^bi=qC3tL?N74BXO-&XK=f0lz*V$HR1Q3~++NK=w z%a--it+#b8ERX0H23h2iI&o$C{b1_P$8xyx`ws&lI{Mu?*m)~2a+BaXW;!}VDL^Vf z=|Zo*VYbwcnYU|TsR3uf{7O5+a8hTNk1jW`&yt}klMP8LjUL}emJBRf;px$p!o)@E z2tDJ!{7(n*8|t{_lGwgKfiQhF1dCTJ@YHv6NDZfO<QXq0kw&-o@W5!*YIxVUZcn2l zYU4h$E8&o0n*mAd4BtdiIRRI!@A@){;w5y*gC7X!*~Mn11shhI{;X}<MG-`CEx3}s zYTjpRb<w{U{VN`TiNX(gRIvlnp-2!@^Sznuc{tvt&NynX7FxswwHN98#ZnY$y~DQC z)k22}R0PyA$o5Sh3sFI5Qo`U~5-BlbsqAhR#Jio0eT{D66q&TorH^A{RrgCx=>OOi zeLx#T7TCFBatj#RUc4r)iyvb%uWN}nm_F`ZqH9vANTbkukX<q7_i0up?ZZmmv|1Rz zK`jA51hJ9Sx^;yOEHy6~Mnsvzzb(9`m;4MxakSo07<m$y>+f}jvG#K~-X~ho;KMJ@ za?sFA#uFrv6=ay+GrZiGKwyLb48ZJpj{|AvGv_th+v+_a^~pX?+}vibhc1Vi2j8%# zh++JP(PoWCZOqX&7rjD|tt=_V=BMe<#wK}9>4s&e-zS@QUO7*oeL&<UOhygy4sF^k z;Zx;ZstX(X(~{ou@>0=m=S&mZg)#C2Ub>MO1|P1-UW#g*A&=qEA)S(k=^P*(zyR)b zL?<@`$*%7mJ!+_r#3X~#m0NlKwF?M+<rb(Y@T0AhNHG>`ykh5qHb`iF2^NTF$jO_Q z5Pl3qE&qo>)uhJo&y*j&zb6DC@t`3h^-kq{8$4*UAkf?#yi#Qu_GPJ#MYp-`S78dM z2(Kn@g9=avszC_vqF#h=#W)HN>W<If1@bMRS;p>t`<eo9@ALm#evvK|Eegccyjh*( zlw-T{*S##)l%b6ZA<TDQs#%>;^eZfms7}$FL8%?0Z&5tB_p`q^dL<!bM*=``vs;5G z@iU^++|iy7HkK|Kn=u^vCZytw7ia05i&qHF$yk}<I02BOmKbRKRh%mk&b#T65{kD# zk~L}W3feiEb*W1uS)H)G<T=T@O7`gIKf~}aUCjA`?Naa2U-o};ly!HZbg5Hi$0Tsc zV2`gYW#|Nta4q@SH;TUm&sL+;ci2uF(2te?%%l<u90bQeJ=0o}8o#yxiJ6*`QiIkg zMw5)BPDaj5t=Txo4}mAV1@vB>ZF>C8%bwk7UmjnUJArw+d7l0Riu-FV+<;#nONlOU zmn@m5$Ye{N)+$OR;8X52w|e}w3fet+6Fa8p@I#R;2{xU8<lVJtgaHOC{EA@?{G)VD zjbd4Upo8C^uPJ2)ET~w<G23|4_zwa^SrWm1H$X!4Nh<%tz;{5#sSVb7SB!Y3kJK)s zkM)5n&lb>8?<0&RSOM?%a*LL;P0$-FFlUB{n>K-(U`YM`^dOxI)8+xtR{cwdHt9qz zbB7`&0qt2_-J0$K?3yvXz9b#Q;aHN#^~z2Tnis^-I8_Bp(d(S)WQO&t!`Y$)uiW4= zHWemD$0@_sWOa0*LXNI31^YS^3gkRVc`59?ci>aB5)~`$sXUO)pA8Ne+>ELP_hrGl zvV&!I7#Ix3i|tPA-h3H#+1Ua4WpkuG2QWJ8tkq+iC3wP@k+gAeqds3{Z;M+t1jm+I z$SrYa;;{H9LGi{YVRoX1RoPM_S+>uCKC>>`xKqc-E(BTvg-wYz{#P9(ta=1`Lk0lE zf__H39?#bVn1--1d_dUQpYd%CD4h(jq`t8|nPI%V+a^$}zeRJkY@DX#IyE2kpM(&p z+u$(rC3L(k;86lms0P;y4`i@=XcTI1I$JOdEdFzx%ea73T(zF{0tsm_$oSn7KSX!I z)E8E4?KQeX(}RX%UU&o)tyL0uHb#c)kL5x-BirdEPp+0_p9%wMl*Po2?1f2K3Yrz2 zUp$vA))l5=KWR)<xNoOdz{!V23<L3xZs+=-g9oWB{1fJxYonO;-3L*b3gJ5z1a-CV zyvRl<MQH2#b>o|D9KQ;_K$6OjL7Ss0y=62y<}D2z_7wM<KTbHaf1W7N$IRxzNR{w9 znhXemnO_X&3e3&jI6J;;i<>YthMmzHd%wNw8|h5zx#t6mop>-nWd?*<CmRzeS=(?Q z#3te$FOUtbm48$QzCQkSyf<i-T08)gbUFuYC%oA}fVXdQGYZPANGFR{rN7+~9<yw| zjdXC+n5WTxoo%^Xs_GQDS7`0iT3J4q(CGB<`pjL?1h^9s_HHpv^xKjE*1UBzT`zjc z_?Sl}_9~G|?!^d4G(v5NJhLT2&?xVP{nrvyZ!Ap&lN#q%D;<v<9@-Ot4s`l4Eb#3@ zr=k~Z$@%sAi}US{r7f?|e}rVq$u&~dUp!Y;<x_P}28BKqNxeA9eVe6=-Y0B{IDPm^ z<OS~Pqcs1K>f@pyt`s(6ymyP6@+jofUq9rsL`0!ts(qi*a(Sf)+_wzWNIpEl9q_Ic zG<f$iy9%i0mnH-h1nasOS{J$j%%h66-&IL{_|mIzYzZsMCj_6QSNU9mmZ}RT|7yy) z@CKdDb!MLIyqnk{m%^Ll-WStOuP7fU+<JXMLf%Ar+S4Ct@_WriiG(9YxG4FH2Fe4m zFGU%9eq7}={rAJ+Rk6nlhW{3BiSQ9)peKgGZk&!8^F`JcSWDEoAO~m!;*xBjKcSRA zy%Bi{ln{%xyaJ-hdgPl=0)Qr|3LBS6&cwe*k(28QE5s;&lpy-vP0t-s+YBgoy_8fs zG|JP2O-GqQKoG=jj?HX!rb04PtL@)>P9sr9b4Vm)wfz7M@z}jmdFM7spH)=gDQb<= zN1EO%k+Zg3torf9)wzKgAFH-z`C7_iL4s~4PHeE|hED2$l6-?Egt?cgG{qfNqB8jT zGzDeQ?FoUA*Q}!#ubw)WP=fH5=o@ka`i-^wFbexCx{hx|CDJ#8fl?<7O>DzYell=C zM5p{t)|u+^;AkmpS$c9n;gkxiZswr0%U6)Y)Q0AO2AO{K8ub$zQ3+O3dT{Q|i`rnz zptuv-P!e))S7iR_A(2x+@z34l*PyWKm5D}Zrn1Z)5tJG~;k9@Bu40QjZT-5;OOaki zJd1H+->qO3*JU`TZtz+hO8v!r^&%$oNi0h6ABuIMU{UI=$%v!*tJ^j!qgYZVAK7{P zY#60Qtoxvg;e7qt8|DKmuH06Z+mj<>eLAvu-`eKGiFBysVo6Kcm;6Cz^aXpA_{OXK z)hA1O_g(Z4A}S~EgD&|#!`qZUNYQ1d$}_mDS;1FYB}Ms1hqR@C&(n4Zldb$XToiU% zFQUXe8rzLbx18nT1-D2ahkEzm*?~F-fzK8^R6aC0V+!PI`|iCiObO{2ap$zhJH(E# zSjFl3)0k51o-AlR-vLk$q%s`#fRpw{`SBHxByZU6m}4aiXq5i?oEs>Mm2I;Dk%u@d z#`u$l3w<-#pEr(ojiTLc@puAVp7hT31J1%=?NAabMo_sh&WNR-0Ze|I0XPOx20LZw zs)f1^et?1-1v)%%<D-Sj&}yhU48o#p!ru__2{Zc{No*g(;T^yb@dbMJ=!#l^uWbk4 zAyq+VfWN}GHi)1{1q4T*DK)G+%jE%ho7+U#Q28F8FspR!UHb@2(pb*iNagH6o3+2t z`XBv(xJO}hVSDfI49}9QgV&tBdp8`4<Z!cSjrbbpT5*i0x=+I4YDL59-b#h~_9-eo zZ`~OK;k@nD^D#UPj4wrH$7?IbnqA$z#L*Q`d7x-z!+E95Y&mjnkP*dl397GlrPdEr z;8JsD+iqJZKV$!w@TDtD4i*?^x1ERIPuHAPEJIe@_#rN-pE^tj!$bVjZfs`2P@A)z zQ-jg_46FNeJBCg=40WH88}xOr8KB7gIUA=mbDwmtX-uhrSM-tQ^AFz-lxXSQGSxPO z>?kv^m^;Ojz_W!fu6R5=Y-$ltUOm>Az>;2ZFpw+ypj6{Zyd-c?j`t@?f=n#h`Nak; zQijk<(I023wh^8I)Z@&Pc1`L-xv9eSUB(mAao@{=-$KX$)(JHJtnk#~zQvzagRz$; zcJ)eM%nzVijj5KD<1UoE_eSxd)Tk}%&Tu2YDh`8qmbxUu{hxcmy95)@j`D^D@ADqD z11CUmrMV-A0`0Drl*xu%Yy&E5D{J-h&q??$lppqXMV@!3uur@j*<Pd%FvN#`kjy~V z%Lc%Wwl~^q5gX9s=_e*pUF9E4Bxkft9mtxNr(_?DTe7?9)6K_E{-0qNXs<dH**^;3 zq2KRx<0&n!_DDmzl%|O-XdI^XFv{Qk+<N^e4a?fDE(dK<o+9O~lYiBw6DvgtJd1JU z=&>5|W=jG(Av(|iWSA&SOAVp5orfony^){(&~<j!$U9uRGWJfVG1HE#zoRam={cvL ziMNgPr1#1&eP537N9(q<th^$aP54a%fni^{KvC8sTEV-;V1gRitQSf^w+nAzu~m;w zUz$zdHqWrmpPw~mC0tj%z0s&2BXx;4s3w24O!1N@a!xM7_s8&k<5MBn>;h_o!fSgp z`g@Gxj+ut(c9qeI(SdwNZOV>hcV$~Mm|rrrHjJ%})3E++U>e#tK;yGAK$r>ystb69 z@Kc@LwcskgMw407tqw|;Ydo0-5?hu3>WR`pyisp3S~2u4fM;(XIgwcC_gqBaGz9=p zN=Vwdyk}%y{}`V{a4~G4E>$_pa~Bk9p8V`CvHlRJqt!W*Orcc~wCIJ-`8`71`+L#3 zT=p)1KL+789CxCeJysnxPzvp+F0&m#0{!~{DXaFDWq%b9SCBio3AK2Y&hmuZKb^uP zOD&}G%<{F#qc+s!<Ub4y35#uU@uG$-UHHcc0UEyy;zrk}lJlWw%+-2(xSW5#xri_> zPeB@MkfiAYfV$zcm|}lCcwV>wMC62=R39CyDTAeVtL8<&+N$S2$6l+8Z7|MJen`o7 zbg??$PYps%`Ie-*T9XL^->h_Ssx<y=a(8_pk@SO<Awux3^`UM+r{7O9{l4bXX4f^g zwz^d4F&C}0z*=n#VCyS?wM)SxOV)Vl9^Q|~M|mmD>;c%0UIRfGq~7DNP<T}56mr_i zN!f8zi|T(LVPU;Ehxsj6qXrp><Z`yiRj94MOFPgRV`$V*$L^v-R%-~+izJ24k4oP2 zcZ6&UU&zf8I3iXV8L!2yqIj3n9+q>mWu8ijk?98^xJFRTknS_c#F_sKi-z6J!7jOf z44n39o{t>@=Djf%t^MhkUEmLWP}$CCl<2MMQj*eeDodlngcl(aep7P{-bS@Ack?0E z1AE>#FYZH!AxR|zs}VB|L_Nz_AI;1_lAVM&Lqaaxs_0tEdwn)~SR9c4Tqdna_fZ<W zSDG=vXU}_s7AT;fASy(SBHW}1zBck@WcDmz<t4?$<A^ln<wJmb=IzJ7k3;;&fJUNF z!B@)TI*qNJkffgxPkV+QYq5hw@1m%NzrsyPw;ye<bF7>X0%EL_m0ZLa-YtH5NW(lb zt$Ad!g)71-)EBE+G@cT+&y<ev--}q#>h{}7inNL_{)b`snB6<5k<(stB?Wph{$WU0 zVhlj#-O+nhl}*5uJS7;F>;|-p7yL?0NdOP;9dbAA-6Dck>=1>YGA&dKj2yHjyVHf% zk~is3*cT(Saj;XoCbZAh``=1q-Rniqf1UT>(lS{f_BnGE?`xah@O<`*UUa7+eW!Fl zjTm9Nx_u1|o3}mlp_{3*!C5b9{+u+yJcRWp!Ys*Us#TAh?2}J8PCPfSd$7<ruSdD4 zpRiNuMmIL1cQ-E{hLl}E%Mr|k=%2$m6Iaucx7Ng0agvaI1s0b*Q#5IuJ}j30Z(-$- z9hA2meLrv>$d-*6fJdA6b@?Co6bJ(wEek**H{RM>pr#UfGgD&(>M_n(%bne+u|8FG z9zee)Yx|dCkJSPvAz|r63<J}I#~G{p$A&Tl?pHLwXm=rWPbcY^Va19%Vc3>wn?7y> z3soAbg&l2B5P7<8Ajcw?xyEDG<KH3op7?_=3_tKE15#jFyAlw5DZC?e&0X1FwTCuP z4g^|;jyV>+jGZXMk6<HkO#*WG%PE`%zDGnTSV9>L7YjFY!<^4?Bx`X%XiQWk095iZ zLcg{td~d^tYr`wfoEvbK`9s{}rp7wt=T1>hf|ThvRAfq6577J(!L~U-^vvJzDQ^ev z)nCOPK%v~)`HNFn`1A3$&CB5ZVvl!ZvH8fTFbqN*&`|=3qK8!()%o6~wOT66zoL*t z+=7Qpls07RCqqkW-f2Ia6&L{|IS-Y>gc~1QXP^!;{5^l0kOc0L5GC)H8MEZQC!t0) z-*l95-kGco)%P-;x%@S2YUhy%CMw&3B>Kya!bQGr6rI?YoaccNlGA6-gjfDjA3qdR zQ@e2puA-j7yoNzWtM@pKE#Jn7^GTB7FdsIy_|EL_e}K*1VY>_~YG_kHhPdw;2Vx1s zT!x!{4~xj8aZ&>W`1Hzn+>sFeQ~5BA6DkutE_^;>9^73HOU;YW+EI(}sM4HUFfu$| zsux1^%1QGb`sSt9O3DVHa{#ct7CK4c{X2TWV2h8G$6Pi={tB?tXcjwWop-Dx`Z6}0 zmLX9Ej&p;TXa&wK*=DcKLS5sx8{=`<!uIZi;1Y>zu<wv6D)K)J2_Wt1!c9y@2D5m# z4r6$)D9fJfW|N(_vPzo?$@175)>rM^kRUYf9m^mM)buxcLIbw;z>sdC1ti0c8ukWo z((J94pLJ~vN7+?sTeDAbtOOr79wuk#Pk$c4U9@kYDa^rf`+{T@UwqH}(#WUo>r6O+ zz2oy`zB%DpK@>*p796<T8taxr_6AHUL3_05o;zIhFX@jRPa!Q#-q{!}r#ZRS!S`0f z!k(7UOEWm(TV0J5dM;*}E3Y)y1P9qA9PoYk#)Hd<iSpC**k$LYQ<YUx^0Jw4mt2~o z(vyfKT)dVKt;q+yk~w2xQL}Q19scnmfsr&(+;#d0n4Je}5fo?H1if)=g}L!b<?r4n z47E+F?Rd6Toj&?s^0PfOSzOkLZp%@?dzqKIJxf$X8&~W8`N=wIRl%y8p}>JnLi?BA zO>piQUP%n%<E1&j@A!FF(N8#Y=b1zQVVKPKyW7-&ba#))i`^>z!-x+8CVNSJP<aoD zq)j(sxZa@2yLMw`yE4r<farFr*+KyW0E(l%r)lD2&D-IJuLu9W-)2He0u#uVZ>#J- zR?<8clRe~x1iWQI2kd;%iH80L`dgvoW!x)xUn&QZeFEAP9JFS|DcRPJ$+;u6-Y#mR z*SSuXAT`~8z%-R^U{XopemzF-bhR}E&i0$UyDTTkhaCu!Ba@g!vK`B_Tir|Ftssi= zSdXn>j$5Gg(pwX!K53+|?p~f5`|>Vs99#78j$RZe<?h&`^DG*0%k@fOW1Gi((7OW6 zk;mndtAGJ0C|Ki(&ea$;*em&w=&AFFshv>T?1x$@9j^&EL@;KOW?%^#p67U*vAc$4 zzz$?i-6HKdETGj(eCm>ya>2wPR@m|+Tktm0XlYr#zUy?Ws|=Ztl=@6lPPz3TMz-D+ zIV;xyDtrIVAt4`W11B0ny`6R9;%?M3vyUw}z%HViUI)C#EZxpC1r2;;)+)-dq@yGj z^BMxpBc0(g%8QNV=)lyLcP=q38GY<dSij$&pbhjN7)aX}b?Hbn*z-Dh!$xSgNav9# zox|;;e|cO{#pJ(-zrc8=_L)!a7h^awuJ4z2#$@FaaNp_Nru2&I6H8w+MsLR+s46>7 zy*P}0*t)w=X>q;|lOQIdzrTC%n)FpBDqfjBOZKcgQQo<r5Wp^3Vq0b0lOuU2?tMhf z3V8X?UwJ#nx!;rcg!&2AVFbCcGE~IqyV!!1Ns6M0D<FtZma0XUwgz_jNmBefy6~D- zfWffM&kJArwBFiI__;>B-nvu-^q+DhR|#b{Pn5D)tk{zKPC}s2tv;GL-lSZ-y?FVn zO22UqM=_KUNYCaA#}yA$RokYN)`pHlZZX>MvyF`wi>m^L$cR}k?=(FswP(Y=<<>W} z(1(ThaoAgA*!X65quoyPXKGTmeaTc7SBsOpYtY5hD|<UT<{r;yi3$u6h?m<A9v_6Z zTSfnYC6-DfE?DhK<s~rNUL4jqUoHLo*XU`s*CKu-l<_uQ{PWh;JeEZl@KW7|nI+kM z!5t+yt?0uCy$=lvx7xD_nZiL64{;!)HG#BIv1aA>EW)OFd%A3j&XYpR@B3-I%o0?) zI67e-=UI+Bexe>>u|4%~62HEXQ+!jPDKaJF3v)GfxDfd9Ufs(g4^?|}WO7ixweIA| zYpI)XH=D-hy&G%8cr*P;bc)>yKOO5%;<v3w0O75P&{0cQc8$~NU(QMVH|DCiEU}sY z(zPtpBu5kR4p(b1yBz&hVYh|9kCzM=*E<vCtD(a_6u&UI`|tSasoE8a4!gHN@owQP z=0dp<^lLUpMx#SYyE-M!HWi3|ovt{4BB%J-0+?K!9iuwUL0uap^lH;~co~Ma9;f`) zy(nOln5re&%8ju`>Wl0l4fecB=<BwEznKNv1`@R<(9EkYyfs}jveyb(o}cVF+bs5k zs@CkHhv5cDt#%~xuMRDzKBikx+$Jx5SNpQ0zPo)yWK8mbO+dLJHl(##cbg?cTJpAm zFrvg2$kt!cm<Q3JN=aSA7*d>8dcYj2+By07<~W{BCtUn7OkBw=*oNw5VWCIwA#RiZ zL~`7Kg%4K9un1c$SgDhX<zm9>Wqt5$PUO;F)ble;C$)`Z*CB5}s=Xn|We7gXibc6L zIP#dk7m~EvRxN0vpo8m)JK=gV<42wRsI(xVSge?DJEQ1YW^cPhUduSH=<z*p+9_t_ z@p2@Z$lPa;GFF1b%M+NiE>EE`%8~a^1KoXJ3IoxT$yQq4iyO;%R>*>*1inQ@b8bG% zoo{>r12lOJmtA5tCSwWkD=2L*C|R87uh%WtEWpYHS053!YaL>W=!fHYE&99ed^6N* zgS1<4HhXF+NsKhE>ROO>$~bAr@Qm)B05B1%(><nmGo6@r)RojYc~+%E`2-*TZYzZ2 zI*{$ob>KJzV1q+_HmS`2=nl(;R@RZd6K(2D=ePejcGle9;VJ(Q9<AuZARdS&HyU-b z9$8T18zN7?YnT-eU_<FFOXO3%*h|H{#CEs6wLY203NtRg*McaQ7EFySLkOI(N_bT; zPS=O~MpErtJm|44qd3>cAkf<Gou@x-PzNT4>(l?q-#&2DMrzebH|<j-lESy)70Guv zMRaEiwnfJ!yjWl9+2e7t;7RF5Y>eBdjUu$=I>ne$R0P%Z*PCOGC#DA`gzsfF9cp$! zZqfB)mdQPN;^R$vrtLk!9sRnh!nFVry97xO$0-&?jP9%}_j@i)gyCf5D_5<lzL2sW zdbG+G+Lyzy%jhTVxmOLWht-5Zwo+6pKsy)cfs=}hGAO+TW*Wt5`uFwPnh5>CK{rNR zk#5E=)l1q0)nC)wOKtOYS(t~IB5W<qJ~b!pZT_rPUU#`V5_8&15vQ^VJ$VS`?=x8y zM9`ES)@av6K|pwe0)<qS4K73kpmfc_@E6Vfbk(dK_JLc5L%!cI1|FKiN{TIbBm)B; zVkyx)5OyGSLr*=9Qz_$a$gx;%wnqgHN<rrf>BzHF%4)!K&{VFLR(h%$43)9+)P8G= ziu7lDe2yBOK{Kk>wvZP2o->t_^a&ZaIm3|^O6ZsNpAr8g`FN+$v=e%13(FEVoFMTg z5ka#n+yi-iTzhZCmS+^d^g+XNtvAMKEftIO$1}`QUzD3e&7R-Ck2O@)BrlTXqvbd& z%X)tis}g?d9ob`WH%)oUXItK%<@()}*00fO8&)~Pa*HyaZe%a~NU7U*#!NZrlj=4) zYzk^v>v!es$}G8EMbSQ~ccX`MEYuuF`fL+JP<yNHmVtNQ015w*P!`3pELz(=fF^92 zmd^@H5g}?O9NT#jNEy14kYa;1<0JaFu%<r2$xbfXFxkPI%22Y`IlVmIl$13SInLXx zDaDAmPOcJfFSU+t<>GkC!PHtGos@lby3cg$axQ*0P3~Ya35G&%aoyQdj~W7fyJfXv zrnObUuu2EE=<|R4^`Vbbx%zApKSV_e@k6QtsOcOWEU;Oxr52X}Te%F45xrf8n}h#h zkW0N@vlFBL<^R|*oFdyAjvY%*I5c;=9Uab?{oycAOT*i_4}vG?Of2ub(?y{Ia;N=M z<6-A?L|YWj{X!;$QKcxi$9H)MYTC5bC3G(c#zQD8&9j9Q`^dH>D*QN4W#Q?YB^SAW zL)?Y=+I030Vqo<|7b+CV+}3Itr5t*Nxh_`06Q>T#%Ca4u#$~M^Gy^F<9$FJg_RFQj zW_6t0)4Rf*dp3z2I$gapS;I=Ct&;ZT>9SuID~d4R1!mt=ZoV4a&JkM?=win^wF(%L z!BWJ-a!=O&n2)*9)xZ0OS}p9X@k|fRSZ3+8HG{=pi>kn%#g$nO@%=ql#F|HOdE4}u zzJQ~{z+g}HV`moF3*&s1l>}kEjNgb`)p03lFV$2hBuJul7p_1DGpZx-E}$v-En4<o z|I1jEhO&;c0+Cyq+r__BWA|{7v&DebwI5qU-%=fgB}cxx-<!uN-t0a?p#6TYMFP_x zvou;@JV5F|nX+J`{D%hf2-Yq$W9AjYAL#B!;L^{0UokWz${>?45-7NQBhQj$$UIn+ zZM)#bb6!;#kK5kgrh|o193?3#RZ@QB>2*gTPO@^@@2R7IyPL>ApJepV5;^%(k)yLX zIQDmk6Q`=UC*8Et{&&c0`;<wpyX^5q;xac}t>IFJu`c`9De;l_E6O^azT9E<vjQDa zLu9I3-lKxm|46=KXdjm0#;>>TUY7U^%t|Ql(!`W~hrd?X5KP`VP~#@Erh1l_k}TST zD_Uc#79z!JXA^hhNM|T8;ozjqSq+YOE1xEIZca!9%WVohB;(e-krWel{d*r{QvWC% z)j2XeF7eHy*OZ6Pb%e!LuMi#!uri`^yYc_m?BGLa@FlQynvzoVFeqAzO}YYMqtz1r zugn`c_|AZeMPY=c91AABD{_*pH{M>|;a6kdBG!=~%l#5Fmi?wzl88>l_m@9)1<lBA zx#9P{d!hw!c>A@k=LXT@+ZX&?sFI6dD$ntESsXSfoXOLGK^H)?^I*j?>=4Pp@M^-s z?*Q~9n}yhpHkpwLO1f(0%gwl4t`of4>`9;<+_tS|g|GL{pB5w)hqfnAT;hdrYLs#B zMfMXs7k`-DU6<P&G8I_p{7Np3eKRijXY4tj(QxFB?kB&pQMxFpn}=Hl@#2W>U*F6= z28=15{E1tG&=en32fBxELlM>QbNLz_m0qhz#d|9Hu9!R&`TJQsL0E!8-}Z#5hR5Ur z0=rW?1@p)UB#KAyhY5IxcTMNLtX}mAHV|OALogW=dV={^qj#ab1~CfEYigpZ?iZ7R ze$=o1MxIm~8XA)U|1CZ`-})>$djLsZAQgVwaS6nk%M(UD{)Wo#n2Fp=V`6dhPl83f z@?grqki15n@N{_L0P5|MLlc*?@_eSBvPYA`?Ahtgk1+mzj)WT@@xPBQvVmK6^zWCE zZ0ML~BY0qf&%2y!L;Bz0RxeleS0<|Z!?9AWY2!nmKs}xK-2TkJn<67ui(|i*I_q5a zNGEiP47n$Z`7Rg4#r+u^T>aD|KI3`?U^_>9Yyul@IuBMlwRT>IVFr$qYb6qDN4_}> z>1Eh8je_NE)r3N<AlUwf2;pteW7et>p#CejQ?fvsB3p~RsD5Ad>;XHhFupVMNu;&Q zz-*laZ<9(FAarpX0G>8Pt|L+^8oN0WNgf^Fy?i4Z&F1&RmA!o*1-@e3ofzM+Pp$~b zeR!v`h7ebJ%0)V&*SJ7!PL5nq4VDgroWHo9jL5=l9E>YNip_fYSm$VprOIz2j5{y# z*h*dyv@)RnJoNXr2agA^7QeUBj<D-FOm-1D$ptOaj9c=gjy(%n%Ui0Bc3sK)2;|A~ z0(?ZOJ-+siFlmWix)|`R{c>8BP}{8-yO-4N<eu$03|1<)d3<K13bE^iv-Hj+SCJKc zL6^Me=JM$0NpeT;yOBa_%zJJhsb5q#Cr=z=V_To2t;FRv-NPkZ*S0cGJ&r}72S9`D zMk#WH)}s_+{_|726dh80R%J8NnL@3#Lss8ymRX+D){^&mIraStCqicg>k=ERjb4bc zPI%?5bR=N~f5vr_W4<!Cv%!azwv;T_N?3q0cqfxn|2pirP-1ENv;jt=gy7m1^>_Yb z@THp<F4>5y*``Bp5AB2eTMBA>%S>SMLxg)E^ESY;X>mO*Ez5IV>1!7H7<$y_4#d(} zFg}qR!F!a|uRfjcM+FZ<@`-L*afXoBqu!7~8>J}jbF_J!M%yUkpXci%#|pH5%Tr=U zt#A^FS{0_TXC5q=EmTwPy*)!N0K=OEdZ>ZDo|@1l)2HL=AU-`$jM33&?w8kxg4>yC z34TR=%gy~~#1WsFMoBQlcuWeY+=pFMeRH#O7bk)4M+Iu>+Gch@V#|gFOEiANEVQf< zJV)%_&4;rj-4^5WOlk$gCc10)jBwWg?Zh{Cz%vzZW%JS;z$1dKCUWmqwB7JmPxz0a zZ62|}-TVdB;CdPBizS|t7m)-5wA@Ct7D=nI(Nl<kUD;WW1M~-`LuOnqixxKtN7?3E zI#pp_hwNl;=VJdQvtSkA_v!xuMnSp0Qwv$&P0ruohsLGxsk!i1h)A~a4T`$FPZAj} zquZRK764;EFko|>lg)d6mEoVV+`y&O+S`#Nb4&xwuaCJQ7+t3%dJg;w{Pz8!{0FM| zd&C-l#V-TNEw$i%{(MYZX2Z0QLhZt~0Xf^W;EZ!$Rs0nA<0p=^TWcQ}!}bkYILvI= zA7{GR_n8RK&D^g&_LJ7Wc8)LD%axv_==(_CJx|gtclI>C@xQ^v_?_@KR<UhL!4^Gk z+DOXV#~w>P%q|YuUIpc&#uyG55zq7O`!D|0{v7zN`*M6x_&?#+xzs#2eJQfhuC62x zEUBi(EiP`FN05z^$_qynY80VT0Kq5veEo*LE?)QpURX7&`-aj8TX7VrBgG3yK?=O8 z0(!1<k=nl{zi!XiSK&wO*Z%+oV~h5V@MYea;e8{=dRf(?(${=Vd8u4W<lf5+YYN2@ z?l74n^BBC684l7;@0j9BSW1{G^<|`*`=06i?PK?E0&{F~;v7B-I;%gNZL0I--@TV) ze3APFYm&!dFNE!4ypHopyqd+#u8xsi+Ro@UZgS)~8-Z@Q?a+T+U$L*mJ#6XH>3%XM z8~Ef>kX>zw*-m$aewbXA1Evl;X1|&5fIkL2H+B0<c!yZj{6`*<6W>N<f>l?Q;kyBh zkSHn{VkG_M9Fj0ie@ovA{ujfhX||ewg}h&;c#b<YjTl@i!7+%g)dZrsbCL4$53eJi zPbiX-jv^0MleO1l=6qbkMvf+?5~|uwZ2Rf1$6fn*{>A<d{jdBVr&^dHhsHh)xlL=s z*NP758ZblJ$U`V}l}S;*a7WtUZUB$tPyPx=;q80FzYO%>4r<nuTf6ISml4XPUO6GP zxWIKhsUC-+#eaPFv)!hV6jLmb+*>GQE^tU391s){-`2k_Kj5lgu-ApZY>(O3SMg4a z(CPj)@U^^}mAtuv7&QYNXLY^Ij#CF=AtYxT4l|X=KcVFrk0vTIZ$$q9ue<U5{{Wk_ z3<Ie_$K=1R&+vbT^E>+z>F;IW?PA(j408!mdIJ(lIrQyb75h4~YrZem{6~EV2Ip1N ziHke7H{WIa2t42%SJA(*-j8!>;QdP51)diX$Xg(1%VK);`_<vUvNn&Z%V**ZNLw+s zgIOC`5ON_rw_M<<HTC$)kd;hBzhmMswB-tP)9G`}-@?Dxz8(0(;|mtes^4p<*#wZ0 z*{Z20p#bOK9<}_?=-&-|NpE%JuA+fpUo0yrag<e3a(MuOk=R%DA#EO`b^9m$NAVTH z?R%!zrjV6nQg?X=Zt>0=fP0Q>@GIg!hrh7(ht~ACe3)l)CXHJw8-_V5I)MFg$Ope7 zz1|z9={nPc>X+P(9P1tMLHVC7>;4<@K8DjvIEq;2BpHDva7S_2pMF0o_OID%Oj}JO z;!lb%QAM_!;k34W*=7F#O~1DT-~Lz;$EmIp;{=~385%3gf4arZ*=l7A2Wy?STt z{jF)bf9(GN@osC^%gbe>#-MUp)_ds&G0xq{xjly`fnQyToTY|N+qAzE%ECoPtL&3L zI@T{W8>?2i)PpaWs>I}yNj&E~0&~!Q6}RCFRDDL(VquiEc?c|WcfQeqjtIx(b66fE zh2d4VhiOg2jDyJ;>JB>oRo!T4E%jMsMLD;Q8)e2v2$^o4rN27*Oh+n(;wmz=IX>s> z&+Mt<3qK2Z7fkSep9I#g<1Z6x5xW*vlIFuo@TQ<6SwQZWdW?<~5ECOR4=3@D!&-zo zUEYzXN=kWiSkC8+6-J2n_FVoI`dRP`TCvl<Abb(iHLIxY;DLNesYxWKWNI~dwE(Ac z5C-M9MPci<zdSrQeWQ4O-qP}TzSlciL$scex0a{nUO_#wdEny};$=~O+FEY4``E7Z zf7es#KaAcVlS%lk;_Kbf?rnQjlHN0eyi0pDh}rA{u*Y5BO8Ht?-r`c%L6DM84`bYV zd)H|;yEWwMSCu0>x?_$pk3m^41Il(5*jS8XJQ4U;y@#jCq0NY^89St7Tj39s7~lcB z2eCNhbjNHSyo&wv{e=Gj;G}wniSY8@_I&uxZ#5Wn==NzBv8S1EmWhG(c|l;(d3_@% z=G%qjjGx0D7eUwWwFR`&V@V_AlP}2{1sk`!^cepD^$Pli`%w5@@Z-aN62I^ZT}k5f z)NUr!uVk8EB1=%1g=4pGmK7{;#DgPkCnOwK%JHuc(#)`~l-1tp_Gjw85phg%?AnXO zKixKzmzDKDs9FC2X+MJcpNH+V`8Azd%(AN%T@vnAMj+sD${6RN2N}mT?%%ba#GPlx zx{tv<e&!jz&1Y|^TSawq8MnC-L2Cz+j~3=+G9t?}68R205nqzu2L2;WrAwxG_d~MN zbqUm?#x*N*bdWZAc*4mTSw?WLlY!d5Q~v;H9ct@V_&MQ^7GD@l&}&xHB%(c=Mb)(N zxEUmX-48YV(Zela^BO6~UTc1b`qSd?0ObpXF*v*ocBdwrY5kk&WV<e>ed8~Np8!AL zqJIYLyd&{bOt-tguz4QZUoB+0vbsP~<coT+DIos<SsN)=9Y;bxDgH2j!4^N^OX*R~ z;r{@LQbB1Gs>C%N9ybcFmS2+AYhYC50LlhA%AU2>&!Xu*F4V5P1thmINvX#3s#spj zrrpRPWhJcdVP!GR9syCEpTi(Av*Y?bgW*TQzuJpa@UM@)7qph%1=FmPG0Zb?mzKb! z_IEJOU6NFAM1b+#Nm48NW;m%+()u&}bj9G~Jz77EU)m@3B>4C6OH0!)?({o-UqiC7 zNUn9S4-1>MIA(EkePYG#tz=-~AIpwNLZEhaC9Ct&ZC-201optq6Aj2y=Te7|*&Jbp zFni=z_6hq=TzJFwZ1|sZ<IN*eap4Vm&f@P%e=ql!7jeqA&1<-f1dd4~+p`<PbC3>y z13%!Z9|E+Gg8u*&tv(|BKGNF9!yZ4k^B>BLEvy>Vxj)(wDPNW|aD{FXA%M;2FzDFy zuvorjsq=XJv+cnA(;Ah-WtJvFGxxfI@9kBg@dl$6t=*eTh;PIKWh#xIv&rU0Rhdgh zLovxlUFu4<R{(Q2+NHd9CgSpcE!7DKP>@)*00mD2zDV{J%Zsg9^yxK1%GTLbXD*q` zat6)fPC(#=+B=-rvkAAc<kZ5{=xlhGQcJH6>Jfkr>sx>@FmhsH)8D0j()gQII<LeJ z5?|mHp6bTs9B^e@ohHU$=iHVdvB4{zq}SneTC$gAnQ*ME1AAcm=D%US8f%BdHgn4{ z1i`0hab$X~lWuT*`2hVZ_U{2D$;6S3z9>z8PxL<x`a{v2cvht4(r|x`zf-2v8yuds zMmY%N_TsPKrq(gzipLGd75%d~`}Sw>g*o0l#_g2;Ov^7It1EH-%LB*dUz495pc-$- zzZYr5soSjIzX0@>>S+My{gwp%YxO!ODx|6B2l-d#AMI$#XZuii#UR3@*QqEZWZ~^? z+<vc`{&xCB&|gx*)c*5ddcWv@O??^hE#k41Z}wv^x>o-H+mAGBpDjV{&mHNJ+$+qC zrI2pjfyY6dkEtK2u5?J)%MMRm9x7<Ae|j01g&jG_>0im-&09nI!`rj7d;b8ne9fG8 z+IIBn0sjCVD*STq@U+s%HjvpI^VDNC$^tiUL%4oDy7BK;y!i)&+FOsAfd?CMKK2g- zo;!Q<SxyS}M^q;#cOx`hNXHU#q~spMj>o4;wwER;15R@o<2fXbao^L{x#hVB0y1zg zc941#*FFCLr6XJ%U@;AY-y`}Qf1i5n_I=J5d!1Z&t1ZclU;=(ojAxE|^*`iSX4=KQ z&w%apshlmvz3ib-wpgnnJHYF=Jbi1&{MC_w<hDs8IpBRyZ{=E+w+H9gOS>)?o&oEQ zxhK>0tm;us7Nuj?$B49<wEZ~*fK3zvId^1WgOCn*$6?<U=X#aQb6-g$T&p%W1KSxD zraUEUap9;uOC0hm&g><Ou-Z1U9C4iSgIrvbsA3S0mpJ3!A78?qC`Q^6<kqItQ?YHX zagKm-$sC+<&OW}itD)SoYYfmGiH*g3FbCBBwaE$DuoUIV`ru$-4}LOg%s2l4VU|0B zcq~+p;`-;WUZ3YTC|xvfLZzjt?J|@x%@l_u0#uFwEB+#@X_v-rs@#>%%x3_4^#1@o zs-?Z!%Nj^<0l+yNan$ksD=kdc`o882Vvpnl*?1j$cfiGYQHMr*4fQ=0E*EGUv7Y>P z<NTWRn>(ndv{Z^Xh>UT$0meG|bKf=MvEKy;VakFt-~9go_3O~QHLUKHw9ykt@@1D| zZf<dv7&#w+Kcz&V`Xfp;756N7o(o&uCRc_r8`(-OxKKAmI1$O5dP)(A&wk|BpESuD z<vQa&{Eh(s01EW$!D`n~SzTmX+?TPrAQUSVz}dKGA96yDah?~wc=MZ`HtgxTz9YDW zo;ix=Z<`q^z;)n|NIy!b(z+t0O>WOhwpP__G%HgmiEPtQP+Kg-PjMWfKmg~T<zBns zy;94=y4IAsr=5EQSJrFgm-{|TOn^kMhGkYf6O4dP+#31&NV<;Z7-NmN85?tq77AE# z-y@pogzXNkprByIwQC@Il|eF=$j*LM$^0o!h4i_rt)c2(Dfo?VKZ~_V=C#;Av@ePB z<qW7i`F>E$ps*iwG31U<Ccb&qZ)|l<T3hWo9ysO!*&hRufJgxJ=lRxc?xPX$Me8iQ z8LwpybG1~<COGNHKZZcAIWL+fDZ9BD2dB1sbo$psDMmXUa;X)vJp~37Z5an04nY<5 zKkS9^kKrG{Z;tvm#}AD@9n^ebXW=>H)U@p%PnOmZd8xp~?G4=5Oayk;(g8UUq>?<# z76Ph1?})AS>~DnR9OEi@_2-T$^XoS*-#o9m#xeBZW9eKuwo^|Vhn^O-`DU7SZ96^n zTCb7OLmSC1WRL5Q!{6|7{k84X>*9Zcaz+H7C)m73lFI6O78e#UBDp<A{iFNFyx;bN z{{VxIzANiq3%b&OXCH?)-VW5IO`qEO<??EmHifwJAhEZJE!oHLJhPQX`HW5m*8W)Z zjb3?m=Qm6po-vNc<?49qdS{C2wHv8g#`VC;v|RCmN}QA2=hD9h!~GYyCWa<8so+)B zot&oE+~sHJ(>=GuHQhIMdRC|6U1P+$<@bvGO{m;zTCT4<-(KHcv6kZM=5xAPrjYW| zIqG--VN@!GQ3$>_5iD*&Ja)(B&3W~%wF}uoWN7yl0Dyh5$n9F%J)XDXtJbja%nf+s z<{=7&MH%ItimLQD$pyP+zk66X#x~g_#hxLzc1;q9?=BgN{{X6xka3PjO#c9p>s<UZ z+%hQybQl3Z=szP;SzF%Atayh=)X9Qv7e~}Dq(O!TODNR&ToMND{IDk&&JJsUwb!m7 zBhMJdH*L=(40P#UlxeoKGp#!%DIKhrGZ`?!eZT|tsuSH@Muim+m2Pq}b6G=Hj#tb? z5a8pk4;<&*cdF6qrPIn{94W^fa66C3@#dehkv`rpW_Gp?vXTh-^VA*=4^OXZ^uG(e z#*Kex;=8z?>^fETzuH+qJ3}`B`wVX5xW`jpJn7p10F|hOb#Ex10mmfc7!~z*!dY}r z8EHNt@C2ny+SQuNY8aK>EE~Q>1mkxhvD_*2uOk;h!&x18d8s`QNBI4w+cm5{CV?Gp z5mq^sk<hY`e6}Tq(Vx0VZ|?e6$eujA^X>E(P(q{^F{+-xPG18b@0$CYz&i9^H~4tE zezr{S9DiZINeTI+PyzP^h8wTSbI*GDhvWBy^uG`4+BLS6UMqQ$;y|oRY%3xH19id3 z;O4Nw$|>?a&fHDq9S<kc!21`Nc`Tr9#z;9NekQ)4_;=x(&kB52{>iwSH@UIXOwt{u zMTzHRP@zFXy+9zGjAZd%ZSZfxW5mA^G|MpwxU;sAZ!XB;L{Ng`aq06(u|WPT@H*qu zej4h~>t7OlU*cCgjIzfNZoGMt1GhfWjE?x?vc*(#a!AgcU9Qf1;<Dd(qvH>U{10&A zQF8Xtks6i4OCf0wR{sE&YDhW99@X}-zrVH&ZEois0c^w@131YMWZ-)7UmzrdQvI#8 zWU*vp02{#Ju^p7eft+OJyJwEo_3VudM|J}f$j5wlt~^?_VHeowryJd$Jbu)^E`v+> zQzoBtcQ4vCE6Zr2jf%gRk+_;+_Y^J>NzO;0JlE$P-l-;@!gyrcEAAj3pmUb`*W16g zO~`E{!#Z-NUQ4T~TL&3ciC6i(d<UsmN#`-2cH*i*CkGg>qsgGXlDXt&Q)+gJUh`OF zw%EhWY!W~}d4c|Bx;;AcZl2c@9jZt?V;?93Iriu2kH)zK(^_Vgyst6$gago?{B!MI z!{HwTUHG?M(!3oSbALL;F$7^_AH0~5f9aaGJ@H<yGm<g6%Rx#~(ED%pYw(`C;SU1c zUhC1doyM_xw@{%x`3nli86X^u_$`8R1~LYC-1xWgA5-wRhVEpr4%7K%70Eb8V~>8F ze+u@MSQcH1yJL@qQgRdy03A9Gp4Gwl{{X^Po+r`nA)jIbj@e<JRAdp?7(H>@iuhR9 z=B@22cRrp}Wg2#ljUSc%GrQFFeHQasyFY1@Yc!6>E}_2jdY(>u;=CzuCu?}FtQ^NA z8#jOkHz~@o>z;$C_OGfuN8#9J(rzrFV5U)ynH+PI`2M}C=8Z2xy}s41bn9>2x&h|N z)e%AYnb>i+(0>u&SLj$ev6LG}i$b2Zd!B{hn^`rvX7M(<e9L&J22VE(W}6$9E#G@; z{pTNdXagLY?dQ3g<56>Rcge#$V;mgx9RRGzVz;o<ZS5>~eV*A{%Q7w>FY`#pJqsTA z>Bj(7!M;QNq`(GTD`(JW_56C&%59##I%+D&gI<+1y&mUKjYOt3+{#J$jxaOy>&1B5 zc%4}TJ;?-&oWiG{uX^@fbS|Oc>xklPg-|eg=O>H;I_IT)&?nSTYyjYK(0_$?VD94X zis!Na*6Cz}SGD*X;yGlQ9d7h(LRnKIb04uv0pNE7u4~JDEvSgRBc^HafG3vP+$-SY zX^AkqNI2WhNdOVgabBei_S1YW@ivzMd18-5)W%5KNLv}sJM`^eHuw)wl0OaT0_EOY zn|nxu2)}h4iqL_`AAIA0eR(4|uIzm6QD3onTyII+x$Ab&A|yucNV2nth`}I+#&QV8 z)6@Ca=9i4TH9fb6wR`z)?d1Dq?0Ty-dz<%nx6?}<zf5_EjyLo2?LBMsNBc%8fYjVb zo>24BHj!IuE?ee1NMrK%>0g@{_ZNC+?ET>OzQRkZYf{}$oE^y&P_{iV3%NMy&MSs< z(8Dx^lDplO?1V7ra$MVuk+i!IjxrFFjF0!Lcfq&v-slkB5?xEM<mUr%?t6NBSD8iP zTYIZzvbA#lRK)E?AYuE0eaAojdg^ppAhgr$_O{hSA;92Z=Wns({uR+mO+{S!3eNI0 zb>xt0R;XM^&&CMA<lvFlJY$Y4)V>9HM%%}q8+<e1HjK#km$AIDj!@e|!byt`Mgo94 zb+4QLDR{L!CE>U6c~3j+*o_g2;iQ^Hjv!8c=w`_SoOG{Y{{VtlTzKQeKer4J_?udi z`VBk7+LofxFj%7A?-UV)h+zDooQ!f5^VC;edJ_7TTvB#XPv>MTzN}@ArH8fon*7h{ zBK}CPu3F+kQq_Lyu5$kX-2)iF#d-dzs_FLkEF+0`%^NE)4I}N(M*bWF+r4#OCTZ0+ zzc}J9#d0~@?ibV6ydPfDmP@}j`+wgOG;#5}D#}4Q$pGVMBms<%f9JVo(oWGor)l8R zTAA9d)}N^Pjc}><ks6XBJ4h#tXB@d+fFZ_u5zToe#M<tQ6SQVKh{JiVkb-8z0$1fF zRhR&BSMVOXI`x(HtZQhvxXIe+a!4uyqL6-JgV5uTTIFuFy+=vaJd5a_D0a5>k#<Dq z8%jBWP_U3^=O=-V4<!27EZP0EVN(ljij&#to-~#2wC4LI_{aKOB{r5~Ft;ecoSYJ) zoOH!_&yKX6Q^a<QZEqs!{v*+@H^3z%2WD<#EQl9utJsWZ2ZFe-X4HH)WvU<Tp9{|o zo}xrfu}3j6$sC~hYO2uWFu?)BhE~Sxfl<A>{7=)aCvEU*_AUvIWJ1m|H=?-!fOhR{ z?#@9N$TjRvyd=3_Q;l6p=)v%ov!Q%R@XA_hw)=eG)>rYB^2mL-bz$ai9$bK~K>z{H zax?QDk7*~v{{R);co$!dB3p7}jj&tHg^1X4Bp6UW_TEV+HS2yA)GvG^@g7KS8_9=W z^I(-Hj3A2s4XjnN0Ul&PZpazh2sP6F&|VOIOF~Z+SzFw|bgj}bkqa>lM&%N>R6S!+ z^8x@P74bQq6<ynN-@#Y5{ZGF?VDF0>M}j<P+TV%d{?&%kGO$}QW`-7i1m07z1(X7y zwsD>a>tDM+8$1#4r~V2V@M3=n++D4u)r`?zXt%17$u^&Oh*gFZ=V?+_L?jZ8o}gFq zqx&j&u{Di;TPG@BdwDWYf^!iEoZyUuf;!jfcfs$BULp8T@oP`kZD$7FKbA{xG4RPC z<j8=5wBU^MUQQOgJ&dsRmEkQKJy_1I3|%~a4sI1-(~Io?04;WX8r=AU#eNd;U&8O& zN&F4sgb`}?+GKXOq9)zCYe^YA#dS^FWkyF#?BM$3SLkoRuN3OG*AeMjUDl;(Ff7X~ z5<9VvD<0Cg1xY<iWM=~-HO7CzM7|waSbp0+2l(gV`*_Bm<L?PSnBH2%-)ga)1ew`} z1=3(nNe5>HbDqoK?Zy6=;(ap5PTc$M6LN+QxB&h1P{oT5#1KaW9+knBW$J>B9qo1U zySL$E^iDhC@9lr~`&rI0ZFEwyQvU$Su71J%H2A0DX?!#X_M+=c3_Bh<kf>${46>7l zjn{x!1}by7aadoq=Y+g>@#FS9@xQ}Qg1T*`{<GpuGD}NqJzS3=yx<l>j(0@m7bOYD z%m+2(ntjZgHh}&lj@sJRXnB$C=2umXmw7v4!zzM0Ge%b<8$cNFUxMGX?z!Q=6zW=5 zsj1C1wDQRc-6xqYLbmM2yJlcUcD7is<mSH0rB_bMTOWqg!zs5oZngfbenR*o;V+GT z3~74bfIM-eUTJ!wJGH{yr<Wr*fdex247mpkq_4hnUoQU2*6`13aES+&C%=+AmdF`P zcpsqu0C~vIU&_C(zuG&)-WB-U`!#F2w~S-^E%uY8+}+vTT*TgWw9&?LK?MAb(UcOb z4o)%0@(cSkYI0kA3!lVuE2Y)d#-Sl@3oiJv+pg1*#eD`F5h|)~USF^I9}St{y^4!o zXCJ6|n$kbm$Hw}<*@1#TwZ{}&iQbo2YP(K*yN3S&fY;#$u9luK)}KwdPbMuwPapyR z04&x=!EuZNRPsH=e#QJnzMn+>hWtsUUMYo+rK3T>^}LNA2fhoO{VVbF!q+j|_^!g{ zLD7}__49rG>-3Hpr)brE9KS?<eVi>}=zKrp4}iZKG|LYX_~%r!`(~NptMR7Z-9|>( z*_X_T_VfF<jgiSx+XJb6pza&K01u~r&E7B6$;(~eS=dOO0-?5c5AJtNMh~yyUv&P{ zxBfhf;WhQIgLNOX+a&&Op=#`^lgH&WEX%utA|nt$<>Do9aH76RZwmOI!C$k+tKhE^ z+1%;Z?XSYK+TKAmwZf>fu#z&-PO-?LmQc!BKyX1^f(?CbJXL8WPPMJft!?bP{LcJW z)a61IaJN$B_wUkI>EzM!>P=yFBzAXEZ)xRFt};w`>V3{SbjMz6*gPxYokLr<n^;&@ z2&a{$5<kir1_GV{B#<-H>w{lse#zgkcgKH^TD1Dd!v6q<n*RWgj*D+3^24Ru%N?st zu=#eaepE*klKlSwFf3DP1O{c!&%~dG-x75{g^TgeO!#wi;NJ|gC82_AnPn;iNRMzn z*09g>Z6wCXvh7nUM$iV9y&Ps|2Z&T6pRShl?ig&QFE3b^QFAwC9eJAXwUYH|zKHl= z#a=P~+=j!$_SUGDI!>8yrKF4l$vklGCESsLxtx%SF^;5@#|dNMO=rYfwYG)f=)Ti; ze>^s@Mlczsxs@S}7bGrPMgSHdWQ>qGuCQp2sp^TQ>8m7{w;wDvkVf*&C$E<jVWfO_ z+NYr=x*bEn{{Rxc9YYt1b<H1G(BXnak#BEw>&r!kRBiD(%{&Pjx;lnTpS%Tk)WyP_ zIbhO#E<7#*RT@%@<u<-Ge$BrYzh*CpGW;?4zorWfNmM*WDMZ%uukn~B0ai~fj@JMJ zjlmcy&E_D;6|MID&zO$AGsxq;e@=e`{{U!@*_-|fH{j?z6Y;Z7va|8q+620S=WLdj z&mYP!EF^LVn11^pB1oU9E49ua?VtYu1PJjrf&LfC@#FR!*6;o&_+w79^Yxt?>MMA> zOQf<7-Z{0jMT+*+47TVO&OkU>_X58Sm3V_spX#{y@>E;)erw44eD}i1!arNf<;_X$ z-FZLBdFX#TJ{0iEc$>o7rl$m?-RLokwSbM@b-Or8Spdl|4&dE6LV6G@l)07C=&qu1 zG;C3W=X&iJ!TJy3?c7&)@bATvd?@&hr1;Q{(Avwk<RfKevz%<0cixQ?mjjSUQafYL zymzLjg#2l%cwOfEU)b*Djb#UMmLfyNDJQ!`%1QqAc(2lEN;7vy=AOb-<gTpI`sw>9 z_{L3dz*gyQ_>vR@ukj}tAoS!{?VrTo7e%ao#@3!B3+0Hln-|<ZVU`lBW4Oz9_r-rO z{{XU|jHJ^%3*uxGxNA3tKosDFmpK{gGQi}D{cQ24#Jhh0e#1BVE~h-(_3s+k+u83s zvetTGzPV)`0^wD1GB@?)*YhSnDfWCysX=|T{{S2QNBaka;^<}`5!A)je)q6z=d3OB zW)J)<<vt*?xQh47Xf7j_Trl}@^6p=3WH23j*V<kg{{VubTYk%*2`2H?)uqO%EE>Rq z_S)Wf_eu8nQsNaWz)50>kSe~=P=Xi^pU*~(@hV>wc;*ibX;L%Y>JzP`Y=uS@_?3vr zAS!Nbj+n1(_~oH#{ww%3@v8p-O~j)~@ivL6S#yuvK?F84$fdD`5$?`=SMHL-EB^6l zf0LDKJG76`U)u}*3Qh2n_Sf<6g#0t`eCiEp;XQ5yv$wg8trlxipKE4Vn1)gIkf_2< zrz#i%xF@;&s4e_a@zeGg@m`3d`)gFt-rHWVw6kxP(mOeo?xc-E=2rVZow;~vhV6h3 zYx$A*8{!WcS@_Xx{0}3+dpfac;kA<P<}}F!LmC6~9N@EIM^<15Khjt1RDtxnpA2~G zRvr@5wFoA&pY8YdvTIjn?M!}Si+LnS!DGZrwXy;Ls&QR7yd-e%mJaqgDA$zLq>tuj zSJmTdsbP)7sM-d?8-_d;Va5nNdvj1}w`(+;LXR<sM9Qw?laMj!dV5wUjC4luZ;7wG zEM)VaO1PfH%e1ERX(PeBAvsOnUhEUbaoW3Ihh7TtM~pSQ5A2(18aXFVDa>p{&Zj#e zP%|qWbU;ArNEP(7r58n1*)(uTS+vX69vj!S`Tqd1Z6J{z=PFxiD;l>AAt2xc8Eg_V za0e#8Q~m<#HrE<{z2Z0#p|RDqMr$N&77$t6!(^Gq9bq{3uO`qw5Zrh!^}IQ8ByHjZ zA@4u}RMV1Am<gLD8s*gHD|ODmL&`uZ8|e)nPKQL&Ep+=tRJOH6jx-qgRYm|OsXfU( zNhi6l=+C3i2;ypEUUgPBrxes1`%UQD@=LFGrq18WKS^#i!#urYblP<!(~@6hEmD4M z+1t0OI$PV7VnkzsShC!OI3JZkcR!kO9|EbUC+_lV`sz`;yFZNRQnYN%Sf?_4tKW~t zzdJu|dnoL_KHgnpdulp<mwMUAKfSTHO!ViNo7%rZZNnt0dUIb5e%=;lFN+!up~*L% z6w)8AbMsxt`41}<_$SgD3;QO6{{W|p{{Tsm{S)+WT)DM-Z0Y|1?a@9!w`ojaL`MgK zo&fa!0QFPEQ@mT{ARWh!oMS)zdd^$PzUjfwpg*7=N@<bVw+20bJa8-d22kvOV9GaV zSrmpi!nQUj#(R%(j<q%X)5GDkjv<8ePdUlK9Zx;$6iXyl1z+zR0qczR`VRcmx{RKD zHg>LdnF%UL8$mxWZkene=%rCRqY@e2u#fVUIqGn6?b5d3w7Hha?~HPJ5tUb%DKV*I zg$%%85_)GD?V6qs4?_wo>ND^N&z8M9ahL1)RrIm2vA1~RxtT5J+Fl_b3m{%pvW3CH z<P+1iU)E!DDKv7^OuHFmf8Bxs<P77}zADa_Cy^_>4p8Ha^~vMY>syxA{v3_`(BdW? z3(KAkau4Ox9qEp`d-=CE_J~PRo^fU;j;95-=ieEvBU1eXO9jrisJ@)KOwyFLjrXir z95*K*ft+NLIsTQ5*D}bhB)zf8>OubiKmB^sOIW^Gm7{JrC9(kTp2D#b_R>csfMy4k zU{6k`9mlchS}5OQ70V`8X3BMJbmxz!u&3V^Xqr~&yq4*VezmI(p`=?zV_SbQm=Th_ z{YOky;o>-on36rguyKL3@q_EeI6T&T@><xmmh9{FtCzj8jJh)wQIbal_3inZ-PWz{ z7Ts=MHcNyXCdkhtq2r}<9vbm{abnq`Tp-#2JvhiCKb9+|gI$v{+wCf@q^Tz$AHa`V z^Q9T7UdN`Y#lqJxEUsd@47<v=8?pDjx_AEoJ?hNMb!Q7+*-IpE2oftJ5W^VHAo^5r z%W5zG0Mb+fep1-yfsg+HSNRpYC9=S+7-B<=@yBdpw!WqjC|&rEQF~z})x?D-UUz)M z2l!7N{{Tv##5akm=}>se0rOm+vR#GFQh1Z(atSyx#sTZw*ENN2Y?Ep4rV<`V8Keg| zCy($a9<|VTWoK&*TS7o_b7a%Tq+m3*-#lX&{vb&DX0>$GS27!I=+1s!MoVu6&3k7i z$ByPT1zdsyE^)^>!0%e03tszG@s*AI^1H`sUglEenBpWZG7q>J&p}!8S}eZ~{6V+o zXfJFe-RQHd=n9@Yra1PkPla=vW2?^DSN_SlIb8g_s5$SQr1bZ#p`|%8WbaWkoR?6$ zPc_Ek(~YcfKvrxP&usd0TH2n0Wv6&*(^;1P0L#0(8T%xPtmQL};Ks)aM<aL#9jYta z+jY{{_xoa=<gA$(&z8In2V!zP>zmWjZzYtitcag~B~J&Oo(Eo;J!z$VP)-S}5Uf%} zj#r6eAo0hb!2JIJ&TBxz@UO`1K~Pu|(T7v?#aI^VV2P$tlFUiYcpL%8T#x5k$!l!4 zEYN^mx(suSboC%qN~%u57_E+LPBNyw4607-5rfx(!5xQgJJ+a8vt3%svXQ<>Tye(Y zM;r>^_eT}n7b<qMFje%z@JIBoMuK-fN<;=3h~$r_`Sz|XQ}>fcW*vLBIju5NCX*Zy zK+{hU!(n&_uMNOI;nux-;V+B_g7r(E?MOmf>J0)Gk8V(_5xK)05EZg|o;Vfdnmyxb zR)1leb|NgLfXacM=i5DSE1}b5ZGQGGCq`wG;&N9GLZ~VW9FlM_qd)z6%N1stdks>% zRyzCWbp2oBzPY67vWX$_4ZfqNhF%6P?6SmQ9!!z&J^8PiwEqAq?%8io$R$-}QNdh{ zf%WI}&3$37co_UV_=(|dS4Z<M;F9XynVCy4B52Z6l>}`l=NTTkJ?q5pJR7dsUtL;S z>GSzeT+IY-A#l4AM^!4!yGS4mV4Q=&#chSeLfSry^%f$8tdlqgAH2$fL|ObZ>Gh}* z4=H~BLE62~<}20g{tkRu)ty&I@V2LRBsf-r+DU=*KPGSwbI^CidPT47kNZX3L?&+z zn<ZcZ8_A(XBh|JvgagkcdU5H|^~!zDdUz_0=@aKjEm)Ai05gy?oMVyep1fD4_*+rE z(=OrFbe1vP*hrJa-7;0WA5ebl5AKuKn)G{5*>B<m@Xrm6_lE9n5qC>#YpeN}F@wMk zt!|O8J&dEjTC<`26*dka)cjATLnMDJkOZ1mQ;vUm@<#o>>ktnauP+mfr!&x@gPa}O zJtM=KotB;PZpQmd#9D8SY}(<V1gMU5S98e(7gCNm;Hw`&Q~uL%+e_iU3}3kUqtx#0 z!CZ8j*(U4tgwbQ+`wcmKHkP`bt>n55-OSA+Zbf+J-L(}{%`1)FdG0aK9Y4hzFNgmC z5IjAjXj<or{{XS4iuOyCOMMRi08t9dZqa~c65FW^9k6h_an5sIOln$u$Eg^;RB>Md zWPLlq9xT>v@eRT(ds{!j95TqCFa2}}nydRg+oO0(RlIEZ*B46`@8a7OYJXD4C%tt( z7|}dA;SDoVveLEbwJ3EMqJl`@N)Qi_vEHEHIZTHjf*9k{xvvgs_8tV&#*LugUNWqv zZSNhsHs)0g^AP-ey*hRJ1u0*f&co#DdGCN9`&0I{)HR0+QX6aJjh82BiYQ^p^e5&& z)K}YSs7SJfl$jTh00TVx;=X9mJU8Ia4(rY0-7Rlo)Fl%6vx%V$!gdWNKXgFJ9P!6& zRjqf$2|h`eP%51BeCjdZ?gjq<_0z=5+R12C6{BN={jK~<q)Fmk1H+}2Zmlh6x%sdO z7cwd;;Qs*E5=VSyzCP3o%C9aSM+HK@)*xe`ECB!k>&1OJed5c%Jk1rP4JO^5Y|kw6 z@O!(-yYS8{nwR1?iL9gzrZg7L4nwW95)py?B4m(p=t1?bR|QeR3Nc5Mi^E28a%}Rg zGfKXMh$2HJ#F+qOZYMneBp=LXzJUFnJQd>^ekR&$`i_mLM`vRc@+`60&u}D>)5=92 zN<Ib|n76R*c*0MPpByc1Bv^b~e*_=^$!?bL3=H4{6e!(&{<WFmFBN{!e-`{$-Wl-a z--$d&tXwIZ>^7I$g!1fM11ylmC|KegZkk0{S0KBn=BpJ_T$1N$F8=`4io(VUYB9O` zV{4#zv44LqfvLwC0k_F%EK9WaK61uJKR;^Yyj`MryTn>e)|ug}FEU4uWN#$)w#W;N zHs-jvix>w#PMJ0Nzj*^{akN_S`&;f|AeGkR=Undvvm&+*c?E$3Adz3Ezp$_T5+ma$ z?VoKQ#f@s(&*9&~%S3CfL&iGv3lcT7Nxn&RxMflHuoshZ%$A9r-elNlkBL(Y8g_De z`fhtMsOIeUJ~y`gnSLi~TC83fi&6088lB*8v)f6o*co5S8{9`7ytBI$OqbfHXyo8m z#J85P-D;9p*hdsLJHagv3o{`<y(Ax;Ki*Of(zqk7e)#^=9~?dhd=B_O;_ri>utuFP zh5RKYqUpC@DW41CuNF-s2!7LjeibFPvTen!>@9>5gyu!s-a`Hp-9(V8!)~EaF9kw? z5q|Fg@CQtGuh4OM4lgg1BaBH(OPiOfPiy(<w@+QZZzayKnS!ZT2JZ;T#{JsW+sjmD zYjV6=RqI<b7K#GFi9f@^&V9c+*|66vB8d}HA~)JMGjh2jrbaL`&q~A8?e6b1TfIG) zpEUx4exQzh>aDf1UFncpO52QTK4-yk>JA5PN8mfwD$Xao+ghUi{oHWcNit3(icmpR zV8DUKc<;@8{{S`UX`Q2T6tTee&(ghK^_tSu$6^5kAcLG8-8Xg}I@gXptlN(VuYSLc zb>Ur;)P|Ivr~lWpqv}&f@ax33g}_;~jZp2|gT;jZ05^W!vtKayTKj&1qkm_}rgLj) zAV*`LEs%0fILhZ8IIp7Y>@_<t3G2%~A~#wlrw}|GZnK#Ea50{v>t8MWE7VPohIH7j zyucx|wGrI721bm+xEn$Mtfz*-ZaN;rt25SdensUg_fkv0=z0f=^=WjU2x}MW3N@{T z%!<l!j6~VzoM4=TiujY`^}A?a5Bv$H-0U*Ex`Kp91TG(NU<azAjE|*#5Ajc4)tlir ziKUK1nCvb#vBuoGh26(a3E+-8SL27pPmNCxihL>I%{DdE^!phaJE<f6_u0+O#Aa|x zXKSj4kb}v_Fgn*AC^;)5pE;u`IP$*d(!LXwe4?`w3!Uwri;mx4%Dq0yNaczcWRYZz z5l+K_wSWW@->rUn{AKv(;{?>T4F};*+AX4hmU*ph{P|=%0Kom*?Trh9NEt20MhHJS zx9th>+QqG=y4Lk%k~w9SW4MeWVHoTU5RC(d0B%;t1mgz1N?1oIu2y`@!Oq;w{Yv=F z;mvEro)n)-(Bb<`u*q+G3<DrL+e)(-#s*i+3P2q)MSHjW5<|!SAlAQcMwRqits2u+ z@Xn`YHt6LL$kx(BEJydKtgp<3WGTi$2Lm6PQvTfjCGkz%T4%#=3eRz<VOl~;#)`mm zxw1rQyPUZL0CQh?e!<_gUFMzpNO(f;$GU1AO6OQe=9=E+yoeU$v`O-q*M0--Ez>8A zipwy@NoBQg+`6>?02Qy~j=YyHojiRi^6tOk&*~>qk{FseFhefpC$MAGl6v;%*1Ye; z7R?o`vjtM|p_FbTX^<VmpO<$aahwu)&3c!JG}%7iumHYZ<--oV`WoZ!*<REs19pB= zbAZF4$mjCGujW2<rK$ZhrH_~{HKV7yLvsOzns;_|Slr02aKjP|Kg-J>yBlFgBDxO@ z*lGSQoBk1t5g(H<3b8bbA=w|_StpYV7C<2cWA9e>yQ9H#adgvL7{1dCP_Sjd*&91~ znN=VLB>nE4NG7rL4}t#x5qwpsNiV~_KIZmILmDz8pz@kbaviX8!>2_!0AoD+cxlSl zhNcxFo{vNB<NFEtbK*C{4Kv1{1Fvp$eM?tR?P;i7$8o1kBxFhu6k{#3;Z8i&Z1lx^ z7305$9x?bu<4bK<#@c-PJ<?1*-5t~@5Wy)WXA?pSl?31rSQY;6E9swuKN-Fz{0#90 zl6a=h>>C*k%fKRdNSW{%xKMCYgSq}=h64vR`bqIm;<vzG+Hdw~)_e`)spPl2xVLj` zVe+H6hUv0nSf<)lT(|H_p<DQ~*0TQ8zwYOxjOBrxWTk7T_<x!F<bK&+4ALz;JE8nh z@atPcaT!Ltw(^-oS8&KYx!PuD4$~>}#sZKyAm=sc9v^!@8+Zy0TTC;&X$(^Cfl=lW zvJgve&Hx{HZOaVfoK?LR%fvn}@Q$_czs6$gO`mtz%MU0xiPLYK%IPF!823^;fs9v> ze#w?Hp8?%`Kh-2%N%TAWjVwrnkbcD>Ovc|MC@YKsxbe##`PanVb3U7!(xa`r9w+eo zSiSf=@uuHSy>$@VUHN<56h?x60}+Fcqd6JifyuAcy=!c7CaBUfn|2c}#6ZJtHo4vN z5Ho_KoF0|=qx({LM*7O?A00&Ol6gz^f)tk>Hp)j;A-aqK_}A!H!mkpaiC+vfe;7v- zIlO^olH3IW^1B@woMR)Ck&GJgF$&L_9?VjbO#LAJqco^KDt^cR01dt++N6(l;SGDp zmPU(t7Wa_6OrlUnml0xwh71cRUJea;55p}&;=@~uPejUJx~!3IbdAOXA!dk&03E;{ zp^v3|-|X@IpYb#HT=B=l85&t;j>Kvfs?1eY>>JEQECzWC^8zs6sqhbnwz@pND1=`_ zFO~pMJk(vFC@NY_jq<l3o(Ldh^Tzb*-f(NG{IvZJc-}PXQhgiypS}6Eeg6RBSg-89 z9GUbu;fULnK0s_kEN+Ch*9u8>Y>;;3HbY~f{Id9Y;v4&~6HP6vBvQ2Q@=2CeMsVS< zQIud1N`)iS1RPiEM~XCitKWoo_qNu;YuHtctgRt;2o*$tv2fV$l?*!(k)MfwW$%ZY zbNJ6y@Q$|-y1z@OLh;Dp$FOH|1}dL<$j=Nvhu`X|r7I)nFw;?tq;7w~K>Ta3_#gHI zm|EPJE<9Nsy@I+-+k^|Z?Fdze-EcT46_Y)BSK$8u!)vWR+u?qpq*<U4>9#tQts3!# zW#1Viwm~3$EBi?JmGB$kH^#4lAMm8UC0N0CV|8!kqoS(GZzvd9plp1SDdZl6@Nx}* zExOO_WvBcS)qHW_FC6M~>oMBgNn#@~i&mQ32&iQ!cV&>|h{y*gp2ObCsVO%~FIQ*z zY5AWGpH=r&S!k8l=c)No@gKuJJ@}XVFlk;F_-~@!>(|<&TTS+RBo5+BbTg9WnPX4h zAW~#>P~G!hd+;m%2^sN!S=24{uZ|ksuZQfCCT6kH&)ctCBjw#Ys@udz@hC~T=-hMt z0Qg74{u=P7!dp!j!xk`UI&GkxlG@TWjxB((Br4-MCnTJl_2#@2S^c7X0paa8SH03N z<JB(o<$@z`Z0gKR(*ywI-~d6~PfQy96Dyme2}O5j=9ub^w4&m+J)ibw_+RjE_G6X} zZ^Awh(I>xz6m3&dxBEt`CidJ_F5hvC5;L|mRp4<{f8eoS2Ywv>+JCUFuj5}0*;)Sp z!gb)MPZH_gU`4-{Jvm6ev65aH)@wr|#vGIq2;5+(Bj)c4c*Dm(5jB|gj}hHLrP#tV z6hU_)gT_H(1Hb!681%2F^?!@s2tF8iQ%kV;g{*AT^{dgQ&355SsJd?^N8PoNb}1*E zj@7@msOFjFM-Liv=Ubj9{{RNcd{R#me$0M7_+=H-8+`}FlSvVZW(38m+QEJ#j|3DZ zSti=Uk&NfC!v6q*=xN#qz(3g9KZSGa7cl966TTs7OL$f|<u>tJIn*xiS_sve=H+0u z&f|w>058l%d^7(51X%c!@K5$D`1RwThdQ5+p}4TrG}vrWu0mTw=V&)`+N{edl*cF9 zVw@FVqbPy791n5-0D_8mzu|ZM6?^u)@CWS2@SDc=zwnIs6G7E{MX%}>4-D>Zt|hm& zir&qfm|EmQWZcDFVn-#%%%H5sqNP%GXLTL_01N(Sy~Fr9;<E@-qOWts{u_SWAMi=9 z*oVW=cn|h^TaOvvUZE{>p;%mAYMOzJeA3)qNfK^7099~_ovNy<$JgHie{1i6{{Xc< zbZr~MekagwXMv}l4SPwvw}LRF21mJ)CbN)&*a))Z^Ry5N7+(u~VgCRG;Qf^+kKniL z=K^aUGP-!}@9exY1lsnyJd4rwE2xCiBxqaj+&pnc5Ad!l>8}X<N%4=0HF+Vv_<gQ; zX5Kc!PpsYPt>%BUkXqebxX)kS1jl?D{7W~+Q*Kpb8Qts6DQf;-<bPh|cv`wa$_XtT zVzgg7{)VT7JTLnf_zL138^%8cybI#1V>!5#%c5FCs0j%fo*UJSNMry2Hy%I(D~kQ7 z{hT#V*&kcIvef<pT3L91P`6C2pn%!k2=Rto9C^vu;JWADzY;ztSY2CRLvu31!tH)_ z3X%ckoC0__IX#VS=zkQiX7J^Qh4tuU#+Fs=ueABT&vyx2<2%E~{2T_tu^mapd6;~4 z(r;Ji{%60LWpS$)2)7?cr_MWmO!!Ow3;X{71Ua|xi|Ze@@9dYP?(oK=G?zXn(Cniv z{gZP$7LxwjIL7a>O(ESnsQtu@Wx$D~Wd11pU!m$E;jW`Aa@#<Wt=vtukIS{T7UzyX zPC9?7N5WtDC|<MSC=P?JL#XSP-~s1dHKNR;rq?lrSpgsHgO0WFpZpcG#NV(V#vj?{ z*TkBq!ygT5el@q%H2Z;fHkWMg1(>>z?XgWPVH-Cv?u|htsbL@)P)F)K9pVj4JmZIJ znKqTXU$>F@7ZUIkt4E%3_m|sGMwZ;md-rR8&E3EA^Zl9ip%;kt9R~5X+v+y42hU7H zFh5-FV~l>a_LuGb@s2$^M)23d4JuKy!g_m~l~*kr>l);VeRv211ln6IylPKC?4XWC zeuH?Y{t0F9GsJq_zZCxfWS<kA2J+pUE{Ctm*H(qL@QHhqbr3mSttg#A&V6g}!}f&z zl7DMYgSHRi&yC&^)pXkgx{)TmpJevp;#M1r+(jg+yUF=pLW;l)9@Y9K9IlmY>E<;w z(OcJV$k!9%bm{OMIA)W)rBS(gMP5mK<tO(ZYw*9sFnC(qQt^}O>85H@FWD@nc;%hd zoNt-YBLrt|6mG(e$2sI5z5f7aUm9BY&*3k`-vww5d8k}!9vjts>&xau+}~z>k;iKQ za2IgMX(VO@3@GjS80jQxC6!4|c9F`GI5<3m_*dQk0I|=Fue>ASFNjyx5-q!0cxwJq z=OmVBjB2Fk<qTW`6lD6E`)pM>N-lTM{(h9D8(84J33xuw#Tsx;2f}_Q@ty6+KWewJ zoN4-VDH$mD2^^9+9m6t$bAjH!Q-5T?3HWE>_rxt1SkZnB>3S}t*GLxjc{MF@>|7D^ z7MB+BO1R*zaCiqN2jh>~cS^p~t>BN~tomN7t2oBZYgVjzWghe$_NKB~_tf191P z`&IC(Mfm>!ZFv>X#4jJ~8hk_rmMbf9Z*92r3i2$0l%6mc{Y`oGs;N!3wL0m-+cWaV z;z#V`;r&bFe~Nr*@w-~G(>0A}R@5~$(d-}^wz~dw?D6c<Es9#$tg#hkxYTYHQTdV~ zxPk1R70}yBhD%QY+0Eg&E)&X@@>`X>*X|R#%cv@dY$9%^-%Ui?Kr1-uUt@fF@NJck z#SKeZy16%FQWp0fe1I&|m4zb@F;F+K5$)V^NCU7H^X=vQF|$RcU<~ygKMz{|)bPu| zEUn=v=9!gGY~+-bc7nQ1Cc4|tPb2tS#ebw$YO&SwoUWg;P;M?;$=S7a(RptC%-ugk z&^$R~9hR9CR?w#HvBUsSSe9%k?!=Nw<dR7wl50LvWhG<bdg7-Dic3gxPkK<%fq~k; zrm4oAIH*%rOJn&~b?Q!}s@0Q}o~^$9%(){Ynunptt!aF+Iql75wgYj}rJXdYHiyDg zNEz$nU)$ErkBIyOtblQM;dF!!!|Ymx{AcP%m@DjXdE?T)Tm8G@^DI6Y-42VS>d}AS z8lG|g0Fi6)4<92Jk;YQ#IQ}WG)cx=1^Hr?!P+eg!!p!{gK!b-RbL-!q(ypQ_D9H5$ zA8LvvKtXldGBNmftC6W?AvwU#JMekOzp(9J#*#<&bBlWqF0!<C;AFc3KMp^}w<m(y zJC(j?2#|od$KGR}dhz%Um6c-!(Y_m^Vh|FeY2~m_9@zXVBxyRfp&*#SFb>CSGCnd- zZaZh3cA_*d)KR3-cg6aH>UVHj+K^*Nl|qbyTPG*33GG~bQ^^g`l2*>v!N*aKIIfOA z4(m}&v0Pfnh4K(f@;5$#%Ji-4KZSlPzaC|^tedh<Uug$DFcq5^@9XVdl%p6$K<wq^ z__R2wWBV~p$0Ur7djA0R>$1>fx3#udujAdc5=rVe4De4Kfj+!fsrYZ;m&B)>!=&kj z{N#A}Sy}SHWQSP#U}1Bf<GptS_E7lP*1lX?W5gGgF3_(|nGZ7Y-x&RPt!ZVrs+v=! zC+Qad03>->oWl(dcBNRaSta?i=M6H^Ldo`}Wjo6i;C#Q2Ir{ThmR74B?(|&z+1;L> zhtj^)v;B}hC0;^iySvjY@}+{!eQb}wAHn9c9Gw3EPPMIN`xWZZg_7&UdR!xrz+F2? z0qRPntAc)vYu2H{S+xEPH2(nb8Gn)F)#9wOo%!)J*ZsdA^FA)Tw2*@&XXIdW>x0&m zTQbMyVBj2MA9ve|{R_4Ijr<=Qqv{?kjzt(Oscm-L4%t}X{PHWWv;CMp5b5!VZZ4&{ zL!8MNyb^!FM3=iU+nV+1cx#_jvW^yCJ1@<n!o>KKkW!86V<Ymr{F6U1p(|-Jy90+f zEAP}C*IqRbwA-!B2g+pHK|Evmf1Z{4G@r8{?9c|;;MMMMFgJaTaDJ|r2OsA(-)SEQ zzh_N7e$RE`N$+CkgQ$I!^ZwPPsyAOlUX*+p;tHSg<u6%B{LUJlGw{_rL+cItMqlKQ z%SX9QM6}U5<p|Ex$j4LuKGoLfnqIYeZyQ@$&oBgh>l?C;a56%XkzcC1CxX5OXl=Jk z_<5$vyzLr>p{m{m&r^oFk0<gT)$SSvpTq4lOiO(u!2S=nk8pjz*&b;QKZ`TZDBb?n zGg_|%GnM>D1@mw6Oy&Ooh}V(1HAkLb_Ud1pkHnkZ1H=$Gyt%cK5%*hq82()6tA!ZP zJRf?qq$SRs;!QhHVH2v(g+QL(LnLJ3_8^yW!WQ5R<a$@_rn~VQSnwQOg+o*Q*GG{O z1p(=p0)mo~(o<1VKtei{kQkjKM@Yv61O$PJlt>Jub98q%qop@u3^w+>`@R1F+}-<) zbIzyAD>FI`1C&y^)4EI?nhb1h639WSZpBg^`#{bRQ712{p0OB_wE2%MpgZ?o{*$;P zmW(y34Z8;JFzTggpfm}qkS%Z~bdvp9S3S$bkBk9G=2akbhg*y(G^$01E52aW-0{+g z&AleGyih^eLo!^QiDk=SW+t4+<*5~QZdwFVG;)oe{X_Z+UaI6R=SX2s%b@ispT1C# ztxh$FVo`g2O2H340jI|f_2%-QKAEd6e|@pp5ay-0Jjt1Bzj6gT-py$hmq-XR|1jAn z0V&`f$ko2MKZd84I(&bv^uaUjMZ77*14ASWDGVai76l%ZT)ZeJtknHSQm>O$coR#I z1AiW6ZSh<0uc@&YncTO0G$CxQr@eW4|4k(j#nvp^5nuR4(-Ez_zLUu^L|KIPsq*gF zt6OpX3lX@K@y_9%-kBX-qzCS1(>?x=q|d-8xCo2u4Uqadb>4jTkTeXCMhc&zSJ~v6 z>509TvpI4yo*%gCfDgVq>b&9kyI@dj&igH>0Jd&-1(WVT0wS7n5(|J2+PJ|I1`Rb0 zqFx?(IS~D(+-EG$lk`8?(>uSsTguHFYQJl9X7~+41+?vVvvUmL+qb6ox+9%SJG&*e zwFQ;KY%HfK#y?Pz719R%yTS)ucjbfox^fxO58k;D=1@DSUj3U-QWp95`qnDqHK!r= zrQ^0}`wl3Tl9|vd*AEj^O=76(@U;&<rv0`WIS1*e;8rz&1RRy>`ehyXM9_-pu%a&7 zf_sPP8)d5~H$;Vi@bJ7-!$Q;?Mm$PYY#FaMU6&kPU5mOY5D8Al5H@tjbiUb)&(@gg z9Im*0W>-ed#lg46hNX@)H4-=g$9uCv<f{6u4VUl=;UHQZIXInUF*gy-(>^7Q)bG09 zN!^gQ69RiGymAD2za;DrosXIB3j?ib7cP6^PJ^D`6x3)k0G>H+5`7s$*u9cN0s2v9 z&9~L}_n5|kUyOE5`l4Hu!<*qzIn8kYU^HTNZ2YuBuD>ci<9=+!X)A2grca600a$Gb zXHzY44B<i@=f^UCuJ?c|rv6Q?b96n&=|AM*v=OXHP0_vuFI8eC46Lz-2%EK@9A40N zh_aW7<}@+KB5EpZ{&kYxpRfJ+eb+g@A-6nkxS7~Jy(g?KS|-xQ;TedC(uQH~?z3Pd zXQ1}%`qP(6HvVuMX|V}Iejt<)W#3C1*~W);`O^a9Xb~&{TOPdgq4wHP6xh{K<K-oL zzGB(I;lGl=QlPL&Ap;+%7E%&7A564VhXg1L1U3F7rj(yNA1}7!O+8mSM8gm3iGCk4 zD9*zMESFFx!;f<QH{<XqlKps0{D9gf!QZ}3a1-(X?@A0*W!B`&-*mC>v3y`~m-B*_ zX2~J>km9lCP=V=h)=ke!9_WukAFI1S7dN8t2^rbKY(*LJ^k8ivNF%*I!^X7gn+prO z51n_XIEC7ic*R$Db`WX=;x*I}2z212k@1E?xyUDo(!0dJ%m2=X3eBJIMpifC?8*|r zxT!bAxy&4RE_sPf4&Lm%$o$wig8JaM@|{0kDuk35H#6nFnb;FQoNAB-dONc*qc4Dv zPrli*0IIK2MdbBY=SuD(0FfRqEcs?Gp1lkBa`}Qcc+<l}sw?0k`8#axz-sc2Rh=82 z&J9zPD@)|<S&{7JvdqAI_gZw<|81N`g<N8Kzdxyem;K<~V1PYE+<_1TnPP={N2JTD za&g~e;w^qJbt%0z$69q)9r$iid=)++%>N-53w@Xr!FbjH131{7q$;)>b@?}VDHAtE z{M-!j5U?LK?Nx^jbz`pW))#zSI6}Q?ekQf51h64o$5s56M8*~6ZXH>*SSk@0$1S{a zWlLHcOOVOmh8V!g5;j^TojqdgafMJZUEpouP);?eQ=K>jG7*M)52X}3n|EMij{Wtr zS1kYFYt7`*zdJ_b3uL?j105F!R_foto1NeT0U0d+qE^>`B$~R<)9?QI7vi^IQChj$ z*ufhT1W7f(tK&9pDJX`6u7kVQ))+663W-*ND{ZVk!64*Z+&Xo-ZydX357!T^wCO|e z!70q?RFsi03aM$!^mhRTqlS9(@;pbGyG&b32Op6CE9cbN#TqTIH^7A8c#d~Z_GAzP z)i0t-T%dg6C}mPsfa}EcC2)7K@ye%AImTn@1R{4S48&O7{Kmfv8OaY4MSp|$GU63W zI>y|x0v+aH<$ji2#P{L?>3D_L;|>IVVY|s1#%b=;@71aOymV8#Fn@Z2`}^`xhmoa1 zaPT+Z!A42%$}Zzo<#ny*QW{J^v#kA*c(skgQJ-RTt5;U*+7IgL+aHX4Jr1w|a|iWd z2xRnsBz3S@5#5%+-&oa-S)AtxU!KRG(PAFbL(D9y<Rldn7A_x$3v36XUW-O3J^X7$ zPZ&qg`2;($h!eT&6J`!<Hcv-M&9ok)0|h&)J<X}?n4y+S}+o`p|rq^bLcd$~;% zY+|#7nriA)Pe)3en6iRCALyscgS{gCGi_e0DUf?ID=olFl!(x6hvI)E&hSN3hYA8S zm{i|_&-2!d&o?=htgyzhAHGZ`1|-j2)_?GB&H>soAT=;N9SlPc8@qww<qNT6J?Wv{ zB0;jQO)Hqg!~><)-}0|mS;(RnsXb0hWEii;aPJ`<pAgPti!`gdU5NX9(Dl(U8Ha8* z-Vy041>;AtQtFIc!tJN&$*%`r3W`xMj)bAvW2>W`Gej|xYxtImqhcSez_Ec<qQUx9 zF}fM?ILHV`9@1@9S)O28kAFz9;W8JmV6`Q5fTSf2*>P0AbIZ#Y+Z4x%56&BjlO7k# zF2Ubm^KqYo)UXG|eK;UtG=#DS3ql5K@5tn#bi!Q<{iWn%8HPSgSA2RESZ=PC&t)FJ z{h;yG%>KI~DMp955<)_zVf8w(cF{<s(8~blOOZuboDaW44VW(|BWv@0@R7glN568! zq6jtq@0I^5u<GQ0cAFD89^$JN3Sqaxe@1f^y9I8@3o16PCHcTsD0zS(_oY{|UfJJE zjHK(f+(AatD<qHw7k&7uo%U8AU};>YTw762i8!80%1vCg{M<IS(tK%M50n5RiRCcr zHGnMWDGCqaf*^mn&s&YzxM1e-k9{ZV(u(?6&e(!IT}JK?b+`Pm1AdOC7?!BiYcnIB z#C*h`@@*eht9XEC#R?0h1Mi*hzHwxHCtBXZzm=kfYO_eNC3SOsxz?Q`BK@cY7fgJ7 zWra^Ti+#@^8Pr2RO90l<{;9*^)|E)D<9mFDTzEocqRt3eu6s1C^q%`yg1x!p#IKy6 z=sAAHfL*DZ!gc#dT56e{#?DrkO~CdUWR*z13ic(KqTPD@=Zb~k&wRrt^(+Dlw|D2p zuhuqy+F~7f)OJCZOUJwEJi~&}{Eu66?Jp`U>INxT7FAisP|$+|t6;+931fX|O@R<e zhVEnNPfbU5p5*0CBD28i_P$VRWbpFl?~Cgj!QCLEZm(TWi+o0`)rAtSefdT8`k*Ur z&<$PxPv4(fn%wxdwxZZ<HJ_s}sVT+Xk>s(*ZE2tG98ro@QTQH)O(%sEOX;2MR4wq> z_C*aGV9%zeF5qL<<$2fB=}CREUV%&>c!bn=v$>utdMxjTL&`s=%Oc@7r;tt<y=#Mw zAelw0yzAzj^D<1st(cYZ8=%Jgy3_7|<LT=3CtY&eiyC|sZ>EhOP+s+9Z<3z%X<${g zr>9LEeHXna#f5X4s@{8ctBCu)&^e34@n|%HTd3h3UV;zVEPu)DBmQ}Dz_+uoq_3uZ zSn<Mz=8~aT>Au^`6}N^pvu}%&>v&kO)|73YiSkd<UkHXwD7~nfAdrEhZUFS=Z{0rI z*gcY1G3ULd&N?8EC=8*-`(sxs%!1S<9P4Q+`%?xaT{t|cIP3dZJp>w@$#hdk*QPGU zFh8ds|5#7@QSi4~)u(*%$UO8`s5+2`bw4NAoeTm5GWv+tfeAYX^Q*>h`&sXNTlS=N zH-`Sc$QOxoI{erBBwy(ZYOdFf91GEqgT>*W6q~nB)7_SAbo1taKa8(7(Xjc3yiNM% z<u2E?oK-C0Hh9pB_mb<`xb64o#isJ~ygQmx0<N2NKkmvtO7V1;uo4F67z(;o9rFtI zvGDG4%k-V{Rdd$^?5owVUrWUl=)w{_F5p_9rtR$J&(aLj#_F7%6}W}Bp=#KovzP9y zqTVarzjhrz-JfFG7i+LrKwHkB;(OWZ!qC9Z>%t6Z4ekJpf0eILbrTo(*_JR~KdMQ- zFD@QDy3GL{0t@GNU((+?B_@T~()Xo^%b#Q5jyK;W9WJaAEEy+v-hhcow7<+gO+Qdx z>-zfY@YU{YgV((m4NLZ}T+LqQC4fEPhRm#%p2@9#YaPz#0T8*<a<!J9F&#@>#;H?r z=LqIO;fo1gaJz3}=t+I3*c68mk3VSV^<?`CLEB9!{6K7U+t|_`(1#23d(qmeZvKxy zIx)^nmgsWqoy|q#kG#Ieb^#BEaTZ}ko7N5ujgomQNzTk(+jR>MgIYMM?k8@-Rrcb} z%qF&79plMmc~h6OQ**WarK{MT#I*R+QXf5tiFcM)yW90!fM(+*@R{t0kfLJ`u56-H z+%N^`k0-@_4iZKOF&kc@7k<VR6p=bTQ8Q3c(&zp3?eA&mvE_dxkIG?eK~y(CAWjz2 z_jO)>#fDsSe<V^YS~3;-hQfI1OI078q@LaSN|ct3^+lby9l<xVokZCglZWza!udW^ z4}((vzUjM5B0HwLgvrM^phd&Vgm|i_Dpq!f-6T`ghSwZ^+^9LSI47cL7~4LAd5VHH zEGLVq1N^fY9bf0x9A{q5;j}`Afe(Q8_XE|?fEeyLOy^O-)cTCe)K(fbx$&~vj+*gv zUQq#x*Irpz(8~#XR38yte8>`X#vJn~`h6^KBAuycuCl*Knd!^dx4R?f0}|-0=J<(g z7%YlO#Xc(wVw|p^Uj_ZcFM*2UkASv~VG(cTN*<*ov>>ClkXv&b83_>NcR<bO$T9$z zgWkWzjlJ}GI&&fV7Kt&+kN<`^1{+w0T!iH48qnEd4gR3R3oTAo-%nJcYf2`febt9S zI-72HUzPu(&=yM%C1o!euxDZafsLN}sjy4lxV9iZd(f3jHH{}{HSxC4HVbt7Rz>&j z%~1O2)FnE3oW_47kgvqYIhPJ*;5V$>X=3q$BZI?+f=p)$sBxu(c|Ge|p<uW9Lq1lG z>UZaZpr0g_Z&O;%vXQ&xLFfCj`o0T*H@{74##Vvzn%+tZGeN@Dmwp%{$_aT!L&M0} zJ0i*@KtBrpD?A)z@5b1zKdgT#Q1<KnV909<1=2{?tp_syyy9@|7~v_#5Xmk-2i|YI z0>?&Q<13GWqQR}Qc!9cN93W(ZZBnNk3+X})a8938AI-UUi6zKO+U2`<yt>0#oSpmD zQ6tT<S3IBmaCK-LSrU_{Q8Q!m#D{ayYS@=ZCFfl*2YV6d4tDEDn$#Io-7B5HK7R}r zp%mvJ#Z^-A5Y0l{NWnZRwKK#p%P8lq6q$;`ILfU!HG0mDH=$+8c^_WWXq#ob^vl43 zlaNntaUN2ItF5IDv-N)kGKG!h6=bhW7z+~0V3rilMm}&*BC7d)Ef%sV{2KQ%u9w@n zrS#Ratk<^-I(@!Ab}m7Fie@~x2`J+U*zbc~Xh^XeJ6a$Pc7mtYM~L$_ld83!k^xBr ztc-ff>~sv)uNb6tWA>F?RSO}H)=(B}i}jnk?V<?;pc{>2m2n^EXtEnfc)(Xe8MrWR z?m|K4X{+}z?9?V91^5RMZW<jbjEr>gNfjn!n~42>^VM85^GxF1tD8-FDzYW01~!#I z4ZzW0^)Y)lnW}M2Gj6p|>gXouCoa2@B$_j>si@~lOWzx0Z8yt<RaE1?m<!4}Uszh` zr1Y&bln5~L<WE?&p5w;W88*g_7I5nOkUQ4(jWb`wR<JsHh~%TMMYd^q#{RVJPnK9% zWe$kk_9DU@0C4WxphLZ1IWMWq=TJUTyxVpa9}d2QZ<Vud#ci$@@<%8E5M4Q+%#P6D zklB8<IL4sfCgn%He)sP1(nK`EM}0);#JR<7&ytgF^#e3+E~9?y=dfyPTm}Hr?1$#3 zG3ur(w7zKOBM43#G{@yyg(fxes(0+^?ET5rpf*A7wFXEu#O7_fu^m`ZwJ>|Y4_?%F zs$Uq{cz8*6H?2M>yll3M8ZJ>l8jZ|-d@4kts0`S%%-dX$yaBG$Mz|pFO|B^ig0B=r zGlISDewD=yoGdBKO^hbW%oJ^MiY^W0`cTPsTH0p>R|pSqjCW7`9D4Ra@T<Q}pD8W^ z$(*Fb2qq<R+*&lz^~xFDA$O-ld4jFfBeq{K1#+4``lBD<AIYUwe@j5{jj~`GkZiRN z6PQ_c$wYVlDB!oE;Pm5ZHY<w4b{2ud@}=!wr0fMnxuIQT6t@Cgb8p9c+h_OnuM zHmfOM>B)U!Vdh96aR_k7D&ijF+2<}k8*9w(EgHhyK1WF+>Flhh%wvo~&H9}=XlgHD z9l;R7U17A5;Z%z~I$9HT(y2qEHYAxv-6v8CH}7N-GwkYO%uJSu{?;7oX|4Ahk`0+B zI!!jh3Ee;{DK}!CDvB?;ROipW7UZU4&TD?P(jkqBHJ9bdSsv8wc+S&>!j*Pa$q}bU zd@KtfXl#-8Z3F7tVk;s_GIL;!Jd$B?h}-oJZ$`qA{JnchW4u6F7I_fr&?s6a(<tqp z;+=f_sjJRb9niM}92uR&B~@zZYBj)U+iK+oTZMdD6~zvqs`b8uL29$-dp<G?Un-xh zG$f0K_rFOgxhF2s0gNpx@iCJJJ!u9tKacpWKGBcqm*ItK{6``m>t>NtoUFStx-rHk z#(TkA$(y?G3CXcnSf7UpQ{etkoK|EY&*BI`q$oC_+6@bU;z@6qBq51b)RH+8hXJGc zAWU(p<J*QWWUTEgt)UbOHd**{Vi{coYU4n`IvRXnv`(*7ssddc6<7h{1Kj<@|LXsN zF`fj>h&T6-uld9P`=F2S14IVGk_eJPHt3?{pG#n(<9xm8N>R=&!f4#i<`MTD-qPC= zjaH<N;;z9Bx9aA6&DL#E^MfBg7)<&F_)a5-TlCTesZ60&)gW(7TNbPocn{&Q_7Lm$ zAr7b0`ZcH{sB?keV=tnelbljkrcYt+fVmU0m_`iol|Tzs4-qm8i$w0(N^B@mfBO^> zE^d(U@vH{|@C^||(_{pQI=kj@YJ>mzkBaSCcAy}bG;A^|qBp}*bo|7Y@5Wa1_rPHP z6B04OadhuguTt9e`RUN%SpU<FMeNwhNlY%&O&CD}>+A$zm2?4i$@P}B-KyB5y2;+y zdHFJ3ZA0k|mPDTS&*1Vo{EPShqN?KTA#6b$L~q^JCq98bb#jq)B_O}z*z$acoOJkJ z$PDS*=K||zNpb7`eIr&iz@8m+bZ5@(m6=cJ2f8VHHWmn8U-WnEVgo=T!Bd>#ozX0$ z3eiJL9i*nk-DNoas|p<w{c8p5s%e&Sw`n$7Qp9DJ-t+!;LhE~IF1b*_^F>)MF7GMO zj)9YkeKgjLKy^Um05vJ@#wZD6*?V4?y5v3Xi(b=cdLy9nF3FXjb%5n&9vP7f+Ji?! zXk6Mj-`Z`^h9THm)RDgRjZ84xSst^T=N7jq>oUtlxa;fuI__qC<<?N6#9=G!F$y<D z3a`-A>zF*$ki{%aXYQ!%SAE?q6<3g*k{NZM>@dt0_CPB+x-RX`mq@8eCjeuM=7!2d zn+VwEZL}78>oep&7OM4*+Qk|(ps8u&u8p*9s3i|%&9tRNOTJxtmJOOtP5ritn0tM0 z2vmhQoNzk99w@P5b-FDd)zdl6{?)PhUHVdZQ8xLOMLwxF!^a`I0o{H>DfE2vH+%uK z^DluC{}FY8srpSAiyHYkj<?7gD#QA&i<mg4Y|LbCCJE9f2<_@Y?@#LvKc?r~iW1*; zs{9ecn}BM6phOJJySi4|o#@`8%bWcHYCAqStMC7hM2V2R{2X<4IXl;7_za#7J;iHv z$@V<gfXL-@<b6xk+(|Gx9t;4C<@T8|ExvY)3_a*El(?s_DaPTU+vt=Q&*e7y(Cb7C z8;=}|f;{ksQJdi3R<$&mQETZw2Kj}(WM+16^ggo*PRWC^SMGn9ccI7%m${U=p0n6^ z`q+&I?2D#7k#_O`7QMk#Ao8=W+5`rk&*K%`=YOBQ8n6IO-n5KWA`egK(l-RG-95Ln zBC2t4tT~DYMUC+@T$U6z-7R7Zw#x_V)y+;+fbuG__9#ttDo$vGu-#p0qBzZRpZOzH zuiQNz=1wu$^s`~hrwEpjZ25$i##1h!Oen<ZKa$L21GIh&f1QBl#C-98B$TkOTlD3K z@D`x+K`5Lt$^2GweNc*QuRPHrbDabAmDDx9h}f>!(|8>EZh7wl63z8i5NYoK3g>WB zDAl$%5!+(EX+rd)s#-wVMt-GnKZwXdA;A{&c}?q%BL-!*3tM^1_8-X;_;286w@?TZ zkoXKSo9p#mxSA-3@`Bc;rnamPb#--#Y1D1)hr`3`Hg8!!k3G7rI=Cw<18;zQ1T4C) zVJvTc3bmMQ+@^^3kr~Y>=eTWCoio!mN%haAkXkUHo0o;(RR-K7lP&$hvgm_Wpm9$_ zsSly<Op%5n3c&hfJpYG5#@}x#>G10{uXBCkIT+3lzTVDvqYu)YI_lVttjO?^?F*8e z(}nLeVBpqMKxE7s`DUzYtb#v$1t`mu9^lgiz+F8&n!EXPQxuk5iT>MPaJ!;_(T?X) z3FoUj4+7)r6Xvci;?Yxa0<9j>=LtstAir32?lf4(wYZmDHv&gsgS1DrL?+29+U+ne z9~v7%H@()Kdp`wyRM3#Z8+F=g5@Vdc$8)pPCzz8w!lK*qNA9*VV7N{px7DBVW*fZL zp~Q$yMV6bbpCk&u-GNq^YT5--5oA8In{g#5o#y6+@)SZCh!HjR9sfU&WVslNSQT24 z>P`0eE13Ps^~jd}sKNkwn=dAOo`s%5_Y!nn+-}8KYX8kXeE3NKYW7;h;c`l|IRC=Z z{uDAv+v#MYsJ0{P?V=JOwP>~VABhUMfr7&;$%!7xVIQIAZ$>auus{BfB(}KBNv6GT z&uT*T^enPokm-&)q)`3V>GDVPp1!}049{6feofZ98nJ5VM=cr)R<YIoX-8ktK`%n^ z!DNe2PfcN3qqR0@#7w90!R>#8YApRXg5!8OR~PTv$X~$+xyznlxFFGT9-y4+6{zZy zm$vD1@6+pGFkXHxN4-xs>lm*uG&RJa!<><Dp|CZ_>KS@U<gg<PhqU<o7h2pb`ny|Q zs(x~$H`J3VwK-)CeTx{(8lR?XPsC(&k2566Fg*Sv%CJkG^USp6hI!xH%ZgTO4e{@F zc9P?(5<Q8liOM<6s<B~-Unp_VzcCW9QRgKApf1HSoXW(TeU@;}35Mr>P<gIuIu)-s z?J_kK<@fgd-dq3qefkm_V|mWT5V?m=UfK%%*CD&@ZPctk4!a*I+~4xL7y&I}ZPdca z>uU__4b2%?yL^wmtVI7Y8%^#fx1<i#08ThQqQJzsb&GtNtPys^Pk8EZi9un0+8Cn0 zbfVkRJ^Y=5ME(j`P?v2j{G{SM5ZN&@o1>8af-G8A!n8&YV9vyiP*!3mmObh~XSdtN z{LvRg1mx{z;uAGmyNyycct?UqmAww%r)0dIWZ#?=Dj<3MZa`(P#AKVG`~d3vg|nT^ z*bE;*$LAFIa^Nh;lG<EYU3r4Igm2-;Ca6MqiGNuD;s9DGzA1s&2kKCPj2dx9F+ohG z&&<C5tZDN9J1r4Pb4M?fT--wqfl@h{XU3$^kKmZ_eofWQYM8zPr_MPerejquXYqJN zgZkh8-!D$AVDDdZCP5hVGz;ffYTW$qYK+T(Gv|caNz-gy|FoYAyt;%Bc)`iV7t6<} zWc47}har2Q|432+f4175e>N!RFtE|}$H7lbiSeeTLByIboP@BndZ*bQb%6EilSYdi zEn1vsS!^bc3n%4qb>#j>vKL+4M$t}GPC<x#xJ6oIT{$48jTiqEtrIQ9I9QGkFt4Xq zO*j=j?{H6ss+`R+UZ)ZnOyf7Dg!@PJD8Hl&>Ufsuq2dEooaGeP7mM@;-GB7nq?Pb- zXcQ1-0%hGpQ!0sondH0Kl`X)osHOhCM%<IV(_Tfgkr4eKV4a*#$Nx@epsCgMS!o#q z(jg_O*y=RHzZE&M{-y9#BfK6k3l<HiQ$3PJouXSrQGJ_Ah|jayZ_*j|b)8O<6Joh% z^e}HpizezxQSh1;B8o%idefkw=*0$((zyqYS}?d>pCy!jN#ivjvAEJ5LBIp7oCvY5 zM6?P^oVgxRe8d2lg}r|>PB~A2yI#MIr}+Is=Uye?cLw9@DFRg$@x;m{T0js9474q` z)`8W_TPLVQoFg(Fna1Wb4CdzyRR}afn(ME-TIkkiZC4@u_0<u$fB}RVtibN7jrk#B z0i<G?2qdcH{t`b25^p)RO<fkmhq{?IAsMoVTbb1(j#oQB($*2JPJAB_7nOhcMw*L{ zRU|WVkkxnzH1YS@dv^Yj`oyYU@>{a|WFc8j5Y#I-EdTWAsj;J__*8wkk`9BDm#9+s z(GEa)w&fUteI$DLmUk4rPmoS<=C#qU|5%V_skz871?|hiuhxetFv<f<c=3f&#H%W| z@W9&ve}sO4XU=60{LBXI3~VeA&>$wITI;FE@Ug3_U2e2_pjGkA)tiNf_uA;NAJ%iE z&5zDRYF%FA;cgAWF3L7j?i59DLk1z;Kv?CQG2%80M6g-X+@dglZqEg?j}iyoRy-J& z)WJRm;u&73q{vpZkp4M1j{bfDc>rRrY=a<fH5$YI4ZihR4`M(zX#szi1Pr>NcB;PI z)SCc?RlBXQf|o}J@Of4rQT9Dc%Gw~Z)VGr^&MdxyyH2!0?tvep&ZW==7(@-?sIXM1 z(hNJa`DFU9oe9sh)Q~d&%9WbYRQdeJaMf?j{AqXQE{Bkic~J}<mQ*3+F-o+P_72!| ze?^-5O0rop(<q!Mf?&nn_FUemYI{cf9B&ZTW8t&R(p<t=*ss^l9}?==-XUBw8Ntp= z^Flvfo_r<YIET-G^&{M;i}F%Fau?nV5^wmR4`ZUwdnbN2R!Qkux~^s7e+Cinrf_;l z$7>~FOVbtbocd%Ni(}+Bh1Dl*n(;kQj&D=mJK2bjq|5CATlYQ^jzdPQP%lsBaqBws z7my@R3%n&!qR3;muT~d8KafzjBC-O7aUC02j(F6Bs`5x(T!sN1;fti0uu7=qO$LE> zUl;4^^&M}7rrA>v&Tq1{J37jAm6Fe;(Px_IMFLi7BrrPBK;ow72$_J<+7m;;*U=%Y zOz+>#a?yt_?s+7fCfP#dHpj2vHUE*g8?9_$ZJ0Ig`hU6N36u{U3HZG_HmEJM(Y5<s zR%^U#Kz0$+ia_2Bz!(UVFqAHEp&9djg1tS2-Z)4HzUOhp)W$ik&`?&^PwHf0-d(gf z^6<esCob!jGGeL&@!avl6k*qKrr;(;$R^ECw%$>d)OVA@5==jek6DJr7&4#q-S>Fr zXeRWqH^Bxlq1sJMR0D>E%#H_1Vq<^yqbvH$r0zd&Z=p?7UR;)5&LyZ{8|}dRL>H(x z>ko$>W)&wXklksrRlW=;`qp`-^EDgUlJ}vUaBMun0qVaMyLa<=y_nXWaQ_(+rWkTI zNu<vB;ze+E&>c5=FjTtN030y&z8GKSr-L_~!5_9j2ee*vTpt(R39$H9o&Aw=Jf&|u zVDr49f;KEyyvf?fPD@VsM{L8Rz|C7wnM=m=aPZ}Z&#=mr@_70{?EYgUIp-^9uVt>> z-YPz<+a{1fyIx5YaT*b{M78RFXz<bgAnQiE!p1N=>xVAh<SIuf{mbOGw$8EY7UHNj z&lF1>s#(#Pt@Z?S%w8vUS40SK^47%~WPg2SsDLxtO)umgVD%B{u2OLCn~JyrVQ`pb ztPwI^G$JbsaeKh$H`Z;iCCc@Oa{t#+4jO4^m(}4oRc-`zEq@jhor+%?u~+SzL}bgH z()-tH{Po+ZwoI@82hqcRG6c*||Lc_A@{GSA(n$HDx+QSkq_U%O3Aq1Aa-G-<K798- zyGmhPzZ+^0Ou-xCFGa7xaIaCIkDni2A?JPZ`xw4B%S>89{_s}rW_q8-6_;h->Y$^m z|M}8K^?NOUDk-Y2Vif{5IcA?Wzb6q8S5*Cv#InYXT6(}L+-t2!?&7ixISC2;kA(9- zk^{ru2O53<P3+K5nu*eY>ip0(FU0nm!qp$bcto#x+oSYHL8qnbs|YVZ*9sFxQzf}V zNO;TPXlt$VN~8NewiAv;TTMcHX~Rs3?S9^$wIHc_wy2Uo$1+XMY_;J_TeHD;?u>7j zao>+DVB$%%9RHDsSy8+3$FE~DKmzI@slspX`~TW;a>;zrqk8}6uSP|oh4JmOyOnq7 zGyxXcy7e}b9iKR#4&I#OGP^=1vm$p&?A8w)(pl1HuQxtIpT4JEn5WGQwJdum)=u<_ zp21d^<0Y_A=EO)$dETnOAG3S}uZrD5Ge?b*^)5$lFwtZYvzxU;dmn2VtYj2r(ApAP z5SwWQGCLMbjtDoBxquG~0%9y>#y{0-iRx#OWd|X>&XUCaqP7xjlWG?t67s3LyBOr# z^y=fwd=5ZMQPbtFE=ONR-w!eTO6<P<%7@c8=|Wqu)HsJSjZ#xDfA>8p!}z`2+#FEz z)c@>^60+Wm+;404)@>40!;$<)Vn<45nG<@l5Bg=bn6c44%01)C-DK{v#H;%i!mI+E zT5Ou}KXXcYOX;JaP5sSyk(EPSt=Y)yerSRZp4Ro^TAz5Uw%_~+vPa`E^(f!8b@^wm zl8F1Dx-3kU{JM4B->DV86`}9#;u^nXrdX4!!y>I^-9mw^O5#|cVdYIZA1ZzsYt!jB z$28Z}!bB(a$K2d_#3{YHzluzke~C`}_(umoX_1fzLB_!DIV*97^fKql&a}ufNBO|% zonU(^YJByL>Aj0jlG^(}CyAq*j??+rBThuLH$c1K3>l2E<KW_9U?bOUDZ#hqH+E>w zlSO{V)6yNCcIT}q+4jrZErcm!GmBUG)*5P_%09i|9^dDdj@O09OY$*0Pj9EirX^X) z^7?H4+_N;<xG#R(>+91`Np+>(MWV(JFLojX^cc*2zX8$IRLdoXtgdc|)|qX*B~{Aj zq~)5~VJj^A+W&**i6_88X0Kr@T#d(_gG&zixrwOyp3s0TWQFw}9=6Nut-;Sq*?QAR z+-ht{T-x`}?tR>q<%f3F+EJDFp>Tf{eE-$9h{*|xE}U8qrHPb9IEnSLq)ykryw(57 zV(bfnADpy!EcmR}P`dlOiJj*V$K%l8FNwvzDgjmRW$!SUuhu1(G1C<U-hSOK5OGE# z&MdnU5s|ACBAD39x7uxP(Vy$I{gs@fTG~C6m4%dp#9bmRdyWX9>AX+z1=<lcGZRg2 zku7%?w?{^nhzduMQPNC>{^c?dt8VpBvTwBQ*D$;-8xDw3#2yFP7ry<o|MtbZ$(CNf zN1=yILV)jb0_!h%ZKUvxEBp16-+wiGe;<?oK0|5!kR-t!x&H0gYoT$}T`M>rMX^aJ zMWNRAn4FTOmUZ9U?>aId3%%J`>fBCi=XZU*NfgRn@WgC6=`L@ShJASaRH^t}(F3Ot zGGZwnZU$ut0!}jPn()1#{3=jlXWc=t$h#zMu;pqvii-r=Ll=z9&|gfKSMN?3>DJdp z&G6xPos1v337as}{r!_dzRhct9VCLy@!A01S_NkqM3!&0Rr^^~@OClH)4yVM3{$x> zpf5;@P`FPU*7gGO;9zc!<Yx-2o>ZdMJsZKf%a~{fPExPjtMW}l;nJSqz68_-cfr+a zt{Z-=tVJrH2z>o@qru9JPHCHYoi25TvwVNxk(eEEK1%V>WO*oWIYxvxna8Ky=n9j& z_5yutOwq#<<W{~ove6jQIV$~Uut>Zt?^`ZH#6T`Lb1UKAoQ==Mk+g{^mHFTPc9HSG zB==WWIu$2{u2odM2P#R-k&d-Z5dZ1@{E-9;%E)1pwc6<_iWwrW8vYoYx!y{>VVNo# z7G!a^wXLA}NQC+6#AxVxzQSQLt?aR)Km4_Y)6SAkjMC@C-Zv%nBwQp47`OzQb9b>O zc2#yWPVI@wM(Rf!qRmJLaJB2>J*00R%k;+7RenAh)ob<g*<m~sg@_bYqQw^L)?@R_ zYby$iM^QJa!*oLE$S169Z+zr`IGU$X@FLwo2gD|fFe?`%_oqYgke=tA?#%9rf?Buj zcaLztltQMLl&ni5UTZbPOe?hDCPjC!eD~_@Q?kO|Z2IGCwJ&zts+~{Cy5t#oUE4`R zbrirW#fKT|Zg<N}GrHmQ`+JWXxL?^@7cstNwH{;FwmHhd9<(chcJuGnSo|tWU2DXA zI9NwN(<p%R)g7%VqfZDl#O@&c6WDA6-qiqfC7QpfLXS+AHYr^+y8tOv5B9m&SYE@w zADbB5E>P#O7Mer(YyhZ4(mY+HghA?I8=uL@CQ{yP*#rm$dHf4FAAwYzgw@cJfipVj zgZR<pFd_jc@}iXW{NPJV%$1(%^V3x--D&m44*7^*wl=I|z-=3xSx5huq`^eWMy zMl+sGdb>dMr^;&CV}%dPxu`)UJoTqD3xzUYxKp<`dBR2@FTo%5*%Ql9lHA*clW}fy z6TU!>&FzS;^|spB6sSmsi(o~@nOT4_egdY0%8&Gd^M2uQiJSba)T*wVwSd-%4Wipn zWLKT6vtsz=c<`x-_wAXO<P<Aqh>@38Vm{I9NFi9v5hw06$NYR5TWucp1yny6`?*Ol ziJUX*&e(*zm}S_npob{SM7mfJx6cZ8x_Nc)B2rWDfF9#*;rl{}jvyT4;I>XGUP~}| z1kp|i=*4z@9oLrJZzR49;79?29YEi+-UzRT@IeIy|A@F&d@*LZOJzU;?ac|KcU&}B zbpAa3kSxJ)O0tJy<tnrB4pC!Z^-~%~t8lCM?+6#vjW<4QXY}3)wx)0ZE__qy4Ss|T zw1YTu_#S`)cqn83u-dEWQIdGe04H0AFFS-jTZQF*GHtQqMhIvTL}qcBTeg-GpQ;)o z70B3xpEdKXF8UhbCs0nKf23)@bM+;ysJeobj5_ICUvAL=1*+vaabYr?O0dY!<^v66 zq_+a+wzP4uzf;8}rg~}}QfdrM#b47|DHcnU%t+&Qey3Lb(>G-{K6<HBX!=5J|M6X- z73=lY#h>y^fy{$Af$47{3{qN(qs@m+!86IZtGXP6vWZah?4bPA_N{EFQ`fSN^X_j( zjb|3L3Ssl70v-xB=`1%OCz+TbqkIXBu!Do;zFg$_bF-D<Q&s0eZWZ1?&txA5i~CDW z1u3GF@=*Vg^k!Kl*0iqrX815p{;69b=tn)v1%JGonsg(WYM40sa#Zem>WwRfcI{&R z$iMzp=r1W?44Y`z+9LmZbbZ&~rl>T`RdF1Z0k0oZy@|iDE#UdxA)YtdN_wO=0)mH% z`kmuLM9>T67UlEIwM7)2s%Bx<c^zM^viIABR&K&B+28Dk<7S{^r6&DE6>d4iL{ccg z_Z;ql+U*q%)IyQL!ncIRejU6AWxcx+#+Zy-+fi!Y)p#xYVd<=5!@q(<+jLQb?fi3G zMHbA7FtRw>h^86pTzx#<)mDmJW3ZsIThvV%`cRc+vZ~)MjQMWnN3xaT&ky_sU<TUj zBoL{ZMqLAF<=4T_@E?kb%8OKY-YTS;HVX(khZWdbkA|vr`3sRt^mrjqT5zHvT6KLV zfEAp9$;39V%Oe=Efd+w@R$X7&{WRk@er<XQAM~+?Gp{{1&(3`C5zct?zoFF2-Y_&N z27B{O<U;eK5dI}k<MT!eha|$_DX%<O-u$Nw3#KPzbNvPV=3jpS`a)dO>SWN$O*VUt z&v9)NF%<`G6>*9`xvVI~d~1AcH<jyXvA3{ywpP4L8v{fp5_OQfQEm6s(biZ;&wZv@ zge$D;>ln|zNBe{3`<=k*mVdWaZX@1*u>H&e{3f;>`+A7=UK!~#&byWUJo5=`gdYSp zEUtSB(g9Wg6|Anj!_1{i?D26QZU4{=7S(A9yKC<{zvFKKUN7`iI<vo;#ZDCL5%b=9 zHf|`?5<k^U;a`=Rw8uQBe=5ZulmC)}<->c5N=969l(}7|4M-!({t3T;_kK^0>0sf_ zT<ehwz_J*bE9A~+64s^4nBLQ);#thQa=htcRMJkNDB$odxAp`12AT6)XVzDoAdH;> z0aC*5@Z}|QvPD#}%PyE%J>$;v*6C<PkL`K3k-t^qg9;7pT*dfv`1pS$3xXJCY%<Q+ zaW*4;>;}4SAz{!G|9+P9MWk=|NMdV^>TOW?!)!<?l)ZpIW@#JT9P8fb%5VTK`Q0ll zO@Ki2E|#gfSjxs&Pz?@V8oDV~eitQIL-|-Qi#eaClEHkFfu%!rf^KeZ3}XrfK6J|T zH7Rt<0@;4>ajR$uN&~h8*dVJ3h+K<4!oP6E3M}4inDh_rKZ<nyOu8^bTMN;E+(LY& z4Tn@4#@}S1GE_7*OTG!O7K@$Lvi}wLk{Y_d<f%?qG(RQt;dU$PZSSoOL~=v*o@RWG zs?O72`GB3=a(t?K(9#uPF6i00X}ex{uFHqf;QU`!FMJ7G5NT>+sjZ9M7xqKM<Hh-w zE~VEP$BNK^gSxg5EOD9K`Eyel!fC2rV(K7Gcv_brA>r@><o8H-RI6pc?FBOK=n!;0 z4(>os{y~P*YG7MvC(UA?8R-4llv?OrOI2O8X-ndeGUWKS{#1!*1(-92EY+P9JrCC2 zRG$&vu5GIE;6UlH_ehG)IajGMy-^CA1~|F2Q1a3yT<;cd$P=V)3J8;czeXLji?Fvi z=I$e*`+6*cCI^OLHq$O%Q_c<C#%BXjAJO&ha&xB$9ML)r@DOP0#!(#A;#vwRw90T1 zHLg?91Wjujlk_A={M=DvjV0YN^d10AwQ*o)LN^#Md|Pwew%s5yZEZi`QYH9_4biZM zmgt*5@tALrOktxxH@-k$ATrge_5rpWm7)`7Db(bs@Cph3YSNOJ(KIoC^kp}E%%QJ8 zq<H8w2RdR^p3iG9g_jSyjYV&)Ev#+qM5Dbr;wD!dnb}vDd}o^KQ@0vxLwfAv1tdBL zs>YTXZ>sP>G_l}*3T9TtCL_(Dwg0X!vW;dvk>TURdEcHZl)?q}-9Log`HaZG2cT}Y zWnpu_Ri;a&Z=TEqU0TUILv+Cm8+W{ds`u0E0&2X2mji(5V_U1c#ti`B5N$|@F|i^0 z-bTy^hHgej3bVOA!1D3GP=7F-VX7>>7eyg73&ovt<m5X2zAC*SGUCgX)NH(;aZ}NS z85*)0>OD6|LMBlj-w!eBRM4{GA9noA;#bDCGWX$3b)Unit46}Pt%CGHO%@KO(#ndb zR-k5gc?5V(<8?wD9-CUkkgyQ%U^n<e$S&ps7U#d7D8j_WG&55xd|Ugcsr>qpI?4Un zlox5xt1W9;-Yjel6CYwaJ6=8?+A-C;UI^CWLsT5tFTl2q9=hK+S92PX#UvI|xM7u` z-VU!G>Qz$UL3L9rJntt^ssS5ih&eJv`8f|qCUUW?f4w7zqd^r^2aF|?W||GRmeHn| zQ|E*~xwNJ`Ja<0Q%ml0=pAJ<$@`gVvg}tR(^2$Ivim&$G-gG(*21VvP^f<BjT<%-% zHzKzcDh=&gY%DoTQ9XqRQu{oF#*WbEs7t^aH^j>)aseebr-p{I<)CVo`fqBaUUZ}l zH|IXDV$Q@yC9Vx?5Kzfx(dpQpGGU-e$QR>H#gaynGpkP_gNSPBALv;vNZ%UW1sb^) z%|%%scha486>&uSAP3)UCiqkqr;-Q0GUo2GiL!I)hY~jsAcQ)kH><CU0nLt4LmS1U z>Q1`-teVElZn8W|!fdP}rAJgc&4>W=oA)<G;yT|7#3<e2>(&ijR648|qW;YVi}4=u zfzPCVx#_f8&KX^o0Z29vK8Ca&_egpF(9qNLdw8jN?h6EZuPC{^-g7ycZmvY$x<)Uy z0yVIp@_jna^xeC1U)_TtmVy^%>!R%^VMOO$XxRCEtIe_S@;2_ESLnzua-IK73y13# z4I>K8cMq+c;vS57{a$@4e)#F{suDSSW=Jgx-UW|niav5d8Dn24<7guZyr%zF`Pew8 z;=5}!BO6mTMl%0C31wGVXqGixx_rrq@<+rykNA<N)$oL`u&{8j;;8&uUOL6MsfmcU zyzN)uPEAm%)qPf%np6*!_}i9#6evAAW|oi2P{S(!?f`$)IaR~jnTHOO%a9NwnSeRL z_tycDmeO+-e3LED@}1;rdul9$CLA$-%uo&+?6O(k<CpFp&FqyP*=#oturM^#0PE#g zM(9USNLmP(_%z3yANih|=}H}8ssiQ2O&3QCf^!#pwvtAl|L*>lHcHE{ylHiGYjbVk ztd|xiK^Vz>(u8VDL@q=Y6_z-v$Q=9RcnjP#U2o`BSaAQ4M!i%`k7pn^BzukDb`|N{ zShl$f%2KcOJsK=Ok>{IPGBj<gm~{+xWsmS&rcU)?*L9RvJp%n|Hmc28%}v@vjPQo9 zm=_Es7KBqi3a6obbV|u{hwdv_M(Szf_~BgeV77g|`Tx>roM%HMX9xg%2>5X|0-Lu^ z9c=R<eC75VA5Gb;(Q7--mRY(gPI0Pz?GTox$w!TPDbj0&0sbnA*1uI+(%?;pQ;ww< z)mrArVfP_gQ*Y}NmzF8@;%)CKQAB(Y<8AkmB`o;b2RXxl=I^K!nI3u&4D4+j2x2en zmkte9QSY%GLg94mMWEH=_vVTZpDHdXG;UN0uB#pCbg$h$mQec<?Tqf5s=A)jDhg7@ z`uvuOlaJJ~CI|Lk!kK=okA7VXQI$cSnYf_#J8YHAyG5^#^o3~HH0Esehdp9fdL#}g z6&#WBQe+i2q(xp(n=w+<&i5c2RHkb>!LJ7Q`m3Q{Y>USNx*=F1>q^8bI=w1S)8E8X zmV*vUGt&jKx_|uss?N5WE?2D=(ped$9944MSncnjEuPZiSWY_?%#2BE8ovvm#*P_G zbp}t^m#lK5$0@s;#g3qz^*&JSQ`$aZaxH0`4)#ZdnQ83mv*{J8pe^Y$nU$S_=-AtI zHAw~mUm;wsc-9RyM9}#0Q_tsJeskF${1p^81osYWu6XQxzaQP}N~wIO1JPLTb!Rf3 zliXwtD7e1nYydD+YZFZkPpX5VvqNjxXNW##B@=9B+0lgw4|UR&T|EmS<f7}qs-C|G zz~U;0fY#!^bE*kQQ5TT<aR}-0LB=%j^9WQ?p3OF|Z%>TQ>T}uU?re|oj~=}e%l4_N zhcDhc*BfUKJvLCAwp+<Q`e3Ek9V(FDe)Udq-}@KhXdXV^Yx!uG5%9z`X%&tiYd);S zxg~}OSEH1oKL^>so%AV*&U?y%9zxOCr0&Bq012j#zkgOUzSjyV!AsrbK<p9oJK(m* zLADX9XjSMT4>RQ)8BO$0y8h>8X{Wmluf;GW29?g`ElyMvJ30$zIw+k(Rn$(f^)1G= zZs3F7*phuZQpt38HP5Wzyt~F?y#8VClLHCs24vg#S0&(xKDh&MemB9uy6>{EVwqi7 zQk2}p?D3PPyY9o<-MCoT55Jrv2R(#%$XJ1|=UJesl7-<7^s_hm!>@0)X*#tcLw}F) z*WSm3)tid{NI+w8mZYeP=uLI0Qo$Vk9;R|1I~Vs6uRp5J29lmnA|BP%#MYDWHl{6e z-Qj$R7srkeQALfLV(<Inxb;qO(e>$$@t_m45tmk9%H;hGYU6_V!Nhg}lg^-syA951 z?brykTQ}QS3@_BIRZAV2oYHG2pBHGC{KbWp<bI*MM_9rsg$CYxw#7#=a+}axT2QaA zDS0a1$DlpNo5B>_thU(AVVg|`-#i>jI8#_+my_wuzpM4TS1?W3qM{|G7J7(}4-?Oh zxOGp(jLRua&s8tz1k|ivQGQ-K_6`l}aieo$OK20GhTCa2#_$CpvbLLOXfPqf!~nA3 z$2cWOhaSWYw(#d#5Ef}EJHs?UGdCsmBe`VnQa3qDy{y9UJr60?I-TjL!D!bdZL~B9 zvi@Xx!?=RgR9^6XPdZ80lN{)3G9ni7<sOYhHsC%u{H%v7IDdr5flpJH(c8;r=zC=Q zF{EX#IdT}J!qGB9u=3d2{5uGa4nS*N6+qs#u@L7a2_ZvPH9JtnIcUv_1k%2n#oBSc z;B){vVn6h9^3J!uT?fAkO_uyj+v@KdVxn1BRtnPyhx;^EWUJV1A5ES@W$GbJvmt#< zxchd$O?d0wT)&`J(AC7Wl!YP^W^rH0omos}yqZV7p7QpQ?BkgBKH<664-+3gsaISW zcP@`MraUo!3Rw0XwR86uSs3^ShBplcz3v__9Iyz~9yx9cHp&>p{I#Oa!kR?Dr4)o# zl=hrpMNPo2{tL*WDkh%zh27XBFZHyu=&L}%3L1M45)uT5tFqN)Sw8bJ>NMpnwE6n~ znh^@>hY_ngNRz4zP+Oj;>@USu+}I){RyBqa9zMDmM!LQyr;*>SRY^CJz7AZei50&% zdq~3Zyt968woRWgHpd_5RB;+ueNt&GXB?mrN#;<VoJodUETe>IHF6ShnBHpmj%K7m zteO9gDnIMkONyUkS0|*JypX4)9JgTGi`7HFs=ikkc%=CMM<QGBdFhkFOQu^L?#~%G zveB1e?MgYN-|aJv;psHA`m?n=x$0iY9a|h{P+|yQw&5#EZR5JYN$I2?u>U4+rfzbS zXux0p8LrV0L>$<*nmFPgE<V9T884f;Y};k6zUH@WXLm35+)54?ydu^z;X`;~6a}$> z0Ck}y)_rDbSEJDy9X{tc?(Y+>8_yiQ**Lp9cix(?n!G=8q@k4|Y_&Z+So{n}3X@;H zo9Qi~H(mPK3K13YCGivb_($yDdn8<g@EnLloc*gLtVO(<5Hel(gu2K+m2}+hzGN8k zJgo_?e-LAPs7-5%J?843>D^?MDYyG&m3MjdqgazxcfjPW1?F!^Fr*YPJa%M6%xdp} z(0G@4mzpKMaWpMR^n9d}{#MzAJ9<9v`)})8k2vge<wDf35t`FALy}s0vMvQldi2jG z@;?^X17-A7*ZV?hZytiJ*<&w6k7Pn0n3lziWq<Y~PUf@kZNW^@@Ytq{k=14lwYr(D zdc$pXj@_`i-vpnVz!b2c9Lk{3EZrh_sr2R_!D0iz^7u=u+Qd#G(GL1r0;TQFQ5I)# z4+4fH0uM8U{#hp`d4%6O>GiT|CYJhtU6`I0g;VLIQ&VxP4jhacomSk!KSSPsNiowR zUog7$DYGn3mi1zh1~dsj5AK$40)JV{HoY;~{DcR0zHpl6ZDoUO`NIyCH-Qme_{V5S z$J!#mFj{3?>!NTx_KDi@NyuV}oq#gJ>F`U>y*b)uv97jP;d#*)S~&6`Rbnaxga-fi zKawwQmVf7jU?!TSz)GvPo~15#tb01!DN}egV|eLglpjt|?x?yw-@NL?dZ9o_*Tzj+ z!R}o8sh!HC)twD*HB*I{e3_2KITBg@J*&?lU0Fo^;R5rfN(7o+ebVLpU+q=?L@k5! z=%2-4l#W!UNnBO<2X*Ba0(q4$c>yEf&3`9ZEl;fM^~4=5cvsfUgkSh7;lAL(Lzdjx z_Ec|QfNE;yf-%#CFU6=7sqw7&!wh#KhMYWgk9NcVz+!M&wY1DM<gblp%?3Y9SK7e9 zz?Is`+-!5ArgrV*sygQbf$V&mSLW_roUb_MhPmWtkK7ieYS%Jb20A|6-8O%ysvK^_ zGRA?#&7p$w1Y9S975e(7?77?%uHJhKdAbSVo*FOAFIevc{_cZIRTYD(*1DTQiUrF4 z$jB^;lRuZ`z4$+h&NH6P_if{pR@Ev>ZEDn}_NJ;RerT=O)ZViQLUh=xcI~RwTB$vo z*t??k-kXpZ5hVFPd0ysCK6mci_jR4;bsop}*nZwlLk2QTITe-b1=9{kyxL%OJ8RjJ z%QcBSb>`o7<qY~p>O*|<n<|y=FofmxCaBp&;n_v=g8+4x;YZqbnQTZh%VwWwxxc5w z)3YBABNxwq)blNzvUzKEk0|@N3=$*qw!}~V)wq0;eh=fSN@vdJjTSA~C~yk%KeJ7& z@HCs3-Tp5N2BZZjZ>JTwGEFE2Z~c~8RZ%yI!ynum_fN}Ka4=M+bX+hUG;;|Ksoxx2 zt#Mjs^M8`Ul`idgzc-dDsUT^zohaSED8OUIC|U9REzy@}ynf6&Hsk6>1{QsYjf@m2 z0{hUr#1m+LJ`-9pw$FNAWkqSoLs~@hb30+j`Hz)noXuP5H2$SbZ$4A)iK9Mc*(dh) zxPRR;2kNUCqRna%cy<usJ;&2RbH0z4*ncE`F|x~}W#P98>d$=OvV^(GjPmaxIUpPf z2T-VyfqkuyzUqeL&b_g4R9Zk<zYcsRoaK$mNc*aOjQM=026CBk=}7IPdekr?6qgW} zWx@CSUH|s=Yq6((_WiD+pA&Gh4Va!E7^CSEMF;JA?l+F~Bfec@N>5EKxS1BZWtr}^ zlkBa8UjLfjn?VV|vya=a20w09hu?jyw&luZaD1H3Y^K41X6DKs6LhGeUL6igX*PvE zcMtxFH1wm4bT<X=i`BzOA7lkv#drmLk1-<z2F{Prpu%4fhzsQw&3((uNB4Ka-wZx~ z`L^)$*sC%&Mt+YM@6!nZhuEMp;N0HxPltSo?}FW29HnIU^-Jt_i8!J@pQm?!db6z^ z{inv^NEBX!fbzN<G_1a<CNkGp5pJ8nMq2>y`=`Y?1;&u1g!ZC16F&S2)XDGbXuAD) zXPATj=*u#S8ib@Hnw8JKC0F%Rex6M6+~iD#(Q5b6kV@M=nT7;W8E}fN?d^>3DLw9| z<InKyPr1QONuBz9*_KDAeq3k7Qy;vw@r-;r(|kEor{4}!tT$`PwoZ=y%VF95!f=$? zm;@SV9aPTYqj{ky@DBw2CvJFLLa1bMzB==#R}oTgThig6DgArPqBFm(23m1JP2o<_ z51CeZt4Js}=+iEp*AZ0im5cel%%QYHGCzjV4UK!i;zxwFFxQ`Zn1rpr`>U2D4L_W7 zi$F(&u#0r44HVO82ZAXiS0xXxDFPn{48HhFpG%gP*da?j!nLmqaIC}s1yex9F^Vcr z`&zH(Jl)JZ<+AcYV%x!(zQS?~pm&>b5^h6hu#lzdsG!c>wwAo<cyJAjG_=Cll>(JL zS_rP8Phxy|N>@qcBSnCV9|rGuU3$DI2}EdXA|T{~FsAsFKspEW^o{F?-pNp~qxbOt znO4~KU5s_dXg5ZFcu+;58*=t}<E&>rp7SBru5!ulNHC=G^+)DR?05(p2|b(l+W-r{ zP<S(e;(;_tc9FOX#9B19#!tzj?k~N_j57UbJ4!U9^l{^>wr%B|@qvw|3B0<e+A<$} zBMlzMTiu%I<vdHugoF;*?ebjsUmiPoeKJtWFdjv{p%r`S7sdT~g6Kdfvz1gpldo}5 z(<ERjz<{hAToIThaFDf#57nXv(<>&kVH`YX5^Zz8w`g2Ebg*#ob(?9ZFsy#@ZmkP| zK0;M~a>W>yV2rz=jHw2(ckjw`-gUI4@4sym_U5jV`pEWpAp3%a$zjRDBu9RKx~Ws( zd7*}L=Us$^okHXiOM>QR1X<r>qTms+@B4K`%U+3?Gncb#&+{|p`cXC|n^w<r2vqM< zO&b|4*AEOM^tR9O?_BrUyPZk=CeHr*KoEk2&yv5;>6uV6>pzZ*+sOC~2jSVPIeast zv0z*f_SwXW7dT8ki|zWSwq;g>mc%=1nC?#1$%j6NMG|}FDtOPvY*BSyoqw_JT19`K ze--f1$eSb~Dd?|(25nn#o#hLo|9&aaI+F3XmWR>wrP8bdkB3+|KVsL#?=10iJ)AyU zF?&IAFWAv%6T+XC2`C@;$Zq_T78C$sfjpm!NaC4)pYKlGh<4j)H_~o=EphfYXezZa zv2dKfHmz|(d_f6af`M#6*g*Oi<BenjVS^nL@zdJ<cCe(<iadSID)8bgN&efGBrjM< z;nA}(LIsD*RC^C!dWs&v^i_gb2<dP6e+&VgX|Ge2=?5HLX-V_*Z_waU%Ryq16S+6q zIgh%&2;icpK{}{?bTA4qD84w<eY;ocyg|SdV`?y;yj3OB$|q+;e-wYHi{ld@KObc# z_2Rkt*A5441Yr_?=*e8A#s_)Jo*oA4E_q+Amg+{OGwN_<KMxw=_jFc2kPNhI@+<z* zHa;el^4^%1NuhcmptWM@sJ8L!coIv{k3013E;cnBY_4Romz_C>+v&68uMWcDh>JT# zEH|#O7DRi;4tfBK!HY-ZS!TSime2bl@SU~eIU&9RFa3o=1>??1^@Ii`l4u$UaFGf- zx)TJ}|4x<w3^1-bT$(H2D5ep`{<E@swPy3Tc`(DDp=*F5)Wx4NF2p{1<)u6~OkP<E z>0|hK)VsE(vRE|z<<XFc4nJ=_KkpTP#z@_e1+J(JiTf4)NA|UCrGPQ}h?17n>Fn*P zU2mHRub+9SDQtFI#uH>aC8~RS*clPdnP;-K0;d(R6?zh}G@<xEB5~o4Lx?wcgR{P4 zf9MRufA$3`OAr7e-@!>S>DT6{xynrfGOuUjz$A1GgwkYAH}9%N>5fpo?P}255fTg< zi3ET1_E{df-K!7Z;(Tll=R;hLU*|}Q{8x3cqB}jl!SS&ym}l~_@FBb7CO(ge*HBtW z;cZ=?JKXETb)Cm{Ur1hnZv(UtwjQvrX8boC%iJdqD$X-G()Ip1pm03Kw4N<A;#P+< zOxdn`KDdWW7Mj^+s@R$N&{c$3Jp~eZ##xO*<2SydzcQ%Re#kbkc$K0<Fp6BQ*xKoP zLa8FvntHV!cKiAhhGJp@$kx~<8af-VN!M(h)hIoeM|Gz=LRw`7&I{3`>BP$Ogspff zUVYRPn>q}xzc~^x4uhr!9@8uoqjgbs2n*DEWno|GyvW${nh?v05+>GKL~fk<CjV!D z1*0^Q-pw-mSNFjuBz@3F$kaY?w4z!Rmi#?qPN_RUoT|Krhl1rHJ<7!~+eN{}K}SL6 zf<U9ZlRtnpob?o{Z8m?@2_gu3_2ztL>{mVLe$ussox~A8d0Ct-O)>|qoJ|<nTy~q; z!PUY!uli{Y?e?`3q0dd>s8i|nQ^8fu5d6i};bQ0tLFW(RMb4$DM_K>FU0!7%aO;{F zSXR6Kjf@lV{M-*crCz9gH2OA+E7CP#m!P2Kz)<u`Fn3vPQHkrRkI3cBA-9pC#5mz| zMH3;D;4fB}YG%L8Bmf!pa~uZl+J8XT&UZGEBTF$A9Wtr?a7w)oe}8Lr6flb@-7{F9 zgC;hF+vrZHXd7mUiB_`y$a`+V<9}3FR!vh<m*ip*-?!)>*tXu`d7<z-H-+O5?#oQ= zV&%<4*jI=I<{#3P@T4J#k#Hl-JCx+)%3)rfKeyvVOCfmH#;Tso>7U$qY{{;HNt$g( z_LtP0X62WC!l@o(WXaXB)hshk+X9^xt@<omzh{n(vskK7>5Ya}uE<@~^@eW}*i|i& zkRC|G#wC|$EU1_H>i6pMsGQYmFAcUaSJIDsVRL&#KtHkv+`|g?pszRz0XM`Zxeh=p zE{<&3LzG45D08wM`SDgi<s_(28>uCKKt~B1WF>x_#dQGwIe48}`rzKN>VuVeI)R(= zsps#}(Y~IcvMYq4^y?@`e@M448PE>@xHe#{AIjd9-e)o`=Frj9sd3SxOwA$qlzld8 z_@GZnognR%WmW4%6;p<@nPtg>R||sE&%<wJQ@8ng7m6Nl`TBkWcZ4l>aU9QjLrijU z6}+$Ov}GjTC9#~VEe>sKCElrHxu>A~?(ezV+KhdFE<b}WLQ1-e#D;t#fg_yKUS&a$ z4-!KupJ1^lj7OWtRNq{3Ipegg8-Aj9>(_iG%S_=m-v?|iQVwx*CnAo}zf)bqfYn<q zl;3Tly#X2y!MS3zkN$etC5g^hq!uyir+zYnrCEU=06*;r^A)7slWNX!w?muL>Ha=2 zIj7e4z~4Mmwb}*p6c56R2?vnZJ)9VVbdJFRle$?gqfar|peHx{oex@8I^Leh<~YIJ zmgI;JyM2VuzEuS#8&mG4n}#WkK0QO{z=JMM!ScYf%@$6U(gJO5c0Ql#(i`vV587L@ zg-G~7hHhQ<&b<Kg!=yWE==x5WX-+SMmVuDR^&;$)pMaHKD4BD5XkK76Qr&hx^Yh0E z&)f7+D0it^t{d`{F{Ra&jI5Wuh{3ZuYZVXo_1e$-Y>5GsA6i<^$A>>lGx_?^NRb{f z;I#%E6gG41DiHdd+VzlQ1&{@t-?B{(bh~vJ*{iObdq{{@P*K1IC`QWs`w}BmHU*94 zaE$9V`rH9fwyDrD*ojy?CA+MmFG%80s0&ky+YWH#P3b@PzuKx1J(jY^XI<A<I-Zkn zDKxv?TJ=TVLuQw3w4Gg1xMuI^jWO_ta(0HdnZ}U)l!t^gVZxD(`kCs^->pWM+oW6! z4B45|Qavz`|4{I_nkLxEn1bA3<MOCUN{mw6N`Q*Qa9z51lC4bpOzFj`k&Ia7?pvkQ z{>UKYLQ*S(vZ<b-o)|PhO@HiS1zJR%kR=m7;?;U>xBy8EIE2xF9bsRJsg)H-WhH=f z`g%iod9OY)dJRkCMC6CYd0HsPiaWY#CjsNd<XCZc6wg+1G?aC%%?+ep>%Qa^CqE7V zyc>{Aq8)qXM6yQkBY5BaaW%mes=0`Bx`!Czazl|DZV-`x$DiN+gIFrHS!8biwb{wK zTQHOFmPf5GPQRXqk^-wYIT7XCi?uaf!u%;G4$T*PYVKW4(>ppcqOX{c8VgIpp#dwt z%lq$%c=jMMqrVwPh0F*meyE^n!_i*3lDMg7m^jbn$q=htfpK5B+G@Ej!t48tabya? z0Ck&xXF^b9)u-g%y#yX_r4Dh%|Ju4sTy@!fkBt5Jt!sp#NaRQ3pSkD4zOK7N_l89L zK1#|vYl%?<*B8mq>9N~G*eBwICKw_r>Se6i3~g(g_Tq7BnEvpWUb~aA#m}ebyoCC} z7KxIS0!61ArWl=yi&gUwE?#~*K=AK%ac=yvvTmE{()hXN4q$8vWM%DCF*vna_Kb!J zqTg(uS8#ZCMQNEfP!svu;&QtvHrAuon_vTPpv=en1KE-HFxp#-K35-->E^c0^_0xT z{-%uQG^T`FGVuoPsSfcrAY5*4b5-vtC`AjM)>;^OC|OFlYYJ=fLMreVEvFOf>TE+C z7f_F;EFs!zu!2me&+2OPvS!ea_A!FYLj^C`hw?<PVe}cHq}PgP@eZ?M*Mfc4(oYq0 zM;x@JDqilhQO}+O62NYp&6q~>`DV{x`W26`XvFxJ{k`;4_i_jF<8+-mnhnl=0%wZw zl`J4;)Q`1)6*)a&1JQ@E0?M;3H~g*EzlnES-D#yhW|LyuA+Rn_BrBdARf#p4RdZXl z+xCgw@{O4fOIo^ueQa7N?6LsnNXpEkMF$#x>zP~>^huxps9JttMB6BE_uoVc>;2r0 zS;1EFX<g+iqpngxId=L+(7)!BrmzE0jM4F4s7Lgp1gU5pg+S@r2c@nM9~;o<dJAlT z6%vc*#4sZ>0IhD#U@DOGv`>(L6>CYyd}TJKH#{bp$EfcorHbb!IaFzwn8Jrzo43IJ zjyk4oJq5<9?0EMQ<c8uL;$#c8TY~by!VllS<aqd4Xu#L|u@G_0+M4|4e?M1#wM7x| zBS?5(aa@tgzb?%!y9aK7u$010CE_YiImWMhtQ4YacEt)4v=sN`M{dlwJ?iaBhTFoj zX^0Kv#{`4sH3gNLn(^)yA(NO$E;x$mWCDWrUJ2Hn_txYCxARPwVQ_v`EJ|;&_WQfc zoViu>pwP~JCn`8-gU0$1(#)u=<}+m_Dd)Sn@BSaJu*Ylo;XctHpdmC`3>~O4fS0w? zJ$dz&rh;0fe&7Yj;cN2Lif&ZUvnN+Lun;m^K+!ncjIDxZ#wGP6k39ju*#Bn-UUpfW zu*7yvnUfR3#G^bErEq(VIJ8Z6tZ~0>zmrL@UXfF8b&)!}?kN5*QU>*=<2*l5o9%O( z0_RVz*@NcJZ!UC;-&?teNDaCFM|84?^Gu}8P(Ob9YdscTH4r{}j8dKS^nNq^(`)CZ z?S7F=&oP{Ts><5Eqx2|Pk_ifLvG5CdFmld&+`0q>#BRAJi&%L#PjlJI%8QWU&^kDe zx^k4&P)L9!*$ibkpQ}+ql@_<3mj5u<C4`kWbM9S($5N#0pIErty2%-V*;rTpd#-eq zB`&o@^nXN0Bq$jaEMArGXlXr#@j|0rwuOT=tLxW~(cHR8!jP$sM=gXMcTCd%KO#mv z-|7O`zVBCiIyT>__d5@8H<9=&Lx6z_A%kXmy?(w&Seya#u}ix;?#CoZgfvDkomA3B zC^ux>5Zm|>fS~929}(gA(=ufGq58CdNe1;XEvL6U(<Ooq?QWZwnFOgzEBMC^TD2Jy z<m`{U=r+Q-Vh)2Ot;^g7xiqXb_r*s@ANA8m1kfnR$0+Zlek<-5Up6M78Madsa?XJi zo3o>bx9s^|2}-i#<T3m^Jc;psPh|RboHzwdKtlv0@u#TB*`@s<Fo#-iYD}OZV|*oJ zT>DCl{AxXKM##mf0q?iec4l)jY!iHcFqf?Fe?*jZ-V)&<j1+$bHsndTmG2RmG2ajH z^V5Ostx0VQjyC<80(TwF8=lt99bF%Etlt`c0zQvcq=m!-ViyySafczW*El=9FvAlF z%GUz<08%}$b<j+a%y0SyzF$VS`mk<#Pv_e`1HPBTCz1wF3ZjRP#q&%$(#W~)_0v>m ztEGCNSYZiItLn?U>fVT0b3KYxAodH;jT&mhRyQHf`Xea%<-iUo>E4M@fPL=J>1wJA z&+e<hvByt}Hs-g5g|igX>q=3aty6ysb^S|JN?XTInwc47YYN_sMTP&g4_F)uL($xq z9@(remy~3nvwE7e*%L}00gd(5SSXmU)~Eb>B-TJxQyVkfa|6cNR3{==KeoVTyjHv) zT<yFYT8-4!J&o36k~S#`{vh{Tea}MV5viYMW-P{7O~@ZVOvV;g)SOnWwy;6>LQN6D z7mCw{h9^W^ZHd)}6*)?2v#1$vm=3W8goLM}QcmAAiz<%l#Ym`2kQbk3TnN()!74mT zW%IlkWKcYRLF&Hy-TZI+wI|t}l6Fv+IM1xsMQS5{RSoR0L0C$ac5@J*m7w$Ii$0GU z-qpBg2y*(cRWEh|`j%Ah==nzRg_8fEmJ)RqqUWxo$VRVSO73lI(L!iC@u$F|cD3mQ zxO>*O&5u2o=wr*Uq%)Z^+d!vE63CWkk-OiTJr~;tPJ?C}G2Tx4Hx|@$%;fV-r2F4F zw=LG}FMSDKx>_@<Q)XVDN`l;`xZLC^<pbHsVq6%D+!r74|EBSoYOcl0eH+)QA|TD5 zz<dK=Dqx0ovhz&ox!z6xFwf|Znt-P(FKLGp){4c1&#my(tQfM*bq=7$<~5=ZSrE~{ z2R>nUIDP63bNMRWGEmxM^40LJLbNGrz)&7CLy$7}&%v4i@yed4v4K3kCKdw-Z<uN8 zEv2pVjO>9Wpu;gX<bF%z_k}WVQUvc5j$m<gMvx4y*MkQ*qwUC@JgxLSbqMAgv7K~a zQ~tvIL{mp=g7Tg$mvFQ^n}h<T@V>Irxci3G62sCz9a~&cG8O_(Lu1`@L~QLWqh+Tv zEzg%VuOZX*SQgEy<wJrqZB1`SdD!V|tEubFx1^Ah`yiO;O5R|p$|dYsn{)D06=E(& z<Xhn~lwm?`ke+dQjaP>7X&ZIf6MKo>a|H!HtI4FWd7cWUfvFJzdBc33)=CC^<qn3^ z^{HH^+V}+TIJ-`j4R=^gztjer$bU#ZVOyO3sS8sSoQQfSZ@zivduQwi1=g_YAWob| z|IAo<@5-|tHrJK;`d9h-D>nt25h7u&z2rO;TY#?_QimhH53fS`U%n)S-2b|r^<`Mm zmEqa!Bt&wYSot<~z1+<UeL^0X@`b*MczEcKUnB#HZ$8?m$PMsUM^{N;Bj?Lms@h3x z&-*p#XI#3n6d@%;3LT3~jgbjX_e{3xe__4yrX(aYs(HD%m|{#jV?HU0d?1v0)$~g# zfE}>;#TvQ`*$B_&zTNeZX9?3adUv;umB2}0!r!9I5|KQ;NUVCgMqSU3MZWWB)7**_ zUdhj60?*Xp1l_(&OCt=WTCXxYR-ZJyAW%h<GyJlhoq=#e;MVg{%+j3i<0Dqu7z&?0 zC)a`^MVdc7Jlu_ZzhkwhipNNQ8(A#I^0PM*GC}9h2?^iwwIa69E4W7jWlvfFA!_qp ztu!YukY%eU>35w)hK?J{Hii~9b`~TjmL3f~(_RGauvlLO&(Nb4ryYWL3q^)trirR( z1hXzS-8!CuC7(fordA%mlVqLjzCEUX$U`K@balpYEK4BaNM>+zeYkU**d7b8$h`L^ z&M}HQEJ_nZwynYp3ab5;rPt-?cyC1tOd(9U!G>Fj3cUs78_0$gBKTR0!EX3x$l{bH z^nBN|2<mcIzs@;xRR=2~(5T<&t8K222{Gq)CuSGKtdDhAJLFgmq!t)Q@UaOuse||@ zhOtHW61K>I=2a!>Pd#0<160A1swNOyRkZL$-4J>dSKb6meg_gr1pJ<>nZMS@l{;`~ zbJ2mr+0rEGqYM!H1*jq=KMdGyNn5$n+i*UyT2D3`ERiXDSgJBi6qq)z6o2~*T}N*| z`KWndH-%CA;$d#LAieZ6PQSOy)4NPsWT8HOn%)=#fiCyWV=$9@nMmuq-+64YX}n2T z)b_81{gj;-`+40nK3#?tKJBfUdOl8@tV}DF3U5_0W*kvJxA(e-Oqs&xBz^%j=z4oD z7tL<Iw+cBVk%C`5NqfQp2&iLdf1sB6c|tQxlThcC&5Ze|zRB!3)4yY4??$|0K=yIb z7U_)as~U5A-X@YikDoPhkv4fo(7rfv+714O1SRwI)sOrFrWz%z$!D@Bb2BP$cx$qb z@JA`Sws@|VD+%+Ax$6|WU<EM0I{U8`D-#oL=Ffe^IT)o~mYCz-b&35;uF_iX>e?5_ zAnpP+H))<6<f(nyf+gzYZHo9_RRh2LULL-8gGT>Vwa?zr%n{}({53+lLj(7X&#_~= zvWwOpz*9|&NrS2RwwB=^Zq}v5tj5xE?$f=LGzkDyQ+~AF-z-i6H(n2@edz#yQP$a5 zRqV5vPS6zj-8(pXv>L!+)h4=Q!E)fU(#ZXZk#EfDM5SqWyk;?@ET?N0J`Y|5qmPh? z;+R@IBc@ZMIcCuLoDppjo)&q89Scq)^PU=N4KX35lkffsRf!x4Ba0Jp#l+t|^W3D{ zTJjuj`o`<N(UvYtA^r9#x0QQl%WEHISxT|VhmfA*Gop1Mg)x2|qxn-W#8pbNa&c@E zo73&zCiQ|pz4ntl)i9)%unQ~=^%D+Ix2A$97QMy$q4uhlE1Ysv7cQpH*c{!-gkJ7& z2*&^;b!;t5YxU3cwC5WItUwMZJ9K3ZVQSJm@Kby5RfFz1IsLwIn@-{8wqO<!wtYL{ zE(aY!2n^LIx2ds=DG%UH9nmaMlJH~ty;8Q3gk9Kpta~l9a?}c?#eG+1eIK#~EQ#=0 z-Aur{n>|cElH3JVmrH2-7=NXnVvan|Xs-S%O|!V)<KH$PIf=BK04;|*X=eN8E_l17 z3hoI-tssm$Pd7eW4$+X`O*$zX>s;_$f8GQSvh#0AE*ynfuX`q2GwV<$JaSbsv`+34 zbm3)lrGVf3ja(_>@5Dsky#-!ukxIz7%mg8{+^z-nt9-19n^XLw9;!T4W^;gjr&-Ft zKPp9Dpsg{Q5D+UyBGkJUbBkAK8gc`NQm62~V}tt($*Tf2?tcFJ7JHNbh@5jwta2;a z*Q}{o?wZcJOXB8!d0Lr6>1n!kx`8_Hemmq+>L6ot@O@NJV}TPJ!|PJkgQeBZ;H6bU zbob_Z*)`jS|C3+4OcsH<l6%36mWR*pjwYPgurt_z0Ko%Q>lwO{l>1=c1-!h$>2RL# zP(uWYCcha(b@v)Lv2B7X$EW^Uu76{1C9o@IH6Ae{rn}+Y?U>{$&vA7vF|sp10c(Q9 zG$lgr>1=&u(z^@wF1dIRfNJ_q`o4g@Y*%N5oy-!OI#>XqO&qQ`7#-!n<^-{>f?99P zae$tcA*#=CLX|1DfBL*b!GiyAdOtF@+X#|>LEV=`x#0*quNi4+@IFqO>qm}}yA?l+ zQJ>HvAA%fO&^fi}kY%J@Lblv3mpGRvS0(~K7F|6E-K*=^4G=2$!Z_gx?_W8N8OT%< zQ{vS90#W$&7+vvuU*;eBov?qwhq~UrS9h*4J~9OoZcfWX|2gJu5B-ExM$#Tm9z{}g zrr1lMztga*za)?lPqrm*3uUaz|J`cGSPN1fOJqN=c`w_QXDPL};&fqG0Y(yzs%iA< zBIj?ZwzT)2=lDj1^IKE>W_o+;Dn)yihuxiNTD(MPMaTwTSPlQ9TZ!le6pzA6d@+26 zJxZyudCE|^c~MJIfVI#rlY_Y^7wKRU`DVF;)BBlwReqWgHem@&kv?}3L;J>kqcS!M zq7GMA+6a}_zSM=~Aw?541_HrcD_qpzNW;Z@Yu2?<hi>^xzu9*^9sxe{&ncgeXAYkd zF0qzWv=eA~Y%b(yU03^pA9u57>$%Aq&aCXY0hr!uKX?Aute{bU|6_{Z_=6LO!rAol zAERa@dks}az{DRKiUfQUayjl9Aojqh(?B>!>sAVrGoVUaP0ihJlDV9em(|qJVfPCs z8QI-IgQe#mf(o^AP#_B@vI69jY{vY!`RiT>{I|_~JgDt&_npADhMff72@wWPLCW;U z9j>2!*@OE+guh2+{Bz>V+$d7T$YA||tN;{EAHqPzt~c+?+{K{Y1EWY36F<?%0zd^w z7gq|E!fH%CeT`DB6<uv(lE^sU_|WYzdqbdz_&rx*DA0J(w`FZ~x(pUxN2w8H#E)Mv zv87l<0Ch&;jRv?&IfA8F9K#Pl$RX>Lk^|L$e;!<VlnuP1p&Az}9%JT9{)Ic_m~1+U zPy+1r=3n?rOODWoQah$G+bZz*&+=--XtU3Dzh41N;;AsZDDcK<MG$AqEdu>nvN%_? zfLFgrJv;;ueR1@!*wOCII{u#>G1x;!Uk%+csg(+eHh+(T#B85Kc#fVTvODc2;&n#I zCSC@tSrVt+?b#_7#G77sO*P&%!$#JJ@t#9l;IJi2wc@L5&H_Fjshl7Re#aj8B<l9U z+6T5dIW5*$>f78I-5SrOWW}}b$5TpjaZiEN^(UlGRVi{DuY}=u_uVE$jR1>#EKBT8 z2r(0f+7U@T6SVw9^(~o~#JOpykM4%mFEZ>BxvADjZCGCU|0Ym55JPL&fiOn@>+h#9 z$k8BM(@~#Y*Ifv~691_OKR>1JS?Z~nol2U<J;1jUrW^6YjKG+D7FtNsBDw2m%DeBz zW|orz_J%CM2Ls$%uI*@Lsy+3xq3+L`+(c#*G-x&Q-QEqZw7kGg1P-db=<+V<bLT#0 zu_S)-?c&j;h#^%mx_YLDpuCoQiQFsSqi?aA;VlBsh;t0>{sp<HeQfY}oa`mbLhB7_ z=!Ec`oZG5SxLSUYFprlRUAit>fs9`xGzRc5=6dYtJoBJcR%aAA-SZPp4CQ$TK5JOB z;vm?^wQ0KcM_Rkc@4=dg^Cz5hZL+An;!icZaof8bSw@De%Qsqt5E_zM|LGe*rJ<PL z6m5gTk;~*SA9vfKa`>;6rbu%y>Tmo!=aBapnma?R6(J>UXEu`6gH>d)r(?>8LbfnC zcf{fu8Lg7j7BDK!fPC%2Ab~Et6%$P#Y7Bn_BYB_qVo~*TFj)5#tFW1xfR}S3XqxzY zIk;x?{_~RU(7!wgJmh|9j1s*8FnVTg9=-kGUvHfnBy5FJv96ZuAFTTIC1B68qE)RP zytuu69R+h2kCBDZb=|X+c9or<Gk)y)yGxUbkMP&?KA=odwcv3M8umbMlqxV_J`)Zj zN-+|5x*!o$YvL6=A(C|lB)W;y&}&YRZx&6<ADb!6<q%-h3OeUrV_!Aq)_iM4=8Je= z>^}n85K|iQYY+AWP<{GYsc%t{7hb(|tnCd`F+|kSj2~|Y90j4?`sc68csKninqQgj zoR<C*s9)T7JL4`>h&A-|XN?;D_g{q^DM!1R4Au(RYh@UtDm4pb@i^yfa$`x}%hqch zUw0_nFmo^jn9vl5;o<38B!2uVnqX$TR-I`FTmw`{D~^w9O9`F@HUF0<(9lhiZQuWu z`l-UO&w3M%l^-DitdUwA(Az778KeG3RK|X=ap2(Ck&!x5O_)zruG%5>;mZ^+G1{mG zPGU^L*%)#^#W`WnHInD^J9v(3V8%HjSj{CXCK4OENd-1AlG4)kUNRw|nzi5A?f;Kx zccgl)ex}?rr+~pvXGPtnjWv|b@8O^l;0i&wuLrnaytr~g$U^n|EzkPEEjT&TWuf<k zoHaudtLGFE3GVr0iVge!8pJ&=Rljx-{S4TbcP?#mC9I2Mmtgc+U~IRKGVmu{sQ-`Y zii#p+{_G?IpOK8=%nId1kRijha3zt{$7+w7gUxwiNjlCS`qW&YU(Q;JSA;j@@w_6H zpKS}f$o~Gv<juSX%Y7k#)aEhS|2C_fF)z~7_?CzDQ+Zse5JT2B@3ifIcsAwmEjTk! zsvm%-ocB^|ys{D6vJzenmHbam_S7+rxSRI@r!biAYu_i~;VZ+Zz*G}bYwHfK?MMCo zhsFQRBeb!M)f>UF8)uxraCF?1cNR_J>%8C!`bV5^>*I7N7l@p9n<>*Jc#HW|j*)0J zIt@yv9(N{(w)-jmc1QfNxd_T-q0(>vqTA=H8!ct7Yn4+k=m$jdX|r6K18y6G4GpEQ z3{Qm(rOy>Epe{aTS87?#OdrvId6%+wzBInLwRiYI-&l}`W1$|#W>@6|*nbBr=2~GB zYNot5Sl$WBS0~jukFIS)R^l8Nd*m4ZP(S=T?s!>U%g;x6rF94Y*qc#<clYMiFtqG$ zh+u`chLeCSeQ*;&=1X`?hRQ9)k1}i5?C#vJ?M|-mKv+FoF_d`~%iKwDr^bMSHko}n zjhm;G0hKr?h3G2-+pUGzS5QaivR4mX`92GZcJ9NMIMH7*^>_NfV>~0xK>k5pUFk;= zglH|7l^zAF{6)ju#6Jq&$G><HV~qS_<Nm2KNXRFU^Y%LZ0!FIGQu7p2?Gca|t|u(O z5gxy5|K`p1ON$g@$3+uHhbMF@)!UUPL3aj`fAuQVhI~mqBA=#Oh_wXRMig%6Zoh@I zjCe|;;vcgQ%GzT{qq*o*!-{OuHv?(hGI?yv*N$_q-9gRno^$(4HSoClcGt!(LO^52 zwC1ARZiIL}YvdB4CT{>ew~Im%q#G<4m1nYjx=+hqiQcL2-M=$TCmY*k9uJSy?^LzC zNuhEznP$<R_Hk*E(s~bmuAQXpL^;^==+ifn9W^ncZ6d%N2PrNIFMxsfN3u7}`d)%* z+``tsc!9!0w%B#g#-=V)X*}q382-$aJ~NTf=jk6|s5(staPio``FER>NRV9=-KIvX zin=dRuBrW#p^2GaV>V=l^$QD!F6$(|l4N25^MsG^jahqtTANa^)XU}7|3b`V;O3gk zNF7kBGbow0GvnB4n=oN(M}Lre$<SsPk9r&J^(y17htQd~GCJW1ZDVn+GM^0PC#0(? zxXRX6j|4h1K+sMS`rNu>F08;PGBf9-7dPRMmoK;eG;YBV_mQ!Ku!h(^nop{9$hT7< z<4xg0%Wd2F{9(~wtcy(jKM($!h!y6kDS55WQl_56ONg`5ypzEaAvt^1?t#K_Ib9Yt z!0MjJ7qFQo_hq|=M8g@;AQgdMc~X?`UXuoBS<FbD+I&BC_JW9_q|mODyMzp+)ELf3 z-Y#~GAX6kbwpm~2^m#fE+=SJM;OnBU&+eB+zRurCQFdm?S4#0rVTM{Hm`G5`xa*&6 zk8YHePc(&jG+QlPx+4bzzW@uQ3#|OV_#nibW!pn-JC_5ufF~7gMEyj=yd*Op3%)9C zv&}bw#Bmj>f*=A(7Dcit9(7hL+60eZvbNM}W&2&zIOa~F>+iEW(>vZc!rBJFE!*Gs zlE2d)C~kgw0!KOyhOM8hZWMpAeS)&<OQt@$R)@_54YL6umhJVS-p^+N=30L<nx~|* z>ov*EH%*otMO)NfASuibijjJ-xZ9#q7K-G+ExYJTNB>r8$El{lIp?K?)kYCLqKLpl zJ%%D>O{N+HhI4}tH^%-U2D(%3wiAlFYk6yE3qvwx4oOdnB<ssf)o^~`qD5^;XK;t> z&^i^A1*C^r+%^Z1AanX|Q{%7hCNKD6a(u4onWoQ%dmb!o8NHNzGs46xX#eH`WPmdk zs*K^;>Ri7EvYiyi%GDm$-?TDXCW(@w22C33jlYie=m1^~FDRLBY@e<ta|okiPrQ*7 zJp?<pTA$J~j1p5ilqXZ14CV4*0W}by<TBidl7mm@%#3ceHQtWyKHTvce~UDOm25SG zaNmRefYF3u<|l6gJ3l8?+$RXkcmRDdk7r#z3TbE}M3i~&70FNtR1`MyuDb-(mkwL% zw~O>Q(*NZU?!WUeZFjs1OZPXl^?s69>;o7*X>Ck`R3}{i!i3}~2KE}1K^q_b8oTjY z>ag+2Xx}Mf!o^049jiTVP9*~#ooOPqayOIJ3}(C3x2V8xQ`WVoYGurg!lnEJ6ybg; zq-Mj)gZAB7BtfC62#Gsc%r>Ec{S%1%JkYRoG>yxHznwm7iuKI*)*X6hG#A47jdguO zXt;i(^;<cySGC-_9n#z`!BQSq-OL#Ur7%g<L3;1jmDb$Y(=-F)FFUOqrMm*=Sgg(F zzRE_v<J~68LlY_?PRbxKTja7@qrqozr7Q%D+}_}i1zE`?hI)vdNmpAP*3{-!IK5W$ zYH#wh$<of2e6<Jlr5dz|77-PhXPWwQIBK2U^3TZNIvh8m6QmFOSsZht?=joZB?-FR zf3geS^EsMpN!$<I^CgcQ1UFP9qG)t*S*pq)_4yC$Nnuxi>+;Y`jQO4+B|xyrOd3^o zakcf|+`7tjUiUyWcQtXEN!HM}$ViMPvT?Jr4@?H^+&)9dl&U3Mo{<C7x@gNWE`zrb zsw$5CzeO6?L}#&rdwmrPR<E7E4p!*JI46>1W-MX(OM&!gAxvB`C!r<z9})Ax`r}Ax zcR+>*+LjJE07n;=!{Yc?C7>wknuHdVh@4dOsChSsJMY7g20@ZETydlj{;wT<<bz|o zMma<>#8Z|20&6IqbXm-5{xZkY`<IQSXd!0SYc|r;D*Ay-+Ed!>zz+7fo!dQyf4?jY zf&^6!T(XMJ3a51h1C~aQPUm-hbQ&8JTmX7c4Za+{V#tweOboH)8=E+DS?)YswxP*| zxuvp#NHA&D2WtWtnhhO1`-o`4aqS_+FWK@6(Io>_xLCf(rVpJU*GQhA=_|dDOv3H! zdp0lSmJp6aoL4o0C*KH;`07KuC08^UWp^@!$}z_%Z5>zZYuP9b=Pkee?J(Cm2S^h^ zxBB^vi3DnOBOG*pJFoO;w2m%aLN)u1zVFHND_?Gp?cjs1<rUk28}AkA11g=Sz5lRw z%pPBN7N_pL9WedNuSct|Rq^X*weTW((vZ@8<ydh%udvI-#o~Tp6(M%=Yt*Z|M(^Z^ zy9+y?$OYKrQd~CJ)ti5V=F6zgmS~ua=g`Z3oxOT5sARB?v@cH-czcc1xG&)!E-#Xy zuMA{9<t?N2I<dEfb7?7aqU4pewAC;u$wBfjcLA7e+b-L#X@B4kVC!sP{V_;CKIO2; zDng9@dNW?O`iZUj4ec|Y`s6ryN4soH{(zckuU4U2BKR&0Ku{RAnpN*awr&<v4lyKT z9*GCZ!VtrUzIS0(Sa{}D`0QlUMaiL&)R;)p{QUj=@wPVNY$LXeb6E{GjxJXPh&Zgd zEtFIuYBY?<fXo0Fb!bCu(X6-0YY)|$HQgsI0@Ej48<GR5m*)NkCA-xG!<)0fagCs= z(qAr)QTKK-lEMJzJM}_IL9?(wjkg||<z|*%&>bL0)&|ZJr&0F0+TQ1+?QTeQ-5}y< z_ByJ0kt?L(<>5n-;NN`RY`f|cDnt*UovIut;RY*ry~@KX)f3CYOWCO`d7>L3UO%aM zpz(ClTqI=EkPZ|4pdF=|y7=8NPcP9u-ObpY)YoZg^x=*am#xBkD?rS91CF^5d8wsX zeE|n#;LnmrBQR4)W#E1)875hJ1qdFbQ-1pbH+~W#!n^%w6&xITI9jwYp)}co&cnKJ zn3=fCk!0~%_~{&eQh=B1Z55Mi)L3;PiT4L3I|=hrd9IY)Yq&f_33>XH@F4QTjIY1F zT79AOtketbIQ_3dk>%V`#z^^}%ED}+;GJUU2iG8o)wgEH(7`^|-gSXzlLb+sC!vRM zhJN*cG<R36PSA6wByT)jtbidq(fdKg2;s>qR;y!AHJ*3cG3@1~?Qd-Wq&^1<M4aD( zNQx~lViPvtXsgU+-U(B4&P;h8-*IYLITup&M#5C)Y4Xun+9H$UXyU4@!rn^jW2y!T zUf1HB<F8?W;)t4o=g2oyF~?YxZ9HTg{Rkc6&){lPmt?T9`jG3A=o-SCCOZ<PMZ<;j zT<INK?UZ+>7;XhesH_d-kctx#Cq;nEU8K*_weIV2y&o$u)!|%f$xL6F6G+>;(c11l zk$M*aeb?Jbq_!kucfUa~;VaiA!-!CpRTov}yZ_DLYhbSHu}f-w#W5`WAG<h2_daVi z=>-bk7yoc4r`%u7NW9KNLx4}t8ZN17lmegA#E0n(RA6Eha&(^+Qv`Vix3#wjx10V} z^}7oZv|X9s-9Ld5tc^*8w@MZhqe2g8ZkrNwnmPSoD2YB=-AIt{kx(dF`ELGv`Hw~S zdxEH&-#fAcQ)ReFs3hrAO);>LivJPW>v)U)Et`M(u0Mjs++5ZolP0rde{v5d*kfF+ zP5;zL#c;MBOa|Ek=f@)ak!MC2E0ke>$NkmlpG^@)o13{j*)yYvXKBUY+`u-P7oRL1 zE8N5~$y}&p*44{pR9ah0Iqt;(dEb)B_a~D?zJk?p65O#^dZkUWRORqGPYxE8%rdaL zpM|mbX>_)H?*g;P>R#T~CbxHvXpp<m1CinF(b0{Mse{E!BzW?%N{}K7l6r=JeB4n~ zk6iBo(}-i;WRAbR518)=hkGqqC$seCSGG45dvg1v$S9BzwcctHRFw(LKKx_`S-KN4 zqP1vfqSo}$Ni)EG0snNHFqCU#NG{ZsE|niS{C6CI@I4yZZOcONiz+{@uO|`m+V{E_ z-lW5gZ#pitdd=HE?>Cg9ooC5Iz!8}WBOnCwB`cvvKFLBlcEcD6a#A|;qYPl}Kv8+c z(%^_#;xB!B8F_CPuuOj^LUI88T7&qDliwK12-y1W#lxKr;Br#o4kaE0II+-jsh=_9 zzi*+-QoVRuSZq2APQz4y`{2Y@3yuP#lK&3*8WE?k@z~ch$}-g+w98bs!_T~H#sX=4 z)<GM0+X*->LiGa%Mlypvi%D#?gV^f%5dB|yUn(N>6wa3i1Jeyv6a)W)$SZ+)*YC`m z5N`%TJ((8jZyvuHQh6Hqd^-a!q93tL=)mtLv2vV<l8xBuF1fOv;EWaB`9>=dx<SpR zcG)wQpP?4!Rn<-mqAO0Ip?C%fJ)XhmvwsS(&@t7-z9iZE`|<z|&#JF$a9igCux`kU z8j)!UX64HvU(1ViMr$2(xVPeJpy*ByLx?x2_=NiL`9|Q!bQR&LE4S1|)H)Y?|Mi(I z|5j%kBIu9mmcy%FjM=*wM***&jziD<A|Cip2xEi#r}bWgf6cHiT&Sf20->dWm9O5U zm`fV0XLy16pLG`YKOp&jwmblR3iOsKrdw9-DUH|pI@tX|^IAl;O#!Yz3Mc`Egw|m# zf+$C$-?wW0*Rs+`XYdAps%m}xH`tC8tAZ;mS@V>8k<oSIe|F!{N9yDJQd_9_a~~+X zA>nZ1s-pRKTO*;B%HpMH6QD27V{}y}iVmgvy4Z6C8HFzfZgxRmVE$~WaoD_S#3efi z*`qd;+u45YvvGEIZ|B{ep$kzWY70+UF1>|GSK||v-xrz;?N)g&Y)0tD*mma2*J+@G zk$gFQgspzgmrmukH^A)6%EVf@&fe>tuTo4(T5~;*XcQFw1{qb3=`S9+Dp?K@6gW>^ zP^~e_b`jM;YV`H%U@D(8U+zz`-&VJu$vM(-7ro>q3Q*)A>#=K+L#RQpZwWO2?Ln4k zT=eXZ>gsRY&lVR=N@5uJgRS<ItfB%FZploixMyZYtDk(*DA0M1mOrR?-KRzxuwC>* zKfuzicc^7b{OT?|_|s7c_dURUy2k?qB~5pHyno8W?w$G4*q@nR*9xA-A(Q*c^vL`z zs#b((<?;N|1f<$6tT1_pZXi5dx|j8HeP498LwuXqgMQM_pOog8@H7~~%^cL9viX1A zqKNMFldj*TlG*R?{!DS@_V8S5h^B;XaHgtK<L6~L9u?Wesy&gezQeuh&upFf{w5!x z`QizDPuiJ}Ao?V>CEw-({Pu)31;c(){Iy;0xt6f%EppO;YiGZ#JdJ)^VxE%gh{!wj zDfP@RNw%=D;hfZO9q^4_<HKbU&Q4=O9*4?q&DQ8@cy|CUOixAmJVB%KUITxY6iA4G zZ(m~XW%Mj%C;rr_IuK_g1kq%&S2H<i(3x*@Ii*(;p$g^;fS%|jjA50zYHGC@gw(K4 zlP@!Upb7adohQ~lp#Q50U7&4oY2-ZTy&#-}`DN3b@80j1j87Yb61bLMzL`;$*nC44 z`1BEQn4yf1FL*-L#wPV=B&Xib)xP~B#$C<6Mw?#H@FuY0CMizti%tkPbccwL20tHB zf#qoLY`^pPW$uzj<WK*`y!FvQ$pyI>0ra%1z-x~h79WH^0;#niS7$gF+GqLZ|3RLp z<q)-|aM!1Ag8okJ#*Ruwlaa~8r@%DWP?X%3cpRe1Q^5Q3bGXpZuH~!0Jd{!Dne`cI zsU1}jZ+I96;s#}Ff{jalC2r9$g4l6+1m18fA(b(xE?4UL!DZXxsjst{@<Z>OYe*+& zXr_R|J_*AO-yOlB+@p=>2bp<7NU;J^K*QeTZwngF@RMD(TE~geYMn-k+SF5uQmwkU z|L^P8z&-LH3FJi|o*h@;Me*KUIb?3~051|l&JV~jTKcqfRc2t4X-pX%%lRCTqLw#= z(e(eRjZS^En*3Vd%f~)Zh+m6Y_4P0{h2(?tHL2#sH_r^m><;YyHTF(0W<SUdRhq4x zFIxGXzAAtS>Ii^ldyM0`P-p$NJTXF{HWbEXR|cXNx=OwnX=sRL(aR*-mhY?z#D<TE z6*hvgLPkU+?878Q_@XPmf#lutlMe4G@9gJ7WAkK3ia5;=k!<nYMPL;$F#qN1vI2a6 z032|qr-f2Wl#mJa74!)(>J)zR^$AZsDd+I4wt|DdZDG~n`qJE<6uv29j=$t~K2MKr zQX$28X>5k2!!$HDx~BX{W2zwtM`D1IO_PnU`VQpp*>QUCirETjFKnecdmlHt<Uaq@ zx3@of<noauSl#+2n<dMGzTCoAQeXN`2C@<MO>tImE?QS?itt(KAkqqJ+?3rn)Y04+ z#hb93g^pN3z9bE!79QUj46{!)#>{K}@&vG;OTks+A*{Lo^-E01r2~(`FDxYM&;LgR z40w5XqE-&h58^S9N-syQE>D->lQ&H@4TM?;oWZsgdiDubeF_M(9o~C1hN!A?13%$} zCZDj!Y_SP}B=a&X1%U?gK89iR*Iu&CEH%Vr3|HDc5w)ASTx9nvgGUZ0DV+dgymWqw zfO)n1bTX5O&-eaIS5WvLQ8+ULN*RQRYRyyo4o#LWz+}lx(P5`>hV@YL$nh|>#K>ny zU>0Qnud%zL&5pwoT)`c}xWr7Tu^y%Ea@qHhiQSMA!Q_s8PyR?TKW{61v(V6Kf4*Qu zOz?L47ZHeAV`%q0jg3@RcOO+Z{%P?iB*PYt*{gA!=>Eui&^}zg>9q&JlJW9mTn}g0 z*E%p8_5X-QI|8h&kL}$je4TPuK!AiB%N~C**)OKGgoG2Mc=#3PrXlko^sz7FI`Gq> z$cF_H+taPxp2bJYYTxXlT{s1KqWReZmwWhdP?)o?+6f%>AlSFF%hJx9?EB3ZBFFU# z;f78tmGD7ZE{tPXF3WEDRetQjm_KD=ihR#DM>BTB7AQ54?No-AdXRMA@4E!0su`&u zzfz-JonH>;R=^Ssg|1-jl_B;Y_IjY}{^!3E6!dWg8O=@Zk?zIQl`$|6*vB=QMfXj3 z9D$IZBwGfM6rmhCl=iPzjVj7Ip#`SD*|y4^hPUwGygSK_7owyvo2k>&H{@S!EXTc1 zNy_2~Ff1dQ$#dZ~C>{Qv8ZDGzZE%UPQu^&Z$xp9}x4wic{zeRXUj3IbU}-AK=B*Su z<lBj7!?vm*eVU#jByZ<E%d!dccMPZ0Z8)r}anAe6P&_wV(F=9eKRpn6=v0El3%c#r zpJ;d(rg2jZQCf<bVA@8B!ZQ3yG*+xYb>*>Z=`@|ciw<;AAMHF2p<JzV&r;rr1d``` z2z;%c@=}2}jPo6~8tv6cZ_vzOMI+`09ooo+K5Bk6ks`#_pk0Hd#r?qgB6;3+)K5)O z8TQ>m9cP<_uP#2^UA}Mbum5eIE{XkN%FO0VO=NjZz}n9ZZJ+pqv~fwctc8zGGNF@K zR!yxPlRj_YX}rm>zb$^?fNg)KC5jSORe>2V#*K_tI_lNb?+6Sa6e+%4oC<R_jLU|q zA=yTs$Ato9=Sguz=ZmRlqCQUo-n9#L)3aiaS2zv+ST>aMsV@aj-G$oSc3e(g_?a9| z_X}k)Y|n~{uPra$EYIyP;3)}fr80gpVDWDSCe;#&PW2ULG}Srv9Tg6;sqcBnq%brQ z*?dX!1-21~=Kxdo`EEnv<$TflFGrv1OmoME6nb+rh=zy`k&y0i!OJ7-v5Xkl20R5! z-LxJLCCbV-n0c2ont=<dLHWy+ZP4E>ShWp*5ITCJ012F4kj;2;hW=)Vf0YMI#0(8^ z2=;Bceu2DGA2`Z%?6`1;_2d6-s!_FhKskz}sPqbT+?K;tSUe6xRcJ;bgbVNCQgcdX zAVQI@@yr)EKKIr;Nm%$Fk;|yO{|!O3=7}fYy`#ezNXN`?7NteB7T$i#dH1#0Xg)xv zco4d@RGH^bL<!hyJ9~UFZiuQ6^lX*VJ2kWWcuP$~n0Rvb^r?fFf5H9~1#J=nDX6+= zeOjQD$hC~p!QvpV8t)B~!-f}N%gZNSojmWeMpGo(w$G~?e)1P(@#;!t*zwyjm{srn zdcK~onwRzH!|eB(_%`D<YIox5`rev99=<#zG9Rm*fv4UzZ`aoeh=dhpm*7n^`JNER zlPC0c-PZ%faYk4p455pPZ~sa-CD*L6^Z04~7*su$`}~XJ5~F&`!XB(@9U~NrkSoKo zV93>aMOpS;<0H8=`0}ba*R0$vD8d64c0mJbu3xUicB6!nw9l`p=A$>nUcVEVkVSNJ z6oQ}GEfVZ+1mIb8ui5y~5GGmRR_i)4`S4sVO*L&1p{(y=;jADYXc6`&XT<YDxn8`P zKe;wt=TXa?v++!wpU&}Mguh)245_hdXwiWCjx{Y|Uw58Se&Jkb=+g8jb>x3U|IUev zL4aLlj_1g|*YBQh$S*NyALrrY2{VRd7@3s;QjTDR2p|4WcuUY&bK2yhW7!~WY480Z z^l;o3ufy}1;Jw~1m@4lxk26bdM=<Oy+hyh7a25br(`Som-_~k{>~=<GdtSJM;ETcV z-0nj|)@a>QDgd2qhQ}bW!%L$715iP)zVykj^TBDM{(w)p_*?$~1<2L(=J-AE{{X^L z%8Pk%uHEV?jrY8ZYY8pc$G4et8lSCyHPF~vH~P!S<Lki%kL0=M>tAz!!AXB<Wc{T- zYE5TT(QXW$9Prld4@bfI9vf*7+Aard++2oWM_AG_E8)v)R(RG~Vsu9bWRLPjcH=l^ zz&PA9gT_JWU+M>g{5MxA;oLSFzLRU2uH4Pa-z(Yq-2VVEd~V`MX1qmOtp#|-(O!1a z{{T1WQn<Ibg@}#Bqt!vj>xzyv4ay48ySB87Mn$?wNJVAxa_YpMRI%HQqmn=)JP%P6 zLP8a7txT_sHto%lNx=%camG8IMsv;w>T05~`1_+P^1a55GU{Gp8TJF3jchK174qA! zp{|vp@vM@UwzGKHoPi7hKqICA8T@nj*GcwIi)^6?m4O}hmilD&ABHQP;!^6q^QIU{ zHM9GVF1@s!Be#xKWZ!pa0mo2o6Q9d9yBk<V@-5+3C!(Pw`ey>SHBSk6%H}vmys}$^ zd1<ysUBRRhf~q!mIN;-G?^qW)CGLqb&2b{`Ot@SSPSenK>CZUy>t19l!dQxyeIxpw zobXj6hNk5kE6e`?Z9hnSGva-B_EY_ft$rwYYgCg-@yEuCy+X#%SB<=joh!mRG>LC| zZEgw75^9&lVl&24L2L%bS5V?V9O_;+_)-4=1k2TQPm9+VseADg#x`Cd@SdBh%QM|B zoub*l_KvF@H!RabZE+(lvNqKdvEBh!-rq!i(;u|ze#$-=_$BcBz+M6Ht^WXu{5SBk z!#6fwEZ6NN)vl~pQjX$Tmcq_$wvb8Y#$;=TF7C_&Aqchj?c=W({7?O){vlm!{{Ry_ zL3iSR6Znzhu$KE!m(7}Aw79p4aG@4Bl*)ET5=Rnb>_y4X<@p8zzB(%~#6dzF?xU5{ zl$2!o61LGvM)!Am`>UC=`V&3O@VRW3T|#n{`4l-4vRuh?H{G{(yzQ=s>OcGy6U6#w z!`%nrAMBUmBjueF!JZYp*Q87<&o#A^L8Mzq%5u@#Bi-DrYzSHI7DdA-HNyVa-xKEW z{{ZX<`!swB)AEh2_)0$&YOV<eSQhr+=@2;nDAG%di;y$&%8|A*0Uk;J00msvBf0+o zf`WWmxQV}Wq2JrsM}l~dOVVtk+C4Dn{0i6q0D_Td3E^Lh9}IpKEW4M&Ukf}Dqdo?9 z$StmJB+t3?)RFYAUL4A4#)ef2n#reC`L`Y4qnfv(>~!%CbBKT1vWv2djX3L~SLx>M zfAccFHtM$i8~*@;UHlr;SC`a0Tk#8C0eJy5_FX&w077rhy?gfK_=T%}&fm9Bfi*t^ zBwug%N#TzHT3bUe`mZ-hvKOWoz$I2ixhTW}${er+fn2BULExP~#6JRmWN(DJYdIRP zf~UK53dqdfFxR3X_WH0x*O6VX?RoGE;!o{&{{RIz_}$>2g5uXv)@*MtF06Fv?o!@s z<k2j2`xdgX^8%!|Y-47QH*{7C<hp@NEvbf`XwMYwPS~kR`&w0!SN{OFZguDD6$~`t zf?vJ82&LBQ4o)l4>(kJo@vq@W?05TAcmv`G?KAr#>RPvjJX7JTOP?2bo4{K7tkEr$ zw=CL)=8b-vyx8KFQzJlK!Ye9lfVv9uuZTJ&t+)IW3*oPWUBqATn*34mJ?z^~8KJV% z(?VubocxAd1MOXQlkhv@KkQHNH{w5tKWJSg{4L_YiJl*mz}_0rZ>5cO87wsmm}S=W zYm0c=LvL#Zyb(ce(z3L-4$H7E$8R3}rTj<WZFBZh_yh36!us8{<<6I&c&__fhR$S? zYYYDX5Nj!NvCgVVigboD!5a(#1op0+zLe)yjvEhJRVb>y?4P~vs#135UlLQYP3wId zZ5U!J(Zf@zkHpiBEKI3;>uu(>w@FD|=yX5uRV(|8@AxRc#eF1WZk?-HX_oPfe308{ z+HypL*aMI~{p;F1EuzeR4F1QTv!t+RQt{`+2l#_?6h%u7I`>(%(=@3Z1CTCs<ep_e z-A44SuZaHu5P#sDAGKbuZ~Iby(AvL@w2vHKSXf8m-w0?rVzsups90M^XwzEj4!bO( zzJeIiQqrWcsLJ_r{Kx0741U+%CDi`_ZhsH{**-Dw>{spK?Mm9_(?HXuHuiS58g0C` z+HRR`Bcu6nTB{)quorP7>{BMy%MC*lh|6eUBSKM@9vbs5RVl`sf>CbCrrVb?(@5*9 zwO7Yw*bK_9VJgvoS(I&UZ40SMyDcwkTi11|^Ox<p;@w}zf3&a0Ul?1TGUopP#QrEY z-45d&?aj5g<J3fecjznjQ{sk$cku`Q3Kjc6e$BoUjbzoO_#LTu14g$4CTrVW3rD+4 zWKuvaBD|n3Ms}ZkekNS$-XPR`Uj8oDJecmTH3z?vDMLE6k92OFFkPgpGZ4TKN|VSZ zk9+Z_#XpIE5I<<$NA{h))h5%tWvOc8Tx;DDIV{D!;-W;4Y#HTf)lxM;tnL|duen)) z^mCkwrD)QpO{MJV$}9X=r^}~h$o})f$au<z8m)S+ExFZFR^OJ=PglLKbi4T;bMR~S zaPbet8+~uan)^-QuZP|evzGT+*RQN6TYEA=TU!fjVj*jdM(*UK5ZT9x0W8iJ2(o&Q zg#Q5Go1eBf#BT%mQ^$S~@a4VFhkR+HTk2o%k;8p$CXJ(|z+}4q)VX;f`#hR<8Lpz* z%y#XF$mFW}x5mGZ-yi<~X~=9~{h_=^s`#4QOOwsBw!U~Fw~AI6GcCQ8P(o%ZO8Kmf zAW}lIhG2ZHn@jMHgD#nMb@n|n=3z9pZ*d~qO(@1BlH9+QB!g%n-3xr6gTOVc^BmSu z=2MJh-qvzSc{{<j-ny%3mA7xt_E{_@nxQEruQa7;H+$-rG;Pz<Um~CFeXk#nf3#M$ z;xC5Q^G)GBGT%<{_Jegaeo>oE(QKo#f_4Owe$esDI^Y5$l>-G}MSQ)bd^xv&i#jKR zb!(;G=q@g{45~u130M={?SrpO9CxpO*S<4&CrMU<-d4YqsTjBAcXkEOA6!?2=$hE^ z2a7yq@fL0B);c^^a4tY0uGm7Hk3qbjZ^pT+(X9+6ECn^o8^$ZWlUKj0PUkf&bt<`y zT*{=mrD?a>UM(wnHoBhOt$5=5!(XzWkA5@FGA^s*-ADTx&7>G5A3KndkO!2ky@1_{ z{3G$C*Kz7HSs9#vXKsKU`?*#-_P0_U$vOA@zg&N9%l`oQLOvCIF!)7igvn>4$*)~T z@s>uG@tNZ;qp%Su=NvXWoc=ve2ix21%bkqsaypPOPSN?-^QVegs;!y(DEu+~cK-m$ zR8Q!y4Dy#lEcTB_KhysJwsJbJh8hGnlgV*@rZ_E=%$b;H0FZFJ0$7d*e`@XiCV1Cc z(Cv_TQp$UuEO}QKR!V=+M1$qGjl#Csih^a741@c$U_%<+@bXWl_;}n|g${*U0LnmV zpX7r)@&OGY_FsDK^e7?Gbkwki5!yh7?j>-ZV-^{h`G5n5B$1qvo~N4iyg%SailHpR zZ<bQ{U6Zm~yFUARY%Vb48hAR33Zu-U@hi1=zfRXyU0d=zi{W3v_<kTHSNdLtknKKX z-`bNkvX#y=B#K0w^&0_p?ZGTQ!L#^ltLf3fZQ)xhDK4RcJ72PCH`6t>{N`WYI<BQA zEoNAb5;$DPGw|xU6~}mgQ?t16oA{){(ZhOyyxj2=U<6+?_|;ZDpb|E-vtX0OZTv6s zm4&SLHxi4xizsa*0^F8(no>cL);0wSpP2HwImtX%>QLc)Ea=8nHJ^2-;I!9$d!L(P zc*h#*R7yVLdrI>4SH1MLmAy|Q@o$HdNWPjuZf#aJRJga2CxxJp{Gj=60gEm2yk`bC z=r+3J=Fc7Ii*0)Pj9}(h!(#vg$Ib6wp`Q@`A$Vuw7lh!tjyXTI^kUJpvICiPy}Kn> zJ;WSK6ESHOP^NZ-$HJZ^i+oaB-!2+0(Xl-@As~_I$j{K%^RFCm>&r6)=_^8K?>rmC zKVQrFYkYCjUH)e)ZK~ebOJQ|sa`x!>4;s5{Vc+*elq6$0#&gv1Uqs8`&jnn30gK}K zx4Qy6hPS)7wpf}Kl1qaWMlHl_SH^a;XFqf<PJU!$k@OiO!%5@<Lnu*z4(^>o<E}aS z*S+}1UbMIUmHZ9hyC_x@b$PC8mre;DX|%k1du3%mDGTShTw@HQ(~pv!SW}u#H|Dxt zUT4)p6>3E&%E>g}n(Tc2;%lD=YLhL_pM5zhM(;iXNF#xQ80YzVn(}+yM?{a!ir(H+ zCP?|t&<{^?FnPsy);e{ysI@XIk~Pj*cMhW&-H%MyBXy%C&-#_X1e1bsp1pXlW|g9> zn>L%X_l_OqmR8&VQ`3z909ta|yp4{v)x)DHC65j7+x-6kpJ^qv0f8XldUV13`&UOg z?k9*{4rlC(fOFRz*JlTVT1XN`lWAoHgA3$jbTrQo>8q&gHnxaz819hzD*WGvO6=~n zB{wn{+4k-@;PlO5QxM|pj;uXCWp>a1)%$zkr^bKyBuB;(Z)xMJ4J%0TBv3^y-OSM~ zq^dAjJG>0=`O=wBnC#5wX*f_g_#a>KFN1EpZQ`W(Fwb$}2=(Y<(=BeNd#j6UJ6Q17 ze{E*Zm2~J@1D4tfjIMA$EB^p#FA{i{$G;zZU#<K(@NK7tp^j*A29u3S%TR_JaIsuP zDVaXl<S>;*vP!WKps{5&`jh_v1i1Kl7wsqUpTOthzNcZUX;$#WFJ`!qHOjV}2{yC1 zL`0fpk~8*kle8RUX1q#NAwr9&rF}Z;eu*mc=H<4XPw6Y-$H3nT>0bkW5BSSpj%yq5 z30pjE5N)bb{?zYlf`0dwpq!Jz>F9r%Pm6lb#Qy*Rd>--F!CiXk?W{FlgZ}^+Z?9~M z#=>XQJV|sk*_ntg3R~UFv?~BapD-j0e__A3FN3vji+`}E#P0?89{KIH3%?EDrk!^R znI7I`fy8nlKX|WTM-}{+d|dsjei?j3@Fbo%_}k$E_Bz+YJI@c@4J^m@+jiGsVSO^p z#Xr%exKbn-%19$)l6d>y3Mp5_({3^6N=r_u*|l$0+x1_6z;T{BjvJP>XUo5)==tOR z3P!Lu!;g+KPB3l$Hu!8?`h4C9wvUf*D<6g{^V{|^*R3=!h!N>m@S|GlsP>N|1!A(X z4;D9nyN2}ydRNz<wx{hI@Q35?!M_gpE8%v5twrLUV_Ad69x?k>w5pAJr|6OBc8?pe zXx(MEM3eVeLANc57=!tLZGM_IohsQU*{*HwBAOXclF1}&2xF7fGJwDkG4Eg59v|g3 z<C44`c(_Tuo}CiE&8w%@_dk++Mb0QoJBBKZl%p7}SKn{BpGf}z!A3kYrD*z}gte_U zBV+c9O-9kput@yLw?@#Hz!_yEvK}#x)%t(?59l5M@ejoh2K-L&u8m<}*IH9*Nbp1v z$De8QZQI8s&P{%Ke$$>MwfMvPGU$I1T#qsvxE6Ate(qV7?VV3ywo;?@ueZP8le(Jf zUKjACk;=A@rD}RV&5guq^La?e-J{yyLO8GIUMa>`!OJtk$-By%d-hzf^FMastR)Op zECwzyO-6Rvb$s8U`!T9qIUp`nHUJ;izH{-jT<X3h(zI(m@_nJ%?h+8H!YEq^``-X< zlb#4{XBG4Yq<rhK8WZx26Z+SJ$pDwe+JiC+iACPc`6R;^mK$g!fEDq`10lOt@b)3< ze^%kNN1J%g3(a%J^5u(p(gem%;jnTOBz0nW=i8oZ+x57tyd&Vn(UJV6^4VF5+5(<f z{KRcNmp{dUQg~B9Np-2UJx3}dbB)>Cf;c{;{d!lL{B+f3dnxp*c*3xW<nvfKRRM5~ z<$z0^w?T|>N#dq3Mb4(D=l92pEo;TMmOl>sF$qa#2#FZk3&|9rOEU*1K*4uAjHq%x zToK2&{6e~)N$~P%dIywYiq|ZnbwMW5qztJuZbGG)fsyZ;;=CoKc#Bl{&3)sWxY{i$ z%F(UF&V(5*BnYp!Ic6X!4q33g0qIpfA$XEesC|!3Qx&=cZ*E=Luu~&?0fh`VVB;kB zIIW#D;*pm=wmffGg8u+hRJfX9wlH5i9E>Ooi~FaM0U5#Imf-L+Ua_v}38Hu+&q|!f z9G2=PEi^ltUok@L+8A)FyK!X$AY@l3;NJ~Rd*T~i9b+z67e)Mn1FU3uYEI={%;yS0 zJaM-<HPQTGlrWTO>=S*vTQO+9V$sWnLni+KynvIq=cwe>LY3r^Qhw?1j;-KJdG+Pi zVn>tr`AJzrY(?q8!yI$b2N>ry_UDH@Eom)}*)Gu+aZEcAAVx(vZNDnvyO6^e<dMa3 zUK#K~yz>6pfL8#h%lzD64umm2n}PK;?s^u5b$@pjfo!q8)XX7NiZbgS?hY~nD+T+z zn;H3=0=ryWmWL(NO&<V!L-+-2;jbCoYa-l6nu2|xaKLXT=Ntw3bI%+c)4me?JhQm? zi*p-7vk72^Rbn=P!zw^K*}4pofI493HTvE08}?lIgQ<KxZy7d`c2dtdd`bxpr!33N zY%(xfHY0<K4r}uFLuT*~#hnw#M_X&rCAd4e$Ub5X#PsE{f_UQ@HR$3a?sG@6$%j&M zKW4Qr*x$w4hwSg+zm8X0THR@Oa=o~h%M%5LRvQUZAe1XgxI3^tPH|tOU+_<#*?}*$ zOOJ?tBeoIRS~lx)BJ$#Sun1RFAh2GckIXpa*Q$QPo+r|NHhdk_{se0G!WX~OB(i}# zsNG}-E*k`V%$exik^Ed&>5svU6GQOFh2Zc`n`CUDvri}Ff1AugRoJdU%P=P&FdU5W zUOhJ%$xbUr`J3WuN}OdE@qUk~jq!Wo-jVTt;8%-26#PN8g6B%s^!Z@8j_To|P(mH7 zClSbD*g#<WTOB|Kzs!f?ABW}e509@bE$3yP&hBWu>vv*~(8^QHibAMfHz~Oofw^$S zMsPpXpH2HkwxJplNOO*OAmh`gKKMSyzs-aG3Wncm{ki@sYBGmJm&Dh5QPjpzszi<o z7JOxto)04pft{oKgXnFXRgPhbz&&9osd-&AzaDSE{yX|qU@6NfrHqQSqdO~qc|ZO{ z{QK0ktw&SVuC<+AgqIhL(mUV}nT~#3a0hHvy&(CTj^IWa2tS7-`C_ncHnOUpyaD{G z=Z84fV+WyE2k;sGmHvjiDA^yubB{gd_dB@|soZ$a`8AKL=@4p=dB1kyMisjpc0RfF z>MNjf8>s2hsXkEg+OUk8)fqYRK4f`a?w@;L`!3>SKDglh4S4s*9}q8w{uOF-hS@#h zt)w_OZPJ`E&uk`6YwHOZO%o)@vJ7Jk0seLQ_4{e-_OZ#Lcs|1k<i#c2>YxLe8_SC) zxY{KAYva63&t4BAuTeWnOO<-dPr+UMkI?)sz{@hvF!*+~Pnq_#b^KkI%=k}EGH;a= zy5}Ca>Hh%MsV?1^g@s55>-}n^E#%Cuc^&c32Bep9a-C1De+JT>(f)!;I^3k&hX7;i zP@MWzsRrN2ny<!qr8H?06dcr?V}ne=6uHR7amrVAHy6`AtL*;(gLd!zn_!A|kq{)G zT;{$o9E=XVtMnJ(u9&N8t1|K-P`=%cJ<q*<b>c23mkO7e{YUgtz&g3*Nv@G!i@)f8 zhJMYr&1)}=EtOthJ4CUNq+qijChle6E>9k2dRN!qv$fP#dPcE7IG94Jn?NcH5=S`T zk>8Qcd}sS4c&k$IkH&pMJvL3Nap9ZsyK3)7hT_%HfjtWEY#!OKw0sG6Vz$)ggn-ku zPo6nDn6n>pNy$H6Yo~(e{{RV;)ARh>K4a+}hf(7kV_kV4{z((brSUbaf3=pM;p^sD z#NJxN!90VwDIksxNc^ku58}R?Z=!r$@lKA>xEA{Ms}S;?mkO7&00%r{(;V08SB{qM zf7&9?#c(?`uulssD-cKr0F+)2<&j^VKeb<mZlwLB{C2v0MIk!f#JhM0_vswRAY&P4 zEt>mmD~g)A{Qm%rjp4E5S0859E!NKIg~IOK7U_3msKUD7jP}U@cdt9vybUaO8PG$` z!#9${_k(Hv9DV-)rZ;;U?R3pL@$Oy=qT%|5Cj^Z4J$iBVt9IA&Tgr6yEwH+-Rj^0R zl`2O<2<g(jH7;AYv&e;K7op_d9M|sjtN5paLj=(k^5hMTm^_1?p!WxlTKzixoquS_ z><Zb;{{U!+f%dyGfC%7u@DrRek~z;E_#oHkmx{b9_elEAmZjxP7ucuwgS&yw7$3Yl z_4hem3-L|ghc9B)tmjmc2M)WC6WkHc1z2#yxb)!H+3=4USIerY!TYau{dGQ1jQBSX zn^4tSYiHU20FnJQcyC;@*X@yX`BHC}hfEN2mBH(^y;Sl$am^Zqr<$x8a>Mb+ub2J; zd{*%$z3}ruw(yprad)5}lIKTReDAPoaRw4xqAY6PXLOLdZZ67>;g15o!m!h|4S!9$ z)htA4ntiL@&eA%fh>)s)nfvbS>an7N&QBZyNA(U>pHjuqSc-C1^*@tyo*l1^@* z?!T`+kE}mnAKH+9&p#E{!oDuL5cogEQ%7&97tYH|k@8yV3ywc@PnSPU(6J=qFc0+q z0B>_8vbCMU?0+*ZGmse-*Mr=A+#cfxy?+zUr(SCMgXwx*t6i~4Br&S*#8IwgXTZRX zN8e_`fIufCXZN4>T>ZYh58<ELYfQiR<8^-ekA^R!@VxU{+Dm;b;M={%n>5~D;-&54 zlHI0|s<iMF&h}7$An~h%-adqJxLDq*vT1J9c3(T`{{Rer#o)IXtQ~1!aWb_xcAMEW zuKx9}%gp_ROOQ_kikQlWt$s52xBd$m@P|m>4}|;~;tf^T?#Xd2m6T2R8KsndDVq6L z$Di<9Z;Met>)_7;XnJuxB$v0hckDCJv}qlxegXdg8vHje@K1>GO(<dQ{wYO%xBL&= zGcOnTe+rwaUiR#p{Vn*P(bTfW7a;em5D6y7maO^y=q>z(e;*z*{{Vu!{@h+9fW@Ww zj>AC7&UB3?+7<)QJ<+>4_pg$Cd;4Pk)?X2~FN{7Vc%JPT5K%Qr?GS_5rHQseJ7BGS z?p^d?&MG_NYeFl^?fyxAC&c4^k{KjD+Ax&9NiWR)?sZLnM)2$(XxFc8wD|kA-0@qF zu4HAe&2QRk{tCtWHGB=x?=<g*`klALFBB+bj?YS*Nnr$|BR99nnA9m8#SfV=?4V_b z@(%@`q2oE;_g4o|n<I3$dAXDR`<r|IwdneP!;M<=VVC3pZ3Vh0^Z;}pO8d-@=-roL zYbu$JA=FFkrOKbHyLR-k@ma6Z7aNMC;g;d~Tl-Dl@UmZdbK>vD--$mRz9H&g6TT;E zt*L8Tw4vs4`?N$+h@gfbNQwxQ?TR2y(UMC$JGTMlPbt{ti9B=GzM0az6E2rxEPu2e zt=(itw?=KdUmLd{x<ekIXQwsQ>E062?co;|_UIz#40#Mj2>_l+!OkoC7Y~_X@buLh zFtk>QEfPrl12M>Pc*@ScCT+@EyZ$GR{22Hl<DZP55i}o%o(@o&j<<acjiWN;E6bA7 zk&p_(7-^hml|nn$_h0bm;lGBy6Z}8XJ{Nc@FDFOv?Ti|IqLY*5K%ql1JeG5pVsc9{ zCchj10N|2;0j;Feb${9?R<{ccfRjei@;Ecd0luAi!PtQyQ`9k(de`n?kmG@0#eYa% zJeFgbM=yi-DDVC!zuc_6ozLtq0QeG~SC>l}CGXYS{3~z0-TA8(($tpA8u;_}{P@o& z!5`VTR+B-xHk$tciB+^sE=BwCNpl-{_bdMZUhr>lPw|u;O?{Y+BREtUB;XHo(!ZKd z_$Z&pzxZ6Av?b?<bUTqQh2Y@&MWIFoB)L`w`eBZ_nM5Nzfe)eQ;=Co{cbexAQ&*=? z-j{7QUpM$%`>zu?jb-^<`CX?!c0WDe$#w5z^19pMhJ~lFY3-Y2N)Z%clq!rU<DLf< z*jm|mSVjie#?U#O<d6I71M(HyM8FIwt3n86JEV<Ro-#ltzrUVkIWKvi!Qa@l;@g7U z<ssAbby4I+2_1M*&PQIAp$tiGz(R_@Km}<};r%k{)>45O3}s0N+omZX&@Le)!*RKP zy5m2tX?<$?+|F5ild_2ba;J81MLA>zPaQ{Eu=ZClj#qcmsL1i#HYOoC11-i$rO(Z| zo21s}M!EA%q}wnJ=IVC%&rBlAA@=CCvE<u8z)cb|ah!m7^yGbO8&WAgrK0&x8Iw{| z*z~r!Z|PkVTS|DxLDslvOZW9}<@p|tBAR%5YTf?;Kllget*QN$KWT4-J_48G@5Bp# zhkh^c4vQCs?-NkdXVjt9^xGD8u%6fK?2K+>iP;`9Pb@)FHaYnR_Ja85@PosCCHQCH zuY}r7`}{KS7l~~AMRz5{Fh{Fvx6s_c_d1QvcC0c<ZxOb$wJedr5yXHJ1b#vxcu63h zdjnj*i0^c}TR9@XxP^DA!bnC5>5Lw=#g=f~DOUHVDMMR9+m<}ny{waayIs32k4G`$ zYM#MLoFfUVURHN}wzcls*2?xu?D^C7nD~&Nv=_#2h#wT*DQzP0uCJ?KBvO=Vpo37B zLlkbvN;Ag`Dw3qG<=~NnT^H>^`$G7G_MQ0Qt9)_s1%<YgbE!pT5?R_i$ql@A7Li&+ zi6o(2hS;}~z<kVbF^cf3g1&2P00K@q&lTza00{gyYpv^zE~N@f6l=hdLjrv<U#8Cm zhQmUgMIYhC#y&~%-GAh(?msG7-ZK@?Lz_yI=YQhYU&WtdXg?FaAb6)i@OHJY-T`^w z-78GdbV(tNB5O-M8H?D301#w~MlyM=mS({{1x2mh>V6~f6y7e@?xnfbF0Q1%n^0#f zboWxRcc0Botg^GQV(LN3IK@*-IBj`Tf#^;KewC|lX>oAjB8{It0;xIttMl6PqfYWx ziuo-&dLN)+sA6i_Nx3~QySwk|aT@1^?0iLiF0Ze7m)Dcv%X4)!liWyDZC&$9%_CrN z12F(_Fe{jo;fICg3es8wx1h<!GoFJ3`Pa}k-VWBT`Ab;=9d`}C&lR^9!w(T$M63~E z-OtQ&e<iO26XF(Igj}^TQH{EDFUd3Br{VTtiG1r1Cg1m8=6vH9gET8<1#Kc2{{Unk z&paQ-x?3x2TQ>gyL5M^E+5+&PdI8XW74!wa!F$`Z^6u^yHuVdhKR@TibXtGFttJc$ z`<9dsPn7rUGmp>kuaV4rZpdk^Yq>up-{zA1PolthH=RyO)RY&SOY+z7K5s)Tcq+gH z$2@%i@AwL{4Y--Sv<l7WFi850e>(dA07>{u;B7Iy*zHWtdNl6ReK;fm?ZtIgo)_@$ zogb5BX%r(Q{E7w-dibn=(jP63n0iu|t(WTm03+<O{{RCq&d(86G4#9r5%A*ZI?U(& z9?n)_o<g=b_r*}Z{g^ELR385TR<n^VrNeoPGbRb=rbs+`gI{?|V~_+=700hn(z4p# z`Vdze!01PRVP7GP`bT5G<`ROBt8e^|sG;Ci0sjEJ)pGeI{%7a4@9b4;6rs~onj|<F zAz6X?;BoC<L-4!cUZdhoH(b)i^jj`9ud*WrB)8d+M!R|G<~jG>?O&*O_wdFRd!;dj zJF?)8LF>=byi@j2(yfzB&~*u0DRrvdYBH0_*&WQc1bzt?E9YzY`@~fx8S}+7^!Hb% zTlYPB9tdO+r6j4nRiC`|S5M2a`APo(1tRe+(*D(cA+^%o{GA#L4LTN91r=ib*OXVO z3*?vo0D+#B`K<R->UW}4KpEGf3}@d1x$lblH};M3dGVLVFB$lz`BF!HYs!Uz`NIoj zX*YH&zE>c6lV3e({#<j$sKorhWZ`(=_53rM^J`=3;->4@e)F~d>wbsW;qVmj@l<H9 zb#3{bH^%<}6zYEuv_B2o=o3c-_lDx(%#owvAS-PU1-?_C-myJ%(Dkody1Udg{{R8_ zXI$}ahb6?i<+;4L)7DAtT3Apr?O7vNk`;0cfwrHNW1-D@hr=B%PZRi)Lq>qzeTPBQ zq$A5oFyzkVh-7v7nSkVBjc@#MOYakF%RSw<p3vF{SlxE6*qd`4C>;-F7(Rezzov3r zhZ#o)C{nMasihe0%K1{h{qF9Pdb9cCI?wR07Y9;>+$uRab&_{!e6F{BG(6YBI`*e; z;V86avVtpJPfv|5eCdijATuhULZ3PE-{vg9WM=^IJq!C1#w#zf&RCtMHDn6J24lkT za0teF;|FhCS3BYT6I{}@DE|QAB4ae{k33shnmDcG7zv%KHz{62ZuUIap=rWvi08U^ z5^(<jBxU2@<%o#f$>`;}u;dI5=RbYIcq~jXN;u}6{{XMh{L76qd_1wPSS8C1{a@b5 zd@&uKm*R=+br|E#^DUf_uJWeFMKK-;BOn$ekC<=|0Au0rih6a&hx}uxcym(uu5D)7 zE&&70LFGtKpf4L9I+N2C_OFQa-x7HRv};25j)j%{u_oaYt9e0k7_^xy@-T1<ZOP)k zVEw2TIKDF6>Qc%c=T)_e{_Rk0Sgs~%HzJIZ6yPvZmr=tLn*6)Q3><#13B@mVUz$Hy z@M|-a>rGAkaohYh{O)}2Jjc^7BUshQRsme#Hgo>~>-=l5w$t?;U%=WHnR5PJtPmB2 zm=n4enn~m*Cn25W=Z;1=u6s(;Wz?;vvVufLbGOW8;1URDJ-%K^&Ooni@YbiGYc}6! zx0FezL<~c6jznajRT(~+-RMPsJ>n<Iu8-*qzMnF8Jg8_=Ti?a3Nb$U2vl27Jep@IR zJpJN0^sXB6-G%eR7{=T_f7(5V_4KcG@db^Jk%{!#WW>tK$tc{r2>Az3n;!Yd?_Mb) z>NeNs?GU4>IV~G-19EUaY!T01D@qkywL0p>C1XDRB!bZS#|22h;F5jMQ}pj#bpHT9 z?#U!)Bn)>wKEM5H+VLi^t1yn<GNqAOS-$p3?bu*<H5P-Vt=;NHI|U$lhm)QN&JW{V z)RT-`XD2F?vC(MSMZS%sPpn*xlU*r}EFKm%@5e&Kb<aWgR}giV2Lb>`t#rOO)uJLh zdtw5{2*;oU3&0=b`d5;jjCVU6o=*p_;Azm4)>7&^j$aHOi2v64yWwa27Ng)7z^Mm= z{5#=C@e1hn*I#Rx+j(*s(-9b;d!#H`n~2f{5U3kL`Lchajbrvy_<8$Hcq2pjm*MRq zUjTTAQPMu%NVR81dG_Kvs0v2|Y%RUzgcj@4zlhKHBG2rl;{O1Nel*a2E$h%}dY^{$ zjZj@$*iR{0=D*Y5%!p047ijIHkO_AU%3Tp~8;bt`Kre;fG|~Pd>YDGu?NUiJyPF#b z-4fr-jzxy^b4<nY^Gd~bfZ#HL%HZ?)#&uGj9<rx~Z_NEiE#|37RFd;C{{UzCK0W@z z_nO~<{w~<wc-!HbGhEo}_A)iuv9(yiluK&)ontInLWXbv&jP=fkN7Fi?Du7^_|`o~ z;T@{BpKs!M*G7D7QKW0O%W$4bg~(L9gUc(92VOe<jd-K}3Jd#5d_D0Gia%lvds(#c zWwXr|j}7(3x-O+1lgIXg?opKt+Zk75#gaia?4CFHWvYBf{em>#i(0JBas7>|U1`@6 zMvAhOSr$mhm=el{LdeU&=dTs|_l23wOs5|VOZ#mvEqeZ+GxP5ea%kpwDbQQ4z3hK3 z-wXc$WZxEiLb<=yyj^`gj)A6mh-HkQHs*N9EgVYUFP5hv<jw;Pqvi}pbD;jsnr@}= zYgxarvtPH!vq_{l`KOb~C4eo{%5bF*8FQ8g0c-AW9{e|p#=87=+TGl?z8cdl<F~TW z>||&ok%ExVbjgNfP(sHFkhlc4Nf_0Ith6mT8p0nU-rWL05C9FTHm?Bmz~kGV_5E)? zF~m!jaF<l<x?A(VQ~7E<8-|1>3C8+8U!VCOlm7s-KCPp8&q&uk2l%W!npcRe&CDnc z9VUwfnl{1NBH?61kG!YXpVwdbCuhSAAK^cVWAKKPcXNJ`!Kht5#n+Z3l3S1&$yk*U zRaI3$QSNe0en$Am;pLaZPm7m2-1m3-b*!^B#e|k6QQyu!V=6p~V*)d|SqA1H1HkM0 ztN#E5&ha;kJa_R^#v1pCH59zE(X^-{wTd{BJ+FB)hi7F~F8*9<GC;>XbI;Fs-Irl! zmSS^?R@R-H>#dc)uQS*1dmV{}I*wOSyD8q@m)GuJk^0=tn~5%D`>_H~rxoJ50kzaM z?NV|<oZJ?XWEm<-e3&DqK?mq-)-}0a&rC3q2ihCwZ$u;lan~oH`qzehIumLdmaXDh zzEVotF~$L8cg|NMJ68ZVQZZlVl=nZpDC-u_OiPiZS%~e(ETG^Q$v>5RwecS6YrQ7@ zk|b$SSSZ`LtGfg&cM@2y2cFy#IIno|H1gbAxe};cZowqvj(}s^>yFs#UpV-(z-kTl z2@)xXCP0NgRV$J6J~`dhKqnsjkzbh>;;pI1X;<klhd;Bd@1T3;9(&tQ`<60;^KDrU zRI$$iy)#@UtEFH4lH%(B08VRZmD)++fGmomKP-nRth@lvfXmckwzUf=t|4JGW@loo zG4rYE@{|kaILODyH!s~{G6}DxE}f>USjTA;QYx(5q?Tlf21o`galYh~JUSTTQhG72 zw!0kOh2Mo5U9r;cd_^RGy1UyHPr69tbiph~?=Vn5D4=9*>w+sU#oiCTzmc!*<PMRP zU8uX=06Rk{Z2Yowy9>r~k&M@<-pDRs-jL6=aHu7S#~JPWpxab|)ZxJ+v2H7uBkePk zSW)CG`DjO%B!u$AD#W^}UN?D)GC=@zQA|!(jf|}uMs-Ak$(6wyBOwVVKiv!q5sor; zob=8?ud6?2{{RB&J|6LwJXJNcQz|dn(51{#!tOFW#%Xu2n4}Lelwgp*#53Xk42r>I zHx{A~w8IPUl2Y?T&RKk{+gjwbpWQ0!!28M$E8RXD>e?oS;>XounZ%LJ7)Wec;DMvq zJojl`B{^Tc<*@~FISjjptwNIIyEtVgosa1I;4~f^*E}C<<Z1SMZjsAJ60<;A@$!i_ z1}eZD1`IKr^xI#>ulyC;!}gy6K0e**QR&iYwpw?J;dr5yR2ZPV9XMuPo8->mc7S?u zivG^N1zd@AJ4?7hvo4-wku}0?RO*hQRzSouo%@^REO1ETzm0$REuOOv#jhUt?@ocz zb8~uNhDfB0hnC(l0}X*!91Jq3t)ou$5rzg$N=+ZFfAC7*iZ+w@-$;hmD5swJQr-y} zfQ|_Zh9nRM<=P682t6@h(k7{GXW`!*N2tG;S5splk7`a4z{BC>`ND=!KvVMPIL2%I z_kZA&U$wQ}wYP_@HOt4hzqXnH#h8#Lh>khhq~UY4a8Dd{ukV}SuDu7w?}V{<x(kJx zNN%Tf^1woo%aYNU$#M<|$T{bsuOVTjPNb+k)4AQ6RE*SX-$ty@t2BcwtgUb`gl-Br zBObWO{)auQ{OA7w;IY36?*0&d+<raq<ibN8#-!SeGD^lqc(2#(0k<A_E>qA20CcbP zFz|+@Z5(#7##jhblwl_1IU@rk_sBUsj`jSxf5FZl0IZ`v1pTBmn8Ms@Nj8P37Hn@8 z==V0oRODqxm<i89I5-&oq53fK9B^DmP7>OxaQW`P6>pjR+2htjEM`Go5n961UoHOt z2HE_3gx?@sW08|rbj4V;cqbhTF#N$4jAg*Yef!q6rP3Mgu1GnI<;QLa=D*a2v_H+M zDI?H<=Od@RK{B7bD&b2L(n6(k(`kN&+?x|TQ)Nc}6BGoH4@F(&yHROFL^pVGe` zziH1B4-$N3*6txcySKRe9C$e!El@;od*(pr+co;raensxb<N5bF+%qw1`3g)sbRd1 zc*i2Y3pL$RZDUiDQJC&&<awC%JEmhH&t8SA`Sa-snK)sv_(k@cllfUM{VAW({{Tk3 zr<)gv#>sptF<<ucZT|r2D92vBR)xYcl_YXT@2A$NXXf44IIhQ1(%vm2Pu9-&T|y^s znQ%A6`x#W=0sz6_<ag~~%QPmJx_@3vdz^a$IO<J9&P7;!?&q3)q)9#GcJe=zj=@>6 zoC0u8IL;}`_bC)v9Wd@bQ_%LL?snJgpNM~De}w)w{f94nL-5Z|SiDo=9BPx?5T@$- z0maNxGKMS>GbCy-0bC9%@wI_WrgM&%?kmlfAvv|x9S#j8a>benZs9@Q)N%E%(a(l* z3pjVbb;doup4?aGpN64Hwd+XaATOGyC)=OtU!Xo7xsKON{q7Y&&UhHl{{UXUGw~I< zC_~i#()uG)g(+fjGj`Q4xi|WsPX5j}cNZTYuPrWHD114nk5B_OwhjkgK;!z?=q8ga zT0euYubGw1k}PQ;JxcS19-y3H{Y8FUe#v^H-Tu%zl&;&1dIjJZ<PFnXC>(taevkOe zP>)XVd{8T5IN9WEFAT&k033mX_}9>Ig$E425or8Z$82iE@kT1NcDno$JgZN&v(<ci zZFh80$D4wlh0abp=W)*_zdk=|+dKU`_L=ej0NcTUja5q)I0ahL*_8bV!Tf9Oe}~%0 zx$%-UyZy#Hk&Z^v!_(90{{YtD{{Y~nmwpfMPwhQ4TK0)&<!kyzov0<+`PQ?{!AvX~ z?iL}6`Afu*$N(T7F<)($<?_VTRHD*;XW|&#SF)z+S-(xs&d4qnMh09nV}g1S_<eo3 zt~6=V#TmM2$YtR61oiai*Z%;oUYmd6dpWG;*E}0}CGEYcG?UxPinp*tFbuAd<~iU5 zg7ZLe9!Hpog2S1PaXdbBtf3?uSOJi6>(5Vms<bL$>N+)5na2v$>%~r<sOPONUfOoI zke?~>xlizt19AFfcCRq;W{7lsPwh6N5zI(s>J|EsJ7IwYdsn63#*sF5Zr<H-#t*sb z#P#$Q7Ox1_^y6&G9oc~0-3a9v=corGj>j3Rr8_blt)cH<u`k6h3Vb{Gu@8p6B+WAT zPsNBdy<6<yd69<)%bq+d9q}>Rm>hY9^YRM)w(z7r6`R9TXgUq=_TkdZzhk>%Vx3@- zT02F$gd-|Q2+4G8NWUlwNeleccs9~aLPbDINRC;sNM%#BZph~$xZ|AT>tE1U?CoXa z&x-mkmp+FGxtM9QY7WpUtn-UyNKK$vlu0a!BQrx8Rt3Ib%EagN&H&;Cg~Un|smm8@ z-Rau@0Mq=B%=|*gC5odOkfx<2ewzOPU*vsz<6ns$3er9v>c0>E5a{x0QFww#7g)Kv zCR>KKv{=k`X(sml+|#SgH$@?YU=flzpMep#jdk5;;EaJJZysq<TG|b`MAo#zHC-B4 z=znu_YSDl=CgAnSu18Vu-meauE~j;CBrrwhsS_(k?IbJ`SmRazyQ8oStCGE29V(}V zyhEt`9q~=C#4~EGb)#L_>PYz|p%zmm+_9+pqDiBV$#UGryVPNrk^K{v;HW}`snB<n zy0>=Ti8kK$vip(z_m9M4UM3Z4E>x|uvP)N`yX*624Y|{`3wZSlRQ=7uEU}gx?2$t* zN6^=l{7tj4TS(?WsNj$n7$-l6KhnQRJbn8n{B+g6F?g>__+#MRTUgSQTD_9e<`@K4 z#@6O$xwjEbaM47_kxGa*u>)ydszo^e0Kq8#0Bj!}-a~b9X`*<2Fj1dT)YaWly5b9H zE(Y&$AU%N{Xono-I7zCQoJ?cZ&Px9PcK-l@(~aO<(-}fk@Ys1u{drx!{l63OerWyr z)_jp;oLBTG;UD-RcB?JIOXL3liB{0Y2h9$XrO56+lU>|w{{YBU^>2ay0N{(ivOkB9 zo8qlU#J(kyApZLLI|TX#)8d7(^?du+pPBt3xML2Rg;ziD#s0Qmh_aufw-MF1wTxiA z<iAUw&R4>}4cyvk52;^7P|Q_;An*V@obWT-+P&9H(C&4~L{<+JZ0H?UN5N$|+G9`) z$-ij}u~-r@#eY&B2K|CRV=n@T<k5Z{={FL>07<nalTw!>)=S5f=DxGgd_SOgdL*>) zzMX5QfC3`gK^$BTiZ&=X^cDF2bM%kHPNSX{gq{BYnWgwHWA?0rz)G~KDtMa7TeaWk zWB9i54y$3{dr@lfTu-T^1(GY63=0$B9iBvk%q`A$Nwi=B5UJ-^;k>>v_^;wiT@y&P zYn@|PypGDz3ZLHGTu38`9ixQYL1G3K0XzX;XMe#({v`N2;=k=*tm=Lc@~&;PYfEhs zd!)k)tGgDM&mdut!Zwr040$Fd>=wSF{{Vtbd=LKsgs0*TrSbDyfc=BQs%&)a%ksXZ zbrxihWO8lop8$i6(~x;yKT^$j#u!c?d9`?Q&y_nj_L|Z?I@_kl=h=S=)WqkX+4QPj z3QcIbE#KU`pSGU}J{M@81wI$(UkW@n!b@EW(QVAQ0M9Y`r=79Yrj)y%t$J`yGmdH$ z8R#)qz&Pv8f1j9)MC(<RTCVbwZNE3GKee#*AxfNSQ&x&rUWoaF_P_Yv-?Q()9dE}v zREnC-(v3SuR{sE>>!4L19mEJ8W*&)O%7hwX1REKdv4YOUosV{AJhL(6l5$BT@@w>q z{t9RD?S3NscK-l{U8Be((fkmm*~o8}O-f)I?fPT)DY6wg$Ub1jes@_;mr{9Fp`E=H z5`U4e?T-hzYx^%KRch%vzVr0^EAH3Tv-umvZ1!1}Xz0<_H2u}<_MhLU$q>h6=-JI^ zM;i~l(zR_gjbiv_-qusj)0HdRIr+Bn?_2i%2JsZiOoAl(u|LRH-D9}REW>{v5e5GM zZ!4b<h2c!fzwoF@{F%!jkE!CMyOz?%54BxLi5Tk4z%S-bE1}hX7Wk7>un<`4=T4CI zcw!Pa&=<xBuLRc?e`I^zTQYcqSGvAZNh>q$L&x`11%3Yjm3+-_7&vN|$BDm`V<-68 zFU0k~;u+`jvZq0Mxg@^}zrf^mpNhT!(V3u{^h+va6^AkqM{I$N{x#-0&&Qn{KbNKH zhTtBpaKQokFDD;b`o~HAkh}$E(Va&VZ0ZSTQ_g>g<EICYrF$2L{t5gu&=i|ZD%cQu z`AB+t@yRvfV!n}lKS%f!DpY=Uiu~I;srVV6Vl=N_oi*f~pW>1EPX0CV4z+h_Hj`|T z%(4>_K&<7MLon^h;P&FX548T#8pIndY-f!WbySW#`~1z@*l}N{8t;d^KNpL<J7sBW z9B9&N5|vd0m9^M95Bh2JuGHw(cBeKfs0qm!9CRJ)<1v3py0NJ_VK7l#&i?am+9lH6 zkEg-?9jLl+jx!lH;+pqTjrDJ@H*@lSF9LqhQ{iR0c$9!kZ&xG!_*3-jOKJNy_~*nI z2IE(`o_6OuE!eToY{<Y5UX}W|Hb*A?illb{W~`fqZb=yQ=szm?d}q=}i0US&xKsZC z3|Ic$bLuc&0C4my>nYCP%_sU;{MFIFWIN}O8_4ciy6utHF^;_KQb*%n^WhJG*IpRJ z7S_<l2M6yv1@1Qza!;-}74>t^Z*QBaU1LGj+=T<bQ^igt&&)7E?m7|b550UYY2wcj z;}cc!b8E78Uvjbb*?)#v77g=Z@UTz2SNvVh4^HrHg`8_4hBcQMB@uCtPDekDZLW}G zUI1V_9uN3d`jGAGpT?vs&3r~9F|S%&)u!d@+x*X}p@gMLT9i`sRxqIpZr?ly9Zor` zLgD~NMD2zctxO?P#X|B#qazs|tCCW=(Q+hj;z7am#ZDabDhJZDrJmdZFiGvSR58nN z>U@yvfz^i|-Fc;OHCqFYX+e>>thu4pZevju+S;C_l{azU0jU>How6mlmg6ImFsu13 zAUWTNUlzOx@Iywn@#n;i7gg~NjUDV3*H#)O&9$Zci*QQ*=4-IfDN+MA{AED_fx)jp z_<8>T1sneWf?oK9c{=C7e~A_wK>q+qpIoxL%Mu3>+v;(G6l9(TK;UH8$se{X{syx6 z2dhou+l05cM~U>f)_t!%`k&oLv;tT%mo71dP*{<-HTg}Vc)ek@MzexBQYRsCIa8JT z1K;qkOASIYh1qoHXQ}-&P5Wv80KpD*8RNF`)t`_2Hf6|>mq^vFQ5AAG2{h?$)MS6W zz;(f|Pxx`+FZd!?#C;0K;m_=^@rPfq)uyzT!%VWfx4XQUHN<ZiGDoP|!E(pvIn2R{ z<(sLm<nP43DV}&$?rm_n$!|A*KTV>(#s2_;VE8Nch4`KOL+V~7{g?bJH;T2t2I+S? zox&Ie#iTD3W>_ucJCpq)>4qVQNUbN{`>UGLbYm5Bwv?3HvG~X1i)m!m{7xs3&yN&p zP>e!G-Ip^UC4nFUr~qDh9Zh*wm?l>-OmcUIIQ!THWMkW<cZN?EYOAg5el4|@()w%Z zFR$(Y0My5Cb8~ScT*lD1&W#+*@q}!;5w*EfT!qVvTjOmWAIt@}XKvQqc>e&tdJ)It zUu{BCO3zc|>qYankG(zz`1`^i4!lESs`%de%S}y3!xoXo_s<f>)7xB5k|t#!7XXYO zZq@F88T9vzL*gwX3n`F8xS~9MTg2poxF}XZjyfE0Yx7sf-T-fj{{Rm(U+lZ6t!^|+ z>zh|;Lo&6!_*<BXE0QrPNP{B;5zcr&b$k}E)@{BCufpZJ`*x+LS^02HF5RbVmXBa; z?O5^=bI=fdYx=W;vwTJ;maOT1?~*o^_t9Nj$=~ktKbE-X1%{&@Raf_}QoL=lSF^vG zwf#>s(6zbV<zHCT9#BWwrQMRn9B@8S&=m(9bJU9ZSK*vmU7oQ%o2!8WqvZfnS)8a1 zjP%{m<Q~Kjb6z#!e}Gr8$*b$Stm47#?b3K<x_y@N07sg#pO_-3-G<x40sJ}6r^DY5 z+<Z;AxbVJ(<0XzAJzXzZT(jdlqiCKzpu`Ra;6me#r;PpXBQU0-;mmv$ES7Spt3y@h zyPr#VcGttd5dJF*zYXf4^z9K%toCY$%aUl>fs_~f;aK20ayAj3Yw;`NKDT46d}i?; zxu+mDe{PwfKg1&}N)mhI5P9jGbBg^%p5Ffe;I*Ca#czueOp;z&Po>$|M>Cw<M{dm1 zDyk$qRuS_~R2;H`OE?Gd<`^F87MA_@OxP}PalDRrI3NyyW2Jr*;$~}3P8fK~{eQ2# z{qw^-o=|lw^0lRx>-iqf@UmfU^Xhk2dUm4|TTf-=>K4Z8H2YHdOK}Q^k7djyw_D0d z^55nt_{Ch)rMR%v?=)wyiWn{TNgURV^6h6odL{!7G8mD;=e=q8T05@`cw*jd@)$KM zyL6d`HWW?MpeKWYAO(Al54B?@$J#Duyb^Li`>n{scRcgo)9|mwT)E`mL-%?R<$_4( z{8^}8T-`{avkJJ3GV-bj<8a1QAM$W2jpv0mYfl2%d_$V**w|`U652!M$%#maKKXXz z8$m)o_C{2Zjz$i@sM%TFN>$nJT<-!bsl#w`NAu}kSFY*$-`S#$ZIQ=vvP?z};GcPk z$slKp?E@#1>N_aH?Ii3)N~vgbM^KAZ)h5(Du%cNDFHD643On|%T(bj9(nRtG%-kc8 zISRak&j+dR?Os*kZ4!N6>L{W+06UoX+t)u)j-I%#!^EB;d&}mv(^R}L#ucy#!90A~ z$v*hUKT7nH=8B2W87Q{d$6nmas$G(q`T7ChKF81s*d7v*fMuCLJo3yB;yYE{D@ub+ zjc315(y$vwasgqUMrf98Ov=R?MFgAxxd3}}S-mz0%d0>C*Z5!d4fw&M{1&v+?LHs) z>q*kAY%Za-x3ev8G;I@)DrqhEZ7(QI#D;cNKRXV``n~;`H9JcUD)4C@Mb(a?eCs`1 zQ4K7zzmggqoAz7Cr;spIXN|b#zs|Se{{Z|G{{Z3?3w@<%zBskfwd;6{c2WI`=|0sY zt^3G+)eA9<0s-B%lfM`>`yZqK0Kq{&Z7<m~SiSfI;!hUZU1_>{StJu%+l$GpWVW?N zw^x}Nx5i1sd692oKo5Xa{&!y?_SJc?wJ-P|rqj%%q03r4r|);hpZFw<zB2L5UMq{n zk!o6|zjn9RP`#{H^T{m9Ch29C-B}h0&J_#p!9V~!5%q8EgYjFyz5@6?C;St;<4u*v zhX6c5!@fLIIlQ!v{#%%Cpuc%k$por*G=NA5P)OQX5s*j&`N92!zB2rO`1ku?Yd;qL zD0s`n`nQI(Sd}leDel%5eNagmx6<5NM;)v&znEky0CtI0WZk@j{e|k^6+RMw!Z{y` z{wC;$SJLK4?Jlk@V2Wn8fFUn%g)=S{w&Z|}y+%cLVsX_d&0*?F?ON98XsD^f+FJMg z&*ksLx*nmT_=@+#I<l0yu%1h4mDdD3EwRBJxf}!A>0U|VYuK(YUe@1~h;0OPE#AKQ z{{Vu3ctb(>VezW+Uk7TVS+Mafyc(sA>axgWiggMJBlv(`ea=r>_%lh-F0VC9a0l** zX36ME44-}u2fcq_aQ-?q@UX=H05VMeTjE?SsN$!GT^aEo?M>s$Z}>zT;mSf?e%}%q zvz$B;nIs)@7_$W!{uOMKk&o10_$9mA>i+-&H6IhjZ5^bqJ-vkK6l)r^){&6%4ZODE zbCciRzApW#w9kZo0Ptj=6TT~3Pc5mE-rLEt$DcLBHptx<C=7~>LosX^#v3>o{S^NI zf_7@21=qi4Sv8M_U-AUFz8_`<8a6~oRZ2QH%p^w)t{a`%<nU{U#!Ska;VDz67Oy3D z({*!y46>@Lh}C&DWf$wW{5kaRi!SC#mPk(3h%Q?=1mxgj>(6TQUxy78wp#7=!Wi>@ z>m+y$u%hiaDtaHi(<43l*P?ih(jsPlJhHAvag2J7y|bUfxgP*P@!IRG?xjwkWiK0U z7<2=!I`PQo2aM*wfadkOKd@<}pkwOg($uKIj!fipyN{c<Y;n_%TJim4yXI!zQdiGj zq=D0E7(08MdsnCGlccjt77oH#1SFG;^MRh-PfYt)nd-LDy!jzWYy@Xgyn+b|%8a}Y zd0~&l(@C~W+2z`#P{F@?G_U1=bG|(8H~<fq1GgiAjP%`H-Pyk&3znWB8?%G*?ZMo3 z$gHKk3w+$>yB%pKFiMk3RK^%`uA!K=RGp-i9S(YA4^duKrJHMb3<)6$<+ov!g2RLI zfCwWTj)ZzwbSd9Nb6s0Q)$JjDI@ipXWvjGgu`T7WZu^~sbJTFY*zZ_VX{S=Wl1RX4 z0^ldiS($$4?{_H*4tUReh83-)%(syw(6LDq_iE^%I7I_7?I4neg23c=1P~2Jb0z#X zw=X5Rc398Px!h!vgBVDL9Wj!!IO+f_Gfior+Os^m=I#sKOkK)`NS|WJgba~_q%%p* z&@cxh7$YYqKU91W@m`Z<<;f-r4e58fY}-zu$Cs4_LJ*++!g}F`IUgx#nq}Ou+z3&i z<Vf=1vbOH1=@3SV^0^xsi5+`a)8Dhdg717|;#e(IG#3!z+s}x|3}Jv+h*+|BFbGO- z4!ki^IP_>#TO5@Vz0c^2;U~oX1Hr!ubsrGjY6))^jRosCWqZWf5nTew^Cy`RBMv1X zf<rGmhw&}@SZa5ECDviR)G;J~YPh_a)N<KIAnZ)@&kBT$a5%5(TlTcqt$rE)$!}}m z>#RlMHA@S*BV={J0c6jaBfMGLg<Y+VGOM0HmY<C}Q(YM5%!gvMV1S?!K_uXGBl`BQ zT7@2GbAp22-A~DX*muXaacdvh$uk6o<&l8-en*hCw5o*syK}dk`W%5@=wJT;1e5)t z^&872@J_FD5x0`u&2i=-QM-j=7y>|1$=pKw=D*9M!M_nd;ZS^6{?L*_R^IMdE|pII z0Nwed79~arQa22B#~o|?xBmcwY5a1&@WSZ6HPG%Ob(RGx%_qwwQy^Ey2?a{$0F&79 zTzpGHbZbKqYbJVlc+#sG;iDw<{C~{;#toZkdaK#lG;Iv4=0g;CQMhvCbx;@(epSgi zBc3bs1O5wr@X{}gpYTnu7Hc-}quh8lYi({e3e4VJyM?$_z|LAHVUzOuk<@;wcsBmS z#XbYlyi2CURx<*H68`|KO}uh@bmu*5<xktcMtyJg82GoMz|#-4cxO@JgGf+$Ws0be zELVeq0RSF&ucYA2eDHa;8xt3_;V+fbKR(ZJk;P!@;pDeYKYD4O<@Iq2+uchJHu-E< z9)KE_$Znlb91Y9YpvwyCHM@NuP+N=rKg~&5yv#NVZDE{o#~H`JTIaN2gHyNOM$;^N zhhjH_U+p~_m!_oA{z~Ftl-yI<o|!YKl$j2BIX_Odha{&`y+|S(djs#Dzd=*q&UZX0 zH#DCw9ddhOuUJ__W~|b4BjYXTI|1w~IP7?`mqW}xJl_8R!Y%M?#Fthi#9GCm-ahlm zIT0>N?n`h#D*Q&daBg33Vnu$se%V^s(|!rPiO&5)QMH5)Fa%qsIsX8@Kgh4h7HoXu zu1^NPk34<Mr99dcdPWI++i&$p_P^2JEmZPqmHN(a?ny86B*s>|OMehWbKw>6&Dy)k zYjkI}aradvTuO(Y<N`1_Imzu@V*T89p=4-|<T&>g_-d-Oljwf;<a(dOe}jJ%zB6k- z@Q?g4&@Xknp^eLH5oJv09%P&%4mjMy+co;n@O%CUq4CSaa6zg3TGXKM<Wu9xx3y2U zT|A6N#OSCC6Tk}RwsLFrGyVuS@Pbba{>pwP_@}LHSMg4`@mi_p{U1$<V0P#^Y0Hdq zFr&U}_Y1?C-L8T04@K1GnXRIR;v&+=w{&WLQp>my2=&Hsn*1A!d`QN}89Xi(sKzeW z>VH7+Uxv6kxL9KGNy*7x*Rt~4{Lkb!_V4|i{{Y~jpYTeJLrc)LIJK_{_*=yGL}~XV zSji3JM;I3>vO=>QsyeZW$~vhe0;<J-2#YabNX`HsKn4YWu5bJo3-)2sKWkt3BzKKX zoto-;*Ms!c@n(x4P11{<F+9nVJ-p)L+s%Q({p4~h{E;<VNUSwE?Cqb-jS1N%Fc}Xj z!|E_aeucsr%&{<(aT?8AUg`e;O#H`+a_Cc%tx0mlwyn`M+vL%m5Zxv*_*bKNS5%8e z)V|+14+<`1k8o2a-hgBg$?7m`fU`!H;Zb=x;=2t$MHkl+T1rU7Ou&p|a2XwNKMMV; zB*4O^5zcWw4;P7a-PEjphJV2~?8c$v-xqj|kIxR71VMj<`S%%axX1dwIURae=$FN9 zMq3>PZlVksT;L<^AOdsi)8Ep*7XJW(ZCM*QymxX2N+y{RBa9u_40GGlJ^r2k!T6P^ zH1-T-E7t&w@Cd;p)B4xPW2tgilwWhyrB|8?UC%f8D|ZFQj3T&?ECE>wQ_ybXp84m$ zt$joLdHf&nU&Sjg1nV9rvc0;L>9>|kHJp(vAc5nQ<s}3;=O8SBuny2`;!lLKE}P=` z(ssi~Cd0Jng(p1Zae_Zu{Y(9z^b0>1d<F2oiKH>V_Aachp^n!k<`;wnz{qTnG7dtM zjPyTW;q6Lr&Zw%fQj2X_`KG^9<ap^+j#FB6q~j#7b-s;1_<tkt6Iu8t;~#{&oxZc- zO-4yHq@5l+$q$h}p5*QGU$5@Q<L2!QHe`^?kzDtQbc+?SJ|WS?vPQGDrTx95ZnuKu z<i$0)z&~TWP|pT<M-31pY*G4Wu1%ub+}(@zHrBxY>PyXww2(9AXDi9b9r2F*SI6HH z{0E|F8kAa=l8pz4{71URbW&K`EyFItrMmeSCOe26fL14E11rz$UM2W-LKGe+2)ymv z^|AQ3haMy1E7khGJL3Lj_Pn1<{(pV`S=1v-n3g_)Nar4(tyI!PZ*rE5j2VGa-^4%} z;C@_ot1%_a626_OFOzd_?+nUM+?qBiB9BlVSbK`eR*%e)5pl44?HK9X@b|CgzH27C zAJ8t+e8yZcHj(06#7ObxG9Aj<8+x+?#zx`E>7Jgo`-%Gr{8PK|PM=||S}U{`7q>RE zO$4SJg@WQJ?njXS04~W_YXyHmSH9u+qj|m?_aFe%2*R8b&j*voxgx()e__8ACx`DZ zZYR@X)$Q$V?Qd>vnU3+~OmGG<wYKF>c?#L*r4JJYB<icCtk=j@VK+_ky{ymJFB$3s zOYzV4t?rn{$HTKi?{6i_m$-Q(dxUF=VflpDGKP|7P)Ot+g1&9>*0*)zFA!=P_P-jN z&1P98xDlukDU%E3q<xex0A%EK=Q--Mc`x-34e9!1HjQzn*vWAuR)tJqo=J(5djPT- zK2=5}<ZQxYCpdrbjcd0zsU_8@jxzrMG)i`0HgXqnILBggbL(H!{4<(m*lIDUI<ZdH zyOP^}uXgo+b={BVjw8#n3{7VUQj=HySH9i5Xuf^V>Ld18@kPgt{{Uw119+bCyvv)N z62#p6{$?jg7AZ#ljq}EGM+D~;^g0r&v>b}~yY>T?Nk3(60tsLi;@a<2w2mN4Y>M9c zVGtzpNJbp@>+C+(j4Lk#HT-qPb*W1<#7c~>7bj-5PgDB8g`qW<P*qb+MPB>u)NV<^ z1Ddl5bAY0t-MHaLHLGHnAc5D9t$eRCXV66&P{hd}C#`%L`*{A-m;V3;d;>4T--j0j zc-O=b6^dBO?$a#g%C*@CAWGmAwgexWG7wcTdk@-w_Qdd?z^f_zDdAryS@Dyu)wIs| zEJ+y>-jyQ+4psm|zZ<qDTE7c5pAhTbDDfT7j67XDnzo^TF`nvchHcYGagxOdAOJ9` zn?k4xyFdVT<(T;4u@J8)De}A7?EQSak3Tent435~CmZQ?y7WGO@bAMP6<^IAjhe*M z$nn8#Yzw^e$s+`f6pp3bs^y!h$*=2Q_H_6+rT)*q1@s?;wggKqnFj0G)ML-SnE97d z@%`yZ1JOVotMaq{3FYvz^Tyv4r}%-Ws2WFwl_XR_wmEePK^E$NykSk#9ofSe&szP! zNT0oZhZp#nnP-&aM-^oR?`W%QYip}MZ-qD$1C>eE!`;cNUA~`y=*iASd0)qmiq_u* zz7lIc5oT3;n@EIKF)_!RdokH=pFrO`9?GQGu165>pL1W2U+_?miP8A4;tij|eLeSC zcx8O+t*ygq7YWL?I+$P~N4$<ZSHZ)%_EqO-wtiv%0A<+8cO~t_Nj1&Pk1X=Kjnd64 z7m`NxXLc^$q?*-+&v61Z$2jSa^Y~X=Z46MMR7LzoYe60|0?0G<?Om9R(-B+vvv1Y5 zeDypvD1QzqdLy2*(*npQo=`x?1DyUf&_`)$AKW?i?MyJ)u`Xj7BODScC5|*wsg=jM zt{!G>b4_Ga<xbzFOtR<k_pDJXr#a5wTCFy+wj4;Iv)CV-@CJ|_I!Vq?;a20BRP)on zzvWzPdgONp5JMvq>Nx!SeJW9Ps7U3G*wK0p^Z}i%-xc_+;p=F?2sFK7fA|oR!XSSq zBD<L{V;t__p1o_rH8|&gj9Of3`7vlZgA<d-nR{k2{{W6xcJ>c2GF?2IeMUg_IW#>0 z>t?;Q1bLDu_Q=g+YI@_@SlnFck*&?bLnFf$;5^3)b|!mnYz+3UW;r}HZ0zQE*n!C3 zl0N~-{Hpi%rLU9)ta7|ye+*|In_`n?!*lFk*~?Mz$HUJFN#Y@=S!$Z)+yos$`WP<d zTZRCZNUjn{t>KTA5U5XC8K1A4d|&Y&gLTgo!*k#}3u_=DBK55Tq!P|sJCP#-H7YV3 z$HNji$T|7KOT?CQD6&Gwt1&?5r&0q}j5>|`a2h{Py3BF)%8ol%;+z-ZRx2#dDrWe+ z#;tbwl8l>CN>8f0PTee(yC1W0uZkE<&n$*pgv;sCw=LwgZp)*xvVC=DW-cX8cm($U z063{0;$6GR>FN2`6yokjUDpz4JcSCMmH{L4r#uia9&5CUJ4q`s_Q)jv04n{b+9UC= zW^^}tgDMnzgpb_d5&HiCO350DMjl*(=#%#VVt+hi_5CWidn-70A1x%?k&%Lb5Gt}Q z)y5};7TR%~WO6gu5lft<O&tnq^Xw&T9wHAOYsP^3bY^aQWko?It*puNMz;3sPC)tP zBx6794D-|Vt`Ar7evjeXXMYpwcDiIF9&V?KA(g@YHUt1YE5x<W+OOaqhQPmyt?wm2 zE;Q)nz9X(ViAw(f<K2Hcx^(K#SVjHC#t~beQNbm{PaA4Fi^l<QtnfyN0B!*JgE2YB zdar*3D{vr^X{S?=zI?7j0gg6?0G>v2Ij?~HPy2oREmiWg9V1lK11MFRQ3b3=Xu-&7 z3-Q!^p1C0P@m*K`3Voni>vqpRkEGtiYTKu>pH#Vp=TY*oGuuR30zuB`<96eWWSZ=T zPm7wmiO)P;2=33MzilY22ZFR+J{V#}ePB6Yik~R7pP!U+0VBUAzC`eTouUO*xwM8| zsk8=(2;cqV^5C3)rn|q2fACNrg@3ib!~H+u*MPnf={^O&@aCYJmDaaquj=}}#mq9n zG%IXk)NP_gLhK}GM=T6sc7RQB9v_Y5w|0c?V8PhqfLLc4{4-vJXw;=mLZ*zUILcn` z#utrzG2vvg6KVEV_U)G3BaCIZ@6WG)!oNyC;E^A-AMGpQKaM&l?AxLE=T+0Z0OIcP zygzI9YimP1k|d8KNe#MP$n3<E=3F?zz#BjV^H0QcO7Yw(XXTI3ZR%_4ulObJ+wDJW z4-enmfLF+!LWTv1$|)>5j=XyItGDi(k*=3^KN@^xE}t*O&l<&XBtYD2dfKZ>S&F~* zoy#uK-H&f<n(=LVHn+Tr{zV2CP<i#q<EKANSE~5d@B267CyHaS%7yU`uu;KM3XMkS zZQ6P0KAhE07ifA?>RVHEHd3No#*j!Rc#=__o7`<Kj6Q!rcqHRLNrkD%qvny|;uY?V zp9Si6{{Y!H8g8h3n_J`%&m#~#os1qS$Nh0|9E|<l!w02$e}%p-_-Em6s&76aUL88? zOPE14YR59D!DL)3mRS&nQ?~^OJ;pv%@cyTDXhcS3b__}}JGTM%ik|9Dah{}p73@}? zAkekFJ{>Q`o_f8cK25Ftp@`hu#gN`htl-5w3U?GqK6uGt8vu6K>f9g3^>X|)@G@%K z#l4mHT|HL6GxHuU;A%OIXyTfBTbV8Hx~=+X^m{8V{{W}H2l&<SkK=#CSv0Fl$VG(l zHLQwRt)|>t48mELV;qsOhyg$YZ(8Gzi@pbZ0@Y{M@3o6b^&hgy5wNp#y1lqURI555 z5yH)}L6$~H#yT9==gas?=3K_V5G9hqheH&$QfxiExb2yM!8zF6_O3zfd@JFvGSkA+ z3GPsr`$XUf(c6(C#_aDbtNbrE6?h^tMSabFHNw%P+o+$WxAa$b`LpCOTmx36Z-!Rs zqe(9|)NkmbZhp`|89Z_EZ^SLD_^H0mWQa!&nwj#n>pZNHzzZm5ns&t34!{@0VU<8t zPZZJg=hXEZT`tj1U*>Wce5wfC$2@V;s%uji=X=Y^JlEaJ5=mflmM5upCz5lV*RuZ4 zpA0@Bd{gn(k?`l??V{XxpT@WFXxc1t6im-_;Srgia9F_`+~DC6n`>if{98HAKCx0* znd$m@AGPHeKV{2?g4pPFm9V$8)3tkB>uc4L*5>Ez@cEzUuCq&T9C9-%DVGtme(bnV zLX*2HJc7mUV$<iECplfak4$I2Juo_c75Wwb00j|)z}_4Es=grnD)?5D!{MKYCd0rw zFrGm)zhdz0DQ716lnv4wv3AbbT;u=-EA#3+{gO<9<?ySJK^P|mv+JDa+PpjsS2$gx z>D?}0bmd~SwXu0GuELT?#(Iu3mLt?-fnH<c4N>ki>#ari24F4YKF--VKAT1>z41Jb z8XYP{`@~5m<~z2KK<&<P(>#AJ6JE8mGwJ#OZIPK8X*oQq@Su*wj-AGOSFcHXzNZa& zUD+BDJYF5}ay_XL%X*tvpe?u!&Di}bJ44e_%S%b8;#WJl>9_p#sHF3}QLec!`-r|o z%AJY_A1LD|Kh*kF?QZ@kBuzRJHiatK0|aDq>GiJtm5e1Tl{Jk?V_zx~B>wXpFyk4) z_Rmq?xWg=pN}`+&2h;PdoBNA-WLs6ncwON1&sN4c0CwV!>}!t9q<Vva{Hpn)x(dht z(EcMQ@xP9K7x@0?Oz@|Su8`?Bazh2;%PT}yBa|UXesVBI!UJ^3=D${dXWdWYr|kjp zH%qqCF5vM$i#{q(r|9=m`R_aG7m>nuJ^Q<^BZ4G%ky+U7QWGtNJ`<#V$zQXNj=V{% z_<Kt6Oqvz$n-hzKmUyQ~<_nUq=4IFB2k!2Xn{W!aueE<?KLGyOU$Ga*PlkUHehPS^ z>t3+e^f~OI)P{>S%r-Vo<III4nnsO$#En`x_b18<DFujcGM-~baB7y5w^d{6p@Xd% zrBhh_=kz7<XTx6(zh`YX!auVA0E0C+G`A3gbdP5GbPVq!O)c89mxk%*lo29;S!2ua zcIWl$_H6O><(7il9-=1k0I<-LR&gDWxZLtDm-bLmoQ83NBO`XxlE<L_4L@iv_$yC{ zKWJ~-pm>}1m(i}_(Dcnb=@$0Z>h|vh_U=(9NLE5nH}R}(*PI+z?@#;_AN~s8@D>jh z!Qrh+$)=wALve4ac^_pE&l<WUcMEYWYRI8BE3Qf$v$rC?4;_<YV>LO&yX&F#_<YKY z>AG=tvGjk7{u+El`0wGZTf{aR3TW592ZQZ$X)wTHc(m(@$eGdx9%&Ghk{jj#eJkTV zQuJEuX3tJyqT6f<wDL$DaysWcp7s4Pd=&V(;r{^mD2IeKtN#E2*h}HR8fdYsvFi=x zG;%?3cKwojn1<=0nN@=!Qln@mB}IQfe;5A%XFm}98Th-acrV2=`C5*Zb09D)DS!z{ zc#3Ttua@91PBD-O#eYC}d&cx(Md5MJlb37$U)OW-&O6~+ld1KLGQ6Ju0HZ%4KX0bi zym{i^hra}EE)Sb@*IK>PZqJh%{^B-loNZXX(IC$mQH+ycuOIMA`BLNdV%09RwJ~Xb z@R8ix>9KsHWwo?XLO26CW(@7SCvzUy75U@)M0^<W=ZgGAeXIC##U-Cqv`Z0x93ojQ ztfIzkj??C!F^jj#HjI#Y>-wMj1b7<j;iv3<qWD_iFuQx*N?U^QG!4E>rs}c)<OIM3 zsK~|u74@Do@fHHF2*!>Yq-7^4=$dcsHs9Ql^8Om-7`Sl<w66w|gVnD!q4fr(a-za^ zh1paL?gdEN8x5Ylv&U14<$NsOW~1T=ZkbslyM(F{^DgKWu*yb8PFN0@tvmT*`$v;H z2T-JKBZ0<LfPXCi09suZ*=;oI?L*7iCBrFZJh2M611FLP@Z|Ad!-=-f>YWlipHQ@# zSl@iC1G5%g#AlqIa(+?i+ov_i>ZtL?vD`^1l12nEP@t*kHo9&j*8mK0jz)ck^k5l$ z!U)gt705j}QO{1e<JP=$Tu9k>V=BCWrPJ<=?ge=#Jb-hYazL)CP}Ir0o;$5M%yG!R zQH_;BVC|1Fik-@VKwg`&a1`~<ap$tUvABW&p_sarV}i0qOKk-UGZH$l&e-{ZHQj4T zZ$8!#NOALdhBQ{goNZ#yxL|b3jDwDGn)A!+sb2CqEu#^|v_?uV%vX{yRe&I##1J_> zYuKd=Ee<M;-$PDaYIL{qkxIq4IA1srNy!^zJu}~E`cim?@*A6VEpD<)G_0)bHkkt; zAPtH`jo8L>x0=n1Q8D>uRaoUKv3#(EvHtS9#0TI{{{UW|q~_+%JF}U*r`^LMxev!1 zwsDcq$^pl0RL=~raE(W?(&#a@p^8Zx%92%GvZG2$@;0_N1Z;z}{pH7AMSY|DC2Jae zr^LNGMY<O6B!QxZFF$#Sc9R|qvnClpaIBl7=vV@yKM_S}_OYe4xJQ>NU7bE+tN_M- ze2jI#86&4sdkr7NT8D*iW1mNwSVU|#!vQg_;5!J}SQ4a+j!5}WY-LTgAey>p{bm0E zf}8lIuD%|4Z$Z>7podfrWlgiiaPh_!(=8M(UKenn63Aj;za)jQ5A&Vz9@IRco-zvK zaVK*z$ON4C1M%tBzWDf=@iz0~Bo?iGZvmFhAsa^=O#~6E5Ls3r%eCBs(mJjrU>gC0 zSH=D`flB?PqOoakTN{_~Bxl;brweBro@9OBaUaPa#!DZt{9W-yxJ{~>t=<L-;2D{K z+EsCYdSF-d@&5n>TKJ?jkArr471h|9<3zcd+C^dmEFkWMNbmcyF`n4Rb6?HJ?K`4> zV1CdZFVh|OfvL+NAOXa?Wdi^Xf$)FEzeN84;Ef*^m%?8k@4g*gOjbV;+J=NP0ET-~ zNgU+vXxojWKPlvOuesv<yW8aoX?!U&<v42>>@zDqt)u-|zhPe=4;y?Ng39y#ZLu+x z>~M;552(%$Cz|#Tjs6$0)_x3l(?OCs7++|5ghg_4cU!*zDPD8vN7lb9Kj4`k6y~+p zkA!boL=r<OjW?0E8(EIi!D4U$^yoOR+Rqi~&#ZWBQqv&k?Y5Ifr{?PMvh^H}y{q%A zo_^AVWcPzTE+MAqV<pS9wLi%E;pK-<lGaSewmA3a7%j1PFC29zrDf>Rf2H~CFqYsp zefkX7fANP(k3#XK*M%)k<EPxs1cYaojz)-#W2)`OammjDxJw&nxx08&pD9S+&j)Wo z`Pch%mSQ7U4H~Pex&B3Q78~mL%G7VPn*2_WOo&N!_UW=hoUc7kbNF<wn|GU@xiz0| zxEKQip!!zsn`raNz0TDc=hXUD)S6nJ1t>~d9|!*4dWpC2&xUkO!#6iKS0zVWM;gQr z=O-2Ue)~Wb`WOEI1q0Qy<KGYHhiiS4OKG@Vad9(ap8o*qtMkrHyM{Qg;GY(8zTZB? zPoimk$uG?x=r@D-1%~15G&;1~`N_Y@mIG&?{Hauu>bUMI4cOwWT0CO%CX<B>3m-wA zPvu{osU;SElNfu*{^7sikoRhz@J?Tcc7Ju`pIelJ)%R+b7;k)mn)}yR)U?K$+IbiV z=TnC5jN|jq75SI@HTcy(XW!Wi-~`%?>kXcvqgg{MHU=cs*fe7sPDp7~eNBA@;yp&? zej2k)E2+>mITAt%8<gTzC%!&mk=$m#kh8vN<LcC1Wd8s&`)h_M#-3k7E$tZoNA)-R zDg0>guaCcGU0=f9HMoxD^lMjxQGlGWw3SS4AQ<L0jOQS6$m%QnhrerIhuR0izuHU3 zKMXu8KiahK4S0iA(k-RPA?@_*`-@9<QaX<&B<H_9>-`@;;GVx1JT)i9e-B?f2GV{Z z>6cm?jo_qrBr#NcWMDd#=cYz${N=xFe}tbC{s#WiUNrb;@rO;h()>rGYd6qe+uX*{ zy2&NXvqvTylN|9n%?pCbByJg5hE0B>;ifWjuO&CHExzaeO&^T-tCiEDoat>QrT42p z#Xr3H&q-h3a5K<n(34$N{O@TRvN#QbJAR*)bDA=omr;@!a5|rAms7f1jZKz7UO3L& zebb)fzkklZta94R4}gbue>-9+drJOD{Zan_f@|smeGA9-QjEHPX5D8zvhJEQ>A*PY z>t9Xy#^~R(*?GHMXCQKT9G_3~k9zns{t4&e7O?oItN3=@nBOMuGEIeTeikqGI? z1-<c{SJ<9A)PBXNPj;jL{I_v~fsA$Q`hIorxs+elWRGr)*Rx3FJU?SKzld#bWjh_+ zQHajc*##JM7$<@=$gkE5ok?{M*>hW4nBrxHZLZ2og1@_!OXoQRZO>lS`BP;&>NfsN zWIGYlj)S4c*A@D0;aOkDpR>n_^tkf!-)MJnZ2)9EadpRH4>jG8*Y-Ju3Xe-lKbkzu z_YLjv6{&ZNUxE46;_VXu09^6J9vJZptaji@b7IgTC=+7<3X;ssjH3gx?%RMdSw9iJ z6?s1buk;8l$epcZm6*!1>~j-t+kidE!Onjncg4EY_AlYD6*CceXB<9pAKq430o|Nq z8`nSW9<}u@{V!G3f3xJ0DdU*5CNjZ^-H-z>To7yfUcC=*hn*^#rkeZ@;(9o_P^(U) z9jw#)nfQ0(i@|^5RPhSn4QkHIRw|_7UgiZ^Mtwxl$WI;X0!08BiEOR_0Fb_f;C14& zwQGXD9Pq11*<+{61Du@gx4oTHp4>456}JLKbrfkPau;s^XFk7=dj25HY0497d%xFH z`%eud;F8&C_i6eZuZX8v+R_FkNin(Ojmk>@03*$Qt^UGVm94Lh4V>j<x4y8tisn^+ zx{Bqqv~pJ&&pAE4EAn$zUprEQD|f_<gaS{<2x0SN=fD2|uD?}3V_i;d3&++CXAom+ zZ8|V;8C;nWTYfr>6P|<98Lye*G`^;LIYPa5kJ@C?Zag^B>AG#a2x7gug4PQ(aGqRl zMpQ`d;O!tWY!XQ$zAfKd+AuLgY#QkBQcS2;91w7FHu`>bH^ZrPNcBi`nRhjt&i2=G z#u1gAZ4tR=c+`brNmpfFhoX^Pea4^RtBcjrEJd_%?`YckcXE;{F#=M<c>%hWjYw_+ z@m~i<t<mpQq`9tr+50X2(mxCS1pd!@b+5$BtB4`I*L8TIxV5)?gas1Hb_}RXf&P#P zWmX+?j{g8r+Wy_2vOLz};CS-F6(c)lit0D~RiOsIC4MFNT{Z97`@?n`T&jr&igk%Y zx{w)7hMu_#oQ##=93NWw{=?ydBbhF*+~cQ|3j2Q+dLD#VdXi~e#(0ibWA?MgAMjF- z*=xeqZ*!wxYF;9lMiwgz86ysTrn~YZ$E#$4^{<t$KW)$2fA*o&E<6|eK4>Gux@cXq z+@;h@a;W(L%YQLMgb|#JbTW4jUl&2(tqaT&Pi+*E003qMn33+p{dqO;pY0Rj>kEI4 zS6AYA<2HI#l0yqOn38#~A~=mk6L1Z=$Oj`F9C4)?LBD%rKW#bbvHPv?`~C_0<3AX< zlf+&t)2$cHVR8MF4BE_#CVp_z2eylOC+1@#9P)FT`e(xb0PsmU^~gNc_=OFzT!PnH zOq&KtQI=c2IRp}W@y&lM8ZNV}=+>e1onKMYf&fBUUR>J%K)@j&krWZw<BrwSH|=rz zRd_z)JI@9DOYs(-=_G8DHOk#Gl;LuhiExd_UFyL7KqG&v(UaYs5TmEO(f!tZ6aAAV z_yzE$$H3kh)a<-LaIGcP)V7Nxa@<cda_b2Uc7+OvyU7ZmXEo3&7}%u1s{?`<5J4Oe zLGCO0q5XtE;G`e7r^k(MPln$RJ}7GXmYZkxXr;_nuuCX*ZRSZWposj+Fnq9}3}9xy z%lO&*YW#Tchr~U1;m3wAbo&@IOUW#wxE6wInHDfHBgt^?3y^Y7!Oe43gktQC9Zp>& z&(wd6e-}JE@I$~Co;&diDR{w-#@L^p?(Bo*!h^p*G>4*~EOB4Xey6EwI@YIit?Lst z&F$>cTwF@u^3qvYyp8y?5(i<&YPaKWiGDozp{tJ&c>7ei*6z_tq_ehGHSV#X3mj|H zArxfw&2o!2qxa*89Py0%eifIsIBV5&(Hg=+I`dFVs6_$&;{jA8k5O`b@)!M_;GB96 zNySYLk0hCC8Z^#x^6okOc>F0joZif>FNy32?%@vY>IN6<ll-bwz0|IvF9N7v?-SGi z0IgBOqUka}n?KK%<gd%et_5hOk>S;lX4xFBId$GfI^Z1ksCAOiYLS$)+h-Sd3jH#n zhI#e`n!KrOz%`Y-y84L7<a@p<*PUYn$dD*?=l~ly?T`Tjj-#5A*6AmVfUFpepr-&I z>q*oare_<A=-evXGM2|Iz<wA|aZ|X|(KkHst_I=)79f2|{*}r2$KsEGd<_}Zym8_^ zGen9kHv7xCVL(T-xA`^kZ^W<oD3|QH;Qb=*^GoqnzPG5w1oA@;pA^?VY{;373&x&O zD>fH%uo%y!ZAO(^j?sxS<ww<45x%|S&0kqbq%rA;nkq`K<%gA9?H5=H#?+Cck09i_ zI6W)0I#NihGY>O47?q5Nj^sNxU&z<wW|RK_1v&km{u+2*-@%#%hQH!T?IPbL?~`w4 zw--{AEyT<&B@%9yW_cS4)vL+8P5%G|i}6LmIPiyoENwP`5?lM}rXXYZk{F^~XFtc& zy?S)AJY`qz!I->FH0^WuJ}YK}_s}XTFI}J@9sN0|p}Ukw?G$Ewo_Hkx03%<`7mL5( zsQ&=9R=){NH&)WLUi-A|J~1b_4RqHy&q8tAk6QV&#b34O?Fr*6lP8KicdlG0A1X(A zExK|BK}%Bt9(d$_Rp?XU3`^ElL_B;tE1%ZZvErR8Mv3oyM|Eqb#kY3*nWKYf#t0?Z zdV1H3>i+<?H|)!zB(clmEjspSepic3X1|eeafVxDd}Hvh<bv<V7q?f3QMryg%Z%>x zu8>P9InGRuS<X5So9kK^e-(UTbqCqjREjOQ3ZRfP!6PTWd*;0wd>8!EF?jhkq<-`I zYw;)i6ldVhn<Coi8fLYttM!mU6`W~~?e>`#O{cF2Pqlati$CC{+Qa~j3qaCzv?#@A z)UTRT{`Z!P2yQzE=ca4<<+||(yQmUxE~S$^V{yRa94O#cAV3CiKPvVp@Rk-f(&Bi@ zv-W$$pYT%Oh}ZErPZitSu>^$C^rcJ#+kMEmAc5a-@5Ow#;?LWQ;tz?7jbmNb^+Zy9 zwVLhVjQSRi83Je6NBUR6ptOn=j()kRHk=YV*L^&Oj9au(i^R`n&v3u^<>EQ+<-W1C zvx?$l^GwnClCUJO%P|?jJ^T7sHK=@9_=l;&BDmG=QCWUvM%X>Ex1Qd=rFobD$<rVj zc>uERJQMy+dXU3YT@G1mqh{6St$Tl;wp>eci^y4Bq*6zJn?L8;tH*sTXJiLp!5GFe z4^jOqI1X?+A45vmA1Bip$8TT4x?`c7qMnTVxAr<deA@lX03wlXVa|Vu37B#1p1tez zUqQXLw_;2DybSa5o}6df+P^q|V@u63;MVkJlV#X=F81;Xi31^EdVH+IBRM&*(5P-S znBrkQ%s>o$rNH*}ug<f@`}rf;!N-;<BNxT@Q3B5cw2LV?0P&R>{BnO9`p^Cee?0U4 z)%tbLHw1)&-i75rKdvj|FBIItcNmvTb!gvqP!PpV00-NT&c3Dp0D^aT)52d0zi3#z zckwRz9T!2ew3cb_E^@HOk+61Vd>x=D`f*-uNBgJT?T^II$3KX&K))9}TVo`FUOjtP zU`m2`)NT(#a6@BnILBJiw${GgrAK4tEZ=3Bq_+g1jaE)%MN#uJI}EmR1_vI#74c)n z+6Rb!EBKSe9vYc$EN``qLh9OWtcBs8`g!7Qt}+87DcVLxc>vaChvPG2cpaRebC%uC z-1T5M;Pae*mGtzmE>xn{_B>jXT+H=tejOM_mpUnAX!6G(3}9f44wyfu6_=;$;&RYk zC=a|SJ#sOepH6yp{3`I&tu?!7uk`t2N$}*w9}9)g-Oh3Xj!8c;Bx1PBsp5v?d*D0d z6+9gJetcHc+qI;O94)cw(CahAh>+av2oIK<LBRXI{AVMY%DunSB88-uR%RU$2qd3D z&|}xXrE(U!or*vvl_U=$n92EZk&GPVXOCk}it|shRlR6c$aBl?U^;WRfO_%ttM_{e zO}1$1o*2II73*K>QTaM_X9JL>$OGkE44!(P!1~wqMgIT>_s#nf{0#V=sQ%Lb03ALu zctgWpC}>WB;olGHdbAc-cFA!veX{;#xY>zj^5Txs5!kFD-19Eg{$T8NJy*mQLR}I9 z;PIHo<xr<Na-$2h<K;LR$6DX;zMF9*vPU)gTuW*m>f+uR)?JaQEbl5QEQ67jzyqN* z$(rGQu?|No9+m;}Nw`A(XS#mT-XpW|hsJ-2-X+uSW4ujU#oGR%4a5z;Io5q@_E_ad z95Tp`tgXl@z>W=k&bP2x+C0R0Mn9c~0m&S6@9SM%^~}~0L1iY=WsQ`k;g%qV8-2hB zy?Kv`FB!;q2kzZ|VUFPAra!H1m%`CdM{XhOdmP!g`)%W0%<N<iR4LC^1c97%?_Ocz z`I-%C7gN#^j2`8VdHVOQ+pT+3XKPDjB<Eo)!*J{|`0?%ST>a8&Fy7i<YD3L*B|?lA zC+{vm9gTbRskrKSQj%*^tGd+ed@Z8IVG<;ll1I6S$sa$j{{XM8a~2v*_jg6LDLlCd z3=Vn5GmlTe)#uaM)%9(4!^<P>5h?Wm^SAV(S#BCnHqIDrA|EIuvpR#*ImS(G7j3s> zNV_z48eZ8SYsvSw4o@Iw8T21c^^Dr17A0XA&lwp%k2L$6TesR|x`-<00Z9#leLIur zNv3(0!-md#@+lC1|Iz+R{{UnE0NIEB6RV~8zwt3*p29hqt?Vz9vR+Hq%$&0+5QZf3 zes%*VZbAN=J`;Y|J}>=`eggQ@<A;WI4-d;URs%)6(XL=vo>aF$(EtMl^4v(mHb!>< zv0!kae=NQiYflb`5WDhj6&;%8w=&BKJOWbzHtoj)ft-PpUR&|YTlnweFNcfpzu{E& z^F@4a9(GxhAsk4!l4g;%l_d@Ww*ZpEoLA=)#Y+{5jH+#a!2L>|3K)DpBvt<aQ{u0T zfACPB6Z~S-yi2ZlgTuCV`i8YGV_00ZoGKM!Rq`D^V38nH`G6<pBeh|E$gz0uRPip2 zap6k~tx8C>8+f5>WR2u&!2Wc0(Wdy?N0@-QZWpr(^FI;(#y_+Ng*0FING`N^?rnr` zD>bdm6BSfYc}?oX;N&WXC#ExBr62H1kJ>->RsEE{BwKjP#8w*Kwc;H{-YY|46b#bZ z-iCawtZ*^7m0Kh^3A?g|8LzyJS`_f|mK}3G$oVWEwsq34r>=+k8Gpeq{vGH)0{;MJ zy*A_fPQ>3_!uOsb@>x#F&RxD>?m{DOL6OjL$u;@E{{RJF_|f|__;2E0hJG$<TIia` z#JW=!zP4Fj*$uRZZ=C9^5UMfG_89I41#<rYAO8StKObmcv$unEdv6cFhW`NJG-z#g zLveQjxwEq^vKVK0q->ekfaIL7+`%U!=`VtoAF@}+pV-bng_e3(mE*lD&XQEqOpNl} zS`zm%BLd(ov4Uhw72U=<SHWO#(rfE7ZQZl#@w|<4bw3)kFOUBKvqy_9n)|>$CerU% zsZhx{l$`VOfXp-Niu(8Vb+8NjKIz(Sn|B@m0FirozH+uf-#L@MNFX;k{5Y?iJ|TX{ z{{Zk$AB)<Sl>Q*T(QUOYerav=$hC`Gc&?|OB7#WbNd>g+B9~3TatjVQuckj`@7cS< zAF}@dgnU8p<H6S{bEaMDf7%MMyx+Q&p-7!}%FNM%BT^JG9FvZ6UU1_&E-Q1JD}$$2 z?C)UG<$2?dGR0T#<Y$%XgWsRhw{NbZveLv`f|g>rZkWb>zMs;rYjdT92)692adO^F zC6613BxfhL=Uhg=s7GNcSc1|RfL!1<IQ!hNC5iMOjeLCQ#whxaYs_=n&ZD+6**HJJ zw;<<%*Bwu8e+u$15>CR=q?84~2!XbYF~br;BP0%Ska5#B-0CROTf1LK;h2SvA%b1| z5gLu&r#b1=;=JcncrKJcsg3FLWk@Z%f({4=C)^w!)KX6OCQ>}RU%rl686Dkb3RIN^ zfPSD6w=1|0yx7ki*9&!HHe-@#+0QuIKvl;jhFIr0$iU=x_4Hp6++3k|Nj5IhrO8l8 zQ-P90ect2KCzIENW|i(8C2-6#+_Lk*=jI9t_3ANR%@pl(jlE2#7YMrnby5ckyp%b{ zNCW_VfIh%;T+X|5c?v~xpyWE^doRqxfC3f;ev6&JXWF`JsG+%5j@3adcV}pRaq}Ix zZW#2z<JX$!{70sX+cjBaMvO3YQjFWU>Pb*Q`ux6~iQPu}6MasLOfwq^2!x{|gRm~+ zxE%12{MbD)j(zc3sSU%~%l7ba*vM`;JyiYQTm#3~y>gm$#goSzYSJU92>x-xZX=9H z#1r@&4x=3hQw_wir=EoQWNrkK+yj$_UBr?y1_AtQ2+_09#mimDyia3m8$tF)mvqcy z5rO8UK#)cd?Ftw#%*f2y!6v--#TsM`gfRKbsmaOR>73_3=RTF!-_H%j%wh|PCknqZ zMy$-~v^NpqwvrD)*E#1rSk#dug`j3tWZ)JVU=9!6&gD4c4TE0Z5!weGSMMLnNBk5M z!;j(r0NSs_Y7w^Gt*y{32o2^ypt9r)f>ex;PPqoWgZ6dt^~b_*jh+_xgk51xBU87Q zRwM4h&Lf!q5xW}u5B>_ZZeabU?crbH&}=?zU^Zm9IRImU)9|m&OITV~DV*+BP(9cX zEB8F71@)Y=F>3dXzeDqEb#G;hl-EXorzh-V<J)Z`;s%YX#daXHyP5`h3hp8|E4Z&C zJBwg}+v#7`_K9+umYlK%-WV|5z~J`;arlb<4F3RO4~l8xkAYqb@wT3(Mw3mmZ!Oyl z(wNb<u_S@CkJFD@{@eZsc!E89!B)Dw6UiXqo+*)%c#MEZ5>;+PVSx+@4!B@QHT>_D z(ViO<QjEGbkI}e_q%jz3b)e7l2mP(QD|z8x+Iz<y7nQ<KYp?2XvpH7Vi@BR5f<Zf2 zAAI`Pm081Y3jLDX8v)LE$<K53uiHQPDA$F&J7N2Fd`%i{yfQ+%^}}yy!8_zsc?MfK z!!ca@aqaQsFu@)KF(^6c6-VWOEBogs`czP(m(ip3NjWH_{p7W>zeax&@dwemrYAD3 zh<K$K%1x!p-i_$DN5>j&m3e(Cq!!XTo_<tfF^u&C72QGMy=~(FSxy%j2g__@9k><s zt+6VCJYxeG=szJ=!-5HZn64~e(xVYK`>YyXvv2<ZZAO@1qfQ!{_wh~oMK9H#&5!N! z)5r1kwA;in$!VrpN3e_)+^;7i-+q4@_<_jWd9SiRZ@b}t`&jtOO~kA>Q9y&yVzz{B z{0?j5Tzc2#IhJ!geOY5FD>=6&mrJ{!xn%h~Fc@lhI&HNCmEQUaNbAy`k_3=38;5b& zf;k!M%|^K7Qk}m1SDQMD%=D4{BYYY7^1rsn>~rC-gnDkZ3_lb+0QREZ!c0Q<w%Sao zJ)F>@l4MqnB#Ps2%&rS<!4>*1@Xz*+_)YP<Oz~HSd=siA#<H>pzS1Qt75$|4yP>!e zz)s?*`&7ugkep$Nuj1=K@fN$`ZB`9)!<UoT-P*_{ifefu84<@uM~#)$hpLcqk)CV0 z_-*l{;!nbFi1uF<d>5(9Z>`x**9&m}0KF{IWJ)9tpD|?&M1haboRhl*eqEXH3@Y<F zQnu}RH^0dJXD0DNtq8&uVS8CO-7UU<nf+k?!k-%cCHyV$?~ME_q8RObL-3o$>Ea6* zZsTJb+iIV_A%;MaOzAe|R$ds4j<oL!{3){k0D{bZ&f4yc`%7vzIyc162<sZ2o#6if z9m^X<1aUpw(<X(ks+W=Ub0d|txCF_ju~r+S^A*1(e`inlDdmo><Ly?<_K(vnEOgHh z*~uN&tDxx$H4||gBijj_%<m<*{owM{e2(FiedAxgU$bw+?}mC8?8$o{f;G7OL!x-D zTdiaJM%Wlcrutu!ECS>hgKTAN5<_G!LGpO4w-JD^&oyT3(_3Gu^_Z?F!R8oFNVN5} zp7y=Z<A37U!GDN9v%kcz5PTu{rKdKNulQ#6YaK$(<cebr%oyDtodY~lt_qcsHYn=B zl;GfbHkAtA85&=i^S?cL>t5aQ<HUMTiT)>eyTp175nJh(7xyb+6f3qgw2n_A-B1ny z5XP9t72x_)NN(551)H$PTK>DsoRta@slOt>t3R5t$}X*EN$GcQk@Sb`&*CrmLB2Zp zUs{y0id(^E_+q(B#Aq;a*fXj2z%}|O@iFI?=6hJj{Clxk2_$7fJv*Q0#ePo*zR~Vs z)ik%o#gnbVmKnps!bLd8KQfB_P56VTLE?+#@ivD#i)~IAZqZa=GF(O<jlFp!ALm|H zdxvqW8Lp;TUL{T!Z1Zh4_3UPf?PFrGef^+h<ny$X$gkFK*>6>7t>)7%B->|sDT@p+ zF>xLbUw$#`Uza`-(XO>e7Pj$^EzVfJeq4RvIvg7Nv*1>?bW7pkeNHlNrHn~x>Zb-+ ziDg21=NyXgE7faQ?t0v}i$6Ox8($vYPkZ2~OWs^rU3n8Ly6y=CtqQOl46sarfuE_b zp}rJpy6%y#%c^R3cQN@fB-4KF<Q{5B#z7$}N*K0~MnL{1%8Jtcqx?Cmcst`Zw{@Z2 zM--Zk#2U0&k1;$&eAw1PNGt^HFab{-^duVNyi4(Q8{j95{7Y)BZK}%xXsKwgmP@<A z<p&&rml8-r4oV=-2q1r6@b44WtChzYjE5_6zmv7~U7PHGCh<QH(*Dzy2LjVv$v)}I z%jTDL^FJ~?OZIDf`wJ~SjMjG0OC%1%mx_DKmyQ1b;8E;sd)AeZ-C`KvC<KP*kPjIC zb<6mw@l(XpSlhTU*odqnd}M61K^Giz^9HW(NRkPxt*vd;mf8jY>R9&e*Ma)i@~(F` z?IkC!y*!WUd;~qjnUOu6)xt$;jgb=>RR#zJij0f{%WWKV;=e?{WQZS7_<?V0EA42k zZcOe@G4}>Z7|Hp^r?Ibxbl(|xU*Ybe(|E5>H*;LZ1WM5?ixVpnT(6lK$pi%;o}ZuC zU$M``9|ZW5<At~O7y<}vE@!!pSl&E^lG|u3#gwTz`Eqh`^{<i6<vC%U)`<6V#cImk zPu-6Q1hLY@jdLW>BNr(f{HYH^i3nsa22?*gAE4t0)%2TdJ13HOZC)tbIP)YfaKw-| z6O+doz&^ay{{VqnM};-d4@Kj@6>8U-d~w8JMs>upUMoC`M5?Z#lx#aTZaaoR1D{s# zKZg7@d!tR_?-kw~okuMphTt+o6aC^!Df4cmB#)GNa17<&j(<0fDJ!2%JUia!IpQxi zKZZUT(`I;pYwc?2kgTW={7ax8FC^_8XPlhiVz>w`MYJY+i54-?Zo-4>jPu9Rx<83` z_J>f?w9P%H3uztWI?6_Kbu27}f+`}CE%;Q(UgVRS=irLgFv4^@w&gZ}InPs`NbB$T zS5zzLaMh!Cp&Yj`K>kcEk};N0PCb9fug<^Q3s&%kkK*ki>||Egjk!0G6)UpSBwI6J zkQld^6lXhkWDYa>A9pE^JV>E2fyW$YoQ|fyHos~Xjs7z$frUC<n>iq40A>T9O!UQe z;OgF1k`yV~pDdpl>QJkTX`zWSTbvPt$9(Zz-lO8XtBJ%i+(S2fFCZNB;E!KZUW2Jv zLm@W`kqmQ!pp*I>X1M)M+SL@p3{iu$j#M6c^c){fYuKa8-i6NR?4SG+yZ#B=`(J+1 zo+P&Tp{K{G{5$w|#60@^sU@7+i9^JCd~yY6h=KddvxEzQ36QyH{*w5W;7<_zJ@}KZ zco)Uj7WaCdnRfA9&uur_W0pgQ^A>g_xOHIJJc4k?AlK%1{1d;&`u3;swKSg=Yr4Js z6G5`x*85SsyS0zY1c>8;=6NHC0ryrURR95i0LOX%00kWVyl%b${?@)O_+g=VNp%a0 zL8sh(rt19L+p=9)!y=VPqLxk=6~ka1q=Q^@%PUr>;|F*5A~6-C82iWD_YAV>yBzJ2 zP7ec+KAr2Bj_U*>oyth*$s@lWwfy>cv;GQS`%Y^SzxFxNG?jM<qR&p2=2Z2}w=)$# zUn?Hf^Ph|V0BSGV8^w?qJYDe<SMr>I@x^r>o`n4@(%j?NoF7A7^!Qs6^piY!W|UL1 zKd23BShCY&d(B>WtYBRH_j1Pw0CXhC$^rNNYv&&ne%W8L=Y{Rw4Qt2xG}1!E7%b;E z)0bX0h^<yuEuO=g{$O>F6nG|C&Z(>F5$hL40Fd0<O?NX8NyndX-sg}?;}|?vJ^uj4 z7~@uhO1FQM9jwd{5_!o%&<=opwd&!xO8)>9jHj4O?8N?xJV*Zk1uggora6zontzBq zK`6=n#e&&J20HJ)k`vd_N%pS<@pt?cZ^d?Dzu^t=EtFYL-OH+K6G+3^qPBr!&O3R> z>tBXbd|>e#hDf4>D}T>GWIa6z0DV9e&ENR{0L9vnWV*ayj0o6>h%iPEMfCh@*rUR@ zXzs7`GkB`+Z4c4!AAiA1e`{@e*u|#nHaZMB8-|sq#S=GtZ@X)z{D?g{10udP@u%${ z@w>-T%|DBLX{=v)$C%~5onyzeP_jfn1h1atmT6mbtY6)UC-tNR=V{>AuS+Y#!$`px zw>PY$Y8%L7<|3uR$YlUyL7cvgLuc1<8^1G}f^AOjb=vG$4_|7eNb61Sxb-~Os|^*b z9EtC#Gfz7lgYA(`XPLhH6ZJe%l0XNwJVxYk{{YvkP9kk00D_(qHDE?c`eX9^=~mj| zn1x=4=~Z~4I)qye02Df&20C@C>t#AFTw}kn6{{AM^2Cf3g2#?}j@bJ9R8G1^PO9j0 z+c%7kJ+V&_k(_=N(?_Gqe{}x<D>p!R;11)O(}%)$7cq%)SLNI@=y~VU@u>RbI*Zyq z$0hb+Fzb(OfA#4_vpx<#4!>ITX#6uJso4<o3n&L881?5Kze8IQ_%3#Hh}0aB^K;j* z>}#FoF<Y@HN$hzSlea6>k51&&!%w<mQCFr3&jZ_<_bYFQw^Obogq_DDIVYcC{(iOD zTKq4+xm5|2Wx|kEj^KR;I46$S=kvm@ZA{T&<<$AA4G#FmB=U(YGtUI)>-qCiE`fO} zf{`9OpU{14>w8awmz&wxf}1|+1h(Vvk<$l`m7;zgcymeABGT{gt)ad-WQC?hk%lv$ zDbC}-;{*9t63x1!T6hYw*2h)*CipJZJRz&=$rwxj0Jj@fn6J&`q%p`5dtkc~ao--5 z^)>dBs6%Du$|GWM3hX`c)wu&5O=bKv@NLh6yg4Pc{iWTH+O8gTTc{?0ND3l{kIqEj z9~j=5QgSo68uVR4$)>kgjeh4O1B{II$NA#EM<0pym7K176fo^8K8KIqXxg+)HZ((a zc>%GC{dNBUf<;678d&^7)b#I<eiQK@kNi`tSY7E~W%DfT^b1`+_?vlEWb@kgOPOOi zl2Zs+*W`$XGBbW&-Q5JYc-?U0jC%bm?63GH?D5$C(F!E{-)Ct7{{V7DI43>NrFr<L z`?ijZGJew5KM?*Y`~kGL_@m-~4frz7XmrgpUe$E_R4!!O1)cT9yhC|VU4(I}vmRK2 z#AKZL+`j@NhVBhA^8OnutDUPAyw?$|vNIj4wGJJNo&Z(k@GJcyygB~>1c3hlf_uZM zUhA5#!y9iA-D>wUYIhB;-QH?w^IbomBS&X*Bfyzy9fG85)bZNB=J;FtCwv<CWuQf) z{1*6er+97~Csl|0KSs2+>&bO=jY<K4N$!4>qs9&pQKp+{?*721tfcop%unH8{1bon zv-qQSvHUaemx;9}Ai5YdJMj~3BktVXMFpwnkUZQTxxh90De&L^2oL`N1t9UIlFQ;x z4cq8VA?xA|Lr=11&VFKTCDdO4@=uqX;1SOs=*MmFtKuZ_$8Yvjg4K5e9o5j<Gxv6? zWQ81(4s+-$75)(m8It2x@eZG9h8x##k(F>kR6i>WgX@AjR~>#Y#Le9#Z%-w|t@S^N zFNc5dYySYn3!`oS01G4HR)b=vZ<!T^wf?0hRE@~9sj)zDz-NnYPD<cl{*HV%{{Vw* z{{Ug11?oO;#D5d`uf>u=s?pndwmMX9c?_{hZEV*{GmWfnGq>Nb^vkCBOX0Xt4BjBW zymfauvW2=Zz}!(>kUcZ{*P{4)!F~<3v+}gfHtzW0xVc#uIqCA9iZXkiM{4sb@dhq` zYwkOKp+Y(+{s-bG!jJeQXZ#a`;asVzX}<~dy>4ZZW`a);>Ni^J#X14B#+r<-v7Nwu z)#Q!_Yv$khEyu+V0DjNE@K1eH;3t8tZ1ino;;qygUA>;4XAP>pooPHb8oQN-A%$o{ z+X4<lN&zFN{-LxF4ntud`YwTCr=A8#QpW?Hn~6E+Cz|+Y{tAWr2>7@D3M2b6TYk^} z9PuuV;S1X>X4_YXQM}V7zX&bkkQflhac?9Zdorw!g@KQ9GB9IY_)Kh-Wjc=LvY}4N zC1d=!JWn7OR}1!ax{^lQ=n*rMh8%<M+P;7B9-ny;H*v<x<-T1`NZFHyR$QJsbpE;h z;{B$-;Dz7tQ~v<j<4(NR{8jL-<HdSRQM}Ko_%`M}b{Nq~EM7R43+#@#TSns?_8*8^ z>|riUmh$;bv8yOjtN|;=*982fPbVkyuhsILTq-VTGv)ErB(>;yJL)6t471MBMg}~% zglzk>$0ry*q>iVhXFj8;NvOqfr=PON2r3zwWMEsX5z}$}agHl$^45EaT6Z2|WMPIg zh3|qtGD)nfyKPoGzq8vRljJ7|fM-1Q9P{{B(<r9w&k9g+MYv+p*%ay*l1kj<7YH{V z<8FI)t2Y|Phi(3?mE1So0FlA<Vb85`l0&GQr7EnUzu6!G?@9Jq<he-SDj2R<hR0u0 z1t%4?$xWS|z1E*|Z7@d>ZgSWvPDfsM4m#7k*jMHA0LN@}r%iXG>6%&l97;*r0Z>ji zbtLuZJBs9vw|a+Uaj{XrI}cCFqA--TOshT5|I+?5yb=3G_|xF#nQx<bi$#M|l)05; zxu1DuA9NkNf!m%5Jog8hqvF5Y6XIWp^m~mLOtjPVRGrEDO{8*ttII8&jWm)l#s&@$ zXPyTb`DabB);vS0N2lr0OM7!52$7&J<N<&H88`#*0==)m9zF2?0KvF_xAdz|xA?v{ zk|g_VNhOt%5x088NNH|VgM#0?O!Opk#r>Z`EzU4ao}@Dh?mUidME#5XkhG7ECJi?8 z;`XdHpY1C&Yg-AD2?dln`6j!R#17XSGAow~pc2G{9)~`+`#S#49x&AP{{Rd=fu(q^ zJ2JO&TidUnZxhIO$rx!J_shZa6eB1g99QE10K?yo{yy<Pj828)-y7;$9+9ow2`}z! z$|DICHpbsBz=#L{?82z|w&$Aq&db6duz!VYH4RI}el5K5Q_MoLE!5_FjjT&=TXLJ1 zJmrsU<ahb}Mp?^Mx{d47DEe$JV;RLNYi_b<?H;TD00j{Joc{o5@7ebE;FYD$puZ9A zQrg?Ymlse)1a2UnJ;2D)1m5UKMmyY`<YeN%q(As3&+Pa6So|*dg{1si)HDk(?3?sM zBy&p+==A%zz-YpbM4;u)PI{&YJbp5N!71YXoIFV?_|{JcTIv@XiCJJ~w~@6*Z9SO6 zXY&z!s89rS$tt|F?k!)upB?@&{?)$#d`;oMihdiuS^OiYM+`R>6QnZ5Z*u1{L>(ZB z$Y`)*k&ZWvW18`$j#qd*Dz)#v=esH#$yAy0XYKLuhgkiYe`ufhNc=tF+g*3VS9cfs z&D@j9kjtmpT{XO>dsv<~^JTSbVm!4dLUI@os(62enqHlt{95>d9g&gW#7(DbQ?!yZ zgEQLwkN10y6$)9d)lrP(^(MZD{jUBZYoE6V!OL$M&8N@cNc<G{cG|Cq@g3Eh*xxUe zaSW0$3lh97xJkHqa|I+}N}nUrzq9qtV)w?s46n5PR@!Yk%HG^r-9>O7ODX4ljM0|B zXyw`%o)1ySGbm5lxXo&C&GOAON#iJPZmzAZY}9%1NRme7Nnm;C4^U19ed~*`yRq@r z%IY>NDm2nGe`lErIFd2*s;)j@4t{OK9C2K)#+?txy0?b6Xt#HIG<UMa5Ii)|wDKw_ zV4h(fTQDrq<yCUT;ADRhpS73APmNwR{i3x!V^P+11iA3;qj70tBv)4vv@c^Uka>tw zKqHWqVj3`~1P@x@hWIYNX*og?wY!s=@fAEQ6KD3}uW2_nF1mE120VhUpx}K*F~`3- z<c|Jrs6=gN5iSuKm~U(<kQXCyJOQ2#MpuKye<FVjzu>H2w^zdyv9OEBS31>&nIWw8 z*e&%a<x$8E@}k@v9&_h|oO8u}W8ts(FGuY^1FHDD!(JHG5o86~E$(d{(1Val%Qg;n zki)RSQ=E@ZuZ5YU9nw->r#(I~!pVErNAL83<VA|kB?Y-2LZp$#a57c<ayVroxxGf! z?e<A|xa@?Ije@cgasw039D}$3bJrQi<^KSM{{Y~)zXbJLC|}3l4)r}g@D^Ervaf9} zBH9VsSM5J$a@fE*QPlbZeb2+c@Kyf+*gM6RZF{NQ>-rqLgAL}E*DNwdK$6MjjE>pQ zDmcY?b+}_Np`__O4w`xH7H>%(QOk7%Vo3xn<iC{&%zJ|4<!m37KqF}bw|=yO&U=Yg z$eEF6B%y?(FkEL0UDpRcDFZ9pcWU^zRsR5jqkh9NX{~doT<g<G4b$7Kap{g^WI#x` zMv=sOTke&1Sr<I71dgiv{t6-cAb4WN!&ldDHSHy}7!BRDGiej%NVAQ~Vl0?qc~anv zjo8SkmQ9O-=9M-nX1I3!*`Gw&XjhskV#LA}@B5LlBR_PqHr!{To_jC{n%1?FYdd}W znUL)tG*Si!sriK2<xY7_0nQIN`C7~V3L*OgU);wG9xszlk+L@4X%|+}k^wBnMSy}F zafUh0Ijno{_$epsF=b%a7XBu_)E@wtpwVvxha7>KV~q#5&4JdB?94;joBN5DXG4Bu zeUSE0Ufh`^c|nM6MUk*v9)!!aqvvo1n0&zFu5;DL;fSvxX~e3q;07$JV%$bgW4jr~ z6o3!qUx_~#f8ewlEP4i^rThc%we6;(a=uNzp{vgeEDA{7C)s233o%iEjUZ8+oZ}Vw zXX3BhhxVZHZ^Q)njd$X^%S-6hRy4D3Cfx#z0=DOTTd|LvsbT=h;=Z3N;S5z(?<*co zD?g(brl-{3@K=30D_`1f%I?->ni;e!SioQTX7EiqNQ4fDBpi0leqw3C((V~p3<q9M z)OGf&8s5LH__tfT@h^!krM<nqo=b`5mA5>S%EjHu^=3IZ1Msa+4OzuK*_!J<OlN$A z0(PQ;SdhH%25b5QA<F)(goPPvWPW>_V-)2oozLoL{t4ClLSB41{hqWfD^1hm)GjTo z<wY~@8(P(#72AyD5sk}^dm8<M@PGUjU-q8x55v7z;ntLvv0dCn4XwVWS>EE>D6k5J za6=C)n9vff85@H)LHQ-%Z`os3_yzku{4BBYGqtw4uV~jA#-kC#G!tB1nHJoTc=Drk zQ|NPD=GOx*=0`lUlgTHkHTZ86Wy*$QTAPiZGyHX5gFcHS&1X{y2`OEFlO^#kr>=Of zSh(>IiLYnWH4C>gO>uK0OEiw(d7aqhnD=AU);u<m#>Iy<eH5R@muo5Guf2J3X=sj_ zJG-$}HsEv3Piv&=+U}zck)z}^iqc5JHkE{Fjm08UmvguUU#lF2Ah}~DcT{Pr{{Ujj znxVKBGF!69vX&}Ul<-u8oc$|<Im6;A;VM$X&yu4}MpnI_M`O1s#Np`T>D9$Uo(ZPo zdtG)vm9N^;Q77#w<D`yxZWbMO`T-=ncR$(XFqS(;I>vF1*sq<l+P`r=J$}J|4L&1y zlTq=f!~XyhUFo`pp)}WX!>Gh=t)6+<$mJ$dlOQfj9pX%6_Q0>tj}?Byf3!D;E}1Pf zgw>!`3@6j>VVMs&BWtu$WOYBg>G;>(<rwHk3r>w$`_V}^-KDwW=8aUu)Tv2YEw-0r z-rpnSB0%K#t2T*gHQGgaA%-S6cU9h0dhN*1(;~em;?KbU0E?dj_4M$^#t#i@o*KWB zKQ%4&OF8W1X!jM~f@DD=XQReh4`w;9D#!;Tn)bP(<D)#=G5q}~13Xd(Jt;xt3QSBw zGB~fPJ`aA`KeRu<{{RB&-wi$<c!Enk7h20rY{;@IOh(^265Pcm4<$|*;Ifi4UoK=0 z^(CtBxIlVt6?Cwa@e_?2iuY)`b>&aqgR$9P&IXWC8|B)Of$YEjs>0JQ7S{4PpEw7S zI^wi7<F?)y#|4<N<I{kD8pcubg0=eICeIe>#e69qCK{S_o%-MWk6YGa7TTxUEtoa5 z#a&r>T#z>boE`|TyZ#EvXX38{=+~OGc}oZ<(qy<-+Of5x@3vVK;d0Q)ki?AO@m~$; zZE34$@IfIvlwpVfU>=wQ1L{X!^pV(VR;>DLa=3!@Cz`7xta6C+x6D9xw$66s9A}EG z&nx=OBN)3heD)78jVVeK>G~f~>i+<=4wvC=VB1?rv(0HR3bv|WDg0rZAZ{npzO?<E zJW=s`_LlgGYvFH$+7dx`rXya<sa(4hwt_g>)#m;c-pW-0CET0@AUh}KXMubL2EF3@ z4-dvx0ex{CCT>c^9m1C&bqk(=^~P)Z*Zqk+1K|Gvg?|ooZw~lE+ACOYQ6#%@k22!n z^Bj`Q<Cb&41n{Z?t^mb*oF(D?3{`ZiY>yv`IOce2FW7F;_`5vc5xypTK~EWcM4DEb zTSH^^QxdAAQJyVCds(7=&Sc7d^|O%Jz^|0PIC#UrmR>Ts(EK)$&2QmLXeDMY*q2gC z8DofJ?--1jEJkv!4gfj&@Ak_5ptT=_{xa463-~V0)5Xxt`hDEd1_IfJ3aoBG6Hd{x zuyOK4tO&`k$&GU6$4{}3!nO*G%OINa=}A6(nB)RRN-l7j<lw(M`T8Fa_>P?{EOPuR zO4i$DZimV6FAm~rVqRyDZML+(p7MV!75z?j$t1X*INi%Lovg<>BpjAL<edF$)_gZ^ zlX;gD58a>vdSf`kj(<Ax>uYpC^Qhan6&cR}bDaK_>s}j)H2pXW@0ZI{aWLovYtS+G z8De`^^WHY2acAvVYd3UxC&mp>-T0CnG%+H=+9)|7^Z<dMVUMMKSN{M6<c!?>Z@#uu z^Bo>}RFA!w=7Z%P%n8p2rF;{r>USEpqc){;_vdoNdS{^g2Ney5p?{^`MX70$yc5EA zM<i^>>PK~DAcO7=c^HT~lx0f$p1vM_&PrX6?!Vv-#;Y%bEp_cy(QTr?M7db!wh?(T zBy0pqWL$`ufNX=8CoI^&u8+mP7k&u*F|li}iJmmkwC^~XH{D-bLZomAjTnYwy9YS* z0C%t9qhI*B@iWDGM0y8_b?r+2${+&4b9-|<Kn|FWNm&QeZE&XcV&T*(73fhF4?gMz ze7!CZ=GId^N#?)GkLvg0NBk6{_Ds_JSE$c7ie}YX5U~TL*-vvDg<SlT?MPdac@K<| z2`0W^@n8HFKj99UW(R=$6{_FKmD+Fa?d-uB=Xa29U3llA=Z|{+cHP=%FDWIPsV63c z01i!ilz3|nt<9;yJXG2H7vkUeEMLY=LQx-sGz}j_hvp^SZZ!!D9Bm-UCAxw+{sWx! z9s6H~-xj=i@#n&J-xB^H-7V&+aV*y1<B1?dhTY1>ijj-}HxtPxlg~>0KHyjDpX`Tl zQ{bhlvPMC>yHVz@@s@s|WDUa{WD!p_%c#(%y_9Tgg{dh^R(&)Ag6u;#192y|Ys__v z=eRy{3=mtt8+vo=T|C#bPXLTyVSsFR1Ex>&t~Xi?CXj?tv~?bx^P2H!J#KmvS3a)& zgEjk&JNARIL{P>|C^-ZHyQ?W9IRuV5ubjW&yVts|hx>f$+Lo1Y@C`#j&}Tb)=H68A z&l@Y({{Uip@3Vf<I%K%s3bw!o0Bnp8&zzCaSC#(&!G5gWKWv>o>CWSG;SB~-bJq=g zpUrF4$?CtZCEVi7p&m;!@doR}I_=_lS9g=hq@1aC$3DP;SmXv`*yq1L)}#neOw@uF z+l(GM@n4`Mcxp*#hyVbQ>reT%?LBH_w|4~NpyIBLKH-!zqXCXP4Aqk=h|E#hMJZ4R z%1`B8Ew+VoD~zcb^&Ag=asGals}F}}Z;?|6JPv<6^fjF3lQDJIQ-)Zafsu~ijVOWG zg#)d6oL&*UmOShrNzc%JRnc4gJDN*&+7+@@fyu`sj)SMJaac<i1*OVWUsQO9*<=Ui zAD?=+4xaP;pmH&c4o|gx52pMvn&u^A1IN7ONC8fLL2kc?y>|LX!b_`())=7@w?VX% z)2M6=XPox-tY?@)Ivo_~PI{jwri(L-x@-(MCp>eGp1#$w2ZowKx*YS!&JX4FudXNf zNu=pE%X_Oy6^PshZl+j4WBfn7AP=T%+Pn|@F?i?3g4%BgczagYgsgD-R-1dMsp*`( zq%x=-!#UbJ5t`(yokB6@Iw|FKC-AGEpO)SgmDLa~c-yxGk(1m10I!o<*4_-%W|di@ z0zCf!7#%*K*X_rE{{Y~V-?rb2H4zq>@UvUAf<;#s8i=y7gbd)9`$X$1fypJK9SG#{ zUuF0Y{s=MqSL-oJ{{RVf$AvsU60!2w>J#71jDSl+YiNs={vamDOd9g5@lF~l(waNr z!}VpaDg4#J@cR2|?6(Q#V1_C==cZ3V>C(CzFNRmaR#>CowBzI}pQ!$w>-z=xTmJwC z`1oT`3I6~Iuf)kOrV+EccymgM*@*;koBNy7kPZRz^ScKe;C_nyJpTZK0)EPRSxc+` z00nrT#Z#aN@2F}wNddzt++nsha52Cq1xoXQkWF}4jxeIMif_>#g+3hRUi6YbfW`Q0 zZK6PK_42lmf)vei!X)H{`|q?Kc>33Uq5LCVLf$*OLbAm&uad}jMIxSsWB`Wr;Gd;` zr9Z-N_$5!le}#9)Q}}Q2XTn|_x)OPU=`E~dn6M{kc^NLHWx>H-I47Lf+m=7G9=w)B zYI@F<r`zlZ7C7XQAwYArGvy$_`9UKCwmb1u;<?M=r}wj?`x1iQf7jxFmxq9VW50_Z z5wGLZyc6K9e_C_*WU|q3W`GXrZc-1kso?yrAUWe6zi#|K{{Vt9{@gw^wG*#^6T>Y3 z0P4TtA=I?%Eyo+Nw%S|CN6XvE2ZP0bp%vG`kA|8I7gl=z0FF$NKg`j<(I6Q6#3p3q zsKFs~)aNy!;r{>vd=a*{NIWxPeShVSsTI@b9C8SaPY0$k?OYFuaV`6)Bchf|hl;vQ zpT)0${{Z0MZ;LlKHp%fb;wOf@Jtow7t*mVBbyqu+aY$#9O+G!!4<(`_)q7Xko&o;= zf(L%eT5a-Nc*Dm&De)|P2Dh|bKTd^#QaE^^mQXhp4t(vyCj<}x{-o}%bpHSi$cv+R zCUy)8{h?#GDuqhmFpJHRat?A=fDU_B_m^d@z>?}3eukyf4rI)ZJwe|Jlj+GHO5v%T zVx{)~0I$3CJ7I^T1*Ctk#QZe)dH(<ePyL28jV%(x;Vr+49zJ*Yn&$6TUE~~<H*>Nf z1Gqtq;8*C+!|&Mhz#j{A$n^gJhJF+9zl7~#`BE!eOGtt$frLf3iC7LX)HVR`Ur|l) zBf^@Tl3rg&2#!U;j@m3L<aI|amFJ$E@miL@1AGY#LMh^&<#V_!*D?hp_aQKN?av*n zj&iG0S+@RWl9YNM%GdlCXZBS6p*5e19t`-i;NK74_@~3RejbxfySveCWV-td>3GuY zo(PPSfaxG*lt<-|j2NlLf18<Z1)cj@&gpF=WGRYM<;##VLnDPNkA8hXuk|DF-+{a> zqUv$arC332A$3zC2WCGvLRjSTYy8;%0N|$)X}ZVl`SF(K;w5r?W2&A`2rDr{e<i{E zE9i3SlALWWhn0(>o4P((*DY<YErUQdvgOr=aDIoaeSiM|1nJQ=-Ea1Zio?TpH#(Ku zK-SA`X9Sls8Dw;1R#=s`ZU-Q~&__APHSp$@;k!E~65Gin3gavh$iN)`0G@087Qf(* zx<;em{{Z+Vx5GP2v}mrUhWcq33`of}?5`g719N<Y3?74y0HZL(wP+z=s3m%hUdP-P z+E2uI>>`Zb>AG9SkwV2S%$Q_VQ_0)TMh*@E=}=3hc(Ue3vDYu!>Buai(&Rwzw}XX} zJ-?Cq`q!y3kb@K3I4p2M9P{cx{Cd-*wU$Ly^7zOkGN}ZgZvDBh1yYT-JH4w<W6Tr7 zz81E&BU-W4T#uW4!LErb=+QHi$7~O5Rj4EIK9lm=HLbf6O8JT-lNirFXjc5|(qm}Z zmd;Cckl+wN0fG1Dui?c{G%^^mZ)UT%MOR{19-DC0E|$6%3XSzScy6zzfJ<w=<J<C- zKQ2EGF--eS(uNxkIOl`U&~uSjuRK5D`=)rctv1pWk1vt77g7D-%dv)fXZ5ZpRloRQ zqq?*j{mrQ=2#Oh6>@addm5ik9!#y#P$F&lNDRF$;BdU&T)NRuGamG3Nj%w+<)nrrV zMyT1wSDrn8{dMN|UNq6XF{l3kYRz*k#0`><J-S2Y5~YDsC5$o0By2CvF`8^Y5w(?$ z8TGq6eJb8UarTK_ZY5H{DTdr5O8F;@s;)Yoc*(A&+_GBO;XiCIjQ5|j_v~@;YvZN- z%%AXzcsp6tV`T^ZY&MVO0C+hrR4+Yi{C+%NrCaFHjVUB%Z8q8)StQz2H<W=72ab!M zf6BknSN;w-{j9u2;2+pV-{5YIy3$XJx`JuaEYU?AlIa#ZF7Jy+x<^RegjUSkj!d9@ zgo9t_8}Tn(d38yx)rLzJkf}WHJdZ=hJ^Aflr|=F9wJMKhd~XxUr5i2JBzxPKWtM29 zJmdiWnc#Y7+NpoSMRJbBuTg?BaDKHV%&2}rfwLg``)07;Y0f~+eyJ)b`Komr-0JOo zR~#41b#WUq0k;RB&!Ep*+mpt6Y_lT(@v8I4B!YVIILGs^G-T>jbf&80>^`EoD&V0h za~rAXdWiAF0vR?+%3B}|6UKY?<aVsb@kPtAe?Cr5dVlq+m9e$+B~{s-+;h|OuWqsU zTdv&MLvWU8M2M^jM#;#}JXHNc5!}Y6J;m7n)BYTO7yL=nd=D&dHLR+^!IEe&S(E*& z<A8a`LtWp-{{Rzy&t5sw)5IPDg6mAzK?dSBkM|b^zVXQ6TpyUWK5m3(n)%jyJ!8Xi z!Fd~$HxVp|$apH_r%WGl(!SIEpY_T9A>1|3iKDT<xYI(35ZOkz4-fF>VSrEoM$nlY zA9Ls9RB1Pe*F)XGN?40wr2ha9_$c{r!~XyX{wMgRDQ>(q;r&ALC=@fv9khiM5y31* z2Oj?Q^cTV(f!`YZAMrCp)wQn(T-{oRS>6kS6miQJKgA@A5&OBroN>tMU!`6+@W;eW zYeb(>_*JdlSZnqQ^2Hhg>v95ZFf>x-2^|E5cQ0ZA#e5IpkK5nl*Ms#((LN!C)@|)( zUDh{HMFF>Xiw0FxjZSlbM4PdU<0m!dVY7PpxJ%fj>8;OBSyc=rSjx1YuS5Du_zQpG zO*2>1ul2n~D?2wwxs0HhkJ@fF#;G%e3A=A9idk`ja6110QQxzz$A-Qs{1dwPE8=}w z_01CU$s;nnNVjo7r{uWvS)+_c8}xYj{^;vp!I!|__$e2Syla1BVc;)?*P8yPZFO%X z(nEU71*m4(zD9xq>Wl#Zw%wy3WSaen{gymM{{RI~_@(i3Ujz7V_8$XjR@N69acL#7 z)HM4+cOu+b$}l9n*%|{GQyDFi2tauF+W9qjR8x~tYr8(amO7PaS`S0@bHZAG#n0JC z#eOOMmNjWDKeD`C8(7{&BnbAmmbWg@t=u_2K)50D;!J=*3~`M7MdHu+Hb3H5h310q z;Gf3`?C&E~j%L@aRpb~#4$F-!*~$)fftGBHocjL3{>Z=ZPK&Eg6kmAz_OJ02-x02E z?asxuw7asm4-QCFN#~MBk09)gL~*Id1d(5z-|$#3_$ar>583Bd(yu>c-y6%|9|kyG zGHXMn+pYD!pqVVDYrA`;RAk1`z-9Oh%tF`F;jzD1pDin2uV#4IoII7??7su!J$L>I zEB^om$@nNFli@bGW#gMWNcSUYUL^A_Wyd=b(_FV?Mkj?&wC%?w#~^<z{{Xi4fc_?Y zAN`>GQ{i8X`VG#3;@fRe-&@me{FR>G>Ug5LWoEW{AUnjXFflVG9ANbW^gH6G{1ub- zi};78PiOHD;{O1QwR0MP!qZaJEQu$se!=!A`RYJWG1~_f`IY-Y{6y2fBEFmAIOe;S zZARY{O?@lePb7-_H%Rh4j>PR8vlEWKmHMBDxOu|7xt8es?~E-fag?3){<|L_YL;Pd z<Y-P&+ju_B&;J0fs-!I!fAVW;=F(Wojlht&`4p(*)N##c$r~Z(r}^z)txF7+sQH?8 z`IW9_NQFjo#a5Gd9A}!)pB`8qo$8SRu(jmkY3kBDX-xMo*{ebD=ZL;BX<BECV@Wjf zC25h))o_uLs@UoaV<Vv%2ZLX#UmCn4;J=EW4=!{aTn85HjcsuN1+64MBDfglGk~m| zZeK%!KPLVV>e_FD^{@C%b%_jC_Uh3t5V>cNV*y7$cR3*OoY&|_!jFo68u9d6o}1xI zvo*rosg@Urhw@qQ<Odw{jFtPj9F8mV9xYWNh>f;O^F55Q!gpUI@~6fA5%CYh{{Ru( zcyGiom@aMG8C>mUKXuUYlwr!B!1Itf_=q_59V_)u_Mq@4nd4ssUTer5wM`%kfi%RI zcocr|7aqrU4<9eBepfs`RD}<(7_OX;o^Vwb!HcEIK2qG#DyU`ol!4D92h$`0`BN1* z&tclNEN$buwU#z0n+E;tGC&=NAPk>hYR(8_lgnd}4^iLT8vATD1?>~I=a}cvxo?y5 zbO-s@?U(!!xAu7WQ}I*c&Hn(8{wPUrdmo29r?S&#h3Af2qIZd=8w_D$+P+ri$$iAG z05$m+@V?XG&F6~YgW{F-?w_OWW_fI2ONm1+HjR=HyH7bdKT7_Q{{Un8e`Os<Qq!$| z5&V16G;6DQ#0{lu8h`dPT_a&3jyWaRuHBh_Vp|(Z<Y)9;p9u-cbFC5ayj6;+8cv-w z_3D$;=WWl}58FRUd+jH}9xAsvjD5P#w#GS%P*)vuf_UsYSHaAzzb-lYSLzqWF9~S& zp8+E9?e+fv_K~yH?WKgrA;fI)y0}&yiV}LBE8$DO1QgvammrsKK2*Fn&@kZR+z+jO z0pi^V(a$P1_LN`YZ_xT*4{;88R3rSYug3oXspSa_=jK!-8iMmo*RC8cn<Oy;IWnU$ z&V7ggV!QjD9{$fQEE2{Cs**o7;<K0|WDGV3AxQl3Uz)1DkF;s`I2n8=;+v$|bFK*e zRtSpYKH-7=X|{h3G<3Na8l~L2gq&c^%m;JRCqId<_z24dS6;a4GyZ*Pvs$3}C17#x zJN-=#zeZ%rHa-;a<&Vu3j0-1C;x*hk>zq}Y^o<hYMYOzyUN#}rGJ>R!OpH~i<uHxA zw*%7$Kb2aJR+&7zh?^P6C<(`*9CfWDC(yes&&413DxI6_KM=e+zH_*>&^E7{?;+dv zrcjDmj@27R)f^6h3jC(O(O=Dq-s06nPYg{PFd1bl!(;*1uUh?J{{VuR8IQ$(586tf zB)T$|Aaljb;~D%#etlnfY71#%5zQp+BoQ%+Mnb5}na2Yoj)3!D(%d72r!2CEI=-K) zKQPa8Ia0;cjsF0x4;7Qbka+;SJ2!4%<0Bv(V0OSh)z3-ctO7x7o|wVteJkJXtkOGZ zpt)SB-GPi}j@|GDbN9M*DK5x<T#hr_Bd;B+*u>;`S*>ZW$n&uLMO8aCc%tYI#}P@# zLUy0=tM*<Vx`N_6qU!6(AZH_vG6=5b3k7Y>a0c!`9gn~D?OG6NPb#V)<l#X*Gx^s( z8-}oIYH*F3*LHe!bLphhXO`<AeXK;PRaFK$oaen)u~^K)DHkf-W8S`x@fU_PEptP* zy|Nx!gz}ZT>~-oGdy&tf>F?xr{t>%ZGCKtb0|Igb4`Yt~k3(B!n3_1L%A{VY?0Qqh zDpb^JX`$2jZ%(+g(arM$W8P4bM+Hw$T;Td*yUT4pIpH%BT%7GA916SPof69P!t+~8 z5EDO}wo*?~vm6d~^y3tGekrum{hxk;We!Nm7-a2(>0b3Et4pEqnS|V=>Zhrr;7ON9 z@phemD{UzzH+ND&3UT!!zpcN6BN{%FG)c6{6i<La0i*$s82<4%75t6c!?N|t^aY$A zojD)SSM?S99sEtwJbU4N3U-tQjN8KPDZn9>aC80KWCNbP>+U#0x{YgfJ~N1*=TDm2 zBlG+I3w_{?E5kl6@P~{v-6GZ<LtBRW*6&qCWxJ8I*8(UD2M8mQDcrxwy}Y#>wu~RZ zdvPOzqyV52#g8}~_4TjmOa2SVeWp)o@Z&%e#%_(~t$83;+(cqHpvXNohLJ{jujfj` zPixzO<f52R;mP};4naJQym9rf$UID?8adV?n%e37+*5yv`hNsYbuzjVdb>Ztw28F+ zBkfmVWEr%K2YDCnvW|9-a(MRZQhZ3&rO`Ae(p@~Oy;O-9WUC|~=NKQt+zcMP@m&eJ z)9r0#n(AR4y|iXvN_BE_+j|VL`3EPCJ-&1CF28r;O;z<Pz5xMaOp*~7?x@eFQ|d`Q z>+?FZl%-?uDN>AMp@ok0n90beZNTQ90CR!XixxyPo@!iYuX>#!Zlmc|63%&81X4*q z=QY(r7eqRUrG_2)&~uZT*Ih34utF2hVOlVFdi~o44hLQj^2a}gbbBP0tj<+Y%kAxx zU#b59vVN;;seB`kO0$^_)|-1VxQjS+N!UpnZ9PK(z!BUL)K}+?r-QC8vD5?ihy>#u zYxEoTaPYOZi}22CyCm}N?{24ChdE-&3vG#hiU~OBl6#u+Gx<T%-&3;zHs@r04<wdt zy&hyza;N41{{WxsSQ>|v>{b_2xXuY3aoUvlZ&a2s_It=w=K)$a=O66?anC&~k<_$b z5oz}<jXWhgFa#C^bB|tY<f(6?J*Lll{hWMVrTjAZv0>vs6C*8+u3AGJeqm9-;YU-* z;~htC{zv}+1&#QvqI`4xtrA}j>Dq;d{3AXe()1g&)SwVb*Kiw)$09w<%BvOJW9Gva z<vj<^KSJbokfcAA-Iu>6af7{0Xc0+r_VNBe0VDP_(wtY`$@_NUh_I?q;~|WSlUJ z<U_Y5o9aLKD_`uj@pJa5{iysc<6ngT01a-hukXA#ZM84>N3_}QQb{cCg4?y#(2rxv zA$Cym%8pY20;`qR1C5P5Qgt*-t;dPMI+T)v)c#7Xycv2_dC)i@_X8&*^~NiH)4;lw z%q=KFfj0~gN%?y5{zf`xzn~8T{{X=ce{ate#4qOfc@KqzYy(N+O;X2CMU93_D7TXN z+tUUxeLXAhFNQzxZr8^xYD-&>9QfPAdOOOI`PRC1mF}*7X6lza>|@3`1jo)R*{{X; zXg`YnhYda*t1pRI{!p~<hBp!`MGD{+`=lK6gP&~rb*}49_(!YAs|BsJ!Jo4!+D0>; zhw|&~U)*=YPxv<v;dYyIH~b|!zl=Oj1ivqp9CmtKMCUBw;kRkJe4`R)01(BqUv+#x z{{Vs!e#o8|v5wvT5vHu4eg6RAD%37DLAZ1e_PN?K$j{3e7~=qn@v%H(O8(+(?x({m zc}*ky>5s!JJv!nmT}o?vONkHe<Ca88Bqxj_vjWE?008e_K==>#IrzQt2T_Mh@K=L% z?P^Je=w8Q2zM3Z)=l9D8kO=F`oQ#}fn*RVypNIbdu%E%Ng4WW-;Y}C99u9<^#w{|! z2;Ezj`^tf_f_=?;?Z<%r7}+Y%tN5-aSV9E0NaW<G>I2CcEzWu9J-Dwjrx?|@xevXa zu*oPWsNKJp`~&>&J{^C-8NY7-02e2pFT)#+9t8lr`qk#2WSet<a4uz-elZVxSJ&PU z{{Vsme0iS5KjAs?kA!?Bbgi;j$J;f6an(?w*eO3oJ9*=|{?(%Jzr%<%gL$Ie-(IA6 zJ0sI0U>64<7H4ddcLK*BQ_XsoiK}0EKWEW=9cu8#yc?TX;y5FcOE@`fWc;HYE6T0J zxT!rFUWcI!o`P4559I6Nzx*4;;Tzl!6!_~|)EzvwbkQ`sTU9HP-EWP_P)0WeB<&*% z2(Qqug}?AYAK7Qa&mG;zfiFB$ETKe)#Cn|5z{*Mc_F;qrBkyfNp55#Bz7G}rP5YWo zfuPy>c?r3TvE#5&g~!+Ot0w;d<36*9<kzkA^amtcTc{)h%7V;$dVW>KTQ$T_NmPH4 z(N2Z7ibuvj2|wVL-wJ*dM3HzGz`hXhqyy&LVWrzC8R`~85Fti7dXvwu($W6TULMe` zmJbnluHMQmvKL5#L>(l?Lx*6D00SQ&$G-%1*Iod7v<>2YZua>{0Ly(eTeosJh(<eB zAN(oL3&D3Lp{2!r9FCjZ$8u$jj(_Kk%FPxr*9tTE*DRDCuI2L1+RN@==3%FVzh*xV zOjv5uY7=>bD{m~5o!M+{5bh_b2j(Z#oC@hQ{a@i$j>~W0j{@H6EdavE_Tdm<lfz8M z86=*V=bGKJ(=N2x<V$OdcU*jncV>eh?#XUqBrklaJn>c&#k1SaZEmb1nUI6J)?{&# z2S}y}!<>QhbL&*OUX~N1=FJ;#9DG%11ilvVzMZA3{n2$dDi3m&;PdNK-haZ{*DQ(F zukEa)aniyG91c2Wa-$=jNc<}r&*Gi1{{T+7Tg^T=0cJNA?Ggd&<|8^4^}`Q()3Nxc zXW~{8X<CJy!2{-4Boeq8z$H|(Wc@f5ZhmG_!>G#fL_<frxsjo}xV&}T7$=w`QS#uZ z2ssCy4t~4}$-VFwfv@gM-f1v1HVNJuL6OkyW-FgwIj*Aa-|Z?z(KrL{<FCFB3CE{e zr5%gf+z9Pa1DrV}O73IVAfA4?tBXx+Y}r>zwu4S{Yj3B)YYc1zMIu0?5!7KpQ<6X* z(AP&DyT%K7rd}{ZrtU{@0UVlsqT02Ei#E$>Lauzt(8n3|{p5!O@g}}n@xSeX`!RS1 z@vS~1d{pqZm2jLjsMTPaMPZT5aqoQNx8Yqeg;{9`xAHlqC@+bhRIRWvgDi(=9n|nW zJ#qNen|u2L88=(W<s34W1g>#_K|hs#OnAfo3p4u({5q0Y?0iS6_=;r&2=v`5Wmyhz zLQQrp;=$~9V2b!(;y?TxL*YAXc|YM-d@hpbfH&&b-ayWAksYK{0y=T$4*b`CA1cLE zx4LrA8%8=dkLarNL-4xEE2W>=WM<sW12wT?dE6Q@xd*w&KJ^+nk#}hNz3ftv^2aBa zaz2=nHf(k1!oQDC9{&Krc>e%wFBe^zJRfhN_-AxxD89>SB+jZxZXWL9WM|_6j2Rz8 ziuhmRH~bZ+_U!R0-`Hy37Bw4K3}t3mTE@;rNj_hh?X94aJde8D)wB0VuHW^45xkm4 zamUk^k<|V9{{VuV{{X>qJ~#frU$kTX&wc{%PlkL&C6<q-YO-oNt=-L(f=xi&e(c*r z9J^LOAbjP9^5g)!dHyi|DEvh6r^f#Piry#qzv4;K=T`AvuY0TAn6`-g+sWQ$iY3q7 zk8q6v%WP4&vt*u*_rQKR_|@VmF4o6d@g}Ky;pDlB3yayEoRvc)?dKiLepNCyTNni5 zzL4-2{1OB9()fX@Lu;h?D(}N^x~!>puU%W|keKoVGRG{dAu0~-jH$Q`sV2Qzbg9vb zzKrLo%{>x4+xA!eoF)CG{vus?H^g5Myfg61&eGK`Wz~FDGeZNbN+S?k$G$H*;DE<y zkwPfk++ZK?TlQ%Ep?_uHg8u*sd^_+yZ;PG~)SE)K*}l_NwvuU-xn^jst>l_lBX$7q z?O)8EkN*G$<o?kzc#hY@*Z%+-d^pxjnKv@%TB0a&H!4HE;z(slM@db@K~Gg~mG>9y zxBmbHMDTxrb)(}y9(+rm#a9|jM=idUqSy-<iiQgynp-=KLRoe=;ZQ=mf7S-Cn#^j( zthwWNW7EOHF^f`mKcjK+ehcfNW2R|Ztk6k@iKc6K3xYQSk<U6x+;j4;0R9!3aq&OI zh6!6sw6cmQWLUwPTc_mbXx-&S5N-+PO}t>Z$gd&$9C}rSkhL*@g!%0Z>jq>%tF_iC z<9*J9hA}xf!NI54-RTLaHNBF_Ev@MCyvNVVk{qjViERkl#0FKBm>xG*jY^$YbEZ|P z-$T}{JYC}%Eg;t~XS19Fz{RI56FiNAPT}UeCOFBCSr`-dO?if`<B4@Uw$l7ds^3K{ zYUnihFQrMzaJ)(-L}0l&43^m)m}0KQVW(Z_SDqigjb@(GQ!kQ#e<GA1NQZP+#v*?3 zRhM}^z^HXupw#W`=CO+I=J!ks8%8B|k~rArGEuH&Sd@XZvs;%WXN+RHDbSp^W`9{r zWLUZyjkIa@$>g@QGAwHzn6EVM1c0cP`bNUGcq-Q_Kk1)p&lWa%b);Hyz`9q=uC|sy z-e0=9xhKsrnB(N|QXztW)(*86sjO)J8P-!={?4@1V!u*MGD{Vtt{>!>EJ`e<8&4uf zEZx*{D;CdHUkPcqej8iaXVb27up4NnV3RX`?4+8FywSLmIB6PSssP|*nyFwU_GaH- zR<lQH%WG$-omT22rCkOC?EtmztiTx84>*%-cpobx$av4min$CkS$KvmYRTo&E@Y8& z8)p9iP`WZRl2+daBv&{gk^~@(@4>G;)4XqIbpu6Vd=94(V20Sc-8fJ;$K_ega<WJc zNX$WY^;`<@pW7ey((s?`LHjcJr}mfD(pc^^yLPkFbeUs{)wK;`c-!nY;51OVXK&uk zB1Fp!O7cF{LPXQc>bWSPOB)n_9G~!C{{Y(4O#PxiZTtTKhu#pD=4}JvTrc6MCAyui zCAid#i8ik%m|gxvnmBD$H#e6hys9yr59Wu*my%p~ihblWmS#BnyMKrDuWi=+cd2W4 zS3V`x?;i73)Mk?A^7X#-*EbRwX1O4avq;Y)alvC=1>*uGFwE>3_BQMh&Q5<y{(|A` zzv|Q@PTe&>FV8Wa+Y@e!V~BZvU)`M41FlFu{i%hCIpeQtkw_lDhkE)>W1U9Bfxy7Q z&$U{%v}p)G!cNe0&V3I`t`YVYBkR-r;=NZv@R*-chC8jT92j}pR@oA+H#S%TNL2-o z7{ECoQ%)&fPh%>zHj3(fDf=A$${!JbYOjrc82A_P#3SpTB)&^kmBKt0ah<<uyto8_ zu-Qc3e4B_?3M0<>5Fhl~_;LRL1jqjXf>rnn;pT(jX*>g}>rJBR*0u*wp3e2<yEf3Q zUVMz8hIw}HVmKt4_+$PEGyebt?9e}CKiQK^{h_==;rn^MD11fJqP&*tP#Xq`qs_K^ zOBgLsJidI3wrjE!nItP7@{yvi?j^^I^pCVZnd8@uw;ZC|g;hD|6^LL5U_c|dufuqw ziR;wFwME$@?{b`~ohn}T?ElpMDgGxzCyR7_a{AiYHs~6x&@9WfGYb5>cKtv-Fb7UX zE6)B1d_eyIg>B>8eQxE7+RP2S_$P?ikC@}AQUS+&S9|b~K)(w-Uw?2Fmepfs8TtNX zWn3?&c+Gs?E#0iza6i>BRyi2wr@vnHH7F^<ROPch8P}903envDioP89<4N&#g|4A* zsoT#4vZKc=D0eiBcJ1E3!UrXLn)vhf`~8^W(=D6hSAlfNV`C|8S~!*Vs*ubsO1RuI zK-@>J<Ht4e55a#6d^Pdyym}XiJV@RW)*zS6hU!^%TS$ZEXJ&G$k|@YrI_KQi+czJw zFUPMJK;9Ve_r$@g=@UZg#%sH#f<<gG4HR!F0Ioj%bLa*!@f0vIz+#mBt-IYjHR^qI z@p8vu`5Z6k){o|V1@L#`XN&$2_?>)X;Jtor4^X#XHaQ?eF6T^?MvcLZx#SrE3V8!2 zzf*r?pZF*b?V0f><IFx4o8rayg=FzU{hI0Q<Fd8$$X%$5=333V;n<CVR1?n939iD| z_7MG&{s{ak@ZIO_LE<&D)x1#;+MvDrY|+}rVJYTYm9~Mlvu-;)@0_VDFc*wZ8F-ui z30?525BN>~4Ow36ek#+XPqA3VeW@E`HsE~OZX_QpaEviAhb-JLAmiw<Iffq=pR%Ug zdM9h1ZXXL@4Q_d)maSh?`)2){{{U*=hM%%8z<Z5D#GWR;)Z@~;m~9^Z?S<~Cd>3uP zqFuaRREBf&2T&LgLBSRH{rh5kLWB0#{gS>Xc#Gm?&7O&Qb#HO28SY2!EiY~HBxW}9 zenm_G7#3tF<vHfR13Vw`ui{Vb5v<!=_`h1W)|Nwd(Oa@#TEn*B3@Efx@iMZb5h3~5 zkDGbRSGoANz@HYE_C)cwg+3Zv&$25e)O9HBBWaWS7bzXp!<RB7Hr`e~brJ34?#=~c zl;lytMbw-3nb(cS&lM#IBk&hg6C1WjL62)3lprsl0FJ}8dL{OScOHY`$ej6+&up@S z0B}6%SddP7gVc2g>s@<%3h`5xYq{fx4ZVVfclHMuT!GgI71!M8GI(=E(kwMeJjf!8 z%Mvi!%OW{A191v5j&on9a2;B5#ki-fpXh#h#uVy8imJQ*jPXAhS{pmow_vJOitsUz zFagK)?_3?g!ia`>>*?)XKC5=ulSdrk{K37xY?Fx_IS13yxto)M6}dju`kb^@K3f3> zqN5^{tFPSXdF1-l0*&YF9M+g(%tLT{=e8=vrIOxVM-)X&j>@W-B(oF19lu)Tl?5hx zv8&3R#`uP7rPFlnDo^!FjWG9V7>xVi3<~-m_C@fO_M_vAuNgyeBoOG3jq$<@G_7>5 zii83FuL{iE9zu+F9tq>SWwr5L-kyvZEZ@ikbix6iJAB#WwSAxa6(`yBPZC`M6v=UD zneKM1gb!chCchfu3f%STNj)!bxb`wwd$4VJ{raBy;!8<|jPXr>GDUE$69;lstBf3i zcmN;s#ePz1x@5Xup>v_$pWfO?>5w=jPBIVoSaLrK{fhAd+fJWkkS=l1b<Q~F@c#fB z{O|pwJToSl;>dheX%^Tu2*7sh`}qD=+&RYO#yxOryMu8n+RB64M}BWf={ui4X{8{& ziKcTJ1_9YdNK$ae2aX0!Z0q_7(r(+yNkzU$jLHV)1Ha4i;POU0el>?2r+99d<KDU( zyS+<T)1w016th6GIt&&Iz%m~Eecpg`U#P;5D@|;C)k({lSnhrc_><u;g*;YuAB)}@ zy75Mr<?Z_|rl$H_ira_ICP-y1$M6uK{{VPb?~m+j@o)A3@t2Bi{2TCJz&cNYd_#Uj zOQ`s|=lfb>&I*N&dD+ZlumMbaMo8nFSMzj`?{G3byZ#mTU&5c*C-%1Zli?dri9ZT_ zEZ!l}ZnjAk=AU_EA_LT`B$K45>P8t_FhLdXU@At9RW%M~{I1UjJ)s(u?CNsATQAK1 zt$*O9UNHEp@VE9K)Vxpd&cpjNS@6Z~nRxR;rs@-FBo@~bsZ3@xSpzX70GT9=9Dglw zf5BP5Y-=e<msYW6Qb7`F(Hvuf2rc~U`ilLF{2BX5_&?$O&%$roHuld~(e=Aotzpyd zKYZ~;bd0YXmdIowuvd^fcCX>f;xB}CPXTz>Q}9l;wB6|!Q`k&UVN2P{*6eZaV<x^Q z#f+*F#8Sq%{7TxboPXiWJU+)IN_bT6;_s)Q{4+m8-~I~m`(TWi^$jgE!N!*lPfxyU zozy?ztY5Z$?YOsxU$M6eFbsN4jz&M<jqCG+80+4Uiu{l2l&|owxcw8_KIh-9{{RI+ z{kG&lvv|~>_jKJUdU|5dilsOF6vOt)oMKNJ-HzWazMh}@4VbTk`tU_A16GQR7uglr z_KolS6hrpJzZh>G>dBw(Gzfn*foqk&{kVT?jY&#R@e^K9c=<0{Kg(cW>0c|5Ito8b z)kd6GL0tO>MDe$c{vv4By6?m-X8T;dmRpFH<50Pl=2eb8hhTYGil{6|P(bAI&0N*3 zZ{fYSxSG$%-xO^dmLy7|F~|g-I`rs!QShe0Z#)B{v`7OBi}h!~^^A=F0G~?hJV5Bv z#r}&uysHd*q?SO@%0y~6#F;xoA92&Ae?V~iwhD^=>OUXNS2ilEec$GCGooHYvA82H zKLBz+&wN)as2~9D#@)HVKGoPuFp%V^{{VOsgY~TaRtTa51=!gH4th7Y)0*~=9+d3P z4hY4`A1PilgOQBabKy-E-tObhy?u}_=^csNwIfnV&Uoh>_V?*r<*YAvapgtS1Cjo7 z*Y&SY)pVPUE5LI>WdXUpy+pE!007A)!vVE((`W>ePpPbNQ*og=F3j{5UTV;Xc8vW} z-8>|dJ&Xoh6B6J%77Z?bPELOJM;v1r@5d3OY91r;RqfS|pucOliNi_INCW5Y_hnY& zXJAG;S8c9o&7|Af_-x#Lv->x8={Z%BQhsB%(LU;v$sG5uF|o0@wedq<WtCqHUNCcw z-!{@QgZS5zk>u+KN8k9K=d+H^A&cgZM6^9O!<LuYZkFZLls7U)*<L|70e25^-nu5V zwY`j6T>-dsJRPK-PhaI;%&Dd6{tAmszA=mW0=>fp!;_uN3lIV485un@UT1N8rQ1xn zw=!gBxX(Q|b;t7hSF->sLDas7o04*|^SGCGn>ePlSXqGRGmq)beuMtOzY?VIRp*Id z*5sONIBb^UD@7wODlrM=?%Dxtka9xcWZ-1i$XZ5^ABf#;tu6R-^I&9vypnqK_4TbU zk9XP^!S4Yl!&_-yFA!_(6~*j89k$wY5<*JAXUw{8On<`)ox|o(O8M8+;Oi~Xcx<Xz zm+ZU$09Q4CZqM2SOZ}q0E<vg2cWX9@qFN0)+EzIZ+l;p|rg4-qghXzQ<?a~_3Hb_5 zQrN}zXh64xHxi@;;2g6#C!xn5t$EBh*LU|mUAAs681S(#nECVyGhLpY@T=l~i;DjM z#J1uqW*OZe#(mF2pIqP%!oMfXvk79WOA%S#Qg>(Rxqb;zry4ZXqLq(1@h-ml<<Hse zGA+>L`nv&*$J-nzJwF~f$ZV%!l^Mqs^<RZQX6;*C)SpMUlwRJ(xsuM!TI%6g^a2<I z%1Ipt)1Jb=M7|P#!6bic-yYi9YMu=EVd5*xOR$?RuAqlbg+a+(<58N{LNSw%Ec*2o z<l=J-H7#c~e^cmbWq66Nb~g1t7p=TGd2p+-cW=Pp5rTUf>~#MChnltHZCiE=z}!I# zpJH*J!;1c#ejEP)!2y43ZEhC5@hm<V@ZFhniDuNLy|`WgKj_wW>>G}M*L2S!zUTOT z{{RN;+NGf%6Fwr`#@mx;_AZ7klmpO-H7Raalh^lrsq9E2!NqZQ8Vd1ue|g^y8Ljr^ z{eCC$xnc04^t5tHfj}55&Pi|L1Ot!4y$??KFLubUC7T75{{XCz5}<#*zykoDNzXO? z)p#@h2tE4|cyc|SHN5c$iS8m*%iL=1VH=hJ6Xj^)*x<0>93G>lbM{Yw{{Y~dfACK) zhu4d*cyHmiht2)5&)RNuQFlIK7&*DTk)I@Trvo|q*N<C`Q-17O+_-WU_oetB=X>FA zgiqpIvti*qn#AyowZ4=Z_H{YO5L>LSdE)^|&lUCm0K>2NCYSAF@fB9<!JiELS$!K0 zkEL8#AuFDDU#+t8dt`c^Ij{6n(7YqzuMBCC$Kh=f%D}GHPb96hSaXHiEyAlD05~V{ zuJ1<Cwe4`d#4^G5cXG4E6l%=lJe;zf-h|}zKD>D~IJ&*P*stsEJqmd>1oc0K4+ek1 z1;1}k6k8^x7lkz4Ffk?L)-{-5ILAM`vWobU2;^iBt$Ba#3Huy)`}QXBK9BHo;!Xaa zd8l0J$*mKnd97}VcQmLX4KP-bl*Dqt1vwl72(R=kUx)gXsUdsor$){;OCm8qLaxw< zZa~gP(oKIOKk#0k2t(lS+b=`5g&8An2kE3KPzYgjdO8og#y(Mu5tEW>VKbaXdGb|y z4!&DP5psgnABT500TYzj)03ZXexCe_<orQ(3p8M0fyr#=o;dugrPb!N+aDSEv7Y31 z;QE^7wH-cNxs0(!+f_k3M;sh={*~*eZBHql-}^922mCJG21{8AD3O@wBkqh91P=X1 zeJlIi{ez?MABlbsUk@5;A7y)6-!3>qxMtr9vXxa}8=Q=7V}a>kz+dd$6rb?9baf=6 znTb4r1_37^bUau0hyMTs?eRa@J`wBB8UoLGY|9`6a)TB#o=6;a2b%FSzj>y5SQT^Z z-A_{0{28gi4}knRr|Xs`Bj!&X#5T83?qP;#bqjV`7dxBfl?cW*n(91Z@e|`4$7?5p z;jpz!c*4sRcIzv%fxBkaXGK;R7(#jFPp3V7;+r|Hn*Q!NRX`zd*(Y!%SPn7Q7y~^= zTIa9)Nw34^Ute4`pO}%AlX*E{aDhYa+t-j(oOa+>&B?uy>hi;}?VcIc{wM1;!1#y8 zR+d8Li^FehrrJeU{tdS=`G*HM<#F4N2JGJrMf6~JkHs2{%D`|X0a%aX#&(i>p7rwn zp?PPks#@yaOoB$-%n09{eA$^uIPb#){_SFE$i5zdZG0<vab`rg32kypXFPuCzE#`^ z;5On%dTFkvuxTqrTjYI{r~EniU1Fd~H1jec2Yk6*ht*eNk<VU5bsB$%{vPQd$)`mT zbs63x4BJO?4u7S5du!rviT4ODygx0zr5^Q+$EdV1$eXxeu8OWm>9y2$=e>2Yd_dL8 z`MQ>v?=jkQVInrwVpr!$85vk(mE?XL)mdNNMKt@LQ$Dw$Lm60$w!{Q%9Y%A)kLoe* zDhTy`1=Gy8OtS!Rs>;OUr*3oCo-4x7h%}K1)b&YavxS>1W{Hz#(Ut_J<sCD-C2`Ji zTUu7NYp+-hPs4hhz3qgG878-tCRY#0AdIg)h&=W+eAgE*nd#SB+zvtVBiz^@H&6!$ zp8lM56hDY2xMvWdSiW43EOMPd1Y@VC`952#c!x;RV|3TGJ4<gYDJyp@G4(z7lYo11 z*MVHtzwv+J&Vr$?FB*NQ3rTHnGpg<!A2DMox3O*52LR(V;|DE~6KeK7g6~p_S;QoU za8-<Bmd0|YrVc&-07}f4P`!<sR!R2c;lmsPJ+a5vr&{^q{{Z%e)00bsTF^8-M^d+y z8hB^6RA^p2;IKB|Xm(w|kC7PXrf_kKar;1cs$Fq>9ciXm#XQogN9Ern*GU_5x@%cp z-S&~mSogRY02=A~wAhtYmZ#E}0zF1AGT{uwF<G5tQHDGKV{e=C>(o|@Sio)LYo!=K zSh~c>N+(cA=L4>B>0cS^9~Ax}T<VuT8Sw_CXQLZidG9>oZ7!cFNCsEST~0r;I)TGT zE-*Oxab7uZsQA~%8dd(G;w@VH#FipEWwi+-t;mtsw2p54J0-xDJOCHUiWW|H?o(GB z6Y5LFK>ZukQ^Qcox3}|KK*|`aG|Ho&y4${1Tn={RSDI^o7XA|2httNPr)s){5&5y( z%{8=hTsc<Sk@>}OxUSre27RmI<6&v3cv9Ny#1Puu-7W0WTP^H%x}=H11u;#mNn;{~ zIotvnfzDZpTIzg5;Ex?ycml>7JD`?!_7Mq+>J0I-2{XU!4`X*0!cG^@y7O>2egjtV z!NF@LVLVG}$sZK{(Ek9p$NUrr;Vic|IuF2?@SdJx5*zk=-D)O8Lgl>cQys8mT#^@d z2M0Wg_y@<ox9|KF&&RqXdWMp|E3wmVAqg4quZATN%oqj)Noi?yKK4_el0`T<09W)Y zWAL}fXW|TgEYUQhJV`T3(%8o&8~oVFR%W}@-7Z;4$@@j3s-9G23QZrt`pg=}tD|_v z?jd=pT5U&~@y+fced-<bTTMPm)fnZYX+o)Q^`kjH<{vSmOGQn8UwP$Kqd6bOPQ8Eo zPW)`uMwzeLc+bRIoy?L(EcI(`Ug~2cBpFaacAjFqV1puT41j{b0yAqv{g3|uYyE#w z{>0M$9P4O9BC_218f<FB;~2l5*l<tq=hGP=AMAe1z&gH(q)#7;<kY9TTav@=aazf2 zW05iQTx+KGWsiVDBa#muW_TP<wW!_co)5J*iyfAqZE9l7cY345@xV?S$+Af-k~|-j zxNM)|>^-mbk;OF#qm$|j?KXckJ`4W<f=hnc+U3(ht?Bw-gxYqHM-HudG!sf<UBr!+ zlUkM9GF;sZe|J0&r#>Bj!4#wM9*o+jkNzb+-;*RSCAWvP<)8O5Wm#gmwVPElNQ^RH z?5dz1QykasOd9_Hgzda(Wh=_RYP-FFi6gYIfu-}2ytVn{mhXT@(>g!0<bpSCVv5gL z)+g5@6C2ApAbBsI>uB;=NfCFIY>}f}oJZ$uUZV!No_&a#(c9z^%jvC8%$*DV2|4>3 z_#;Gv#0#Noeki?1xU`iuZAoN>=ZhH1MRTLdjf3|fft+XOLPtMwcq`#o?CtQfeG|jF z7l8B~H%qo?CAWaVZ6jN?zyW|48gzRbdz{9X?K@{1OB`3G>67U`C(tzr?1Iixcro@B zOUG!WP_D`XYTIH`FcTp&#~ICH>*GVV@UETYUqNRCOD&vmU(GxW1P_Hog)eLo5m;l( zTUI#Z8*^TEBCO`GCfU-dsJkQ5zqE&htuK5%avMdoSSEzV#yd+`j3heYUR_SsFPG&E zQDiv6q30Y9lXY>c_*&;e_<gBcT}>75o)Q(B@Oe`XNnIvu6<}l^>t>8#^g;zw)buSw zNWRlNX`$N34YZP5-OY7tZv-JXfRkou>~|`L$>R0c0hLltD#J|n9w8nJ@usGi`gWz~ zTJFAoG?@VNqA&K_twB^|V|1}cgTO{+0=Z=qO^z?cekAdpnWI6jc!NuVZA?JX+}Yb* z>2~*%%V@-}kshUO4b;w54b0QWllL+(Pqf=emzvGDiLI`$n#%BQl`pI>t|D0OlO9-- z`e`j)mG*#%97&!?AOLtz2w1~!d#!j^$hEU)jyt&HiKMq_)-q$9FWLV9vI}haca~V8 zUCYb1aJHTw@aKqpAZ`t%gtxkT$z|k)5|)9FnF(25+Tv+;f(9UwV^hbRSQAY_hcVvR zUFg<2to|F*geK$4F^FT5*49HcxyWa2E6sJ>rvfnmCA#Mr6z(rHyIm&c-c31@YbgV} zT%?T21<`JN%h%HUq(%g18_DP9>Tq?B6>1k=8nF10rin8Wubphd<&kB#ZMP5&mnJnh z41B9-Bsuv@1I=`I8rOq7GvaG`?WcwGn}kqq5#x`@7fK2<2qBMSBW(;f%RUCxIV@{c zOw*sSSn7Jk#9C&#rtH0zJe)-s9$P|AKoD6@v8$&7SuWJ$?y&?`o&Kre{{RnOTHH@9 zyt*!=s_PR*lBkB@{F27EH<wa5MnCHw*hY(!j1DoZ^%j>|yzs^0`%>JjlS92&1-pZn zX$<mC6g)#4=gZ_OqIyB5YER-FHv310+FQ9TQ_PMCJe!X;-edErNYUn#WQ63)8Y-z! ztHnyBfltWY(Jk*|)vmP5Hi|KDrQi(LAs%E0D;mWXl^pxipbk-SxRN=jpo2ia(k`x^ zJ9oUZVYQ`Lnn|FO<=W3|m(w(nHb9OUMi(21&0t^nw^~mRuZp$V7fHO0*3RTzO&zOC zG#G1km9Fk=T5ZY!DHMAMB{q?ozo_fl>s(oQ=Ss8lboruhIGJR%c8Wj+!m#@YiU`5^ zfct6|3NUd)jg0wjbeA_5x`Zj>Nftjc(sK;alPr*lLV>k~&D2POR3M1shjtDd+xUI| z0E2{oYinPM-?iZVoIDeoe+m2~w>B>UiW^jyS=3;P=KA2n09f%2yTNG-6cVX7Dp{3* zKiRj6d|hGiOGNP}j{I~CdIpE2UTROMrJ-~d_Ll8-lEm`e>Ttw2F4vY=V*nnwHU3<_ zKKO&;zl&Zbzwz<{Po$#8<QHSFFGz8SkZgxszgm0;|eZQ~&~iFaQ93M+)JUTt_sP zi1Tw=&YUgW@Eu`BpR3DjaNCk2yLL0iILBVx@x^i%Q(H=|mct2yv=jN`{42ci(Y1NJ z=4DrO3Qued<N1DBuO)e6cKgF<;Col>6yGvT_<mO8?opLW66=g~{AnXmob=C3RIla8 zzk8>rex2$yiT7+$3FvzYv#mV~(ZvffNwb~+ImR>C*Y3Cc5tIH2`KkWi-?cWAVdG0v zH^ct`3n10JO@@v%xQ5Y#!=)q4(ZcfIxWthe5Q{~bw*ts(@rU7O!(WI$7yNUj{5|+@ zqh9O!#;Z8Dv$4~llH%s#W(9;$#)`$Af}Yq_1=xjFVg8?A@Jqkgw?X}f{{Uny1K{_D zWwXEW)KY(Kc)7HY(@k-GJ~q2b*P49GVQ8RQ#*)O$Q4bBfpOfO8>)2BEG2TahS%Fn5 zDzjQI%>5eFJX@&Ca~FxUTPBWMHxXPLR8W~9C|hx74c1YU<zwfayq&`pqYsX}I?$s_ zGup8Lm|F7j%x4^-Z?`T=^v=<obR8>^k5sw5yN|`%6{wtCv9-Q{l(KT_*qYV=_HY$~ zM!}8E*dN3g^{(l3xWa)4i!|Fv{{V&wZuJIuhh%15Uj>(;BZ5a2`4fTlRzLsM{uTZg zXg(tGez4vX(j*bt-4vGexgs$f1i14LVV(!6KbJigfvI?xSkwoG;4(oRjUiPaZB55- z1cTF{0Gj<h_)V^O8^oF}p`rXY)4ZD<Az`+S)dTtN=v=XE6O+-mHGGZZoi6*~uZwN0 zbgw4X&sfyF*#63@%!q*_D4>D>%bX75y=O}i%{LaTdvnW_VHr7HA1J(U9L6^4rw1O@ z`+NHhd@T5Rr}!Gv;|`H-_E!>Eycc&j`H5q=kNsqk$o~Ml@|<#{A3%BHzaPFP*)^w* zuhVw@%&(p@a-%$U<Q^-YUlRC-`xtn8?bjb+JpG)?<{w=7dD+wt;p_TxX8ClnRFyc( zm;8m7W0nrQq}9*dU)z`V==cTkKlXLgz65wK%3l)eHu6P0y5#4}v$B)|xwb_<Y_pM- zW|3APoGwol_>T?qT5P+tIGIQ*)r#Y}&j+5zwR$JRABTQE_=Tp+YvC<2<57y<Re4qv zjSzwT>EvZV!#po1*mbXR@Sp5u@n2ljUr^W9FAP{f<mTa)S@spr$rMGw>x{dvuQlpr zxM~<09?ly6W?1ZHTuoIsyU^o&6Z=4Gz6#Enq}oS&c|EC$(s-niMXSxbb4LygZs-Z} z_ks|UivHgJ0N{oChr#cI{{RDL(L7V7$#;3<+eNn3jmGI>HcXpR&Ngw(U^6qbV|%eU zzyN<5@_ZiCei^&jX|Q>%%8RxjyoB^Q94PkUzkWa9l7H|}PYirJdvDph<1L+>b~kbr zu)ch%vy;R!Ncjjz`-Jduj=0alaZYbMMLtS;M(64LBau1{%C@p=?ml<_0D_Eu!V!MN zKeVOa!p{rOHU9vE^$TUy{4a9lH%X?<#YMY29JAR!?nyk9F|!tCV_%RT8*XIN#F}sh zNMmT$H6=!6Wi0%G*kZq|@Axl%oqzuT3cui|#k)Ib=CY4c)ciiPNQIgxE?^g{^Qq*w z*+^b_BpebkU&j9c#7$#b*ZfI!bs~9|;#X+-;~UDT9Ch1_=N0;ogw#E<c&EBn`P}@& z#T2PlSZHkB+2wP)n`lVNhg_&{n1Fa79^><>o=)huo=>G+xVK1vVAzlbQkWwJPfT=E z-jWf#Die{<YW=CJtq;vP?5>V+gi*@NASb_GwdsEgY%OnmS8NO+ytm!FwgB2PPvAP& z19NJ^^9&B$XOE{My??+K4;7uxr*K3sHN249Dd2@*1IRc%2Lsn9wQ}NT?5Rql=$Y42 zYJ9N1_FsACz96~KF7<1zN9}vsdF7i5jKOy?U^Boyf5yJ}{fvA=Hihu-#Y0WEw3uGq z#}tooY_d3y$Oj0`orDvf26JB}zl9_FLd)c%4shte;AcI1A7U}voLAVtvlN<-g1j55 z-RZFfd9PR`b40QuCzB9AD*^~O#z#GHMr-g)T~|1^`k$gu!}7G#JI!YDecx`jJDO03 zI0G2q;17P->0Tf4Gf1)4JU28tsSh0SJcXBo8=)*8gZw?g>t3O)>YjX%%<=hZxDK!l zi-VFdx#4r$r?q&tx2XNT<!rST0@&{oLfzGY45a#z=y?2S%P}6xtZH^;V({GXl1IbF zA0^B{<c|LU;av`ad2Md;Ti-+H#WH{tV4dSQBXA=)C!8K|dsBQ#qPB;tT-du4<hfNX z)UJM0ob!?1v+V9RPLm?<XjxngXE-3^9rKJ=@99RQY_>iIO_@@eZLV4|lqkm?c=YN4 zuc&`!ui9_oU+nSXB-MNetX$babt*OetWH)tgp8lOI%f^R1zR8jNaDPI$C_rCx6$2c z(IvQ);38~Q+5+H&R$>MS<eag|#d-9Qn`!)(AeBGDc&%`CTx~eAD^sV4rsDda+Lyt- z7r{O&yt4hKJP+|6>gwB4flOL{p(JuFG6T5mY%4RXWk}CV*Ye^200kxRPMP2z+hgK3 zfu(NpW!5CWKu&PFjB(#_{>gdYAN^|k*Zv8C`#}60*RC|r*^A@;meVKpqhI)UR)LB& zwdCB%ZE}Htk{Q`@xd#q$jO?!_{{Vu$_y$q?YiiT!a;@BVI!==?^3ax0VUi%O0VFW; zdE=oRQ}H2Ft(4NPv}#)UT|53q%5at%czn`$X<gnrY0))r%>02I;*1X5*MBF0H4xrd zR>|OGV<*!G1Y_~_s}Xnt{$>%VD%d3TJvwyfp5H@XgD5Lr=jv+>KF6D9*P2{pXYj9R zgW-kb@~m+zn~pduj@*KKS3zs=di~i$uTQ;<HV<KdYT+7hscwYQ)cNGYCU6#%LhL}t zC$O)nEq(^-PatU{Ax}-%QP=bO{{WnHR^I_N1|Cwv<eorPIRhPsr@1+*Qm4_7sZI1W z{tSG-46PbPAjf@kA3XBG8>c>lt##fd(XZ_xkljx6K`JAnoR2L^kB}aPeFv>{J{tIS zsrWa+QpC_m5%mOhGA`Bmp&_=Oamo&~y7XG?8gRP160|a)XoIwDr)cCyj#OmyJog6` z`+pAAQo+)GR{M|2Gu%6;iK!cPzu&3k=?bhn20mWL?_~Gs&+@FzRLe94W5kY5a(KoD zG2hy?-raDg0G{KxtXt7M5i_nb6^Q49*Pl^eMIOh^Ceue-@Xy1s-F>H4z8@+ujxK~3 z87$u53<2&<dllTeE}vr@r9_uj%+CvPn9HeM*gR(h{WHa8cy`*yM)2jemCN~4vKe2Y z+KzMErbpvk)tp&Jc?dF0?I}e(?KlcOakO^qYgESF<k{x>q*p*mA>m!Jc^sVQkFWEt zufn>Jx0)XlYVrR7qsG|YyaTl0F$<7Fo&dnyeQ{9uk4Cw;gZ&oY%#J=;KyE-h436#F zrUx}9tt@(tyb!}`ZJ`(i7v%+)ryP8%(Rlj%VP1UCm77qb%C93ERM*o})hC|Zx0GZh zQw%^Ij!y*o``1a}?Gsk<HTRci8x=cn#NZN6KR-cL{5Rni)oxFj#BrRycpFDvP6yV% zuaEd7pZpV7!T$ga{5Na+M1Ih=sSdYw5R=3DRorW~%sxE3x#Mu(zmy!ttf0iWV~1mp zmg1f&qn2U$-mjwWeNPSW#PRiY(kpg;cmB_x@JpZCTTt*lzl?k{qG|S**Wh_~8s)=4 zki<YC(g>lRX$TA(X;}B1a;wSrKL!5)!MgHzhhCG#9~t~_XLoU{?w(0wvYPJU-#;{k z?&k7v#{dBj7#wW?59znWm--fkJK9`F9n#1h6p1HN%;W{#5LGJe_eSCK1<2y0ve#k0 z%o<z^40~hP(1mG~eb5291rt1EJ`0TDO@BIPJZq1}%JP+$WPaV2aOM*U9$Invz0bs- z0RI5N5x-<V4qGj!h;<!vTzm&;1;jdJK@<!DCYb~h6)b<}w+guDb$#97ulOd%>^I?= zEQXKpr%Sxlt-)lt)L?tf?X<Liy}xO^z?__OgVU+6w$g1utyJIM2z1$YH$-xn18Ssk z`C*A{5J)=*Y*p=N#2yz-DhvDVL|@xS9FfS6E^kEq2SkG0DmcK#IU@w*kSpct<EzW! zn}0Lhr%DTCay}XGUxU0ErbngtTSc|ftu5KM!DAh@yh$Dh?><0*PVA0B>w-Y8*x1E+ zV>Q^+E#R6)GBh^uw9-ga<#%J{&N)9R9-JO}oeCXr2Dj4mJ2_&QD=e-MWfYzr?l(Jf zLB<0feqMsNH47L7AK3cy#$>#3scmS+cW|I>Z{2`TIm#6P0071geCbuQHMc{G()9gp z>{|Cz)J?s)ki^m{NaEX;XITnh?o+@35HbKAtG3YmBjLLn4>s}db*UzaS!IS++5_`| zJffs!PU16x#ySew(mX9bseATs40vNwzMGi$-bNyft^gzn2@AJ@_d&)$<FBlb0r<+^ z(HBsX*gBDmOIag4XO#t;<-pG&I`++LPIuJKO52<aegJE?arP#)L?9}(imDV0WC)WO zBcW_#uqPzxTliZ}kQkBP;r5m=!TZ%*fuEIp#_D>42Sb5ZEPMsxh??g2P1a#DPQjoW zs29Qn`GG*NtV#eN9J0Q73<$+lo^OuUR?ju&m1{E3^Q@LPN{Y^)0sEq`6b`sQA#st8 zYUOn93tp#vrT7a~wt@#XaN8+dd6VpNFgO4L?hgcg(0#$KfwZ}-h<BQMxXx5Wu&hIW z_lwBRa0hLG`gG^V*T>rBzM5t6MXm0EaKy_b*Y>__L(9O*NQ9#?P+JU&eQ`|CzAE@D z#2TcRaq9_tA&kWo2yN9_7XUJ;RAq8W0Y>0|0BV)D6N^W-%d6@ZYS$K)>1S^umJ1dD z7#Kf0;0$xf!Oeble%qh$PH%uew%F6WSMfqkTS)OPoon_e^?e#>P0L!y#p4Yf#CI0+ z1Z~WW>A80{8w7*(-nZfek~rkB5?Tw8+f1sZNl~|~yeP&q_edj(;H_ZQ6=a$Rkt23v zB3uwdC>*RTuDiCAg4iw2GI3f)PX6xX$u+6|eV@0F!Mk7C3--71r|j9IYL{LjvGA?z z5L)Uti3C>{5!~3@U6zqxNa6(=c8}ym7*KEtHS(D8Br|Oi!y}(i${X;=BELib0N}5B z{(-Fj0Kr23B+sK>L8!$Y)r>DSyR3>Pk4?5oP_ps87;StLf-p|tMSg4Pt7Uf}juJ_c zv5b;Weh0sNSJ`3H<XqdHCM~XeCD{Fg{{VtVe#)N-ziZEq+SiA^B;RWOAGGlHj&*3H z)2?EL=9o_$K3mGsKGZ7xP^%We$j3j~m%{%5gMSXb6nHk<!9E4ImrRBx-6OrjT-{1` z02*tF8OuLGwD3QK3jTNh0N{fD0Mc|DO?$@ET21!7X4*t~k#fmzZ7>mt@ChoUw2h3M zl1Bhn^jZC}sp-?r9;oSQr<mF0l0}mc#kYwilr91Sq_*OIoY%_cc$Dh3bKj*&@}&}g z?IydnNKKHx5U{~1^ReeDKJibwNCU1hj^gWGjXwA6aU<IW8@83+8=RfM9oSvK<yerz z7(9cP+RVD0qg?nwto5s6>Y?<6w$x=*DhP8Oq@HW-=MI=*o`;cKF0-sS@pL{O)UP!7 zB%UR6Z+|VuiGI6}$YYM`-fuBDB(l1&Z@um2%Bngeg`LlC(7Zuv*3(|cZDV#$_9o^j z97IV9xmeXcX91f%dmIjH&h=}(Fluq>sMe1x%&HVZ>{(ACqfpM#lwbpO-N$_5wbh@C zEHr&vRlR*y9WGd$s$5wtvAF*LS03BFD(CGkhwm$SB0xIwIOHUG_3aAFM6kP`QITZx zjBwpWe!g64Krarz9kh(Qh~_pf4haMrE{=#{JDt7fir}%=AhXr&+ey5+Qe%6llGqh| zuGKRZ40rw9WB>`{Bvw79m99&p-)gCIb7N^?43e2HH#Ls%Pt3QL*~*sg%G-JE*58Nq zLE(QC9Ya*KxY2C1*wN%?w$*gFz==$ZWSR*MmhqBFW&;C|!-~e!HAU6@C2`^{JX+rU zy5<<?xYNa^sVK`duFW=x`gG$w0QqMhc&W*$=VwG{MH*@09d-)~O=C#ZXO?LRw|JnE zJM@wzP+6PFn@^QMI03@R*92pwtv|t<W`pq=JUZHuiX@KRuB_&nU<^VuueJ-@NeEmv z&=U1mAciBYX?TiF3jYAcnm2{@3%IVX;<ial7q<~fChLhhh&5|V*%e4p^T%|g4hY~H z+ihc0({%p;6ZnhHxw3{qFo=<P1VN{96htyyYIa3P=W^L>$1H=Drlr{1kuHauT6il~ z(tH!E>l$D7t)kse5?ZW|@xZApg^ZE2%dSAUk2zh4jzAwSMl!6t4Xwm1ye;A8w0pOa zu5JU!mi}zhoB+p2ytA1Ys)AYUPX2*<n(dwv`W~AnhmtF)5@}|gw3uO?)fGf)&e~Mk z9N~8o0P<v0+;<nOwXGvp_`@BQ?ds2Rs}vUYcQZrwmc_UszR#)HeWehd>8LsoG7d=x zT6l@aW??KmCGjJOy^i)aSno7VK1+Q*6^2`xOg7>sGKDWBy0x{v$I8T==`bW6%DcHe z?AMd{i^mq%-cf60xsp#hXVh<PBv@DGXeDVr!ropo41Pm?x#jIN{{RzsKjG!xqvA;A z&>@OjbjGD6&V>*x<w#jtZEDSjIRgSS(<_{ftF1Fq@inG^+HJDj!XcY=-JY6tsE+wS z8*en5t0qjS=ghV$eFg@4qnOQZVOK1q*SgIA00l$geO7I2Q_)72uv^<Y$v%?}qe@J& zC@qaG<&$_F3q~gAD&*#}b=!Xj-0AwIlTNy<uw7fmzI(K@#_E8ow0eVEF_81Kdplr! zjyhKDwyk5Wc+14rR(hNojIgcFY$4Pvbr}@Im{n~y=Gxx<O1C~qxxhblfjJpIB(~MO zGw|}-*T!1JmM2iXh9>^kj$IN2Q4={xBG*5)EzVtYvwCNpt_bIPd6It;IVYAhtrltP z);j+HgY=Cy`%t*Jusdc}GYM@~T!P1WOMO9OQoRev6Z@@$isv<d5No=2tz+Up54<{r zGuhiV_-2az{?44`O}+G2BoI!*mhvWhW96*7&xXDrywh~Q4|rb6@@V1TJU5zs&Gm+w z-)h|XTfHWE?a`HvTg<j7-9il4miU@D{vy4GmEmh<@g3HiX>SGe_BI+Ov*k?#sADsR zwbhKM;Qa7}8?fR&O4ns9WeM*iina>0HE8t>L&Wpyem%4Bwy}L}b8UTlEKrFhnj5gq z6G*>j^KET>*BH*&F57B@oPcq+;U66QShc#ni%{0}AF@MdEUGo8g<%p#LTxvie43(# zWIRA36EVX9!4;9>FCSUyUmJAo2m5N`#`99W5Zqeo7n-1X8Dk-QyIo2XV{{uFM{6Vw zGDu=U2M@qr81ZD^60da~FT)R~y!w8lZui34!op@<z~JgW8=6BLWP-vuEsfJ;6p>j- zJ<(BW=M3DF>~%gC_?M}8$4A$#=8oG?mdfVUXNN$%X<jyTET!7!T^QSL8Dg`5&G(eB z;<NRgPs4}7mKK+Bd0BhgQreQgnvw1$w<NYYtL-PGjdCG=s{3$j%=9bEZxmSgi^6h0 z_RN-6)|V-2*B{##D5&m?%MXj;wvydg@#b8-vC2otRE}MuL#6mD!Pk0wz`6yjnySc_ zh}xcls?s8nzCRDiacw_+^2Pp*yX0h24s?tnw<7mFd&M3pYt17@@kfTOZ}oT{($?tB z6~a6+2*}BeVbv8URs%V=)7=RCaeC{-z7EhnDe2Q(*_hh%Q8vjXv?UNV;uKJ~Flm~6 zMn-a=s$NL>KX`ISl4?3-_lx`)r)sB9UlCbc$8~P^)^>VMu#yyzs^;eC*xks>(`BGZ z6s{QW0G{{8{x$IU@SU!gBuOT-eQ~GFWY@ahp`@%fh^m)Oa}D%U+71B`*+0!AHrJ9f z`^Cm}ZK@TMHng2f!S{a<b&m?`5<_=2-JFog=Um5iBzHEFWg?O}F15iMuw%43ZftQE z4Ocu9s9j5C;!gp?ZKzw!l0&J+g(kFCfs~}94*Czu2pqb`q#u<?8Ln?s@NMmf#2Yrf zhVshF((#(z(?_zkh{q}vFK>6JOxJKA-L>YsM_s&UEDdnp3$gH)spC1cyG#8SP?q7R z5?jfwPvQp*6om&*)|m;D2kxS@YFFm~3b$C8$ErHLPFR<~;@icxmNrvaT}f#K_swk= znG~6Lo;iiCp(AZAfKp_SjCq9Q)!22f75Iz6nqIx8PkE^YhB=yRL3Md#B(q{3KQb%1 zAU|-15L!Fn?au7uBf}aFx8SW4#Uj!v^mNqi*7?@qWbj%%u`!R%n)gLnV079-mA64B zA3Cy-Y70#t{u8f<Gu_?j7TzS2PredEHMO)JE7&HC8Ggw$Z>QWs7X+ClRh^F`%oQ%| zZ9Unm;tv@%oAD~e+f}fRdyAN4k54n{vCSkifTwk@lW#hrXC$*rAi?=}fm^ovKB*sx z?sR+kB(;59y_BD1wY#!gmydjrjrxox8-jjpJ6r@nNfDBAIA0LnU0!@B)1dJ#qHHaq zd35WWO<PfmO^9tJq5l9w*KK8z?qyQBSuOzn?5qZA_N!?GX=CGCJ6YhlmIyB-2@bgv z8Ex1x8iu2%O?{_F3xIb;<UD&%3`aG(*I}I=feqT|dWf{Li&M0L7U5-kuQoMtm6aM@ z9q+u>`=w)85DXq0oLti9vedjW6}5yC&vB(UmVdK%HOku0yUQ&jTxic~h{cf?$==0t z^BkJ9{{RTZvwTB~#aeqxP0Oo8CAGea(*FQw-6EGr8&7*pMhMPEWpO@0`?<#4yDbC5 z8fS>^yfNY_ZLVRRrm$G=F0Zvu-!>Wvqk~<EmUmbA5Jhs)oyQB)8OmDOh}iKazoTie z=^ie+yo$=|DFlCKzI!V@x0aaP_V8U=r0(oL<*QzxZRCb*f_fXxM@u@Qc%I+wI;V%V zCEqNvonuh37PIALGPT-YS<2BqNRBs#JdR5YRvwdU;!g_MUTAP=cbZZZH!+uQ>=?w5 zC=Sw3r(9lJBtjxcjUtS*bygtl#IQaa@!y8oyc(9?A=GqfjMndNvG|fmgMY1#0cQGq z@w99*&g+*g%Q+l1Qp^uX({#`HN4#Nq;U5p$e`ea<N8~$MwXKxvBK+{Xt(DEnTf`KQ z#jKE=s3i2Pp9bDtw3mJfK2O?rwdI<|E-xE?Nx6p7I6twccX62vuNfI9=5B+}d`B;e zZoD&ZJ@w=oJQ^W_3DaGY*G3HF28Ks{O3vbWWe1Vv&Of{75-X_I{8QpRS4Go&OR5|5 zdvvcP(ZvR{twbb@40+FGHO-B*a{-^0IRQrFoYLm%C#I((`(H`nj|~3AUln|H@h?b% z_eAi=g*DNt#{{+)f_qi6keKcs_BXmWEX)z2S+WTOdy|U)04n`@S@fH`dn@Txr;gqr z(&UozA}YBA^UH#H<oZ|oE&l+)W)fWw{t0RETg3kW4&#Q_-&WA<QduBvI^G#HyNyEH zJN1GHj8|{6J?gC_Zb9l7lV9f-s_Ld@NHr6ba%3cp-@M5rXSZI1iu>*ZgKl$sA34M| zA1qg!F}1Z_MU=nD>If`P7$>!P{D{ckAn0+Nf1b6}UtC*3AC>`>K6v!@=iiZB;9%qr znQ{HnI(M(q;IwDX&}DMqE*Jnta&cN#mo}nE;=>nW7bpWa(MR{Q_|+0ruGo&?M{(cN z{{XLFW`4#00JDy}`&ItY{tf+}d_8#{n=gztNVItGO{9{vK6ElXlkA8y{^}%l47tI> zH_95h@mP;%2RrO^!k;{pJD<~c{2N>Q63qvQwLkbMhs3K3y&FXE%wO5w54*qeAW8KL zu*r3(z_+N0JTOE>yi-9k1(sRYaTWcU&8S4P+jyHmw7AqQ@0F#J30qK>B1yxGmQU?# zV6K07fFda1=Z-o500#JS*Ws3l;lB-hCALjVLh$~d4wo3Qv{a55E#gS0g=2>PHG7Em z<Pl=PNKYKn-D=u*hqV>ZyiRn{X?W{!+pnXJ;1|!6b8r$pHN!-J?~KbMV<3IepT%=L zbnz8kNi*#5xJc51giQ-5^zRKwZ2Uj}03fYZGG^1(&MS+U!yUUnvu-UeBMBoF-S%c| zZUm0CV&_5ln`?6=sFKONwkwl!tuZ(_$v<Iy{dYEfPg>Bof?4!`_(wG(coybGYkfv* zDW-wtY<Wow>JVSXuua{C$mg7m*{)_wm@Fh~8LzasUJ_$y%V`QwuLVdNf&q@03co?p zyyrV^ZlZtx*8Ww0WB9(!@R6<U71{4K32r3G7~2}GVOQ0dFGI(A@gLfXeJbPPo`K>0 zF5o@QxsP(jzzCXIK>*=L%)kcg$8pHVZ>4-;u=r>2kHg;#z7mMFKNxCo10l7HNY;}` zLv1W~29%OPQNY37fsFj|@o&Np@N>snCBKNLI;OD*O+!&~&Q?NY+=;o)?Cnyd{vy2W zG$ksMsV_SpL5ao1VdG9Z?Q#DA7W_A$-{}wI$TcSt`M+g`)?f>|#Kl>>%;k=9dU8IM z>K_TdANW4Q!P-BI^(`D-Tx!uup|1dVgDj;3B1pSW-Qj?4;=BvuJ@1OVdtiPl>f$(b z`EHuV(%v(X7*JfUJ79HUa>v*T`xoI|h12{l(IN>iogJ>^SI#!Ovje#Bs&kdcP;1q~ zMcUGLI5Bl2Qm-;rx$H~vQ^!zPjWWXe*G+=ds-!lSkw%+34WnxT?oWTpv2@*A#@fE4 z1&@d)8jRCQ!^-<ajJq9)Qp4p?!y}>*>Dsc6pDWC=#-VYM=7YO&{{Vj-j~~*#ci?A+ zbp2D}#f8SAo0<^v4ZsjgYDc!*j&gIKt!bI!BTkI!HL_=RRfcu3Fr>P)VR)y&UM$sY z?libGo12-foseY4%o$rdOEaM=M=D7<9Zh&oh&(CdZ824K9UfarSgs?L(7QHxz(V=U zboqyB{Y{6(8YhQ7A^neE#8#K+A@dL1jzCC4+2}HHyQt4RRQ~`FJP0o>B$gD8<7osT z0}cj0R^WoCxI7VGhyMU>UUrh){)?lKB^4;kRDRreH}-q@xBF=S0Kpt}{{VshD1s^c zZKY|k>pCx$a3%?;>FOqmCXy2*DZDPnM3PPzgT;Re(rY{7mrT5f#TpVBPs-?{kgtpo z$^2R5FgfH``Y3<FB0p`5FBSM+)4)D1mM7Ho=$77O!o?Z{7*pkuh|?XEDE|O@zmop| z_%AQ)uc7|PpYTwR6iwl4ceU{Ej!}G7qR9+IK^VPaFCgSFB0HsLAOV3oj1H&v&j`4J zH0L}VpSvwrulyg-{71!%f^{IVR`;W)s{a6o{LjU0ZDC8MFwf_L0Ni*bah`G1d-tj~ zQ+=9sY;W9o9f%a$om$%V6qZQ?%N}#Fc8n9i6<q29I0=p~oP`HDBw+K7-=9kUf>K=% z!lOofysaB67M^a!#mbgZk{3ALfxyqddi1}ApKI|JyMM1s3X=u6h7~QeM;ee@8RLb= z=UzD4im4AgdB^bj`)8bc@n58Wv5$aezqHl0twT>)B1o;G8^UAFl(ek4ehUQHNa{1s zYVx!BsNp8xZ_Mq==}X(j>i+=M&n$;X)OE4s>6TA+aKM;iX;T^FbEw)6r+;%^&)`i9 zQSirx4xN2#Et|=6BZ%Y$TW-|=jFLb&I6qqZVjl#?q{m}p<cB#SS8jU_LBag1$Nn)| z+jx538wkXo+5uK`yk~4oN{o^L`Hp*^yW5QZC5wvXx%xFPi6iH0;b_+1W@jqf2@F9v z2RJ$J^sgM$;JdfAX0+iXBRfViM@~*_*fn`%lI!gz1S>3H72HP{BaSP{HJkMiIGiG! zkWS*mJdE@liu0*A(Cw2)3E~X}yiwuSgpl`ED15abWWd=Z@8dpM3P$XnNE}zna7YdW zM-9}G$I`yTx4YBy{VsVG!I#LDBEbup9x|xAj~ubUUZ<eVe47T9D72PXPtG=+0nihI zIqoa=o)E>#czZvxd?s^F6zeyA>{!#ZtF3<8YeZ7>TQ22n#HtrOZh0AS2RI9oco^cj z*IDgnF|hfR;Ep=_8teQgc69x6I5I!de{|W~-<A97$`0T$l{FWMwCj6aT1a6e@55l8 zRJS<jzo;Kd_mvAxtDGvmrONg`g8htsAp9@*ZTm)eXU5+a>~3!~dmDx_$7;+Z-6T&M zI(cMBN;7WSnRAbqBw+r6d{zCJv~4@$73QbmEkJ92AJ>&NoflJkgK+m&7lSbwWsvWA zBOt=Xn7I+F6P7snWA+Kv{Bz--iE~5XPlj>)N;fezrm15rMZeH)M%g22Sov@)iVh2v zEW?JtBEPoJ*kk?)-}?vn)AoMw_lkZb%i<3TTv>^9{{Z+!H62RM2{hpxjO!9h1ai+Z zw)}|<tXPxDub%M^T)AXw)K}$}>1wX6XVYK9=5}z^s%A2bU9TORTH9Nty5HuXk^GZs zf3tS0cN&<|8BmP!6`KRL(mQ*8Rj+OPI@~qDvUuY%vBE(b@0GHDg%@!-^aDMIO8)%( z8T%H0!8g1(xbVlrc>GT+Wb=6q_N>`chWYN?L!9==`eMGF@aOy>pAMn&J{SBrvhd_+ zKpRDdm{emtt-4JpK7iooiu?*$^dqETewY24yPv@a!r%BM&+Sd|Emq^epA39WsUt7} zpG`JVkbC*}q6o<M41cYDf_N+b4d?x_HRAyB29x3M58JQ={{U#~k@<=^>m95Y19p0V z-r(2u^K<b(R=m23(repGRCO%HzSXD<0l49sOL)NdJw|;i&NXiqc!Di<4OY*@_tvpA zZ5P>NOFMfxS)1f6S~<vWFbc?|gN}F=$2|7C(Iksl8avzbKM8&v{{X?Ynt+imd~@*^ zMzV={Xmq_U;`Tw=g3C0~qi5bT`1bo_!Qb$2@9cx&1Y6G=c%#JHvg4I^)3mrq>DD+5 zpZNa(75Avud~L2Vigndz5+g>rzn_-mVM0u(c?9RO@zit0YhE1i?Unc2FT9&;p)uUj zNRz%6JQ(-BOnmapNhFLPep;E0d3~beLMvo`H~#>^UH<^!oIkPW!SC2JR`K8L-=^8x zc!R>4zMFk>Ji4s6_m>)fo8;X@rb%Q{RyjPtfmEHmSMkN-vvVb-rkE{EN|9zc!7Utt zhBzIz9uI2%{(s=2z7y0uZ~Fv%R`9-#@<l56b5OinRYnlXEyB+WG+Z!6E6XS+x$Bz# z4}5<u&7G7I!w5El)gBplgTI#Cq;*oiuN>Fz{uE<pQw1t>cWPgQNc^Y7TryQ7Q7u~h zpZpW%-CEX5eMRlzK4O86hbIHC{{ULEFKig8MqS9m1mm1{^&+&jn|Wr{8Pa3rlbjRB zAKk?|#(QLdEbq?j0(<^H{d)b0GxBLuyE@5J?VcUE*RMWlKo|$*#BqVR;A1=<o|Vk$ z8jhi?Jd!~k=7CN&1Aqq{o|WnT2h%Mzv3=qFL43$(wvonpV0^N_FV`dKipKC}uc5bv zk!&F_F~%^zC}26=o=!S1=ie1x-pSayG&Sat4X2A^z3}qeTSw)}<)XOGe(>r*JceP% z908G%O+jU+Uh5YrV`m=y<Zv^92e{~ct6xsgt~FU!%Gy6OI0GMefA#D7SpNWmK>q;2 z9Xv<z^{sw8{8Q2-9tO3SZNHs_{?)jM;gt^!_E^snx{sWVihlNfV~BJ58GQ*>s{UQs z^_dPuQyo=7EjqKzKj4(#@J{_A_Ttmy&&C60;?_i$MbWQijyAcI@1^X?F3?~?yP-mV zdg=)v1t<C&zww5wEhe{)^4jw5NN~35%PjKBvLPl7gM}FcDPH7ma5G<_+Slxfrfa%& zwwK}!Kf<><U8{#nYpo~GSeZZ7x(DC$MnGja1QFJ|uMd0|@JEF15^YPwF8DZDbn95` zR1UaTj4R*~>z`bT{#nnn{6=G4)~dZ1WPbIP<=A{3B}$voADG(CvEnAYeNxXwxVuM% zT6wJDXl$c}V<p3HT*WiK0Aj%b&gMdEvGBd7uY0GlicLGit#q<nmAqBFxQX_v?SHeh z(7a)C!cgIfIXu_tq%!<1)9$5faj9R*pvJ=P?n$;}@-Sb&e0IirQ*7=$8ErrOQ~ny$ zqEJptz)9NNu*+uv`d5wYD@k@c{k1#jneq39{vGId(Zj227Z>{bS=)JjW|?EL4+IA; zuOy1j8=dT|#3|<)uT{~08+eW>Ep1}cG`|ek#Ssz7cQluG%z?LXes&)*B<?39_chb% z9|-&>eR}$~i>1xstF{aNk)zM#t`uQ^cB5v|o{SApz4%@6Ud|)^kK$<Vik5X3uttC$ z#hC*ZJ#tj0bJ*0ZJd^jwD$(eTf$;0XT4n6F8uq2BYDX!!Mnn-X`@2HpETbg11%Ss> z*Hcfv@HT}o(sVr`5oEzbahDFLdWDfzJ_sMcGuyp+JUYL`&kjv^JX7I=e-)5ERQ3}l z$s+_Gkx!iQvu8MFP!2&j=Cd^~+5_SBpfYOr5@@gmNTz%Ej>U4@LYa_F7UpAu3w6N& zj%g|>YSEjUXTP5r-s*CjB)N(>3OtDlLSsA-6rzPya570@!R?-vpC+qqac-|I;rU&P zu2>Zyl^~T0#BTl^aNW&$Od8C3wqH%ShT<s|w~I*y!6O`y==oE(vjL3MtE$@G!4<1X zaSUq8Si8Gtfz<|mvN8{T2Q{jT=w#>6?e8_cI@UI{)7h>Wott!E?_w7$6?T$JXO73U zQq??Akld_-6$q$VH#;WaFmiMJWS&sq9-xkcjJUVE)Z~qA1=MVXveC@T9>oNMg&}$8 z895lQntnO{(SHGc2ir{_#m^mCXpQ&0kF-ZM;K(>p4Y4zFakTCF;2PGQ8Oid+HbOqD ze-TfqmM?L%OO*;7NUqJ)as~+KHw^a`$7?!&gRiU^H4QE$mNK#|rrjrE+>%tO$sKZ~ z*S`Q);|GmD;ITgeyg47+{uOv%#2zWRxWF@BM{lItov3jo%SiIb*ldA_i}c(FIQVbI z-|$!8+V{nAli&*tAHo)8ivwu`>a#957@Be-;B@`S1D?ITC}dUTy0@rH6&0n==@q;_ zG}{Tqz2aNM(s_vXsBJbN8QCW3RY>FIa&eA1JlFEE{{RJ>{il2%<FDESLDD=6<7hlZ zqG-Axw3^RK)D6|OjrZClHw$vM?$H~G6vlGp*dpWP1cvzE;=k<=`#}72X?!K|GvXGj zuTOckTSSvkD-??%DzUbkXasU@IaNa&4CD-&=sY9)6@Jk_616=e!$;w!y$avPWQOx! zu+%hL6^wn%++4*7LAYaMl1~^@n)K-9k;1-ulhi$=>L#hhpP%w;UIU)ZVG&ydhvZ27 zqYyxIfB@Tp?ZEotz1Q}9@qg^+@b|~7;_r*z1G4yoVG@yTrO&C|SlYDgK=W=qoyOr& zMivwMvdl|{+PM9J_$mJY1OoWW<85R|@w)EILa;}Sd43$8Eq+PPLm%EX#hJI*zuvZ$ zj&cCUKW+Fs{s>R|6!?F`cY246Zne#3cpb{z&#mgd6>eoK3@Z)fNn^i|gqLmq0C-@U z%MqT^SBux=MI4rC^GTz^{uY11Z+r*fX{~$>;E#k_2ZoK%5ui<7?c-QgfF!Sx=Q0k2 zD=P91dspf|!r$8)$3L`Hifa0;v>pr7;*`Z<8k>y}tMKzkuc&<YB18ZzlOTpgAji8k z>3;}+V*dcy)8Gfg>rV~*9q=`_od&ObE<DfdqpukzwitP(ztT)@E*l^Tq?<TWIqmcw zo2O~^-aCuKJ{#5@{?D{tta|%9i8h9rPMN7C%#f8`xC=6F=ub-doK8EPIMaex@;%x( z6&p8p*PAHoT6VSK=`_Ti&TUQ@<9Wcn(xTO35;+RKUCp$XzFTY=I9;SS8LofBJ}cDq zi%n2?OH!E<BPWw-qw2`pv-`9sN!1}$h4>kTrT~%0UMJRP(=>QIL-7*k%F@?fSfu+L znzorXj19!6$+j07m87>ypm03Ih%o?Q1JU|#{4L)Ud>^pUwaW(9?(bDvYpu|DhfZd< zO{94j^G7N~(ww8@x!dz#*PY32&h-Je7C-Qg*jZXfr`hQ;-b%7aMxAq@Oj;khe$$~n z-|qvQgmxRgaopppA-qfDMbNcdyNmlfRgNibrM=R1i*3jY%kp0b)kK&$F_p;xV{bLW z>Hh%moZ5U(vhZ%Lr`ze)I$fegEP5^Wp{BHwV9!2mm8`8ckZ`9mZNUZFx(^P>vs?Iw z;s&>-YFcYf9u$vJv#{1;R=GQ4=Shk0q=Rd2%S^-!<nTz^N$ygLwTvwvSkZKE2<o0K zF+-y@!HxvE5Nf^^WjAtRwl=OOwTbWm!o(D}835Loi1eH97kFDi8kLgj@y9*I$e&Ts zVDV%EKm<s_<4f`dyM-(V$Q6M(ZVr1}9Rf`!!<ITngbG?ub2ptTX%`D(>jXfeE82L3 zzUa#m0;;Y!#s^((Yr=LKkHi}tKVGx9GikQ)rOnQvrRoqk+I;DAsMxexc~Cu6g>jRd z;1IhLO6M(Yt$)I6;t%*i?5`r7G=+*eBGEO2V>-Mrsd(kme8W6UxyO{Hff&ib0C_dn zgDpHU;TxS^-thQx@@Zg+3MJ=(t{!=0&gQwgd0=-%4e|)Qw>bo0@$?$Ws%!cWiTps< zH+qe%vC4}IKA!;nKmxzwOJ(~}5vT4nsM7tR+IL{e91Qc^VBA4v;V%#A8gGa73w<Vg zyNPCapwv!@G?BuBG7YDR7VON5%rX!mUI=c-NUcRD)gE<y;g1%wcxo%w)Aid3p_W+V zy72e*`#h4$Ge7p_vA9^D3U_abV<QK)DsKt=ckwmPi@ad^#)YXHdj-2&SUf$eH;Eyc zVo?|)OLYluM<Bx@#({yy-pTf{;n|bpHMP#Qr$sZzYibtq^TXH9$g!!B!Pcx@EFBez zBQU8($-&PYt)`?rb>S}(>ROH5TEE+^UIY`~T6o6MR^n}-3kwyuyOum3^=$jL<$D@E zMR?ru?H9&g4)C|bjXp~g7lmfIy;hDFwY%_rz(}JfCOZ_pT=Fv%s;K<n0fAoedEoW& zcf_p{e-UXzQx=wX!Ef)h>pfdxnT(CH`EIRmBj7H4%W@A4ppZb}^;xXE58you!*;Tb zC2!`sxKpRK--DKO8mwD>$$FP5AUnS7jJ*Q@a4WZ);byNd#w#BYXnGa5`aD*M`m1PG znvKvg$Cufw+h1GH{9Ar|UFvrfBrw9!vDA{bx)5mkr~D??9x&6s(z?VD!*;*fw)%<H zclojy)f&TAw6j1PIP#k7U_UCh-<r9dOZ#8p*MKy6Z6%Atgz7S@M6%rYXlz(;a+Zm# zK`G8Sl%U2+kU$59(R?rCzaRKJ#CCd@#5>Ozvqn)g@pWyeA~Cu718J95T2e8MaK2s4 z^W-nh<~PiG4-!Y>4~G5(@b-&+rD@hh?`D=)y1c#cqx`Y$CJ6LJ@>re2_ftuR><I#< z7i-={PD(FLPKET{FH!j6rfRnuN!DbZ%TIUIg`Jhvz!G_YDqqEUYkRRt`C3aOk-}u| ztcyY8e-QW=#Qq!Cgp<Q-46Pg*)#SQ}f3r?@sfS&$(;!{JMjA_&T=a6GUc2_yZuLKl zdSr9xTC}jiX<(6GHlL&Fb_I_1e=hdsL8^vD0KV~z6*2tV@s;4e7igX@vhjVUfvY9R zSZ`u@ZM7{%cNmbU{{TVp3}a7-?#K$xVQw%?XNpls$+y_dxY7Jqqxb_yxYnjR6E*zt zh^=9~w1BLU<x33)<5jjy9GuUTC#KVk*3v!#_zz3?*QfZ)!QLE1)E>s&E;S7*4HhM3 zoDndUoZ4!`%mep_Y2W-LFg4KJ>FeQthq`UVwymNt)WP}Un?dEFV8QM@DsG|o{qmUD z@xj__uDsK&^?!*v75utrzYy436}&duMy(o+><CNC>20-TKBUCMkXPo-ZmKk|6P9sr zbH=<o@XJb`4-?s4`I@)blJCp0)b20ufs!dnL-v0YM6mgI7y#ZF3Bw}=!&X`NeRJ^d z;l0hw*5g52?M4$6I$KSl6CjHX=1HQ<t6L(nf;bSyPv7bZ_njk9n)k(CEbz{qdvXg4 z^hg&|)hBZNk+Q>Ffa%CHz)>lKvf(q1Rx2p{De&<%A*YQRXm8?XFB52u``FkL()dxX zzZQ`UN2&f2IwOs!ovw4w2?<@eo-;qgn7mQpD;cjeyA5wtwY-{N_?T(7n)UCMb;u*^ z)7msB2g)Y$gv>`FkIZsBLw~91z8%o?i*(eq<+-$LNs+b4^z;(Oa1t#$R!93;CjoxY z>cnyHUrp-J4S&Si4!fpVro7SFL?n3a^u1rmbdkExt4V39DPVKEV=e|p8?2fY<>kl3 zEpx*2%7x^Xd|6!I>T5RXW8JkZwJ0UiPCFRoXfwdT$gZF59d<b-mBs3r^3RR@HK%F5 zEVuD9=^9?0cRiJ@)Rz-!TBVKOnHJaEcdl8@EwcU7m>F6z_fAmPZ4KXwuD&UYvbv_Z zrp0j!c^8stI@D_n;PPMwJwnnwt-Ewgc;{;=#ddbS2-jfvY})LJsrX^Eq=drv9#)*G z9Flzb{{Vz;YrA$IHzeAa$0q?t7~VMeS#|MN(@56zol1R9;%MZD%+u{Oonp*S2?b=E z?TMvoOmY7JKJtNp+%83L9KxG9XO~TEbDjycZx49M{5_%1YokXr*A`JnqsM>Y<nts9 z@vIQ)23tF+$xt^%uz*XhMpWy=VdI|>L8;qKr`+8_*2T@vq-^yl_rObHTb&f7@(>Gc zM^$jd?O=N8c)!9r--o^@*`z9DxVRR#5-aQag^kt26O$0rZ=kr+q>b51u#Vz66;3xR zVT~<&NtfYo#XD~i!J}V8YiTygX0`Cqvq%zrtcwnzqRA%WppaVb79H8t;MYtm!R*dS z(4SO!?}9a77WlhMzVQD5g#190OQ*>d*thWWrOoI<%#9D(d_YTDM0SD+W9BwM+E)j? zxbWTnqv5#^k0!Z)?Cn5F5Y{g5yfDx#>+-BkV&d9aG6^yV@<}6bMjXc-)!oO$pZG-J zk#(CH<(|s!%Jak;XNZNcxki;IzlPvJsl>SfQW#{JNpZah`G$YO`6Tdnjb!jV6Frs2 zw-wc-Eu-oBpN8&QYf@xYv$EBM_6#;|GF-<f+!O+gr{&%*+Zns9&3#AVk?}8sY%V-G zef_U#8%u97)U+#46-k`#Lq4IVOt%4coGC)jv<6@sId_U~^+vhUW6|}^M(XPJ);DCb z)?zl>?Hy8RZS<X1+BFf93b->xDubNv!&KfA(siF1>DtYYjx@`OB9b4sMJ~2%rj9F{ zcH1GE>%x}-r<ktYh|tF(h2XX@EqF@uKO6XaQt)1#JesZ5p3B>7TU3Wsypr9>Nl@GP zk{GUFffxWptl1=llpmBDnfjR?Ch*Akaq$Av$37FV(7ZJ)*C~3U4L4TOh>iYBgL|k# z*A_Q2Dm$`AaT!K%K6T;8p<H+~#MWOEA-~nvSn*Yj`ZNuBsQ&<DUaQ&N0@1ITrz{$s ztO1I<1`;OG^M80jJo=Z1d=%Efq0y!A{N)L}pHT3Xw02h<szV*4-rHR=oQBw1FnTO! z0N~!w;ZG9yQp*0uOMO=GvszqBXQ$e0mkk_wD{(#Dy!Lad6NLgDlCDN$9MHp**zmuM z8%ps9{401bbX_G#lF4Gye$diIC>x+yblqkX4DTTuM3Fmn<Ppfr(|j>~6{e}-PZMeP zS~J`!zqU*Gt~@j)xrYlZw|CkUvRgAcZNO0!g+cjb8QT8<8~j4PzVP;&b$vTnnLvO? zcdf@}i!HX@rX4>}xAOOAmEAJSj1eItB6QQVjT^*~_`gE%WVY!$!F1O)uxe4DosZ17 zcXqPf+RB;bl)}hI@nhx%x(-Um;b;68ANKq3AHl!a!e7~c!l|ctkHnuA;=hJ_*1WXw z6n0t?pn~#9FC>QE@;i??(ko#)85P;(CDt+r`T5`6%(wRt>Ocb0Il=&=c5{^+-~-d! z*1u$b;I#h$wbj4vf%|)WLHLoRUOu6q>C=x4=#nst=F{|6k{#^OBx?R;)R$7DU}h$d zIU^_Wn^L-H{PdeA%sAcGzCr4JtM)z)%T*jdJeIOPJ2$V-Q<Jfaa>stfZOA$tWAVo| zNU;7O032j@qC($w&*CXUlEAh=J#p#Zt$k$XmWQ5^YA6|>843vtxbOye<nz+MvXA&R zkM>^pNvZg&#=o^!jx?=b#2U|omJKULp3)O7jf|SK4kerSdv77SSb~V>jD$;hoE^Sl zbNqSeF7RrRO}s2oA2v<hHb?U@!28DoAa^_r=N0~;fACI^g42G?fACKahJOY8d!^_a zFN?GtEMDqNG}txEnXfe|n&x|D{?56M=j~Se!phEfZpPPrq>qu~9BQS8<i4!-vMMff za<%Mz>8^Oc;q~sVapA8K_@hkBvZO4!g3ov4$+Yb96IoV>w5~*WNsjI?Nfq1az8mpv zrK|XU&fiqiEm59Jc%qgaCLcM0G8x+0uaF^8@~MpmayIfSnm#$XzVPVOb>n{<>Fkk1 z6tWvjDIpvro<^$_@tFdQusOlw%wx@X{<o-nJGs>Dbtts0HVs^bTZ`LBjCa%ArpY5M zb!0*l!FPyAI3olOzmj`beG&EikFo6<b;gUY$vI1{D(6>#1rtFmnx*8iF*&x6>{4m- zt3(FiS{&eml0|wfJ~Q#nq)TgUpggg}0wd3+YMyH<@C=)*-0vfn%dyW^J!|LfQ^vk0 z@qM!Ex>mWa$#)L<?X4~*fnmCy1a0YT*9G1e125#XiMez0Y&btHOYmmXP?fL$0O2ll z^U0HJw|gWTxx=KB2UZ#6Fbod|n!=@7-$;%$d$a%7{#^8b+14L|{sdncd_A{c5crZw zHbHTE(8UZOk^{#c?a8;R43gZ8fOz;@Lhu&5<FAOit^WYTi@ny?7ltiP>_`Ur-O32z zByz?6>V?1q7#sup3k9?Ih+F7-Y)^4>b2N7Lr2-E*ow*I1VB?Hurz}7f@Q=p*6HK%C z)8Ws7z7S+)U03aTuahD=OK|gVEM!7*V?}Y-fsB*Eub#^B^Pe^K^FGfr%jv_F^j$lg zhwUHm(@W6231NBR>z}dM>8`fpPcgP$S7NOz$VkZw0Q<hU#eKu@)8O{C<Ijd36!A>g zdVPvbqSzp4p>H*WQSA>PQa^g%#U^sy>*vqf-VHlN_-S(-Wdq#Z!mG~X^1keD>c;?+ z&3=@83%b$t&wySChf#{=1YHWi1LesiL7p*|GNSCk?~*q3HSgrrx#7&uD>kH~h_n|& z%<aEs9SOv8-)h&4;XpW8ku&^7GOWNJ`OSI<hCUB?FTi)>U((F-Uq-GLS*~Prh8QEu z7>}R#eweSKVzkmO8B!<Rz{b(kA4+zor|584JUXQ7Zxo7Eo@vBkL0%8cK<nDOarkd* zMsR&o9#vXYu@I{IG<*y3%T!T3o5@w#fKEp}fFtqzYo`65emzO5s(d-|+=K0Q!Bz`~ zAO{R~rt(g5M;YvK>s}r4Z^a%o(_wpCi#uIf4WkSg?{S<4$l&Lw`@{Lyws^Dt3ETTe z_$T&S@b~T4sCaW%xA3Ql6HJcY=4kDqvWYcjRYnqd&pg58D6u+1tCktSB#*)A<r1w4 zHEj>+O8KlP&Jlab*?RUq(fyZvaj$$L{iw7noiRN4wHt-AmL?@ZE^>}oa0ouc`g32R z{{ZlCzrk%2<NpBc3E|(`PfC&{@fX7T^tIG+5iZ(Zts>jWk-eEChJPkvTRGXtT=Dpq z@c#f?@!q$gABY;1<|~~#c8=aFR6#K?;4F_cgazjqWdP&ezes;<zlh%uJWu}s1XuAF z#2*w+w^u$PZ92l{NDC}u?HAC(#gvk+BOUse=jG@<o(IL%rH`i=_da)zu&}9sl;^dd z`JcwrnsuVc>34MkG8_=6q4fk~@}dda&O#xc8-PyTkAhBk;Pw1!Nq)?iK0$~b?hBj@ zo_Y~omW^R=KCr*J32z_F<|P4{7nTI|=ng%2?O)jwb4u*~KC4+@k?Vg$>p$6t_E5C= z)vwEU<9X!K^m{l(%+tiN?l~b=HIh;h8S+Ra8-Q>D=D&YF5_|)>T{6SL{{RVm8K~;o zU8e~Sm1lQyUvcEM#4$=sx%rwx#FLV1`aJ&tf=m1h_!;{v{=}aSt+daFx^B7SJ%3Aw zT-SBk;D&kRy}yW0g_c;0i+gm$Q7LW99AIF#U($d0Xm5(T+?O67&|c3*QqcXHYj_w( zv4AW**;V36Hjq{~izH)_o<9}OxZ-uHx^Y@3r}>|v<=i<6P_y5?&*rn?zx)#e_N@4u zV%GXk!i(J!X3pFFe^ZN2w*;Os6Gro~AN9+hP;2rp{t8L^JrCJ0_JqCo8S#qLU-**O zLeceUX3{UnwTj;O+{Tu}&9zpNP}c0s{{SlOU;xfde|LIcjeaTJ$Sk}=;w?h)ls}kZ z@}u5Vk+?OKF@yn>sq+cWa0##C6aEW#7Kv&900ju~g}hC2k;S2C7GQ1??L>xI7c9&f zoEcv|j#r+w;Ze@&*Qv`SzT|bwCWIjEC-=(#0Db=eBl8Fk*|S-9T|(316}<Qxf3v0V z?9d(uL3EMKS2^p*01mk|;yyU=r@&Y=okvmd-mBtenGnfmZ>w0?mzv?2he@Tdouh^z zzc78QN%?W<)lChZv>$4Q<(zLLX+n$v9q>rcs1@d(E&*(@XE8D7nEL?zPuHj6#d>hY zTixYH2h@^x_LBSm0M6!*!S5Yw9}V?;rSM&@k1YD!f7w#csp(K&+(8ZAVvt$MK7Pw2 zh~-{XLga118+rL#;%|kIf=g-Fc|R|gZoC#MoChRz7{?>;XEp7*09kxRrGd+>)GP=m zc2(7fuckQYYp(sZd=GJ^d`h#|H3AKd&W&L_Oa{{JnG!+l!GO=y3j59n#$L0d-(R@- z&M2WDcDH7Je5JS8;almBWX9wkgdB|5XRYa)W|^zoYJNeU846Ex0F;n&+sf}$O@Y&Z zIV;a6w?A+^$qdti6;48fz#YAR8rs!$tF2GNmNrJ+*<b}c&G}uio&ZgwX&D^uIrOj7 zYtyu&B##a?Wi3zDkAYvdQfXc$(tIoMH^OmfNVZcMEUkhlo>eO&071-~lw=nHfz5ww zKd~>0bT1J66}g*0m7aT>*r#=7Q!rPFGN~J6uo%e!81O*JIIr`~{g<cl7LDUAKUYWt z*e;`PE)F=8enO#>s*G|wXBGYD{{X=(JV|NeEgw<vy}Cty*EUf~7Gzc%pm2BNE6U^( zw1eqc@x2*h_-hdb_AMpyYxF#9f>6Tew4}P-Uj5PfRitZrq#Dh{+C|OE$$k}Nb#Ru^ zr$e@7RWOw!Ax`3R%78Iimil(9;yqpMZDTsT;lre%<pe_@WNpq;H5fQ%$6uFkx2{?E zE5&+zaW0>CXQugs63GRo_mK2PLU$A@xC_H^oRh{q8%6j<;@xnYo83cHzD6oX42XCN zLk+<QJ$M5duj7c&ljwg$%A^+T`ESG?5Y=yNCed|U6trh47@G1$jUfR^kgu2uF=iYM z_&<BDLD15^A4#WAB>KJWlMq{(8RSWsdCbcYQOJGx1Z-toWN}|wN$@+u7OH>YDZ8~m zbCsUyov;A}m5U^t9_QM+T|Y?pHQ~5pg2e^kRmYcWZLu&qb0Mvk3R{^xOf8}DoZk#I zTP+mZ#dJQ?Df11@t-D-pm;z46k&xhl^9Fpk9G2wo-}q0!wwfT+JY8dS@gf;b&)K82 zQJfYfVnR8<EX0=MB=@he6ULeyj~XV5uz|>F<j5!e)y7R@+<Z{+J;-?U*_H)wlr6Fj z+??*u=xMAI?q;!GN6X(4J^@~QNBBFhLEs$%(^7+3(X|wk?XK2eEA1ApxklfB#4-6m z!1S;4GuBcl^lcL7<PR>F2KEyY#nnMRWMq7UB!wfW$Ri@Z)iz%XSoqD_?^m^wJBgxr z&BdIu+T0N8bD1sK9lbtoJ+WWq)A46dxPtogMVv6VveflEILHb@HMQHu0d5#&Q||IO z<Dt*&eiXM(RiWtr05kL6J!*8I<-Ona`5z?skuKx9GZiA;$vkkNmgs#+?T(etGcftE zPS4@TUiIJH2Qj=?5(np}T;z_PoqzpxPAe;Q%MeKlGw6BEe(4$LelK2|x!-&jMU%z0 zx0fet1u>PuJjwE}^{x9a3dUvr$FPTBgb2cn@H%94&$%7_4;3%M+i1^<EM!nHCx~tB zjE`>In*OmrVt@E0uk1nbtHQcRjP*OO5otavf>t_~lO@Hh@oK7&i;1s_{gfu2%ue4f z(oLmEbNkjieshR8h8P(0%{F~M4dhbBH?6FElm7q&l>Y#NQ~v<NMfie0ia!?`O)uf@ zmieA#Qj=<OC*HKQ$p>#3mTcii%D*}Jf46NrUGU$AG)pfGcv{u$bgeQ3wY9UiK^zc6 z5`{?PSjGaXkLzDI=^9>>;Li?Nct65AaMSe7F5PWyV6;0{C}RKw2cYAV-11MYZd+=1 zR*|zu1fhH2Z^-O&Jx91T{N=<M<xIl6t5a@^vHN~mm(#;iRN%khp2shaY%ZTMiQ^k^ zRdJquc?a8$D!TZZ!2`mgOyGX<UX7kO$v@*>LVRK2yLnY^uI=sQW?+I@V^;aORoYu| zC+VL`i&*%P;9UmR4O3dW@~y5Nqe(o8o(UaSC00U#GC$wz$0ojdX(QM6cV6l}LgQ1n zlNRd$je_vO4<|g0+i-odYGu?lRfx%NE)Fm=jsf)R*Xj6In18~_yi1EaT`NG;ZxZr7 z(A-<360S}*hY`xs##nsAbYtb`0=y&RXUAWTdN+sl8UFxhUkK=*5Os|-4>G`N?`<-a zVkX@TutHp?8$!NZ<NyaIp(N~^En%m9kF2h5bySdfvML1S-ZF%Mag3?$pVzfOE;ZYs zi%CoO1=q|YJxSO>$G5oW0|)u9_=o#&{{X>WuKZHg5O^j}2;0h-iWKmb)&nTXAKEwb z%L6y31E)j9e23%DiJ$OQUm9KB*?6w+;)T<)qe%^n7s3<|hD8abL2j5~(GkhVP;1wQ zP^GJ>AH3$N&Y!~m<NE&AHT^%rP`<0;eMZAef)d2N{lr$gK^e|wb;oS*E8!1_fACZf z_$PIYcb2-JkMw^S-D%9xwT6WQYj<8^ovj#Xk&zBT8;ppc_pj!MLjM4Qb$-}i7<|tf z>7EOU^IL7~&8^;B*y~%6?QPNOZqtUxd6`(ROpI61DgOWjZT+cc@LXOi@t2A;Uk{>~ zl3h1gw7j`ta{PHoePq(bxkq({kmK))>4pmdO<uKI`hUQ=P^Dg93~YUK@#p>u&HFJy zq$J+~JOQmmtuT!ums-5H(k$bRU*<biH5u8!IZzTcCynC1M)80A7033-)^v+#d@-n4 z_;1TX(_QKIg7KydFiDpE+(r%#RZwHGz{Pz%;Xn8ySB34oDP!WF9sEJ@MXkiXNc$g$ zA=58lc49+3cCtd3ixD7zUCW-y&PUps2mBLf_Al@rtD@;qcxO%3JY*z}=j^(+t*Gf& z(5q+4c`co_2(B63N%G_YRB?`RP_rz)ieAn<-`AO<%d1P`c0ZhLd-j?Aq(5p85XYx# zK0nv|dwkhXv1#}7ypAK_h12x7;((OS)BC;$-X^;bhrh88?Je;GRk_jhF9J=W+!73u z>-KM<K_QU#xRw&qNIIQ?k0UtEe_%u5j)|i9rEOEgv1!_7hijXg%Z(dOyo@3bGDnK; z84~2jld(sT2*yH;)}Ddm7_P0gKOO0;^B9PV*2_cIZXPh?2-V}$^&x9+p%dn00Iu&+ zdBUd@N$E-nFYD0gj#C}v?teEQ41eH=za4yOb9pbs-A7OGxwc1imrgPGg@T~TXYy|$ zl|qn5mmF^Gk&GOH^;dxZ0N{~dvxkN}2mPn<PhZqLN2|_O8)uqnyf)IvNOF<dYVm|^ zk%PHfLg0PYLxMkEJWb;d4CuOjuZC|VuwM~s#blN%#9bcw;zGN8yPYmX4t(BSeAWjT z=xepSZyd*}#h|^OsijzHQF*Q>hCO1&Qa^bt%R7lC;ALES;kd%DLVS9ewj!pke|CqV zM+Zs@>L<(EPr&^v;pc}uIpE(3_%};`APa^|zYhNZXhgAK#R-o3-Z|~n*bT&qH)9)# z>OEgU@s^Eq;~U5z@^tMpMv0ZqkKzea&+-8?Zm@v)D=(S~jrcgnp%v6=dSiH!`&IGw zm30r=es8i(;cMTr-A^NYu!M(GiU?LkLAb`!oB&rWI?dv530%L0EbRPgWcsb%sOs3) zH2b!ZV}OQMTa6R#5yK-$K^bw7rvM7zoSS!<v}}27e;K|RL8)C___F%e&tBH&TPtX_ z>q{$phLYqn6gN6KYsF=V6-VlF4o_P3Tbmye+v!?YgmgJt!ET%FZX?wpzh_*S;Eqd8 zeEI66oPwQ5?Z#nG4qJG~UbOgiV<wrZSl9<QR?*$s>Qb%1VDh+z_1g6wAU2eIf<VU8 zn#GI2UKsF%`k%x}Eg|r|y`*UchxV46b)mPI*;o<hS#IMD8zj0~0CUjuQ7A`rS2Dek z*h%1BFH!NoljEzn88j<#9M_Fusc3A8ZampZx{ZaCF5*f^4$;ncc8f{y%sT%7g|*KV zqg?Azvc0TcX|(ZVQN7Cyua#u6PU?tw-!|Z<HH&8_jr={}nC^Ttsb5}AtIF(J%Tcwz zSZ&q!lEYVPMcE{qm*lp5frZCW)9aRADAYAAKfwBo7PB^<t331SI%c5`CAdK&5p!uB zt(a6_k&gFJM<+Ecb~Wa=Qzz_NPlB|~E5V)}xwFx)@1zsGowdyV7q}>-#R&T}>3U^D z^I=I}@bnE^!L6(K)(g)PX+`Zc2mo8nUqrXP+OUHxj~=9xtf3jW{{U0C5uPfqguHpF z_@Bm8YW^71r@hg1=$2H2O4Y2j7+NUMtYvKCiKjct@}}U7_w8IBgW^95_)Ek3hPA8> zJ5AL!=Qi<4HI3hd?q`wP%$<e6Yo`(qy^x_<yYrD3LX@<+I<F1uI<@zNwViWIyPEdm z<cN_pjb-&ELv;CL9j>^x_Nt+BOj$S?RUHALtLfTCgW;VQ!}7%igt~;2UFJ($oibmP zh?Fe;90nYWwo#wv9RC0b#^$%Ac%#Ig6w>@E+8xHJ1>B<YNv?&DiEVc{*owybYgyxU zA2=x)80pEyCXr{PYCb$35x3SXRWxL4cDK`R^-UUZuma8=$q2ICWG4^1Zqf!wt5&w8 zIoncq@U6d!{w8VKBTFsimXKnCNLGCtQGxupi!cK4NvcHqo96|IU<NUg)#v&({+;1V z&k%UJ_fa}!)!&;HoOkhS9v`+_i<c`Ji8WbnY=ec!8({L}VUVDFwb8zm_C65Td}r|@ z#_etzHHgdNI}JYL24=zEaiDpZTR=E6?%)8#fC;ULVYyEM>DqUKf3!+!H%%<kXm_yP zFp4zVJlOn9OFV2(1|-}t2sk-1&?#R-oR>@2FT50%+O3W5vmO1?&lSa;r`ltUpcn(~ zo*nxnv2JXg%@ZN#lh9R~`&(~`8gIj`KUuW4v(e$Vj^j;-QM0?cNhSUBv)SqvS6AxW zS$6*X76g(92D={->DndFkF?DXTzhG*^!r$2W2xBcHrF7`#oHG;Zp}VGc*p|?e(}Kq zw{(9HT-<BA--{r-*Cx~LR^nv0iS&(H(5elApoYn0)ZJK&`A09DuLl4dA^TT$c?FK4 zpm=v%@khje5L{kps3W_Q+x`*@JIxXx<atWM;V&hC0HhHzS%MelE4X0n>DE!}-w6^O z3_;?1Tg%vEk!{Q#HMKraELud7Y-Ye<F(549;fOu3tn6*P9q{DK44PJ*HlcF_2_=hN zcur?zCRg%?w9_GBw?0Tx2;4K)v^;U(sC;Rq_)^2fG0Uq!q3@OM^jUmI5;1L&w0ee_ zEu>Jk!o%i9Ql$1Ai+hSr`pBPByYTOTyltatb{F=(9>3Hy_{GJndez^Bi>I1Ido+2L z^3n2lgCaUe4+n5L9eD8GoZlBUj~2g&*3CX<lT(|+(U~L=!L-f&vuAa_RUvqGgL>m` zFa>j3Zoe$Q8(+g79`Q}JuAQYAtUs}AJVk90K1v2)`aR8zl0z<7sZn*cmjsY_9JQ{o zVesbrR`{FaT_Z>E<XXhC#cW?oO&a~Dy2y=Z)UEY9m=W0EdFCa_!)+&ueBH_9>WjV{ z*I(iv!kte@)2|}&Y%&W~OI6fi@q#`i1P`)mao88Y1-@xK%nYe425$JK={_I$N5Z;( zpw`|M6Hjug4x@YEwrM_5wJmK{_TGKK<Rr2N7zJ{~<CWJucYUvXD_aj0=^CD^X?b}B zsWzi;AC2_$_GaEe8gJR;A29hO+!#0wjtH)r;Ay(9siJ%}({-I2Nw>F1E}Gjz)uYjF z9!rPb1ll&C1>QpJ1}Ox-X6@M8Mol>;#{2X;k>JI=_}ORTdrbmsm6jVL{ibwXHvBdt z10z*ih_6q%k{smxnHjG%)1>fkiFB_S_$vPZRkQIm#-NwbzK(V2b^C&><O_K8y>b{} z+*vRonT&l<IYkw+J{@VAm&9#r#Xk`(jphBVyz#-Q>Ussvmv)x$qxo6apqRwr0nBp< z^10jqH719z*!b(<&HQa7J}eLRDHn9``1u|<<QqtW)h#Y0RX8F{ms9iOAcHo(f^)X3 zV}hSe@TY^m9$0u^Pm1%xcZsR}qSiZvpTP0RAdIZhiS&^q5|5l8E>Km6E1iIkSl9dw z@jt}=A@JSp_K5*)KGG<@-*=^3c#<hq$#s$)Rpg5DHXLvBBOv|dB$HHi&lcWzFT#Eq zwb4z^iq|q+sJGLuqwu51R0awxb&)691~b5r6&&~DUs0CJSNOwY;v4NMGj}DujxH{| zGpbK?<P0k|vtcQ+aD?<|!HbqTRuyn$bIr4q@F$2S*F1UReFjUYZfDK=%WdKB5l^Z~ zl?E^$M81ey!rcQxa}MwJNzXrfaq!c@KMF2yd{=E3gRU(uZ6%F$bRG<3Ea5QM8U&KI z=Ezn7OitVt*<P#R&1YHEHQy0wdc61Ay_8F+E5bD`H(s{jK2a>~<BwBdI(ZIvuiP2n z*C*jCT|&d))!6Wa3#UjXwTVWP4cCRH``Fr+{v%o7{{UynVUOU>aB38K6De!Vba&c3 z9zD~%GvbXOO}Fs?fi5E#R<PK3ltu$9E-tlCvtABK<}z0!<{c}&z15}g&&BvO{a0Cn z$lu3pD6+ZNH49d4>9DG4j|A2~!_p~$&nyAt{MGSe;ZBFDXx<gnek5r2nuWwO-boC) z_LDxVa}2MvZjSpxBHq^vl_BET;|rXQeInmZ@y?s^3f@l-YMR^Hn@d71ZFO5D(~>c} zYaKdwg7F)(k(H2O72F67H?th+E8QBNAMiz|gS6ijCAN-qh}z!g%ejk8i$hoPShBg) zv^nOPLl3&?3djaaChV!pdzro_{4$2-(i=Y%eUknLE4~jI1Xf1fh16G0nGOi$4)8k? zNUV<yYBxR=_@m+ry;|GD%Xux$$Y-$8uQUty^9M%1xOBIjx#o124#U)7d1s1#H0jzm z!MmG3+AqT1DAOaAtz%E^izz&JZ4|z65zpmWBRsLG!!(O2D7bbi21byK+p<SIxl>ov z`WwdHEWPk;&xM~{)gbWooR*CMhJ9}L!z6i5302b)JG&`<QaZ}62g))!U(tLcZ3o4z zQ(n^ak1{=2xm`-nK(~rlTZo2V`(sbJS<VUn09zz0E^>L`*NXTv;$7dwzl9cFEB%)> z9T&t}7M*!LoY%e^)<5AMjyssf*`Sir<LyxyVtyosSrSOt@&T-06x!>hw10~pBZe;z zYtky)OZLADNvqxlft*Jz)$W$*<tB2=D$3EE<Y9?g>y8#}>T}N*PiUQIhOab#82E1g z07e5&@dm4-kisO?<MCDG65BaaBZpIl&QU1}Ll==>zT$9c-(b_N?w7=V6^38<No2ZN zFDz~^?=)#HR1BQh%5@keIZy%+i-JgC1#^1s--|qVq-nl4x3|^&Q8nGXkv6O0&lAUG zZ|B6tSld|K&algd3^vHpI-ixsdU0P7yh-r;!rB#%q2gxH^ya&XWVzGz-ww3be`tvp zYu@TM&OXgH;g)PVgUaM!j;c6!9oflS7@o-MG~1c&{vzpG?vta*;k{|*XkIJN4lSPV zH0))!*DP8aX}A9X0hu2y)B|1Bjg8NZroGerTdeELYT`?Ir2f*=HTbR6leuJl;_@7@ z+Q_@t1ginV4r^3j68Nz!ek6D+Me!`w+J%f)ORDJ_)wRuyz+?_q*24N^j(DGL14OxH zIRrIlc<#=_NYtb8-m7WhJ6F4w(rZg=?K1xWPt;?$KRAuAAPp|@oc{3~4nvG{UCK%^ z_m4Tpnnss}JQd*|4r_-=u+&pUx4Dhrx06Y<xzVSVbZ{5Sw7D|c86+T+EM&h<2yQMX zfbHd)>f6SrP?jsSS)e{8hTKAu+XBVsz0t~+QaD)UDBFQ5PH;JY5PU@N-H(l?)BH0o zyQyuyh|V5my|)SxTm?zD1OSk(3#^eA4gnoG__cP^ykjidqIg%scfV^FcFAiU&8DF= za^R{@XJv94;f{V|G*YV{n{9LbYAN?EVWjua^?!%D>fY#g+AoH+czm+Wc@*9pyN_9E zS}X>)iXCB6XrlmUX)Kv147Krp{1hwW^k1?U>;>^B;^Z>PZQ@-T&{=q93(HI03TQP= zb<L!08Mbw`xpld7G=dgY2pG6g^B;Mi$6Efeb8(~3;+NF!q-kEm$hCydW6mW=#HjOZ zUAsb<Rf!Ff-^2W){{X?qAGD+2>t7E40A)P{$ZRw%IQXYhSpy`Eae5@R)8mkAjxZ7x zyO4xKhh-&!9Qt`hDPl1Zr)}AWF4Ump+5EI?Fse?L2_s0M79GTb#dsT=rdgD7PjYy# zD%S3!p88dfgjP7n!Q+qVU0$Q9N#z+-{O2SeUrhcSir{C)O8`JQ_OIWlr3GX2h}Cr@ z=E|oz_U<ZpOo6tkJn@Wwp7j}4Q}c`w{uQsKS~cC$`5@$W034I|Kp7mK-t^@9vuV2{ z^yB^sPx~P2AGR;;k>LLTgt0o>>2XZj&a-xr2Wwp~N-J?Zq-A+`F<Zy!B<T2MMhE>E zSK=IgC)O_fJ*3~=OMhg_WU$eofZjARk>s`0TTG=GuMs<-+!VV8#@hTG{{Vw?{{UjI z4E!ejov*)bFNqqQHn*NKl~x6uOK!Hh2AOd2rNch|04iVY3(+Ga5<@te7~*yE`Fj1i z@dwABgF5b!sA;#0Cy4y@k|-tCQp;Grj7Z9%BDIxOrL$lI?DJXw0EGZ-0r>v_73U8T zicn7RkLLG2_awl&G*f%Cg7Iv+Z-Vvq@YU{@s%Y2iW#`HN00{)qSlirN$mL^ka`Gj- z?2pL-+0}??)D}@%ULrpfyd$LP+Qz%#8(D2Nw0K`vi&u&5R!db9q?aR4iKU8H<&n0! zNck+=iVCr<{B6;u_-8+Yyb0o~eI{rmw9`T@y~Wm#1f=a-HMg@mebuD%^#I8rQZbzH zdcA5th+h(PJI{!EAB68F*R)7p*6QO;w~>viqX^zOBuOnbBnJjT=iA+?HsUh8*M})~ zXQ3%4zK5UuK=EJg0c+vg&l%hJYr}W;Fg21&_TDMIHx~wJlq~Q-G~07CCPTADDd<b7 zWl(5O@ekrgp*!E*czfaelFr6QYmG-x6Bc8VWDnuCaOC~%#I|#iO=tL~+r{1h@C*2^ z*3!>d)33r^?zMYORuE^Ae93PuZDW$zw@llFvaBv&ka7qUC&B*!6ZnA!y+4a2N4_6u zWs37%w?Jh1h*(47B^lud3OMahqt;AnPh_rt|Iqw>{hz)*d<^&%cd2|p)^2B;##WjZ zqZW;5ut_9F@<^NatG{eTo0Nt^aHl1X+=~24{giagOT=FiZ@h1Dd~L>=ZqrXYVcni{ zf>^QY*kaAjNj|mrCcmwGIQSFruKxhQmRh{mI=o&VmN~U6xHpj@EhIK^$hnM6S-=UF z+NUgf1NpJ=m*JO=e0H*F7E(5yqusJK&A|+!R7`-YkG?wKACw+RuNMo1r%sIdU9Z)j zPm9M+rD$n;bUo+e=frytj(#xGz7O~U1950I2*OWnrM&x_qObuP0h6_y0h5+vfIHXv zFZ?P00D>ca$6gBfZ=h+Kw}`w=cV}s7Z(?HeAk)?c3K5akI9_2Qw;N0D&u>rj$^DQ1 z8+<<ajr)CkGWcKM`>Dp1d_|<%&32GWa`U_w0^(^FJ8ZkFn1W?66>}#Fq}TdlUU*AG zz3~pAb9i7;JmAdUU)m*>L@UD?6iCgLE4Z^TBRnw8bK@}*q03H-wueO@-Zwe#f9V<; zC;Sta{t0F9yG@P@tpeXtNXQ$tjb{5(EbquBBRc|5piB<K74F{-yfga>{4RAL3O*g^ zmh(dFtSmH0Ba?a@uoB&>@<_ltuunr?5o@5YhcA{*E?HK<E@h7LP|_eN@(8AU%NP%k zbGUzZ6|<u1zI2PL=`9u7K5cHTT4j^TDsdqaC<ar%k{b*MBhtKi;_Av*l$p~iYT6&e z2mBOg;ceG|e`+s?o)?D8$Y}ggeRBd#z%pCkPH$oxRO5j@+z*sv3&0inx%*7~Uh(?> z0KvF_1av)CV=a@P4cc2;#T-bJ8!O$&B#`cNv0@}+Xf2HA1Xr8?0Kr;+W`B&o7k_TH z_<QhI!`GVDzv6ohJiFW5+%=`W*jI_=y0|Lo3~-_&%F;=YgClbgwd<eoT3-ff{{XXR z>>Kby_Cxr7TJGA){=`JmtV-7~X|@xeIzKNiP~89v^SGQ6cL81<2sQ0FwoRX@Vynii zu#J38seQ{=_x`8i7wq|}_+#ToitWA~c%I%{7$9c4xU-T_W0lCp$4HOP0sa>GdLGsH z@5lcD62FSS;D#R(Z7tjV3qtXhm2GUhHYkBLXcOe_>Ad51HsoLviuuP(y-(SX_I{hi zch=(1#$GRpbp19jI0++;KsP&u$v`q$j(+H`&(DZowa<XOC;K1xqxMnwZKvEi_^-uQ zdd=3Qbjt5@ZKo<S&A1ZSp5{N@A;PRfaQTgPa6VI45s!rEM`noe2Q`H(x^(J2U-kN* znvllNg6vBZ#(R_0@!!3DOZzT-9M!*QPmI1E_&1`Wt>20@OI;p4pkxg~Re|ILpZR8t z(tQ+;E9Gk!WOVX?RvkV1@t=DBmVe;e4}g9b_@DcDTl_`w#Az;(@cTu(*1mUj#pI!F zEWj!A40*Q%fO1F!pf&wd#5m8ZVW(MiNAi|QgZ9|S#qGKM#p!+!@b`keB)%2XZv~#6 zq1eZ#S;+uPkPVb#HQI=vxFtYfO9KA@FBl~1=$1OYwYvWRW@*}$=AO!uOCX8XdEM7( zzyVcu0HCfiao2%flMjoc(+82@-6kc40!A7LWDm4@Jcz*Ha5BT|S_|S273%^QF{Dbv z<_=3p4;jb{{ut;h`J0wa-D-Zu+KSZVrO|v<a{-#(()wG4AjS5{65XMYkV6oz7!@6I z4(_<?pW%1@3n`{aYx{nDMAGi&68`{Z9V*478yEdvp9G*Hs;ccCZZnR#$<2Ry(@W&d z=G`ORhaiP6%Bn}pk&L!+#|QDR#~<7C{s^_<FWZ~O_rDuH82E*}4dV?;7}E8wtls|s zOTBneV~%;FSs<P{e56>*M=4SOB?(&Z!cmkebI8rsjFXM`KZZ8bt)<h<u*f)d01?-& z?oD~OiLIj>vRQX9<BWWxB=$Hp^+)Yx@KePfv5)N=;_um$;sw>NyQ_F2?khX1{U|(E z)5$%hz2Io0ocVwV?hp{naKX7F1pKe5>pEV$Byq;37YsKMf>e-COylwWE8K;&JgL)H zvod@+7uft&rB52;W!<;W#&Bg&-s6IEUugdT!9lzcae44-z<xNmA#LrXxYH$20d3Mo zB#7{EK@l8t-?nSy-8)ay*6;0+&oqr}jXv0;-0~QKaH<IdE<j#STK=WKY>)UPrn%vN z_$0@SzBqV;;#HT9Zu~1_YvOx2JU^yKZKtF#2-;+td2ViIk<udIlraO06~=SzWI2kV zj;8O|^U(9NY^l}5O3%~PAH&t`F%sKwfDOe*sOU4=x~~htYpM8qP}3M(%ku|RjzE$8 z%l@)Z%mE3rBdN*YRUL0jFiz-=pDCGG`kr!g{HlKn-RV~M*A|+&hwS$dg2sO{%MTL< zLc%|oj!#d-V!xm(wJLfanPKODbkXo9i>~yISm}U)1<S?eZs6{XgCPWspo3rB5Bw1? z;%%mt<IMw5yn-oWxQ1I|hC&g%)Yu7S83#DdGtGYqQQcWhsz}it*_4n#+7IE{zpEek zBbUT|PRd^kTwTZ{lS{vVm0SV0a<DAF?i?Pq?O<TB7<$-AeYmyvs~#R?y^bQ5AuBkv z&+hg=9{7Ms_B|Tb-%gRZ+YBnwj>8Q3IjqU&@vgaWKHW9k`<Iq?AP&8b6cgKu>h63~ z1XJv@i_QZqghUkvdUCxp_53QM_{&_1KlO0M+>sbK9rDMK>0ic9pDv94g;Gsj85Z6S z@dU_^4Wkfu5L@Q!(EdHfewBQ9BJwmRSD7tbkOtx~PjVNp=UF%YE|J+{)o;bV<{0y( zL_$YpRw0Q4oDBXI%J`4Pz7p`swU=3#!ycd;$dWiGkVwn-u*ju;nLPH+4JNI*aE#@$ zJuK+H7P4&IU-^b3hgf4RwEqAhpT?j4qu~2ce#d7e!><6!#0+|nIThvF*N86krnI)x z^jqysuN8=R3=ia-0tBdLS5m<7fXA-wyl0q?#G03gJV3r4@C^DsvvC-7zJOiKlUmIg z!B&sSaCY;*ESMvW+08?!k)$xQdf55`&&CtQbsUjeBoRhK5(jMj$3FG`X}`AD!x{b( zd~^7-@ZV68;kfYkjJ0Cm50tK<cKU=F_cqs&m0`vS9eRJE{N5nV+}9eWr*+|-KF@SF z66;n;X%v!|2!<<(B>)CIN7TMS;PGF_&-@pE;MS|Ae${{QwPdr7(@OZ0;kYM(p}aTI zNqeD8ZLa3~M#WO{M>VJJ`hced;=b?0+<JyJ(!P>kivIwCbLM!*E~zXNl3QwjGnY_& zrhNR)*#Mr{;-<AloHTu0fIay&M*eH49!PEm*&{eT{p&8q^7rjNTo^1t<n|ck{uTWZ z2<UzZCVemPPer=bd}nQAX&;#&EK)JcNhZ=2ReO?8;CZj~D*ph2Y<w#4&xU>--P>!X z_S?mg=)w!FR?;N7)2(c+yq_`;nU&1fP8A4HONIGx184Z*{{Vt#csobX^j{qOXV;<) zeWz)Qr|CK6;h#`pZYBe1{p)X3jNp-$z~;ZE@7Oc`3N7$wNxQlIpME|3QPuR>{41#2 zYu0)cI!w~6_UOzav|E@|yo>grvotY)&BS@wSr5ecm6tE5LaevGo|^vvk@ub+VyE?* zlwhx>zPdj%^iI<I#t>NxO@C3e)%9znSk0xZtD)V(Uvl}aZ+RrL24)zI4m**!3{@Rl z!gmE>@Ls)pb|-|HwJG)cE16=23TF`NR=;GnMM2E67G(#Il#YAv9(bzXMDZI-sOvg* zwc>q3D`%SDS+{E;1ebC7vcm+nma<Fc#_ku(X5A1!HX8)N7l*IBC~f>B;j4XfN61Ii z^(bCFTTW>9w)FEgDQ374N03~kO3Zj0x>xfY<tW}V-2Q;27`UmVaHGSP`mT?2Wu?O< z&xUl@j$5mnb+Pe3+T{gWHxTTS=_DuaAjpk=W4jrpwDFkGZ_kKz=na%%e624^vea%g zxvnCK{z(p#eJ!*BRJI+!K5GIw7!|&!!@f1WX>{v*Jx@c>V-AN)y1mnN3$~F4<nk0* z+B~v4;0BbUkM8qM)I3e9+1Olo$HWrd{L^_lUZ3I(HYc`Gw|ADeI&3#HDn_bQJe^+~ ziypZ%cAd_C=U1@OucnJ#w6`8H)ryHE*0jT=U8GV5Ld$=pLjM51BlwnIk$bNd*xXvp ztJr_Szj*KNw0mfN)u`XBmR={Zm&;wl%ZBQC@5;tT6f8TL&Okg@D{tZd01()CAvF&U zX_qnG>vEFgN7SRacp;FNJD}FtVPutt(u)vq4+;l0gD-(RD|0Qs!+jF|&rj66;QEra zz2=E_CMvBMOT8hj;dtXxcM-ZWPu?3ytema5`CCVErTB`<OJm|BEn%fuDT2dKw7$OZ z{Fj7b(0zwd`z5K9A2i1p$IF~xRlD2kof^TsQR4pqGULQr<ZQO{Uumq8CAd30!Kr9a z%(2O_w!{0tKm?3+9FD2sO+_^cZEj}OZ9FyM<eF=SxEgl51;EBc@$MJ8h<C=-Un_Rr z2x2o<{5Rr}c{R_DwJjPKj={`!_SyyY?WC7c#`%YJrPP*iWl^_E%@|&zJb_aiviVN( z_6fB+2!0pYU*61S@}$0VJ+{4RIdDQ-6x1GTr3f(p0P05KbCZg~(%`<i_=z8bJSH@| zO&dio6Q-T3>KZ-UA_X!@EtGcA*}Jr(sB*hV3*1#t_)B~@rD``C?zMGmapL_%6K4jw zrojcoaTZa%uXK1PkqAcH8DpLS_pZu)Gg-ILE&dz9ZK`S?+9?>inpcm+T6v6;4Wz58 z%#*3c8Oe*#WRP)5G=(<oXGaF0JWGG^KjKt2`dVA(ZO4c-yHM~F#b7~uXSCrD+&kES zLpRNui^94Gk8L~&aj)53>Mk`T`!rwJH?Ob8t<LFMJMk30O11~fAY;Jwrucq+FIw>= z9t`+xe`{-|=|TS0HjjOEqRz|?E)3dw+K3o}p<*U)m>${YEn88yxVoR>XT?o6-EFkk z{H-l~Q>I01@wB8EZKTyL=DcmJ;4?pzdE|<>6h+QX&*ATeJOOE^_*=qr>6#yiuB49Q zds|7<!<UN-=gLEB(cZ^!Bw%-|IPHUxitYSO@b<v?y2{_gR#vfC=x{WXYI?4VD@~RH zOP7yUwYY{c4gg=8ATqpyF<N>zioA0Vgyiu?mo~9H+MJHIzh#v8qffWV-0aa5w3o{~ z#<*-KJRU2P)6>E}0ulHtz-PnyM~H5A&3>9i^7wZ49oUjIYbloRayM2Dv=NV}maVC2 zwsgJ`_=T$KE2wzqL620D!o(zY)_NYHZ?0OSGBAonw`ibY8mJE<nStHMB<8Ua^TYlf zj^9bs;?ZF7H;8j3!mKx58`OjiCR#||!F2}S^79}vE;I8So_Bm}tLeJ*mik|bV!6E1 z{5s-!=hgHpok<L>fYaOF+D#B~hA5?CVg^nzoKb16wbVW@)3mu-&14qVI)0m}+D@fY zfht3&+uJ%Q8(LIJ@=3tlK&hu9m9KNPxqlF9J|Kg^DgCK;XJWhVWRbMJcG5{#=8@3d z$tCKvV<>SF`wa6~8dr++ShX!j;w;kHTH9bPlrlE0;rDl8veqYC_ln6R9q}2@rFkva z!wU}x=rQ<hFB`)8*1aQ3a3Qz9wOOEdB!r&DuZ(W*jlfO`T;l-dy)x&({x>@1pMZQV zscKQ_vABE5qmsi`wVmAx%A0TJd(>F44>1?r(CztaVjVlTV{NW{L3!YrjnucA^m^0z zEM~T~@fEj}pEQd<_FCEyAMS=SKRs&^HCqc!V$0#Lfp2unJNO&SyRx;_u6#LovrY!Z zYa*8hRr2sbX#vkl=PW<7wXYc+U33jL<4n=vjt{rInvR!zL~n;lE#^x*b}Z*~V{rtr z0CCS>r+h=z^y^(~#a<}5@fExdCl-sYT3KJ|(McgHimj!m+FlsJ2boK3>T}4J(gjT0 zytI8!#CIMr@wJ`KpKYNd6uI#RiDz{jF+eet)P8B&DG2ic#_^tZo+~fIG2LqZ5x?=T zhTuB3qdNpyd?%~Te(OB!Oq0cLs)(&XRVB6%KpX%_0<!!r-W#|0bwB(oxb3aA3;EI= z{t~%OD&`pAJEWBpT9acY;Gm#VFx@(u>b!ez9;YXVJQ3oU&Zly*o3eaIp<Qa=Jm+L) zEk{f8Z6lEsFk#Qi;N%az&pk;=j`3yYjGiCTd_Uu)v^QFW&vI?NNov+pkqE*VrP2|j zR}OQvn3fsEbQhX7xpm@AH^W{Ux7BR4+c=|!N78O|sr2JJ9r9%_i{C4#I6HB;9tL@; zS{3cp-^2-YtrGfcdkr@*EE*QQZ*y-XcA)S70Eusw^CY|Stbw!87CkGAvX8@BRj-Nu zFZi}A2reEOBo|uNhcAUCGf#+OS#?L=>dG*lY;o=!5zYlA7WN!gw=P*HgLO|H>c0^6 zFYHvCPTpg=yVGxUyTGs#kw+!v`8L@PfR3sc2jv@itLdxww%_69+_xuMk~`L0P?tn_ zzTHH*X_i}UKX&MfWdVK$;hYW)Z9l|%l-~-Zk3o|D`|X!7LRP}~c-kQXp<-oAvmfr< zjii8B@JY{3U&WgL0EIP3^lt&!Nuz&kSQnP!)_eQE3E!*C0>&e@)4+yRXvxaFp+^Lq z=N98)lv~{u{72$H33v-d(L58Q&*9Gx&8V|pn`>=ePX%8Mghv)E<AzBkjOBx*g9qi{ z^d5)eJr4f>#6CQ+02x8%zVOzwr`}BtoeV-Lb)60!V%^!7%xPfNCNasAxTAuE{G$L4 zvx{#U9c{HeZVwW8OGnZzfp)xyNWZXkwhjB#m<yZJ=Hz6S&d@kkCq8-MzYZsiZFRqh z`dy}r;y(~R)Hj|CmTf;#Y30Is>HVWW*_F~Uos3(i-gpKQW3s-6*Tb)hJ{9pVk9Aw` z3TyUyi>u1XZ>0E^@?uF=NRf2QrCU39J2A6(j4(XsCb_+8X#5l4d*#<{e$92RvRbVA z-Gmw%yn%zvUi-tl<w-VVhYSNS3cQ+kkNh)Zd*C}?34B_eZVs<|=DnYetRvJCMYd2z zCei$;pp{&!A!cuwWCCzUTQ7zDOX2+s!@d&uXqugcorE56pTqj4t+liH<S&<TZ+{`V zV5$LDVC*x&&S@rFf^R~LX<raz@RpC^?KT_hXlEw&Tg?{Y&sw#Yf9}#b{{Z144RoLZ zygW(|Vt<6BR-PQ!{x!+r?RM`(zPr=ByHxU}ztc59u*M_`@WiWR&K-$a6okR!np>&- zFXI0Ij%4fB8a4gKhN*0~8n1_M(@{mW`J~3HD@AK0dx>OaB|~Q$j&ZePuXxi^yYUVD zmmVb3?1i=L*7pg0rt5Yn7&nzHHn6MQFzCq}ZpYo^^>)x)-H}EZb-(yRd_#NjDt%Qg zQqpG6j4d?zt>Y3Mp?=e(7r1D~{ky{#3)GX7ReUX?#-9tBei;j^p!cvU{{X@(s4lPN z`B^MPJ|j^Nlm`qGE)?QC9&4QVabe-D6XCY4ci=cQ*e=<vtrlMmT0eyES&M@qL#m%A zd0<$^KwRZVCymdEejT^*Cxr9_@sIjV<Tukz48AJTTf}6<vF-iT+ABnsu6KN{<+$9T zNo;~D!6ffuZ;CSMR#JFY+s0QG7FwBxc0u9+cck8JcTxMfbRaF8?&0G-eq0_6Z|mO- z?mSEJUe@nWvDatPBTGd|VTVK1bh65)%w?M8POBSWg_CjQ0kgTOFYfhU4r+QWmxJ{k zMBB%wz$c4D)U^96AWV(-^zB7j<~_ssk@82&_k~f3bS*pffYdeZYRf~@=aTVAxSPY; zjfL|Q5@XEO3mZFz=W5QFKrtRNq}AH`BRI<1vxx9LzKwt4-E&j$My+f$I~#kHOI;r8 zQL*MZ7^r&<R2v1Av$dqi3~+Y@0~`9jtKzFahc}XZPPe<Xv$>wtOj`B5y{oC^n{DTZ zCz0cA$_SCZT>D^FZ-)LhXudRETj0O^Bvx;&G;`Z|8om9dyy+~B_kPc5dv835fbGYZ z(~R}5Q$g0Rz8UJ4zYlKwA$#Fyjr>O2SI})6P1A236_lmGwx3Wj!6E8yL?LoH9jQ^1 zc1Y)`iiXl>rNcGniF_-f+IW9Znh0Iya~-_4dgOCC1BOj;1;E+{L&nRK*CQ3s>o$>S z-w~kK9&1}zBZkCJD{8u~ktX4ixwEznr%RBh8%W6;PZ+P6G@pnbHTaw2csv_(Kg0h3 z9@%NSl+j&7_N2Piw6t(fn6X`3%96+!2;L+x<w+`d*nHCJ>&BWNjdcG24tUx>A858( zo~qDV={n_&o#u~r0!YYG^2RwvnF&?QZ8gkUA!FECv0YTKP3b0cOE8Vwj8Cbpelhq1 zNBEhoz4iRJG08o|G0i5Er%M?V0u@tJ(<Sr5@&NO;&E0`D%XnYnKlYZE{{ReiT{`nj zlT=iW)pd)VTU)l3p*yi0diA7ny0V7ct2;1K31DzX%s&qNAK?vq;su|GbgK`CTJ*Xt z{IHEn!icfo>Bc2x3oLsN+9eN#lo^+jTV^t~-RQ~Uc>Hgoe`kNfai&`vtCgQk@jlzF zD*1f3z-yFNHi^dg_FM(vAY77%r|L1brz^(0=zSgHO&i4e&Yx?d_*VAY!xq+FdnUQy z-9Xw}B!)lvd9=2YOr68!h2xYnjBZjza~>2LKg4;*g}h^{X+AvE<I@~j+#4gMc#-9Y z=52#fS!6`R7I{&V%VIuEay&o4ekNU8$M$|U@Co>P;wvj_`-^+)p9D?i>NWuo#>qXp z`J(N?J8?6_Rla3iz*l!;;_JEmW8wb*1^A0k@!^M8yq?y^%f(R(yD7t=*vWqYklHIT zJATzTEscb7E20pmv4u(0ZQY)S40?{MZK>%W5_Id>?Pk;2qL0Sr(_GTv`!UNqNu|oB zR%O8QXJA+;WEl)iFN8-;*1S8eS^O#1?6kP=Y?65A_<eG*Ig$cYd3t`O8pmizY;M}> z`2qR{uRr*C4}^4&9Q~W&diV;$<4>MTYsK*0*`9lN*>Sq=#nh|Hj+<A@lsd5|?v@A9 zd_Ok1tNco^9yYx3PO@crEtNb&pe2k~0hO5}w7<4N98r+DVI$$d$I8`qZ)2Y8?Hrt6 z3;a9d%@beKzBKrEOw}3f;J=-|A?ddE(MI5y%<rga$go{ABBngBvc-;0(lMLhPla0i zJ{G<3ufqQTh}wpYrOR}63mLpEt{rwKd4}07;QrM~CAWisRv8_mLO_VBg0<>j4z)Wk z0r;rf=+>HMlc&2}MIvcFB$r&%t(Yl0r_-m;l^`kth!mA`^I>vF8{uCN=o-Jp2_e_K zM?KBm{k6`N^A8VA;oU}6KRU$)>_cS8N`@n7U`F*Iie%YzDQlk$K0l{|^^f>Z?ffO< zeNxK&U06-y8)wl(7Ho*SUTbx^wfk1!#pj1;Im1SzbFHBG^Iq`J!nVBC?0i|_xO7{V zRbL9Vw}@eyDRU#dQZ#bQHIgwZBWU+0L{K)0?mRK!DEvO(+1?@W?bWWC92Wq-rGIbY z3ng{K8Kg;`8<^ac`A!UNk{gnwS?~;A2EWxWA<}i94#%l#)^7~AULUp^4z02;of1oE z%(&V~Eg^Jd&T)*@a|zw<eDs>P!S9Nm6HQ!4;lC7W+D+`1w=(PPec_4hh1pplgxdg; zTig^NgRw)NKwN=dr(=1k_-Dg*S^(AcjUL{_8%gYJVUNVJURxmnZYQ{%8heQF+XJ89 zZ8&8lf;zPLC*dtp;(asXMv<#(X>(~LLN668I@OYF0Er&%B3evf;wdB<=U^O~<~|<y zAK`_aj<w;hhPSphaoxlvVc^Y4?IaSz@~XwA-1&=YSxL()lyBlvPVhFY9)|vj<C}T( z%Uwgm+E$%3*3%npN=W6n@btc5!3iCs?nIelDp*KPNCX^X7&_*)qT5^P`tOa~T0mLh z5Z=I=lP4?zX{;l3SmhYY0^5fVgOOWt_&zOS)c7;T)_0oJQ`_#fhsPRSw~!v(lOsLV zvPBH5w1NQ34yssZ3*c+*8%of%JrlxL7P<s7?3u6p6{<F%5uzCTJXUu|-b*+b@}nM8 z9N_Ni;{=&*Z*#{#;T;;bgCC4^gQaS|9MWf=X|59WEPTH&b6&(ZG<M=h;@nut8OUO# zRCWIVG{4(B_KTnPp8cnMW&1#w+ACia>Me1n#LAJqzL<!x>CrmJgx;2s#AVnOeAbYK z8L#gP{tH$6WO!@fAN&)4#vUEibwjN9x8h{0;eQXVtEK&iR<JWh{{Y&TrIBMtk_$Cr zlEx6MuBb~EQD5gN;%#9jc_xWcJ^<Rd0aTNP9ChdNufE{C6LNK0@;+-m#5E2>jo0ql z8I7=DK5XP3xg7TWYnkP+z+fEUnz4Iv70mm>kfVSz+qF~*$^)s-^sm#Fi1}(Tv{EGF zDgp0|<BVt4zM%b){{Uyd7yi_rAABS52f&$&Sn-~#ZKK)9-zrBf)SFD?lDHPp2`(69 zXUf_R;xqGAltxBX+@*SR*nghiO8&Wj;M?EWi^Uq>i1nY_w_Wh9$B1-a3cUUv(c`xW z&UHJ8qif5pue7vw_Kq#pqdUCWr(ArbSB=CN{{X9DWj~SWW!QCAvWwXM!{+^(JWu-z z>Q>hu1H2t+<4=cHIwh5X(S^6$FSLntyJfb9duvnk&1*6%Gb{n7jz%R_(T>g_{@Zf= zV$!vL3-}-Y5$oMAZ`o(j1--VPsx8I?EK6^6@+7Vsl~T~UGK`Foj-SK76ufot`^|?! z@f+xpTgm1vp0(!LK=BgXTfpZ2H`;NJFU!FD<Ql)@ZBOBk#$8M&$8Q1XUNgFaDCV`* zbg(UTU9vKOAd<>SZqSX{DoS7idUX6El6=j{?tX&ev~rEw{=cnHjWn%y<4=Y>Z>K^v zdE(T}5(z}`hPjRlg~@{E!%}GEk|}($KhZ8-H;gI9ao2cu;_}DDH$EM)(d?UCxd;6k z(%yOA+5{i#4V}Ens#*zR7$Pw;E3e8noS#XX_ICIqtVs@o;BORo<HIX3S>H+2Bed}~ zl##52qO>;(_rZ5A<=Y}K#z9kE1-HWA9cZ^wXnr2}h2cG3OP4YxovmAHdNOCyIOaD~ z!~+b04Z<Rx0@q`zmgAL3Klo;R^ACn~g}#r+9uoUjr4_rfTFs}-*KHQy40FqKWG(e5 z5r*ZGE9*yGftDZ=YMW00XXp5U?t8S6=<+%DXKRIKW8I2^Pb3bN=$<F|dGVJ~zH4s~ z=<s-lP=-a4bE0eZy1`f^V}*)2O{Sx6g9OL2X#x?-k;PoK)BgZzSuLZI*Wm|>CW(|3 zkjbP<SxDiGlEdacM?0V9JzJdAeP$)b7wUii(f)6LYHt91F8FC_Yv5TtIccG3{sX&I z)qcqlORYw0VB-_uv~w%Vu~tpX$-!I#MIVM*h1ZDu31Q+p`*gAX(vQt$Un~I=7HE@b z7%C&jZh6XrYs~)u;H<js@_yU@01&<tcy2RqVPoQ3n9>y93&`xQsLK518cvK`lby$k z^%-qb;jh7QZ+8B2=^A&J=D>bjq(rerJcS3j=Q$jXzcXD+*uph8XWY`2HClYTE&WfR zKj47B4zK<#f5BUHe;4R>){@$IOzN7`M<mZ^7C7Q-I7B8jIh2W*M;QT6%vgdKKj>Qm zYS&X;S@?NdN_eJYbip^Pz*G?+@}K6BK>)BPp(Gxa{5}5w!KV6khPnG@c+hI|Z1a35 z(r+*c^67F5Zrli5?&bI+BLov)-tM8`&xG3Q#U19Yd#U}BK{Rkfe|Hjwi<I5ux-$hl zDwZIV$S0b|HIw%3E|xN&qN1By>Un*Jv*Oz=0t2sH+edK-@>Mo0X(X(2XEI8X%7Ck3 zRXwwwwa{w64!lpQU(2dnS<cca@<*BE#sU-tWHLC39|t>j;eb4b<R4SD)peC{z8lfx zh#&~E&%+cQGb;vj)b(tR_^6}s@5Fx*TS%Jzr}i-N3@xmTT@%xCfODVri28J|JyUY% zXr`8^^Qk@=>e61@-RqjPF+G8{lEqTlC1{y<8>TOa)HLCOk1uMVQGh`zf0obqE?189 z2K}ZyCGeZVx@&!#;jV((jQ(yTj!XSfnW9*cPRP8tp(TJBV=A2dwf%zI{670oOHEel z=IsU)=0gx8p~+GhjCJR~<^Fyj@K<SnX%B`!7d|O`S@@CReM-wrz44^F9j>u)41&%{ zMYj8Edl@7kPGhi$F=&HF9v^!N0aMS4%PUuK!_kf0nn%>|jxP;LwDCBZq@f)z-S+RL z&&0ou9~d=H68QPNN%1;WyMs?;kL)NmCdkQQY=D!*qYEcYsciMHio9#%ZxDP!@h+j` z9}!58eW^@mn8u+|Nx)P=(NPctRqU!e=BDwMxp}UXTefD~EQJA5RYM${zCLE>lbro4 zglEQaU(viJ!j$sbU*Bs}@?I|Dxn`BQqofnjey2sE$ma1$%Bp3FUbz1N3jX=O;MH$~ z_Bs#j@$pOJCa<Q3yVf;LJ4Cc{2hVS3Y%Zk3a(JHQ!RQ7$cR#@|gzV$K)J!T^$oo+g zE_o~zWcKS{>AU{`2LAjX@h5}7;Fvxf)$S15zle3sZ%~M_05!5*wXL(~IAHL?u0FNN z$M~*HB8~TJ{LedvDc-c(=#Sa;YnV>bZS?)TgTHeEKf0qi$9_1f+Kv6a<|Nd$8>{AC zeoP{_;&9l-OCN<U7an}sVm@%HSe$h@$3LA&G+SF)u^o#_NXnUb4e!qb*dA-~S5fYL z)L@K=yiC?jyGO8$78qCgnZ3?PKaWiN)%E`Xgtq?xWRu7t9DK||9RC2o@IlW4wv$no zDH0@cY#D-`iJWu&<AI;VSMj<300jsC0D{VX*>`^){72zWfj%;S0eDx!`nA@N1R7Kp zQ)(A7S<KK$E%f(LT{9PW*sO6ZYZBlR=Ok4su2Qs3V~0}Rq<&lf0KsPCo`3i$&&OXg z63#qJZjN|=xuR*k^V^L675QLdjtKyV1QE%`)0+2BjUFWNm&Wgiy3fVW8~B<{U&Nju zyEj^u?fb_Z*HZau51Al|B9A*Fjc~D|;Xnele`Y_}zxI^<s{SRn!=HirO}43Uk$Lww zQ(dLDpJfhCCcC<2aT>7&V^v3zM&VF^?4HabqYY0!yK<>$v(&$0FWK;Z(q9*CJR5Zm z%@z;d>i0pg$!rGG3~SWOah-}s-CfU|s0aNMemefne-Az^{21{!fm+)K#2O5?PO+9) z*u9vI6_zKAIN%Mhyb;w+ekgvx-|$L1PuXiodA=n0&dU1sc1dm{wQ$h}3-@DH`LGEf zZjhS&n(?2H{vUif(vwxb@g=^KZt<Xr7U@mI`$m39qjKS&80fes72;OKUZRpmr5aaC zDo6P-_`AaTuZ1=1j|=PMo9hW>wYmp6`&Fx(d6%3Y^^vg2>*-!|_GOb*i|+YNAO#Sz zDGl<GmFJ=4^{>}|_$+tq>!^GN{kc44Zx{)t_^_vnH0O>Z5;S^|FDz=LurD0pyzDXg z+%X`@f%yvIn&1>6gD7FoaC6?jsxo|Rad>FgkJ?A#xs3-y7g7tO8>whB=sM|!Sj=$9 z!N<uefC=s9s=EQ|K+j&4`-lGk1g-eBbD(&JEiYLm*{@^rh{;f*Fu1@VZvL3*iu`2p zezrBKt*>lgk~l&g&i-?*=RByAT$9s)2vN`hiu$kiD)^gs;SY;;D2f^xo97Xdtim!e z&pa+k!OnVjuYV)2$tcbAXOo>$bz$!x>G$Ek7wTI70K%O+#Pi&0o*J~ax3_DJM$S7e zLK#6&25rHb>30$XD2y`WIoq1iz18phNovq))(NX<x^$vgZmciv?R86r5%a#$1-Qc! zLgma%FnWscKiN0p4}iQ+@O#6W+?xKQq3Q<JpoRd_zMVAjawU=|qAnQjUod%*nE=9) z21nG#!#B5jy^o6gbK$)&#oFcEK1cSppKEJjHMme(J*|5)O@K=j5xe<Z<X7@{7vW`x z%<Is#l9T(dr{I43!`0ze14^pa@n3zlFs`*bEkRZML3d_ijap4B!`>vdx3wzhp-B5f zi;0IkGwd>Rj1gT8`|JJ~x%*_XYWilasi|vJvlqJFm2AqYptLLG#Tt$Z#quc`BL=+c z$HZDDoZn#Z=ZfyFTEXN^Qg0R7-CZgoXYO53_E_TpjwZ~4On{_=nz5iu;wu)^HLnEO z%55xpn^n@UlTni8NZ!j9ogtA@NjVD$U~n^<`Dr(E-sRI{tkZNWDeo>J@Jw1>udnKU zW8Z6D9-h-qx`I$ZkTiR)9J%C3?94~qBRtjSnS5(!CxpJ+_RS<??Zd?SedHG{JaPhp z8;1KdYyn)xs+nRp0zu<G<5JLd{{RfhrudQ=w8-v%(iTg(WbodrcF?x-utFeaRV7uy zkRdJe<QkUlS)tJ^;_>K<O7P6$GjFEr7E$XjEch(0ZlJih1QCoePBHQvnzX_%q0ryR znk9m2x|P-c0ET=u0*GUQO`Y|n#HGjtvd3|9ti)l9GOB^t@_!FM;J!ZzHGd!e$KD<N zq!KGdpTaurwXdC~{h-G7I-<Rw?;)Fr;ulW~v#RdOjm%VLziuq7HH%NP_=az{L<mUZ z(>yJDMWU_=Ssu>qU}PWOSn$k9EDu`zgZ}`6-gx`NUk-m^PZ`N{`d+!?KNer;ejC0w zR;z2MT3G5gh?2e{cg%tv!X^X=OK)CA+V;49w4sirC~wTa9S=J-qNRqZ2|kbVKZ8FV zSgxgcHlu301p7${bAy0#J$d6lg;?;efu-3(HBD5iqedot9EFU0!*d*Cr#*#I)h^?P z`Gg1}ibiv_SxStOaHUQ#Po;gg`x1O|{gHke>aC~#)1MBP#1j3bWw6(YlHyAP)k4{^ zF)59JWtkD2lZM(96a9mdQH^SmgyfQa&*ePLx?IggyLR04kAXfl@dl4!pnM|MJUx4B zr+i59HjdV}(y4(O-$s}1MMA#UWuA3~GIpaQGX@|G{-^%UU+_`Ozu0^J3IpOT7ve98 zp3A`g9>21%n?<mK(XMqlrL&Gzji<ZwQNkIQ0xvF14DZHTyN`@N2s{n@QTQ9ce;K|A zc$(Y9pYV)$n?}@@TNeiB?9pCB=d6lbD$$?~D&y{}U{@{sQvSvs7WkF%XHfXT;gNBo z_?}DgCaq<W3_60w!BwS6RQWe)7#>vIEQ%Fn%ItLc&lssZB`S2L?xnNxN#F5j*?3J> zIGU5G6>BD>p6Rx~M1M&C0JGQaKl^Ha-@g&>{B`h;M$vSCgi8eWeofjRv|HcqW=puQ zBVxCc^b=ZyiZxa_pLiR(iT)eM;M=9}cZc*HJ-k78JEh&%hc6@0uB}~JTt(#h)442i z&UfIB3gG6vGyVzn{{RIi_<!(=LehU{Z;0t{qUhRWV&1^{D``EtmdRV2f0RB+C(ny= zvFC9d*XSq4>z{_2hmLH1Bzz;Z@b<HL;^^6DyOMviNitifmSu+KD|w4`RCe5eZ2&PN zkLC>PFSHe8?tbr=;-wm{jH77VPxvR#cTxCn#6<i&zq<`#X>jsi9~Ws;T_L!Qw)v}h zc&PzgoI|v>;&Pp9Wo(9%H2yNWvemRr2Smg$!J%IbM^AFEh}2kEL}dAk2b2XE1eWQV z%GcrXo88Ny>9R+oXmRe7S8Kf?H7gn8MPHp~mhH(z<OAd@Ipn55t|r&SzYe@nf9A<; zXKSMPf6b2B{5!AD1lMR4UCGmJKFu7L48!g(no)6v8QWhrp!&1u6;;&eZ5qznXZV%k zOMee*o*}(tFfp}H4QfI)${U0?^2sZRh7|_o+Ik)_T^s)ZZ}@%{_<a_us;051M;F>) z*X%C!>m{|5a{Zs}N#t7=a6yon7=_`+4r-;xi(s2nlf;_Nr)8+TXl2oKe-r6LMP`hg zMvHwsa?E2x)z%_evA7)OtXNriuflq*@0X_Q`aZp`ER(@^X>)zzO*Yx*f1Bi(i*z{U zW5jBRep~<rTY?8(EU#(cMwb4=!2Si&?QJy6LbKdzz7y5p(uBlrSxZ>jD;AC+!YOCT z<S-_xeTzu=qpU%y>+;y@8V-Oq*xC52K$gn%IU9Vh?Hx>y-p;@h>jrVu90N`8&W~f_ z9cxhdb>VBT4Qmq5AUAiO8@ycuP=ewK3r!TUSS+%Tj56fSh9Ik^I_PS)7K)eJZ;17K z>t6_IYSPaSjWn(B7mV!PCZl&R%p_t05gTj=Bhs8<sVcShC{28H3rnwv-YAD$(Wkm& zZ(|0Zb#>xhI@aK(-OFuYxr*LBqvgzTmg9ol;AnmnxU=x|+J}TA({+7!U!Be5+B%;N zYH=A5?~o<KUQOpn*gH!`z#Q)Ecl-gQ+fDYriQ0C6@moVAQN?NCeRA(svst!;R$CT^ z(%Z_7S966=nYyVY=f$GG_^;uAi9+MX_Z|wly4J1QQ8uy%hxPV|IE~eQ%M6nv$<<{A z_9_$@EEr8h)3O!QJu6u8H;DX2rhmc!w@Y;$yple<ZQ}bG?w9uqxk}yLc@~8bs4B|g zSe&T^MKeM1d^Wm7vuhegvEdC5K@%~P!}pHS-iIO4zQ=0}(D}1%AR(VB2GGa9u}|U8 z8+cnogTUHVr-&nMMmXMUwUBs@z(xrlWp>r35)HubW)ZI#<eb+cw*D0H&xowP7kCoy zM8AVacar8!Gf~uZE7<O%EVlwneKt6tXq8Sjytplsx1p-#cQS87l)Kh^AE{cu#LtM@ zo{6jKY@cJ%hlnhPhpuF9WLW;z(oXErCR>O{&Cb=yHPy?cc#BE!CA@2Gt4wvIFh?T& zr^Z%d+aEl03Cv5jQNU(CxjidV9V1S>)o%Pl<Bd01@cx6Ls2erAZ7TjHSewgMORH%v zZ_3V2{JU-ex!cIDf5X~#m8(m6@wOd4*IvGjqqnviPNQ<NNMdcO(c9}UZ33(a!H5s@ zU<E9ADp7W@<LX)#ULDePEj!_FgC@}+)V##FytmRdL*czbDP=%ojjU~>n8*ZdNmp<I zBZK#cQR2-%OVxZxwthK|Xml?QqZuyzOQ5af5u{^$w+pLWN=C=&xG!Pp#!~o?#J&pA z<8K=3H`f}Lw-k$Ln)Qm^qC$)Wh3C<sXv4TWP&D}?qMRH}qv=DzUKX~p@FtZ!H#cP@ zxNi&IMobVVF-0U=l)^<v=OIuq0~}N+*ws7iZukSlm;NQY)xIQnWu??CY;w_B_*Y+- zSAm&6NCIi{M+6FX0M8n@83*qkYm?SBe-C&gL4Or^p}aq)>%JkGtkO+((R?YWT>`ne zk~^DUwM=K)Mn37!IZ^?wKNe}9@S0d@ei^sC(|k=N5_#7)de@ql@mv(xo>N(vHn37d zhK+-k1Qi?`R$A57*NUzDF$CTz@MVsS62+}&wutFdY+_ByODq!;=4XstXB-t)$*mmq z6Na}Z)wDfU*TGg^6|=I}uM<@(b8#s0{8y&U5Xg!rlU0=+K**DFpyUjb-WhH@4Xu1g z(>@mXetjZE(p1{X{hO^{XxCBB*lVPpO|gw_nZN;*v*ZkqlpbjKcHcwsmxwj5irT-2 zJU^?=ZwZ|>PYY@iY8r*iaDujMEtUwummLth0De_1T2JCVPS?N}dXI{=#@8mfG3mDU zzBz~f5w*B^LGwYLJ8=GQlp7l$<nT8A;T0uyp>f}s#qpJghCEAusOp~<lH$Wd(i!I; z@Q~=%3vFo)xd1ozg1fkk?F7lo{MkH?BJgW#u(9~1;n;3<$gN%|TGzq){l=wi?m$Iz zXQ(y3s-$c45R4e(IA-AW8g+^IeenL$KL*+Bnmz8PFp;LvMaPODRD%FPBVF$y7_mPp zp}^sVCyuS4@l4uR!|<99if%3C65S@FsLP^imbbE^`9eE8IEg!>Vov8?P5>b0vC`$s zvBK)wpNM=f;pA@@YPvzY@iJUnJ%+yw9v`}z75mQ(#+;L}mn05fAY_8AjC4@=S5xra z=9g#TS^QV0+RX$~Tpd5l*L1s|GmswVQfcl1i>SblhU7PH-fcTtPaa3%-wogRpTin< znHpNXs_BtWr5`A>$vk(mqsTWFVELDgydt(q<1{Y`*?d9xqp5iJ`wzo9rInxW?XPql zYHOWB_6X1z8cRTl637^B0i|FM-EMeNSJ<e@TI70C{4MyK@u1u2(|9vnxYJMBnoB#` z;nl)g5?L-Fw^47sCEiBnz$XL)n(cJY75JM-eS5|K01$O=6X-f!y3Hy@;&^naG`n_l zwGh6Zt#D#eK~mC_j;va_TOSZ5mxMLVXUF=j$&KR>#Geo>;nHFgT(c@f*B0={y*Dt7 z5tkY2<kvUhp9gAQ0r+t~r|`Pg`%L>?>;a|l75i&|A_CZzHCXofAHr58ECCqCNe=zR zWY&z_@Gpn7*ghX>dj9~!jT*x8d$}XG7d`;I`#r)3VDnE2)ZREiK-<cV+2jE2#b|s$ ziqSkHq-Z}9FQdD;zPo#+PaRq<>12RxUn*@VMGP`-V8}}|5s|kiBM;)2h-~K4JT;|w z{OFp6)GKp$6kab!vDH<}1X(R&i^&7!C0$np0vA1vpBnsApTPbu((El$#eN;o;J3Al z7Bgu>N|H8R=4FQEWxh>-;gkhzV*s9ONXF(8<xk#cp~azmO1DivOYq&5-G#I^>*d^d zdin_T_wyTY64~84xNtGhwn4x-JaSf=e}=W6jrSLRBfIeat$l5Bu!(QHJ3Y3i9B?K? zV)==Ql^Z1`83Q=vf@_A+elL6v_=WL)=fs{KveNuZuC#_&=CRYREwyj5LKn+3`QBWg zyXR|&nLx(fy(>>f_@nV}MDd({8rJmvS4*<FSzTw<^(#$M$}mA@M^ugrpm0b;aQu*= zv63y}DqCX*jDp#om7!bs$4!q}@ph>Wy=81IE^Z<dUyl&mWx+Xu#tqWSgdNJAaq=kW zE6y|<e+otL_f;upqDgUbVT?YR1ilB7L=pnUW(;S@19s3yBW`&(@U151*TWt;gHQNv zuj%o_eLRNaOw;^4G#mM?&~HCuk{5)yjF8OF42lMFbAwm3FAVB%__osH#C{6@0EB8e z@8pzfDXxo%-J?cj{?fNeVs{b%Hs;aPIRkJ5C#pGeUlTcJny!fTO;6$v!{{_9ejm+o zcc<%rZ4UODqz7J#Vicl8E_D`&JFq)|x0RcY2?T?=s_OnQj_Xggv$K~<)6gtYU)oRh z2vKG^GhAunRdhwh2}PS|IU@v-$ar(c7TS-D?EEjGc;4pj-sVCi(ysKEvywoYn4K~} zunp0i9KF25W`1GRJ52EQx8cu-kX~Q-CT#((H3xY0oikX8?Vlm})NP`<h2&XB%2ll- z`N$-I3l50kAi5k=$JCYDF}1yCSk%06r`l@1F0hvUrx3$$KZn&X9x(g7t2^tJMt0bw zp~S(C8>Ms_mxE`E#)DS2(KQVcIWOaBHA|gi_ich$z1@?%aF}M!*>*zh=zG@;pBHsI zUmjcdI@jVg)#sabV3$m~(oMOMBFhML>zLXAWRDp_(9eJl7-w}qO}z1jh2n@IJ_%hQ zUTWfYy@OeZMYw{?HluClTeHN#;nZ7AhHm)XT@ix&CoJko?#`QC)ULcm<C|S4SMjHY zyg-(h@XKwa&!qjH<rFqlX_qEMSCTw@n_@Zcz|=GRH`Y8m@d6EdK=6(Iq111T%``gi zpKmG=lGoaG#Jjw_96yr@DgYa{is!6;A#0lVj#ojj@!jU2Ce+2enl0Xzx^$Nca!fjP z!;3>JDCRjliGff-JnkFNcwfbqKM<_7&1>PNmtz&p*Oc0mYX1OiaS%T=m(VoOI;j}m zs~y6QyGR)Yq(W<EN2%(b8rME0Xxe_ct@wXezqZuS*x65_{fAJ3V7my@Zwo3*GASyq zke$oBEm$&mE5#lU_^D-gp=sVT@a~!Yq|I`cn#6k6k*Nt0lgiXBE+u&_AuRrHnQs(i zG6gbiB^$oK_|xENwejH{Z^rjcJ71)5>2m3dYi_a`Fp$_ZvA|_{2p(IiN=WIP=DAH? zTTcmVLtVc3esuLZjBNUyuDa=P`?-0qH2(lP)un*}+bnAw?Sp`a85b1R<+&?+r<&=$ zD)?=#{A9G!yiMXi3V4HA({)euD`e51N!Bcx<9L7KUvSP%)WHdinB!2%yCmd;x1xMC z(EKaodkt84f5w^@+BH4m;^SNz-j{M_3^v^)v$e&%S;PFXMzOF8TNwsTf8yZrH;b&S zwC@~Cs0npg65mR@(o7a?g_TTtb>yvX?IzrWkz<(dz##KpfqC%WUkmGB+uk1V+vw80 z__%A^U2;Jq=1se<?0oxpq>pbiCzT<_cJ9SgY-g%C3r`Vg7ydM{g5$*A71kxw?#PNL zG?Aog7OTuMtP;GkNi3sw!GsFno<Jiz8V`YWyB`&#)*3I1Gy!LEDUfQKj9QJ3q7L99 zmMPrJ5XlY%NfQD93{Wzj<HUawG#ft_T=-waJ~6Smjw|GywEag(k~q>uVdaZk(Dw1W zfy`t={{S`tV_I6Z#O<s<h&(&tO>hYAqq@1ggHlC~KpZOzjW$UlC0Km2Y>k*H`{S_I zp<{uA!~QVw2aNQ)&ll?+2iK+0^$#-2(COySRnvU3NqA(;q2-A|BOX|OrGTwHS4NKe z$1A8yf8xCgSuO%B+N|>G8cpt8KbCeyb8l-DgMg_tOgD4{0akov<C|Mg6E2-Dwc$9e z?Pp7<wCk%YgDedh-meCr3m}y+830_9fw*Ti)A*=r>1T7}4-DuYF}#LFGs}N(dWj1v zfLVXD<n!MI54#k3>Q@Gpp5c2QePBK&>E1EZ^<NVBGs2!Ax3axZ*IpZVn*RVyiHR#K zT1y#_`D2z<mveK3`MB=&UmkdWM7)Ae8Xp;3=ze-b6xx!P(&Y0F6c&WZHL)j%%+8>3 z^6*7o@lEx()FV2Ycs?uJSdwc!GV)!zlzZ^V$#i3!i8pe;D()j|9C9uA!Z+4$=hp2a z@tx4})X8~k8qZ@H3%};GoKEhlMsXZq1IqfCP28oa#_2G4FGuk^UTAuLjSbzcz@G7R z+xeoq+W!D9>zhHo34m7I=_$cHs_w;hy2pqhhhGwFzAD!*Em_rsclt)_Lky?OW`^?8 zFkryQR(37U8Avrl#P>RWqh^{gi^6wyx3=juotCR1O-WIgB*MifXwFF>vc}5C3`JG8 zy75kdtB)61Y8uw7sC}4hvXa8$^Fdio0W&R={iHG~vhIyh7`EnD6=;TT>7E79{3ouP zpA2a~*$riN=DOJHGM1T0BmFB)xRxjxcCjTk6WwxgT;Gg5S0{x$RSo8|;|qJMT|QvU zFZ5@#jwqyUlM8K9J+Z3@+ZbrDc@9A7)%;w!(|#nyrs|q6fczO1-1cGOxV*W0ElxlI z1ME(*D=RM{e8L<byd%a>9eeR!Ng=SY*Zf7T=ywv?`FC1Qo2DkQW`;5sb>X#+XJXkO zGP0`ylY^SMD{MvE-5R={g?->HT2B*rU&8v#8fsi4v0Yp3aoi`|#QJT{*?hLn@APm^ zK4Nj4%W!9h;$#zzW5JKArP9f16qb#qUdI&R#OB`kf|HXOU>9HvcxGOsE^iO`6XJf2 zrFhfBI$nk2DGHlgolehGz0&9VL@Z;JS)vWGIxr!YN!8JY2_R;?-}c)5qr7YT4t~a7 zF8!o*onBoEZwKiH(!)l-h7CaKTAj`<^!TT{futd&xO5FOOUceqo~|nGBuz~f{{XMl z{uaOBzJInAuk9oId-#jOz7EvyH4g@SH=5(adN<mxp6olrC>pKQY~z7(dmoe(WmPSZ zp(@y~z<p-n<hYTfX2gWJL&xRYrFzeeuXPPyS)W_g?%M9=?n!PgE}Ub}mPTo1m4<#( zB#hE9>AA25F<u?2+_ck>qi7ssj+x_{{mUi5tUU<9BjB;som%pD(5ULU`HxJ0pZ@?| zD35p{Po_Im#xv!KbDSQ%xT#=L(u}BV9I)q++;LvS@6hK`J+t6{!9N##WAWyX@b|$s zPpRu#?d%$En{5KKneQ%0SdoGP<~1jL#YR>oX6;|<(fcm`$=(e8k$wbtJK+BS!5s=G z(X>k#eA~v<<+N>H@nZ(&{&*duwYrw#ZS3WTIT*kLAIGo!8zcK7%kek%h}QoAYRzuj zSdU2fJ*Gz{n)*BoCDUvAzncUGAu#e}Yg-?*OC)R`BH|V)keUAG^qZX<##$z$qgz|W zuIpCVxIgflX|JceR?K+~h~q+X3G*OK9OZ{h{$It}gPm_<(H~WkVcco+%c)z%cRm@? ztj({9H9Kauyg@2ymzr7BEu#<r04&~k9u!s`Ic7P>Ex|eS_)o%~Fw#=*!d?(MzLM%* z9YasMg4%t+>~+R%pka}<g2>yHVY$ewo*mV^QKV@1x^MQRUL4cyCXRb&(QX%8^Vzv* zU~7c)HYvyModLlcK2cL?dWVI6B?){z;#<pa7hk~~w-&aV#hd8&k>P-zNg1LIg)F#u zRSF&(Jx9emNgnl@*`90TT_eFh4zbfmi9BI>;rnZaW`j?<&Hb&s+k;6R$=wiyw&H;e z%MG~;z{%k){0Z?&?@YXX5^XcY+G8+tC6l$ilyR;Eoc{9GR$Z#08h@1Mg2dO*x(18l zT^moI!M-21J{BHfo;^{n{{XhpHU(CS7P<3gRx8MjlrJQ!16fh&ULWy>oi2mojay6c zTHF&ojlHyILBEpooz4%K&LnZqnGVLtB!Vf(wKjb3s_6O(+P<A};g_<Af29e6LT#at zFDV=rPb;}_a;nMY@L8L2#bw*-p9Q9YCb_k<ibqgc29tEbSdKtqK{z~Qftvc0!aoo1 z^jDipYb|fWSC^kXo$j#qo*=ihF~_*1S2E2t!mIQ0NsZ0-cIO9xy!e|fz1*-|d|B{s zn2yTcXNB+g<QyH_bp>4Kt^gV61z{+@hOVz;|I+?Te{VmBdQZT=_$bGVd>O84iF*!@ zuSWOR%vR&gnn>chxs{AShbBo*Fa|gT0;arg<A2028~kSQ#n*}Kqgzi3X*X#EK4A+j z#Ep~>fTK84H!nrV>Uw=!`(6Ia`Zk~YZ2Um*SBb9@)*lb*b6DzEF)~LB>M}`?(IzsH z$-HG-4qq*kyEXH_?L*=HdqnWYm8IG=Q0Q7?$847IsY23}KfE|NV0Q7w;BrZ>bgBDD zr>jeI=rJ^^FKK-h+56xB00x`ssi=O~I{Ha>_H#Ccem4|HQermDqhpLQ4BT|bJlFTl zd8Pbv@cShG8<WGjz-J92PA;_PWhCW<iT1?bj0G4~>(E#6x&HtLjQ+@a?}>Gf7Jk<U zaIo;BOQOW3hTDtXLf#430n{uu<q0PMvyqRNC;O(4K`i@jCyoL!^6mw_#s^G(HS_qi zoq0&^=d>ccj|_i_zAo_V{{Y2J;9XivRSbUDrnEQle7>lX3Gm&Bi1Uy@>r@-|wf&y- z$>Ox}KZ&C7%<?wD7Pk!gX49MiWVwkV1&`g!{N1x&`EzgK`*#U8qI~Vc3LP-xrZ$}9 zb~S74QO5&$I&wsy<yvG?q@V8jr*D7fSlUZwPc&ZW$BW9=EgJVnk}K$$NmqhTG-K2i z;Qed)SN{NmwypJu{{Ukzgwe=kFpn1Ml7Lu-St8JHS#Uc40C@D{@vq#!+6VTL{f2xi zsl|2iqvAG?;ca6|-ENUVsVd&C);p1HteKqd<P0caKTqTv{tg@cwLSp;(xc%ggMI>d zzgh8A9vN*~^5yj_D~oGnSzt?L@?La~ONk^5cM=ZO2Q8KW{VxgOD%8hAO%uKS4>vZP zVTY8N{Cw-T{{U+-kk7lz2j<)lI3cibGJQpJfU|tO0gia-?_D2^mL<PQEzuP`qzF;> zsa`<G82}E)n&Z)>!TF7T{<V$Ify2`G4`TRU_Zn`n+O45Sy@eQ9!ozTy<*=}z>DEG{ zlit79bKwuff7vtk4gHq>9DdEdI{1s>%@uqV;k`FW32~{x_K75d-3*Q7#lAw!`-#Hy zU*w_i{UVdZmMtb_U$okwjYr>kCPl_M<N{7R*X`E1@sq&b3DlcR)o!h{ONYre(>=Yc zz#gBwk>LkDiDUTJ=RA9XjY-qIx@>(n4N2N|T~F=1;*b0mtM(@FcbgA~H9dR9S2pF8 zMWkt_-AUsBPkPqTkTcX|SLaW}ulO&;l3GiB@b}@1NgPUdNv><gJOFuVBeS=ecpTtM z_=@}%_;LF#e%PP1id}e<;BSC6zZBR&<))6_;?fPP8sw9ip=kyVO2+aQ#sZeWucv+& zf598SY%d!@bK?(;`hJ=4KF$eZ38{Ft7^Q`bzaqIvuViHm%&I)^EwVrh#eQ!*9u}JS z<@ldx1yg%ydauWS_%Dy`LF2s~cx&MJ(tHOqsm<<-44RGhTkiQ%-^VH@-lzQ?iOzQ@ z9RC11pAskd)#C3JU-;Kl)+g6BeP-rcySb-DTe)Vqa?(vG0S5PCS&FFJo&X$I^_B2@ z{tfWfyhCj_jXpm3_S3~S7U?D}d;@gSO(p>%DCRINyE_lz^1}ur_keZ!&*4w}5flCi z_3*pIPp$aZP}KZcCECqBj)CzW-%qr)2&G7jN94r!9#JZ-Bbhqn0!?y98$y$A2D8Jt zXxaQPcsoM)-{Q?y<HP<J(Dfe?>K3u?p4UjUy47WjH{EIDw2osI<HD9z4T3?=aqNBz z_!IkhO|3zp_y@qgJksyx-l~?iI?j}wsoZ6rac6EesNtoNanVlV0sjC+4+4A&_y_P` zN3n-V_<v>Kh&4am!k!9iySp$HXAG7WaBPEdA}sCz@HUFylU%p(UZgxTrEAunCDu%k ziFAENXtc|y;FKMXV)A64b7TnB(RcDoXRke6@#>=z{{XYq(~10Td?^0_f?R*WX8c1v zqj-;4)%-VOGNjVOs`#E(o62FdI{lCB$+)M?7wvJA{98#Tzj8li{{Yx)Mff{lmi|BS zrkCRH9v}{}N-hLmVP(KJbKV){2j<%%TrN5t!!`QL;tz)!pNF+Zhr?bN)HI!MQIRg? zys|^9*~KROy1$(wM2^_`$C4B&$ZYi2ywE&T<9#|03wUQ!(EL|zc?5$}m1cVvMQx+^ zA7Dw8$Aa6*bzpI{fnH5~MOwS)dQnc+Kb4>OI4|KupAb9=;XjF^N&6<T;ax&~F81-$ z?1?-Yf^Lo&?c|n8iv6Y}3nwUX@-`TQ{BcZ+9oFfT28{ACw1eFL0H4;s)3^5P{h0J$ z+7I?M@yEcg2_F!6XHbJrp5i%m6qsrESJnf}w#=G}$(Y(?R*2iklD8i>I3MP@;|n;h z;)})*r;{F_t0bs+^5$`uL%_it{{X<VU%q%-naX%4hm+PXPe-rkbMk&V%l(~r){oj> zk()lNrr!8k(!$}^PbC^Cp=nz!<-h#$3%4bDzDsoCzS{U3;r%~Mx$tkq4-fcW=Hl8$ zm1VxPx0Xd%!j&s<V?v6<v2LVw$gj`sH($E9(eJbvC1p**Uo81yTw^@$A&FKQ0Zvb$ zuYLFd`&fKf{hxIhf8htzWRp#k=50P!-3tdKzsfK&+2ow#(;OexGWL}DWc0c4nUyKZ z7l-G${qcXnGJZMh`lrCyd_UpMakLBTyK83C((2AjyLq3?^5j>ySB6t4RoXEk6(kZ4 zF<+<JSHjH`!#3AG9gjh`eM0cOms+-f>7&Yw>|Q{uCToRYd3jaXzDk_)pTO_<BM0qg zfAOD9lf-@)(=GJ-o41=uxV5~vWQ6&}N}n|W#^O04bIv$5`^lhqKf&#&CxLzzPp$Y8 z_QF#JrE_biOBI~LB_X2|YLUpM)ITx2F1wfxNZ|e(<4#`bX6q3jhNM&bm7nB(tKo(z zRLfllq@gCC=Du2;pN2e3Y2&Q;f8h6u^!;N%`#T*#YPR$0GqWoN3}<QMMO+=CDIsE8 zE$di1uD9VUD~L7EiPk#5!_6kan$|NOp=)n#aVxh3!KceGb1vM6krblj5;`7>#(E!% zyhyTXe-ZRM9dp7SA7#9cP+QBpy;f5Ud1=j+tVn**mSsp{cF4v#I1~6)FZ@GuF0JtY z09@5H{Sp*WYouOj>tZ);++$g;q8C6&+{ndUkeu`wugK5Q7m<Bt*Y#fvMdN)(PtrVd zX&j_!cD9x<*-FqeU`S@vu3kJum@ddv%)pfcpyn=oL*d^D>QmXjiY4&Zjx`VTt8FJ% zylq-2W1aA%S;Z`CweZUnam++`7~la_HOVxc9{<7MI4q4-F4fzVcv(T`GM;Rzoyl zwt0(gf+dLnAW0-4Sl}_q!M$(duZg-RhL^^gPOf}&CG5UZ+1^P8jw6hc9%GIBrQ_v7 zv6jww;*_M)C2Vfrcu&Rt9@j(>cv&^QYf@7z`sSEytX|!)Bif?o;qFAiK4Bv63&0p6 zzGVHWeiwK<_SX0bu71iIXN%KRiso2uCYtHLw5}}gbjjA@7a~b*7i=@f`@$TV22^&g z`$X|4g?u$*ap4aH%`bwyZ97ELS~RbC#wnX}#~9RZg1X898=?bmKtZoU@jjRFm&AS_ zxcGhX2T6leic=AJ%RG{_s=<aLhUVHa<&YaO%=ln)oKZrvgw;qpHK~nQrmZcH^IQG4 ze`TK<e#yTbb-#h%6B^3TSF`f92x47AI4$1F@#lD@g@Oh}c%$<Q7H5p*T$~4N%{TTk z{h&Ns;plu*;LnHpjrEDQR{Lw*3usxsUBz1N=HGDINy-AGfrDQ0{{RKP_>JK!@AxVI z0Ex8!00run`n89KBGI%@w_2+zNhP(pYm%!ZlAOTzCME^j=0l#~`cJ?=h(0v&w~u1h zrSaCg@gv5Uo*g&y=vqy>9SccRgt>=Mc6oltkQm%D!xG#yxZH&p3jMz<;@nfE2~_I5 z&&;uWJwi3*823MEzu<|Vu(!p(23_6!Qt@MHo)U`cEhr=2-F>;`!(B-nDlHo67FlEh zG*y?)WoKQSE`Ok(i$4YY6Y*YC<FARDMdUiJy9jG-Yr>M=>Q?F_AG<zNtH!V}`BhpK z!3A=REAl`72!G-a7JOR$pMEF!Pvb9xd_`q1i6yg|-fdS;w}vem?jZ76Pj3yej&--S zc>{}rhG^y7?iEx4`yue}#dg-83pEcD_}1?F*IcvlES3g43u~*Ox3^Y8N1AImkpnEv z7o1hlC!4#K-CrrjnazA`BC1Q^y}oZ#>M|UnmL5`_HSbE-`?Nj?*FRxDh}x#8o*U40 z{{RhY^Mat;TwTd&a|^KC5?fOg_>d_Dg8J9!Cx&!8{{RknHpAe3$A~o*O*YxBby;<t z39htx;wipBv&rRKt+E0@VC=3qVUdBj@2|bBt=zUY9xc@MMpS1B4~OsVV<^k!6=_~( zl1$(sbRc}ndJ3hfYeU1)TKqEbo}sAedee(|uHn`6>-~Pkt=N_OI^4-3LAw|-I?Ba< z?1LQF=HA{<Ni*zY4J?gaC&4;m>JtwQ=rG#px_SFU>Yf_a<+gjEV+Gz@D;=!t#1R}h zlxG_VCl#S@uUh!eSGb!008z5K(k)dU$4>Dsi7l1Dc0;xybAIb1yRapn$lRl@Le*=Z z3tauS%fk9bi~f&mw&AsZ3u+eHLQOVVBr@AV!Ja75hSff5vFC=tsH`N=ek=Hpcy_~B z()H~M$7vdGh%{T4)FW$lB35gQ$rU%d6R`Oi!2lOp%i6Akab#9bbUSDGh2zU@S4}r^ zBzEa%H2U6{vxxRD`VFt08bG^pM%0X)1GSE8p3uA%uXs~Le;4>``!@Ss)ILRRFFqWW z);V`?xm!!yi@3bkZUk)<YI0Z}IqD$Pbp0UD<L@46`saXjjX6>lf-OoJY!F7}VpO)X z6DpYtWy<+rj$at#6GgeT@vQe>85>LR*Tl=)Ki%3siKpA!-<3jqr8gJXEg$ZcvyU_a zK?{uF4ydi%kHlJ!iS#`>FNa<xmGymRS%D<fAlEdz=^!vj%&8nYmXB_bi32ESQcEuY zfCy^dk{jJ8Ueo*$;aK&L4%ylVn&R_DywmS&uMWT_c8c`fUhRMasufj<2RX>cFKy#= z@I;eYYF;VSJR{;=O?>+sPaIw??WtCOnSxr%o4cy0oR!Ep$6kuxz`B=)tfq%f@MISg z_<|>rZxDDTZ8T<yq+rE-$)<|q%yLV#i@Xu?oRi4r_F&>(x7Iv4@n^&<t6Tp7W9r%- zj~G~9>J39p)CxFI@iRL^2b(LeE3hh@WkxGk{u8T@4hHexjAz&MEi^huZ>C7LTCJoq z6bTp!r@=MKz&7RF%Y`}10Bg&&p9|?;HrDOF5NZB3vcH<rY~Ja<BU`K8L2rIiCAYeU z=G)5=t1{#(2038Ep{*yuZ-}}dkL0!RJ@1G-Ii=dHfvzrRvDEarK#Vio2%hWvMR#C> z7v328ah%iV=vsC=T^da%!@4~FGlm@!ePde_M{PERDA6zXNyW|716jCuivqxv1A=mQ zcV7|Q_{YQk2ZO>orOu_PH;F^7=lmraMBXE`mdp<??9AFSq!5`4hTR}=;1CBH91nwh zaq$b{McfuTn)qwQ+GduBP+Fu{6Mz>CK-AhfM6(QKScg-=-Hp}WX@3^J9oqQ1ZxQ(Y z^`D2*TQALLsOlyiJ&m{us|A^NR#Lbuu&+Fp9qQEj3zef{)4)3SgtSdJ!ru(^C^WdD zk*2zv!rGO#le%V55iV?QA&`{_+$nA9aly?y#@a@K<F6d)e-AG%tgjTEhdY~ZAH}uQ z-g|4!)-1JWOYKd~7_~(jYLuweQhUZMYSmVw2(i`PwO8y|rA9&#gx{O@4{%+1BKQ4# z$2p%P3gg2iJKz@fKI=AtGvI)n72^#su?Dlbcyt1Ek;i=z6;cL8W?zUU)H!U~vw9fe z$9Gd%_JJyFah>#!S5iB>0pFc6zfsEaM3!-J-~`IesIkL*5wzKQnsUX2OPMv~?2stj zpU1aS8rZTWQ7q9IL^HqsCrcad6nfQrWdd28Y?=MgNu)Ddc&0pC_E#$>xOrivgpQ3k zFUECsjb|g_8Sev|(@2-8E)h)EDN@)QV==gI7@NOwl%o~#hGwXMd%0GOBRpl*CBcdJ z8=qN(e)2E72hGZ4sHVYhA7<0LP~`qI>R<w13D2YpJm>VpPrT&fYY?f%Z7xOxh}EUM zPw37<70q8N7xmX@7N_I5%d33J9@YGe;fvz)54^!Y&YeK)tP_((HZ_OPn4FBO@PBL@ z92kVH+si<v5!`F>OE1p*tPqs@-CQ>BSmNHgAj4by`aOMqlUFZ-u+nR@vZ+Q;Ay41S z`Rqw<-<8Rsw??bN%J5uVV&NyeL^$4idDk`$Q<J$44kU%juY0zv{x*DdW+ocTCF$}q zUEbAtP<zF03Nt#%PLZ+-B9&bQQ=tj=%d%kggw`$t=p04=O_-Z?JpIDN&*l>c@TnJq z&Jua)j12vhzH$>lT4C{>oV!TTp*7`JYlq6VV+UClT&ToD{rdm#0tB@^Z+EV73=W&~ zt5(^%H}i^o)d0W}M5ZrmW(ff(J2)2et2_Q$lB&w(V{4<sCfLEg6Y#5=<Hf+o$kSN+ zd;Ue~wvVH#K*U0v1NF5a(-@NvI3>!6@(9P?VIG2t4b(;7GoX)`&>dOwgf+swdX^xW zD|x?jakKc57tF$ajd(S*3HyR-j0CIhI=Zj*>Z$GNls;ocL{9qy4f2Za@(}~HOl{MO zYLY^d#!lY3x}U$l67?M%{I%J_{-#Z%`>u04Pq*I`l)2cPBAhBxR{Fg(v0s63KDKU8 zd{_eu4k<ZbwMfB47-RajmUC|QHIw@@1E|~deaWRi^8XY#Nay@WlIuwsymaM<0CE4_ zmV$o<*Z3K-V7{*l3H?#CK|sRUa!VC{oh@jWeOu8m+V|5L*H(G{ix6)4Y(>LCu{TFy z@_}v@My=-tXN~T7RRXeO`jFu0H%An^8Ls<XCL|lo2?+l@;xkDqO(koytzd_SM|X&$ zkmuHD_4TYOV3x&0#9@$?3u<7T?1``oh4=F`Us?7aWt3VD32)kJzpp=?{x?Cm*b`vh z3<q_y^3GZTPJg|eZfNSLX$hJ6M83^kwFJ!h9s3BkJVr81e;|<==dw|sYa)!@@EG8~ zew#r6Sz^XD)9b5&3Sn+FJHG>Rq!DqF;Ls;_b$xXTo1-4`x%yACk59@X?2-=rk7#P< zu0GSTkQ<;1QNG_6zhX89#W88U+BJ}Sp}Odt=xF0~y9otrZnnnM1H#+@zPu@;7R30i zp-IX4;kkQ*ou!TCUuz*uWG#O{i@aXhTs0Ig_Pw)txX&)$+PO2Q@;m3V`VI9$j4Orm zO208A$fP^fyg94ixO8{5qL4&HRhO@0$w<6~FoiNeS{+2L$bH#5srY&Wz&;dyvB7{@ zd7Zz0K3F{X(Z=Wq7OnppH%c?tN)@W4Ur&s}oz=5dS|1^qzBWea7Fm35Icf=2o!NXH z23zYYc5nZB)EfSD{gTB+q@bPpaaeUSG_eA<^7oGMdT*8=Em~SJxnr{e@w?V=gdQbr zA<V;HJ!TKC>wN$G__K|D)W18jo{##!%L_p?7|+9d)QZNs(1!5T#JjK3XuvAWR6f(> zaN^0x2)RYMM`Dtk5@m7k!a}GlTDCP}pnO1l$=cAPZ1lHK;PLL)+CRJ*j4sr}<-&?F zzhADlNHrBgIK`+ud@4}|m*A$R9}}0^b)jqTrqjaL-?*xuQ-A6)XZS$y?Jd*_o<kLX zp`?t<+B#Q><1)5%;!#Zjbj~+mhi6zwCpd?M85k|LQ<jD)reF$Q1WPs`#+ZB7m_QoU zuBR<I2g18=wZ-Eby4=1}a(rpve@VRj8)Taux750oOn-RK-_@jn#?_v2!r<wpWuP=# z^=-;S8qM*zI18V=so<r3p11=2=pJjsSbL)dMSS4az?+QHZZ~oPBZ=@6g_rf>t3LTI zT|p5GZA!TQ%szkL9L@Q?iyIVUF67pr2?q^-P2&~0EL5#ZXOkXv@?0^rrG1OaE4^>6 zU{REF0=<iuU33uxKS+DzVo~6yxB6Ct-<bea^&Y7GSVB<_xpA!YaZI}reY|!IBcI_= zMm(M78BIw9^FEY1J6j659Ef>LNK~D<j*kmq0N0i?ees)+H<cU&49w-bWZOw-b->jg z?(FYsGzKeEzEY^F87!&=-Ed=a`{cW_kuFJu)U_FIyG&N~U;B}cRm={t8}P1mS+qTs z)!ISZ!2J)RNVZ>I4(w?j5|GTT6XBd^zn4yUAo&0{@F)wEca<KC8K$q6oCKn}%AG${ z1S?fQ*1-n6t}SW$AVyf`n&Wlwn7#0dC)qEzAUQ&n7;(a%_S&e0EF_sdwdN+&ZO^9b zZ#>6Kjm9ecb6dm@)w3ufUlQRRyd;v%bc`2Ts9$Dp;3C9xXs`_!wRN<QI)){(<h?R} zxMHKN)DTPE0E@Z1cfp6wV>Go;dGMI~N$;&Zi(cxXG8>(r9;QuuS+|`99dBf)z+|tr z`aOpIJ%woS1!tMWKX0u;CVvbR0hLw4sCD0)Zyrdf(J|AXk@6KbWpmJnEQ6g_lE1pu zDR)!U`q{_G$ZNp2Tv4%IX~zQQO&xRxwSQRRbvg3-$$3-I&B%c$gV{l$C5QQcDy(IB zm3_5Km@eY!b(U%qG8e5K{qG9ev~G#!rf1E&CLdElqc8<7N(g8`nsB3cogejMm1T>1 zZB6Mi{g@RlBhfUz0F7jM_9^n~=ceRG3P}>SI-IPSrY-GYpvxv$XlNQzE9>l%^*U*4 zdA+^D$9n0Nx7R*cC~xBJM!RX$q|^ig!#b&p-py<%Aa+D`T(N#~n>%VUR%*;<=nkn| z>c~8O`hIzGX$N7TMmOB;g7&!WUl*K}Jbr=HjK*4lofJCI2j-$#nFYa5o1oTOufMLa zf1cOA{+ddx(^wj;h+2<Cg6!#JJ_iG~CbUnB&AU72%Gzg6I5ukL6HFDk`6<pD0fY2! zGnvaa{FngT%~|NQ9;0BL=w6Eg8rbp)f48N*8cskP`+!`!G;%VRpoael>_9LM1 zgT}R?ue_?pO@Gn3qwVZpZ<{vHZ{NC_*j&%9=t|NO=a!5z+K&A)!38N|%8~T<Vz?5- z%M6pdm1nP-w4<gRL6M^#<o@{+?GTUM0F67ZQRRJd>ryxgS;RP|vFFCNE}m<^juzvK zj5$H}CnL!?TsEypQ)E^xtyfoKZ|)YFbN!Xmi{FMMo1q1U*p!Hj=M|-pVXOdmIv3L; zTqc68jE)cGR9DDmlE4O5n?3Q|ujgPE16RK_+r6xG+wAc;C4S)%a8rKia-!<YJkY4d zp78N0Fu<uQ>E0BrHgq$Q70WYyAr^a2HRGUF_+iTHUGRz(uMI;#)CR$*;oS}uT{wJU z%h|p)++pRDFFd8pW)CUak2Tr0nz?v-RC2C*tU$WD%$P_?;H+~xNj4-kt{bOW1iBZU z7w$zYLE80ZL|kDp+U3^njULj>EC1n%?8Xdm<IJ#`pG)8QoA&(3=R-A3CVIZR=zO7y z7Kp{JJe|Hs<T1aW$W$tZGIY$W@YX*h<G)Ii+vjE7J#Fd?(wqJ#_fGKxRo}6}A;Fva z4qR0*_DQ-pa9oc`Odh?L(dtk1I3X>Ubz(3>Ao86P+BK^ZYc!wUAv0tsM%}#6uN$P9 zEk<DQ+?#!-D~KjS9oAB9vlwg<Rt5>s3;z$#3TNhJ_(#E}UX8On1-xGxy0M~YV1eB2 zpX#)#;53Q?YG}Q#XZ5omI7BCH&>0)c3+tv^Bi8GKG+Z~Z=skP~E<dnv@h%VZgct!P z!gM;A_zc2h_HzaSXpR~TqeJM-^p5W4&$!ppi1PXkzX=nudCDRxr-C!AYlJEV8(;)( zA3{zC5z@uD#qb}uC=UJ*Lh~esTfbP2!NO7=xc*-@?U>TfjZay4!5`b+`}hMAM~7Ar zozbzu`el~O>O@hSyjqO{@la2%t7wJd%q79EdE)br9UedUd{GSA>NH>JVYNXFHU*Xg zmPZ#B7C7mlUsRW91B7La%SV!P$8KN9lMAL&f-q$mnOoa6%`H#}H}b@C9bwF0#_PYP zG~N^A#Luw9Y!hw;mo_v4{VT@-q8M>XOg^AMq!%Yxqu0u8nft5AoF1MHVp2GORF++1 z*h%2FocE@wK?iD><=Yb#W{B_^0j}QXeE^H%_LcceX$JEmJm`M!Q5!o*<}~>7^;p-_ z=o6kqD+MaCy+fU=y?3s-@JI5@WnROFmWZ{7`jv(v!Q*nyw?cZUs^eN?k}l%O86UA+ zD4BawsawI&X~wJO{3mG2#*Y*3sY6b6z+@*@+8t;>5ZU@t^Hw+ufh=AsCFCY+lWSn| zQ#YgAd>KZh3TQOoNRd7p21?Y`kNSYXsPT;vmk^JdQVX^Wa|jK66I9dYK_pu0x&k2) zeFX$v&;QI$Y?I|0#*h(gfPZIsU#ig#l1a|8>_Vou<;Gy;f>b=bRJ+OdlzQmeTom9J zZc>D6y$kScK+<gnoq++{pgRSNmZ0oH#;Qz4YPA>oqJPL%^?j(t6I~*0HBK}S>#+1; z_oP6i;gSGSIT^LGO&LKIqxcAoZ#d_djWsL*yvrkwQzvac-0W!PgYGv$pIB{qOXap- zr<9}la05b(yH>w~mFUYa%^3JrC*gUYxp^1I^gqeQ&TjcH%d^E_N7r3-zK==uCqRW- zUYlJvjK^NEi)Fm|VJ9VWl5Y-9-YG$@cT!E>y@{{T;-PAP`s()^x>Q5Gk9Q<>qS=Ny zL*I6`IZ)n{3vH$IiW5EQ<f5w)DU=~9r9Nk}VxRN72D@E!Mu+;1(`!$J@g6yS%U8CW zzYI76-0}ni?|v#PK>(Xxy$U3h<wyn0TdRD5=PQ70YMXU^Sa@^uG(7jkuEoh9vo<$A zdLW18l;<`6=|dlhmf_!TE;zq;PnF+O9Nc9eh0=u%KD%|paP=>=$s~meO@z2zCYtIn zeGF-a7Td1^)Eyfc`!#^j6H(>2Jqhl=h(Fa4#k@$ang)AbDh1b(R?ROK-74JThxXf( zcW>qukcfo26+{*+DGLFt_&A@S`AQm=|5{`P2=itJRXABW-XW@ZpI>Lk@v7V4Y{Ra5 zr@GDay!D;!XueCR=kY!O#5nT7V^|Yq)Azv7v`3+Yhy6Lrw!onLem{qyp1$M8)>V|E zQ`@?V;Hg0ig|E+1cFHf@4d=AC*7SPxy?k7$3%V<e;o!0!618uM${TkLvN{%h{Mu5F zcaT-xET5W~MN{HaAIo3+gdlAl1C!NTGa~v_=`D=Ie|W_H9bG&#*e8VtOhyu8><Il{ zYnzso3<nWdyNN1&az{V<%r~wWX>|nC4*^RRu!0tAcn9}~+kP@hTPo79PivI%pN$Oe zId)o6$~6^XOjKyyFBek|5MD_qZ^hd7oGmS%{z?!?+kg60K05QcAx~14aB_m8SV=DM z0*K|!@vAlhCtX@4<Z+lYwgkNT#z<Q%s_giPQn)kb-zkB6Gu+7<l^mW*_R^^}>aRh! zu4^mVxg*3GBI0K9k&u^W?xCz(LWj`}WjSSiHKYxoWtr`OGqucs6pXgNCQM7}vKZ%W zPda^GO!D<~nZg3W+*<ECLaK*8yKsDqHb@_WwlGTA+P)sW1Nan8Di{iAOoxgusf(tS z@NImOqMcdg+bfp**dJ(yH^>(#TAE?$Q+eBrN89PGJv;qHpKTbnK`V}y3GYx8gZ<t3 zdYJQJl_ijFH!L%dr^%1#iB|SkzafTprnrBzwAm_6n~sD|-tH_^R|bm?(5bDjAL$ml zd~~@;G1s+z1+n@34VZ|Gb8xj^MXpxX@yj%^yhr_KKQ~$*j*%8e@%|h#kn4D|oi}u} z@c?V-G&!mnFD4FeR+%00a`;zD7V-m|Xm->1-|RjPlX5H;anFWgsOuGr>!O3hno|G6 zvuus}W3BTfRo(b9Vqdl7I=9^D^$?p?I3=K9cjGdDTC&DsbM1F4kPfy0e{X|VBB4o# zEeU@yG%hz;$8cvG*5l#!|46H#P0?($<89yUpM1&;QNLtz8_&2y{}z}p@8XLiUSS^z zid^rrhXHu{Vf-769Zqgr1<SjB_OufERfo?hl#%N^qk3`v!|O59Cw50I#{-aTGnOjJ zwx-rAt8_&A>C$~p*k+^(%Cz8<eSI{RZcq##Xh)1DY)66t{fL_1-_iDfm8EvihilP! z3T<FG&EUNaUZzQ?)5zTebTXD{W!na&OZBOX72~V<_65hpWpPjiEHt;s5^Owq2jkkp z=7sezcd-V$-PKAJP=}7%6F#1;Q+!1)0f{$=Fzb?LJSO0mt;;&*)WbM$&{YxtJ|2hQ zLGM`H!%*tUh>xQ|3RLk0)XJO?QPAePYM#!%X{zeib)H1<u}u2#TGOC}ylZEm!+Y<5 zs*8&|D%OO<Io%9Sm+fSX&?%N4e@I64aDVV}or~DA{E{=##nU3-C2vdIi4D2;`Tlwr zJ34xRE2f)fFV_TJ7uPgNZKwMLnp7SV;9oVa%V=4ak)iDQzN(lV?@?&mp*>3LG;)Iw z>syWqxXi|UM&{~EgI>4cYRFuj`e{FV3SHsStfQKcAGT{+X?X2F&14=vd?EcNGz$9= zw~9Bx$@`=)?pVkA|HC7yJ5m-H`>43shNho6yzyH&q%>y>A~_bx=;5Kw@X=)MVg7BE zPg(G*8^6Zo0<o7ib+6*(`A=WLI$2k@B>v4D%eX(3-Oy)LMo!mdJe68b;Z2Itk8P@z zc>S)~YOIK8rCS9sYq{+iW3iL36L0f5{dfgjd~kxr{oab6-jQ-aaq;FoRvyELir;cA z2-&oc+8{j+#s|@<AU;e|^*EL8$>J86?nwZv(suQCTp9O14=A4p{)eYfhmrHLX`1ie zEWOz)FNBmpeyGV4MMveTtmv=S1HOt<r3q1!%8xqxvXMtZ4U|2uS`3vE^*nUst@2f< zT{8Q$`9moo7dY+pE6y2*M6;GYHx`Aq@W4aae+&cM^<$h0^DC_h=dqXHesYE7%O2>| z{t$PRW#7hzX58E<G$Ie|sEw7EabIR=u;_HCQ0Vdoi83oDTCZinZ_R$7&D6tRdg07g zvDs)<WT4-Xxt=F8{FzyXfq$wdclVtAFD|k$w@DJ91hC+N--<mR#H0UtGwR5i;~P-& zw{4CSeRJyiX__oFR!NrScUVj}MymW0jG`J;S!wtW4;h^ltWKF1xM@gbSPArZDU^}1 zfG52(+luo`dEONLTjIIxs6aya1G)P%toGKLNU)GsDb@{@lqVK_T>AhXp#g85%ih1v z6pD^hkj;6KWM|*j`j``h%2ye8Q4B83hfduoL_Uv`wGZ+?f$)uVw4sXaA^W|Eve?oC z^;*8PzSPwfD|JbLf1|nr!oVUwr7!JU^CJ(O002{0XgP-bBdLJ1ZD}!CMCe74?7{^j zfD*R4m)TP(*7kg&d^TJ7?}b+WO$ZIhQ)c)g#i9}EDVDE$b;T%cOQfj@&CJ9}IzE3O z9S!w46KXc}PH@1$jZt=`+idz4+y0T#1xS2QJaNtX&Djgq)+e^dy(_4FZkg5Nxx~&e zm5k*J@lrPHA&RYn7%t*2o*}0G3H2rp&b<>}m^6YCUNyn0OPh6e;)ij9>zY3p;R1%s zaeeYlQeyNX$K;4`PY&4e#c^>7r-pq8W?eR0zndN$+JzzlM;kT7KQXXic<C0hVzCt4 zfxI&p$<&_cy(%?zk|c;9*$)EoyawLpnZTsJlWSdW!GzS31PiXMM7lo4u4ipiihMO} zUhGn1WZ7=bIfsX2pVY)}U)N@ydookJ7@FGA(wZ>wH`nk?wJ!5B3hS+#Q8e>)1Numc zv98IF-q<5f#GIM}A71MTFYF(6KgT<c5lrgzwTrD8K;vsc|B2B6UqG6{229#wu)U_) znQ5)3!z69DI_>ySZgw%|$Mc{>)1l_GHLL>KJgwp{)DDo@HqYPE-0<28Ul=M_I{d!S zhc|JI9YrXViBg~Z(v%Txc=t8fsl1w`0DkvfD9>!Pu(u);0E0+Ne>_=(LI>WM{G4w~ z307)G-EB2B-Q_A8mm3Ul-M+*%d?4DRga<LT6g|tk%>gIoVnf`uIJSzQlC=Jd{v0sw zxYP)XKIlL{>d2HggY9sHn+j{_PmNm=#Jy_g_3Seriu<4>daBpjfXM?^{P`%FAvo!a zWSDcTZ}#TG!o@(4#_D%~htDjy)`@EDr@zmC0I_9af~pT#CnKLk>a0{71_knLi<TV% zA_yj)aXtND^v!uYC+qEgd-uiFH$PU_;!5|n#Kh=Jl>|i^H-WF<#A1(+Uv{1bBwQD+ zjJ+S?S87*vb_gmsSHykN2rNGg^W@eEYl`8L&h;%h(63#!2QFl#T${cEh2mtFCn)Kd zb!{FaylW%M`TNYPd>#xi2nk|9uOb%vaH*VMSAYRb(w9c7gGn-A_?I#I)MxKrRIWk} z#q9^(u<QpYvcYxYyUJh=^liUmFTjw)UBrq0#@V!w8qBW&c|FD>?Gh9eB|zY;q0J$F zwa)33rx@1Qm1>BZyXKTG+z(GrU63yrI}H!zP>H#Ja&S-5-LA`AcT!xRdZ@8No1N>S z@SNai^`$KKX8Rx6<#*g8xncwE5+x_-wq>GDo}i;6%}kKnZ)Thv?(!tTt=~K1$6Lht z<*cq?uiXN&u=d|_Ci>yV*W~_R2<TFMFD|(<LatEum;d42mEov_N)MkZb9!XfA0)>* z|7^q2C&zz*QwE`5(i=aYOIBZ>luO-_MfUe01f&<sL$hoxCO#I#SIv8v!h~-(>LyLE zitkB)Xh915%YgX~HDPF?cDb$AnCGur{H>QC@LWjGG!@!O@2i8QY9aebi|CqQvNFVh z9nSt#UbeD&NKrL%xe~$K{g)PCdDL&G=ghzQQz2IIqHde)o&?8JfAnO&O99tKqrwJ7 z*!mFkuN>2EO%34y*&QIS^VzPdKjUxWo}Lj|T&(Zne|Rvl<44t4wMAuiNDgj<#DzL3 zcptt#+Gorf^1X*OS=1F|<peY_KL4~bBr8a~J%M%;ElL=BeqOHfQNrW$&q7zu(nW_t zoheyzjgEJN$L&T_%|_*2*k5H~6n|pj2=YaxJ(eAn75z9BtaEw4PC=(`R9oSkcXBKZ z`;=Ipo*_|=uFF}uT)T@66+Xzi=f*(M_*-=e9V#fSu8@AQ2NYyIoH$~cBV^u8D|}vs zG~_Ed`T3~cejv1{PPb}hvefdgfN>;gi|$zbkHvGQVwr3np6B~c?=9-t7qcKy5Jxy5 zneLTTy7V?AH4q7VgP*#R5sOEu&A#0krX2R;=dFo~W2Vmy&#gS}Rf}cVzbDytL57%9 zP$3CBfuMKE(gkIZ<d>a4r*|OXg4P56!U=nd*s%<7pMvG*&$}P%u#DZ8OsKiGy5#B( znL0a6(l)41CQ@X_4>;{lQeUC#=GFOJIxyv!mjYAwiwftZ?2*P*so%Svp#}@KS8!z7 zgix05SWgi#Pu5;<Mc(a?bt`(q#JhUaPll9R?ubxVSQ?A1jKSifRR|op!^*H%&58Vr z3w0DmoV;cuI^mnz)taGs49R)&q-96`cjS8rS{7$-hONj07i;)Vg={W2=)!siyF{k3 zaw6ru-4E70+Tx{`UC_sOwK?BKO4>{0g>1qn@^w4j`X;bqaG&j-Y~xmAax<+6%Q}VI z^qd`Po-Nu<d7fS%M_ZwVaN9RyKoW4bG{FRn2KIpqZYO{{TLHMolI(WrCR>KYZ^Oeo zUesKBvxqjiED)wq#3ZWW(ozm{T3d58h{S(NNCpMG*P6`12I2m0GOS1Lo(?OM`zwqD z3kpN(*67UW25u(5?p&0_Y-P&C3{aq@Q-plTwCTn^5kKB*m8(3}$@Q1F5X}l(+`i`8 zA3+x&0}}5gv8s#rPlL7QO6Rd^H5;pk7VyPK!GGg_WRr~u9hn(fZj%<7;StAGFlZk9 zhj&zjR1k~#C>p!T;q?Yh-|WxYZ-RiB{t|7LUueroi07SMUDxKH|LhDca(lqYXJY&L z483m;b31Y=g0u~a#cnh-r7!x=_FTqyGA@{Y93i&H+|1gz)PiLn6syi?rbvse);+q5 zFJIWl3^<?;wN6e<3}LT6lv~;LmD_GCQ@gaya<^o&zw#DOU~Z@s-F3G3lExkSnOt44 z#qXdUP=sax>PY26?}{)lE*0;}Lg_Jsx0h8IukvMxnr=(%&fF;$w7n+suZBqTL2>eA z)YIB+pgFIsn#YfpdQqEpi=%=g-|r)6nR}86Aaat00IgA8>A{WhQ07Y)JQVsa>EA3f z-6jqd`Q5)FQS9PlW@bwtsubF*!Wqhj5xDg4!g!$+Hof|~<LwluE>_qeiUM2uqP#yF zQ#XmXGS5v~l5P&qjUpMfJq@$K9Ib0)!wh<pw~?sXOI(Iycp=uJH5o}XaLNc#*!m|! zCZzI3SP~RsFzAvJPG_{1<wn*=(BZc>Y=>9JCDCaqMIVH!V}7L#tG>DRYp$C<3bftm z4eEZhG=_dqlxwh1SGu0njFw4o`rOMt`uehY5!(Cd0ZW{BQ}ZU6!0ePH_$6k(2ok!X zi!%SN2=prx0-ku4e6U<C1U_2G6P9j#?Pem~F!_Eg#Y#)A&J|76W2H<ItlEUCZAG3_ z>=n^;%)<W095XH;wWb202%XDgiI;VmsobZ6&)BqWNOy`+slU#G0hsbl5!O>vg(sj5 z%2%T8A8o#|;43AV#Jm+yc?$mIcWj?GXOi&ErA;~W+qP__`q~SozQj`Z!LTTVTciMr zE7k?FeA2<=#?Y4T)IMh3@)=redf!U^?!|TfAgIQ0h}IC*uwjq8fBHj6cg;??7sRO7 zh+;?HqpT6ybi6KRDFq@KQSXTvehGvh^Pw7-4Uw%EojP0AAQ6Ef^UDPqn4YTQcx5^7 zQIX}Bx6%7#De^h2I32?z4aUAV6CwHhaKZF%!X!0n)zkwKtP`na#h1EHR-u=8E|!k2 zo$?)g!KkKRldL`McP!9n{qH|KRP-7oV(T*5v4N~d<O`2p|LeW|V~be+slT6?b*kuC z)TL&0%U2;Q{WFl_euQ#lEigytS~sl3L&huga$k(zb)9%CejIxJcyuf+W$9p-lW9KK zstmZjbrp@ZFMJh1aIaBGS$OUtBVjPgD$BXBx2yl7?C2}@`pu3TVcUeRSz{NPGY@rk z^>VJ7ufBy=?FaDcr~C7@(NS}+RkDh8cW8rRL&GyX3H%<xKA-0OS0xxUEU5Kj<&?n# z;q0R|=2VKwL@W%BuS(pXEa^;<MZYGS8$P0EXOv|SjV>P|pbgeR6MZR^FZ(_adG)1M zR7(2x6`OPGvar#U<pe_Fo#qE763=ej5+yfcLV1#VaTH1{pm5`WS_73QU|JvaV^W&Q zS2FSa6<K2cTcX(dgebWIKaGV&BQ(WOjH1)lU0ClF5H+&DZV93uD7(uPhUY9Sz~7B) zjf??`6OI)hsG2)@so`s&;}7ItTN73yM=q|V*fji_(9i3C0>R0{%Uayw>W-o2PAvE- z7Wu-WpKxL5vWg0u6LjXNk}GuVPB$u8w*tUR^V}Kk8$uBC`4<IDRYJUez;-$~pcJ!j z*D^m8gB3#NaW8*a$P9Z+21z-7@I)qy$&gNNXoF@5I$}IhtA=|nMn$5sL;0-Oi(D#t z_r>>wZ8<Z#f4nvWGc?B-n!YX4WZ;o&l8}0z)gpbH<iY>Mf0&5?<hxl9t)mlQ0DFR1 zNqbJj3#w*oP?j#Zl5A>tx@zSWxG~tnH)2-;t{0J$DI^r)s>}6otnkoUDX-SVmd9wi zv~6bhYl`xeXt)7&1v5E2`3Jj;eHE&EB?#BxO-E{@JI-!;EHbrDEEzB>#hmlDS1wPK z74Su)2QkE>L^3E?9;Il8cIri>0T<vhR3%*EjEDNx`o<1Ma_2=|maYl;agM;Nj}=nY z?|ssmhm`dE7%TpIDpNw-koK`6hLL+S|KT+txj}(`B0evVV!Au|$E|fAj^xW|@&*m! z2QX-C*kO|2In45)DfZI9&f&~{$EMmKfp0?MG}VnEMOI5rkJ!siR4FwJfN8kiy%l+2 z(UUJY`>qL|?E9x-#d=7vid|>MQkSB0H7G{T;hBj~AYoIm#g;zze|XjrT4=*?@P}gw zgmcvTAp#UM;%N0=FSSQ(nGYtuuW+n5{va*ELbazPW85WsLWu^k5&Q}j`eU2Sive@h z7vSGM+DG%VbIzp&2lLpovI;9sV<AvDNum7x3t8)~!s68dtTseW64}6GHmypu-geE3 z6voLt*n8&b2y~9efs`ajUL@2>?SShrcBgj9J@%AXFlTJl0m-Ft>DQS(ptKAX_ix7z zAIPKaZ{czTX*sRilN5IL!#^SLo~wIdOX7CmcPQ<fZw2ex3?*kPs}E&K(T2RanicyW zA@U&8{4#l;sZ&Wqc1VG0+nkgy^VC}QiGS(cLOZ3)T4$lEi=UsP!DQq2NS?O{3SWe4 zcfhu-o`*GmooI6=s--pQsR+0{Zj-@X*U+=R<MCz`E#L)o^mZE{o$-CRix_u5#^GG~ zRCa1YV;p7QxlHC<Me!fgtZMNg3jFBP!MnaG>i${HGWk!YhjDSffk-(~UJ^(%<*hf% z-O2;WF`*syV{<oyxS)mUxTMh`#VQ@ZH^Q{75YdgnnM1@?6pr%~NO{|Ont5CfZ+qF! zYvImo2K^d*OutZ+%<IMu#IV_SE}Vkjbr5ZDA(bAHl};o`{}i4+CVJ<6&1@o*!6quw zz$E85#C?|)_3xC@U5Nj4K=~iHH(zsQgZ1nVk<7DC|72e2Q_Pgz`{+Iw*yUxN@2p2l z&6h5;R|8dVO;?*uY#^2mHipjc2enx`eq`Y7zXR^E?}U5g9;z>AR6$-C{KS08vhI%h zU`TcNqCkQI=q1Xno2h=z;sy$QEto`KnY2f#N!)*2an$h&X-K0hhgytLR6=qH0)v0# z2`acki@tQ9zRY1+<Q3D}i{9g<I3yYDj_hD5dR4ly0Wr0hd!miJWtYwuZD|vK<sUtM z&C@0gHy9`0pb4-ES#@40%cV*LH^onQ4WZn#ETqkAaM?@*q*smA9g5zXibkVf++@!S z0@Qy$^EvP{@t38dv#i1Ct{G~vFOd4Ywi66Z`AxtNyhb{KG=Y_5FyrsZ?Uymj8s2Sf z3W=^XBD>L1A2ui^E@hi1N>?gda+5QzMsvgWQ*~>{^I8uy`^r&kLvf<uV5KTZ;$G9| z#NTN(1JXLJ%5M@xi*GG5+1+ULrp1Tx9Lv#!<rS(Z9E5@zt5S4mzidHx`1{n*Jm-wW zX-8&h7Y>M-<Pse6mVg)jH6;yDO+NzJjZ0$kxAlIarRzZtzur%m5AD4y&3MUAoUv@i zQlI8&R-gCFe5cLr(zTc=GT4eKy1FcN*{X1!Rj9pnDxs3Gzip_)`57dJsHlz})r}Kr zq6+{yUL=@VyN<2~Z;{{W<Eb!h0gAnqRqjd8qNwTf3OhW4q!3YC<+H=}4NbIES@Z`o z{3cNW`Rs<X2w5kFabw9~yuyL@RN2iOlW0GwJ>$0co*cs{a5eQ`qk|k=ZaHj9dDb&C zcZ`u!za{k<1H|(!q(`8z@*kk3v>{p(Ra#n#U18MpqJEk+si81CuIo%jvOLA6N@YR_ zik`)_Sr+|v!qMueu%xE;5LK)2=12w@b*yUhfqpgJwM-u=vzJA>=&O~4xW?^*DAtUj zI0`HmnWRRXn^w_6S%=vIIK83n+bv=N(i_e(PNxUiVq*iDsW(;V=quzW`L)wIQARQ( z6}zzi_AE6d2H1q8lEB5i#E-TOFCxgVn;nLSYcp>((VUSkpb8)&FEZ;g>dGFYg$w`q z1MtMt>WDJIp>di+h7{6i?DV&(65(xPahl-(q!lZYhq+qh-FDRSn(4{ld1pIrLim-- z`_GGC9Af<>UReDSx(bZOzVT0+^fW+9ZbF86`YVd{DPnw~hL_7bxS98xqgdmRIGF~B zJJ7@u7aF*(9pe2gf3a7vk{{D!XFUxT<*>qeaU7L=7Ya)Hf{Gy$e~nNahq~U1)wn@? zO`ACE5y<T^K(C>Ae-E<rRD<#;!AIr>9##AkHj9hCMMX>Eb~+;R>k4U6Y{q;dtXXoC zLOykWr%eB~13FFn8vno%dSNuLl7ogm?kRZ5Fw?0$+Q2Dn?OWNi;tn-rj^!-VMNg!7 zg6?VB*NF7H7qQ+Y`VJNLHn10(n?>(A|IzE|@xuXfioM;>*66fh_$}d&oFJrq=B=|$ zV|CH+0M<s9B3*zN%gPAb0qqg5rqI`S`zbol!@_W=dUD^mW0;7kCMxSQ&+J8D5eCeD z)hIf`z=&k|&hwGj6&K8AAl{@tI3-@6P6NnEEFFr)s)Uq68id4RGSg&(f*$9q+G^0# z)AmVb8I5qayaVS;DpJ#*oBp24=}JINi1p@+<A_C~t!OT_Sw9MO*iJZDv&V#Q_wKH( z{u#A1{AY)T-igt@gUOH++?1&|sD|=<kcsggf8ip;5dh*5Muf!`-3m9qYhchFF$V+* zE#jq?T5D%~w$Y+|@GqI@Ae0fuPqcM1Yk+lPKyK7=>yRdeykf&FW{rkhwT+hq-+sgZ z97e-m;WPeI`hZm{w9~JHWKIs=*bdYKB%|i~c)B!9Kv1bUTFuATmes~*a>n`3WVpdj ziKwhET_Sdvn?(yWLsrB;(1>H(tC~L=&*~U>S)Qw8dlB50n~ey)KTLSwGzd!eB6L?~ zL$5=>TY^|~4;NDn9A|^I8n3M@X|h%xt$L3sq~n76Y;{O|R<w9O!apmsVS@TBv~iBs z2V-09@F;g$A+i{k*%3!yA%wcOq!>3egMXTt9lu9PB(wa3@MQw-=JJwKAa*6j%%&SM zPnz(!7phW?njOzU^R<yMYl==k#rxY=m{wq|<+=w#CJGi$EO1`f`crzweo5Ltq_DV8 zsqfevyl%6V%L_KPyjeT#6QejBtMNc&#ewS{jY{Su6?N&7^rU4x7`RbQrKAr`QC_(A zPw_s;QRzL!hXk0x(Nuk>59}OIjufri^o7mgbSEn43yy>_vREo|xG}f1vLmHX(?W2- z_O)lNpDmX$>Zo}bDU`@RmENL3@UTG%7VuQ(A;9VT^C5C7DO#VkM@{v;kZ2ura!hS4 z>`r;Mm#NLWg~H3Ns{it;J`%CQXhnM)6med3wtb`_zd$t*60jBe895ez8pFEYUc52M z7N2M?oiD=rhU^SC;$v%nI{p^BH5L3TZ4fke|0I|OgYV{D3Hi-I)PEygy))V+f~rGw zv=ZBPIpe~OuH(KD0xH7U--dncJT+;&tK6FlgW=#h5ZCoyh_Q$yXiTLcb_;UD6nDJ$ zQ0@F7+ClraCgF|8e2>)&r~XiOocOlJLf@Vof@4q;MhAGrhfsnCVY+2xFBfY>(hvVe z)DN_<r;10`8g9GAcH!aF$I6^@U5`QePf-BA%B1NqU!|JN8N8?y0^K}LrHCE2=Gy6) z5qzFhOsrGUAtORQ*bpTX^C3~+K_ma_bxZbO?u%_d>aJWxi%DkQj8xe*t3W@ZT@KAJ z7gS8{_7svpWpYfC7}dc9Z{~VHY)y8p=$saA={3=Lc_Ejaz7BCLXW@zexC)z3SlUJ} zCf?Hlb8t*$$x|w<VN)O<pt7z!YIGFh==g(IT*B6}lAZ9Scc=F74y9cf1F(w=^W?4x z*O7=tu)0Q8*t`@j4*&fDuD_De4<%a>YZ$j2VT(BX=glZxr->Y+5Z&(Mp4}$QtMXt? z2q<YP|KjQCc;21p$^A7RIMsliWCwODk?l(%g2mC_1auZ*_Ky;ENRCRZiqZz-c~*gF zog!lvv8{$o%dbCVM0mgKTz?7vj&QdKvADPk<P6x-7F8Av=4qYp5DF>__6@)BdFQlV zZv`VS3Y!UT6|Lz&sX0Wb)|QAap|nw42^*w-hH(XrOi7`%hqy~6lm!vU2uCEvSH^?l z$)cLm#&FdLcpz^AOGDl2CHU<7J!9%~?Yf_S6O6}AhI9vE)K8`**Ho+{d0XZcpPoLt zEJ0xl_1VP{6ZA19*Ir$A67)NZ9H_KGPT~f%qkBGE)&SEWlI1NNbrp{Se00foFU=$t zcw3pW+>)d84GPWa^b^aiviN%!*2lG<i%#3>j#nmu+~O9GB*7-*Vn=#`E(+?qZQ`jj z2j0uSJeRBpDu)RQ#4#bY{ZcC|Vq=Pdqe+EyOYBtlO<|U}uG|zyG&|`=ZZqaqBM=9n z&tTypxGbYDE?tvKjdX3lt&{^<85C$8#)@cGpUOS{507VE0jIrW+7gQeY@H4$F@o_e zn-gS~Js+O<{o;H_`^0@e8XD{9YUiKI&cNlC>5A?*?SN&OZu!1T^())waJ*FR$E4i? zAU_OHghi<6&6PeU7gAyb_SB*!<9x3qhR~4)RlS<UvShLAfD#)>j<XX)ugxMhgs(z5 z&Yg7qItNzIhsfQ35C}c>;uaaU6xNAr#l?(%YxO*V{m^XtnJ~t!Var3rHf$4lu!=7D zcoT1pTI?fOnC<0LG~`<~vesv;DenPS_L`i`kVORWg#&69mmOa)q^QZIInpxMlZI4z zhucipTw`>;XSE##kD)cUA6+GPaoOMoQ5;w`WM_cI%-b)RK+g~HxyQ=AzRzTY6s;rs zC!4j1vRGFl6+R1VJ;v#gx&9@>pFcw!v|K#q^p5yf*MhTQo&LJ#PSa|SQvkKQq`Kq} zdP$H~c-1V^o{)IQ)||YB=F1UEP^o`#v1h{}s{!gLgG4lwzOH3HQX7`1Wu?vmQ{9_4 z(Q<x1bXJnK(tJ(&i6!klsrF<|269Wg3Iq%#Qp?cB0*d!k_hfc_7xSaLrPyS?{n993 zoJ~fRyX`)H7Wy%H->4&I$zqk5c@n;5uP(SC87FlFTlPAA(ioEtiqe|9VSMbzJh?v+ zRuPS*7V1-0#Js{W{j*Sy(SAd{IMdu=K3`PO*WSj1k8A%Lt+YynzrW7GYe+05^?L9V zgt5R4>qPGR%){XD<HoJ9sJ6)YuTwA!WnMG^6LjQp`!p;lSEHjLikD|R6YXaC{C5m@ zs)p;eYWIylMz>!+G_Q{MUnkpuwM*<kX<k`5o!ye?aXhoOgN0=(4UGG)<S|~<=0g?f zZN-5%sYRU8(>pExX}K~E_7sphgO*uF3}#Rl@L4JDpiwEFhXJwVEgU6t81T$U(}s1r zAp$8C3G3pV#z9@M%CixYrhotBRGUM433qfe0|SIE&epDWcBu#mrfL-}fJjq@TL{Rq z4JPp`tZ`pjW?GG3arbV<peRbh=r=z48*AL&q7Evv_6+zQ(rp-r@Pn++|1QUWj5B?u zEShL^Fz|hOC*coW=wjWUI;$-w`)>0J*?KBzYcZhAiMDNxv&T7PoU-4YzMg*2AOjEF zv0x^bq012X^h$OCwU-rEG@6AYXw@97J6Nh7{=RDVAnr{?kLn0s@{qP(-y55Eg#9?U z$uDxM1I=Pokwkv2KO@Y)^aQf;cqOTSBa8p^$3k#jF9?v3U;e90^nQ-(ks^Dsd4U<4 zz&df}`U+I)@i6Fhii4I4;-NRZMfx&^_)x(dHv5q~Lu<ez<e8ILlE?*aq^(;(`v-nS zN={_pcdJnC`9O#(#fXzI^jye0Z5{Ui@I>`_jqJ@t!aZprrfjLE^8xUut*>nAuB0#e zBmA{~3!(A1?XiqFAu|JNtspX(E3j<*9S<Nd=YH|{oJrV#c!gB+^CWdc#4o(J7TZ@t zDj1RS!2)`~UA$T>SmbDmSA?Q}Vc{>$<U{eDGC8h~%JP&#aH`COic<!se8?!sKg>~C z7E=^ZawvX?`-K_Ae+NWuFm&!#>5$>@ri!E82(!=l<cHM?t{o=ZmvwjFJUu!0-z@aB zLgV#J6gs;c<iOn>1~0w^|M<rtguUy+DTaI0LPfA@=06vM-2#1TUrGDZTvsn|Q}L3v zzruUlo|LB_Tq!nqN?lSN@Ae~wghc``jN0=v(O=v6Cs|hP-3Vg<&wq2bY4@ZI=q{B6 zr#=<JE|w)*2&m_tD$dfc0s3{;JZI&Oo%u`s{h?&CvZdlM$!|OsY#(M9cgDWl)pmP! zf8l(D&Wcog%HM?2Tf7pl=>-5A4jC7Ji#o@Vu;1Tx{6YEwwQU~89ag`(Pr)%$s1j6A z23|>A)QW6d$uVIJigNDxRP&D(zW-bmid}I24=-7+-+hcFkmf}@k^5uLq3M4Gm}gl> z2V0ZL=fSKk9gS1L3=ZYVM-wJbOM`;qGiipQLthl=2gkXIDYfK=7|{P3<$snksIt}= z&I)Zk8?(|py@#tzL|h6?tGF9}Qb8F%J-z1~s(^%9V!+-Nhj8f?^`^C^rnLKembXx! z1M&BXbkD448Ymeo!%FLpptr7?w|2pdICs_6X3()fzdXTvp^ZSknaj}+CZ3N&q?tWA zmYl9M<Sa+2MytFFMouvzgYa99;I|kvFLc%x!$jmpqUpqpl!!_10J4qIf+V9Q)gp;6 zN7qUfrnB4PM*RPmlvwxA|L~3zZ(rW`6fjkH31P)LTe@dzheLdI(gl}17{`~E91?>E zKB)M*_SS01I9Fbv>F?XMEp)~=d#5Aif@CjNZm`M!3{miiU>0PahzOPjspR*kq2xz^ zQ=OX9ap$<t=i9Of%j9u0(*meZV4ojD&tER8d%9p{6dr0QzJm+ARYz=XGe9bu^`7r% zI&b%%-;#gL$S5gEp4L~p{h)p%(6_;bQM-(qmgM3JevdKxfe8cTPYBG`Na>3Pmciq; zK@A~A+(MK(KbY6j6CU=(UFND#KyW`$^s-FkMRu^gs18nv-qzfpRkLiFnC#-Z4tjzp zvV6LdY6*=vm(W)>tv~&7-)Rt_F(aj`#Arwx{A?cEO{tN)HB$()Oqlt;^V!$$uVA(o zsZ~Ukzbpe5_aEu$_3tKAej2)jyY!QNxB8nqVetk{?X-HF&U23&$)2Adf2*!|qao)g z^NgKl@(QqR>$Qn10Zj+EXu6(Q=@w(sR2x$Fu1uqTpIH{&DzZVh^N}>5_eNkdM^evg zgZJuT`S4?oO_g|+rlDglv?>*CUudsa!=dWl7U%kct;t1Rd0?&ov2zkXOOnJYsyM-- z2D(Q^Wo}?FGH~d<{j+P~8KCOEV{-5mm#IMxD@eFxM1*FQ+Hb54(cv>x&uC3^YxM-w zKYY5#L6&hj5u#Qe)}t(PQj+9F=OI!)@QIv8N3`6GNOqmU!E`A~!s2l8OBbP4un5MN zDgsNw1obKfypHGn!3tQ@0#Lpv5O)>HB424c1IRMlFJE1iv6(G{d1nK4FUx5NKbRa< zyw}})Xt0Ws8x;JDiA-2v4sfZ<UEM9lg?g6?#+{-RHZXh}M^8{I7I*c^oK!@ZkEh0* zOmk`0bDobM2F<!SC)lJOQL;Lb(onODGcQ?px86w@GA`xXTKsA|#q!Dcj&XNJ)%isn z{r$aJ=jL&pDIuNmtHLPsUEDp6{<8V4peg!O=!4KX1l6ED^<g4#3oI|9L002X!<Rqt z9g@RhMf>nveh}k0S_pm=^>X``b6U|5<%TnIIH2A7)LW+|!Imp)D;T(D)ab(RdnSd* z@sF{zeNwQ}q2W<pr#^~RDj}NWAF;s2G%)8esnHiO@iN;Y*`_|Azb!HXn8hlVP_n{~ zn8;7pQRkn3CMmOM9z_x^N|epNOYoLF?id`l<$<v<(WRn-DGSCSWk8*3M(qIYqIW3_ zkHc5S{9H!dM7b0n4Y-23xNsQ6(upk!Zm__B9dqi#tbGd{F{;!@`$=SnBavz$IHBs> z&i?E-R9Ea~NWg0tYQJx~HdrB?(5l1_c0Vp7A;`5RzlNi`P-+v?LlaJZRVQWsJA1Ck z=7eep$>I9N@e-n7{6)cbgfefp1e)Ca05Jbha^0thwDI{(+|h;FwhHyq8is91{=vMW z92pXXD-eWx_as-ILTixA+*+mDmc=K8B>eCX69WBLH+-kj9o{7e`GTkf{SK*~T%+!G z%a{IC&YAgd8h?Zv^Z3Y9KVZ=9%V$Mhw)?wbyh17=y04pz5=&~nSO?Q;m89OAt);Zk zK7TA{-uvk}kvCnj^*665MLD8aJ#j3@A}+|n-Q;zHp_6a9Bv9HXAhYwK_cN0R=1wqj zFp=ab8^ZqZM%a9V;aF6%j_S`<)kr1Kx@mOe@pW;M8{idt=}N#P{ing~-=RjJ`i1>? z)9LCavE+N&M#i7xjB`uZH~U$Nac?BPRu`x8z9k0Q;F0wF1+;}mBZEM4!P=XNK5ny9 zk~yA{0SuiP4Jhfpy=s1>tkq|}WtM9JUdN2Vf3jf@saPNZFAJ<tHP|lk8DxuBBk<N_ z!8}Q0m$$7YJ^MB2H}XO7+k8mxyrMd)NKxOr0`fzd8LeCdX0!e!kYh&1EW}<zP8R}Q z*4iRHdHZ~o#x^>Z2Swh+-;CxO;$Y;!G0fp-HF``kG7dBRx3wr@<P)p=*TId>=!C_$ z!uJ9gd)=RN;M!eu|9K$rGB9+kM63R%N{3iG1^3p=<Q-<Y%>-i>Zn?~T>6@&<<VOc6 zI}cr4do-}NQtJdilPpV8%Kb9H*WwI~?LDGw8Ij#)z?k6_E`4{Y9Za{{q5X(UDC+l^ zaVKs;3)(`m=~E&=$ErKwGV6d>bh@&xIqRCg;N<x1<ada>Y#1u}3s%lIpai0PdD?R? z`XauXCa8LVDeru^UU=s2YxbKAFTSW5EiNewOf1@~FO;-1dULUVg9Z{{97gkUq2{i# zb_qx~wpT>^E7MCZm|%>q-QP#S!WExRP^#EGXZ{8G8{k~2py^?E9S=5Ll8X?tKVZk5 zx}iQTTAR7HF2|A5A2+<B<(l%;q&&*>T<meJ2GL6QBV2WfYdTSxb;yFa0E?T6i_Rl) zDhiCpvUQ+ii(ss9&bLvtI(2X?Pn<w5zR%AC`w#ci)<ofwT#3pesIcA%)fF?;@9Zjl z&g>u$A}BBE^4$to2ecm2(W~`7x94$$y*wsp+i-x21gi!|ogOWAU{d#(;Gkx_{tEwk zR|$<nWB-U&i=-i?u=h3no<<4fB>_jF+EF7stf`R<{xFr|It>5fQ8upZX^OaI>nq?? zrh_;d(jGF7d4DJcfqju=V{TqhnzFePXER5V2jFeH5>X#e7p}e7!M&*D6va@pYSZ1I z$>o0QKlyaHHJKhx+)<M|Rv*Ll4>a67TwhHSKHYX?R21Rai|iKq56>kmGOUTP25s7} zLLVvw8S1lGv`+VLRQh)lesDmrP?9V}!6J%L+!X6tjk}A*_})5&&fGtk+Qe|76#6W> zc%qT^D<42anVM)`=*qz{eSp`a>aO6oinVOR+$tGxqHTP%fgqZPhCB!Yv`flA&TKxv zuMW-Y!#>eANhs@voCbAf*|vE?3DAZ3*%$3PyK6FXddRg-#cLx}E#h)7llYUIxO zxD&Nr#96*6Mk5kcRIVdhn6qYXwV9#p{QkUgke#LnN_;`sT|9|6y>yzxNp%aT!5wa> z!yy|SC8xGei!p1R0nHzASKw3!SZbHaEn9od%?QVz@LF3Fs?H{5538>0nT!f+WE$j( z=VC0u(3AmzrI@I}<D(1a3vJg1X&;SIK0s+h_@1A8UzAGQ<66q&61kgi$#KtH4mlSj zv}+cfBE(089IAYzivFq){9kosr;Pc49#L^WjlJ<~M7s@UiVtz-R$?Oh5gB=j2^H0e z;;>mX(D&>)%?grO&C@B`5tM)_!W}r=p$v}<2B0(kN6}gMHT7^|90dghM7l#5AdRH7 zfRvPibWEff1L+#w-5@Ou5|eI_21)6TQPLYZVDNkI`v)vOH_pB1JkR+)6A`?A9LD?C zNfe1;vCxwJApSuYsE?|9^QQ&sY75^E{anop+B<Ro?l$04_4hPjY8VuibJ~|*(`e&I zFG};IzRukF=K+avRuB3SY``YpL6m8n>%cLr3#r0~W`qB(G95%v_7R1zF$LZ1Fn-mf zhJcqStTz4J)@>anZ1+Z3SVlGUohF2Lw*-wrRy$NH2c>eI<4Q>AmPCYGJUL){Fh^;f zt@(bq85^<7tQfeS*ZP8WwhkWS8Qms$c{9#0YEHH+C8#(LJ0(-xGpuV+G>Q(fg?|ZQ z!U@lQ(-cwm>X-7y9{u6H;KNHG0SjN6811NqQVQs#^Q1L^Y8dcZY7(J+H2<FP?zq$L zW~yd|M}D_vdh>4k+q>#0e8)#<LW_pT6AX5Rot0`9R8af->VD$LtKo!&rT?RqE17Qa zIV~(=UO+OO$e<4L{$<5H7c%3d8-wvMRish>mGoQW{pb~iZWEW}q%l-vDxcOOp(ljy zh@Cq`0_!b|Gj9z}pnAvdH`Ds0DZX84^FJ(n&#=3l#}~b}{>&-8TuN>vMTOjg=Q!V# zIPu`ino*2MWzB_P1bxH|aPe8o&bX<6-Ci+1%za`jDOy%k{a}&&!J>oBEwR?(-DqEe zd(F0=Hp~X#PkMD(6OnjE?GgopsTv4L^+Bo(>4+>+zc0FuiOg+NnFF@w%ZVLJn%|*c zH6W~+Q)%P<N(5C_-u}JEW|G)WW$e9DdLRE<&R#VfE{=JTYSzf{-aO-e_YsS>)jR5z zXtV3s2gSJ2S(MqZ+xGKN#Hfy^eW?TUDS=2nQnT~vnx-A*VzO&v*+0(Pz2-g?CAftf z)j1+C$kVYNw3mFO79-f`d8w{aEjfD`#~eUMnrPzKON17Uzw&QHw>fzr;7fe^D2?Qj ziC;ENa(n6>()wHi>njTW46`bN4L|fFKR)Ar#yUG%JmNWl^xswE|C^GTq6fc-Kakms zKYoS0zM4QY9ee$-O}{pT_P2FZ7e6;H*o;d1<kG6iU#$arP04<0F1(xG<VXMacn6gi z2NymKYjtbw$7^WI(wG+do{?q$@)2={YFp<tb8WiR?em-9O-Eq&6p4QY`4zq4(UXT| zmx&v0))D=gW-c7T!E7RTTs4K;(V22!b*1zsklG+7N{77l;y_qt>8X)S1Oz$XE#B~u zLl;3YsD`2pKXrKV<9AJxk%@*;9-ExbGfU_Ke(qC9UpAM9@!8>yc?n6O%G<#csij^$ zR9Ib+XzV2#CX5oilkiyF_<OWTDHw}>%yC)@vH0@+YX$RDmYI1X53fxbBA)S<O1oBg zZx=B{TT?ojGRjTf>nm@-$`sG{R-5-uX~uHNOoPN*<hxx|Jko6FJ>43VQmAVzubAtI znhHMnK!nIC>?X$9K!vq6f51t&j-Ls$T7f;dCNRYflVJ?;6Er>iXsc)I0JOvP5cH9G zwsWGt-2lz&K6`%Rp29bGMcF!)psE%kTH1f{`6n241R(f(I`ffuCJid0>aP!aAQMDN zP#e^82yEQ4tyR%1CWu0PgGABE6xg?kTBAhC1Qk05(;PK=Od%G{Ta)kn-ljVzQUm7y zN~*_2Pid9pG`Pgo*%7#blI)I_n~Ttf91XEGPfL_g`O`072%K2QVz3-Flm(1nBi*1N zNE*s<5FEmQ-_SJYZ$l44%Y2?W+O5yit+ic;c5Wst^`}TM$2(UBq{Y)&#DCWV&$7^8 ziZO_2xkoOqqVEto1E~NM6ak#BOCBy=Py4amDCrSm1H2(0oi@_<ZE*$>OfNiMKqg)V z53KoK!jCSuE~a^fO75hKOP=}HSLNC){^Bhm<yjFRIR2yY(IwRiYhHU3Uo~r$SCa-K zG+&J|vvjd0YZX5f<sbeM`W>^SRT~J(WH&ZvmXm4ss$9T;3kS_);vYo*UC|H%{a=v^ z#TgNoc8pM4AVj4KA!??V>cTu2ps_P3T*)CTvCw-+n)Eld-RVBVyYZH<p9p8oGj~8e zosx2j`GA6X<7WkV1Buj>dBIRXqu8M2p)CVBvLvzu9wbeLj@O*5{_@>eQbA8U)jThe ztjEK4j#(^L>;3XFAjzZ6Wx`<KpF|`uZj{@6Wc@HzhPeUHX%$YEiY)z<)h>N0PFT`A zN~YI{nit73(HNC0ndn^H>0{}URs{Wr0Uw_QrX*%M5R^vVhph4`g0Mx-XHV?kr_>An zj`4~<K}eGyQM5A3By=#Ewf!90Knvv*QuPOky(v?Tq_LG%6Rfn}5nIm2{wzsvUi9zQ zIFr3sBJv_S*6x*b9`vWNx)UePjar%^^de~Ig$5mI=qq=)&^^m1V5O+5uNDG+;m0gI z<u&ARQL(Jg*T>>9PQvrc<hTB}T&o=%-yT9&!wS0x0aOA~vu_=jt+?oo8TnyHRv*>% zcg>v%Z1@`ZmBoIl*yHSiYlU*wLf+vrPXzw6Q%OsExBX+PCHWVz_*sK-7Wkkn$5E|i zQ3+G3?S!T$&KgVk$e+{QVLj)%$bsUY|K_@j8b!o0O~-T|gSHC%cKBpJm%qs=u&2m^ zNFdULF3KpJG;zM3b%tew0~$KE#fyKLJRfG41kV~qDb)#=NxWM}iRd*A4<xP2*CDO$ zd7ESY-M>70H6Wg2gA;aNNz6j381mdv0U_H#=|pUAyALe;FG<T9g~7Tg)&#&8On&6* zYbeDOS;Z^#Z^__c0dIMG(Kv`XfsYI1!Kx%<xQC%-4;DTpBSUroD49y$m%_V+C3fo0 zzlQ05f5G<cWIrpgl9Z~<m&GCo98Cip!-Ozwhprd)FyJubHEjAfRVUL{&Gr=ihJu+f zA9RK3NyI*LY<`$00!VoCx7Oi%ChT%8sP8E%WOGT$b}`w2PUKY*_&xV0D|Xydb-QvG z80e4kDNFsla5(~b-M7lpD;^f=6yk(a4ocg6WU~Y@8rmTZTD1%_S$;Tsy`SafwdqfP z_;pWV7A9YCDB!ox<Zc5kjUx>xn7hIaOvZ0+sN*6&cbe;b?zn_+2$+vjOZGcyrz9z_ z`p&B63``t|w<POzDWh3yoWE7;kcv^+f0?<GsmDE*DcHYu_Dlm_naE^`b?X}@j|<`u zU;cdhTV>@Q`i^Q?ODCL;PWL~o&#Ca5q^haG{pt$H7WS^~l7F~s^fArXC<@!6=62fJ z7JgHf-`#P7HOc?ft*Y~py8}M{!4%^6ry<qHCdbD|&~qF1RQ+a({W3Y|t^!U_qUdB? z>diFr@ak9dUkgYcHcZ<084q>U>DO7B-LbD3fi~MBBoW7}>AA0-s2u2(Z^Ml4bRHHA z<4RgN4`>tyvPAY%k9cCsBWF$&lIC0!{p>B;U5FFjUVQ4&P!Nye9lbZ2#qd>Br;>+9 zUd*EeWE(8wEE|@FTr#9brvqbrceMK4u!5s9gvN+A=Q1443J$!Lf?u_=*%Vs%M0?5p zw$v|5H5JBX1d)_!NuPokd+E7)WvHazcosXj#go~sF`@`+D`O!$6Ao<eyT9^O%l9&y zhb1i_1;Y$4#*_dBizqDa3?2Tlv1@wAiDBqevL&jCaL-7cc95B4goKVnoY#A%_7c)4 z98v4dShdDCk6}kRK9%2CC)uC(6Y?suY^k5JbbZOK#KG-nff_H2UH;;{UgA^<<#zoK zD_q@UQ-&INdweBb?CxKe)n5#^ju~*z^33mivrfKo={zW=w{4EB8_28Q3v`ts8`&tH zZ^-wdx#3^b&mb9Xlva<F9<ilLP9WR+0hg5)yD#vs`7s3(Lm~*BIW{cY89><|=mTgo zxd?y8QCS?F<IXeD%pVy4ycX0kg2-RS1J^@H>z&%1H9F4>Xn>`5vUnQW4XGIS8{0nb z%9fEO2`i2NdmpMyO*r(Z6RQgi+1#CH{|k4(u+{W6Uc2WqMIF#f59q#{vnlNS@@@-9 z{!L^!HaQwtn4@>Os+@wcn{B*qH!DJu**z+%Z)}LMO^O$860*P6BOMreCewyPoE#?( z%R*^i$=r7~REW+AOUa$~T^&-}QqcZ=T>swe4gF}IRiaTgY2bj8a3dp+mfyvZ%WR*4 z>EH!^$-|-_4RC`*;)XtO!jzG`<>WtoOO`+VN_(GSY$;h>mt#qsuK3pTgwaFp2MwwV z_hG85_M`#DIonQeiO4e1Rq_GkmEDe}X*a6E6}pfX0fWSI4z_0>^U|5_moTJA&7;W8 zQ+%}b14(?$q1%RQhnk8|p2d@QAeMO02;S<%ZO^mrx7gIT@J+VzJ5dbpbhVHpxvA<_ z>}w;UqxIVTX+u)B)9=Q{N<wK4ac|E1Nr+<_Pq5ZXj8tr&E|YUx?6t}`b#1yZlCCa! ze)U!A0b=%wb68rZ^Lgl&ya$%k-jVb2RD)swUq)r%8PTr_X})=Ba`kFsJJH5m{-CQ( z7lx8)JKd{fGT9(vvzEH#oncvlr!1w~@q_W<jPx+VjXauV&#p~)50t%|c%kpix5!wX zwersa@o3`m2Q7maE-eKsMHVj=e6u!)mXrnnZV!2SR6EO7V`qbHjV}~p-^3<qapQj8 zyIuQ>iq<Mj<L&UFF*$#g1WT=;(!bpb_BiezcOJbyV0<GZ1w0blYu<e~(C;7*@cSmt zPKV9DUvOiKs|`O+U?{yg5vI@>UuEo>dvo$Cj)Uzl&u$XFu;l`BnCGWj*-wq9UzY=u z6rI2_hd@>K<A>>>)I|OGk*TwJS0UwehDW4aU+T>80pLs~mZHZ^LdrI5w|Ro{VK|TY za?I~k0|_6Lx_0{T3i@=(kxjxY<t)~vw4q_ff)C8EdhWhQPWGeGz7!N+YL2oj4Q*#B zg_z<et1e5mDL2uq4$J!z)9Mt)Jvr;Pr1~<~rb4|OlZmE9C>?)7@ICc(R~PJQ!w5S1 zcv>V)zdPqKDRx$E^S26>-E}vo)*T$>nvfRu>+{YT8ygj`lxCT$gwAGMj!i>Iep3cf zS7jY1Zk#6-F~Z5u*P?+@#wB{uylQ_bJQQYP3BgH-%vW6~ZEepLaQ+dJeEeG9p8}xz ztLEl>{x@y7vXi|xd0V>a5hcxu9+*2co;=+{@!b8AHZAuB5x<YXr#dlQqjE-%uO232 z-e1c2d9rNr42IULYn^Tpp2Thz+7i53Q!1{fOg1&bdM7eg^s6<o090+I^KB4BKB6~t ztJ$3w+KL;(qqkKg9#%H3(Sw**Yi^#Idc?@N;2w6EZK=Z|zyUI=X})6&BKkdpTr0Ii zlByf+7bYz8%r!Ec_)vVL-jMZVNfWF;A+FD=Riw4qqdsdqg5nmm>}56`mm^h`=1v+k zLv9D!w%!)R=`T?ew!0{NL-(pXK^l))ws2kjzBq1yzIK{V$!rvX8QXPGQS(~B_5wp9 z=&^qOoGSiuPF(Yw39(e(Jnyq;ka`onY`?Dp;uH_!C!YQ(de9I5?`iY`RblH?YVOG? z?oLePs-cKxN>cU5__iRf?b9cI<Kj)R4@~`l2!XBcRk9XQVqUO5=91xFGWT8HGf}1X zRgjtoE5F7D#M`y}?cMTCsEY7UX$0E*PSu8y7^7}ehmmV(o-xm1I8|@f2bn!}VhZ@f zb7~F>z_!m&x`wR5e9HE(4b|3|QMf&5zGJgD!X@Q6Lv9vYE_6vs?2C?ATim~dhTh!- zZZpPT@GUBB?e%6Iv&f_22oq*0w((6~<~)^Lypu}Vq4Tl!N##Ksc4_t9Gg&%pJz;h5 zl^?(wqODT>JdXjJ`z7N*O?S7BmW=x|oF}vX@m9`S{Kkp=+=SdXH}%zr*PcLd77xLc zGB$h>E}lRBNmHYP?_+<Cv5lCBpRKLd!ybj&EIFBr*$Nn0XxEJM7r9;(ZZbyF%!NYy zt1x19=!oZv^Lma#Sd|^LNBi!RTx^1MloBalIHZW0JO{S6V!ZK1djU+26E|B3>p%_y zH;yaPoT(yWC;j--P_gn-vJ#cpPKw(W3|x*DR7J*zv!LtB(edva<0kPXpcHf9x_!GS z+{Mz|`SD-Nj0(1|Y<l8Tws1B&9=TeD<s*D$dKic&?cFrVO<`h9i`@MCwcT{JLp5*i z`w!Kg?<jG!-U#3wCPp@>)Aj;|VR#y&T_BI5I729=^kNr%Y<~|+@^VpeR||nv>h3wb zB`9coAYJ8)fRXX}y^zX_q7lo+zt^)zsZdKQ)eh^fF;|?`eSgL^Qmx44sD_+f4|7#_ zFwvUVKo%z(_j~zJ#7h!6a*w50D@<WB1S(>WQ2l>BoHXWE^cus(Hgg2FdKu{EE&z#X ze+tIhq!WdBFnOn3@pMwhbli6BggNx{GZLPm7gRrM#7grQOKQ)$x8f-Ww@f&9AD#E( zMEv=EqHk@LX(L(s=^PsQ;)n!`tro^t3X_?$?wpZi{Rt!iJ{D1mTQysy@4g9=Fc4fR zcrx^5d4XVyt#yn=13gU{%U#8WtV$2g=lW)UsY(%~Z=N{KbCt}Yy6r)|MA*bLpr`;i znH+>63;oEdrV!YxDx<?SY9w7Q5u`YC@zV*g3dT<IRhEf(ge`}(dW}9!RO>^G#a>6e zE;<r!`>Rq~BG{;rL}Axp(8`LRiAkco=|3!`KiC1)8TLe3<#3$FNofX1CwsD9ExOJF zF?`I<xFoJE)zJN35nt#vd#1!cTFLN4P|O!t$Ke8RJ)CsE(c_mVc(ZbSAwfXJvCLNE zI{hT$g`s{4#A}*rIPOV~QQ#0rSHo_euD}bh+xtDoyhhQlWGWVKa%J%5C#<j)+j65; z6#JD)X?=y5DP%6@M78jULg9ZVmYS|4C*5*Hh(ds!Qs8}x`*fp~P&&({Mel{|V<WG8 z7wJ5A^4iY=xf-I?>VC&|{v-_*MtA=BX!w9G#ck+pP42`87rJvOSBML=ad9TF`>}RC z@{uIL-SiL7b0r1}R9*-V#?+Wo-Lb5akMs{^FkwaL6Cxd+Z!viL18N_VO)pF`Tx)oE z4Jr!Jxc9)!awD;eT9USW;wKDurVwQr$+|TyOc^(*8}sF5;vXkVpX7uh;kHKs@+9go zvkiS1coR;%<Vn=`*Y1G?Mcx<%<EdN{7%R2YZFT-IR(#+-d^YmB?mM$4w`B^m;7%b3 ze)|HZdY{}bRwcDtgB<Xbrj@lDfjSkUzn4uje9Vf&iDg~UWMT>iGzsa0J<x-f-z2z3 zDH7vW%op~+0}~4GzlD~Q8m;U*_m(SQL!s#uj-9lJUS!q~`I^Z+hKGKFvv!t|PbOXr zRxF_2S=dY-*U`k*zh270dtQGmbhhEYyq6c)-+rAqa^goOE>>?+>457-_-)@(H|E6r z4Qt5NiQgIHwK<|RL~En8#&@TBFwsy&HaXslyAdrz{E&EdK2i~eR}YP%HwIy2|6#S| zG0JQtQOJ;BbbPk*0y>4;CfyK!heeVR5!E>5lEedP==S$fw~LL6GG0!Ey%%2wbJnxh z>-m1?#jZcEVu`+*Kq^+%{t<ivkHNg1T<MuCA6Pv3M6;y)TMXZej*pseJCvGye^XFg zSSY4z6p1pB@&>ZvWnRN<k$eczVBYzoIcK{}`wij7!cvx%C5@1T=aP2I`ozI>Stgn| z9#YbwcM>r9)=Ap_P6>Xrk*Z@F$E6uaV1*wCv9`dGsp-D-6IV?50^s*XOVgv}Rqm{N ze2w~12b6jrQ!)`gT&iN`Up!hUc#}uoe5BwN*{lA>HQ`pphp_4>H9=4Gr7gw&F@&G; zxhZ<ikBrL&d+vk!;~z1v2rlT&ei}rGY3)jS&uV$I+^Pe!Q8P)t4NY7O7&QPlcZ4Dw zUp59Lt^5paROi!(LOyAZJNQy*on*B(8AG9bg*6(Yce#(!+uG~Ve0CtJXE+gindKAd z49ufRREmCaB?KRT`-vSGL}D}G(w04sECgOoTF~7ajElXS0K$e(!ThImSM{3w5AIfI z-!JutNLo`thlrO65BKD?F;oFn<6K9Y6#m_^fDs^S{B=8Pg=}$2&s5v^bvh~C2JC<t zuQ#E0*z9<&(}zAyr%%@fqgnWS%Zr28{MHWTc-(+I*PP;RFoF{Gw&vUTdpU8pnXO5m zzX$1sR50G!cWXY0<2vWsqQp?NzRhp`3*%$GN}A)^ruA{z>8T74Qgag03jC|jPqkfh z2o8AQLuvLAMR=&eKCzYha<i$#@T)T6H=lqM9Ee*E!{QI;>K|TW$WViWdBiFkd7+}J zKOt5ETbgMKQTuuUL<u_9XM<wyAF*&jx);vkAKQPv8KLB8lVwzbSpo7xnP>9gwYKe2 zNtOL6x0mwDpo^G%Kp*JUO3om>Q;HC#0*ngdawSl$$}kB>fD%>2pO`u7y8N3{g`H6b z|1=p~0)7Tmh15I}H^&HZj}Skh#aQ7}*q~7kiOnTWEVEpH^`>%u4*k#~6~TcDZB(_> z^+agbMwWj~Q;6^g(G$;y^FOVbdQs#k%dyVvYf3!P8}~G=flmQi&+7#Q8GH$i2F%Kf z3L1pMC@LQWZy-%m(mWVB0IWkPa<|xs=ZbK2hy-^uc_$}MhvG^p_@wtvpxN?{bx`Yl zx>IQD&G4A&<J^x)2TP%uzCi-*E&OY1M$nJqwH(xvq~N9WQ2&kWTymsuNGm)%6Z(8) z<g>sEzCY_GuC#W?g`SwAy_s1qNpA_)Tv#mPG&EB(^CZ&D5@KzaYbX-y&lYb-O81P% z66!oS=DtnBvj8~E$@dTd*MOybQHd|gqXlz;5df}i&vx1BLvQF#S7d!ggO3roUbR3| z^622^t$>0VtgNQFC+Ls^Cph<wY5FD{%^rW0=(9N{eU6~)hSS(AVdnlymzMTJT?7nG z1+bkS|B3i>NS2i#UPJIymT9-EMDr<{z1L5)r4wcE|FWQd-WA^ye(I+AOyAJx!1R6O zE?^BeTypXYWnTC@_?$Q{svip-4!-{(V_79{+5vbja@)z>K-VP7=ccyTs!l9|B&L?q zRL&stk)W}#3HB<_20?rI)akpp7%B0Ot>3infV0i`-z)|RAO*l1*P*8c=;WV3M+_*^ z!mrcTluh+5MV(SUD|&)Slw%Xq)Ka%Mf&k1Ha@SY1kC6ag<tS98rf*11Gpz^3{gl-6 z$l-ToblH7EFV<IdWRb<;*$I~3#W~Xd3YZ!Mxx++fPlV!w*9kE68+lYl8fn)QOTtB9 zn<)JcwUKNe*?5b>2&l>=_r&1U%qYHy2l_SkFqk^RM50f3bO7(-&a0rY<@t?F=eeT+ z)eEvGF%(jvo~eQo|I)(Ov<gz}*GkXEkP}zp_r(AY2#&Xk25)KxV;kC~1@Rr<n^b+7 zMx<J-5UfF-Wik^DF^8#OO^gkZU;7^^0M+FCeYT7h5uFl>5y1nG{DSH+X{Wf&?xE#* zzP6z}wreQM-Sl;Ho33!>=~CChR>TSUZNnBkF0ZyJpuuPv807)Eu8!dkOv++YZanT1 z`dgNAe}!j@T%bB)E8lb$y>nCl88Y_sh?>+k{6YcAMKDz|<bbaKi$#<5g|EtU`X<Fm zY%$ys%gGKK;uKGtQB()D#ue|OIEa(9Jq2GEl(|}ar?`c?Gz)V3lVjSM?M}LOVi2Rq z8yt$x_ic5dI%c`C!NynN$hz)__u_ipfa3%97V?a7JZwa@zMc}l>8VKE?%cb-kL9tS zeQINTL#Ibrh0#HiZ#q&QFfbtF`%TDUn%t4}dBLZbInsYtd82-)I`VR<@Irgt7O)#N zH6Sw>dE8JpM+)0H8G0Bg!O|$dP$n$x)@`neK!qg$Rdr^7hv5G6EczP=tIzyt`@Zb@ zr*i{4Sl*onIvAlB=KnP>;#Ma5sQ&8L3`@LPeP`TFQKplJ8{Heh<@+>Nm8Z@_m7j@w z85%G@JO_2=g^gUNT!%rvRdpi-gE**Au$He(s=sU(Qcor(mj<nh#8yJ<`EG@xaBhK# ziW$j%M5gzOZCYcwFv4rtisXGPJxi$S4|XOIBVjaAfiOJsluuH&P`S?P<h?>Xb)V<Q z-|-0Z<cY6b+viau%Vq38n}8+r=al)!JcW*!IMt6xwFE=MMf7*p5q{A7KlIoG^2|{C znC)-(@_?10r;`f}M)CFO8HPu+D;DhfT(;MoLB9(PfB6r~*Bllah86I*JUmIgisjoA zzXTK8+nlv>y4y?@M@NUvC6%+{1>c!iO`hZt5q_+VB+nf;@>)tQW5WT-(zjo>cHAYM zJMbpno_NoF=4!5A6gDpj-(~FW3dxiSvZzHd2B+<f{&he!*9RDniR6*@y#RgoG#mAJ zV&VkCZ=p@`dj|g}aV2+OV|||}$p@b>-)PID!w{ph%B1G9Htrv<sT-d6G6-a(sdl{> zA)jh1GK^UDu@)L8Zy``*;S}`~LZ2(u2KS#=heJdvKs7}aR~7aH_*Oup^)u(!`}oA< zdO>qB%ij#^cYNqU#Pw16mKe-ygS=rHdb-_^r#+RQH+1K}U`?sJytMdS0VGh3E_#$H zppT`qB04ofOpz?c!E03F?=XqBR+@9e;}cSs*G4|>hEhXu@FiX^)bM0{xf9Cx;_rT@ zc;{#Q>TP9?_ceeb3-Qp1ze+$>XLyxnOi5S(ghk9dEq|Uywf+0d5~{1<j0~lZKXxk4 z2Dc_Kl-O6iXqzSXnk^YTJK!m{sxii==Epdd^!g}u0kH<ju~_CvHIhi8_!68PJCetU z+{4g`-EkVA-=WKe{OLtnS{5axDwIl<L9rfBlpF9Rmj}>TrAro{8Qmh@R=2*TQ$rNv ziL@tbl9C-Q-c^`ytbWut@to-PE=DYe@|B>yuikPCT_lp)yi*8lZHkf~saeD16ylPH zBlM8=*EE)UgFwimK5tR3$JLkVqiVO1kR3yldE!NmrWfv;`sE2R8^>EW@Gjsf6E6J} zjE*-&N$nloNQE`{(%?&(avl2Q$R9r<fCx|e$U7La>i;44s*52G5Ikp(0@7#!<@A%U zbswb66ITy8p8PfM0LnJiYeH8tanU3w@MrK8o9x@M{kPv=uI1VKnyhK5KMzbrw^?5) znHR(4k<}@k%*d-!H-rVrNz-3A&4^mu>zrEVwMJBH<!gTr+JHeUiA(mrPCkt6eTFn3 zV=|Kchh-ZpFNcOA@c(V4x=AVOoD0UYv7blY2~BfgDG`mX5X8JBLIMW8t9tYz>b%dR z^A)-RLHKdaWPC!1M%83VUr@rb$VdOmus+7imO-lTn*6uj11GB2l;xn4Wu_s_a*=Az zO|>GZ<$+8|0E=IoSMZ{`6(+t6r1(+!+iEvV$<%-&WROOui|`GP(8AeHM$f#@=*8-F zjkz^7-SQu-%?e+6Ez>rcRY(*+{xmb7Iw2@;0{JOJx{xN|=rnQZI-;J5;0Fe@7lLa! zEK#@ua;#*eud_|`8lswIqzWWWU>?5du)7cZ^Cvt$sZWhHyJJ~03Ex$f(BuQ59%`na zXwGNO<W8LsP7dt5*KrUuO()?UD5cbF#Ghwg*jmiIn%cu2Wo>=vl0RN`e0UBhI!|8D zHb91}JH^mJHVv$=j*?8I$3d}mcg=`~8WK*-Z;H6j$=Iit6Tfe*Ltv~v72Gr>5s^+6 zrp)Urz8Sbns?96Y4LxZoHDC2>xcj!x)RlQI=AuMwGN(R6W9*?ZuRZ*|w&nB6g#X(7 zTC;8Ks5f;seaCB_Y`>VRhHL!tE!O$KQ$Z7#LOeO+==_v7BrfW;GSTb!7{`tHXeD)< z1}W{{+n*KstfB2m{bZ2=$UkO^I>UR{Asok3ogHW%q#_ZP?L@_)6Z64snB->m_X5I1 zssY85P}G25>V<Ai8M?H4E?MabeA%AvbQDw>ASxL;{QCq?2CONd86oaA8p<5Dsq#Q# zF5z;T;Qs-WPTQv+b&<+G?XhzE(-Zhpf0cgLQ=~)aT0@+Qvjt+aspdyz`Ua%hA|>e; zC%o?&?&JL-hw#O=USP$${_2kH$2h#?!#@*!wY$<N)nI}=>u4F#ksu}P1g^6t9aMEr zneDHA-5SY{-9d(O0((^3d|1}G8h)w&q$xXFnvwl&W5en0E7?f_NM9!~`&%(7O#@JB zQT*YH>8oY*Gn9O<AwN3W+RMcWR_Dc_kTP9(W5M;|SEmCB^SZm%N7A6uV%47yqu#g? zouZ2{NOJd*NJfQC0w18v9ybgRz}@VJM=1jgg05~PE3ZjkDk|bpJvc}|_q;Zo>}0j| z24BTi6=(j4Qkvn(Js}G@)3Xrhel;|Nql`DPMt;|^af*K3bp%JsbW_|ilvWNBmgG@| z0jLGZfokt3VRK?|-n{#L5FRcl^AA~tcAhZTdP|5oUWJ06yL7=khV!;~#*ZI8vPsM1 zey|8@GpJ{8ovCimprRj&Bml|L?)p|fEDBrAJ)FPK-F+DByG~p+j%2Hwyqsy8Hh<l& z7#jMkjpA=M?>l$w>aBSMzy#W8l&Kppbe=P0jVsuGO+4cJ5RTs@`9vY}W8rKnR}Gp4 zxVoPr_l{{1Ge}I@Rcn&s=6eW%b3yW=>4u2RniXTHuaJvflxVgFYgpFxS0CQ|B2Rz0 zR-h{j+=xeK9>fu3#)V&vL8E^<fvRidHpvJR8+#NVBRSbnv%q5jMzzL1EvevA@lx)_ zu&QpU(ep|5lbn=fhs7kS0rY_JBSU{`KYUM#k8=gHKz5n!1m}jo^%}pC^`I<GB-1yS zo}ti3`%!1QfC>}EeMuWWEzH9S2HkvGHc6{%4}Fdqy9&9JQ(-&0ijD(Hsb;!j8gqJm zv}CrW!BigTTHNt5dT+BS$~8k$Hh;fyZhkrg1UY`XZNe=eqN-+)A50=hcjDQa_gz;e z%#Q^Isp$YVW4^RPMfbGJZyNQOh1HJFx0HD@3^l^Ps)W6zx*Pn{ZoLH#za3}+&?&v( znM*ujidHVWImD@ICL~n7`{-ouZDG4sKu}(XcHr5TaH-2C;IY^4Hna>6Hsm9<Ya|&4 z4faj(X1H(@ES}97LG+q*)dHxuOcsVMLCFV$_!_+X46q9IlOvbpMYN#yOwp|0(?eZT znwg6|e*r0xw`u}yn9;h$<h@tyZ#n<wmSzL&!Uma_5M5jaR8ttQq~2ylM5@CYYg3DR zN^Et!xu=T|C@x6J{=!ty$nZ3(U2M~{s$n9Af<+Cgg<Ge3W1ghc7?>^cw`|$V_R-rv zVa+ks*x18;OCsUL2FqZG^kbApahcKT6Cai;v%-i%3;5Ee_P2i{sZV0U-*WzDaQl46 zgSUG!PNaeM`2myiS$_;8ndNDhE-~pDUXuuhQbiQd`WVf>8OZv*O5XX>**o)MjM5lI zC-TwIGupkv+d=R@ERq{@{Y<GMuL-iz#cm0affx<XaY8Mhq2hWs)LcNFVfW5BTlnZK zLaQh{U;q6iasAU#8@U8o$;_Flu9|k0GI)d}p?~>tLfvYSf<u)ED%)_P)yDV*xz1!9 zo>sju^i!ty-GE{|GOu@uw>}qy_L1}^=KsSICNNBtiRLyP%VZT~u?XDRan^)s_1Yr5 z#^y2*Id=2f5ejV__E#h;$DGU5tly0qHAl{&|L}%{o66VMM+)g>2E=*B`Y4}lC~t%x zCqV5(1>Wn88;I|X=t}&;H)pGmiLk1vsh@`7!j+2E9Zp_N!=amLUIEn4k$)0b6#)iw zEz`g|++YJm^?euJ)SHZL!@Zu<@ar`x;I3J9t>^%<2_&LN%1(KY+AnP1?5uccG}aB^ zaVqmQ6{J3Gi-5^*RpA2-_6o#XYAxN%rO`8u+I7noZ-t6lr!;Oa5o4-X?K7XhFVfV? zx{d)ofTmBgjhBb!9lmE`JsP$-TA<#I$>y{tAzuwDO@qtKd_k*}+Me>9lv|ohEvOVh zUhQZQM^g>OS*8*0xz8`t84Qkk5X3UC)Yk|mX=;yQz?(85(p)I@^ze3VON2V}AxU+z zhpm^Btz+tozFyXt37q8s_K}p0V`{a)tjw-H3ZzJK>AI(c$t2EPVv#CEo$Hg;<yRvT zb|M3Av5TI}swO`*RQ}<9_nhyh;cf9CoCwE2yefAhlw(i^9}*c%;uw!k6xWDzC4;Xk zHu54Fu^z~6;a3x+Kmd1-z<FCQ-L;4AmD*9!{bX@L%2qZsQF+_C%6+Pbz0g|naC!7z z9_819)YL}Kj(UiSindx6);<_jJ<45M<aJM=@fmp<_jUNsspnti3A;@*bm3-R_>%ox zCQ$@z5vTi@w*koM88!Qco4hN#qY{Ao=a`_<1GX6f9~@Z^=^|okcdbDeSFDU|BdF{h zK+_ukh8{_xpUVM}UaxS~u7CKA<x+ReSj{)g%<5hS2_+e?2&^cFV5VrlgGZcVEHa*L zTX@h<j%?BMnsJ^rR>)uOY28;tU!^wOTj;BDE6<&;Eh^4e5b*VKX=tr^7TUYCzt+O7 zsh<AbMU8n@tv~p4|0_a*h341e1JygF)!~H5Y*i|jlaP$xQjZ3>&eD7R33ib>2kV}u zx4oJo2h<F1DaMt~bR2hDmKrVt?hcX^r^bUZ_3^l1W20q^`rIk}RXi6&xGQ5jzz<~< z?e4bHhpcrTL~C&AZ?a6rSAxs$3}lX3khxo<{*<dW=dpN$tQ~z?@*d*+PvpDFl&|qN zohyHM;N%v0rp4YVV6ed?{Vp5e2+F170*zfL=l+z%%J$pO&4WwKHY+6Lv%dtIe^X&{ zW_SSp<mr=zWlaLqGoDAzZVxPpfqzm`pMTGyBY}SR0O`H@3G-{3t5R?3xfh=is^wb( zO&2E}7n&?+3K$7T_FUtBlkyI*>#E&^q|$-k`#qEn5+j-?LNW52V+_;pXNEQF|NI^P z8iMt)b&dUdQD83<_BS!?U{fa)-vEH)Z`b1)I|<xcsBHM2VV*SpBuQ0}1QSEEhEQ%K z4Z`kksu4qUaR8c^%z$B!v1harihTN}5BdV`oOlG{7vPK}uy>i=w!ajkg8Kux7=~+y z+-m}zal7g~H2xyvC)C@I-+j!oubk&pW_<e+F6pdbO-J_i8rS547xop^7+7kuveXs) z3dI)mOzwDR<;6RkVO!qbhH;I5OU9Q&)ycrQhOurglWqX(YBZWbu~B)P;{v=MVYI0h zjjxJ68*jS*!NXm6j*`EVz=)uVr!{R6&n}l04xc<6hBJytTRT6`M#{ez$z81&lJo*P zL9iwg-O@Q-`j?qk$EwXy{BQRVmFJ%$Tx{A|NZ~?{QT9}oL+O584T@F)<sSmA=Oa@m zil}B^OHbS{1_dzfKg3HG7+}ACltRI@7o!)wf2-Ns72Ybm*0oWkt4<@a)hJjFsv@jR zB%wBM>_{P#^57(=a{@-Lk-(z(+Q6=q=;lKuQz(DG(8k%11iF|AKP#Ne`%{(%k2IN@ zra^T@oep$(^|FG+SgW~{2PsuFKl?q+i7o3#CEO7(Tx~9%kZ`37p2*)fR`LEeu*;V4 z@i36M(l0_Yd-Xk@K4r<m#o^<&qyF)>o_-{gwZ))^GZtJLnLZ#BoT(SdsE3@PSu$R6 zOhe2WHS&MZq*k?kU;Ywjo0%LVD?GXMFtT2!87AymF9QUK;;SopE0L@i8mn50!Jx_x zcu}*%GQDImecR^DorNgPqs<~u$ZzES8VS-ZF5i7hETe&I(e+R(il5+lBuiWJ_%J=W zhL{vY<VRZG{EB@?=^E_R9Q9|?P6Ua0H;s|LN>Xi9^m<aKz{n05xma}_p2Awh#@|uF zp_Bf$@sGfsv0a<b^NgZ(bL9G2e?1=SG<I<;s~BXy8vRh(iBN~FZZSSaOLRZHsA~oC z335r2_06#Ys~=goIw-e{Mg;~8eRDd0)W-f;74SR1JQ0G#8fn~VMj$c?79)!kwK?;e zdB1Xsq;fjz#V~~YJ>pO|N#v}H8@kOKSa0$O(K>N_wm;|1n{UzcK6m-J#sn-cvRZ4k zTIfmc@glTt8EbyHi>Ava{-rGqTXHFyuSc3CTyq+l#wCW4KD4#82|25R?2K2xqzm=2 z`h<B~nMVMln{6O;HTB%;Io!OvC#JbDUQwcJtgOL=C^=z2)+11T%JgKItwmi%0YyGn zlsOm<bH7ckOxiVq*r4AC682y_$lmAysh8KK8Zo5JJD;kE%3<t?yvWIaSGS74T<KK} z;@C4iFB`3Vz8gF!u0pBeq$<vCf>vk0TiaA;UTfdSnj;VUw|GQ&7<JlP1We?MGB9(g z&IRU9_6dQLFZ-NdP|I$>0=ImLdRk{!YCS8u4dcqrpiS!E23bsMk@<bUnwtaoWC!sV z2<EQ)_#UHg@c{A+?&q4R>dGn|l5zRH5hg}X!J$57=}#k^d8Qibq90D?1+OA`Dt!ev zrIdcRR#lAwDFlw_4-8h1|Cp%o7$6=<>5>-uLQ|a1C5?LB*fVeIHi*Ki2BRE>!8H1Y zXstW7I&L>A^~zx(ZN`kR%}xEi0q?kzlo(#%Z9Ac(af2}i8@r9|sJObaRgXmN`x zfdE;~4&CE+!WQ=Ze%}nFo?*v~dD8j2cK@S0gCOC7AIEkq7F67$f0CWr#8~3IfTZf~ z&Y1mP1WV2B>4ph=&lx(!P8_$-3uaVUA6L6@fNy_IOj7z)-kaVkHuy_wj^)q<*Rr+l zRJHJ!o9hG}Of)Ye|6yWwwd$0Dr;^&BnmE6$@lBGb{mOUTT}xa>iUpWb{Zs>&Rrp{l z$$Gy%s%kbr%C<1@wr3v8YdLZ!SmezFmR^;oc{feNb>#77l@Wq`?1J!a5qe35$PUHk zeASjQJUo6R&@$j22N|qVG&DXb)#5WDoQPjqAHcu2I{g56RNo#6|I5&~^>7b57~x@f z#6y|rMTyHA{o#?=k|NixW`sW$fKpX&Z|s_@Z@c#;!Ir%C_K6-@X3~2xOrTCU!$g;2 zqsri{2s!b8iJtGJnaf~H1*8|k<pbR+@#2mHY#0j+6C&jIc~ZiSiS6&uFnJ(~s4tHg zW(3zP_H-P``wHwfTSY_!3B7$Q0kw$R;!D84DW&@=y)&I%W!d~eD&wZb<&K3ttevpX zGhGoiHW2-lXGFmbVaw}ak%&#_RUujKXGz5(@DlT7j~bo_zyRZAktK=T43dNh8~c;? zJQfv!^}*MV4A^v<BQ4$)CH|t|?0tlW!~H~IFJ>N?7i_NliQDPfV~Wl@CkGG;IcBNz zv;_u4OU|0lKR=To);E25p9v(bn0M=`YygPOo>s_;$jF#&&Q44WDSmYUi5X4y%d+49 zVYz<oAlDVCALYJV>ATPDvdIfK+*>L@@}%WoHE(`wY&|fZpiikvs>O%&(j`XX(n=m@ zo8j$t{zHO~aS^c^5HKO2Mi~E%c>|#8>JK|=-{l%CN&o&VuEO>qsELGwif0Va;KTea z;q>eO^crQT;XJ&Up}&*18dKe_aRJBr)g*Y7Z>h9j#Ux*cdjpnc&0zPXDtI79VzbI` z?uOY3T4c8dt<)}fJbHyt5UEVeRh1QF!nv%rizAs@pC2vjIsAUm&Xw;s;_O*4sE;H+ z9uF;RKad{ZIl?(|YL+T0gn)jKzsM8i2^(hXh#z#k`@HyX`Y;#o7ZM0=Z|-t;Rq0#$ z45uZ1fR7sdXzBh<9jU2{b0LET10zL`n>HJKWi|;rLRwv$o(r0R(x!|8oCPCF8&d|e z&8+0JzY)TMAt)Babs)yltIY3jYv@{5nQXR6W!*wJJFQ7Ifwul|%r}snQiE`CY71f{ z^?hn)%bo33+e8q>by{X#6c0?Dt&&NHrX-iIO6xEEQ?usW*_hYNW@l+?STBw&qOPhQ zPi*m4Am`;#@!dS~awz)B1nT4JhPDhdpL#3qnAX@NuP>KRrdAUYUc7}5%>XJ+5*ogl zmTzVa#JjUEO)b8W>aU-7QD@=1-DwNdXWQ_2boI4;o1ae41MWB5MF(@-tm5lilb(iO z=;OD9^s@X2Y|LA$Py5Oi^77m1?>)lcdC`#EYUTMHq4=p)tIH|?Omf&&Ut|~-i)}hg z-rtxkJYLAsDQ&RXJpJAoFJgEV#G3Nh;*+Tgav2f+yNyuEFnQBDLa+Z!F271oCyh3x zHu<gRj>sFOH!n1eB1~rDHc&U~<ub>jD6n!G09TFB)`@eDceqX;`&rzqkNioq`ngP| zceloOh2j{T>;Dp?d1nEmMrol-2Sn3vkJ3>B!;t(X1!u(DVSqglof<O+9llXX%u$i} z>?SeYEoSTMxAkn+g!o<-&HfS4I>3z92=*}O1y^*A_%3#pttf?d&#N1YJH9MCp3{V; zKf`ptE{#tK9!Yx?FT;pB0rCbo9Olbb@4BA~zwlMqY~~^%k?|1j<;};g^Cwm1mw5MV z9C8zi21KeSDs#XN!H?mpf1=*q_1`01@9r(D1xfR@syrl#!QD(>sW{UWKLzQDF-)Vh zAMo8!E(paONC8@D6CA{2Ikg*ySh_uUcDee2EwnFjDApN@DS!F1w(*Al_sbU?|6y6o zb+v}mAdNbR{>dYD^Q)snTTvd}Ly}4bOD6p;wiWxomhHqtn--T{^+@DB=bDy#%Ot7@ zj&s%RVIOCC9NWRqX8btliNI}*ly7XEBq`I*2!G&;h_0z_<z*{zV%GaKHMhC8fQ*>J zD<ryiOA#gAfx^~8j#7#o5>E@IG}Y9*4B5KBZO)d=xH*@8ODlJ#8DR1-m)F4Grmh4= zM^_wtVtK`Xz(;<WT{9R{l-3%x(t~OZ0L=3EJqcb_<=Z+m*O@IrqZ}L#{tk)jYf76Y zT&h!@4BaS(8)ocJA8VMsigM147EC1MYQ$Ktghuu5#sVOvQ>T)O(v&M~d1XYwOBB)H z_MJ0hIEqy4&k%B-O_iLWLTcb`o9`vg`7=Qc7{4YAdHU5#4O*44+duq)Kd(nz^ZWFB zm_*T%k)$e120e3gbDT|KXyn`XHz{;1ud#@@C;!88gfHi*Ot0|u<(RsrD8ng!{IYu$ zeAPdtN}+tboUKbTe6V<A)UQxQeV=N}@MaRjcy({yw<Zuj_$}Hkt!M8;)5Cbue!}*k z)NJ3mk@U_I%NsK7aUDgjF@W%4d+1N#*)t9%LW=|4tDbkn9i5iCO)Nwrdq|~KA#+@8 z20QY_z!pvo6XQ;F4;ZP%7-@=QBJ&A(9VS#I+SjP-yliSGk~Xzeh0J=im)rA4q4s=y zQW8bdyv?D*O%&+4chv>pwK?rb@?N5QKQ`CdpG4L?S`mOXi1dSPCZ5b>n}ZS!v_?4B z&IBtWqI6g8Z|-YkAo18M?=vT&+qFv$I+^O7YTElcXTC;z@Plgbbd{&!=|W5v+v1mS zJoFoY(Pq7+Qxv&@Uv|_$(wxg-T)x=0D`5D`(kafl^7EbEd35y&<<vpzS}wEgN}I{j z<E)jv(?9ee_q|;4b7O|mYP&0%8B;bSMU9VR#RA70$#3mdZ6yR}^-v1`X!BH-pULxf zi#%cjcgmF_wy&jiJEm`6qXC5lXW%~FkH=(ei)FJ#k{y8`d&<_f5uI4HqIR|iOIk8J zF0$rUVPkgIl+1qkh|vT}AIJVD&%jF_2}H@yKlxE2Erro-0i|e`T#4^;NiqwAO>jXZ z{NcI5oucQ9lQqVu1bQE}Sdpw8;pyW)vX5XxATF{%MUR&UgOVKm9@3(~7q)vU`ih&2 zWK||RkI~6F*?#?z7}R}Y{r>h#l0;m?uw18j^iHruh1oYZ-y4=|pKeB^I#Hlu9)|em z^2Wr`L={kyo++fqxUTx>p-kJXpd`DuU(zTMOOH55$fK5-n&MyRhpdf(va$hB!33J+ zBxiF0(8j|;YHH>#T<mIPD{Q7s?AtT+Yu*D8hBc-D2LloV+3^)#?7V3(npG*p>Tj0? z7$2r`UsN3E>K`G(qTPzji?Fb6ojP`5s<ViDl1W|ILd*MnC1N)c^!yJM8NFy9cxmh5 z**#M9W4b}Z-v*f%Duu?!5FelP<PXipsoKJ+#r^&HibIwpMt#79PPyOPRnYM2%F!j5 zSS~p&a{)7rwgsGu#CIa-FoE>UxtIgOA{v><ImE&6DV&~ynkiXZC3#HytnZiF=hIi_ z4$mKAfJIZ3<wJ(!Ry?(*e{UzKRxx{j1X@POryYg|9$6=B?}9ct<*Zp)ovgdBa3(l` zQvmRl|3=BfV{|M6s=O~vAK&k;`8w&(^rxCPM*Yl;iM`!I5#36wJa!$<RC>StUf)-B za@jF}phi8d45^zEfY38m;#+{9ZbAL-Y*~_78^Z~TQy6$;Y}J&;(4gb)a;M*alQ&}> zBMe^D-r%isaV&u;qe=rC@XP#G+*t44FFh`om>F{8@;R20s9;K^<M>xfzKT(}FT-#k zWUwP838Bc-fn1W=S1ESS%1nwovTHUf^GllJcK@C^S5_VmGaWzfN^``80D7O+dQ5VJ zAMF@IqMUd%R&ulvFG%~k6R0`Xzj4f;C3y8@p4P9U*&H!s_=vlMV8mRW|C1t?@!UQ2 zOx1tY42lxz#7g!%R{=(@S`Lzgdr3ccV)^{Q^ZBz%q;-v5^P~3}Xu#g^g#A8&uimCz z59K(J*%joLgQsH7kX2wutp4q9Z_|jUSxp*Z0Kq}#w=Gql6lyHMz6u`)11_`f-?|U< z$h5Z2_#i{V>sUCugzLR^zio+aJbhb17^%Y77}ZxJl~tCsH4@Z1@63B)?7&UI0Ms#m zFQTvp$Cx>3l9`jOPcPzqt(j&lK-PBh-f7w*w5L>se$C@v@F|%<;1Ik!4U~EA+U<1r z4kji;#uqivwS;ZxS?EQU%A2WCwcY=6@NJZbS=@0ygg}Jk`K3vZR<gH0*b8$4lLvmS z*uVR|KO_r&MC~SVZ1$rGA{^Y~EtXo<xsQ81=Ond4LSQB`_EK`^88st&tKXW#&Q2@( z4^?);8G49c>b!ezu4~ezXZ?|kwd3M2Wj7-}Os5PjPD~OSW_72Sa`aXfZ{|mHMC~O9 zVITKX4RO8MxlU2^hqRg>Gc4Iput!bgOyGlSjO}y`1+{5TVI?<aD*95XDh~et&0#iC zddE_CMlkIuhYQUp8IpELS+CFc5`jZK_m{1~e__$zqq#iZ;Yr~Qk|PZLgA1n{Y#oKf zxR?GZwSuKpcAFi<`C~iH_S-JYt@4f<kp}46rNN`DCdNi%{1U$w%TJWrxzEhvKTJ(& zt2f6Tx6?b%{e|KvITE}XY>vZnp=5zGW$TrsFvH1wMdu*Si^Jb<t%3{Mi@WL^c&e=u zi!=4P-@nOVJQd9l@pIVer4U{kP4|9nP$kS2D|`Gms8@1(kmL$~hbX~&N5gC1xMQv* zi_1uc#P(a(Yws2ChomQiYg}h}yIry>))h-Cu2+7~W+>L!V)LM>^{iMM=A(E@oiAJt z1EYF$=F7xWX*))8X;1{Y&u5@8y^SxOH1l7Yy^c@oA*8$VLIJ0)8ON9|{uAg#!1^08 zobCHZWqx!2H^D4f+)5XsTn4<0Q-<*0t-We)(33=Vv%Yxq4-dClQtwYL2Z|_aUQS&c zRT{QNE&3JV*+(My%>c2cG%E3v;~FknpQX~03qHyyY{-U>UL^_-Jd(^ga?W7M`#vvh z_{;n3z)ibC!frfW4&@Q-ihtL^u8~XDHDe8l{yv$(ns_ZJQP(&PDyp#trGd7SG$3=5 zTqtv0B+qtwrdq5MByrC$xZ(So?k_|VC``p}j=5&r!x)9=)tSivEuZ8unKjPdHx^v3 zWo)VQTstBni24t^m-|an=-J~RI@UpFngTYzB@`D2j3k|Q9fl8-3^B_Q&346x6Ql}< z3wN*znebn?ov&<H0F-Da%Obi|(?njQ)mGHp<<|(W*YD#&O}nPjgUMA>$?*qsImus? zKZ9gKd@e!0TpOyIB#B<a|6v83q{*^iJ6XQAa2v$k*}|2gvS4VR&o{t)n-Tg~NJ*m_ zE}um4j&|YVrq!b#mRv5bnO3BcnE@8<P*`QOS$)!C9p?F=;-vwtJC!?*MV$CNAA6+h zD!H*yr4w@!?N=xZU0xOr>e%!V(J{W=6~trbPr!LLao~Dzw#zzu=C&I=ZjFZ9I*xh= zMEZ;HceX`d>r-`iGZfN(qdY~osmE7y!zX_6d@DWfVj>LuKLABRy1pHC%~Qi#4zF^S zudP^Gi^*&ynE7zrZDf%`q>ML{8AVcBPmnPm2!7VTvoDQ*W8d0K#UHZw#mJ%l-tg@4 zOBSi6S(9z3Y4>VmvA%@5$+0Jl5XjA#<w+yl;X}XHKeA?(sD9BuAN)Pw+4P;dY}ZKl zV9rt61Yqt4-GOp22?YBdE9rmuE|<VBj-M63;G|IMe+|41t@yUr#6AY_+;O&>V|8<B z1lE&Zz#)?5B5P=v0~-+}ss`=MMsr_T!dz1yuRI4fjyLqN=4X62h=v(rTHV{v`rQ0G zxQka4JaaUfoF#bkrH&i})NM%Du087?PyWe{>&?(+wX?YZhm8=-{<sWOoRiZdZGNVB zSN;f_{{RIfztP{tULNpnm#4y;BWNx)dm(cfC*>v>yz;0zxdgJWDy(>~uRI0+00#E{ z*4`@6oBkJ1jl4bJ`Ji(my`o-gWt5CA$sjsng$Jl$K(Em&W*C3xRz6mq3a8pX5Mj8~ zZEf6K+b!DlFLN?&VbtO@Ku6#+^sUV{FAlWuCx+E6Zsi$}Si+1l2Rn-)I3A?e^mp*f z{tejhkA&|=t?|d>8teA9(grZ-b{}JT3H}Cqn~T{10O7o_q;&?q`S@%900grC0D@)w zExkS=@n^%?{Amj1yuEUHb!z|t`Ab{AAzXox<|Y)3lis|#nYAVG>UBd3{{Wc&I4)(M zL(`{iSz?|D$=@y2!U9wb@{1T89>eQh$HD&q0(h79iPmB8&+OfyYF;VS-AM90F{hi+ zz~sD$hB${ozF84Qc{w%x+xU0(cm0pNE2@oe;E%$u1=z_HNU7v_cEct!h7tX&K_=0_ z1LfKWIpEi%+UvRpi7lT>_?h9YKf`TeJji02*;d^InHylcv}mJ{Hrz2Ptho7=LFbaD zaP+hehf1Bgzw5F5h5SAL0D?V#!AU%CZy?sb9FGoZYbyD(_@ep*aGlI{wu1I~S#zDM z8jNJ;j(<-+3jYAXzrPB!4O-j8{{XZn#X%%?AG{hrg)HOKVY+18%Cg*F2_<|H_o7IP z5Oc>B`@65`n(nvZYkMskMYoCs%x?;b;AP`$G-_APUI)su0!J#@>yN5<ka#U8x=lAx zFwGf-Z!GX2GD^Eb$rMTFDi$E`U{wd+VbuB6vGrx{>{6)|*DC(LcR!Sm9o+bPNb$C_ zqG+0pyV_Y_TtjZg;wc--M=Ks!5zgFX;AG~$eDQCJbUh!%9%iy_<&EMBjUkMnJx+1J z{A=c4jQ2KIe-yk!HOAfl0NS_Z$>><z$)BzdLtZU)s%bV87}jJs#^9imIP08r?O%+` z5iVzBezLMC^7A<#XUp*e;loNU1lDm8{3<d%dSH$#)O62@`Zlh7yL+p2c`%W=Wkpes z;SGVGPkQ{ty4NkFlq@45x_=2L9kX2*g7n>A#&Ns&YSQOYk3L)dl_a}dlYx<LB+C*o z1~(qUh}EgsnPhbL=05lFyz}Z`xw-p0#~=K(d1E|d`=s&yc&>8m$DS0@ty;zg`%CN} zEFc8VImtK#`+;1?!|&NA_MGwM<aRz6_;KRf$)7u88Wy8$Bn#JU*Kk|Kjz>H3>0h8f z3xD8}zqSvEV~bGnZ-;cx1n&We@gA#f70$*u-5tHDx@Y<`CvlwdT~yv8e(WIr=FH`m z;c0&!rM#O<{tw`OZ$16~p!=*5;`1?p31&F%GlBY7y#CA{F7XF~J}BGS%{Hm3Jion7 zGfnd+xRHhcA{fDtuebq6eAn&|fd2sCl%E2A9oxaL{D1Lgt>Ps}_sji_Xx2J99F55> z=4QFd{njC(9OsPSexm#-_&@NM;Kzq&(S8!>3*h@p;Ha}qf@?`7UXn;RTg@Z5;GZyq z#{}1<hT(eE;{LHKF2C@{4Sp=bVYI@>nXi)kbv|kMar;AGc$-4F_)+n*!8aNWo!^&i zmb#<ICC$vEYXtJG+HIK|N#4rCBaXQD4JYA^mxX*gb*A_^ZTu^!O)`isd_g3dyb(hn z`5{;ySmuf|jDpVi_pZ-chV^_mczk;XoqeR*m7EJ38E@mbU^C|nR7G@=Paih+TyVy| zc+-9vd?E3#jP3p>d>)fjwA5mBI)oOtH$T~zyyQiDr^hR8a1M7X#~{Ln1%6ZZSw>Yy z2T#~x)}E)t=9#5TWmj6S<)P@>p0(p|0{Cj%Tk)Q?Hl(oJG*55g8!2^I7Xyi<w@8D) zgk)sFAx?7SayVTBOz?M$FD?9c@Y2@xtS3q0nkx(2lc&f-6+UgX!C2I+fEHNU8#z;s zMP&R*`2PSW?Bl3^!dLN&T+sX-;VEVd{izxVBDdX=5^185omic_eAv^U<Mq?9@qfY3 z+AmXs%F$=>J>(JzbonQ1faJ&vn~NL0HL$Th-@YbrLBr!XuU$zurstZV(z{1xrfB~F z95knr&2Dr%`!f`d_ZAV&48@dl3Dait1Gxu{w+^QS5IC&MZCAn`G`oV`Y&FQdMW;pO z=HA}w!ssFmvG1~wEKZ7gGeYP_FmYbSz7Fvc$7q^O<-VS6W68AETkRfWjIxik#>QC4 zVg~6Vn}9NNlTmo%#oB*{wDs`!#m!DpW2i=nB!o#Wo=NA)7bFOV8=eeo4m;qAbstj? zLj%Q);+tE*`ZdOzV$HB7pMNN})T8-wcCmTkY#f}C2?LJ3d3)c8{t?rBNpIn=h_XG^ z_nqgbo_@z0K0LJ+w^2zKnpg}j)^ek&WD4zM_<5$squoW|Ei4vs6GI-b^IcdfsmX9% z#KS6nP$Xpp0!OV~CtdMggP~sQUlAtKv|B4j1(QtMsKV+_R#lD^GUXY06Gyd4By`Ot z`;IRA2BvJ2Nt6B&og&pQjLj@dsy)n+Y&`j9RASt=esdcr>Ot#R*Z%+%JaysE4q9qn zF4XL_2$;(bZX=HF);t}7e%BI&j7gu}<>O`t1CVfN)?W&IeXTEyd=IbcZ1*yxmm^M) zNoR7XOYCcA^F%E9KQv7V>$|2acEo&3vDe!~x$u>>u9>V#B98Lj^(3Asa87UFxm0`} z-d~yqau>Kwue84L-$TK*kA@y7)D(D!!8+a5+FZuV942SJw^;$qZe(rqMu#W<TEDkS z`R~U+1%4sxmX}t3KM$oPvJ2U-?dOW>*eW*Nq5gS879^PDg>o~I#%u1)OHS}Nh@p?c zUI+0t&WksPmPKf^iD7|l-c~#O>q$^SG8~`32_TYD)YUt`4EWPT&@Ap{(PHsC!hl@f z+uTQEFksn34WS|@+=q}S3|rf$R4Ut6V&QkW_`~Aw+3!}@p<|->>TOoqay-cG!MakI zJGO{fBTdVYps2z65ngfNpV<D@b)jZ7?Qd1KzL~Ae>HGUEu{iUgQUpW}3lu7&__BHZ zqSbA_8pR*>rl)Ndm#ynI_>5e|6{evYD;?Mnjr)NBf6GJed9MQ2d|{}3KDfBe{qCb{ z90lNlOLVunGG(y8X#^$;<ZfhF8ObMrJASh{E?AjLDQ;8n5A1vJmqCSmIpFKaG`&Ym zmCTm5(M5fdzcZ|mvESw7@<YZ~ryVQNyj9_CJ3`TP=(Jx3+-ujDamn_!(X7hG6dpH2 zE6Bx2<7h3;er}cV{;T_B_~G$t-wy5Lju{eUlTgjeGeB~(EQ8C8GUtMgj9}#RTDmXo zYw?RvmgiX1wWqXe>EqdH9BSzdOT#P%);P!@5^*aqBxJXw%7sR+aeGCxIzJQs%vz_4 zEhN@F3uhmPzqO)ejvKJ>e6hI$7IP3$(X;b;Y6$6(*W#ZPf5A3>FvT_X(@PRfGI@q= zGTv)hr#Z+C9{rBpaKV7b8%J9GDDfBVPw=kV+C2y2o|$p3+JJnky+}qQ-rTu`LwU)M z?;W|v2NiYy0Bw&4cxOSk@b|;{q_LLNNb$AGOL~`KzGaNfb0R*`(Lze(00%*e*AF`J z_)(otX5FNITYNeH0D@FMjP<b(izS|YS_r<=JQLYZZFFO10G5_gyOaVHlq7SXdi@jl zd;b6g>WAT3wY||a{SqsFH?*W$PNlJiS-*NDAQRP7rUB=Vq_p4L7JnRQU)d*5veoWn zQj^-f!ALNAuI;XwBZ9I@qnu>c96ueP_-zC05=(2~`zz#@CA7McLPk^X{gesjRFOv^ zkdQKX9V>d3tIJ0tIH)CfqlWS4?DOE5Py8Z2Cl3VPZ|*Lp`$eQ}BbC}=yBi@n`nKY5 zLGSV3#J_-^6Y!UbR?hRqT1*<9v1XDRi?FvKoRAOMqw^84e*381!0XL=uZ}!*;(rue z87%y3sq2>42wE$9xZ}EzF#yIEXo7&Fou9hhj!7r4hj?e;_r#xwUL_h|jWp}q!EhQ> zH&BV88%B36&{9x=&ekj308dMVd3BQ_ZQ97Yb*x{{V+7h;>bm9R!J)Z=$H`lW<3KqR zA1-FkVy;_`MR``C@Q+8=pgtlNw=afxQT4elC7v0$$R2vEgn|dkTON!>euC&<04CD} zTIYwnL8e>8=oK{SlgzW7!j4VMIF>ih8O)%14z=zd670SRY1%cumE(^GUihNG+kK($ zQr=t5KH6qqnOH^sl8(6l09&vqQTK&Itdkm`<)YmD7V$2V@lV6ItsFXmju6>xjWwz; z7{~gR8?%gUEwuLQRJ<GF4L`%)EP`!gOPVR}H%GF07(sN+l0ev!p13`CFyj^b4==-= z5<di$_-O)Z)|V2b*0;CQ&2?^&$N(|Iw<JulwgDSR*~tL)ubc1w8eAmz_d1){OD&*T z;~HF&UC%yuF64?;4u^~lrM+{C=~a1*WlBljCoSOn?~RuR)5E%kr(>k)7i?9Q1&Sny z0l7=t&%Lpq<5nd}83QLBmx>R9ykp`!k~~|j{{X^Oy<+n%=38jwDe?f8R}19Iorjj7 zF*)ZZysN?%`UG0^fAFt#`_nzEdDpf=@;GE@$sqZ*(?rEf9*?<BdY@lVz1DwdiFLbM zZw~32I$5p6QpW>Z$8m8P4V8A1c?Zsb=PH93Bm-DZ7u@NK`_E$3^<Rq`Oi{<+Zw141 zrle?-M|98&nKuHi5*bO2*B!SO=a4w0n@!O4KMrZW4e>6s55xA=<ZVI=Ej|crC*0WF zHnAvq=0U(_&t8<vT?1Oxd|xJ;;%^!@o36WV@+WZ}q|TraBZ_jdHV08|+;zY`efwST zSBfp6I%c2X%Wo5D*U*DAGevhJFb5#p+!)txIy7>IJ(PFmYpH44$(~=Kd@H`U@aCs& zdo(^cy*T>>Z3wjw41fk%CMDt-Jm>hh80u@E@TbC02g~9+-w<kk44=U|=7|HP(`puf zV^oe|hayP7b24QCF1&O*utt41QPDLhd@rVWC&7CCuY#=OW}e>K&HyEUw0`iy_Sa0! zwKo!DOfV$wt}_1s#af?-{5g4T@fr#IS*gJOO5174Fk72^DxsDerwT~HB~DZTHmRnh z_b*E`$}T<+>(^JysA;|`u-7#Cqy@~;hzmyQ!}l`6%^P6jfHREooL7=~gW)%Yulz_Y z{w`TxS}n!Mf;~g*FL50FswQp~o<s!W8;1jvfyG1N-xXSG-Zs9}{uOw3&%@F{9@=|3 znp=IQKuBVMyiF!lu*775HslVydT1XS?seFPwc>~`beY_>)OK=9r^yPCaEl()SuyhC zCBex#;}xVUTSjxbZtwmW&+*^vbKp;hC3R%+K9OM}Mt0k4Bkc_+&O!4cA;(NBA;3T0 z>t8i|OaB0bKK}qfi%hZ9#;<>H?6;OSw@r5eF|l3d-u<HzD=yHd1@WD{44+l_vEfez zKB&#&H5#4tjHKR6J3Q_Rf}q|>v@)*T05YSM7_WgL_*mC+KBuK<vq^Yz(cD~zzJx0r zk1ViNQ=DLwVUFjmby8|wPCBu1(HOcN)|KIZ6wPmM;o)m{Z<wQw80Cw|-O@(4If_m) zG8qu}BntIge~7;t?KK-4NIY$E<S_tR+dyM`a8Da;;4H3AafW;W&33vJdWVPMZBOED zsyH}>p7q{T+A;GacI-l9u_`g%y^}!keu1i5w4M>QpHi?JRw&vVc;fR1Z!>V0VCZ)y zM_jix*HUZwNT(@vXItREioP%L?8)J&HJM)O)RQynf9U;k2FRi(VFy2bM;wFRzU1(4 z!!H{PNaeh;{@>H#j#hUOz5BuC_efDzP+P2R6T1PD!A=4E(1XYRFYs2S4yoeL39NA2 z&XU<Ws@^0_N$ACu&=ttW7tjM;aQ(YHAK_cO$=AiR>DNd&vHKU>p&${t3=sJ<MaN7^ zLh+HtYs{&JllW2TP^^}R?-rBro5ngng|y9MPx0aKuxoKFGsMx{Jh}Ueacw#oj&p(% zWO2}()b?H|(=-nc&8K`ovtNie$vBnl;#H0*hTvhBW}z#AB61jcxg>yqbg#)h8~zHL z;Tz(&9vATS?zt37!H7R(U^v_jsc2eN2Y>^yJYaHb=|6@40JW~Y;%^N>rg$p-Gz%S0 zR-bO85}ATC?v^wYF}eq~!@RBr1~Fb_@U;_eS{<>PYR^;a{{RJiM6d_Mll(65%>E73 z<#=Mdw7cCDI(&tgB(U0D7J@y^lP8b@$VOZaGoWw&Dp_kVS^QD)zL%`%?-TF2w1Rtk zn2HV28DcFZyqlQqGb2V7dLhOSo9SLH_-xuHrFY|t$aVF%K#vqw-fP|APUQ)Ev3VF9 zWC3zIn&&(bulxX)##Sxx!^1Z^J@JX<78fmb1TwDD+m4+u`xCT42j2+e7$oG@5rc1C zKd&*#Elww0_@VnYcw<(I!$i<^?E_JJ`*um~%=UH{vMZ=XK2&dH$#TuG$MVf8o=7BP zxAE2A?M1I@7jk%WLeTB>i?t|pJNXTS?d6gW`b~(s3^$AqHUv2sCxf3#m&1P=biMbw z#-ZW+`wN*B-qPg0n(;#`Wn>8hPYk9$aEHobFf)@}f5e;r0NH=TelNJxyia$o+un#@ zZoQ?o?wMknFjO_nUUUqgH{G0V1K%~QB&}pAZh6J`fIby?3q-N;uf>f6SJL&Tia+1! zaa@RO!YC}0-`R;GTsCmbp&SgHjN{fk9cSXN5&Sw!zkwIF{xDc>r(f-R=7#1yvK_+Q z+*+(qtD!qXd0X}nWDZC**XduhH;i=82<bZ4!P|{LREh0lSJt(4%j&GZAeAqoUoJLd z#!?21lfsUb^4G<0+DlH=JRhuBd`MB@`&GVQG7TQ<&X(dy6d$z3Hk#2&%E#nl@rEUG zS7-#>RGTGE9JYJ^0ADjt$6BtLV{ffD$H`koo9wZ*)aj{Om~Q0<YQT+PvE4Jof9Ir1 zaBzi*HTmP>Kiik~a`3l^6Gix0s(6#cqA1);X+MyVDIkStWSB>ErCaYSJCXndEqJHL zFWL{lcamOd+DDDP*%Y>>IHSK2%Qdv102npAF<cO!a<cBhIV7IHn(%A-CX1?_cTBVX z-@lG=Fug`;V~m{h<;xo2vB(8_c0AX+g1}$if8=oDF;TUT)h$cKJ~a5oS+(B-X!jZ= z$CTe{j>^jJ?5;^JPNN)B90S%O*ypbm=N}S22L8vN4kMP&#J(oepuI!p%VL(I?%9!u zEw&%rs3ReVl0g~d5!dsdUGdk%&lg>tIq&As)^c(nxjP*(jD4BjRZ;3A2oG?2*DT%! z@xHi;W22j`Qc!mP0I62_yJ2N>oc{o_Mtv)~I4LFZ95Td3t629h+6MRbCD$~&JtyG? zi?3VV!86Hmdt%UAM>>QdBXztp#vx{H{{XmDkQD&FHv{oa=9A$Y`__}eI$hj<yWBzl z07)$4hAh$qhB2NnrB{rM*VEn={fa&%c;3=$s4PTKMC}tb{O@Xz;X^n2Ccsz$$$Sub z!*;I)lS04n+_ySjfNUDu%rO}tCO9Qz%I?||FaF5jo_kkKDsi(>cQLB1Z4O>dH&VH_ zSTEwVL?iuM2X?~p0aZR;JMiMMf8v_cZB5PW@+emf`?p84uwAg66+LiCt>?7T5XEV% zyv*KWhTEG!>KE>UTjnJ8;~*Y+s@Ara_g7myB+RkO#kQi5r7_;)Yp8BG$@<okqGcCm zb8&c<0dp_*KG`kt#Ii!rg=5IZPER@cuzr=yYB$&S*D7vgg&Q~`0hZ~{?=#b!j11R# zbEZc%#4~Fv1PdwL^0OPMw)?b70`2ZO`U>Z~Md7aq>1w*QuA>b8c|KZ7H#?GkP_T`s zAAzWJY;?kRd!BiHaRc8x7q&A!#C;6grEDIAZwvzC(}V7Ku8J)e#y%sF4vlvd&cG;$ zAZJ!%g+)NilHC;K4)_&v>et315?jklM*yA7sJO_$3xenU-hUdcE}fxV+?gj5gjFI( zfC%F`>_d$6>@kkDi=ek=w@X%iFX1oQ>-IC!JS;We+Are9uNJ*;A<mDWXoeP1^5z?- z)MMW(h6gVJg;hxalZLOLJSY2S=pO}ii_Z-H$bSz!AE8{$x6jv`LN=PDsTl$@JKoKF zvo<nIEy)C*x-tOxU%}cArQ&O~)4U(0Tx#+YwV{9+q!{EBjklf#3k6f(1F`ywKiPvo zw$zS^tZKKqHT}Ry;x|tPp68RGM7{xJAo2$EKG?2TMk)Kov75Ik<eI0%?-h8TRhL!q z_lQ%&5#CKC^50lmNu<MbF*so@)t`}PwRt4V8R?S5f@|;p0EEBrNZ;Cv;|GT{-;Ey+ zH7^R^X?m<8>rKDaZ={+l$lM>E8@naBa~m8FHaHnq{i1L_jlB5b`$qoDUk>z*FW_gx z{Q?U{i|qQP?xA$C8;L+wQyGFcj#iiN5iP=z*-GZTQ^h~GAMIc92f;TU9M?1_wzagJ zNgbV<uALk%a(vh>bZH=UQ2Fk8$qRx><a3k$8nM09qpLkifA}S*#4QWq;`pcIRlVJ| zxF&cmZFFOEs=*veNRD_~)(Ees5)3m&EzqFI%N%E!_)+@~d??qvYZim>*W(?n?~E-i zWWRk1^2wpSx3-G`=9f;?e4Dg}Ex}!+z*aaU8tlJkEd%!d0QlQsDe%vWbj?!U<q<4& ztId3BlfYHU0yq0RTq{UU)>)QfFbeaW{b}Kk*`xjnRdn&*{Cn_=OQt~XuwLkz<+Q>8 zS8EcQtQI#xHtq#rCm?;&a4R_0s|NX+Diosbw)Fo1gZ^jGKMAzW7vTPv4xRf)d_>TO zhk2E{n&#>?KtaOh&S>+swtzgD8wYDQ86)gJ2maYVu^)%8VzuzE#9Q}BrDj_zi{T!f zGKIq;Ez-!_Sd5{HL}S?FgZTyVNB#-H@RLFD4dt(ZyiKnsie`XZ%Jx_4_R{1HjsE}> z&$Tn59ZXQ5Am<?C9wXu3*oWf%=Zq}o)U=B^t!>eau<6rAH3^B@Ga;HaiGySN(SeYl z;<=qD$zPb&$tIEgM(E$PH--KvEEZZsI)1CALo&QEGAe}$hlrUSCy#QK46<&EBxDeJ z?D($#0O5VJ#pC@?RKL=7CZEfiEk1d*2S!nnw<!}%Y^r-m@rCJ=lZyQC_+R@Rd?C>M z7@i{WKCiBPF#gJ!R!i&a(Q7TVjuE`1ie{R~+n2yighE&q1pL5z$HV^siXJ}juZ6F5 zzYgE{cgGvij*}j}s6nA$#?d<|dx`Y;bsITE>H{H0MnR3p2_bkVO}%3O08@7;^#1@O z=-nH{N#cJ79W&tet!LtGUTJdAsx(4YRT)&pjDAu&jDp4%3^?1sstu!jXJ#!Y!@Dxa zleS$uZhPZ)o*N#S0Q&P@ZlAR@k2IIwH1H0w;fQq<ODEN|)Uwnp*vTfvX>RO4ezx(G zxulU-%O5e=MO+>m_!}@2Cy%cfKg=0CN2-+|_fwOR=yGeCv@Y-Z{{X->g}<$TQ~%fe za)uue*jZX9hpt-o#Yg;m+uI~Ef!C8fz59$0>rc43(e;Fy@5M1LmE{ep(q0X~fz_ji zTw#CS=hCrnG+j>DQI6w6ou+uk^0#+VfH}r?Muk{*=~Y+7Hb@!#LmYD6J8f68v}bkX z05a*5^*G|Y<m|3}3Abc5ts2tKO%mb>>{u6Hu~@vDf#;plz6m7q1!iixhMnRmZl=_h z?#1I$43BbPQgO-I6o7y`=Nab|%iS|pmi8O%7HRKgWj`d7h(hFl6j3VfARdjMrg^Mc zd`aP3%|v)xP&Sh5va#~5tS!9lLD*#CD^Rk}GjMPb32wr;r1iTxAs4zu3q;m5%R5<Y zZljXGVVPmKlI7$>&jp<0aQ-iw=}voXH^hl~HS8C<a%|zGo5(_O$q0?PK=1cMSF!2; z0JFF4L#k>vui<Zo-w?GXDEniZ!uqY0ZGn<VlEy8=9XGJ{&3)VO*Zv5r`*i$$@a#S` z&~&edcJFl%nh0+EQ4G3*?_J8X+gsUPMI5>LSxm&K;GQ_bq@uc=E)rI{wfpFPNZojM zRMD(0zR2*)W}_rQ43|vtk&}W>-gxBh`c-%>Us4wmFuS&e2M@Jvi|4P(!^{{1o)r35 z>?V!>00cw-0D_BY-XyWJ@jr*gixH8Q0Y0UqMHH@}<q{}v+DR85HU>L%?XTiL_#tQf z6b2jJLtOD6g*-2BV*n*Cul4&#CAbHWRtchX9+-JR?ntSOV=kmQCD-vk5H&3h+Dj{I zX(U5v4i-@~@?5YTc1svnR`g)!=~q&J6WvJfqUuv5F$B-sZ4BXuZHyWh2eD_}^fmjH z;Qs*lBlnDaEvDFbxAwaDyWziv8YT3`+RVWWTAi$~xa~yNVY^Etk=1|W+{eFmLYD(I z@6-PP!8U*3k$(rR;@3ZD{{Y%{;_@ru`<q#Hof}SOB;*KUvWf0ow?#n3vBAkExG{K4 zHAVZxq;yfo&YOIaYtrZQYprU36yUa4^qo6Nx{VYcGU8dS_w$35Nag5#`L8Lyx&5GS zbtQ&q^bI!Oub3y6QH=ApKP?@I>DUkF{VM!J_`ClA1QYmSqe-E7L*X6Y#hdGCj8FZU zr=2tRU~h@#)HREU1<BqH4ZoSR^R;tdoj(;mKYqYp5WG!cap5o7qVqt}?eiVvHvT%* zH2I}QBXaprSlmD)Pzer_4tU*yO=U-i@G{mkzW)IDb6VNnG5-L|#=hgF{e^U&*|6%M zd}jEe@dDRhgJX*?0QfvhCDb5|@Tqfud_xSWnl!fv91wB=uk1_UU&rqf_}@#j(Yytr z-f4OzltCcVHS0lRs9RgUOg?42a>!S9(~~LQ%n587{#L#m{{X>Mbr0F*$oOma4ERyu z-vVhxR5<Z6Hm$4NNsKegdu?+Mng$h+vEE1D0OVB<5r4sRf8e2a+M<t$vv?0y(PWT3 znpNkA=U7{B04>VuLS%IWkm_&`RW-*x7hcoaQKpyOa_eVvoi!QFzn%X85BMkb-Qy{| zV|{lYiTpirr)k%A@koN+Sthg>C!<9j%rh9!4!D*V3USEJMsJC{U2UUknq`-ZucflR zyJ*rhCFQrcb{m36bvN!N&hNUXo=E37{w#05;HW>hCyabrJVl`VP}MXWMr=c*SzB3u zWWt!omV#&|orZpP^JjKqbGVKM*1i7#1xfz^f~4v;QE7Td#f$9%$Z}xQ>~ux8k%7v{ z$u*71^Ed}^Va^Bu*K9H>t7{%@Ok{0z?tf&OSHt}}&hGD8(AxUQNUo`Es$4X>T1xoL zo1B@VBq;z!?58;^fDLL`c&|~=d^xFjqs5P7;oTQWaSL48-@&O^seCw*rie45fx|TE z4%XwRC;a<<C;UqBm&Uuxtz+Y#i1jUg_fc~#)VihZ#-R(ledZR|QoJw^_8~=#c3g2@ zQQ;Z91)#0M{4&(-Ba2YYz2a!M(OE@uqa|a!ir!e3;Xx-6&awbWDgiaW_AI}e#4Jtv zT>jmDEB^q&Nk8D6pAV;tU%&X@Yc{c`23OO(J1gsq+aC<irdce25ZrL9+!NluPxzt# z00r~?lKc@gr{G_PweKJOq1gG&9ma@|;Z$vzHAo_znTaGUF-;K08HIl^)|Q?j*PxdB zPSCG)J47V}`b~xH=`Oq#&8!k3DU2`#k<|CDVSF*GYl(9D0$$uLp<z5}ZpzREA2*sp zGe?i&GHo8XHPufjrk$k1b@kFZAGlM0!NGqTbp2XOUk!X1&~zO&<};We*XImd7zN^8 zH_9OJT~Mx1MhBYt1LEKO7Nh<OY4L6*wbOnfS@<H<yDV{dUr4sMk<r1-b6j41zDL54 zHvtxLoB(lO1^7q6-x0ibZE^nq2#<&L9}&Z1nV8z!&3YjKf6GR<Sqk*%YeLWAzl^n; z_-!=r40xP7DOQT#!}^`Vw1A8xMk{PHAMT8{ImR=MCxD|Dq7-E(d!y&?5PU%Wsb#pE zQD@QhLo}@;-Rd^QB$i1Ww65kE6$xe~iCDno;0~4K8t;vNYFo1H72c7isUzpKfp`Sq zkYy5M^38qW;-7`z622N<jW5Rj8P>E3ozf*;UroKRGCbJWk*&qNVrDtop*J1hFHk_> z{8^w}{5-u~C&yYIqv4C2wRtU9SJLkEx14R<Od|dmeC1JwW{9u@1mF-)5B4?|FPTzT z^gAb+;-swSC-Y}L`!fF5KegZN+;45}{5|1M9_jjozIDVNE%4=@w2VT82$u@bT|pSy zt+pu?1_glJPJes+G5-JuB6#n@eiVyH@bAG3T^jb+%2bZST}QN*B*x(PGTD8y88e-` zVV|~GWRdtkXW_j^Qnk0#G|Tv8R{-sagShH5j{M|*k7%yEFA;YB(S}8t2h96I0CCr1 z_s?HiC6-dYkx0#A+xXi*t?OU-IE(fz)cilD9~|3!Kv{30Mb<4-PdB!<lR6JFFw)E# z<}JjiYiN)6$N<;qXY6P3!}d`9ro1Pqc+d7q)!O0`=Fx5SSuQ4<Or9hKkZAgw+uTAO z95C2SL=egcf8Yr`D?GC8lqgAgMnon@IP0{J*CxAv5BxaQZ~SMcT=*+Z)ULc#js=Cr zlLW(6j!uegWVQz4HU+xI!x<!;X1OZmysLXNcvR;1R>%53*~#$(OVVzwyg*~S)1wNj zJ)~>_+79C_xH39prZU;|BC>6?uMK#b?R-THamefmTgzmdZ1N`rG-38gi_w9@4#0Nv z-`Vol_K?(m8~9Eii`r(NFNtondwDPJ^!dfRE!sw+NaeM<kh;jH`?JfqgUGK-*E|sh zqo`Zh_=@W8%Tz-v!s6iRz=MX7ira^dW$eVO6Oc*gHReT0Gd^8ya-Ec(BGP<K_B&k_ zWrgBn74?*mJaGY%MCl_X#AmPoNDmx}<mT1<ALGg5e++n??B%wd+DFr6wi%S;f13=d ztG!787eGca*1HRj4Blzt3oBo+>XR;2p7K?ST%4HPc|fN84nS1{zf4wiw;C3W;u{TH z#Sf;~YEl6WwZ+U!1d<ZG#+ORVGXg$Ps^E@D^fk>JU4u`ddrQ@PdlkG;X%@E{tXrKf zW(GTb+0NGcJnFGbm_IP{PESN5r_NgM?5Xf7O@CSO#qFKvf_2?<3q9_Ke<qPEud`wE zH2YZOvboBD8E1i))Q$~(i+8QswUb1e6|@(jx0&s(CYnhYgT6JARd+-n^PYn|8soe- z;=M-t_Txg<JS%&qOXalf4C@`mjPWjT$v9&GJ(ndPuHZ3RN;>LXCuMlE<ZljqB>kqo z4QluI-vnT>_?M)4EB0#*PhD*@QH(LbKVxJt%BTm*7V04Q3aGWO@UQl*@ZX5F3;zHB z{6Lpa@IQ()%VRbElX(>Sb^cwNJ+atbL@wu#EAmSSk|*Se4lC>rF7oE^Txr+w*uflS zqk`TTrxQMRg=q#bpbQ+i2aIuCZ^S#_19-o|ZQvh{-Wam+XNUDT%3eWvrbVdfI4pLF zlzEcI=K+EFagaguB;BkiD7&V<@9NL+I8A=v!d^YRPY~!@)#Zk?lcr{}Ef!2ca+fxD zCRE@KF%q0{oE|!F6UpO!2KBXFBf@cN_NeM2mFE!Nf3kL5tWX>i)+Xu685O|zQ}$8Q zd=PHDSMU$w7O&xrH&V7plFsTSxYHxHT(YIT*x9L|Qcsr6b3Vbsrq7nRuM2p);_t)z zEqhY<$)M}LC9}{Z0u4geIIb)&m#aCHMsAY}joa;1@G?yilkR5Jc255Qf$ulEhli3| zuL5|hSr(VqY?oJdnoNe;_2%1#ZSaVZvCwYZtT-aDw0#zR8&00zPD#8=c5eRw(T1e) z+R82Q%x`xByiVc4+8fHq;fNfZZBOGz!Ot3LM*GHEWtNwvnIL#B?;UTfXC<4<`z6A* z#(b*-9APAkg3gQb=d{v(Drr|fA$?=v{{V_ENG_@^F6|+n!<-h{=VZ}0pvw-KBQ>K< ztEKl7DJ7@oK7SP1-FZGK_=}*Xg?FUfc@Ryj3v$aTQ?fW+BrJCWfKo;Tj+n11*020Q zrFe$lSke4Pa?s8j?KZMPFAO=)HuK?G2W+}YfyYYqxqdPHMe*N>?tBg7FNfDA#^LS- zo~>@ynx3A}s^t028mE%-CO0F-aB?z0&3G=Q;ctiDJJaT|_+jHKjRVP;$Pb5Zt>-~6 z3PkWe_~ZbMqA<#<$pbvr^r`h<ft2FYxBL`*t?@78M~<ypZ4+D48apY&;!RnN)u|aI zH<nlA7zE=32lV-WOYyIWe19BTPk^;(+DJjnc93~-C{vs_oXsNx>M#I2n*Ay9K8xbb zE5q7MdR2`6I=zAi`*qc?k*8dV6~0!2+GS|njx)4M7bBsrpTfQj_+tg7kB&86B0U1* zT}Or^tU|V0sSTa+#t2ef3hrEP;|-3L*$T0>qq&@+Wp<Cv{ZGNa9OJN%>AF&DP%`qC zw;^r`URVg^0SX)d26LaSVC&xk7f#hC@K2AtOCFo5U)!wG>F;osk}|mkKh@y3`=DjI z;Eunfx<7|}GvMDA2sKY1-)kBoLnAeYt*4JZIl#<YFQM425IO$<SrB9LmXHC@hj`P* zI&X>E4+ePK!SX7ci*>n)F70JZbBnmQgMdEqWk18|Tf-AJ>~qTx9*4nN&+NzGF9syS zJzgD3?qHH6cR<PaMj0A+5)<mbAOQ1`S+MvsOVQ2DdXAeWn`;nRT3IeqYj#tQ;X~y( z?~S1L&THv!75G*4k}foeUrDvJg>BI+AQyJ)<@6FD9&-`~GOd*Z8%KYad|RUGnl+r0 z>F~a%smNVsM2y-Mexym~uIzFN0GuA<rFF(lyS8!8524K8d`<XzZ{JI8V(K7(nG7ms ziE;A`+Dbx&Bd?aqeT{oRhdg)i#Vkzz1F(<8x_S@ZNQ?x8G3U;)Q4<0W0215|wexp| z{2TEj$MVB<dEnc5VO+2`uIA!4VnGGtX#ru>F4Cg|73sGB0I{!*d`+lY+sS!-XK5>8 zp}A)AmyyB^s2iT4n0;5Rb<IH}ulkts)Nf4>V({0-{RTTz;eQMGZeI+BxM`N+#t5UF zu0Ce_J<7_&XZS*<NXTmU&kcN2@fvAUol{bt?pBc&+8Y})Wpg?>!xAQtN0m9;5r*!- z=M~_-8u&l1_)El6d@b>K7P{;b`EgomrGsP**|xbyaDHEzS~*VxAdz1}-QW0|!=fEG z!`2bR*2p6!_7=W3E&%zXnm1-coS&K_o}`Z46{4Q8I_bG5X&3wrFNJ(huAA*QO107T zT{dvnAVD-YGlx<KpK7srQXKBXFklM(E4b8eK0MxdnhPB-T(df3%mEf}{gE}aY{7m& zJjIo^=PJQ?86*>m$kcpwYZrwQKZ%AdKF3p5iby_dq#zuOv<ebDf&5IPoM)|Q=syXq zT0iYy2wv&~O%S))?IyliZB_84O1|RYV~l0M2OwkvT&W|fqitQBKaKo1;LU5raCmp) zZ;Woyte!--yw!!oQ7DiC-(|kou`uI1R#GxLabC?2?A@qno*Xyd4>c6jE~7aYI>R7| z(T+kHW66z(!4I+e432o?d^zC{jCz#+0Pu@y)&|lUqGwt3+3mG0K2sP6W5aMaiAei^ z#!GfJ%j^FD4(|Rg-^f?R_p7Vh?TFjQDYu>>ouEsl$^cxE_m(vE=NYXcr1ZF)_P_iC z)pZ{N$Dnu?<HX+>?(TGjSw6=wOPg!(;zb`cGT4J6z;p7mg(?R-d-zv{bgzM)8rCD$ zJQ=HMw^nVHYj~a;t9Np^5-YG14WqX506#E13bW%6gC81v32ASwczViBVi==Tmoxp2 z`bjbaJTW;Dy0QKp%EW&UL0A^|8cl|a3HXC}o)5Y45E~4lEjv?ph!Q|x6ts%GHxguH zkyXnTbj)O)=;$?n9sEkT(NBi8FAHhcIxeb86`aL)Zv365Xm0$uRP+i~6OMr66~Jo$ z02Tfx{7Ufzw)$s?e$REKqT0;{k98S_5Tk{b$;Xmde-S%d801%=_$yV={0*yWqs9Is z)O=NBmPmAqY4oPI)I9y{Ssv~eNaYeKRY!3euF_bX@$(nNe~sD&{{W5bH2(k?{3u-y zU59PmmEFRhv?z^)gEw%P)PuK>?!beCoZ!_uS9Z3gG}i3&KNEP%;@+2{iFN+~4_x@B z&@N~4ZQ_+MxCPoQJGssqY8-+5T`FAz#r`eVygO&8*xK6J=#v7r@X9VNql=PuM+BRk z6(N9A&~(b+*Ta9bAMHcq)t>50PZ|v^+z3{|R8G+xa(v|rIB}A96VDg}7(bs{$Hl*i z`o4#0Z>#ICujz0|(|w)fd+T^zi4MUhW%5e_hVqqL-n%K_9OC5kIp>Jw(Efm|_5EQM zJIzB+w6nN|M-O<wTm!YX$K@^oA1V3w^PT|}L&ZN5ydU6e0jkM8-`MR&=C^`)R@y>A z`BfT8ri_deg=O4E1}pO`;U9s1GW=BV?E2TkSYWk+`7vuf<@A?!(U`$k*&7YO0thG$ z0pW?oXjuNvAG9Ubxp6nfo2$EdG`I|r>biC9yIQ;|a>%H{JAhSwZH6`-kY|HS2TeW9 zrHGr-$J5>={j>Zf7o5Hq@U5Pq49%U%Z0PvsZ<`*XBL&YNbh33huN3j`?WN(pUj0{J zw!hG4R9KQNI^`XhDE>QtDXnr(`==ZRAXkv+-?O*EpNN;n9S_E`T;0GGZ*4B65^8aY zIYBM7(A!)<>z)H6<Y12V_dmja*pK1;?}aA&UxwtqF$NFzlrt&Xep0b-4hiFcxfwix zT6-E0)EaHxN5WJ7*>9x8%c5x$YParq7tWTWZx{tFLn&qS%7S_NdS8J&ZTn07MzPdx z?lj#i!B!Im6W=wwcG7Tz%V9g0jmZS<V!qrO`v=FLu-1saABFTw#PGzC4T#X%2OEZV ztHp^W;~hgG_pg<u(!6`{6vcae;&1IW4q8hK8B#Wt2^#{X{@wT)1xq<o>rJ{%e(h`K zWeeWS^qmj>3F+};#oB`Sr{X`0lf=4Z#3kVSSD75_0UHc534E*$M+&TS)DA1qJU{y# z{3bfhzK`)U!TQdTb1mA#4A*v(8%d;Q9$%NJTS;*b&T)m3ME6l#U&6omDL=x$hu$F; zejV^-)|af^F2f97V(u>adxnkBTO_J^4zUtJE0Dc@*RlP%uNkfNeRIXyJXX4hQE_YH zNh7zri61{YC8>C3Dsl3W4_uR6wVokcOC7LK*_~uRvUi63J*-LM9VYumwuK+&v(+t= zP>v?!<yoL2NEnfl*^mHuUO=x%@qUr;{_9Jyi&OB4*DoZAn(=h2Z@0r_;AaDYbl{Fv zqlhubDz);z#$VbW_GE(bHE$7Uw-9P_ICHOQzGj@a2WT7C_RW<gU8fsgcs<7gyu)1o z0D^@0ZX0Vw_*JXDoy~>1BixNWul&uUXPDF5kt)7<XV}Wblk$U#<>ae1qB>Pb^=H`L z68J0NPab$yX+9Zh?QF5k=Hcabx`xtd!jo>$T{2A(3UeeS)TucD6I%9`@9_Tn?EW+H zMx0~Q*Uq(`#_C|rDv%6D&R@6~0#u~(A^W6c=D#L9Y5QJ$b@7n6(aqh4ryRpFE!5)l zNHOw}ZZ^xgPds6UYvo-_#Iov>jW@+t*Y>Ib-2+VV#zubZQC<0x3}YZ}+5q;g>EI^y zZpIVDtLT2r`0w_`_(9+p?k{aL{YJx3xo40y)^x^yFy|!}Hi`H-&fYsVdi>k2f5Akx z{eN1PPlpz;X>6(Fmw0BlG6orK_wcEO1~Ii{jDyJCo-5)%40wL`P>x+Y!NNP{XuQD# zy9pU`2|irkxNP;zdwzzx)8Rc@<!z(*gKHJ6NCKnFaU?P#^&4WhSy8dydV)^`fn6}b zLOM68jImO_h9{0cX+Mo#G_Y$c!Kc2PX#W5#FiR^uS>t>{)uRX%xjU4vpxw=Q<*$T1 zS@AmW?OI3n-l9MX!U>G=D;}i3%F!-IAf7laiu(uQ#D5F4d#4FwcdlNkD{d~V{JVac z%QQ(g+~D$1a0gDc^dkPyTJMA)y3;Lw9mfh>qO_w++p(pL9kThYv>^bIxq{(OOxCa6 z_#^rp&S}c>XXiqE4EV1bZr1dRyXNyZtf;?iBaV_hhs{uX5XDDRT%Gs9{{R(7BfYhy z&8*!DBmJU4T%Eh3B&b}2{9_-jewbQ*)zDnpBkJ-?XB?6#dv$p4CfkhT&9@4R$;jTt zz0X?mkBL9DM4lwGlStCMJesY%hzn1BAf58Ojkd}}ih3R-U!gU<JWX3`6Dg?lKQa74 zWBr*Zi&#^9;lFtSM1=uSjlNrwPdMBW_j^@XekN<0LoT1;TbVT5g#H_QVJwQnwr*9G zNXHz4IOe^J#kRLzB)NC{KG*xLab*gK4ha7MpP`U?{n<F@sIET$0O9_v2x#V(+Uf-$ zpWYeSy>`F`MmfmdYron>q~wfFU&MbGemr=$!dHF^@h-JJ&XIi>H*ifZ^FGorlSV|G zFI}q2yx{s*h^y%~@hmgTEtI(|-cdHO$hgK2nYjlY)Pw1Y_0O{SNp_=M+}p~E#$<*; zY6v8bW0NkUwpElL%CU573#GT7*F&~9_Q=9PD#&DZ$m}j%m4L@PWaHDC(lJSBij<q& z^PMu_LoeBUHes1uZ7iFmJahNu-y3t>Fz7pUZl!0bO?tN;A(QN`GU~4);{;&g5E$}7 z$Ojp(KzZ&Z)eWrZx_#c@Pn&R_ZV1oI3apV5c*ribYVyxlNaFi^^In#9M7Btl0Q=Y~ zsN!d5Vn7NVcN2vi;+@2i<X4(x8dadxZ|^2#Kx6`G63QZ@ocV}YoOQ_~9XPG4pALA^ zb!)rb0O^p=63e{7_E{&3W>u2#mENunavN_ToOk^P{hYsJuZSKy_=_&7t@t)g2{hY? z<DOk^7txF@v`DUtb!{n;FhTv?FB=iHj&dvd82B;!CF+xSng#gFsoHp(M3ik3L#9h> zev@D_Aa;$dq>POI@nMe~VNQ7R@p+UW`42*l7IxJBTYe9C1HpGUk$98E7MiZFr{2P1 zdp$nRTay*eL5%&X&vb1T11kdPa@j3`gZ5{`pMYNnJaMQ7__^@!RMGVNRU}Dcr^|U7 zD>gSw)-biwDBu>8g$Fx`$sf|+gnwpF**C-9G_}@8gKxYOs99VKm6ql1tu1age69AA z13sHFGL!O5GtWRrA6odM;2(`r)%8ydU0U7gEW%i{yOBPgfE*AbxVLFkj^MSoJ%|<J z)XXocI~64tX&;0h0r(^EH{l<{c>W=L4ETeocnU32-dl@Z9`jCJMT33K*A{ot+g`>u zDF!&M1id~`PAli1i+}J^8=1T$zYV?>_;w$O-Y9|<w$-jpgx1<@lY!;SBvuz@Qn5RN zQann*P74#s{Z{>{z61WtH#XKjEcm_f)(uW!9Pam4_AjX$ZLX{H-Py$R#z|f2Ce_+U z@U?s$r})$0?}Bu#Lr49cFYTp(X5td^Cb@HL@u?;$CA()3+mMHHN&_g}v}Bs+g=^~d z9ZGAWKNuqL=f=N?S_Sr*;)vn+eQ9Ag+Z#@>(rz@EqkEYf1~BYkW1qfLYh>;!p!4-V z?ECu${?hH@D11?Os$E{_tr3-;7B<tc0gPl%Z!4zKcp!jC<Y3q7Z^O^{C~SWZ-rq?0 zgQjRYpNHkPk>$M5E&kbg4ba+Sid#Eolrp{_E}8Pk`I9G)7V!uC6_4PIelL#u;a|fW ze+%l1bgsINuOzxdPEceC;?wf7p$G0=N86E*E3INGOWlGdG&Q?N+W!CvJ`n4A4epiV z&xt<{?#=%Ihop{s9b!8Ob?G90KzOw)Mw0FfcV>l73GKSR;BSUnw}dq_1N=dT()0$B zD;<6~b*GJFC5F(g1==A$bgb?G;0`fgkA5iltN#E6L-^NmYpr+>#THs6rlO*IdqHh1 z(KHgS_}&?9LfmX+AgjovFg$Q;xbTPU{{Z_}>l#(IweiwBuM`QGrNyt272H<BH{s$? zu-;+DGlUG8;Bmb0%7aelR8oIv`&;&i@hm685b1aR9=7pa{K}Ef8x&*`CRy4GE7KO} z-Ht|BzTOEn_<!+dO8um~OEdTr;AWxXF9I!zUDonj%cP<t>~@`(kUKrOY=GA6$e?gQ zz^~p<gx&>2u)pwc!kt{(YTAn%mxEIKRn^s)j4t(CO<Dfdmfbf1{#vmoAf9=@iduKa z{{V-JXW@??&EaeP5?MA}Tv<%^SFuFnCEHJxXM%Md3}WeWdwOp{^1To^>!JMm_<!~h z{{Vu4>o*_T*V^0P>8`~^@zf``cWiD|QqxQ3hUD^*sLx9EPYQm+`sR_T4-x!o*1Suj z&1~`gqHQlqH;_QXBt6aUme*>KjC{uC6bsj;O=bSjzBtri@r}-v;dw4RB#^j~b%l=i zPL1}CH(c2ydT~Z1@o*bGdW_fFpR<R9zu=;tF7W-Hz2HrA!}54qQYBk+Jn&mhoR2Ye zI3;yez##c?I|IQ7kb9?Ee4Nb+G~M-Qn|QbOI{mYf>K$9*@5X8Gbo;^PSz1h1<;Aqf zB#ol}$`-`NM<mM4>e<D3qkhL9@K&i9xY7LJ-1&n351T*5^INlX*OE`EHT#p{Pk<0= z+9mgjziRIaLo?}&qSieaoqlVJS(QUgWpxx$T*n^#tEZ5XZUu=W2Dan3{f_*#&F{o3 zV}bjZ*1TgANB+T&_zLtZ+ogHS6%Cq4L}f4P-{z11(DIEB{s<}m00l*~zjxF88KCH~ zd10<EV!wv{#C?BssUp3@uTcqTLv-^2Ij^*J5BMQ3?B($P0O8Q_r|nVuQR+SpNEKT0 zd;Kp?(5wl@T@^3hTb245Sn<^N{0;cY`)PjI-?S|AFUJ1>i(VqWitXA#r`zfm78-sS z@d{d4HN0L*jsi-u4WMo$@_u8t@c#hW??1HeU}-KJ1*Isho-u`TG8BLZ3_E%X+v>Q9 z+VV^K^FEzpsl{DCxqqGi03-TY@J5mU00!ay%eR8V#M;h-@!Z@^wk=yz(e=*}%8FG% z^4iiFbjacaHd+*nAL1pHll1q9{{Y~wKk!Iz+0#gW0shS23}<~l%1G{^)czbTzLSX; zBq5qfEN2Y4K5S=neB&+7Kaq&^TTMh8tzr}Bxdew|>T&EzD~xlBvf6g1W<=~_w6~P; zAXYJi^fHhK(;~B3JX^fv%;lIlEt~oO0F{ybPk+Qu8rGFPy{Cab5o>o^Oq+$vYg+Vc zsYD1N8WxTV+h%@;5>2<iwSIE^MgIVT>;C}3OMFwUO*ezQL!fwTOOcslL7_o4_m{Zs zGu*t*6tfjLW=nXGk&u|;zb5<z;g24CRq_YJ4F_HEOftwLOP>#E7ut+x3{Zxi&M9IT zVYHTD6!3Ykv2-8!CHL*+t=%C%3$A=Wrtetf*F0Bo7MG;J?7?=;J2dma+~l#g+Hr!w z)k`nK(|4ERXYD4|kw!kh{{RIy{{VuC>-Trse~f-M>o?X{`-IwjmReDYByikY2<!yb ztO3B12~tdB=QZ(OwWi#BK$dHdi04xAE-^B<i0>}-Mac&TcA+i9E&=MjGJQ>c^n5@6 z0E2!%Xg?IgZ>f0e;}?VU!!%ir9}nrb{vwRXz?BPjC)1;J=yD<ifN)1q^@qYQ_#kJ( zKLqMlw!gHzek}N>V|BIVx$w5BE`t@Mn}W%^Pg&aXXpVRMw@<Nh6>>6jsf)tW_&)%I zDmA(MscH5AN<p>0R(=}OKeO~WZ8U2!DU)TKeq2smV{wf!4&Vki?A*fuoB>#RPl<jQ z�XfKzQfWEqD3xX$1_@HhB_34qUKrz4GTgdsp{iVgCRGj{g9HM0mqSJ|6IA!^>q| zK4eRa+4W19^;I#pe3@?z;l2tPerU^K@yM^fejEPE-Vyi<VI-dftrc|J3s_>)bSv3y zV@S5-FpB)f_c9?Ez?hS`f2_w&d1ka%y%cNgowbwnKhD|@hyMT)E%kdnF4w}^<)zlG zv2CH$G~3GyiP?@oiYvHbc@zRZWjGv?KpC&mABKPMNI&=}=f&+N+fmT`AEfE_*CgcY z`qiuq5S|?t#dQ;~4tXle{oLda?bAo`oELgB-gw5!Zw+dZ&TQTtT!eOFyS7`qw2N^Y zDaw>)Q_e=<KyBZ{pAYM)7M-L?d!$DS2%#ENsj*$eF*E7N78WNbEwmk@gPa=YtDH;h zqN&r0cWe6m59Fue$NUfr_K(y&PWGQ4wY@LH{vSt`KG&pO4Rg&{#^rMqsc6xwe8UDe zV0QeZ5=Yu!3I71#gP*Z(wPMr5@oUBYBm|iJxNY=pIW1dnAj2()xI@!&$;so2{*L@Z z;ja#OPy0QzXs#x<o&2kZw^m4l-~fD$s3TnU!yGBg0y(c6)&3m(GS>BL--v!1zFj|C z)GW@QF0Y{}mgt~vh2mF<nFt`WeB&E;3g?bvUQb3ja$f0J{D{y$;DLX!ritKttpeIV z6L|Mpl(W6wv#m{{7@&|~3pq6Fcx;5|MnRbnl15~}81+AgfAB_c_$McV^ceJC5&S;B zTisq4Wsk)g?xlBs5nQQg@pNKAo>k!?Pu@~RedXW}4|w~-jd`GaT-L7qSh7hKuAe=% znp)jTqvn!nA$cWo6|t6G&(wei73hEPi)#;Lbp0nmgHY1sEGK)3$z7!3$!8&BY;ll- zZU!^RtR;=Dcg-T5B;PYWH~1s}00f`?gT4jb+g^M#@QsDU(YgCm_=Y9%BM`*pW4Y7} zmv+Qpl~i_&bupaR($C;eg_hEt3&)=fbj>c(;u!#zJu=4QOqvMtNPCq<L_2UwOtG^M zx*H9TN7a5Gc!uv-(?^25MQdvuail-lcX6bOsg1jq@&Gpwqab9KBa_b+^sk6;_%~LU z!M|<4I*F5fk=&#(MJh6aOkQH2JpgVok`D*guytoHrrfFOO`v#l!TuP~+rys>ZKCjc zmPw1~FhK-IXxo!$qsu73jFbw^*Ky{&KgT}-bgzh>AAKj{j5l8r?VfXUdM)RY7^8_C zI>7ceq8FCfa3qZRo?s<hx|5%Bu<*}^8tYZmd^w>-;cKhNw+pEwCKbkfwvGlqQn5VA zwR!2DhO(}8pC0&gO1sxSDzp~D#e`z#O`1a;)FD)xqNt^z>Ng{0h6hnmPI8NFI|=Er zouT|8_+g>JZQ>sa_(#LK72JC+XP(~0bla6#IgAlxe$t_oWmZtRJy4#V9ksO9n(fY{ z{wvk>OBi8c_6yvp^MU^WmRIB^R|g-yP)0BtlZ?L;>Hh!;{wdm7c$-$YZCdffO>L@a z^BAv!BZg43+YQc}!6h7#$pm22HT$25_BWR8;hQKfwArT$@!QTI)NLZ%0GOn#zHCd9 zUNA#+U>F=xI@0b>BxHwaJ}A1sS+r01N3XQ&y`E*%9wLHkxC}vx<z|qzvxZ~Ajo1J| zBNdP0PYGIUS|z82HH}iwN4L<UCfd$eA-vNVj5;)yvcg$Pl5k;_c+LkLb{hVvp!nWf z{{RDcwU<zYZGvq!<_*x@Dkwf<3z8N2$p$`zbr`OD!`})t?*!T2S@;5bg<Gl7qtmq+ zq|_{}kT35N5Lz}>ag2wR!XBM5O7G$;OKN=G@ps@4?1kf$OV5q}019*;7Fylfq`Ho| zYopp;S$T@2NM?~s-YTMu0?~jJaC2W1_~-rz&HE1c-tOmJ(rq>057}HymrzHi>LDx^ zCso7{MRbnI8xNT6a7IoD9Y0od?R#AClrO6MLV<iQ4ZO_|FiR6#-0u5~l12~6ILLo2 zgOGF9yz9q46Y!Ucp#K1bmhtBrtN#4znndxzJcUS8x)NSFlrGQ`MLAvp1CiBB5m7xI z!L=1-q44&P{{RHA{{Vt@{604f-wEw?h;5)r<C^DE)io(5W?|+;E$(g@WPRczV;STC z0I#b44}2Q^kNy!)JioKI!`(Z>H_}Ft%O;6vntjY|jmo9qPc}6niQ4CBJoC+Bc*Ej1 zj5G_Gb!`VvgHy33B97n|8jNK~8=e<siPd)T<q`*6WLM2v-|b)Vdrs8uZS8M)+8~xZ z7nf@13A!&YmE3lopy!^oQ*~;qw{dgZOP{EhmU@F)eWD*C)mAkubs>qJj(&BK9k+6M z1~kd!9@TePe-3E+co%3bmRO3L$>J_wD!F~x+NHt5<$+#@k<a0-x%*T2uTR#^j;1vy zhmD2Em3+s>?6hjqfI!ANah%s>qJGxj5qvRlG+SF6Mz+)!YeVNW{&+unHiB0y%op$c zfB<<o;<@W!CigC$CJRJ<$y@375>GCr;hj})5(vXbX*`9M+#rpAdWkEb82OJm&R7g) zxT}v5+Uqf2_-ErUg(tJM5H!;*^ftG;TShvwPNc`Tq08)H-D~4-5B||UE!Xtrj^^rp z0V9Zh<4uhxx56k~JWm{Q07ewD&yQhU>-=ldv`rwv;yY`vvs^|Z7ZZgRGBI4?8Xqta zMpw#_gMD#Uu=dkqIo5YQV*6gwZ7eO@;cm4Si*F19D|>SaU0BJ_%b442#{-2i%y0+Y z=~geia3j;2U0yjgI5tN2O{c(SwpVgN4+<Z&h{oP`#zsiaLF4BgcR|x_V4C~E5!>h& za^U^0&?$sCAM(;EcdMV_EQ%NoGn)DO^7F?w>2W`bHCd;QA{CoXmF{<pa^e+JBv?I0 z2vNv2q%h81NcN}bo``+}csk$y5-lqJ$3<(%8xcV}EI_*rk{cC$tizmODeaL}Z2tgg zF9G;+8_hRV*1xo!Rj_OV>8~rE5pCAuVH|{vleve`*X5R>2gA=8yX%^D%3R8ac)N~A zOR=<JQfWynM*sz7;~$?1ujoD~)O^VNH5_x>xC~-^nQ~NQhTLOj<G$05D}Sg(_5T1P zH(kp^>yL_Gwx`4St{NRD!<v?xtyqQfq@LxL<uE=^-9*b7R&H>2j0}U?yvFPH&HbRf zc|4ZC4CmCe1!UPHM6je&0r%VO5Te~Fa(6JvUQg1#Ub65WwW(^$;cZP~dE_WQ%XKJ? zh;fh=0X%=Ycs2G1!~X!;_u_|ytVQmhJ4F~x$!_xg;5S^SJFvuc$sU5X`n@=OD8<xo zSrPba!P4AnQQQ1q)Gih~vVrbz;wfVCP4~9k>||$b<K`(L#&chE+kVL!=9}P{^q+<L z%o+f<l1U=Cjy1W8LnkCoB_)clq<cxoJ+WR*;QQZ;T4k;6w~XQc0EBkh7{rs@%pj7| zLQd2xBW_kL*f<BTHP>pa(-=Hc{{RaHZ65wyB3#<f{*5$jrai3#Kae)$WS~-VGhCG- z+SBkl)Y7%iw*LS^*Zvp$KZ{)W!5q5IrxnxMdEOefo=uQ^#buchRz*#@;Ba_cH&f1d z8^K?*e~L9-KjP1Ww0%DQ{?(+3ZuF4$tn5>33zSw!-P9hEuH_^i4h?Ky{BoZ|x3#d- z6Z>W>R33H2GOOM;0418=<U4XsJhqU5kCYKyFOGgPd==NcGyR+5*{(G7yqRZ^Ey=KQ z`*5v@nI&VN;gK0~GI<p$GQah4DwbBYy$<WcJ{<UgXX4vyYn@|3@g9Mw&P~Ezqv`k7 zQIc2~{J%EZaI6C7avWzQo(>O>JX!Dq#@;7yg`Pgsp`TKT-WwZDY8fq-X;}02IVamJ zo4Tt;eqsRt*O6#H8T4-nXqtpx7uW85Wq8wuvxicWD{`@I3h|qbl5ZoDH>$HA;{v@i z!auZ)?y80#5omGg@M+GIn6(HJXkm~XtEAI@?;H+OZzn%dE}xi6YS;XYo3DhPAkw@S zVc{=^DQ%-Yl=8DSw=9~XNf=_w8$Rgfi4>eE8}J4O0Oq6`LU@0{Q+U7PR+(?12=5xw z<NG2TjZq7(-}Hdcp>YWrK4TyYj58clF8(WgHq(4jCygvVAl+zpw^s&Rn+4mg=~IKj zU$fjd?gFnxf?%P!3E1>LG5xyy58;m!O{jQ3NsnC9?ZOZ38#$tqc#z{OC5&KC5YI#N z1JvWT(2Ym%kmnoQ{v74}75gy!9r5;~Y2%ND@JBtQ6K=V?(eI&(34;ukngwGU9D4>m zG1jHJ{g(V~qxha3M&nG;wapsh;UZP@e!-|(EQ|s>Lp-KA)dBgLC01Y#*vS|_HF($l z3Pa(xgICe~KcbB;4PDl2tKB`K(JzdMKvxql&QBYDbZyJQC#86{o%>b8ad&$(9wpQ@ zTXP6ywY`Ek?;ZM>{P%dExIAH9V;;D!rB1H){Y;yK>VA}KUkX2EEmy>?@TbOikT$(! zT&0ppHH^ySf2_B5^2~%BW#eWYiRQZ)JPCW@Ux!k7bKy<QTK2OY$t(W=302PJSY3FC z$!``x82K5{j&jAZUzp4La`<D#J|2(Z$BBG573>+_mYUpO+CEz@Hnd8p79MauRvkTg ztDh0SX@82|Exc`O!X7Py!j?%KP=96W2_3zRk|@C+X^joYF5P#G4g!&bn2j2Pa*g%; zPth6TyzsAuC-HB_yC^&#Yoj_DrPMAhzQTe30M(mm)q)jfIL6g-#~X8BC~7)a!ux*^ zMdD9~+V-Vq6~w~k;wUE<_BVNK%l?mcM1vsbbTSS|;=WArhsTc({5HCV_r+SR*tfii zB)q=UV3$zS(T^K0CC`xAIUhPO0~x_J#_1ol&%qr(`$@hLX))Ve>rkpK-ke$dsTV)L zODS9IyRyy3)gGXbD@bAF^)hlvT>S*J*Su3}aXZD~i@j?|X&1`7(V1FE;%2}%HV&5a zsOO(A&Owf~r5}Sn9LwV?pABffB8S5I<Wl*U8e|h%qok4n``57mx=8DTk>$Gr3C?q0 zn+M}J?IC_v9ZOKM)ih*DWLu|(TN~vmj4Rlok|_Zh<|FeSi(fVPxAwO1cZ{^@bYF=H zW#S9lUCRZwxob6z{i);kkX*Lg*c+dfmB&$q0=pxGn~0TY-2R3%o2%~#X}4B)kXZP~ zQF)ZuwbkF)VKEK>kO-uIHE>TkQ_+a(dT$2!`&Iax<EbsRzXHeM-BZFbE#wWX*ds-1 z9JFR@O+j-TqbBe~Qf^dYTrNg`onHd})IYR8#0v{O8{nR$YvJK$6&f3>b9g6IB~^~1 z;z=VrKvpdgCpj;kYwan2XixY<J{d=>{?>P^Wu|K8Z8q{7nVVaIi3ck`+124&caJAB zh}R4ixvqK8o$UVr%xa?9b^f+LLwr%;pB-6i@_6Ur&&7)?v3YbJ=S$VBKeX(`Wq@U~ zxwa6?3+>2I!O#(sdXwURwIA&h@HgS{x$y7AKLct$B=EGB%fDN{)6M3Kxw@;gA)Xz8 zXUvr&0R7fDCcaDXC&XXai{PJ(?7lmEGoIqg!f!F>)3n`hIwjO{#8gPSV>H&#uyedL zYJ+*{$*-S0asL1Xbolu`tEk8D>gPe$bOAF9cr>UkEbb$Kk`_4<^hhSaz-NhqvB?2? zRZ_xKZ6c?Lh4t6)XV`iNhCE3B00*B+{heUb{4=F%5+<c#s!2Thlq(eKt~|J<l(>b| z0-;!dr{z!$e60_|{{Y%2&(|+LHeOpnW2D<}x4Y1!l4rY7yUY>ToVv-hDOHXZcP)-_ zlkmsH&)aLqKNz)*GS}jgPpAI?WTx9#tTkJUJF9%)<~M+>1=k!0jm|z&+iPb{{kU%a z6?k~Ozi;tor5xbdH;Cr9w}~J)7-x&jX&EqZ5kYS3GhU4>B~`LHCt4CZuY|v`$H4yp z+P}rp*?cwet%a_wY(&?ZLM*ZC>aB+@b!T+3OCABs0}$(+^P2kB^Zp6@`$zl*n)Af} z01rG1Y2*DaILZ4xmaev%$pCd&F2r`Sk_QXtARP$rUld#a0Kr)PHR^sa(R_5eH-|>K zrL30L7gA^`a>5D5*NHA(U$h9_Ko6Nh@IG4WuRm-}e(zD2##f&i^$0KSuHu^aN4v70 z#8xhbMKeclC88wOOh)BGa}<1hhZs7}jdr<z;FT|BcGukh0L@taV)%*hOZIs1pND)c z@cZMB#3SIFj}tQLI!2l=;n1$<xn;|znGA}vGBcIf`=e$DXf;aH_8#%Sg8V0|4Hv~j z;zp)d%+T#Mi-@gCFx<u&?`>n13b7%))wW`|z+Uz8SHy4lDF?%i1#Y|}qxdoYAZV9X z%CpO>M!#d5dgYPqZdImrT<v1<LzA3w$@tRK{t8{<-vazMo8a&4@!>m9hFVwJq`8hy z3`g@>G_B@I3^8A=&7z~R`GRa^<x_7_!}S{Se(L=VV~D1rzv2G?9nt#F@b}<WrQ`1& z=~`#TpM~1*hWtmONcXx%r>NW5>iTwJj4i~LI-QT2U?fV&BbdP}rtC&QY<#QxL}_{t zhV`rcU%;OqB93o0{{Z4&fA)P^#tn^!jbpWFW{iv!`^Ra)Dngw8L-@zzpY0Fv4^_6* z^<Rj3q}L>G^Q6DLw3$lvR*u<~GTp#nq;S~>6~j+!uIiUl&*MZojm5?>aPdcK=Qtp= zuqx-C2JD_WHRw{yB^_HiYU1Ml6n*F7Z;O5}v%N8VIq^O9`mAWqY-NuUXCSB9*omaa zJo#kw+H2;o5Kc9Fi1p7H$qe5+?GCcW{{VZSie@A*Am`=C^sHSE;clmVt1Ye2L|0KB z_E#J8#$+lsfP3x$cRlOquL^t(&@5q##Xl0RV}>h&7wrjg46+GOa&rgTWGFfr7^vq2 z*Hj!Kc5&3Sta(+hi|n4wq0ww4mK6mGzF~+1kU;qXZg@Bt$6AgpH^CRylUv2%&$G^q z4lLA&e6ztNB@NDT%8`@L74}z$yfOPYcz@3?;>MEt<}#@hXJ+!*O|vvi4*YFm6yO|y zaf<Z+0EX9J4D9TeRJ-tmTI8!BjqWWqXSp#JI8yOSsOY`U0UUI!Cx}VtI8kjMA9xSo z&y21%zr#2@rICMlCW2k<)PSwHMW4%$TKYr7KeCs^Y3yxmymfVJX%3+Hh6{*<S28g< zWKEJG%I7#6v-;QQPs5#W!x3Ler05zHml86EOHi@T6itppBw-~edy~H&mGz#9<2^4! z@azo-fVC}V^9*LNvb2q&$v-l`o>Xk$fKYV%z%_7G#?M<F)bPtg^Y_5N@J*ivrLoyz zadi_PG%f3F!N+&Y6~M;b(dX)G?jH*O0Kq(?)$MI9wO<Q7==?<2D3=zWE>7s~7vxX? z{yl_|fVse~*FyOH@v2DfWB7mYwRG!ktU^aH7Z&WN<tr4RMg}?B8AD@&NUsq1kMXni z`m<2lmGz~hWy#qr%><FANnex_j(Ftrk9y+vwP!8<_H;EEEsv>nAJ{M9e}uHdcRsD7 z**d9jvEBoB9!7ZGAC)TSxFNvw;=JeL7l;1<XYT=8Kl~!P5BwycATqVNh{q9B8Bqhg zb1@xqu@F0uYx8g7AMFM4q9>UAU79PIZV*OpZ0z36*b-08ex@a2G0ya3>TAJU$JV;W zvki`l&u6NRv)==#lGzv_ugs+OA~HWJ(ll!&cJwi+S`zqHr_&nm$Ik`cUeBTUbHi<9 zLY78^%#(si1w5HzYz{M*+P<E(^LLIeHM^U;M$x=SXQt0Gz7tcpds*$2@-r2?NRn<N zf>}EB?Mr^&w0*72(F?fm?e>#9T+0-;gnx9TaT$Qe1w>$uIqzIO(|j_y3#HE2Hdl7V zR{69@!`l#kY%1O5lmLI_nw`9X&raG<SKswGYf0Nv6U3IVMWh?Q8mzjl%#Nw{uPj)3 zL)C5|W|6~m0z;o)O7k@T0EANJ<)Zj<Vzaq$7tS{CeKz(uEcf5Mbqqe~U@$vZv3O9} z$*WxWf8nLuUL)tugj_wu>l1O7w7J<CJ$~x_4RX4qghOd<ujzLdELf`CJfg&+{{Ral z8NeWRXvR;qcEOp!D{6S|v!Qsh_TE@EsG+^LwJZy~zuGS%WOBCX2}RFBHj~uj70gQ) zgYDnSj`CNujSxSTF|&is>cP@OE5sCxZ88JLTJ~LM!Dmmo@@;j?iC{nkWl?RI0-=F7 z3+66Ha!RP@j006Q3vEkMwT9os+DuxSLAhYQn%G^tF~<pXcVy$S!&Z(>grQ@^WwSb% zjXXOYrm1fXzaWX0@zO^mDuXE}C!r`v?~pT&cTn)=v#IJbjZoZa(<>0`aVlIXJ4gUq z?tP$tvdQ?@v};!SmEDZ3q!R_dm-8g*llg`=;FTFMDCeB7(AU;~v+wLh;-86{N_fBH zHmi5w&jrK-L#d{kCbhUs5(-=fm_Uk73reaRw@g$^5gKajaG@zXBlBa!{{RcTckv^{ zw%!TQpr2Bj?G!W`ZK5y=hlh|%(#f@(8;bBfMSnqmu=ng6`zZV^HXc2{zPQ#rd0`|z zWyYgt7_!o*!DosK9ZElw0OQSKBmn%5fY;EU2Y=w1nof`Kz6kytc>DW*N!3H%CaHTR zsC%S#!i18^7AKA{Jh=Y=a9F6rF>JBqbwBteO^1l|>%aI&wf%h|hG)y(+#7|$ld?-` znpS0qlk%eZdq*BvuQL;k=ekbF^r+B`cRyRa8?1O+R@831H{%iEt!BxsUA+A%-_MnS z0!Zetm`NBoJb8B#?mPq;&0qL+C+yLpc#(9!h7J9Le6ojqC|u8_iC2-ew9BQ92q&({ zf$zG%7(6-u00g-B)1~TGx4r=QlXVV|LT!TbSgz3a-5a1s10CI;1Fe0H;Lm~o02}-( z;Zvi0TGO>35!>mm3^VBs2CWn=3vQ0!K`c>9vJIev63D>vtU8|-aCgz%?wViBevEjV z#(x%kD${BjWuBXTXCZx%L3RC|dJ(x)3v};qGoSByu><HU#J($hQ~j2_DQ^dkzBzb? zPYd7A1YxGPx}FQD&Hz}ap59Y#tfcMvvV@Ka9M^>S-{4J?YL<Gf=fo{*!ne0bv;CSW zqnTt3pkb`8^8y@@AIif9;E-}_%Dy1UFT<aP@2l!MBwjbxjl`iRh#fWwt=N*gt*$1O zUBa9>cJkyrpi#h=O>J{NWfgO{*Z%-(Pl6g}ha}Mc8EUWMeP&iIYk8`O?wO-;kfH2j zbzq$BWruO@#EjR(e-WYhKk<*m$4dR6JPsz8R*miMHK?zJ-LwrF?m=>}Y`=@A?$Pb= zSbz$#$^3r!^W)!+XT^HHjo{A$>AnR`b|5at*}l#viV)6>v)ep&KPN5$LxM@##DIS| zf8i?ewVtT!b*sJ1ai|g-hWkVTOMe7W>~KBGei^S?hFs;X{{T~(ScS4j?dOYrE&jrP z19eHfDe!~h4y<qOWHQU4+CdJl9(NtcTJTA80gx$G&CE&<AxQ?guNr>az7*ANukJKo zh2;2h+i<&0K~@JF*bTBZ!pj~*C|%!a49)y2(!NO4e`~+l#(fSi4(tB_53D>|01oF; zvP-u@pkR-*Ixryo%F)Cz>&0^#&+SX_Csv0|(=@#*T`u27REi5W3wS~XEU~4X+%qYR z5^=Pl{{U}*2I~hqYMCyqU60g%g1;ZXWbcT2Wv`31S@k~#TWMurj_oh*Y*q!30(^;J zm5~uoDpFKj_C3E{J`;Y>dXIqgyX{xN`s@5bw0O+geEPJLBf$A8hFheLSf?dV1?9*c z8z#RZe`O!rN8qQ0?QQ1xmoAk)i*;+fM{T0dVR(~ae7IzV*6P*b!EMhO4Z8p?2_vo5 z{{Y~qKd?`Lyk%{9;ZKBDz7o`I?iPRTDD5V<is6?#T1T^E1gLj0**F9rn4;pm>eMBB zB+jZ_ty%v7nfk@A{@H&R;nD1Mzly#By=xd`SdO8j&ODfe<VFh#(lsfA^LbNA$MBvi zmaU=w#M(}()|!{ZaiVJXd%UYnFH%-gWEsFq;U$}soZv>M7|#cvjJyr|Uq$;uYfa*B zhW;jk+TKDGuB~J*tzc8hM3T_0+-lqn%w+4FV!ofWPXTzpz?-~(;QL)uRJf7SShQ!B z?6U8~G5}+OLmu2SMnW(rZsr3u&Z8*#Sn5e>Z4apQ9U9u!%TBiVOK+!L-)z}5x`F|7 zb07c-4A${W99bNlv1|tbU{<ntV_NYwwAwd}d?@}Cjvcqg=-wn2jko=K!un*XFP?H- zqX^Ga^KvV|{t|o;@O_Q0q2X_a7gyd1ZE|&Mn<%0-R|z<bD3;nA)Rh^E<Ptp8$UOJ2 zWwH1{`#^j#yo&o-zl+Bjd}bmy+y4N>-W4U3`F=^aMjLQJ*l@$9+>x7`y_n>Z(&g_9 zT>L!MCbzQihmWtkRTZ25{{Tuimd+TR%DleY=#G6^w{7X%TDb9rloPxW*=VY$#X_;T zb^sh;w>yui@79yzFT_uTo*&dC@V~{chxh4aBdXf#THc=}#gn!-f2>7m;*m3*z$oCA zd;)9bxxe7Azpy`tC2tQ8+7IFVxUeSQ$`izPd0!^qnnHeDW0Fl{8@*yegL@<Y(fG$j z{{Vt7e%}^yT;Kd&@JIYBT@KO}Tb*-Ok{jrwb|FS#(k?EibOepe-ck$_TmhQ>G5AUU z00!ylI;V#rzxa>w!shPca<f4vhIB|FwQ^I0cGRZ4GR2Nhm$i>kivE>68RJ`P$SpMw z5-i$gx2Rfq?Wf#Ku-%46!<U0DcA?<1?q5bAjK{9{3Qc16*TfzY*Dt&^s@uXMhC4Pl zdUUbmk|opFY)%-DG9r==eqqwQspoZ?KBwx`?vhqN6}}mN!MgtdvR0L(i@%NDAn`|z zH3`p~<k?>h0yyw~U?H<H%+LUH%*^=eE9?&i{{X=#{{Y~a`Xn)5cz59!g>@+HE*BTq zP|vE|w2^dMi-&h-Wh3P+CeT1VMSahAuXvi@#%<wm6nJv-3mbq9uA-79)wIf)U>SF# zz~=<*lPY-m^Tm3WkE81s3*^rho8;^<FWKSwk>tq)G-?)19!NPE=b^4DnWcHFa~g7T zyWY>p^Sv8LwD6Uy=w1QTFI^*!G_=s~B}+&^URpS=<3e`r`?1J(ard!W7Fy-7)ZbZ` zO`l5CuAS|kE7XoRV1ON}42-jkHw_te+s-q^Wq8NpZinz+P13CXH@(DS;e4jnEiCRL z)80i23r@}+3qs`KQb`K+8~SIf)OD>F#2Pu%-qO=rv2{rxhH|qM;1u$m1|wnA6yw{y za>ci*cP3G`==1%1!`E6py^fvX&2ldbT<OTt$7gSBlIfGi?#{yI(5yr@<|Ii2rzh?( z`Dwl|@yPJRg5&!t`%|~NMJs;?mmRTiGU}&rXnErk6dA|OTsE_y`2O!uio?L#g^Sp@ z$JlNQMSpA*V87ZGoJt2L3_gT(uME{6;rE8Mr)@)Cz58=+ON(ZfVH>FdNqBBp22xIP zL00WfoG+vTZ7t7o)P5%X93CT!#r`6fPmcE9CV*U|h;=yCmjwio?^$-|q>SJZ$2hMu zZ;ZN3T7B-Rp=y_&IEpY9DD5rdv(%Ld#@F*6IHXk>$&Uo!5QNvxP_MxqGgQ2T!B#f< zE~7kB3s{3Q=?`(8!Q@B=>v<fFq^j*X$t*w>&uQK`w(!-uTi@uGejHeF`|mv#(9CjK zqjp%z<o^J%llbwxY1^fr;6szW)~NcIO8uy;d~>3IW=-K=v}sS3lHXB+YorD;QGtqY zDN;Z|=Zq1>a~jvi4-qbzXQO;H@dcNM<Fo}IN7Uv&W1U(4MHg|Fy0(*RU^Jd|cmQkz z1bp-3OTP#B(mPY*%h^lYu#(n$IcJTdXB$b0R4TCJk;vmFyl>(bh2RY@!z-=a-b=68 z*~Z^&YfmX|lpL8G?9I1v!TGWC9(IG$w~ie)x)}R!GwpvE{@8yA{t#*};jbENlG|{R z+qCm}cCzp{7;fchBw?PQjmIA<kz5^@?W6FP_VV{s@Q$B%YpUKuEx5h5Y3H-t_{8@b za~pW)AgIA$i~&D4CqI`d@qhMI_-}m+9Z@wTNg7wv<cZnhKY3O(NXZ8TFeOF^878nb zkK4cC#f|LNUk|k_n>#Dr#(RBI5ccUX1Sv^I^B!}Zu0nbQJXdsZQkID~=4UKKW3l?p z;qTh-;*E}*Bm6{dIw&E^NqeI-t8a7(+6;D4$29RV`^=_C*faB-W~yo*wvT|U^!T-n ze^sAR`wJGfm+d0c$vOFud5+#<AL5Esa8K}t!5@MCHT}0E(Qj8#w~3ZVK3sFypFK|1 z?2)pj&YTp-sV2T}pZ13yA-#~^XqQt-aNA|QmE(>=>Ns-|ZKorr%aAxMaf<DwlS*5y z4o|Nn?te*9{{X>IJ`ULFpJubPw7Y0<)6aQ3BS|S@GY!53Wd?JRF~H{oyRH8K;H?&3 zOf!9_MTWvRD3Q!TDe6(-SCTdZI4VFrEBT|-&&3ZFPc@&1E@8NhS1zfr&IlhcWh$Ux zk<eoto;Wr9JK<}K+xwP%R`TBQTrI(CS)~k58ze-H6amjHNFBK8v&f;<l=Ckm`USrK z0D`gp&+o0R{f4)y+LEPYwKmfIo@tjL2(E5}JZsJvkVADC=DdGg{{Vuy{6o_`L@mA_ z_)<vWx*H<C`$OKvBIknTglK?w1xP)s^4`zEo)OXQjlIv=?X?+xZL`T6?qPxDg5~z^ z$K4pg;<s-+595Cg+5M|fnJi$+k1g5mB4YmlbxHYR1oS&e{OG5Y(1Nqu%u>fm>VBMP zf45$p;>&w&BjOIZZ{VwjxqF3O4PsZ8cMN5D?5$OnU{Bt|4t)<b^hd-00NU%pL&Da+ zB-1rJj~%Q`$$j=X#j`-DNLQNDXE(c8a=*K9ah&5B{8ZAuANXHf)-6Tdjoy{0z~O`2 ztd~}s+_L`sMVGfZ-Ph&Daz_TbQ}BDmJ_*-;-=thwq>#p1JF5$s2bS1jouIR+Do<7! z1Fb~z+CTE`*p-+|?P`BOJ{tYJbblMAr23wZYdwvWiFIc^;M?U)pC~INteYfIPdiB* zf)7KvYx`UHF3VGn>rnWQY%K2NZ`^AFCzdwJ%G+MsEH?6Fl|@-p9+_^r{(CO|AnE#S z$4~f$sl($LtwKnKNZQWo-+*!FN4iE_{{VV0Te<I4{>P$gx*}@68<xiVRVB;V-A635 z#<CJXj7=ue0NM)(&hiF!^IWsZ;+_8hBL2SF{RrzHx89p%8&9^-Z*8s^U@go_vCf#~ zirM+GN-@XZIPce=JJbF?+3S|qT2_^4d@OEU&R)eW)+U|!^BU2Kk#_(%R*#TRTKp){ z{C(ry3IlDa+L)q^mu04=JgZi2a!tCtYtV6p9P&N=c29_UKA~f8b^Wg<g*&J>3udnN z#1Kx_&Lm8pjL6H5<a1S1EaiR23~q<%)~oR{{_{+d?_9aK)U6>7O!lZ^fmtwfCz{eu zq~zn|DmlUR`FG+U#vKn-v!6%PE^XFS%Evsmtu(Ny0lryfloG&l2F<zTjB#Hgc$39m zC(;!)Xg_}gh4OCgrfH=Ld0mDwqwCaQ;~nb>JYnL08O!!vTSd8^8IB~n^3v8|s&<l9 zK;O<VNL>E_39YGNG`ke>SJ>{S*W%W6xS_Pw?=LR`NDFF=A&js;C}fPs4&$Gf%1i(V zDl4PYekfb`c2fqqX$8g7sUymP5-h0slt{-TJm7)}Jvpy4KL>R^KJHyg8D+bKKbz!* zDKK0O%-ix@^c^}?`+peR=_s0Lu%A(8EE?3WpR)&O+`CYwa4=M_9r0K7Xv;{m2~DkT zeL<oA)R0<5<>^{Y-MbeBB)G)ttFst8wzC2_$zpjuab4ZV?M?Arqm1a#$!`n(^Drz* zyN@G!vcBWTLJuFO#dh8;u+-A(0So98g)JO6Dvu8F@_<AcWdq!22iBt0^p6!;+r{FW z?N(cri9T7ZqS~mV_))M)9Czm(MO3gc*uSlxNcflHo}qs`Yn~~2?e6Z0^W?O5^5osu z{T<}kqoF=l&!Np{Sa{L(y{AT(?FI~mD#S=O@^XU?IqnG`?N`o{c&_JAf+sp>_NL-h zq+F{gBoa<a#>BUCf_e(+Z0)AJxKpI6MI-LqjKU(h;37v7u`QlX4;{`<X-f+ftdPCE z_de0^{ojW#AU7T^pUawML*}>1Fej6TDx{Id3Ek;~-`u<v@h{<zhT^!exz?LhZ!Ae| zYcv82hjE;PDJvQ6$p}xsLGV7Gq4?iZxR%4j0ZKj)mO~VUae{IfxyKm<a!*?5Y<>dj z_jbV9Tg`H;g||$^NxL3|EPXo`<Lg{*lKV{G+e+Fk53qc7`&D>SOHroko)x#4NCsiM zxAT=<dIbvHoZ|&s9q=(+CFkvxuWGWSnoRAXM;dto(NIZd>Z$=!ge>ZK?C<z=ubprF z6E}ibTWXgnZy<+0MDlGyr1TN4^PgN`_s%Pfy3_nJ*2m7&e3w#OeUuhapKz>t^&}JR zLc-H-<VzDJ(EA4W_JZ-4x?M&Y+C*?X*{#OKj{^$1!<-I!sM-&`a})eY)bFKh?GC~? z+Hbt@;BrsjWB?}dfyqIiTKPLq(X|^Jv#RMAjdq_ZMq-_qhHUOE6cBjF%e8TWP6c&F z_fWWzY&9#XW}GL_<w#>2Kn0J;3Y-JfueL$0ULG5fD)Q`l_37~^iY|~}>S9p9e2pVQ zNnRL;&r{bJJf6b2JDcqW;G0WJi0&>eo690eGawxb5=%JbcLWZe)#Lso*R;JF$L*Ha zQ%JkEh-8??RhOJ>FVp>?GCJ3qTl``1eVxpal!<M}mc#b~MF5Nv&fu^EuTW2OT@j+% z(9hcIbLn|JP5qfV$)Q@uYU-QV%)V|ulI1o5*BeMa!o1&7@u$U0TZv+aQA1?dSqv^N z5<<fuy5nIz$O8aiaof-1@y))Wd;P0>Iz7b0%Z523lHmwEfSyox+DIgvarjmJOXB^G zlNwvJGRw1-*cBo!PH;1pDaqOnGwDLZ>#8Z$Z)S7XUM|)3+i<#-vaAaK05!xbBr4eX zNp+2YeCKdd3IcP3+ng}zrq!YFye?!c305f_<#Uc^QW1x!`8dZMVyXC-;s&*-NMSlO zKRFHNTSFw$BWIB4NkVbl5spSHht{urOZ}X(8KHQG?^Dk$9DslU`4%!sAZLOA>&13M z4wBHB)xPG-YThXqk=kok7MAwb{Dp|-Y>t390yg!?&(^%pTEFmiuc#d!<5ar5x|&1& zhjlnHlEnV$5dc;T#y2@{YQVkmJ-zg1Eq?6W+Lp|g?4e_J9N+~c`)=bOjd7EBlG{s? zX*7E)dE!x$u&ae#-L}FoF`m1L&o#7YIGH)N^gWV4i+>dS1qsu<GB2#{Ol@tlXA#@9 zWQJ(fpXVqr4ig1Pz+gul1NfWGv@3rs+7-jh1IcFZBxQQ#Jk6sY?`{C(<oEN<Mt>A7 z=&;oF3w=H{V5K94?)HK+ktC%+9dZ<B+}3Z1?0h1YiEDQ^n{>zsW!~`|o^c8m8DZ46 z>{mo-CiNrQ$sKlq<6Ex@>Sx6Ie6wB)c5x%y&Scy_yDG+ZFl_zSTywy$f42CoapJuy z*F_p-_K6*f36@Pd>2&**c|P;BQL72g4@r;!JC3#UhLx)LyHB!f{X0Xqg56<R1d+UO ztZJWi<c(FN>&^nPJ;3Q*W{G2=c)|YwwlD59=`UL==V?A<GZx4r_n-oCpPO`i=bER5 zjJGXSR@nM4QTVa(14z-D(?{0zJ$~h8RJMWOhQ@Cxx&8EpM@L|KFi=mR70mczJ#XR$ zpu@&d$}e>HS!C0-8#bNBI!PR|DgD=6l{<e!UVo(cD(Zg{Ks+%Wo~tr487;Ld#xg(6 zmfI#8CC^MU44yXu&3#Wcu9^pgqKD#~M?%xJCHo|nI+f&pLm%Ub7B`(;M__=jr=?*e zld=fC4s9-VZwx)wtD<<W>qco0nr!dVJyT7Wow<$}g3SRRbZsnyt_iH~8-CI{--aEe z@YL<8NhC^I=E;&cK|`I4tXglB<8r)cq;?}UHj|@%&)yK!pr6C~ma7$mqnYe2=YrzV zjH7N6E41?z#lcpHs`n^s=Ud$#(&xoD9wL)Mit(W=(OubHz1u||aGqo?ury~MeS~{S z&$e=nEAE1I7Uz&^{{R*(b=^wx1=BQ}Yt2ZThFu=PqPb^61Io+0%MMEo@3j<e9Wzqt zwmS66ZeqWM5^Rz$^X4ZVghhdGVsLAJ#_`yz!)vVhEgJ9IlE@LlvB5i364}NHBOF&e zuWh%>((mSgs0y*|jYAxL?=Y)u8RN0zJ@H<IBDab#a&J~-E!$<E#I7Zb0;C&sjx(MC zJTX6s$2`_#`hSG3?rqmgw^$5#8_YuT*_iXW#Gr*8zD58F)3%#f)1rHOkuXVFN&_2R zhisCokDCLz!tHJ|@6y_7FRV}Ic%}*T(#HaH*s4M4h;!y~{>p&0VB*XTPy1@>DXig& z&PZVjHbUihuTR~<owyzFdUOW3cGGmrd9$mBvUI_4S)dM?=teMom}K^^d(*xZUFzFz zET)%O5y!q^5=m?kJzM2@209X<N4<Ry@ZaH|#Qy*t#{|9_(rvFTV$4ybfEgA@@wpMd zc{cnU5<_5`!g$JYdg?!6J8XPW;ST}n_nMiy@R~Q;n|pntaU(V{$y>L>WOVDu;A0im zLEz6F+grzBu11Lqsc$akXPf0_IXh!w0dA!31&33`ex+Id$i6bt?V#4J<<vAenq)6) zs9VW#5CoETuubMX4y9L|SD?$`oe$x@yK8ge{UZBQ(w$1R<5;U{*(9k}XvDJs4^7Cp z`tmuRV5~JowtN@hKiMC|UlP2yJT)Er$s#JXrH<(l*@i<(!3m8s!1>p&Bv;s<0l(mz z-xO}VOK<S|$5tBGgqu-UkUQC}?VE_uz8>XG(yO*I6dr!*Ae#Mx_$T2OKMf9@@HOl- zIdutz<TsY~?{#b=knVNz=aq?OVS>OCzug^c>TiYGXUBU#5M1bg749q{w1U;Ht@T|y zP}$}(ADK<0tsC2wQ@E0iz`z;iysG(?NjohMLKGmQeb37nKj4vZ__oSTH$c{7)NgIw z<G3#rOA;0P(M*v|xDm$%1_x1Hj*0&O1k=#I255GAmZ#xKwW;0}`+e_*Ad2#63N9Jm zIVDL>a!5$yU<XWaE84yw_|x`omsPyfz8E4}YtWYmQPJ;b(XS+xi6&1ZLa<JR<&Nn7 zZ&GW?ym$Wq1vmJ`XJnoe_;G)ucw<xZJd<~-+co5F{{V4JG9yC*zDEJn`_@jiSt}KK zX`|^c2>$@VIsX7=KZ!aW#ovSFyMs|kg|xC?+RX*syt1H{GWvbQNENm)b;^*+LCLP$ z;TP<W<3E7f)u)8@={zOkPY+#6@kywK{>;_wmuV@!7bYu=xK(BwN`ssnV!s<aOZ#E} z0Kr5q@3o%|_@BhuhNq_Ad24eL$7N|~>&Pn8+gsbph*tv(F7mt(M+cwq{{ZbLu6Sn7 z-q%9c?>swuB&`L+7Rx@brj6Oj`PChMi__GKudCPS{@{3s>upclpNV=u>@9KP8N46y zF2+40Qnq%1FQbm{O)WBw#KC{%#{|T5A1MbM5-ZAnC4a#}z6Sgy(zJg9{5kPewyk%j zFWD~NQ8zboOd%g3d2CWOSsSanhs$&r$*;-F{{V{r03S7vJ5<rUO+Sikq(+8&d2UCP z@#J-|WC(x|06FsqK-`-7_eAl&gDs`TpK+u@gD%e|k{a2}jDBJBl8oE4!DQRpnoz(y zd(Py%POFt4s~_;)pBm;%>sWNFWV5**bW>?E6CAO&c%3Ea=lj?M_8G5+ejxtTFXO2S zc;#iW+UI;W1*LaZ8U5nVw`&7~h3nTC;=Hdx@OF;AE1vtq-Y2vWPi&J)vPj8&y#3gj zFvW_2*LTaFdgiWM{7JU(z0tSvUxwSnSCHJRTFI$N8W^^H!iFS~q}|kRaB;!z2I_<( zvcKTSb(`GwZwx+;WEzKsZmri&yM)N{UtY`hr-@I_W3iA$9E=YbUCd9*&1UKsHoA;) zTIo72r>AKa*^RXum$uOS(s?eBO8o%oxkDdp*OhpK#u}H!?N9qtOVnl4?wU1;;GQ_8 zhvg*gis~_xIVS*>9R@vo*8c#+-YvDbmqVFg)h%t@pgO$j(G97{h`#xkla1-g$I1vf z7aCG)Q#~2!cAgjTjrWY^*R-D;#FE;gEN0jkCwVjXe$gwXvD^kZBph-(S4Xbu`t;FS zTX^5X66&$WU7^%9Vz*Pt8UEz9N`aM!I5`A%ZY#j1eIc#i{T|{ANl*zRg^bV=yyclf zTr#I5e7uec_2~R9<KG%uFW9^ZcDkO)Lj9Xe5#1;uM-oRbC;<NO;P)7<67GzvCAvLA z+8A}Kb<^%IQ%AClGbO94!)&ZE@&${^kmMZYhJEu*f*bt?5MsP*i$YAERidTLOrU(Z zX^WGQ$-o33dh@Lx#yXX>&{}GjKiSgVG?I}U{i1a$*bO9RKP>M9AS{RF7(AQ~l4-RK zPAh38*Pixm=gdS;?DW7q;1icVgtr5yYJ2WuYZPugUEp+s`$e?-8#|LA3FnzE3E9RL z+1M(R>J;=mdi8oUc&zEkt@v`*OVKEml`Z8<0!!ejFwM6q!N%0bZPm+bJ}c1lYu0ws z%U!<D-$7~`<<xfbqbzo@=yJL5Suklg`t`Nmtr7mqzj-o=sIKWY7UyQo`*_I%hV{p1 zKO*B*qv-E|KMQ^p{7dm*Z`vQl+BbsqxF${DH2(l^xM2D6V2vXJV#DQT0{|0@;=iG< z_-S7ZKZFgJ?BC%1TT<}<0Eg`aDQ^~;sOc{2AIf8ar?pE-Qv;-vf_)8tExLBE;-3oI z&#G#-(`yg}WRf;Zce7l#42$K<a~zof?h-E1o}Fv1i}u9$lcL!};SE2<J|WUVugrAI zm%er^a)INxSy>Yt1y&gA=tmAC4=Rb<W6+IA$8+{a#Xlc@FnmYwtln3GEW88Z{VwE4 zQ&`n+bUVp5<-@Dl{gDzPd1f*??#^RwwcB_L_TTW|fUTES@o&U^Gg6JL_coO#rw#m& zN(kBH>M*6bnk~7&mLSBCOA*C?IsPN@e~!FKANIxF@$n7eC7SC}o?$FN94UBbFCw=) zK*!S+#oBnJ-(G!^>S#^CEW7QPTejyIBpEj;<0GIstfQB!B#q~Zi&nAw1Mz?U3k&gv z$5k)jUkYhDKiXe5nvSNUQIX=^^1N`v<VLF4B}Vt>sL9264e$IF>-LoKex!8I5na!$ zA;<1?t621?Rfrk=<nqR(C<KwYvz&8Zm3ps;G%pBWkFd>aac~(|Yq^r}h2tB*b{IYQ z1J<he@5fpesbdrCx-5}iD+T*??Z=Rb=ux6B<y3lwC9}>ruIhPxB(+B?#5?GJNM8;= zYR`jH=$AUj#B2L2Cy#>+8r(XVakP^o#L9^h^Npd2-;vN)k$i9X`S6>=HaEIQfc$6S zzX8pAZjOJn^-zWsjU0&~g5prIs{#q~*+Y;zkSp**Sn$t|b)N*a-}dy<TLt^D=1Ang z&OXtzdW;d31xfFYwczObI{BJ^hjiO$?v_Tln%>N-FlWvV7_^)df-}##rTv_ouW`>1 zebcD?8u*Xn{Vn`sul!@uyiubj*?@;xO*3k#KRH%kn`pry<p+$eax3P4iM|&7pS&4) zcVVJyviQQ{bSf@vg1k|ZLCBsXgO0yE&Uxelc<@`#4{PFh^$!>6)|OEz-X*+v#mG=I zx+PyQw*+BIk4)B0rKg8AyP0BHr;_1Vln&<7CQ`!~+qj=Vr)dMGYt^TRYj^h?RVR0# z-7fRNFlwK^w3I>)_~V{n>&I0j7|vL6&Tvn9`VYf@6?`?SY0~Kl@aD=}epsW+=KBU^ zWL>*^5L?!~GI+dmZE+R4>DKo0GZ@=#zHp=NpEx$=EIJ&Fck5E<TB>ONEK8eP=|#|Q zBPbf;BGPaKthfrf{v!DwP;*so^&%}Nsq7va*X%BJR2~t$PYtrLCr*ayNpiyn9#zlC zs6hF=wd>C8*J<L94S3Amr;Ge$J+`f;so!q}-RoJ6-AI93F-rL1R4#GGd8nn+uk{;) zseD4yZl6Y17?(`9j(Fn%f|rs>KYTeS?v8tcIIX>EPk~+>i8b$rUMj!SHFy*Ea9dk0 zq*y;bUBolM-d0E%`PG2vK(2eOj>t++W23S7;|GNF$ZvnM9vKxxaIL`d<BxbaBI?>@ zWIb|5))?oJUvYdp{{Vu4e$(C*w6xc}DQTo?7Itv?QbBuhKC^CR1$?=_(fg^FXa#n( zvJac@17Dx^pAfz|_>)Cw?ffTV@*<M+O%#BX=NPwHU0WSN5&#bk!LKRs--i4xsa{Jz zjrAF{o9XbbhS%&dsp<)w0Gn8FL2UXC^^EAL8!1XC{Y~+A{1)@}@P}Rg$h*|^?+nWe z4Ys-+ou$MO5KaOt;%QXzf(CQ?*UWzszu=>Pwm-*hOUbwK)~(^@aL+Zqi*))ewAncG zUe*~|%#1i<3~G9WQ=I&tB)$juTX^yKD^t>SsTh<N(L~obF~|YH^I;^Xd^7OJ>0H-} zb**#71sD4o!X^v7Ww}0lyUD@X7TDVZIXQ5BD2@^fp)<tJ_lec`%Gbx9F=0QBwVg}E z3k&XHdviR>r#qFIr+JvVo<Yj-(-p<NpNCP(eUSzZIw$`C7h2v8_-(EHQ<iND!0mV9 zYx_{`Ev<t$l7tVNd@mp>sy$ntop`TEPuRcqst5#s3+Hvm3~jB{k?K{hgADo*2<|IY zMLmIHAKG?5|I+@pJWZr{2gafZ{vcVU#EMkGaR%sSv~@U1A$5N-Kik0@v4fGtb1-<f z#=aM_)NlMzb8G#BWfHVH?W>fFZt$*?!a*?0o>g-3umy_`yI%}=U-rH5ABHtOR_nk% zJ8u=}$qe@cM7xD<HHc^42uo|6qFlrQAP2)K11v^sh49Dx6(_)+Cba(9(dXZES(0l; z5`CpHmGb7d3U+0F@-mQn5;?D#_A=fm`sVbrdLO8|X073W8R*g3YT-4VD(OSVAYeC! z&Ll~*y9cMpFn*$-nr{&JLrsR$!l|fuuGZF8cZ5i>->d)(G)&`d*itY7b$!09IsC)X ze`rf>cf<Fi;4Yu1cso+QxLdL=Vz_NS=Lc+&q<fKV9zm98j534sY$WsQ{u%hc;-zan zE8-S39e-6<@-*14qAx33=X8+Ht{Oxu^9`Uj-dRQn7`kn@&@b~x+K=%cPVr}lr?u2= zZZ34I<Ybo4<^YQ-Kg!DX_Y0G>f{qvi>BnD?eldJK{i2}pCXM4y*{j59Z>L2yy}i$b z{6QExNwI`1avd&vWJzsjh!E(L8DnBLouGzaTe#Eo{{S4`r~D<?1{>Qr&{=ABlCo+L zxI2t;$)7H0{Z>Fh8R~f*9p<;GXj+Cf*e-9hDZHp6ztR>N&zRUvw~#D;Y#^Vy;hHna zW?FXsVM2EJb@e_R)IKoyTgJZ^@4gIcH@BV~@kA}=+ga*x8!L&{HaU{m1DUczV5V6> z%K!)_$B+IUCy3*UA0O*iGF)2*5qWA1iIIXw$mcjcNey3nc+0|{2mDYikBqDzP&U&U zZKsk@w-)CcTgsaum5=cu1xUy_ug|S_;YWx*0sXSmz{{!Y+6CRc_1sX$cGLMcK4+SW z;(6{ap^s^0A7)8o2N;eez^=t5Z+Pc&wy@Co&s2)X!H{AZE;ZYGDDxci$kE(q0}JK3 z#^Oib8vx^uroI>Wk^6XD{5{nhMz+$gTV_&ADN9Qt=jLyb)wbs#ZXYXtwf0wwJ|*}! zR<@e+QPFN;zk@9ynZ)+)+zs~gtGYPJ!Da}{(Soodz6{rVOQ3k)#P^yUIz@{_fd2a4 z<TdCgjl{wmaR;X1#{;c;*jj0=Rnf;%tG)W4BKWWNiui@%OGzQ{)sCa!-O|Y^lHHy- zonM`}kRK<UoJI2FoDtH#H1R%x@h0~5_04-$)UG4n=LZ1BKsmp8?k_PSo*4lqINQId z^{>&LU%>J<l`gSks@>gM2?`kERf23W+DnEE?A<^cFmOogTn?G=(^1l6d%XoFYerUY zJ2I7J2kw!Lo4amKeNSrlu=A${?jy>n&fVGZ&6c;X>vr(?b5^-q^&spsNQpQkWI2%V zPCGFi^fjbD53ao#o55)_T@aIfmi2PXySAAN%Z0#iT=8F9Tj-i$hABK1WNfZofEI{? zSXxqXkmwPEHyJEKj^tN2Y2ZJI3$7-g<Gg5#aAa>ScD2Ngyy1R#K&Ls#ZU=6)*&2y! z9SrsAc?XBI$-E<abnQm+*4FwkeCsQCB)Ev4q~i*J^N>Sr_ciE4!Cwz`?ME7uC578< z*s;mw$1Ar#G=QC+oMWChaf<BqFCBPKN|`(<;<%DnVL|h=`IDXi%Oc})^~!)-+O_X| zW8$k#E<4W*BsV&1bN>Jy%WjCcz$JFY`nMhHDb7jVAT#vOhdSqiwHB7kNRG}$0inDO z-eRF7i5B76j!$!reKB69HEj-m4YGVlp3he;^CQ`bMc6IIWN?thpHgsob+13uymP5) zx5I1NC5-8pf=MQtG8g!RDBPv7{4y2C09U7IR(}cg+xv|_M4nrlxmY{tv*O$^i~xSm zIaVwQAQdd9j+q&*c{jX(<`?1CgQaK|z98_d6Y9wvs`nPsT%lhpZ`~plO{H^_mMlLS z(D0wd{{Rw22iW{SqMOYe0+Q+RLiZNU-!e48ut^7Y7<9oMbJbdF@8IoDMACdSCYdQN ziy+?MKLv{!SR|PM4CG_3PkSq^*!bEBE_`ERG}Z$#UTLxy-dGg@?3;980!HZ~l@D>~ zQg>FKp{GNoxV^vlxUuQcUyljQ>Zj~C*9&cC+lWviYhZrwP_iQA6N=$Aj}LgK;V!)J z!#T3pz)sdhQZ@`Wk1)yRB!J`P%ws3-ZK`^&fp6^Z-&zp0+$jS^aV?BqNLC}}-mYbt zTPnXZvJ3;tgNp7vEqANwx>Q#1=tlcZn{)k>Rso?5SO#QiN)60LSITD@=dCq$@allT zNjw|l>$E!r&E_*L&Ad$_Z)^u?B350*?ZaSjKIpE~{uS4VbUS9$r;ktj9B;Zi$V<qo zU%n%cF&@Wu0O)zHlJ;E#R+bA(E0}yWcRagfx46WxuNXhRRY-7f08+t$``mL}ca1b( z8F)_O+gR1_wLt_+vfkneqK?#LgRz7=$OQEB9ER!0>oJw|0@eIp3PP~>uKp|Mj1eS> zCzb-ASp#k=J7<GfdUu4r8tR@RTVDmNnzZN?hq-3l6bx)ub`degcBll8PW7W_e`Bie z)bI2Oi^vsQP_?s5c8xj9KbTP;87C`-BQ*rx2D#PkU3@F6>H4LGpxpD@39c?wg>R6+ z9Z^>}JDIuZo(^4?+RzV9H~ts!1Q6Qm7V_y=(-I|Dc^S65e4<z)-4IX#>&`hi#w)ne zJa_O)*8Uso`R;7pL63cy^I$w<W20oCC#Y5=4%PDpmEv132tvA6t#u}%B?@D()nncU z<BZ1~Mdm;cK$2}IjCZd}hez;!r#L<iuze3?EakO3MvBfxA9#6^6EOTnG29Bt!o@|{ z^-WjC;`c?4{{X}G7TT0AkhgX+u~Mo}%<;~s@dd{!NF3yxSC&Vvd_mW>N#gMo_LurW zkVdgY5Xhe|%-(9g9{><A8F7r`txe(&6>3^mo?(*a*36Uzjf7upVYdXdGrC0@;0!QV zW&?wo=Ct36T2G4(ZZwOV$5r0<7V8{x$ellV<sU02(BPhgip^1bq;935r*rV*!joA% zo*aUBO~Q?~_YMSnayES5DQ=s0C_eRjO7J&{{3WVOai`ea*++G>A2>%GK(;<W8NYkL z>KC4wuB%M7@n)}Ya(pt-+yvU~4Z`_y#;QJ6f17yPyzuOYsjZDCUA$<P!Yli2PS|cU zt3tBdhQ<dn<dVIJ1J}MON~2mZ<x5kG@iXaHmdkhIxV(bDyp8ST1S`kD+Z>01kM6L~ zAPS}7{W=R4ZDYeQuBEUOIhI2cMUq(m0Hde{GIBuNPrrKUHLnNwXT)-?x{FIo-Twe8 z-0wE$9Ds~N6<~T78+!~_CF1)}7<gAtd#l(d(;~HOd6zTAZwCO7QbUNP2d~N)<Djh| z?u6s^k6F=wXfGXTP@De%6hmy5jut55zAGHN3E;%&T5-YSYBOho4KnZJMwjC4c3nS6 z)Mv10)m|oYKYHvrT+6kTFYuBSo^qgy_;*(LyWt&Dchi0#OJy{Wuur#X(aL2}*vNde zfQ7)pz&vL>*Od6j$6pV$jhc^yE$)0%yaMx?*_$Kpd66A}DB}SG9svfbI2A2+WWx~8 zyL?6QU&lH;^4RN_cS&oxM%_TI%y$6e43G>*#yBCA_swt@o-ei5G-A4xQ|W-SH`<}Z zaJO7<M>~*b`=y6^`BO~&p?phyZmpnct7B~z*u)YxARvq#zG(nA`$_n7lT{`0&bh03 z%Kk-#%P*G9<?bVJt(>b!S83~xNEz-pJrKcZsS~Zt&#EqD*7TX1QPXt<wSsbrvf4`j z0K5t~b{{II9eXhYj&oeDt?_==TV$JD`#sWz1W5D!mg^)A9V1m$ZV4gIdUKP<lW8}) z%#iu_vED~+zj9@9_IEiTgfQTfo(i0f)z~kF*H^niX=rWkTWp_ej@%=If;TadcCgQ< zKKZLuA@;@2%FpBL3+tJ+9Ret>q-a?R%AmWjY^e`1V$L~GH*NN;Jv+qG>l)))&u6k* zqA;?^Ws}e%k+nGFoSb@Bx9A@N{7)5)&bz7Fjbcc4`Dv%xxw#7caR&oF;re9azLEG> z@KfOjk8H~Lq)0B|$Dd~!2yU(2PB2Qk%^A)KB#&&@HA=9Kh}~i2)z2L8Uw~fMN}pS` z)l7F7LM`WG1bdD_4J2zMiaFqg<2><R)8ROLA*V|<r;EHHb*EgxwnvetI*o*}p#&K2 zLwRSAcy&Y6?E<~OQTP~qH1DbSDqTA5B8cy`)*^V-`2+;MRwXzbmQ&Y**1TimAH<&t zcyilLu+}UsJU4Nz*@Gy$oLuSRV0IK23zcGXxC{bEIUOsD+cwUHM#$%Ub9?Ys3z>EQ z01Rtax;4~+Pzzg#?jw|S#Fnyou?+XxLB~8A`8VQ^jM8SeVv=0Ik%0FadPfmi2<QDB z+25b`K^=LnU&KELeji>mmtXLa*xC8a%vVl@gdw}ecgXqqyRI?pIIlbKuYt6^7XCS> z(=Gf&75-_h?%CyyLBT#$gaNemDo@hA96cK=z0N9@WH;L1g)eQ)cCfCXk@7>p?>Im1 zw<<y83=Vn4Wog<@qo|2i*5XT4n~j&TiCuDY^0Z3(3iZn`wrjER7O~)4>!GII>4q1D zu*z>tZ69DqluMF-x<*Iy(Syd8ng)X<hlK8~W)it&^H~(&gSiCWTQMI|_}8IEn=?Gs ztSxMBMUJ~Y%EH8a{y>g0NWjFdSwZR7YkO9`_kyk9NSsJrMieTb-Ou;d1ptx#@-y6l zR^j-+Z>GsK(?f8Rr~*N91fwU84q7+kuw44$x$Ey8c&k~x`&E#;(=DVZWoaZ4#ULkc z1+gWE9Wk^M*P7_H-lz`a!q(QhW|D5LrMx$2?yUi|`!GNbG9+g!Ajct-c5}#Hm6xk) zUKSUAefEQAE9}cjv65T?(V7zwZls)s9=WeIyiIP&g~7j+!y|5yt!>gdQzty5GvJlu z<p(3LzcH%#d%;?cvvIAw(_hOr$1yaLJStZQdfN;lxyL+XslX)WW#zd^C%%VC9;1BG zG#($nV-#SNx7so}<SBuDIsyiJn&%h9J|NI!meNV4w2g*jjyxF8BRP$KcEsb7K_i@3 zK|h4NRdF4<*x64FjmmCImR4BNdE5e?xIF;C$?L}$BTCY|KjI%F#CndSI>*#au-lZ$ z{{WU_amG37K<S#vF2vlSbFArFOy6y@yn@zO!9y4vKUQHIZ^`@s9+fl}zBJckOU*SK zR!1e0NhS~!9orHWz#f1B=y6sqQ^H!E-roe<v{#JH^Xc|tK_kC+a0w@_H#R!pS9z!W zKKQ{p!nU^7^2VyW=83l|ft&}3o#Pn!unrGwQBkDru+lgU0^ZZa`r_Jnw(iF=6^)Sj z+qVIXwbN}vG3pyQ;=aDoe_-2<cHd6E@T``4@?Dm9wbU;f2!d|;RwEj$Wrrk*GR^CO zgUEP);pL@-kALF}Wbp*!CMj5blW9}CAg(1j$3|uY(!S}?{AsF7s@rIu2-hui=GY=d z(;aR~%d;e0T`I_>{Zu-Ez~JV*++Aregz1ke*!pAOSL{3R=F7l$^88%zY~K&<{5dmQ z-Az8&VU-H2{h|xDWVbfb6Y>^2ut?gcf$y3Z{1XTEYi)MN#@-6?9qyfGvqL<Q`H*VX zcS*fTSKO+|jnm|jyVu3O4DpZcN2AAcZLM8PccbL3!p-I1#dHD2O|IEh*Bpf-<<AGb zRq!|MCGeNS9}ul%(>xWbTHhpw8`aSzOB-1XfGA|Jo#bR<$0Tn~e&Xcfyo!;nDP24I z9hBt+uDAQo)~#Q_C*a?R?w3vQME)Z1eVXh|N5eNUF}GGxlP;SI!{x`<<qY^7vt;0V zKE3ew_J8=D@WR=ypp!<@brpv7rnD027a@T8Jo!|{6!FSP&zuZ{iu~$_;;-!i<9M#M zuY}sy_G&<k@xf(i%Y7a*wWN}K$&=G^;2&<@lco3<#=au5gH8RVyjOLs#*wwe7FWAP z!ifM@Xro~A4s-JbV0(AZ53`l7<i2~G%1PNXz0y2c@VDW<zWPS5@m39gM4Bcr!K%Vd z#19h!xw?e;5~B__vnuBq#twdM__6y(_`q4;Yd#$C{{WUzTpzR;<lLAi%yAG@B%B;9 zj-Yyq_q_|?ufX39iPulNI>r2vskDMyR16#``3%yZE;b||nUQ%I1J}hoed9Oyd8W%J ziu5a+J%cjHV_T?+CkwZ7l{<;raG^oRt#3^x(tnAJ)|($SFYQn98^>N7wD@%T9p;T} zk`nWHdRc51H9cNP(UdUc;RBWGO4Z5qAB<xDH}J2DBfE>q-}Z~K=3a+FG2}#}YcU6s z7#^H=u0ve-<>B8D-9;yltYxuFnAQ}O%9h}wj4s<YbDh0&4hifJ0=|2Lz@8BCzPWcF zg#2eE^FuLfYXx_P=#VnN8-+#~Ame6R7266+StVuYb4pJ3J@;PtgW_8oNvynk6uR7* zE%u#qHG*iBIX+C5_>o6)9orp1uO*+yKMuTeuEU|}$NM7wMcuN}2DpP5;iR}9ypJc6 zOM&Z-m5HtVNbx6xEmOi?IML*~vF0#!Gxn1qZm@|Fyv7*dU<URz&}lkvgnVxdt$PLM zf*us}6YX$4y_AK4JJWDhzzRbKUI6RXwuE_A-`-%;ZJfFA_r-k*{%f5+NbRCixL>{C zxrN4dlF-IvZrH?%8-hp6f_F7<5BPh;+EuhZEE9dICl5XTl2#ux`@o}?`AFpYbpThJ zX<AQ>f8ip(m&4Z<x_8)J<2QDQ*9j^vIW6Wyg?r;;`e!^>pu=I|--y%LUHFpj2ro3i z(XGI?aF-G}+RoxR7A=d6?c@@A05Mv--uE<&dbCBOct=9D)b1wuM{x<hw@=>~n7*MJ zHg<_OF*s}-908HQ;;^i~A$XTlj9Kg2GHbSlu^d`~TV_x`@e8q}k%wX-&PONHvHt*s zR!<JY9p;T}m)23rV>4*v&kM5?ly$em0)L1%9`)JScymtiCERxYEYhsB=p<xcwOh{( zuAnl0P%Q0QQ6WEf4vCKKn#I)W#~odd7u0+?H;AFRx%f3}do*hpZ?j4Ebh$0}SSh)8 zxMUr+KyXGwV*;q!c$Rql-3!H=<<k?HE$1igo74fs*IUs(U`r1u4@_6Cj{tZtR%ian z*Di1FnV3av=^mEr8lFCPGP}M2<~L8LrdG4#Zy0z+dplisM~W%Xv{vHk)vqOg;yzWw zG_n@QMn=f=#c2lQ#@&&Zap6A;c&EeOM~CM&HnHtKP5PU3<C1*X*X;6eaG(?{PBGrM zt)Ikx2(X63T)2V@M2JTXtd{=(Y#Ui|gqV3t2`X?^XU01kqZRsUpKEUz+YJKl<|5I) zu#0w&yQh?azSkS~3?k@A1db}5hlc!J;oG~dM?%!@HEG>PnHHX#?Uhao2Nw@4g}B-? z3T+=wYFc};{=Q^7dg#u5ZoV1Z8E?MFcV^7wM3*v)yEO=>cJxCGq-T+raHEcTRxZ8Z z9~OA2<J7b*BEwR(R#dmS(nNOR9pDnB$CWT2Rz8IK?YE3P8y=@~KZ`s+VQqNMp(M9w zj^;K87)Yf_V`IihSkRM$k~&AOXnLQC^wX_rS94!OxFlm*FQ?5L=L%zy$wpPq2|_(F z+M9pVCDXRIDaWSTX_vEGYnqLXwdS1}c%XtqG4nD$LegZ1>+-C-v+dWC9vtwk)Dqra zTM1Ppm4uSKmuvF^K}b%`gpzk{Svq6hyF0yCS@8Y*E8_J2-_zpr72~^&+A!GZ4b-E| z_Y4_I;9z4FjjZ_J!I~?@2nR&JEF|BlV*6trO5$Q2LuV?=gn@&OYE)$OPeG=os|ybi zYgQ0Nq4;RNr5BdpEv?Ed5hz^Zb&#)=pmYpB-5#}VHOYKK1;>Y{w2Mr;8C~{U?q$X} zk<vs#jB|wDk<Kdv#IXE8gH>H>`DMADI6#i_S$wvJJO%~UbVpUj82~~GoTxqW{6XUX z01WuL+IcnNn!Uq?WA->6IZyx>i;0X!JPZ{<nmwE7SF=~SpM0s|twP@QwOOwvLaK%C zg|K2Vv<R1KI3L~Qu;Aje^^b`wZT7oq?R6(}nHbtzED(9FM%8IqqeTQ~1QsJbIn8<A zt>G;LM!juoM2#%I&OT+oMV5CmjBaV&^PYc$I47lJU3kaFa+$Q>?6G)|BAFWQ@e<V( z`#$F$%CVgKirrIPNt)(5jYCtqy3>5^2H`a6v-69X{?ruYk>&Yp6`MHfa5*QXa8me+ z;>FBfG?P)(VRR72*HI^vv3mTr$}x=KGXi<ZW7er@nk>4On9m*jntlB8Z&lMs@}r0k zxwhkbWam4AjC2CIi?0nypm?4e+sjLhPIfqoNp%O7akzZDVUd<R@J|XWM3Ngx?rXn@ z{64Z=4+PI7va!e6wCgi*4&l%V01Ahk63^E;t*6zzW_0hK%G`eK4(CRmLP<G8Y{d`} z-!d@t6#aHh65<GME-dc8(IT!0KWBKHpSn)`3?5Df4O`LlFC1Ix@Y_#2EzQQ|Q#X}4 z1D&mu8@U{ek_U61C^NE1lT5JimZ_yrYpz{QEzFJQNd?NA1!5QOnB($efA|q|j-=pM zo9Xjd&uI3^bL88CLM&F`L<bqm$Fp(A9Ona)Nv~eg?DY*MLuum`yl5SjJjql|8v&9) zP@#`=ghn8G*O2(S-oia(+<02v>hcF=Rgo0hB7wmMIYN?i+#t;>^e)Y-vog<0xq@ky z39)G|@R6zsQ0zIuNrP?AP8UA?>xS2L?++%X_Zo(iX>BAcv?&gxo(AQM0Wv!y4ZK#K zsixfCUYESTXrTk=h6ut)PdNrw$U)HKXeZQHIjQQh!=S*Hu!$hDkh{xvjeOo;Oa_0I zNbGlGHQ5N?SE!{=OOW5(>mDPuYs8vj%1DFlC@teqqjuC~#Cx&)InFwolGYtgSRJnB z4G`P=mI*jR)R8Kb+6eV6j=ihfbT5Keo;~n1emL=Fr(xmU6U;3O-@XeS+fL}W{_mhU zEHjP+3|Akkd@}fX;k1tL!oDuF)vj1SpZ%U$P#(#NRxm>h9Q@?<7!{JQ4Ps*$H?i*D z4SpX>@sq=Lrfpeu2e&V7Y;_m8Fz|7JV+J9B0U3$Ab6=)@75@N&ciZ^y!^++(hCMpf zqDdi^D|dMDj0E%ARO$%8*%{7zSLOcz?AhYIF3ZKsq0i;%t#r|#xZWYSExXHS1&N7@ z2FOyUDi2;O^;bstm+`m3lYeITKgAkXimc#>x>{<+ODT_bQGITbKrlG~+YfVICN8AY zv`<nIRxtcc`vmyY!;rMU1iX8wJP8XVvFb@{d2I-6{{X0T2IY4ye*B=WILH<8AB(?d z?SH{~`_J(*=UDL~L=?vMmw93f5<q~)h!l1TeR`8$sXr7yX>SgAI(u7Rh&Hz{HPk_c z-<3OCsVDB6h)^Pt+mK1>0L6T<;=hPGUCh&XyTN`W@a5bvLXs14JcXBWARxF6u~@b_ zU^051;;2@e(Thu;HYbGs5W_q(cr!-v3>uc5wpWTM<g*bD?#AJaE(UOZRve$DePi(R z;^&9H7+J+HizB<cu#tEDnJkjpX{5#wo2xY{@%1f;k&jS7ubdC<hoShQ8FWjHEb6l% z*!w?uYW}+=$Cg(;K|K8{$n~Eb>-x({YcpE-eIm(*EiU2RkP-<Dj18&D=jDq(?N?_k zo{vCkDQbNi<8RxyTziza@PC6XH0ILo+Um~o^42*eif|4k4Q@Q(!>(RHMo%3@e5G~! zO?b}w=1bene@-(@#oU`xa?EmhVoB$@B>I}i)U|=8NV=8GMt6{TjV0Z~LKy!5c~&*p z0VAB86V!oL6XR{cKzx`JkGteR*!It#&OK^nLJ8`KjaShB)BMA;@Sns>!!y8|m)fml z3?h{zEAoySKP5oO>{pI4n)dr!{{W6K7_O!8#;Y9iBDvO9bEioO0AZRbWoYIYA9a)# z1J=Ij_@nzq{5jX5m&3C7ay>@IS9v1HmOn2C1f;taquNG8DJMNE<qsHqU)AD<EjPjs zH1^C%-8`f1C^L{%HsWPdk+=YTa%;Li{*#H<EJI%j%dhQe`$c>{FQ#f&=HdkhFC;~o zz+u50C)bmXwe0$T{1lJk+StpXc$&u3#TsSG2<5fZu_Qx~L5WnUiGjfkqi`c5-{jdf z-wA!a@2_vJubr6AVT#^q_uzGJnPcyQI3V?^4X!Qrw*<NjZ>C8fK3&4Y<#I<QV<f4^ zB$gtbOcgn+G!Gd*hw4v;zi&?xT-oW?UIE!9rJ|UhM%8@eaj*~g_P&{!CJcBA%8l*- z=i4;D_$dyH;c}}Et!biN*f2L?B@J|D<1rHwzQj?Fz4EuGWB9#srZo33$F6E?D(+&~ zUpZI@&&XY{#CiZT?OKp(egM+0%yQ}jQxX@CWR~R}BhOZN0~|MW1oOweajd4D^ja15 z>049v%3s^#;m)D1N2z#z*HY8(W_g}=(_;qC;fN&3a{<Ulc00W5U>p0usl|ES-|f-y z2U;sN&YIDyOx{y{t(iw)!wC`EM?b=SM|%A0wu?;GH2J6Sm6~1MuMzEOEre>M?k^m; z!u7|>Po-~KYf{{#QQNJZz0@F?fiqkzs?CA6H}d0C#yBi9>6)luDaS~m&l=w6(ifi@ zd>^j(g5u-EF*n*J!(7_IZq03TAUqqWBvAy6N{^o+PzFPHti1;7;1;u~P2x`s>G0_u zA&+yzrOPG67VX>2jhiaLfzBf@jNpO69yzbKhi~m5(dE<^PP-Wm2inEAnArJ-LbJv? z5EP7kDQx^P;UTC*pV*#l@gL~-6UQyWAp;<_)V^YZaq^y9rUnLUp<$!bMr5%L+Md~O z@&5o;@FbsO@c#gWEo9Zpt4wU-m?&PLGmb$dbyfQD*6yeA{{TwyZK`SBH`A9wXeKQk z#ht<!<MTdd^C0=$o^o-AC$)Hvhp+gC{(mdQkeh2!oLb8!Zb3|Z%8?aSTpo^9xa4zE z{{X@Z;9nF=d8+8T_B9*ndDCtjzy!NU7*GpHP8$xV1Gh}otTiP4<?|v{k6n{mf*Uh; zrID&Zo!@J=f;Wmr-S<eJaRqvupyYM0F~9hUG^;k33@@wL&o|8+@JT<EfF2_Vpd)9v z<0HL!=AUWf9|d2{W1;EtTHQe)NoI?5@Gt>*GEbClIO~-^m3I+eYCb1xn{8ALBT!gM zH1WtxML{I1E-;>l2aMLrlu?wMdW^Kwq=}jI>rtoN#Bd|K#3h4~oT`F*^<W9<UMa3= z`nHX(Z=Y1UNl@=dql!(60~5pDF$}z8g~ks;IInlP_$z653QOX>QfpY;gKXAOMq#)F zXDM`Dfx!L~^KsA|3hA^j0eml-JADsZmh)Y=-Im<)KbAUu^jAM!*Z}ZA0=I=ky4;?J z%X)8)z7}6ze`omWL#I!ZvUtln7g7K+Ll(k8>T!YXUeRy%p9|V0^p<*jnr_cD-lIit zYa~sbubg?YzDL|D+@7bceY5bp;LpQ78(WSq25UMtqZme%*xbBOY7nyEjp+(H&c7}; zsw-!xH9LHE_+@8*bEVtK<y~6BcSkLkkQ^_{19{&+T>Q>}0nbh=il!xB-HFhtcRXjo z`YxxdX%?{ft8a)j%jDd!J||e>CxDaW6f687sBSVq&TF!VP4J$8k?DU7B3b2mU+o%p zwRz=BBIkv)crc}x_(a$w<0N9W4yW+@#F1SugJ9D1+xxK`lFtg6;2Ghbdsvwv4nV<~ zLHR}qIN}*T1^Idj*EM(3ZM5rn!%cr{F!DE&HnW9<Ixf%Q!ye?|3g>lJ@-^L9&9l}Y z!B0M^Hk#T^)Q-kWi^*b&Spx7DKQJki7#p@30}Qu(Rt~N46T`kXMz+`VsO~ixG8*#0 zh+L3xrIE~N<PHHs8>TQT)UEsx@ZKF77_YCb^*bLYa>C5hM(fl(S1%@1o_R!2M*wlp z33cF~g}VKc+V}>0STzY5m2I!Co>!R&0ahtQh!wNIGDh5ba%lFE>Wo!4(VkIt;KjM$ zsQ5DI_=?3teWUl@b0eMrn%)M6NV&?8<$><TtLff5@#c-BT2Ezaz8+{yk=v}P6{0TV zw}q1?Pcs3qySfj@tJE|f?E9C{wI~jib8mp7&sg0;oy@q5?_u1Lyk`U&+0nI60i8lk zU&i;++(_uLi@h~Wazt~FGGQVplLHwc7>=N1n(R+aRm}NyvnpyD*Mz)(2mDQL;?gw+ zkom4d%WAS7n3d5E<^Yu?LaF0ExEhV5ejh7;YjZBGHNTV=TWJzPrywbqq>5E~45%Rg z0C-n_s=?q(Z9LrQ)4z!<+lHN8r<k%H1o0=7RQBaaKBBy5Q1L~L)$yCd-WF@?MpGGz zOGb_-DoJGy#Z<EUxl!p(3GE$(<89AezxdDMTh@O)16i3`F?9q&+ILj|va7|On}$`G z{ZCrQ)HE$lT_WOLE^CkMtx7yM+O46IY=i!>9h=QS4o2<4Gsy>xaQe*ic!x~2n#)VL z(PUiij6yD>Wh8^Q?BxSzKOiivob|2;;r{@KwQnDIg*-9g4SP}2wFG&wZ>lW%OShIX z=H4k0Jix#cjqQcYFyfqGlHSAQd!x`SWYe@clnHhut`$|~dxwy*`FA16=lzA+qP^Qn z_+4}2wp;AQ8Iv0t{e&qeP0JIIp+<NCxIJqlTK$xMEBLAiV({mSUr*FxQY5&vu?-}F z5t$dvi428uI0^TdjFFQ}(mnzFW%zI5d(RO3LNBR^RaQH@TWj0frig;h@>(yMGB7{F ztVRbICl!rWw@lJB^ttOAR+aGM;a7=t{{Rbk{`MUgRJk5?qsa3xW@C_JyJi;q^Ty9P zn`jtN0LRmFcuV2VuX`tmHMrJ$&86DmC3F)zjv7@!sUc!A3Be>}Fza6lXcyiax6!1B zMe&t}yQ5qjU1_tzl39izos!zj?IJKE{+YIV=DBT8$Coo$X`USTZ{jF?Ef$>%Lmi4( z7O<NHU^T!~aRUR8Hp{RM#~kr;Htuz&6{XL8hR5QziLV<?Qo~QybZg06N2zE<Y$dis zxP`g2oy$1eg=dOaC63|%74qN2FBkX+#kSWz6SUPJ)Gh7qAIz~^)toC54ki2KGWv$x zJ!!rr_}k(S4R~q^{vci3>6h2cRpvLpXpPG8h~|n1$m4Ktm9fD9gO8j1ajg75@txai zo-KP#M)%~DT-z44yI9Eqb8xIfZ{s2TdBt|np!a4qWS#Ay;NCm%Cx@(z@%Up<!>(9D z^ZBrx9BuO(5&{oUS+S04uYvp_;^<<NQMl3m%+Tb$;wmgI8;m8>5Q?gJA>17H=Dia| zpFmF%NvZrk(scg-63T$)+TsQpoD0+yxRPmOp9eVG<@yCV=j%TV{?I=aXT2W}E$pme zkYF{8tsj}PKsl1sETpL)FDa9ZWY?yrD61olo>SrP*ze-s#XAPqwRO|9_*f{4@>_!? z!BS2Fi(u&40GvF8e=6F${fvBj;f+QM{{Zb3@lBj8tu>{k=+o{&2c&UaDT&DGwWVFd zC3_0@czz#4;d|%SJUge`_*(6ijMnxSQpcw|za`$x??iBUCOwBd70)BeptSMIYv$j_ zHuGvW*K=);Qql;$flKg;@xJSrd-BLv{jpr~ttas4UW-I~@59NyAH$=F{G01PEv16u z4N*SEEu~Tsqw?h28|^tJKtiy?DI=Qo$UJrXId~rCE6pETlT5ldJEi+2yWi>Tcvlj~ zDG01b8{v=~k<<$L3smse!wqZ;4;5WQez5W)zP>U^8)pY#Mv_Dz4oVo$7~>VqKZkrJ zq*%|U{65s?zh!;a*0<8IwL-v#RJll{kw-g}$b_ElgIrUfr7OvrDcO6c-(EWXx;`5C zO6B12b(EL($O5eJNgD4eIrAZ1vn~!s<B)Nh`PWnb0D_8mv&1t^7lV8{UP<FHiKUE3 zAxz+TcSx-wls`Aj{d!`)aMJYqD0PO>HO&THH&T+_+s~2O>NyIKsL{%$mC$YgD8cE) zcGsQ@_-%BG-Z8yvGieYXXlITcvKGfN7C9Ypl?OdWD&dBvz9n(0?QCZ0x{t^265PqE zF1>MW4*vk&EzE*xqQepx%(1rf^JC`PPjD-}(R52aZsYzDkBR;^y|B8HZKlTV*eYEq z+mjPc%?!*z=gZE~&fM3``t8=A9h}y>4~SO$MJWMokv#W}hT!s+$jSSmLLX6#;<)&J zENZam(%4&S_m>v(w#jXE2T4mhblV%DSeOot8ivn8E34UQ?*2tOm(ic2n(yrY0PqGo zF{StmS+>$O7>GOMh+U=zcNSJFh5rC`m#+tk<Y(~rfV7P|^}J<ap=uFW1z~rl+%?ja z&H;O3hG<TCAgf?<4godrb-tV9-xu2>_;NecwQdY@`KxQY8^6{t3OK<z2h{r3?Z3m{ zh*npTKZ^ATygg=c(cSq{UBaXOx{a|0Jn+QhJq<)C-QM;xZ%Z9-iZqXd`qkTN6W-W} z&=!sK?=|L-j-WQ+pn<>`<MXedb?rC8EvPDKk<EJnUEWRPr5GN0Sk;7Wfz)lu&r@GO z>z@k#5NM)J`jncr)x=^(yFOfK#lhS$2vuRv0H3aV`E+69xNSefQd(czsKno6Pa<f> zcC33iM!*;(HhpW*q|(ynXFq1XBhs-BpQBtw6B0jqvD-w%jzMWyWOn&gy(_HnN5OxH z{v}D5O1FmDC2T^G%5I}Z2b|>-X~D<~kUQ~P-VpH?pQ-C{_*+=DvPG4IK`va}$PPF! z5}Yp?97w*k`lI_bd@t~9dL7I@1e#biIY9DLRFYY2hSGO@v6FQY$=Oxh1A;Sx4>l(k z%dLy03(Cjki~i5Q61*XG2BGl-N7bUUTo1PGGuwi4KtE<xC_Ch#7#(}px?ldz9~39i zmfyo7eQ{)rvVUb;ObJuU29PQ*PP^L&(3<`D_)~9xr}(E$@c#geJ{V17e>a-Ts@UBw zr=!TRf=L&v`}mjz<tKp~Ckwj-*Kgy$+4JCEj&()xPPnt#_=JTJYJM2IlG5c8EzXE% zh4C_`SmtCZ-N$P4<(f&WSoA)p6ztFC_g(#({{U&<2>4p_Rq;epY1T4Gh2fgvGUYcI z!^In{GCFgO+>UWxIi?LdAsvs246=>DZn|G2bivz&*~dKYBh=UL$L%rUjcGm*&bF_0 z;!SGOH(BmvvbDC<=Z`018DUQ-xJ+OH8nMG2xy^nBj}mxy!@Aq)TD12zvq^FL=<iY5 zP<LYnGGqq_gXN49n)I+W{iI(p#ZsRu(E5YI{u}V;i-dM}5!}lJMV>d0D<2>!2=VM? zCyagduTio16RG(^>%tn$zDl>2w&(X(K&Z)CC6ox%l1?_~BL^b8e}tNyhluppo^3Ny zvxK8<yV{Wfw}F_ZVJXKPDyZ%&)$DvTdv_DQi*j$C+vaHPKX&0W^A<9z64=H-PQCcA zHnm2jrhy3GR(KWn{3IS8OMMH*z8<vHt(H}lQ&w{%k|;lYrHq6)!P}K(KBm39OtSE% zv*BxtnVL@zTw9_Gdo4yFmXa*Z^LbAvmkOeV2X@sbBO8dW?@sYN)*e;L+dAG{NYTY* zc2@H6n7|J3GN@?71N<?ngTToKnd1+JejV0qWbp;IpZ@>|?DuLSbE(Ry9N57OL;05g zukf9?JxCpE2~>;H);6Y@b`1ws@GhBcu1s1v1b%M)1~Dv00|8o7`<6W5<T=MdNu>Dm z;kS=<`#n>}8V$6U5T+u#ic#l|;ocSsj#ZcC`Il+P$2G%Cq<GumET>(vORY-IKi*Gq zV=QT=WO7Z!XtPLEj^;GT=Wrsl{4eoiOTN^u^$4_4V}E?Z&%V&%^Cv~e0}`x+ApmaK zwD&ybvy>g2mZQ5;KSKT+`~&gT-m7FZ8?Wu%9`<O^%Cieu?Z!7Q>v824!*^VgPY;fr zckK`HtM)bcEemLWv=VAQCe~RR2;tK$rIzI+w*xVqLNJiWFlHYt*C!sF8vLm7Z-zWu ztX}E2$*La{+FZF?ai}%Ho)_W5vhYx^-pb>rBfWGN9y{?jfn4}|;s&wy>vUa@X@3N! z0%Z9>Gs?l(4B<kzC#u&g!|iu-p;lcFa<KmZf{^?*m%**zj{|Ai_l9oW<q_(BD3a4q zmN?nVB1+Z|xa|jO25}mW=bHIH;tsp}N@@DMTIQeP+q?T4_Ah93rHDYS)Ni#=@vv^~ zx$u7WIH^1{;Qs&yv^SRCAU3wmaXUIrk(GiJY+x{XBw`i2lY#x*16_BB^dE{EQPM8_ z5u511Xzg_!IIG0NtMeYzLBPwg+teRJvQdQYm*1(B>ho@J7yc@~)ilFx@y^cHSfXMD z&9NVE5&$=RiSlk>c^i=TBNfGXZ{hEUd}F4QZ*gIJsxwI%*j&slXOh^GSBTa>F~H;? zn*@$X&TG-N87%c3GFd)1TUuN;{l0FOGRb~sJOc5<y4xc-+)5G99@XYnzYhE<Fk3qv zU+wbbf1}?g*;zvqg&tn<A;7@`T;rXiIIg(P%X>e-%1c|Dm)<JWJRPps=pG=kzn1RF zWLsD@I2B=G(5e^%Pb7-C=g%Q{0G_qIs`zKZz9=$yv&B}U!n4U6Kb?0jZRRYv<s@Tw z8uQ&5aopE4Ka4&l_;PWjURqACZx+~K5=Sg$atkaQGdKib2H=C7^u;$uwbC^U%Z*RO zYMvUBU7$?BO7hFjO9dWo2VKmho<?X?+E+v`dFpE0d^#Q(vya6(2CXlM7hzKRD#0bP zHr>k~oijVDo|!RcZy<K8ulP=-M@!kXn=4tIa}=egm3wuV0nT~Mc+Wvv*Ip0Q^ryAg z{6BRrq*+#R_BR&DRe|I&%#MBVp!DrpaeQRfVz|1ozO;ngJWH8lwJ~21qlnSeG>3v) zAPk(G_oB~z%S|tIoSzeG*6Dj?b#-qElMy}ZwUkVwqbm)Iw0f!>bfW&xUAvB0yj6E& zs4JI7nPFij183yAR)i72IV$<%HOzlyMX6d%t!WZZWi`$gNcF)YmRIL`PdRxu@^S#c z9l5I-u9>WOVUjrnx2I?lExARuVyB>aw>K(zDwy;lsl7BCPUkT-mx1)#ud&_QE~e`3 z=02rx!qPQPfJTiRP6zj#IS1Oh5BN#7ttD->4+z-3$$j2Hv$Tz^He(D`<8vHf;~S0+ zF_J4P9~1aO&UZx8(@maMX%^)jB$hTEN`0kWLmt}@R?YSIi7vFeFZe|)WRlSlzSVs9 z1sZo!#5*j?zEHsdk|65DZUA(mT3X{$Oyn(_!&kSn-*}rzO(J<<A~OVn=PYtFBuEN@ z(-H}H52q&z%fou<xVG2ytywiEhy7aHN&TNGEIwkX8CSxdKh~V}HER3BR+pBB+r(Dy zb9zv!y`*N|Sl6(UX*LD`^&U$G9SE;0*P!r(u-jZmVGQnsqc*WWn9YHomo4NV2PX*_ z_chT3nj&+yhp`We-Z#^(q;C|nO*ETr-X*no?wTGzWS%eHs2vM5gmlh&S0j6>=$G0p z!wKin?&d0{8{)U9Msg)B0W#%AaIcK@1XrEwUOm*K)Beq?eX#kV0$Qvj+cZNzIJst9 zbpz!A3EXl>$OgD;jdJq(5{M&$IFNuMl`e7zIml23J7BQIIAPZ26P4NO^Z16_Nq8-^ z*)DGF<HqR{IAXMC=MK=1J;*&zn9JMJxZPjJ9v6#Hl1mxmx4sSYOJ+RD<s{%S`5n*8 zg#a+X00V#pc?;?;(HnhnwOOErxt=uN6lnhd-Vl`jBm8F><AKFy-|L!v;9EGRl*|cb zTPSwR#{@_bKp>9Jc<Y+kQi|MMjPwnE#TwP*lD)eN*%`{Lm%eNgY(s#=A2IMizyvAm zKmxewHP_Uh81?&<o!||&0HPwHhBC5}({1DX--R;H%UYjgerbn2KGhgFTyjfBK;w?T zoktd@e;ft1s|JH^M*Ev}b!?N$G0Ld^>Bl3UO-!2T2|MUB%e1kXF0_`8-S&`t!RIjt z0G;kki=M=OwRtC=OF5>xvJ<Re;X|y_G3kJ%dCxz@E0OUxi2NmMYnywIv)w9TR?^tc zjNo--UJ1bD?osVpw#UZ0j*kqwOjhuR1-IO*nS$-kRs{a>>GKSC6s&I;z1bD5--dN- zmxD)mE$4vkDp5qk1Cg=7WGn1J9-Psnj|=G2K9!)}MRBOP4J0t-r;wA9U85LL&vFNB z=9{I(Yd@U_iZvN8Uh#i<9PmX9YJF2`1|9ilX6N#@SHs#=M%Ti(%L}MfOKV7l$4uZb zjT;2#sbSojMID!!ENM2McMM`B$C$G@RXG{P&<^gNxIVRKN7D3p?g6q5YV0yr&R2k_ z$2<bWj`_em)?K~lj$+cKyS0YFe6-yp%jZhKF*pX@6ddvY06hrLYIcn_kFRVu8i11K zb!93c7A+iuf~yw<uYB?tp0pFoZH>t^y*I-5X{c&(*vTyTMHdq+R}y6WpER4D!QdQz z2B>^WhfmZdwz(G3+8CE?zG+lkZNS^KxqP0S41tn!T~+RdsOU(qq`V?`;cX>H^R7WS z0u+WekhgLRcjCT~@Zap|@jK!dhn?oo=kWFF4>~CwK1Ub_cHAtB^8Ww<8;L(IdRB9* z81BuZNxNu%cxzrB@N5PcZlu1tYzC5BTtgcSAMZ0TQVs|Ylk1A7a})__zv1)Q*?<T{ zglwJ20J3eLadyTy$*-w=Vek&l!%mjdLc6)tFA?)A!6Ku)q~|_LAPNEOQ+_&%`Dapw z9|=hMZG*+6-7#QZSj$Nn2Lzeha8}6Zar6~1s->{1#iN7NY&>1!;*)E-c%B$`#3j^& zTe9Palg)N2g?$w{?TV{Ef_@fTUdINntlZqhS9r8jx+au@r#Cn;D8Rr03->1&t$kBW z@%-uK-rQVIZd1%zC3A6Z;kXPQM<5RSRE%~Q#ay@3d_APf*EhEe*MkV>PG69R`^R*< zK|k(gv(mb$$?S8+o%Cq0pzHTu7S-Upv(TZNPKrSCBr==UApjT->+%vgAyo9^HT1WR zJV)WL3~RsI{{XZ90F8V}sp?a@jh|+D?4mpe@~*CcRti8+u&2xXL|1`DK8K@Ro8J!k zS66Pq)u)lt;4TQk5@Abw1Jj!K?JrpHFN{1lr?#zUtlfC7(lH;GrbOaJ3IeN%<&kZW zxX$i=Va6*Ov)5E~Q>Sgt<HlY&{j_{d;de{-NOZ#ymFLs+qW4oPf}8PkBcdw;L3K<M zf}~?L<K7YQKfqmEO1Qr9=D9Vtr3(#%RJD#dORyof%;RAz?!5`=Us3!x_<j3x>-rO2 zcx-AKECwBrHR@W=bsQi976~LPh8P>SBd8e1IIk46@P3`)4;)-c`%YT;r7kaI`L1M0 z@9nNm<K`D=w!YP0nM7lLIxkA+PAzE7p$i^DJZ)|8^HehYGVuuUG;y;;@jZ*WAbby& zW%9@;7yx99oD5Y@9cv#E?yRAoSkW!KKWEGN@xe5b70ArFbQlY}oaFWyuKUKC_rsk# zQ@6YLE#h5JYnC#y#+Gn_35i!Lz8R1@o^gYbgM*$bmZRgJkNVDoZELAsLuSsdUR%3z zw|wM`oz9J%oE#1?Itt!0Z(A5kO-!8@<KbWSLh3q)iLHD^aH`4>zSt19Nnr$`Lc0tG z`7k}Xt{uKD{5pw@e{Hx;ryEgW+A-O1ae><vQZEMha%tFjs(-a!J`sf0!BZTZD`7|j zxCfqbir6dRm`{|NC5a2bAkENyTQ#bu7rP_cHMXb!)cnx+g`@bl!1|PWCyn(4y0S>5 zDQTsnSO`vXe|IGFF;Tz+a4I_-*AZvpKL#X*PYd{RZCc_I16&B@aHNh`%$=2TPj%q_ zb?<&P_~+nD8+jw}M}hpeAh67KvHZ{3nopSL__8zfubH1x)^4>~ucWa}Hc3Xpw)YP> zVmbMNL|&Y6l09qaX~VeXJGY_U>E0l_ySaOtdlR8Eg5}9ajmqF+L_x4I>`BiU6%-o1 z{lx2Ou4)r1%;qrhq)?#^&UcXQj@T>>d8`Qfh4R_>iS9?6jCqW<u$RW*cOWOWerCz( zUB#|}Wn&}R>3Ut&;!29#!#vxE9EO+W=eIcY=|rHS^d{$br+A;hI(CmPgU+`XJFV3u zzva0gv}#o|+_MZ<OQg-J>Q++C;iQ%sEw(z_T!U}1U!mHA1#!lCCm5`KE<Y7Dgvq49 z*4t1g+3t}`C~W-8<(CoxwEUyy7(F?r_<O@1B=Hs0iEFGSiL)y#hsbE9k8jEVNlcP+ zoUh5{_x7%5Bs6X4`VYh{ZuO+mbqiZr-NN~HQ2B*jPDybf9$#*}5$n>sd2M_)khPzV z{6nTie*iAdBzU8FQ}||v7DD}bP(W^_am7Wh+4y2j9Qb?0TGUs%ilJEq8|9qt`=VsE zR6~vk$lAw@XBC^G>R%9i8KbP%8Wp^j*5t6gSWcZ24nnkpV39VH{5cFp4PhyoI3})+ z>{)n2!a4(MF!**G=8;25b!hhRTf9u!4sK`0)F0hDiS3@-79K0{C!6+vCrH!na2+0d z=ax*jPb{o)C}K0**DIrVOXFvWt)uY{qps;z)|ZUS{)`RU%m~bk>c$`dAKl5^4>;?Q z;{N~u_;$&yt(RW4ot%e;(8~64%6{$_WQ663z*5Hts5#=2)7}={PN!JC@XoV8*)O%* zh$Y9EmT1wVT@c?eTc%duCOA>Xdy&?m(=N1a3FWoZbX%*N%zyx9^B@hKtkTJZ+@r7~ zaqW&q7l%9{;q4OYDKES((Ot+HNSWaU*mAy9uPM)dtO5Ghy6L(uqp!4f+U0~JOjlPi zPj(jJN32Z>N%JW`cX-cC;<Q#vLQQ`PUiibtI!E?*#7hSjmcXU8+~pQxcsUISDBz9> zJu%2U8tJWm4o3tN>pyL{)vPCsys+4`e`!TO!dK?=0PljQr_1TpUVJLlW(h5o)y}DI z>K03DCyE&Y1M;Yi_q4w49@D|&BD~<6PYPO3sd!UI`z7F#RGM=$iPLEdws)ASBL4so zQy>HkuocYT@(A;-0&f&SXFb<~BD)Yvg>5|BH1SHizJ1F0OmoQu9mB6<u`a7&eS10a zBfgh=_u_|BfAm)R`E1V!9Aswzbgpk+_{-q!b$-p`eL@(>P{G#iXS@<41x65{bVVTK zD`9(rE6My(@k_wo8}S%|Jx=EIN00RDc&*;k0GzMN&z8mu1}o2~uBgSngIcSex2yOn z9U^#S@u9dPSY>NjEhI=R<eiRH#ENH-lpK78K3)m$TY6uNrxuplcB7|T__7!sNb@su zaHQZ5Dnv(SVT=WJARKye<9;9gt^5Pwvic<6ZnbB8!QLXTvJuV}IHOQE4oNG54^|_m zphf#hL1}$7pAKi1<}&AXp18u^MqKbAmJr`6e|AXAU<@9#=SodlNJ>XpsOj4LcMxlO z6JB|Db20wU)K$F23BU^+Yq69*(}heE#tuoTv`>vc5i}VNqv7uo{gUJlnk!p)ts`QD zi4~BKo=o6jhDqu;uadl1@w4J~z8czl+4L0L&u;{F6T)8ulNHs<s>m_ODi61%dA6tV zb4*Cu!^c;vcE}Yz)bT|X%Mf}>p;ye?oTzmJzd5bpf^BLZ*Im!h4R7O~l{#Fvh=!Tr z-CjlBw-DRF@y^8LdC`Un8MBijuLq0{{y(n#Oz}b_+Lwrgm!uG5dpTnk+ef6E<3c|S z=drJo?VraQwwf+93r5v#OpJ*nQ2mn)j*hG%zyp@X?Bk4{E1I#J$9lb#noY2`vW7+i zMYnf--IzBBi-LLk$DG!&z`{DjC0gg#Px0@?lIcI#db<6$PggruOPMCPgyWwoUAvUy zw&K67d54L7Q)x8N>K5re>oco7GR}}r0AJu#Wmosw!x{UzHRhN429cxN$!h*(t-}DS z&vPn5<R6=K$l_H4t`)Ee<YKV&D@#iaO|33;=nR<#Q)pwHtZme+ySDEqub9ZhV3CT} zG$OtddC#T%8{>Q7Hv3H}w6=k^Ni+)9uEDZYJnlm?2Eikedjbw?)PLbB@GaH+dhWBS z>Nc9X;ze~&w%PfIwZ)W!$tq7RBu<i%-o8s3Hm$17<!X9(lG@y486{CPDoH9s4p#%P zZ_>IuFNd1GrwqUFjoeRi+sYebDn#-Oe5FX;xPj0Dg!=QE%B2MNH0NjNbAHu&FN8G+ zbu9*Fy0nerd2Y1zNtN9}^CJ5{%_IXHZzQo90IoA$o235$!A*4CHP+)r@SJ+=cI-+l zu>%@o<=!Qb5rfxoVZp%WzdL>%e$OxByT;aJ6KVG`mWp(Ax%*NuAYr`KXCb&LgN7I? zK<oD>hks#T4|vW5y1qJ@c!RTEpp5M)kVLlZcI0P(>ZBekg1ss>vv)P6&2gG1?aktS zTVIyz!V~Jy+3Hgr`gPftQ&<K|N%kwTnGkMomKhn<RBZqNE0pm+$M1=LG1i8cr(R#^ zw<8M#w`i6@pRdTvy@5Cc1t6Y<dW!q=!2bZVHih6n3tB~~rOvf$ZlYVOjS}8D3^?h! z#adaE5uf#Ow<D9rYv`*lf?u=ui@ZN2w6^~M+cq|Uf^K4tRbr&FfMZY<!=IR+nNJ58 z0D1o2oL{<*y0LrM{1WlzmEy_dy73Q)uc4att<+p<A7_l*We#6+JY`#H=vg`KUpwD; zcjGOTcNfnD`h|?8q>kqGXN?^|KQbe6^khsE(~AA*_@CjcPlqwfuXrZ@D`^RmRj}3M zgY1JUKX)6bS)wZ32Klj*m0(6bEcl)A!qOWRxYq9cn~5M`%WG`cYDW&pW{fOfcn_G9 z(~<$M>@|D)(MK&>cXmH1BGvWzbk??mR+QS~%X=GGORFoML#u(f_2|3DQ(U?y!{uMI z-@yg7>gCUy8(cyek3$$a1p6rf^#E7Dc-m_p5ziK_{hlO7j1Mwrh6z<0oPOhIZ&Q-Q z`q!2>gtYRP68LH2yp34P<--t!j1J5Q51yN{IL8(2({XEE&NiB7eWrX{*8CG_i>K(; zzCwYC?c6MEqZn3FxChsxS6e6T1>tWJSzE>9e-Bz}-cw>Iqbw$XV?Jb83{qIhIKwF< z5C|3XK!?N@*M`nGt*pc&bFA-{<Z>Q03ZRkvMUHxV*8uQ955H0W00_pF6{5+inC;v? z{{TKBVU3CCy9|W!*MpzJrc{&M9J-$GsD98g+gVy!cvjv!eUXcB+LVnf(v<_0k&2_g zW9BAF?rW2{_`l+~FQk^|OS@Ta5GR`)?QFz>!2vjC_5iLrfnGbKO{Qq`&;5;I71Ze8 zEycKLg7c0x<%3}V023Z_$gYW|)%9yJ72ca|2b545X1G(_<atqU!EwhVVD}W27$I}9 zZmo4s6klA=uh>Cr=P`7+w_zC!2_(uwtWWa&=G&a(lTjN>%^{$k#LF~fF?MT-OSvFz zVH%ZQI%NZ7brof_REF>S9(iwm+YlQgg@INL*fMXFDCvT8^c6{L?=&0JZuWaFOKnu0 zU(Za8<u|K2IU|MZRTmYpaZl9rBjXPdNu$|YX)@{;0yQZuszEFk_WOGz&9WH_jGvW( zToAw>E0DXk(;1^=WV4nq35{d(Rx-exZY6N*+$#`s*S&jRhregfj~^B+t?sP6AL0jB z{{T~eC~G8BgN=gWm7Pf-5EP8^Ytv`_jsE~??F&i%(D4<Y+aM|yb<^X8uC@R&p{Lms zuswE#$mv-*(~h?_ROQh4_UBB6u2D5>o42(f5c~YKW<SG-7pNKG-vYgl!~P=hZQOHP z$1%LP2g@SWWDWovFPj+3kU$wMIX;5DH$eDR;0;RV<4w`^3)R)^m5t4{z<92$ReoH} z1;U_2X2>i7Q-QFOYlHD8!#@%0+MISC61LTEu6(_)!xgbGl?}@vJ3;!OV0q^`6*8!# zN>27@(zf`Cu2|g1_FY<IXm<dzG;bml0e1fA{{VLbkfpsytJYr_)nb=Q)h_3^wU~&V zB}9(h!QkdGyq?4y;Cok*__N`6#7_yq8fu9pqyjM_%N!3Pgd>vDC<wXjl6lDbb$%Q0 z2A?j3x}*4rUNqaIk~tA1h(=C!0D)JxJI3HTQgM#yi0C{?sQ4#RvHrvG{Hv#3#ga|3 z#_9`okVW&djPr%T=CPj7Ua`|&>giJI(5Q8iHwPoH?-7BKanyXI<3CEJrlx?`X2-#^ zq_9X?S|xy+RO1-)A_HR+&)(xdbmukdHcw%sL1>zVt+Wkt7j&e_G()${<VK6r3eM_3 z9<ub<XOrnGW#c_h%+(FF@CjFUmP*P(@<^NSecpcWUwZvS_*?N8SJ1pOVWIpkyV7i@ zv5(7=J$e}?Tc6>Ki`6)Zf#Wh;kbAeUfp}BF{{RiOKPy+%?d+Vzm-FM1QQ2{i-T4?Y z0k{&cxDMDgJ9uBjT4tdpqu`61O<Lav{Rvpv-o~WvW=WmeDH|9VK3f6mYljw;k<mff zpRJw@{h+m<3V3lmNAX4E@I;9++PTy(qFZ?jfw02x$hOj~nc+I;BVey7_>JRVfW}$1 z-v!uT>H4r?yHxPtj>I^~EM$W*THFkQ^CEee7$kvTpC;$S-XGRh%II1hV(u|7_HE7Q zkR^zoRpE_Y*#O|m*g522@Olpmd^YeVkY&8mHB`_`E<Vp{(>0;p(S!`{P7gwxdi2e3 z{aWtm?Do9}{B!uT<Np8_YV%v^_P1Bs9)Ex3+-<sYN8f1BBK_{^ER1^l4>Is~!96DK z+-p$jw`~%kc8d}XuIJ_j+W~#dj0<Os^slviCGh_M!MaV9nvR<dhluqH6~i^8gtSc> z<;<xl^J2m4g(YwXYn>kw{v^qpeJ;{drZkB13&~NUMq`Cwg_>WPkIGj7dh`{&I_@ga zIb~*0(IW6NXmhWMbyw15C=%XFBy0BM<1gif*vskWHhN$h={!N;yKn5c?)(jNFN<ve zXN}>wi6j$k0gGEkBb81@0C@(}_~#B=F9-O(=GRZOxQk2F8hHe^hE;_oWZ?O3S0RgV zyVM?|J?gdAi~j%$`6Sk6M$mOTXjsQQL8X;KfHy}hr)JkYF;zScaw{%<bl<Q?L_b9M z$MHMFGRvrajwxiffLY2VhwP6SLA8+G#u7-`c_fx#!#M}7WnXE&2h??F?ZwyjezJ=k zMi`{Gx`CYYwJ!Ipa&mrhtV;4Rnww4Wr-!~J*^M*BULU#D1afZv)6y*D0G{tTl>L@X z-0pEA6O3*2uVdhw@i&?9?^x3#irK{L5CZP*1<1fQhA|lm00(nAXV(-hHQ07Hp6>VI z(>(Uj-u<OWSGtwOv`vy(f-Fq?!04t<Hj+p*o*DRo;9L7<&^%3}#P?S_nhTvaV6s3M z{EW8Ig^$cq4t`De!8y%gXnNka;kLbxRTsB<bdQrZtdKRB2S0M&)npJaJ>=tzaf&ow z7igNb%lK=<c3;^n$kB;3U9V}ix-kF=x&HuY5Ds!hWhkqA%jQ<EbFA?n!VOzp7WWzs zvG$btnb%UClHw7=WXF~}vNQ64LH4XD{CBE+JP+YN5Xp1mEzz+sYEh-UG49}q?rvS@ zZa!`^-vCz$FT;-%TVGE#y4eeKb0pVnSlzKIe})p%l14HygN*T2Ciu5^rg(bez*>t- z;z$Clc-10E)fA853?6KpU^B9iamndgDs8S?^C3Soy0`H^!W+#pFYLo@pz2OzZ?@jX z_pKQ}!5os7jwQ+9>;!SsCp@;kzZ|r!dPx>*>+5-gJXcn8hPG%_3^AGW0;ta^-|JI& zcz7ShbHx{g?pwmTqy!Obe2Z}$%*O<I?U!~Wi~!?-_j^-y&j5U5@Mfzu+?s1yMys>! zW_^%O<-u3p&Ua(3(zzV~z^a9!+WgGs+tD07=fp(4^0dzzMGmI8Wk%BoGb<br>|11H z4!<vcob{Vau<$mfEv$SYc5iNh-!-nQyvSIQxW^D^;m&`EES-oo)9RPr71uQRw10?p z@LgXcZa11_Ed$%BBYck1;yC~u@CZ1_8Q@1Rg#00SromzG;_kxgbAl6Cfu8C4I91+6 zSvceOOgeK~Mp5af<O#_=M@{2Th@Kw4Z5r~@Tf2zY<+E7H@|Si~XOWOmM;I&(Js{F< zv}wikPodmKf#V-7$PDd_nBvT;M<)%D(1THF9y0ioWG{R(sM_A@S1_M8Rk?v$(mVl} zq?z700LLJq$T$EIny;(s{vFgTMb@o(7l$<u`DD;<)Gg5zg6`f(!gn8d<JWCJBxhHn z9WR5m=%$Or`X-{<-`Uh6&ub^y6%2eKmM8#nIO`!NJe<`_KZ!SAYq*bBva-0o+_1<k z72vt@mpoxZNri0VcU+Qda^FtV^oXPJKASz)iJsj|cGn{K{^UP9mKZ=>2IQe6k&Lje zKT`O?6s<0mtm5;{xWw_<T9%t?^&{;2OBKPua=`S+#%aMhZ>e>4S4GWZO1Cget7)@E zqutKyi+xV%W8NPbVgr&DRCZjSU~2|jeM7<et6plC7gvZ~W=nX4aN0=UdxFa=I%Dq! z+mXN==DBYa&Hb$ufAEamL#EwK>$cxjQ-(qJoa}bN$96yLkPkKHZLjJc47uB=-p?{C zkl{S5dlwJRRwWWS8RO@W4^C@%#>&QScRiN>0OB`-1hPu9+G$c;v39w(fsu|0`8f?C z4UNCM#yz>N3iDO*CFQ{JZj`U7%Pqmkna#9`ka3^10Ol;??gPQ-YtQd~A^1|-VE5)7 zD*8k7O{b>G7%<$pOuL>k1_&PY%4)aTm8GldI(6~9n<om!OM9V%pP5(}Ba@xE&q`j& z?uu7SL$tW@7QG&^EBMytJ6Qo$`!%ElNAoYtL&y^g=n)Q2Ip>Zu#2z5B(RApWMv5yr z7!V#zNi$;@cA8Mn$mA6vbK1Gtyg>S(7J8iCdM;Kt=R$;W!2(d^;NXBU`PVHirH+|* z2K&fT?8qb{QY4m5px^<AaHBceqiE}l)xsUfTEBSd7soN(+{I!fmV4{SQ!zy!?wBq~ zX=HzuSP{`wmg+DoIt?vu)=6%Gv65bKXh18^&g@-wk}?j^pdOi|n^4yp!+pM*ClZ!+ z8~nJ!kVnpryO%%R37@5F=$G22sRxs&y_AuxI1yVbd8l*VLnd*Yf%2N$pRuLVc8SMa z{5!n!jq=NNtwq0dY}W=C^0?uxmuzkG_fmRrwPq_sKWnnH(yrd&3W8vaLFKz173Gww z?l|M-uS}G9Wpt4>o|YlLiGfR*<`SZ>JJ)T%`CA;RToKO)tzq127n=2g+naf{drbL& zDhXl8<g&>7QFi+0Bdtx`o}!)iW(Jw0_?d0wQ>rz(3~gDFFC9S{VYym03{OH!4{FL- z?X7O2{@jaGpKfy`vKdi_sg517ARe1fsU+817J+|q=1W`Ar8DeAMgs9p2P0zbP)AN2 z{x#0e;k5qJj(uiLQte}vn9Q@WhylhL2)v~P9y!T5#apssgta2nHQ$Hn8$)L_hUr*^ zx6_rRb$o99<VpgK!1{tfJu9=*bf1X+Bek}$)2%J6re#PY4+d@@B<*7qF2YGpar2eV zFnVOtxYhg_b8ebdr=2XY$YmDR5U`b>1Q(D3p?L27cpJH|Tky`GVQXg$nzx9)!xJtI zjr?)TbgIk7(-S`4NF+Bwk%7UiYE5o$6{d%VYCa6RONO!W)%K@s<mH<3(d}Tja7ZCa z0)rUIVo4d>p4I76{3$t0JvUu=BxDjqiy)hNu^jnmieyuff--&0bn^Jp_rg9Yj`sIc z)UI@d!TUl$s{;doa!GQk4*<5@^O0WdXXC$zF!*tGf*{asqWR*~G`obgkTbCW<gBYM zNhf0_3F<2@ci6QRb35Rd?5q1lc#Bn*+f~!;29m43E0Sc6Rtti008=g*Gr<|%#~n}9 zo(T8{`!8DEN8zuJ9wO51^|>V54xM?Yof_+Ga^*`4#4jla46?^5UP0rU`D*_F_MiBT z9-gDY`rKY9)7&n}FKy+qxj=aNq>nJo+>(gA9s%e+eDN>FuZVsl*KK?!@ms|*={8e3 zvT5>KD6*6`LgDUXk^XESm~0Ktv92lmNpGRFTD6iteY`WHe#-v<4ZKZhfAIUnv1q!z z$S|=GTI!bD@>v;@L>Dc*j(n-X>zwdw^dI4MuZ%Ul9{%UV_F7c&7?N0TG;=$(z*2V? zwvsfOCdlD&Ht~(5kzdZ&!5@b|v-iUI;_-fy;v?a0O-OTlWNc@*m@Wtp4a9P0J_b@b zBV+yGPHXg+;iv8Osafi9Sa`2f@Xozw%1M2twEAr1XDaV$dAW9f2{ByCRN;c-r;~_; z)Avo&PAb}--SI2J{{XXJ#o45^)F#rV)GY^@C8IUYpQ+loQVfqAs}<6@T;t?L1OhXP z{9OI0{x5tF(e-B1wZwu;{W-qOjdNtT@jOu|SjxgYsUv)S=ZRUE<mI|o-ruw@?fLs2 zc<p5HZ;mXjwe?91Z4Jeox0?v$2ySk~D1`Lg5;yzR`K$56;s@-}aMnI4_;2C)G)L0o zXr!Lz80L~e!p6HNk>!1=K2sB^1e}5is==wYu9+??bLQ`e`bWhtiV)dcd@Aso-#Csa zklMiLSUJYwy`sPa_*m}kf@)uezp-cS74bVzpGwvs((I>z6u3ik8s1wHIWk0_yi9j2 zrFb}FUZ3FK+kfKcf;1oOzYAH|+*-WB%+r}5lc+Gt=`hAqs0s>#Fn3p_=)blPjs7$1 zHvSa&vjke3i6b`tL`83`<Wfr9T3>B~XjxRA5twZxD)G;%r&1BnhZNn}kKiBpCO?dB zwRF=wF#1=D<h3BRz2wqa$uY>!lOc`bVsJuviWHN{#eS>&F8!50883#R_*e0p;QigD z>Rb8u3#n;Vw-8DL1;iItQe9e?LUI9k+Zk=3FC5pwZ;U<z_($Mti<`|-TfJ7~hLcd& zyzB2V*9*RAQbi?-{p>P~@)Y#1oxUdj0Krss?GIHx8PlM7?4ys&lxcGlXvj-07Tu$U zNVCZ*@%IDf#!nSVR;w!(<pi`omAd!>{u673{h#&iQ^Hn3f%3+q9;IkxUJPw*arT(v zjE<%WVsLrqjDB?dYxqy9%i`P1-;R-Lz9qAQL>BF*T}0__tU;8$uw;;cpacrcz+~qK z2j-dlf8)Q3Ul8Tje`cQzYQ7h~xl;3s8>F#fkA-;+ygOssK;8S;_~hq|hI~)(@9hC( zXNSj{-lwYDvxL91vziojK*Mp6#-&-+hBJ(GB;vZT_&Fzb%&JvKN#fz~8YqRPfva96 z+CpVmm1K(QA~=k?ItIb-f>yqMfA~qYaWoopOC)6&H22o~RhSY0-UwzNPMtHwcM)rU z3v4uq{5fSFqol9_<b6%vSpg#?34v(9>(d-#0CQerHnpnjv&E$N4(9&u!E&*kyP-vH zWXPB0;jl><$j5s0(y`AZwnjarjG{!p@eSmqF}$P*iym-tj&jU#{{VdY6IuzS_-<7a zjXubR8UFxT7k~R~DYu>v@eDp;@eTc?QSMXaT1L+-n|*RZs2xZLlhckWfztGq`C97u zk;Y7MXYtAt`I;_6SKR;A{Ec6Po+GxlZF^IKD@-=f_N~37E0eX*h5Q>F`&HinXkHD| zwTFY^m-da8nsX$6d$O<1$qun?RL@+M>Con}yhZUZT)sCDYq#xittpT)Nr=j0KYdkq zo;fF+_QiQ*+RuoV=RO->^mkGvfT%%^d1BiS0QDcQf1`wDC8mKbH$LF-map)p+Ua!9 z2tU~Er(#T!hKeFfa0JtS^s()<H}tPo@FlN;{5Rq=b>Y7hM{?jflTFltyCj^D_Oo!y zlg7p%5s`(j&RYv#6W!^n9)Waiwq{77Y{(Ib1ngiy!=9Y+*NWEA{1vTu%UFFV$*BFJ z*dyG>3Gx{tm9S+yPIeQ<<!-(6oGH<Zcew1&(96HttHakYNu@pg)`f8khUVJZ9lJhJ znF7xyHsmhXRrjt*e`pWci%o{^%~s<2?&ao?Y6jTeT_ao_<gV!5SR-@|!mmX*uN8~n zSBo{vNOYT9f9+#$l#Q(f+N{U{#!I5f*ST_k3f;B+ntnI<V@$c%Z+tyF+D9Jec{d|Q z5aai@%eqz1Tm<RXx!pKzCM6fp@3imQKgV7c@a65ir%Tmzc~(EN>ON2QRnnraOjE#$ z!LiN?C?~E3cK#Ch(eV$(R#w`+kEz)kdG`_)Cb?BrJ6H#l?IS%`1d8!14}&_3=;K|~ zd`G7xmCB6Ar$8iOjQoo%<fuEiKPclPf-92Ld=v1*Kl~&5McBH#Vyw{o&a%tL%`LQ8 zM`8v61B`UVOraf-H|~4ai!~pIx2<?*mK`@y54od);K2m)Fblp&p^+Fd9ZLMT&P7?# zV$*y8Vh6+a&odx+WU%`$*(Auwm9AWZz>dV0`h#8*Wu;5u-81YuZHz4h<&NcKg;Y58 zB~E=*<cjVz4+v|wf*m(V`yG^R7z=J*S%EFde=jkn?tX4gPAf+RZ3da?(ELo+ZZz*N zQL)o6^tNr%M<#AJqc%uMQ_2yM_kW9N93Cso^^c8OUWX0Kd_U7}C6?v9w6nRMMYjYW zz2>9FW$reXP(k3=v*^FG(D7!Q4TQHS^2Qh?i`})P3_;0JB7j4Ze(Mq|=`V->00Djz zS_v$F;Rs7x`*M+7HQFg)WC}`ecX-$`<f-#8di5BrU21XPQj}ZR{NJ(oh4J6Va~qEc z+R3NQY{f~kwu;}#zyzw#CgxM$a>>tgT~??2KmOC79PTvOyjfsx-qkpo{`x6y0yAJb z#(<AOlahL~6UBbdY2Fmm(dD$%^gACWP0JO;i5J?ffcb!k1biL10ZCDgMrxJ!hi!Zx z;X6G;!Z2KTqS84oJm<BF!W~i=zHP}gOrz}^GC(Q=V+7=qYHDUS(lN1Whja1QT>XbW zGFieG#Fx%A=o|N~rKpwR$iXa#jUfXV4H+bLAXiJHe#Y7|Xz{~muik3b_pt+;WRl?@ zY2Y!-`C~nQcC34f`@SEIo&vcqb)y@JZ{V5HqPlq%p(sY}@w0AM0P?F40QdFsj~V#a z#2z(@IIQ5*w5!!(u-)nZ0BK8Ljmc|>j>~y@#z|6pZW*m3nANqU4wqxVtp5OIZ3jWt zE^n@4)Q6U+6ko=%TRevWLZoG7B<F#!06y_G;C?aDw7(8`&Ac-W+0kw$B{waQ@}*VD z0vn0gAtR<dvGwU*webT|_?6&$b-3|z&9*>8YEW9dkokH3H3w<}267dE$1R%j4Qk`W z*II115qOT;<4?R&S~=n}Svo!r<qd@m(C`C#<X2TH&6w1KMJ-cF@a%TuN!GQ0wg|~| ziu&Xc2q1j%tV)Qb@<Rm~BaE8ntTd||1eo{`SzIJhE48~?eUae=a8Zh?%69{TK;yaV zR$j-)-XWE2d@l{mmhh<0*sc7lL9hUScoYR0=ay`qhqZKC7lgIlM_Y?S)g+27PFTFZ zv(6=FIl%*Q5u+S)joHU))1Rv$({{PcSa^fQ`o-c|CZlI-IXk8j1}7bih}&0=o3oC3 z@^hsX?Y5~SN#Yx5tzL2?lKRYjk9Y8oI|PEGuIz@#O8W1@AF|hrJYMHf@g9x#*wI2q zD*1MjBV+(W?hdMQKphWU8uhIY_9gM&pQuUVO%Fq}*KFACXe1H;0BJ%L5=35mymK6V z-<~u0))U7<FWxQ`B`s0;m#6qZMXO6A+u3V2fri=aNta^)a9thVOymK(b1$wcVWw;G z*@(1@IIm*dqCqYswn5Q@EMh=O_s32>zo3mT_IdFC0El%vtus!B-0HefM!mIbi&&a8 z##GA=)|EE~AM(jgdmgpJc+2)e@D<G8+J9n$Nz{%cmU|Fmc|5%BGKR!*5Jv#0Ae@f$ zLokbDof|td@Urj0@?CGR(&L)SNSR%twaY+^at2GQm_f!k$n*l1%IjY6{H!lD)s0n- z-NtD*FdxGp-lU$&5l^*!LGhEo7hVU}bsOIr+MCGPyvS}MmF7t!LH__Pt<RRoP;jSX zqXC`V@!?J5>s>C{M}{<+<%9yRjDprD-Omohe57&msV6;gU5Z@F=?eBe)4_kVPm8|K zZQ$=2>Cs+jip*t8#+DgIbNk4qiT=?OsUvH~gJ{MuPakjmJpHHq8{umygLsot)ZhrR zrje+uaY`7SijnF!D;mzBMi+Q8o~-9J_`!Pj{{Y$&N~qdg?3+Y!mb;7+0o{O6RB?=C zs6Fe5nmZ_NUSAWwp>(o<u@{sGa5-(^2pdmj4Z-W2*F9VXIcu{vjwZ+S5P#sM-U`ug z8%(*jpGcnDIZKenP5cp`Es{3`lk+C;U~^t=@dN$}0e$0Sx3aT_@+5`YMYz%>mdGnI z;E6@X$Zoe2%E=RfjH$>1zaH&;O4@uDx@U(bOY3<cAL?V7q(aO~Cz#3|Wbe5csO(A2 zbb57<jOBKhPL?u&D-nL#lOXpYT$~QXXWFq@T{Oyg#(kgTFNt0#*IwsYpH(`Qy}4;b zc9ta0rN-xWMty<uIg@(=%udh^cyoMR(aqdf*Cp<4RBdK?5g&0RlnWebjCI2k?UBWK z1aQT9a<Sa&ZZ2UYn|SSh%*a?B%pT`>Aa->FZg2%!@e_D5*fjdcx3#!HBTI>$C7p@m za_<-?p5u<)Yo-`Ttqi9&{pNLx@dLt|mYTYLg>OBT%yQ&Q3~|n^7-WfFC1wkbHsx{n z)E+AE@5IN`2DNjiAMD$Gq+XU&0;_${LI)r(OupW|O>&l6=ZFoPLl&Icnug*_br2@r z{$el#pz5dBAm*xRlHOn58>?2aL_(>ULtHwM&}DX})f{Ih^sb0fOJg2w2=BD%Qr;Lf zc@t2KpOr*xcVmos%<V2lc*ZkWI)t7YgIh6ef?0^>JIS2Ruh0||u|i3}ASfNUuRzuH z9}3%DHKwm@>xE_WV`(1M+yRL^xb~J`QM>95RMNGC&>9Eut(-S9+`00S&IHVbNe38T zFl{{Ya1S}FwYMhSPV3?S0EKlw63%qktgaxIM+_QtTV((bn{MV%!F@nD75WR{FZd_+ zjpCVL@dt^n2Adge%+_wwxndQRx){P>XK@+H=nhSMHQ^r^c<SnSygjIRYfsf}9n?s= zlPt`+>cUvO$s>_{QPYq!j92P^?A_sS9LJ&DYu^tpCe^HMrD<)n+s#3c2~P~R_qPc= zi~^JLzHmrT;YE0u{8ZzrJFt}Q^xXG-6ZRy~JRhkg{;T0j?-lqZE%7z~0Eh2dTi7Jd z(<Hi7aYrnOq%memrgBC$9!UL0_&xh5{0RR5glA6iPr}Ut%;`6f`H{ET*fhb1$n1`$ zMUak4orE@X&lTnW0JAT|8T?PGH-%eH)w~(6!VSdwcByVse=j>(;ksia6CflI&`5ES zoD+)u3Gtu6&jb8T(X{)Yh>xgg+OCwx>{``@^!9g<Z|cEVtZkFk86;L55snYc)y2=N zJzhwsu7}F{-|UZ}Tk28k9|kU0!xNdIO+{R{*(ODke6jf%c*975g_s198w^VhE0_3` zzYqK!;ycYh<F=iw_;<swsb$w9NMB5sZZYQFK-V%`fsxI}mBG$1YwT?s!+tFITi^{! z%fvIw@j^>$&Gs?r(7|hd_S;t`cxIjpd8JI9&k+Ha0b||4;Jh*WPk3X;hgH+Q9}8_Z z<4+qd^ts~l^%zyYP}A5-V=4<|G4h-N$vHT#U#v@Lv!PSw_pNk~D8K!Z{s(xs!;xxQ zO_N;3b8cQeL+u6UXr{vlhUu8d%FBWtJ~M(iuaPxx+0Rh;8LR1bQ+WE*U+}U@#M=0+ zRWGfB@w&%Rg%VfVaq?Ym-JTc`&!m3Sn(vDB-7Y22^{c-P-q@zdE_BIRZCW6?*>k5A zYgZiOI7eJ?!=-)|{BiOB0LMwK<<q=hd2euST%=bP0%FED=gepUW(;`@fs_pW;w#d^ z#&deRBbuz#RkuFt`0w%a;g*AWH-)X?n@+fh7^3@qsq$wyAH0V0?M!ZioRnVuJJ;q% z#E<w_I+9)MH<mD2O*vH;k%(iFuyPy*4GfMtE@LNeO8L>gC~B5gr^8lSkM^80jncz- z0@|+J?E)OT1_wPEbKF#(9kuv{<NKm?0QzFWRah?eS8QM&H&44902^o=kzYZF!#Z)i zk1nN~v{9FGo-Dk-31zCTrC}KgUP3M91fEERu^9&g=0Vf7bhiHh5&RLO#+F*_(_FeQ z&LWMRray>E%>toQoNZFRym4PqFYLdg_+UXNh!u4^X|}W9NRM!0cKJ+b>GKdVl0aW} z2a4_VUkrRF@OO(6=Icka)>_%Im$w$-RHxmInV72#<D8H04r@u*g|7`lG}_epJHwj% zR%>(r00>r^^T()2Wrgm1xg?30byQC--H8}D!eF1gd;0$XfjklMOU5xs-XMvEsy@eQ z*ut%jK?=ieN#krq*WW!pxjJWr{8a-d!rO=}FGDjuwxI!<P1wjt*_f`tGybO>amFxt zIBz~QMXFAgFwJ9aX66RV2raTtPcm?-sKAUW=dW{$;&t0iEj>+ax3LwbjiYD_X%4@l zBPE$o?7;b8f?IHT93A-_nDPMZPHR&C0O9`tgnUwD)MmQV^j&K4!ojCp89{UN6lHhv z;hI(hJ1`DAlS6ptO4qFJ{5RuCAk(hZOi~*)a|*JsRs=cW)ZmbZk_b4apN4)JyV1Vc z;6ZKTDPud^`$}hoJ~Q(yHu+KQ<`(tOYUkB&p`(2f<(?+9_=oW4Thp$!YgdV)$$+O3 z?k6fdrBE4&JF&6HLC6)>f5KaL<EC8;;=Y1iF0j$vfgDqws!K&9A#gE}RZ#j>?F-_s z#4Q(5ZwW(d_M;GMW2UTGWDV2HD6&kwM%|gn?^k?Br+7zFvUvPTkE7}jgo$pPvEDKe z??BR`0!Vd{0{1-hxnE9Y_ZdQ64t~$!Hji{0SMc@pm)=7-iq#lI!*4j6R`ZAqdX<Rd zJ$u&XmE(&qhuT_Mc!O-(e7N(i^<<jnAtH>8kjv((qA(nxiI@!R1Fi}9f34_N7TU$M z$5@l^ytYy#5U9up5`iSFLGFQjVS1XcY4I9cw2JS=mNqx0%1L1IBw3bdu%Ud<wabyc z&Uk3@02w^dB<F6Ze$$m$^vnDI01JF>(%VtiEu^uyS2DDl<+;-tLh#7582ppnf`<dI z70FuoZ(q^0A$6ka7R{&IlO3w*MP+FNV|aGT#}@<p%v+`fYU$db@ivD%dJr<)qO@R1 zZbN2Jxlt=9Ndqc?3LFfQde<WQe~xr3@AybOMJUr4#eo)|8{VCOkT-x<1<!nz9mqJW zqkWg$7k0UppB3iw8^fB#hxV<quz7#A7%a^mN6Cmns6cx*{DH`&mhVOJmZ2rTgs)DK zc|2k-AcQf5LQW%%2E`{Genu<mIIf#c@ehK0Q>a59iS)=~R{sD~ERqFRbHhBa#Gy#X zPEOvWdT(2JH$&F6EkjE1%%=O!juQfxAt4IHoW~Lk?Tm!U%ADl3a4t&ERbw?Sr;Nei z9~O90;yr#_nKX-gLCwve{p8EI<i`{OM`R}enFs?sab3Ocx2NkGD7@G7yRBv`NjEL= zD`h_;D-wkzxd#|#0G_<_TZ2aNpMzuj5?os8izWz;VA3?09FYK0N4kO-<2+Sg6~Dvj zwDs1t9}Q1;GBPZ)TFV`rayyf_vNJT>MhO@sW2qIQcY5kyLZzL)k#^Bb@Y_{eMl!Km zA_cYH?YM2S49g}#?pb)?j-sumsp1a|*m=`h&t)n38huV?NSZ}B$PVYtB=p=E`toZ~ zXfxXA7nj}|yMjv@A(Y$4q$E*1YS>}tmJcIs{w<|)r+^K4rN*b@TOHT8ixTPJ2UDnR zjwJ`2sFA$V2<lW3QuSt2PWm3VES?<kG;;p{!dk5r$|{ev=<(r-4oWgG+Q9V6uLC&6 zVCx<p)3o9*ejmkcdSlpJu@dSLfTt!n?mksv)HHZ*2SHv#s_K3l)u*<;Y2VLv%<$N^ z?wI2shnQ|v1F7=z++&L7?={ik`G2)ETM1@sa$Y-yaWlt|cM-gNr1xb|J*o0Of`pdL z^r?O~{6L>gZ5ixub-Ph11vNfnh-3g-X;nfuUBDOH_}3$Iec^pl;A(BCCXambGTbab z>4>VsYk?qDRV79jKQ2hka2Njo7d4G`-6Xk%^~+eofg7lFUB5BJ?5ne$NZfOb0p7Wf z5Y6!5=yn>8kFMWGs$LtEzS5E?p5EOfd_wWw$OLZEjIj!iP>s0+Wa~~XX>I!#IIfKD zE_CtXsYbEkyAyqIK=N-Txp{V+{HM#e^5W<}<)M&zW4|AH@oG|&>Du5~?gYopg3T3f z2_rv#AKkGz$IgFB@*Nk)R~{eK9sE5kmaQI7n<d1z8=H0*klSJagV06*?agLuK0DKO zJKs5t)c1;~$rce3r!0Gov1dG!!0v0cQFqr;XEkd?^*g(*K5ZPwrD{oUcz3$mUBq3X zJPoR1e=9xlyOW&ax!oUI)FRZ9*8c8UCzuFhisNsV%y<LJ{{U16I8e-au0G&+s%TBb zH@2#{3_Rdvom_PrQMR!JcO#y@@LIK|v2g{qqj^2^GnIJme6)?12Xd@nE_xm_{w2zl zj8W8T-XZXFT{KrZf?D3I2H9mF4I$~e7()im4?iw>;9{O{JX<E26xLR@lE78U-b#-Q zz=OLF7vFa2v~kDhT$9V;9}Vh|wuOCZVR3Kst&YJi?&^G{R%hHgj(-koX*G`+#ik|n z7DDHE^9+pU-2%7GzF66O&=2tJ$UQq%+o7bTrIE3s>dSd*w*Di!8j3FPZ3vDCw>R;C z%F+@$;rjN?Ue@e<HQ>3;#))@nqqMfjW&mN4&T@uHcFfPvkc`Woo$G|Qg8Rm|Epe)~ zy~mV{#@^D<DJq>yyO)u$58mSguWIUbzlZvlfWlnGXu2H!NVwf{tGVNqcPpEgXE<TV zIT-JQ(Q@=`%+0pe{7SlN8yz)u7@dvFPnB4*R|VOn9%_8Ou-W8~dKyr+*JoSZd2J39 zD?wtCE3R?MTr(#lvh2o3y=JF~wcD9uy0fu;MJC-GbK1(S6Knwd^2k?c{{VZA*(SC$ zT{}YYwDF%B-&$CR#!y&!mp2=;j2Qt)(Dlh1y@ed9ElX0;#T(y-+DvXQt>F7w!sV7- zL-&t@dhaBpWRb{G{OaY#uXCz4`LwBIg^-2&JYHlhBO6?nL$!U&?dKV<sck$3@G596 z8^h^iu1c6QT6muJ;@#YgZStN7{>_fR>wx*Ok}KWe{j5J{p8)7l_!nOA0I<DC%tG2Y zp}LA@IVu(H{KakHj!EYpwU@VDig1@*PtF}XK=Ezd(cb7V3rkqrbcR_C$qINIf`YM- zdEw4_W3_eKR*!S1YI82DV=lD-$rAaECc~Zzz=AKPPJP90c)!G&M~QVmKf#_Ee+${o zH=O3$=12sEctR~=^JB{7;Jygtde;ea;ja>1?!(<{CQP7;X_gWPvP2imAayLmo<}sL zE1KCO=-ns78gIlaNiB`z!3@r^x+dt~AfCGbY_9`p1aV&N;BVOlptxKA01s;57`C^S zu3KgYk8omPnO!6WvT*GisOKx5pBd=i5oGXHyjC{1H@+9Z1#O+)J?y}V9xa>_{Ez|M zaqC`-;fOqYuEGa{tTmZbNUpM7I7>`8JDEk>i9q9xpDuHrwS`J@-7`qbvGk|JuMlZ} z3uL;{^@wg3z&Qr;#?C1$*pZSN<z7j^7{UG2VB)?(@us)%pIDkra?bAF(Wd~*b#LXu z$lb_i1f9dxa>wzndy~UI7_IcPd#P!uC92>``fO`*c9YeV10g-KsKdFh0lv|^9Lsfc zrAKZqKy()<k*u(|B$8RzF|zZJ*dyy%(kezrhP(~&W5#*aycc&4w_wZ}WxrRoLmIF- z6D(+q+kd(+PhnoIt`CU15;ukXU;Ulos{|5myt%iMTX)FFN4|K<DZt=hjPa9RFQ@!o z@qdJ#C^TOY+xU_zW3b0GGDyq2EKIj?DL_!10$7}2Z8g?vKeWfhsUur|6q|h$OmIdX z2EOx$Lz3!|DCZ!sZaS?M6r0$a88#mcyfXS@$)Mj@*v@}@{h<ez(ev{uDo8~Kpukg_ zgGu<asrWxx`v#AzX#O%)OvQ0xB!!UYr<`K)nENR?$6nRn_%q>W!H<YmYdk9?@=Bq^ z_C8#Vymn~*RK|JQQzO>8+s_Yc-vOtJ^G}z<ULdh{>O$FSs&E)Qsy87V?NYpPhR1nS z?WK*QC3_xit9(rG7mBqzYwwHku8XoA*7gxaEzRt)ecjSaDl7nJBLFrB9kX4l_=omI z()4?&^gCORHe@nKCO+2j$-!ohJAl!r95yxs*ox+UHvZ6hpT!+2+rx?A+l7KO+Shu$ z%q<d@A1~S3HhB~)AG!*Ila)Pd=Y2E6J{vZ3MXEWwyMYVH_RMYKV}dXOjI$GfI(F$* z>@TY(TWg`&>)tK!--)&H2ZwBQ%|;+I9f*akrI|{fnc$X57D6{<g_|3IBhs|AKZ>3s z&@GHUGSjRqG_+u0w7R#9iDLr{3dqkXZgN^I5PyhQlSv-8r$_cr4Z<yAnRxp$?UT$M zn*_TMI-HD}&9?Brk346oLiT=b;7!5ArQNq71BGxv&wP*%Z1&wyPBvyPeJp$DjsE~> zp9T1DTD^zBHZsm7*pXd9bv&sWs-50QxCY^4%auR8Ob~XA0iTw2JyTuRbup@1-o-Oq zH<*bDWq5;az#DSy(BLzYN&G9@Aov}v+=(AuNo;3<48|27!U!LG?&m+k82(kJeieAL zPSeJ#;Qa<W+e>1So2;z2F@eZ(xIrFI1LZ!Wo+-kWHSq2Z4V+`^_WmNYw~xc#6V%tm zi!bhVD;aKV{%!`(DNycq1oUNLk^t>rTKH@BUj4N1yePVdjW6!B1$KCn)_a>dF62Ez zh4Um~xp~WuI&}mHJ_dMiO8AxG%~DSq8*8|%Wl1D!tCx=I*UVGpsc@*^u>>GRB;fVO z7IfQx+7m|BZag{g@N180Z@^7VeWu-GY;dy77FfXwd1H)n2NX@T?GmnzQ^Vg0yfNSn zJ~8n^$6dGAr41bKbW-BT<hJ4#+j-i{x0w_GN#t~|JJ;>R_b>kd2>sQ?<VvP8mdrNn zT$EjkcKQGclis~MUGYx0;a?Nm+<alR)~B^lBT3;KW86S|AW~hxQ;-xsM{HH^8+>Z` zTPt~f7Q0&r0K*al6Sh8W`v6%1?eg_Ks(tqFVc76x@c#hBZC_7Yt6OO8QIy7h*$c-q zV?Q$N-mF3F00;Y~veUvoI|u-uQ^r4oO_Oi@2a(66eTU#{yYGk^RQisMc(y)Vd%|ie zpgIBkGUhXaMsPu5Nw0UbgTQ}fkL^Aqia9ne^;qQ~HaP<)I0m`hSA9xQx&PMrOW|ki z2k~3P+8BpQ(luLEFZ=K;#uavgo4)7{<DBo#-ng%?ye0nt1efvmgY{T^P4-6d1%%2b zmq2z!)FowBEU`^CAdQ#+qj?}?e((}2^?`J~SN37>PP4A~TTt-_ihM0>klfh#aiJF) zy_WD<)Xg;NZXhZ{MjLSo4$a_!S^oeJ{x8q*-$R?m{{Rf{q)TOJ)#9Cu62Nhn^HH`* z47ktA#~2@XwP*dQIY)EbSS1I{wmxw9aqvU-T-Icp!rDHH{uc2DpA;85hM#swxwndS zA~ljSvXWa2M48xjkO(6cx#Rx;g&(psT5M)LGwiWk+Di-H!8eg4GC2y(43ZG)d#kR@ z;~g<x+vD#6_}k*Hji`8L=fyK=dgH=UEniQLPqic}PnLpYh1u}<+(12Zf!4lUwEdX= zGx#6CSJywa^4eW#79LCg0BwBHeWb|b6Dq1oRgi7-2?&lzJaQ|UVx7I|8oV{t;Lj9` z_Mp=~0oXr;rSTr0<4YYD-7VnMfH3QO(MRqsA+Ur&bA`h@#v<qM$B&%&B%ifU#gB~F zLd)UJrNm}O!#r_Dgl;`Nznre#2`t$iz^~VBH}*2{r^PP?X?m`&eWPkRC8eN>$U-A{ zqln?~jLNK}{{R;|xC1;^UcdV;_#eVLUFNay_8VI*YVs)JmsYg4f#ul=$c@tGUoLRi z0D|buhvbkj7111Oio4Y1od`YmKQ^v^VlNo{P1Q}ujkRk_d%Z>hEVmHF6PJ-l$ht__ zeCxZ3HiB0;uS@uK`vz#90MVBB<0;ZKjS|J!N2z_HJ9}va!{ym4C}Qs8Yez64ayFjz z^{<9LHa~*&*S_(Vm#1m(XF9@XR|#o5Oah^J?tF`jdD%t`Ga{92fX<s;xo;Ex+0Wt0 zwF`S|C}-T6xwl}mLeb=X^pnfC8683A9Vtf{Rj+i<>hNC@IUBFoXTcI_%cP5Y8xRy- zEzF3;og4<-NNCa3RD!G==RNa^@r^_F8`E^j-s9oUrD1!jiA-x0@=G0)kU!;{KzBy{ zzVT4m+zA}$x9tPq>9h&7?}GYWmW8WLC!cGk>MbeKmANwuUnrHfX#oL{e(W4D4b6Ei z_w8Bn16x@%tGznwLcNG2S5}urV1gp~D<m^Qph&DTQN+X^Hv!7mRWEBT^f0MTG1VQk z{s7Z7IPPt=e+<dtchlNGwJxbC-d)syZKp!wSe){wc*Au7*M;l<02;3Cv}55v5$RU` zEzy-&d0K_at3>E_hk|dKbe9K$*#{hLubzG{d}*@r7Kbmx{ajn?dLS7~2aY*nSy72H zd6E3_zW)H3O5l_8SIXC^CGD}l(r>PA;*v!x1laQ;RRC>CpCOe`@Ri&%jMrrxFE_?= zx|VlH`qx?b&*KZ5DX%;msa;)15k*@&n}wG8ILF95$!8@b1AwF{Za8Csk1x}{Jx_C~ zuAwydLs+#Sg}9P)a;%N=l?p=S1Kn^`V;t9t=(@#@p>&5?Y2^L(Bul9nVMqHXX3{#2 z*yq~4`#`_YJVS1DeSglku;E4gC1983APh?QMg?*Tu{p=Rb^92@rNtVJyEC}5)qF|u zjn9XCM!Jj__p&UJ-D#1mGPI?c)<!Zg-Y^2PuLOQo^xubk0sBLEC*k$Kh<r(BcYUTs zKE}DzbmyLbCHl#6ZXB>5-aDKO<S6Yoz|Bj-KMOPsN5tAcitRjOr`Y*LZM4f_{h$;N zm|ViGg2;Yd>fTugl&`Y>9e=?<z6t4fklkq)qTXpDbdjWRw-N0mtZXrXg2yP#FsFmh z9#$f=yW~fs7)D7c9T)8R`we(E<3@!C#N8vt@oLs`ksR^c${~oVjBIflD}sk1k&fj# zTpIN65P!ik^!+j=kKlH{rsx{VnOsXXlipeR>;aA5+$x8NH{S+CBpfRS`K!(}AKRDU zcDZ4H;cpCH$>2?ER=!*Lb$<=oK+iqIU@x10XK@^h<hW3hJSADa_CX=5rI-E+DdR7P z{vPuFCu(|0x7;AL)vWF%lTW=44@jL^?c@YuqGoVAF|R-CHQ&3j(d;1&V9#XLJPCR5 zXTY`>zqCe`qv><YJ6at=!|j(gk{555LK5CZMPY)iEQnN{o|)x*U;8I~2>9FJw2Q>L zg@eJUp}LMuJ{bJr^8BSIe>5wB!yZB7g(ALQ{{V-Q>DM=M9WPk7Z7{!)cM8Mi!7AJX zlF;5dd4qS}Av$y18u`l8<IlqgFRt`&1o<8heN$1A^8OomWw^K8@$Dwv9_Aqe$s&(6 zV^sjLWsH)<++$roc@8{@X`%Wv55u@T5ha$L;9XBc)a-P$jeoPX*ya0d@+m+iNtntN z<BSurk>isYQ5oydpW0Kv8vg)>^xqOe6^@;6_KTP|%F)DL=H1#UMZ78#%}~qtkz8%S zCpGyctp3#(b6AT%5ovmsovGU^iS6ZrHrpUSD=S09@sWauA-e7v;C#p8ZAQ=HcBwV( zjkVU9dvz+4cWb?7l0*uD-Yh(FHqZwAq@j4<fCY3%2T{AWVJfQnpRZpOe`?=?9wfP0 zb?ZO2-RY?(*>9|;DX79v0ie2#k$`@tCd%M^!x*oLzAgUNI_9ei>7E*ywY@pxWu1ll zTk2kD0|r<TRU`#LE#<aY{oW1-=hm;J{Cv`N7(6w7VXIzSM*dB_`bsmzA$KjAP$+RH zB=p!bgC%>f!0*`-e~Z_W>pDcNf3qYoP38iV+RifgWSizmI`hCdINU3`mL3q+Ov-J& z61qHR#6K52FRa{8CW9QT_%X>1owKydznsX*tW=Tx_6MG8&gIedeRo|;ohL(|NAt)n zJdX<(JOyWjJLG2>-L#Khxc!T^{{Vt)-fQ|40_y(rPP~Vdnk18PBp;qkszTYw`F>z) zss8|mJd5D(fmc)bmR9oKD}W=p(rl)=b%20lxwy1UNRFo=gl@xb2wY?irJ2)?h{0iG z&%}LK;r{@OuCC19I=Q&Dv_Q)p&9qVM=bf)7?;q-RsOf`S_Pz|!{4?RW^)r7R!pyFQ zIYZ7Ee+~q=gezqI&V8%)-@;$BN5O9vh`dRn>u;=SOdoa4hm_FZWEGRj%z*C%5L<BP zfr{t#f7yS+kj`J>%#dgovAe1{w~qSCMjS7j6u6ymKe-~~uUb*f5|*WXO`nbydOowO zGPj0Sd65szZ8Tn70OO#M7ijE8ayxNXHFVc4^)%6S3GHlWk+&#q(nz^otU*8&6OPTA z{WjJWz82_`OYvUD$483RUoJbNJTGr>xZYX@alLwxheAOFbiuEXe0%Y8!WV1yH?&<| zCMup>cEUpHa@&N`ZQ8gwI|t#K>iW+&!gETOE3-TcQ}DzZEa5eXpH{UPTX`lwXOoY= zu~RaE$QgDy#s^+G_Ryu%uBE#0bP-2xjg|7F8^JvZGKO*wAo|y1b>S#Ak1prKRuamN zPTOng-Gpd9ZGo}@1QJH<oN<cv?}a)AmbInJrCqJeEvLvywUu3nk+MRgt6^6oAm@&l zrS-m4S1y-6Ru{fEHy>uYvX)7*6LixUVOHY}vkc4!7{Yez>DI^KzY<M&()h9?VRBJj z8q}C%0Q7Yd5L^++%5CGVeNn0Scf&1mVevhN$Yw?@GP(OeL4Zoh7I$qUjmJ3ZdsdXm z@b<?=j_bnl-uRB{2idam5*ww6a-hi~NcTH(c96@3;+w^{&|c2S_`dJqb=`&U+n}(x z)U3p~dAGFrPN%R6dC$s(dRFy>dX0=}Y2i%{Yp4RqOTh$_A>GuOGa7Fh>%WgqwduEC z8KcrKg~pk09+!Cwmyob%ypTp0FDV?8-FO3x*9YP+jlL%Fn~8N>12m({kL~cGfUw5V z=9#2epRZhV*FBAUSv9I5Ld04n)~#!G4c@YUv892-J3#9GVN;OOs*@P+kf)xR75YEm z58A@l;h6r}mq@wQE#hz_yN2On^1_UbwzkNQhjtGxK+oR6IsCiT?{)99M3;J`Qd)5S zZL~t-LJ1=TIY`2e%nJiu-@{*rpA-Hdc!Jwk@OPi6JCciYJh6zEXz1}qv8e!hmM7QJ zF*sPwS-TxnDk!_N`Xu-({{RI`v+>pYcwb0@OZSu*Rs#W#2>4P&>gHqDmW`E{f*9A^ z-wk|Yd!hLc;13-g78zwmz3}gd?-x`+jOTk=-^se}7CljJH^-5;03E~m^6-D`Z}CIK zI$T0+a>K*kQndG8T#auEI*hQC2T?H3Jdut-Vb;Fp_)GA!N$}T%AinXxinP667j-6o z4tbJWKEQD8G4jz_h#&@F5Ad_*zEc&4rk#_q>(j4j-*fg);vel%@NeOcu=-EL=x;P( zD<HSjbqE>_HsrCu7S~E7iI@|RFs%Oo!VU?n-EZRWhCElQ4SP<rwAC*X*5M<)iWe6# z!py4C!*pYICCZ_|1qo1acILl2CiuYq1n^9HXM*%db)7n5?=`NYy614*c#_$p@|V;Q z&U4!WxE*ifZ;L)7X;JulN4vc6bnrxFT{hMe6`2egG0ZC)KPPt8C{*KuwZ|MgUlJRr zx*eCrOAn2D71PV%y=A;t73auw-F!n1s~k>Fe22G2is6u8E+9!TIegdUAI9Gcd_&Uw zO!m5@qr>*{1re&lGn8Cy!m_fW&Z;x8^PjDD-X!>0<Lwge;$2#Hc<tkh?HZ1tLM)PC zo%XUJ6Q&e_kX^R|J*$7ipA{W+iTpe97WRJ^Y1dyOy~0SFJgy2P(u9&sslZl@wt3Du zuWE%ZO<?(tHmzQHc0PRY2Y`MI+TTU0d|gdPS5gl9t5X*Ba&Q`G<6oQ(2^rnjIp{u= z)VvyPJUtGr@VZ-lZ$|Tj%Wr71!<3V1tS*+jTWX)17)Ka6VmPX{J`nh6;@uM3KZhGM zsT8SrwW$8lav4D(B6(ThjE%!D8n?<ZjP&yzLr(aQp?JaU;Y;(V+Le`l%`}*J`iCMt zv7}{zTo9^8ayi9xIrG1ER(+X`<sElBTWxE^Uk~o0(zR_`*G=;n$Zc)}mrm)ClJ?P; z3%ff*mQH{Z*F6lrH27EJ4MNSe<hjx=764E_*dd#94l<@mS7{$}ILGmEO#c9dg{SIp zK85jgSlmY_R8@#aE$EXu*!J*mP6^0h$&NP+nz5vOE%4r>rd;d35!BAVzvQ?^o=Yh3 z31y09i*(0ke&e>>iiYCV=B)gUAvDQ6L*btjcooNstS+si($EmI+QS>aE<R&$#JB^d z1L29o0649kJK`_JJtkQ$?<R*<(4RKxajnJnNfr=6M~-RSv`h#AOk0Ol2L`gdC$IQ} z;kKg{w99Q{6xMP~bjTx-V>3uuV>8Q=-fFT2#`g`oEPDvwRMLJVv>))av@xbjDxJE7 zjIizbaBw8sCPoP!SD3%8N}n?KmHfn;PUVeaPlUcK)*_DIP;DaUt9k1P9z>4kE4JZ> zlpN%eNCmPw)tyIAkHHt;+ZLK;-z05@=703biiH3+{H#%iVtPg~$2EbZd?$lK)9<y< z30}kE2<K9&_8wH%3Y&pDWuI!m`+io~jO9sQb6A=mkAL9`(<IWq%$8QyWu8%aD_n@S zf?Xy_0;p*L&g4}X80R9cEw%2uuEjTVywiRmc%xgK=__k>s)r$rc5xMz6m!4LjAL+Y z1uSvz*BZVv@Wzwkd&^1m8~8NY{E-0rKm@-G_VcpEDg&0o`Fn%8&m@z()Mm4E&ll<5 zKLbopwpmEQOmf*PJ-l&%Hg1gx2pd0nf}RdajAo{<;2#uQ=T?Q`x3aYJJj;u9lI}~b z#C`Z;a-(3#19G0El0c}mZ*`*uE>&wBy{@-?@aE}Yn#TE0nvn02qO`Y|FI*KfGYkUT zTL&JMZN4acGu3ar?-yy-%W-%J7q*ybqfj=eC78KjpkTyvj&WLACypX*25k*&?lr`f zq`|&;(lu2iGQyFTm2;nz%Pv922N<cegW#*54UI#>*OB;3QJPP)2xVn?yw5FLV3?mf zV-vS>;1=U)H1@la)RzX%hfMJ1wW3%)r{I~U*DW;wN-f^q@tour7X~>QR1!A~IL;15 zaS-YrB+|7Atm413w-E$av$utuxEyaUF2q(n*>X7hz3I357sW3R&o#D_Yb>)$5ofwU zCRQrj)SJ125Jw;?va!w?NFu5?#N9zHXVJW8abbVt@7#+le`yM<hYK#`Mw52|c_8Et z^hPdD>rmT9X=*3o&ZntdzO`uZNeevSK4yVp1Qu|LKwq2h0vw*W;L>=LLh+85rls6h zCjJ2<G;gQOOkF-${J77`bAm`b=Nmxgxm38(yki7y;eAD<xVIicuCfe<FvPG}kQ9XT z(*gMzImK`q-;aJFcvD{%db?eDqz5T(7A28^+kq9bA}|Aj+jER&sy9x^iKT0!+dM7f z?-c1a(dhcL(71UC7Pp9JoczNDb~${IaJl+ovb<5LcoW2Wgt1;laP#cn4YkzeZQ@iI zV}xSh1Jyy}*R^?U-xIXmUgkNxM`qS4S?5NG0W?ewBLX!H@*cd9jo${iT}|#a6Fl}h zt6!V2f#8jj-HMKXdVvg$+XOO!@7bzq_h^_YZhBs$;)U>>?{aL8kR?rq<4ZVDO5kOj zi8&|upC658N#g$i5%`KPJ6W(zLfuC<7e!&8r#NN96Oqs%$mccV1IFXSw*F)nQCY!; zj%emzHCU-RIC4~Tzyk-;xofW-T59pA(%y7wp8{_!<F-<GExJqsGuIo4#dbO^?2C0H zt<RygdkZGhByR}bNFXq%`!vfPw57-2`Pp1B!N6cLeJjaryho_o+|Oo=boqcOFO|7v z*gkA|jBr$RAOH_1-n?4(Qt>P{rf1YlsRmW$vQr@Wn+I`mu?9KeefZ63T1%|l*%h>o zJzm~MJHFd5+8vb#AO{Md4?&#$0IT*5J?>*EE9hx>i^UoriqMNVUFQ-Xp3W0AO^yNF zKXuf4;1kxbMewWQMD`HsdL5VA5TJNui!$6WMj+w@&jEo4t9mIIHO6WlFpyp?gf}S_ z)WiX8hAF`8v8mhnVz(gikBj^#t$)HrYYm2#bmf(<&zB*P$f`1_9C^qJFh<-CneC@5 zTMGBw`)lC0>^1P`;y`UjT=<&0iH0>>`$#Rm#r8&*sG2*ylOaaPV#(iwUgP6W_$Oz> z--ocKvEbhk+fOCA{{W9&S~%{kB~@T|r<Aa|7T^QD@sdK2E8?3^+8b1#`#ST)*3kHa zP_;;&+fcdzXNX58;Je{=osL(S=93sat_}}7@dx9_#6J|w`h=RwY1W@Q3uqWx#=D0* zoF6ra9A%GAg1O~Nv)td^THL?!AH)&p6Sa&wb&Z6|zE75nCV&v62a6G;kIr$B2;)6L zubr*z?=^OL^^3&5k;c;-#*nC7{{RtH-dh}JaO+yytdArl+G)2J6UqZLhDe3G5B8;U z0rdoA^y09z-2+$E<ei=EG}}~9y$sS%DBa59LI5Q5oudm~aZN2wcWdZObiFsiDA#&4 z_8MGDOm`8;=@F62<StwHjKxQ;<JP2;#@egeCbJEt#-|C1BL!S62?Bl9GD_bnCu9nF z=mm4r_%P_tX>giqT}0!8e9MPyo<{fGo(i6v4!G-G6n-_)wCg{#eUa{N7?2=`%V!-F z`G-4HdJ<_V-PqC#$mldrv-q|d3u!j8$GhkL%4d$@izxv_+r|btB~v|edFQOu%!zKF z@P^pKKHLXgNO{t3z&VOyRy6lMUP;L$X1u~#d_m$!Jfo&t=@20VvdGe0NWFmwqBJ1m zC!FzF*FO(+ElH!k){^5~iZi*OmVMFyq;R&t6(bqORr8FIRn*O^8>7c>s0hsZJD~)k zMQEYX+#Ya1$0yg1Ox5iN!a7HcZ%NhK9}n80Q2Sk`yBv~yw1fo&jGXQRJYd#r+P}m7 z7BZ2^C6&7F2qcfnah?K|QH{qO3=n;5jfQpArJ1}H4xw!Wlk*9Dm7A}~V?R3%`03uW zo!BR1?#~A4{{RZ~&kJdhX{9_*tE7@eacit<FQuzO3EJ^GTgeR4GUF*Mu_<AI-Rsz7 z{iHu-?}iV1;pF&#ZD8`RlW`U8tP(L8#^Ed}BDPN|>c`T*FYfg35y5DeOMQDU?*a&5 zRg7(JAIx=DnTFi(n8j{r+NXgcNbGb^CeZE6!dSBxQJD_s1(*}jv)8{B&nRDWZ)%;D zk96_RiaZVDJLt6!hdv%28raxbV@T{^kg+9;MprVBI8anq3#jNi{E}gHIWHk|%yw#) zhiLx%fRYJ43KhVv3jY96@V1w#NqM7cHw%3LAs0>Absk9T<}nI#J=^F=tplxi($7vy z_yI^pGcdPjl;@^nW3Xen#ytg6M(rKHhJ0V(%@*}ziXS3VmN8xzGDtu;23IUg4!v@5 zUc>O)<A=kK1nbbvX?dtx+)Bhd*loVEk);?0TU)=~WqRcq7<3E?&3yOaKkWYi5?#EL z>a%NdM*~kR47=VaV<XIF`3AumVY!C`aQU&-{yewv&Wx?Dcyq-t>Gvv5bo+u!ANFHq z-Z~C<W7yWd$w^pBO7=fs^zYh(K)Udkp4t?CCe>}Ro39O7TtK@{K7X;?I=*wu1(HPv zfw<S3Sa=8ac>S(*Ynx9K_>#u=#0?lX7A&#pm-edUZS$a&R#?LnAQHPv0s%NV_zU5m z#=nT34Yyrd-pbxsHi;Whnf$dt8?STk@{U)rue6u;r|=)fKML7Dk91ul#8<X*nQd;2 z;v36pP-RM80+$9p18ws0lZx`^Mo@m~s^w{s{9*lpd{6MBN?#xN55+dxhMgR2VzSla z8~0>w7WWbPXvc5NxJ>%yz7@OpspEYcPM1cx@XFsLh|0-$==M9G+ivMbKZk+SkzY*w zZ1~^tXUDqC-Xiekt)|=A!UXfeLYtz)i2%B~BYsA9q<&alyyCuX(mpn7a$1cY^f~oG zb0FK~1(_#opOmrVAQD^W_4ER|X!Bd%B3f#WW5FK;ue?!kb-hY!Z9Y4kNf^?aOLn(r z#x@Aum@2k-Eyp<RU2VU?UmN@zo?nRX;jJUZ+C`vtlu38y$!tq)^CykkHp`N%yF9=_ z8SV$6crW2U#BYd~cG{POygvtrOtLqbExr7ndnq3(ylUbohyx_3W+32$fm_}-{gnJs zeP?N^YFaejGG&p#iq8K4&zur6Om^}G0N|VzLUF(x;;M62(UTe3?o!sjX)l7hufxlK z3F;mJp8HU7GeZPcv9rb>3<^z+h^oMUt7R+>4<f#K@OF>k8|x`9JVkRShaOOjs|(3- zA;(O@oCE6Hl#ccG7KyI@$QC{ry3lpaE=>U~@Uug#381}<qU~k2Xju{_-H_;@`W4Pi zd@pg~-4j>Wu4njNZFOy<#_x&dXDN;TvK3MXOq@Fpyag!5SZ~n!s?%QhV+WB2ji*84 zD+^_5CxUClveXrU3S3#rv6&QO@2sv)P6v9(@#pPX@T%iS9t_faEZ=3fBYaoL%m^6- z806#y9HXh{*Vn-{e+?V`5<LUN7pZ^cT$v57muqa&vjy9|<RBbv$H}>ufWdbR*E_5D zw#!e33maJ0D=Tt9mrzEYWf;H#+a&?+s4-OvN$9mFn%@!F%kewK8q}8>KZRcNO3{wx zg}mpU+(ZY;QEpI88uj^Aii~uvPY8I&!@dw`b-fA3qp3?EfAj)2hmZKot_$ZpovFw0 ziuuo5@h69TO{qtx>Spup3gRf*4b#Kzn6tbo$R}=bjGEoi{uTI@@6DTPQO|0aJx2FV zGxBUQ1IO@?Pp%0S)Tl)-dDvdlvGirX?K|-=#2Wtqo#Sbt(RAY^R@ayJ2q5w!nTn*6 z-#+<ObDR)xJqL6C7H+u?vfdE*OYs9z)hwo&BZ+5e?<~k9g#*qK;Q?&sJPZ@qn)&+c z#$F$^HyQ=qoyMsQa)ppxg^3p=9H>BMIPa1(jD3B7M)7q15P~ls_!m{O(n}`Ax4O5t znk*7H3c*|hfJsLVMn>Q>QBt2Ox<zxV@}t>4Cdu&%%fpuIu3xT+1;ak;J0jO)D>e%w z1X2*3{McL*w+9u(cyq&F3H7UWwD9fs{3IIW4kbx00$cfhS{9QrT<s;kUC2Xq1YnXX z=D+dR#(p61{k@!?AGg%+Cw36c9l&cKyLsDc;J9!`NiuCByu-r&4No8arf(A7X_3Jj zv`uXTFPk3is_hon-iJMMKnJ0yzLqI6wyUgo$^~z;YmC;DNb!WYRgf`kv0c%C`*{Fz zK<qkHQFwde$c;hLEtueP7##cLus@g;w6?ZB1&(9jN#TksH6}xFs?rq%fW^-s?c)F( z`kKrhEAjN>&xZEQqx{Nz^%)0|#wj|I=#XEz|JVM3{vGK)9=VP`6=|L$hVomBa^PAB zV}*ej46n9MFhJ)Z5z?XYzkoakf2Znc@Y+o`;rEL58>p|Yb&s+~cLn>#0xI6ANZrFA z2+p`T{w#I*&&3yatMJ~(L;aMrJ1-6DI(tto{*`x`6H%6Vcavz(F57krTW$gL`9S9v z!k-c~F{WF|<GTsGH+3^KenzA%Qb9ClY>K3i><%)l0b)7LcyV0*O!|i|S9rUhP54ve zkBfW(;GeSo(hZ_`V^J3=Yh!T*+DB)0?176wr{+9o<Xn--K9%WuZ^hkK!Ar#=-bZm7 ztkKB6Y!b#n1g=7>44(d(KHd#2*M$BlczOIk<I4#3{XRmdw)cvPqEJ3ph2u|^faGAD zb?aR1uYj)p5_~87KfoJnpBY7KbtLzCb;aTPb+xmRzAIID^Ea2y(Yy}45^+~+d}awL zYaPivU~PO4;mvbd{hKtMBG+2fU+p&*7uOQ4k!8rtYKIXS2_%9D0FF4td^4>4cld+j z>n%lYGz;$w>Y8MWX?tNR32o$-Kp3<VC<yU3?ZAv<ps&zBgPtb%fAPn{!^9pK)2G<X z@LYYi)<~`)o-zKaMVA?5Bz@3SagN|%d|CaTei{DJ9tIu@_={y7+!pdVh+AemxGqyF z9uTE4>VE5VC%!uEOO_;5cXpnK;wO)^{{V`*?xCpNzJVl54ZM&`b2K|Hl~^1si?PI! zFgfyMR*ASc$Qby?Scg>jGowwa-q_!unS_@2F7v~rLf|oTGX<7QAVx@e7~Aj^N`!%5 zzgmaD;rl=QKGf#dH9cG6rj4ZEEEZ312yIJG)8kbPlLwb^*x<g>UHBnzIIl1t5WWuh z&r1>bH&M2l)<~Hye$-kiBaMb6f>^s8aLMx%oM6{wD(O88Cr--Nx<3{*T~EiluA8$> zw7t^q5XLS8A}C)t9fV6Fvogqj?2)mI_TA1r&s;wclSq@p{x;Q)wWhR;l3Go0CNN`y z6sgKE#{isXur>DwjivZK;7wBR;n#(tzR<in%^E(DraY^s$FOaVTUaM3Y{oKkXwjf2 zb4K|f{1@ZDh;m1Nspx(bS#=m=kz-5aYNd+Cn@^naBymk3#&;rtkC$dedlV`;Zh6&d z+hQ9p2MFvQ<3zZ7*)3TVK=GiR4^X^57y*r^86&k>wejwlAUc1IwF{_4yu~3#az1`{ zhEcRA$-vGsPJJuOtb8wTt3sY4n^l70)aMei#^`%(;ZL_5gO9^{NxUfx@XO*IMs>MB zOjAbc#d4qpWC%;+)V@V}aD|nO8oATzpA_`V>u1xV)7}V*l!oTlB5<cTZ!nH_p1_|@ zYtQwx_>Xm`rTCiaYe@0?$B3Zgfx0$Q20D_X-`2Gx@ofGcwhM1-1?*sNONkEFRcvkh z#Y&QXq#sK4e+=m#9d+=R-WIa7x3`@J*<TWFRv7?0uo9ep2RNcyJA#e2JReT*CbMy9 zy3N0d8e91fnugjb1c|r!#L=({a1ICJeYAB;eKywr0PTJ!)uMexVq8qjxzGD-yploW zu+D4folo{%`1|5{o6XRo(sdUHbVVey^ARw2`5<7N9mD45J^EKU;a`I`o)Pg&=sy#5 zOUr#iEJ+%!JgGvQ7fE*K0Da{nImSTiQ!GS2)6}@rowV5TX?1;C+QMJAwaxzkm<z08 z<M#{)Of!(9C;gCXtnkl-{{U!T5XS|-f^<iQ&U9k&xi1vT+!i_7ocf0M8Ly@E-wF6i zA24cu8n^o#EZ7>U9$@YWObHvm`n5cD^{=LW3iz|(UW0dasC+oque6JMn>UR3X6%^l zZsje$Giz~kg9%-%869zg4&If=Qya*wYn?RdyI$wTnkVdU`$zbO*vp~#dg9jQf-IKH zFj&h0!HKZ!!1@NSp#BQ}$Di<&>dW9iAKB`fCa-I3X1cSygoc#^1v0@ZowKU5D&-#_ zpP6zoUtIWa{t6%AJ6L4U{AHltXnMRmnCY`fl7?ImB#F`EhEb7`v~}y#72Rn+w}<>J z1-bBq{udgzhwq`56AzgswbzvEx!OCMLXQ-He{_W$bCt>S=a^P{Bz3}__alS;3HRWg zZpOz#)a+)JS$3!){LRCS>Su6s-~C<z=qu=-0Di%jKMb^uO5?-tbK<Kfj7e{!h^<ZB zQXxKIx0+^)%vK-5<dEG79W=fNd^^^E;VOqz@Q;hG@4O#1pOo5mw*LUy8ttEws#X|v z0?#$<O2Z)~Eh3YU$ACV^_;2yE;7^IXN2qvLOPz+hr$&6+9b?Uc{wZ2a1#4+@Dx|pc zBXr!k&qCGZ*2Ycg7Ii{~y6TTN_#5!M;8%#XD~%q|UoNqy?w0FGyC+Y*wSG93+TY7A zGJg1GL!KL&_n#1a4)F8o(>$haF6Q_TI_pR#JGmVW5IBWP?Ovso)xgMOjDz%rhmAZP z;+;t~9dATYd1-5L6~3$GDAb^hiiQzP@w`EPQMp`|Vxx{L$D)_xpMbn&ZQ+|;e$(PN zhc2cqCB@;6*I3hFkd`vt#-3CY!hmfIimX5f4f7i0`qbW%HgL7vPXN&T3Gu(fI?G!4 z`deLNL5drTfvMb?AiqUcLvI|=nAgk_N56cE5tN0(NFRFE@XoWOd`KFWx$xy+ySufN z#L!z44EB>S3aN1ns<SI70PUVI*dT@?zSZ!r#y^KXFtm~{0qgp9uRW8z2H#D1r@;)! zL+mWkVZq&(##M#@;AVJ}!QKM#KZ~^g03O|Vf63G|#87XnriM9QAG)x+{rOS4802S+ z511;j1X8N^4n*{7%>4E72kiBGe){IG;L96L2gR4Dt97Zx2)Vc27y7v_t>Kb5q?0YT zelys&0=x@G_(SpewU78jel%%5ak+_>EmK2{j*&jqCBxg~wYxI&wqGzD;bbjesMo$F z@s5XgJ?Du0FK<4E@)m~cOY<%#SpIB0wlX5f;xo&b8f<katCk+Mpm<xvT8*vE-L0Cf zgpo9Hwa&?4kxmP&k)YbkAR}mC2pI>HRSZ+z1gX1PNAvsRuh{2b))shtDW<K>v#tmY z6cIi<CQC6n1Q3dS&o%Jxh`(YV8F+5~`&01lnn=?(BU;%w2|S6N#ujA38Q_&sk}?H< zNZOz5lkn%mej>Kjz7K2H9tpgXRFSMLPW?7-oHU|1TXBJku~5-S3gvPLTvwiaXSwj7 zfP6<4zr<ZTP|-Bl8JKIc+j*LM?*}-!Mw7~Ne~w+BPDOQ6%<SyUYT-GwNAkbool5({ zQqQC7dL)`H^fM%Emu&3m-vfWkxaS}oa56Jo9*6NG;s(7u-W${<eN#=FaGUL%M;v`V z_E820A&E8pAN*4I6XA~#-CSzwAk@Cnt+q?ZqPR&AE>y-}C5vN#r{>2_EAn^Z$Lxvm zQ^tNQ`)9-b8X4fh<^pY^Mi?6v7z8ALc@9o_73|T*!LC^&f>>vJz~H_c>0S@9yMw~^ zzCE+Iwv#O$mv<qZiR6`na#kS3@?zhgania?bHqOmv}^HW;!As-GI&P!H;$H=RBjwJ z4B__%#^CG+0k{>N;UD-X*TruYYV-JW#@BIaHxYmy2L;%Ufn$w|35XdxgWz??13zZ` zIQ@r)gQH6ajdjU2Eh(GqiRUtJ4uG?&fU-^H<BZ@8^gfPNAhnFHN3-|6^{Ma;=Zmym zUev>HYL`+3!p{tHw2H3eC;Cc;*!Ua=V1xp5fNRDq{u=8(DZ0DU{55*ohuFw3Y>H;Q zWhan6QoBd+yRxXS({C7l&U$x+yf=OS00>l#bzt&&q8m$xitBHyu0u+T(C)!KyNdX8 z#6BO_ycyyfJx<_DqeQH}UEJ3~2_qcf4e#b0a5#*E>62Pg#WtTKGp$Lcu6ZS{k*9b@ z>|1KORPx=cDx%&>skdtoHX;__?#m3Q=qvO);Md0Qg|>58=zkNhPJ;&TF5Z16$QZa@ z2Bt`PcJY;xF&e2DVsZ)ccJbDM;=LB*P56!*Q(1?U*Y*~OuDHksLhgn_4^6TB$G2+i zG~a>~$7Y(Z!^?B2+s1*~Thx|m<J@zUR@)E<IVuKt;;_V3=2okql_r(rsrGiKb$j6E zkHwk?*!*c>B(RtyvyvHMTp!&tTe8lFZwG3|a7N>jE3dTir-yV~RFlX0?Ut6&hjoT| zJo~5v9sdBjZe;6|v_Z6k_W<kj*TWBmo-5Z99cRK9S3-Eo0W5FjLy*N-ED**+f(axz zz!=5|Ccdcg2f<GRTw70N@fzYAJA#aGP)Ih86^v{9>~qQaPh5J}oh22cXIvwFj5xj} zcoRo5Tg`5=+v+i)`+OVh)v(2}C8{`3rX~Z-ibUQ){m8}+Cbz7#-W-<Z#`<Q`$so(5 zfhv&SbT;qbBX-*$40;ar>)tQ;KcsjoPPKV-xpiGF(hzT<Mf(am0IILFNgz;v*;DVD z@l8!_{6B3S^{O2i)Cpv`v~;_Sl?UaIa;&=tTm~4&LsJPy?CM0DwT}kVyiel~3&}JS z+`Xl*E|%BwCeQ{6QxMCpN&XNIbCbnexw!a$<F~hx_fdT!-~+uPkccEQpSq1N-1&xg zYyjrAhk*Pk@mlu!e-P;c++0Wh03q>ewp_+{D#;^*6XcRpr+l2(k{^INb-tes#5#nU zys;NUZ>1PoX#BinH<=)29XA+blNtM_x*<{zcV=ekw61P=r@>m+gviuwty1C?m-lRk z?J^W6B1AGKz~dM=PzxRoDV`korQ_i1Wp8fYAk(B9nm3Df2<Wcr3WLX1`9~lx70c<~ zDe+H+ujlaJg{%a2=HX#5-7L3pxpf^@e<&z9`G}2IBc6D#cGKk1ekCFB{pFp`gMDrL zr7;(4WI4tPM};2Yfm~xOc&n7HAAMbSAx6*LJhxczpM!jJG#6eAhSN{fZsqdl((W!} zf-ReOd4Qpi5*!VIR55PDnr6S?i*JW71^%UJdv!EQh$WKXTEM%(E%QPPlwL{RR1h(d zoDEHD;0KEI0X5D1uqK@e^FG?!T_jdKqC$b)f$7z7dUUR*z@9&gRZr|0H734?3VfYi zyrf}+yUK+`@(?!its<V76;4*SE4nsO>d}d!{C3o>^ynn<#)2ldmJt`)tz&TP8zT`- zIU$wQ{HO~1F$Xofu6#7Q@ur&(h`tSrm>egR_S%_}3GO8GH|{NV!PLZzLaH~GRCHs_ zduM_?C*Vy=SmW?@^5{B<VHk!?BV2_Y66!^j!g4UAAss#I&^#UcGt70Hy+g$sZ;>QY zB+q|x<wpyjF`i~2&@c=!FDIxttX?7!mE)mGGTEOHO{Fix{aW7R#dnkGS5N~o{{UsA z+e0o%N4TAuCJo#-nxi9tI(1iH7c>oa?@!b`UEw&jbU;K`!dPzQg^9y%jx-46d#(mM z4^O`(@TbE&gp0%ahM=0vbLKR*u}8U9$5ZCW3{A-x%eT{mUSF<!5cqv2t$dyh)NNk+ z?c!UVGg4)?L*##}j6rT<wi2j6FPf$D*&(yTmL)%l3z79cTk$u7d|Tpw4_ry`^IwZx zirybF^vGTZnn1&pV-R2t4&9htxWO6bxhSo5&xEYE{xQ@oyemABv%?INIA>JaOC_DN zO7D&a9Y8%9Mr*I}SAo7K9da)YTv=VDD|XVuX<!}@$PPbuCAutrVlVq7jDmBD==6Ov z;@#`Mf$_6SvefjIKO}mc%ulIAyRxJ_DoZc}8Ei2lBCp%>#@9`LBzq?JIBykr-@$`a zOAm;)nu6XdsJOYbwrxBTM&ahdvI#%{f>dGo2N*ayP%nuff=?0rCVeAPQJCa9bQ>=M zj>pZB+_)VB74-z?70dXy;eUoByq90_y}iz_sVOQgZ*QK`ON0k*=am=Cn4)}&avNyn zjs`w?)IKtJgTdOL_G;Ma{vBBfXSBA8NYS>EyKZMfC6^>;FEIxIGM+_JN=x^DiAol_ zlRK?5$38yN@9s5-XPiTD9oPFwfQCs-gFaxDi{%Ctngu5~&t55b&%|C8@rCurl@VE{ zfq&98!6QbpWSLS}=ZPedR1AlWIVX^M*Om{9ntzWK;PFnEajQveyCJ{RAS;5b2G%RK z6<^{cGL8mEHOgxCemB0jO=H4Zy_A+#aG?`NZcW<-W4HG)5tqkVT;;kku9Zt&bbdt2 z%Tu?#w!VtiIdnFI#I_30iOlVAkT3C*0{KEV2PYm`IrpwM-{V}e*~y?ys107!5UUK! zv@iq!Ayi*A09;{P13gA^PnS20FD3DeUMH~C@2>S2nnN^qL|TtD@$<t8&I0Elo4$Jr zhU>(hWu?vTr9HNRB&FTOwk_I89AvYQ8AxuYCpqojx+6-<-bNK2-iNj8vv_|}(2k?v z*lx6o(4~!@u2rpHE%Q1!!y)bl(d&S7UOA|x*M@Z{<<##U0u)D^2>htoi92yLh0Xyz zkbP^2w!XT12(=vwDYZCmL+p|><?bj-lPHyxcHo8}jAMga-W$8|OX@1AE}i8R#E`Q2 z_zT&Ln<E|bhR%2ft}seFib(c957>CW#&JflY5sJvg0Nlreq^HqJjnjXIU_t~y%7G+ zK0dR)H=3W7;){4fv!oL}z3UI-NS09BPEI}WcJ&p`_+Q3a=8>V#{{RZQ#@5zHm3Nzz zd4VKlnN$=Q7{(orGr%>)YF`+BCml)K#rmD?y`wRYbP=eC7XA>3yAbEO2d*>HqVniC z!5)X=UkvDe3)H5!yVY&9>&ucQlF_6FbPPUU-6zbW8NraQeJh2yu=s4ZA+9Z^zPeUC z#uhYUdNW3n0pA$k$Q<)o7uui1ZyxEwD~o%LQpzmiTkt+#_M;m-+!ND0VzBgG7eVmb zOBTNO@l1`yk`1tyP%yrHqjY?AJ2Cjyu&DZzQWi9|%{RuH45>AqnQt|Ne8M|uTHkUL zpO`Ba8?bYZd*-?S0PL?3Urim}ho(ts=H-NMAy|+xBm&Z$kiGMkHQdedZtBVZ0Mc}5 z^t3%LVPh&|JTR5RIB#4a^{h#LA=-G+ypv|y<3fWE3J}o{NEx`uQb^<;htrCvxjVZV z7WAKl_d2{%Y4<k?Ydq|xL1X~VdFAB7zT&tWM-?OdC%mz{X>_e9Y6u(UnmI(*34xrt z$~eIO>ibrG&X?jXNmyw2Lf3xWLv}^Z6}prvGERDoj1gUqg|29tCa978K}+<C8I+fH zXn|3H8aR=ca3p^d<DPiyF`G!PQwqw{P1N+qfhW0^`+mc2A`QUKOAov;fr2_5<aDlA zQ1FfK+EPtAX10x#k1|I_XL3o}B8U>*kIl!ueTi|cd>YhrAMEcNYACT^$gLYiH<2L? zpWX(Em6)jG9D;h{v9A0tFNeInPvOsr?X^87d@aO!sTOl=;{rLt6_Ysmdy>ACr8M1* zJ(EoM-&XMMsc5_PX)bQ<cMvuc6gm6cEPR32IbojpBDZ`$p?FJB(k|Z0-qs|vXxWt9 z2%HxuAwg~Oa4>KV-ZCrJ{v~*q!#*C?qwwX0@oSi6BJf+H5O*lrt8mE5$DT@MeR&*b zX&xZ(s%iHYG3oHY@3$AQ5jDV2Io#MQ)aRx>J(`bO5ajJ-dCUAW@kPQzu6P30@>3+7 zA~Gsq9z3Rz)JdKJ+!P!io71D$yeX{cjc;Y~67N~Ew=jV3rzCd&05cK_`Rc^T$Nh%q zfr2ZwxAE7CybG&tu-0unLM2V972w$*Rv;)6#&)UW?)5%{im9yr(VisM5`PZ(cSc*g zf<$wytP(bDfR$q7VNP%ZADgFYmgLrjrrxaQ^!+#CXNQr$v2P}|S3YA4(&FJyc?p$4 zQgfZT$R`BXkzQ)P6Vr_M{u|b3BH4+MIB^>8`{dlI2%$MAa6EUdPZIbu#y&B!noUaP z+ROr~QUGpU5xG@QJz6N#9+(e|02BdOx_5!J?+I#9>Q@$jZ6%gFd2f+!88gEO<$T5+ zvG-6%&<s|wPSz$-R@~nI0ELNVrQ64CY)rDYLQez_FPpS(CMilP5CQDOp4qO7d#??6 zk6Do~^%cLEl@B31vPj`WvgePwzzz;ZPAiJnyho<W-`MxMaJ`y9%`Lp@e2tt1-7hJU z0U$3cjFK}`*?36!n%YZCkrZhhIcBzzi^4JpD<hngQ^rWi^r0<m%*$HhXub<F>NZ-; zcA?IG%QGk>k-$uK2h)RF$HqSqv<n!e&~3!l*YT{4Fn=lq8R;u93_WlN&%I@6z6+bf zS6371I#s@<3k{}x`I7`V$=-6ozu-Kc;<xYqC-`GbM$@&Zrjeuyq7xd*&a4Ir87si& zsQl^L+Z)9@YK$u%4&V64P`JGD43<+tBJ7jwcK$%#-9LDTC9%}8%V2TEbed1X{aZk} z7e5ayZ8a#vZjvG~a!)0hnpVl<y0(8h#Ik}v6W_yk;XN+*L$`2qKc0jZ1NdVZ@6X;N znxU_F6IYJhzl+V^i0zYXsR)q4YzmBg+jF?*rf?2%#we3^)Y-dkbZ6r9I%E<ZLdNz< z+=$^zbXgWtk{kkCBWN599P`f=&s|#TUM|0B<?!rUWD0p{=0Q7?f~U)eg~zeZbI8X% z9)seahk8A~_Fb-@Z>ET{3^MM49YEc~sW@dB8CLi0T%NOk;Hh=Ry!dH(cL|$ul~fr~ zB<CR{Bj!*s)Mx8SM(XS$bo$T2Jy|@<?NZj`#3I^7+Y3py7?Azk!V5}ShZ*I1=bUG_ z@Q21f2>3e3`!Ter^rgX58wC&@*$;#Z&u_hgF<hRz;-8Fqj+<d^e|VZ@hMJA#U0GU) zuI3IyA2Z7=(>NoCZMYpOpM~M@Mz*uq-d#_vTwQ;!is@X+WIUF`FI@D%`kGEETZ&V$ zp{;yG_<eh<MgIT_zSmW>zbb+5G-8okI|IuQ;xx$4P5}oeoL8gxg7fx(w(y$j7uwy$ z&6L9^x_zN*<|^BYzm}t5Q_kRh!y5AM6r>&!j@w%Be~F^D5I4(ZdmMc12O)N$QaSCl zj~OPn^ncnv;;xFe^XR&4Q%LN)=eM1b7Gxb<K6;LDq<frJZW`GcNvGy|7r^fh{>~mG z)n}K-TE*4wt1^k?x702qS=g!CcNv(p?7uDtnhEMpYUY1v-v)RO;id3T4tR#*=H7VG zQpV;)W+9mG5P3r)H3Ord40r^dw7flY<KK>Y`dWDFQPCuVF_*Q1B#lP=3=)9K%%_i( z;C0-1&sE~j+2+r{iZ$;6+-b9%W?!_#?{Vf6fE3FiX$N1MDtqFy<=0Z@Hn(TY%cJ;; z^TW3HS`r&z(wFn@Bo?TMN6UrBndWDsA@$;>vC?d;?Iy7C4e8a)s;FWrRaKY}aVzE9 z>c3v5o8rw!UbxbulK%ifhIfWWV|{Nd&R7GL47-^LQNY3iGtaG1(X?+8Et$I2e7z>t zMPjKs{qPP>6mmv5ECKohU5P$h+`>-o<d;4q@Kv-?>0TKx;ru6-4Y(6>Ft5H~zG>WZ zoxQlv9O7y|AMswDr*81vuc<V=E8A?DaVK`<$c}N>Ac4mQw>0JWH*0q?>6Y{A62M24 z(xj2u#v1{c#-(K`xa6rldChcD=|2)}tuE$~pHI_BD3WOCVL+-$7<K*Nkbe-9a6K|A zu9y50qaAcPIW8u(*gh%T!3<a~)`By0bmc%&*iuL&j+tOTI`4G92Y5E`Mz_~I6KxdI zOuuRJZ=D`rC5ZuAC4JDG@KvxzI%cg~cvnN$E#Q~LHlJ*Wg(Q`4F<7oi{m}>J$03^s z@~qtx;njhX4MX8>uJYa%X&xlRZ3_c{+sXNu;N?(Y4i6+&Q)#UZg&VWhv_Fm!*(`np z*8DANqeTmT{!4pwkz`=Ich2vbQ#){3fCJvVUsGrJiK@u{8t~o4&|<r8C1S3OIV3*a z`*FY-#xc%o-n=p4FM=KxSD(aF>J#g3#ieaQ*&qx_R@||Wgb;EI7CGyK(}MVebMU`K z)Dr8%TA8=Lft6xQV$zVHZNlsvVYwT(jPdlrAZHt_{4&?<oN5|^i-))4?9VxH<R9<G z8FTJ))3tL;d8S(dZ7zd+tslxl&ujoAgMe^x^#J=;t-p)DCF(Xu>~kc5<}lLR`D8{i zGIpp^bDZ}ib6i=L<q1dDFE<VjE!(f+`KrHiEc&zm(DGl1pR|X>uM{#qmo?SnIQhS_ z(pbW_dKqF^)DSw2!20qlx=)LKEck)pt1S!mh0_iFq)Z;mTUmnZdU!$x==_9`w*xuI zVz~!7&3xti7i$;4wEqCX)zqxKN&SQIbHF;1=(p>r#TCYttiq}$x4U~zAIy>m0opBq zNHesq+V(FN>Rt-dwOvENekSof$nh?dwXSU9v1nl3BCGC(YtJlC78@RHNKsBul0zuB zN-kWITBFldoOWl?_x}L2f%q5j?!l(i@BDA0#~bd|ty&n81vx5biDP+{kq8ZlhH!Zq zIO!~Z;H0`<pJQ#PS?dd8(qcPQv5d`d#EkAtmLxU?K#z{~`OU6)v%{YZ<d<9U_N9HP zMB9|deQ>P^EDl%f{#<c41oc)ul#2M*#Xl7x)b0#l4(=?pnIaM_mKHX!z_JNW=?Rh) z<<3qHbM&q0<%zv^B3PX?(Ef%zYySWR1@Q01Uklji-xwcT@MOr+Txs4Vv2@c%n#;6H zac4OZ+<PA_hkiQO&t5hE0D_Kbz6a9u{U^m9ApZb_rOHbhUFo)G{W36f8?s3%K^)2m z2NFmQ3EBr0{P)A+uM*y0HI|iU_BqQ1l53}2$Tx7m^U#iYY-iAl^zRLLBg9wlE8a>6 z+GN8;9jP$vJh3w~w1aMNxL%)mt7VbWhVl}}Nvkw|llX`J3UT9~4^Q^b1K2gIJR5DU z?{7CgGm_tDffWwyWr21aah|pFkB<KUZ9j`&81(jUw8x=pmkfsP`$vu7YmJ<K@kn;t zgMv~;KZj2_(|={(82GZnT~ESVOn33do1I&8O5fd8$oU312b_1seRuml{>WE8HqfEH ze-2&gu-dsv<Gr_gX^g`q!$#^AlcpbXh8(G<H-)9sP)@7WpPx6LIQWLc`zCEccR3Al zJG+N{q;20UtkPkJVb`JKiuCUdd?)zL;te%CPc+u>+GEOqMIyA4qTsUf2Gw2NM(<;u zEB4>P{{XPJ!~5b!v!lnT#;dWUw}~SPPgZ8mTZ4iN9^ZDpj__CPArHcz3hO$L!HqI+ z7HV!_p5I5my7D82H+E^`hU7&vMIsZGiNIM13bKV9Wmh<+m69$v4sC9JA!+{rv7f{r z5v&P$Xtvi=z_Z)jPY6gza9FPIFakzC`w-33AlJG4CjE*0Lt?kuN5nr5Uf9nG61J-d zf?ErS6|uc$m5V~dAT&~<=lB`dCckq&23hzM#-1FO=D<y&YW5ci9qo<WEVs7BcbA4y zagZ`W*&>EhfJR0M`d;6{o(OLYU3fFac4Ju4E(sSYsg-!zCm14Ab`PASf6Fo*2<$qJ zDw)KsqB>)Rg3+x{$zK8f#hx9vi8Q3pt?q5)+a!@(1XU%J^vPxgfahy-fC$Db-~Jo^ z#C{a;ifUdb_*-pubv23p&*AIaksXJgNO2@mG;Si__Xu3@4pe5o#`tsar{RBswHxR7 zYvN12W5brVOz~(92)uZnF}waH@=GE-QRgv;i@mxHzF(H32dVJi?Mv{x#9GXjJ{AK_ z)qJ5W`bF?aHC0kJq=pE?d9k?!M>J0)ZG*MW4m|pp$5GicqBJ>nS4YO)1JZO)h#n>X z0E8dn28F2TzAj679kdNXCsZLDY4WZEEEg#r1e?%|0=WPjA7}9w>`m~G#ab2ThdfE5 zMR#pE5?vXbnMVOe-KPu30B!(|-RtW;BgeXixYznuinRBTT*2kq-b4~Ri+JT2aUI4< z5@2zL$RrZnSAuG7@oU0*>>6i-b+~oU4N3|y)xKR*OO40Ri6m(a+7rnyB09IsjKhJ? zJY3@WY!aatsy{lkANVHLvGDK4&1>-cUb)nKF$bG0+8ykEY~hL@DPfrhn8*$@7|UlF zIP2uk`#O9s_@k}g_$~ZF{{RS{w`@$eIy|~lY1gR{=vdu?(}T3_c-7Q&CnGib4XOUv z9}E?4JUYH2I`*NY%jMnujELlo&l_C3BPIq55DqxTYsmf}e$w6o@vn=t$UJAES$LFa zmkBM7pqEBlxJV!gZRPUNlmPt7#X%Vj@6`-VOA$ITw!5Doc-Qtc_;KNDG6a`8uA-Z~ ziFHh}$2P)4vdGaEU8j*42e>A_au%LB_*-pjtN0r9>$-iyM%UUM`mNR0nR3T$$){>? z#TmS^L57RZw~B4K5`ubunCkk6#amnXyg<>f#194;joU|}ta@&(V-7$N$zV~I@*)d~ zB}vj`02GQ+a=xK9pWr<f{vC4v0Q);nXoAG8s7kU<R#Ba+lFp8xw$rnZQIl8oi|Uz| zvE|=W^7Fx;6n-*%N7pCPJR>q2+dK~{2Usqkch1(@Jh?LXKR3#N17D_EAAo#k<0<q# zOZJS=?e$xa4m?uWYIkLSwBs&9{{W-Qu^q=aW!;ud*#sVZW8+`NFWA0VEp-owv0t0r z9!Fa}e@l)_JKHzMPqw?q=dKr+O1jC=p%vghH~#>FwOjaV@?AUjdD3h(tt#5xM0$XC zH_G@Ri<>zX6hrcpo$s6;0mgBu&rvHx=%Z+B7JjT__KNss^ZZS_jvp8JX<k_sd^Kd& zI;D{64EEO&Ts6T9fJ$x73mkpg`$NNeM~3`4EtUMbhuQAl2A}ux#PV;EGrB=3D~^Ni zoHub_$j^&^;I97wwa$@aZ>VWreEO`iM(Xz05m;&Vs^<b**GQx(7&r%TV81bP6cb!; z$Isf2_MP~T;>{PuUlDvE;JXhJNe#SLo;L8-zjGzxK^q;mmsZfFymxG;E}>4)q_UMP zL5GH^8FI|kxXL`+AJrek{{V*n00KTHYBu`Dp*8N0;wxK)k}YpXxsJ|A<b_>Tq~bVc zRzk}Af!w?fMR1=H{{U%iSHSwRU#EtfUhoZ!QSH_ATf?YbTU?#qaJkarg=LN`Dq=w_ zrJ1tGfMovwJN_~Fm+@D_+C8n`#cf*eQ3XrKac@792Eoj1K$3QdGM)ib$>SC1zYjlX zpNhU8zO~f6C#^o8Dnqo-8nw)hnJ*lEWW|dk0y0`WgU<j~s|PD+$ylY=Q~E3LN5&ry z`0q`%)jSIw)7omVd9hq76@z4lhJDS2kPvbUZeL?s{v(INI_=aK{vq*9Hu|=jrq<SL zJw%yWHO}bXITmYoVBBrFfR0#iLx&%f@wbZpHfZsG!ZE7q8Xmn0`O%xpneOZ+mPo*F z+yb#+{KtAKNVzNxdl!VXABr{_A-?#X9k++#g?`IEqj7NyTN0&2az!Jsk%1>FvLiUj z6~{U$yFD4L-skC5{w>o!A9!lQ*W$JPm8|n-REJJQ0d1XvBgu*7NSurz3o9!*+JS{w z*1jotV&6qgH6mkWa!tL=7m~_^2gp$y5ahW*$Xu$N0tI|^q<Gulzk$qFzAe<}@eSqJ z7Rdxq`4HfdyX^Db2nbenUHA^IkO*O1cA@bX!F~|XTGzljU5=BeO+2nwS&&Z8xyTD_ zu}HC;VU<;g#~V<CnqJNQtw@tvG<w&IG)SPG8}@wFVYkz4ph#Q7xA3e6C5b|$mY0a4 zQ;w{%Gvwn1I#<q~J@|>KS!prN@fo7f;gaRvSY?;Xb#(a&h;EyHNCf#xat}aj$hE(X z{{R^EK;9L<g8uU2Qu0Y{rofhw?Pl7A8Zx2OjOQOVat?T}F!4?A#0!}wi^f`Apwja1 zCBCP0vPzjCC|TSqpa6WTL-+Z(uIf}APHK}<-4#4h`(XSnn!;}cc(&H>#+FfM09yoT zMhDLo)bA7LCxW4veJdAH_|E#qj|H#6Yb}$lu$AG}8dlVka{PsmksE>m3UJEU;GVTp zPyLnC#9EET{{V*X=XAG-NHmLa5x5(^W982?B9$QE5D6XgU9FFY>@06!@TQkxZD*@T z9@wq*c`n}JW>9gvatIxm50s%QM{;<srR>tQUZ*vl?D-c>zxc)R4)*Fl72Mv%cNM`| z<F`kTXF{P-Hln(blay?Z=Q*m=cmmSi((W&c62Wo^1YDN#Cvk#vw0z80z7!tVHT3?Y z;%|t$_L(<^d}n5EET?phg`+jC@}UG5Cfu&=r=Ki<0-g!R56`|X_#LlBG-;&W+ud0# zZX}BLF-WL$lH(sf<;dIybNJ(TQZ3p}-h^s+9+Tid1l?a>_?yFefz|hbt8WNc=Li>O zNtDJ0IU%+jjz&#bi}sAyd<%OM==MvZTt*TT_J)$>_X1Tyf>IVwP+|ZRpL+416HBG| ze(r5P!(F?zn|40OV1*sR9sqd`{i<`hg6+ZR)o#zn4dS^i(^%0Z)fU&~GC40Sau7pE z@y4jFg*<?x8O}3ZzgAMSmZ*+(@SkOPTlUA%z98ud;O`#6cc)JY4F%4F7z-(Jw8wF7 zg<@<BzT(5UQMlmxrj6qN02gVpNpYml3u)Ghu9s;NMJoRQ79QPv`5A~9<v_<fv(w_u zFX4}lHOo0QjT$L6T{_)=cWG?urX9=W<I0O4DC>jC$9mM${t$TQ!?!DI;Y~_?BU%ny zCS+MkZQYX+F8#U2OQr(;nEhIse&exfZq||Y@_y8R@QTUyp9x-G%XKhjE^boIB*)Ds z$o^v$&p2qoJY%h5+<wwpea-sX`0^bd$?uUaR`Ww<nV}Mn7Il<-vnc-nS>=7sxhu%> z-xYi=@js08!KVC9I%ctc7=Nbe-{{j4F_z9Ylb`MkXSQpP9{~Jeq+C7cgmitdLJ?%0 zAr}|1$iKqIV%&O#MJJ_1DATo`=1O*Y8vZ2FHC=K@^{)-;^7zwBytr;r{?O!%s<O)~ zx_<2Uz}t?Mb4%4B@Q${(9xK!=ti0I~64K!o{!r=za6<%E`F`+~aCpsgT5g}?l)q^- zoBc;pln~Ipy0Ku{DmNfjL@UlvW78Gt`cH|z82E!uZ3p8u{e`^h<V5yDNiL38mS}C1 z=V|-I5HX%O=c29DY}L_<lfCYG-mm*c{4((-oeVxa(x;6;3va64!xg|;JAARUm{X7W zX}kfFP6lg<@gA4r4O2jUZS|P7Jstj1*3)fIm~)6C*&Yv1myC{pgH)H`4~Lt>FzX%@ znm-=3v|;0lOOs-Xjlj$it4Mca1I;n?>)O1;d`0n|mv3{VXwzGGb>NaAHLbi6$15_n z0v|nOmCA9KBya)8YUZa#AM)$*{;p{%jjc~i@YMeR5j-UmY8p<jWus~NE+M;k(ic|% zo%XA}ncD+t3K*Q=*L!8-ui3*;*DN*tQK!*$Xk1LU)>iUbTS;&ffT7qKkRE<z10bE< zYn9M^VWfD&O^JRu_+^oyh%#%4;@0uV$t|^l?q%R)We7OhG0hu)0_iY#dh1ouZ(m%u zvU7iD6@at*OS@xl+GLw>RRjzTg-6YfxTR9pwDe}Nc3K|ibK>6}_+w4}-S~Z_+C`+e z5=W@%ESK`0GI!4~cLW}Gs&IOam7m}*+C$=P-PP1>X?@}yBKIvUTF~F8tfOvNO>)u4 z5&jZXrZR9d#e9dMd`j^zf;CM-<HCD9IV^v_o(Xp}vbOF~;*<!EPdQXVS2%u^x#Ir- z9(*qN?ji910E}U~d#--RcVxE>0CEQAdu`GrStEt{(*u$zN`p(^j-C3HrrX^6GJlL8 z1UyZqoij+);qXSG9LTp;V){F+HQbg`EsfH7VY$I6xmUj!&nMy^7wI1jW1i0Q!tx^& z-Dj*`N;NBKpN8M$N995W00FbX=dFH!>c0iNQJ`vf_Zr3hvD59qiDzFjcJgo^0^Ts~ z<_?S(<>+z&AbR(}qi1Vjc)E7Ed3|C62DY9>w~I1l21|C`CKnhjxp~HOQ93Y$eb;kX z%gFalANHg1YeM!q<;{+%Wp^2lXcs0S7*aMyZQeJGGh;22jB=*A%|pZ&+Kefv{3Dj{ zNw~HiY!;WU^G1>mJiB>L1E@L1;gAU!#eG$xe#~(AjtH&(8eLg<e^-nb1+AmI)2?J* z6g|XB?7N8{GPc#uI@i~~1AG^)Y0|fV{wsVtJ{;FH_!4VfQCMnPUD~^H&|G8846ngS z2H>YVvD2DWDaGrdQKdU~KMu94ABbAcw{L0UO;B2WrOLqtq;e`Ta(NdMkf+^a>5Kth z%{T1vt>4?nr1;Ll%Jn0dNetKGOSzg;%7~&n2_zGNw4S-gTK&8DhvGlkhU3B7hll<! zriZNQ*3mJ%x0PbJQb*pAQXTG+DI{Zf3)Eu2F|YpsYJb^x;m3wGZx8;@mzTFU3p3nV zS!=S~Lu9`o1~?~xO)EwYSz<1Lu{dGSX-^X6q*cqQM#(mOv*KUb>*C*q^!4!#joezC z68y`iN@KQdt(<vi#dsY6Wd!iKC$E=X3%xHzwS7ZGcbfHZ_V<pqCJc<Il(r=#AG{QB zI1OBnj{g8_pNSqQ@eDd&i><9RWSE6jvWen>-Ix&GW=zeyg&~-pdh=gzd?ol>;eUx* zOr9V3n{WRB2_#UtVvlDmn-PIHOQx9~2S)q5U6nw|KArs1gl^7slX{;xL;E!Ni^sN~ zXYpmOpCs`NDbr(dcZ1It3~=4R4hDJvYPFaA6Wijqg`NCUr2IaA7irF-Mi$b^E!DdL zz5K{zcUg!S+#&?$fS_0E=fNL^9}T_&c=P@#-x|+#pxoO^lW2O|+f6)IN~&NM_c6*D z@-v90VUj`KI2F^+{{RIx@E?XX<@k5vEg!@l0=a3*#x<*PWp63lxlO$G4JDk#jydz> zC!NIftYM9BNG2&$P2Hard>Z|fz8QRH@O{<yk^P?9eB#Fb(n~j6xMvC&#B98?DFQcB zkhtVzgVV+SG=9W?26TB-O!#LmuVJdT(Ij#dnighZjkd1xT*6!K?GlL8AGmRm_kYKK z+K0gZ02MqVf8nniYgY@S>T3(lb7Ok?W2r(1$t|0t!`M5tXVb1fEp_i5-uPpB{4DXA z@nwW<{{SAE+!A@hAlrb3^zDv*Fd0~a!@peJCstn;hBYFTebd2yA$&5M!8(ymerx-y zbl$G95o-#vaLXp$>`2c$wkhZ7TAvDTyc1=7+H?rEse$r^VI+7Yt1_IIQcejifKKCH zZ}Cs!4~u+3t4MWSRdj`vyO^wCmRz%w_oQ~&7{g;~@Du^gGHYnMg{Our{@>ws`&_7B z{VL!I#v~YGdLRM6hXHfz*1bqVPB*>GWfh}7z_R!sp!kj_@jrvLPxwc5rcLq5Z*c7f z?&jeYUOXOz6P|wPuIpLwb>5xei|G|zg+HBdA3ipn!*ut4V!FGTVY<7!`(T)EhUpom znQo?=>F%672jk#4-sk-b?$3Qc&$qAdbxFK4(|6MIjd;%&&(hg;{UI^wPehlsbqj{< z?-57XC%6_Y-N*WPFpJv}pZAMGn!@^<&CfrOZ7_KP=y`;v<%7|7%exf!Y6#V!b}=?j zH0$7cr0mS`X+bj93SM4bYM3qqOWc88dsSJ{xU?I@_i@Roo5l!rk1++^#*OWD{_**t z4id6^N#-rlD1h^pN?Y@vt`bNatWa-MA|PgW$CAA_a;IvqD|?T?g6WyI18l!B4Qs}# zM=Y6l*I!ffg|V6X3`|6K)k$aQ+a<{X-kl4XV|~cKo@6iE@|puR>!iOLxRehG2Ds8= zjODLsvHz{A7bW~%*BbS{UA`4RL@6E0WpK^5zMhsQ<Dd*P!J~zs&rnsxElJQhK(3m! z7`NP~`@<|n)uCeTqjx&x{M%GufknRTy3&S%t$%79VzHKOx}s6=QLk?9d$AT$N&mez z6Tv}l|D+3-tJ@)?x7qY*ezrI68)QTZf7X#0;j8<Y%C#|l-PSf!E{Sco-8_d=!&x@O z*}^tH8D6xs3Gi^sK1DH?Q2-V&WeV(u;XC9SC%$)~MJdbNQaVKM%1Fl-CKWz@ov>GF z<p2I?`beeQbLFf<ms-dr^G;u^`gp?b`cLCdD3WDadkr3rzwE#j_T1`<(L;wlfvtkl zp#4bZe{^dBCnKrzy(0DnVLiuuh4|@1f3QqwWK=fN7;+BUR@9-sYwd^X*%8A?e?KL^ zf>oXl{)cb);7ZByr6}Q>CPhH%Tk{<kOeLHtKN8KAvz%`c1C~zR^48kiYp4ahE1d$E z?nwI(>gF2XoaZmx#>(XeBd;l&Qt5IIza=yvkB5y=9=8=|pJS}t0Cb%zFwue5PpVXT ze@v`L8#b$iH<VetxG0Zd8B)Ke{6q?45mc~(3x)-z&h8$M&dGVbDPONN<fL=DKEzF$ z;;))SVh*0Y;|mf36Gtx*WVXPAN;Yo{v<>MqgqZHoQSx{F%TC0+1eN`RW}hZfmzC`n zW(9IMNL;Gqa1j^h#(2-01`n*&F=rR8l<Ja+!APw$Hzc+$klw+pYkvGXlCxF3e(bnV zVeW!+89|8AjN$gS3T+|R0p!^!6GlKC^h$v{)yxbm0GWvey5Nl)W{PfA4&P~R*9mY3 zY1mMebJ!*C{dnq%DswKYiX7Jz?}Xas4wDuaOOoCi{T=YSZc5md8bMJ&DBo3^IJqX~ zxm8?m$HKWSkd-SpCY|YGvh;3{zGN#>?0OyaT&_@bhGR^5_%5wI@1&`S(lq}jbUfu6 z9wSUcVi@zi;b|MQwx#+#6)ax^<NV!$i1zW@b$P$8*3me)ld`2gIV2_LTy6A?(meQ5 zbQ!J0Y!goak8ow`T{AjH6Bb*A<e(K!dlnhvyRq9Ex&u|AGAeb-1!wPkg<Z=oVA(vu z!X{aLD_npry<7hweue8DT8N0=FZ(sUaE^=2nSo^v%1^XkKF<G_f%}KDBux9WvJjQj zsTx}iRQ_jf1#P1D*A(QT?xDXbwz0+l>4c=KgvO;m(IEu<U&N;z#_j@f1Eq<f|NOzz zZK(DT6OYy3_s%*WOpw3kbXqY+e1zN<fl>B2o766?(#9I;Fh$sim?-?zKHM1HQwzgp zY><DQYObB&^WtqOC5koVxrl0!_L*I|u0QAr7H^pP^ZdO)O{dN${t%NX$)TftDCZe| zx_Z?-HsYpMs~(4-!Jy9fD-$0a1pOiH`t5bXh1vQfb?|RUHqA~YazX+PVw+VX*DAr; zrH((q{?nyLvx?2yo$NzK-@)hazI)xBny}zKJe>8hy(=_F5uf~Oq!oQt*Q#rlt&N8X zfk2!Q@v7f0^li)79i=UWERhGV1rUHJwrju(NdF5+8=|&f5LDpkqTxeDe!BSYLcrw% zKS<quo}s~_LEzm3#k!ZZ$Cbecj(RWgTJON<;j0)8)%WQRyQ}Z(IQ7{W1#uWP-~3KH zc!z{U`#I$Mfu3NgKjBahf49NEr(mA>D}okJ9)N5lbSY~$=0OJ92H|q*o=332xspG+ zNa$NNBqH%J9*<#{)$Y`M4(*PJyM9(QgL!aFYJpizKCs1FKOD|4jDbu&N!wS$l0(#_ zFVvP!1QNGlb^^1^ChF3S5vJ{*$aOMh8FM>dwP8wKa!H8?>ghQ_S$6NEYkH>k6EVE~ z<=n8?A;CYk**%8@Y+l<Xw15ucZe|F9xdWl*lF5f--Hzmsepobj-p=WwNa0w!3W3Ks z(?T_FQGfhVnVooj@6~;`Ts8>nZ*WCW2m$gwhLn;**$?;I8e3<wU!bbT;c%;<yTS+r zQ8y0@#gan!<|lL1=+K$Y=c2~4*OYUPq1eq&`C^V+V$1v#PoO^HDQ1o|-s^|LGYVgH zGVyM<b+FNHywiV|a8=G&7w;f{B8`xB-=!ptVc*o&F<RWbgyWwIc=-SU*g$92z+{d> zmQ%%%1|pk6Ou}qjj~9i>|5T|@%p=KhVY6B;{UpHou?|jKdE+mr6pX?I;=Sbk0Q;MH zsECG~dNxDf$WLWCGU(>GEZvN86h`eJ^KFx?0o*mf;P#tA4Ey>++^O>im7u#9kcdjV zwMGxJ4t_x(io5=Q!k|3wsvqe5@7C7FR~*ttKRjd(OQ_si(Epq-)E((|!*a7KDDm0Y z8Hu6~Wfm^+#+XSP5C$DelaY={vANC<Ef>(Vr196IUsh9GpbSe*gWkEfO)F9bl7}Qa z)tqWhu(P-NLJ89N8~6uDf4`CRYNOWoT>r&ekndji9gtB;f9_@{)|hB&Fy_ozH!5E% ziAZ0uqFyZiV5l@D>ddqpzt=YJ`~qq*R<?1W-u#ksxjLSvV)4z2jG>@QcPqj@bxWXm zhdKMoN;{3##s{BrceSOK44w9kyE}It`FKZe|J*d@dUieexqm~w^Ff|`%EXN|b-TEF zU>g5I^TZ9G%+mE7(fInBQtDTQVVU7#r08J8#**ic4tqbXTtnU!KGhE|prOagb+9y) z(jFReB($F-sCgKT)r9mO?PEvSy!%P8)?gtz{PlOnz~s+YrgH}kZEZpRi`KSdcGy_R z51&b?`owQc1)s}`%~q)J1`yQkODs)1jQ8w`F6basYs)_U9gj9_JJP+@TlEOUyG5`_ zV#t6>>&ACk{>fDKLF<cny3HisJo<{Wj)t#9lXbzL&bDJjE^1che4OGrY;{P9Q;C|h z!V*_LGPvx19ua?bn#>(s>*RKWDgHy95x%w*286oKI%C$rVmBB6%&-kh2Pdg&Kl665 z`Mjq2Z}cBi+uxiDmZ2IHMr&1BS^^~EX`x4=QMf~p#89Q*(#Xp!oEq3bk{m9?tn;}d zvLB<gGwhLz`RvQODo=Xz)`dZIdV^ZR@KIC)S~nt@R8I=_vJ{i{on&n7ZjZHSi!GU% ztZrk)nC7ZVE%<KPle>sOvG)z3Z<^<;`qnfNOh_P*lWRPg@Xda4GwVK1!Ox~)@W3i( z3E1BC+eKNtEH3){Nc7y(h%CLftZCC^uPebN(6VazkmTz&;q9zfA*O9pZRJ&=mF{{x z+*;VUJT$=uEr;z7EUTA{_m#9Y#Fk~db7yT;dlc@0c6?s-EJHZqg#Fh?>Mb)?<@{X+ zPWDG@mhSG-UlFIgWHVw>;#_Pe0K%-0RDu!arCFa}Lq~icSxccF&YzMdAw`+`_3>&( z1|?WtGP0S55|%2#0w#lMBgmHOtnE3wBx{H}T04;cqeD;Ue*QDj<YIhXEKEt%NS>-| z$l$0C5J(4=0$>2nTlE<7b%~mTzW}{a_$d?mV5Ee$5_U{wP(T7|h;z;(&()oD)|~;w zH_`)&Cf%{@&F1s!eoz2|Ce`UCw5~lmAg{vIP!5HJaz}5z18oGD`jL~wFhf{k#5B|V zBR;6!`x3(vnB94jX%m@78A6tvt*u|l2h;6btz`{t;dCHoX6c@EN+&Mu-+#%Hk=j1P z8zp_cjuv()RL6^-T*W5TS&)HV^)z}Y@fMB_j4pGHBq{x=T;4b3mJIscsZyr3Nk`h` z7$+2zBm|-m-4b^KvVNkl&fUIJ_y?5>_P!1mL9K?2?**tJ^aED(B!$;FH^s%?*0n~) zQ1w{;88nCEJLB$pNXEacd`1!M6eB8;E3eB}7UUQ|CXxiWjJY|;h$?pLDE(hRdra|8 zG;e6l&`<C2_|$)@S$-b9+bI^WHwoLfx^b0Kn-d8~37D&3O?sk|m`L?vaWCARjtAz2 zd?rTw5<OdVvylTs)D=z^V$k3?d78h1Q0XIQYchg{UGxDLQ>h7P^aUXV@iy3M_hPZO z%t<JrW~#c5v_o!sS+f)~Y`H20iE?qhjsO<lcOx`=Wf~Nssp73yuvzjBLm{DD6Nb1` z-yI6^11rF^s!xA8rhs3~djpj5{>i!-oR`(_@#p3YNZ)P}^y@MeXrnP&+o7c7%&%_m ztxS0~hm`$<8v^sOWH@hq8#N`YB_|>`o8bmfruJ_kQTxT^@umY=i9u+Ug#y|cE&~3q z4h)7hR>P`vp+TqpH~o$`>Q?2KUpY!Rm=9XopJe$ONUhAHEYhC*-e3#`)J2D&z_y3B zIC>#7F<pXw#b?ACZfPV2;lj@4Tw{mqn*Xt+Rdd6o$R8DV{rd7lcdKtqPb-j;*0@*_ zbM#V3ej8Y8uz${wd^hM+5G_<Yy8CxTpO;_fd`1(-ju3_VW;^V2yuZ>|u0Hs>u?~=U z4CCB@WQ&LWgNrfG@jysZA>k*1Bhg~gd%@(#BLceWp%#=?E<vpFUW^>fyYEuuWXgq^ z4ic)Y;U|j^SG(#ca7;*H@-bBXGpFk<8%(8oi8x(M#O3yyn^nppGDSk|qFDIQu$<-M z^*$BvVEm3Sn8s!I`GXx-bt`Z84SxQ>xvkQY;6}TpSV@SG@wG7PoMw=t!wlO~^)vqB zC4&1T@MNB|mKiFM<wdXT;8XfTnzi4I+AQN$wIHq4eI&W?o(x%$IhL+%D`b99f({yI z_*a)^^)YvpE@^G+qPY7jGLyF86=TK%cpdvA_iTM0bWQ&1;@yu4U2g*y>lT%$aEp#H zOYet|xi<R6A?T#9q!&^RC79;B(Dqs)j3G%iE<a!`b}{K?#$AbCtyl3e6N*%)<rJ?E z-!n*gFkG{-jf+tHEUehsCYH2%7TiOWqBcS`$5m7<H-=o-x(I?ZJvFYO?K+x6pUthj zS%r7>`0>vF0Sn#pCa_|y`8^35Jtj9@opuibfOp<9c35Gb{1O}8JaD-dtPUX8AjJyF zs!;w5L|a0LKL@f3QVPV1uqz>0SvCz#h#ztv+v}YC#-BtpHG~9arPkCET*I!V%D7A@ z&k8^LTv@IUFSg9wA?zFSnb#_W{1Y~6seZIUaQyWY4eiJCV#mQAP5nT>ewYpjNL5+u zAyW<5?%)AbMgc5CMs8^S9fv-3z?z#a%*zOaQ5Qj{eBr|B%AHoh(Z*zp?XKjmP3<ql ze`DQC1GLQSu>@Km1+BqFrmUp@mz?;<5H9u#-HZVl=*&n99}`{E*2Ai33QHVkap*U# zatN6g`s7B9jyH#`6)f^gRjiNsm$5nSXNwDb0yOOIKErUJNh1pLd(bZz;$3AyCWaYt zywNi=zb1Pu&=^wt#O~@cd?X{c-a%B>{G;W&e<iUcb1~MV6&&IQeyAOc5)vm;rrhf} zhu{sxZ%3|K8@f!_K5k`mtv(lIPB3-3Y(F#mzT!=i0wv&*EceWk?7nY)+c7hsLcz4e zDB;k&h!p&7x9cm%Va9O4r-8L@O#O=aWcGcZjiax^JtS7UCb9$6EYQ>1^zZl{OpWhs z8+niz>t?QsQ<98Yl=kC}{?V-J?Q@jEGv`i-YZxrRcU@6JeO{mOD$p`-;k;%Jr`z~& z@LHw6<`J~U&1Llmam$~MVfwFVTUBpFC-afi6t<+U%F18^dwSvMy-={gu}X$m1^t4x z67zUMCibx>bahy~!AWVak~5M++1qmMBWz+fD_qQN2dguc>0gt81B1+6>T5n*c?$jE zktC5<-O^~OW{zOgh(1FH1Gt2DJdWj&fsMY8PWFD9R#*!oW-5cwt&q5H`j8jfE)YKv z3=3KYv;QPnr?pcH#<w#G8nKCRWrn%Xg+PK^XhZ|sjsg-Si?|t;{!U}8T+y2Csmrd? zdh3`aE)n6N)YucLGYt)epYaM3c2s0{&od*1Yi#lWFzVFT)1eQ;J~CGSVuO1a{|Bhv zw30Nm3old)!g7HIJ=^X6ved(-e+B2R;C=8Fsfg0g<cUL1p7i1ZRg7V@a*XfwU_r8m zdSed8ekcb#w>l13R!bX7Ne=|Lklip)^#&BI(0ZAMc|1wX>}|u!L#X)fTDJw*>qxIW zg+tzx^5l8b#oeP3jfnBNjq$t5I(qpYDK1M;!;&FC?)5U=upBEKECQ+5Ot{YF?2tuE zls#)lzq^aoe7>V{niBJX?wdd^YQ_M*Z>thn&P#$v1H+5q4bW6Z64js`=s$+nf6e}L zS_4==yEU3<Vq5}(J%{;}_?|Rk<0S;xt7UjyffkRX;jO}R=`CKg$VZP2`#&bgolhcv z?*%KwFPb!tJu-=9H12nhvNSfMiJUOTmzm2eblrmSip7ZbY1Vj+8ao%gTY8q+-L%(8 zx7N?=X=RGRE~J3Wli)l2Dy!vEA4y0lKdBqvIvdu)+;Fjo_+sfo(R;DqUm6q{TrIWz z%tsQ!avoX@V9#FAG<3HR3jej!H955DSsT<1I;?~y_s?izXd9=Y<kxKK<Y2>D+qCPu z%jxOY-4gSGpC<)&2nlxZ>!Zj2-cYyG?!-m7{Sy9LbRRqt+d~dBGfkrMGF)u#gdJ(T z)vX_`IKst!&v?D^naA^WIBL+*uV%^h+`a~<yG#TNWHE2T^|!Q_pU;sg9=E`iR+B94 zddfIuo>zL#gH?YhQJ2=9B<{rSg_hbPILP+=Pk+QmpRbKnUks<-#U3WKV}hH^N%#FZ z;%;Y9;G&S*7LPT5wti3bN=0|8j{2q2+zWww{DjFw7cx29PeQs3XysEZGBnqB2VTm~ z-Vze&d&xuPmtD$`x<Nrdf!O~zZ3q=@hXkG%F;lKahyOfm;L1`Xm}<Zju#r7+neD;A z1{KO4HTr-9CD%V~$nZ&e=l8ga+IPYSg>z=%YsB?X>MbX9a~IY%GP$@8u*F9kjks7_ z3jKFrV&rRuxw4wzc$+5<I45+tKz*1m4y#1xn*a8-dZ&VH8`b#^Pw{R;T@>PkNYe05 zMdL}RwF2f~17X<XjJs93ogp$ZGG)A+a(l;Pv~fUq!zQsHGy@9q8Lf^1oHAZK0(I`9 zSrXIV_Vh|k*EZlNNo69+_pAZw%L$KyV4>Q-XPlEBvQC)#4wc?8;hC2IH4+=URsZZ| zjyD4iBT!1(<5#z%d7<e~qYk3>XhK;o{_U9H4fs(D!OXr7*>+~mDfSxZo=vS7jR*NJ z@%zcs2;b1O35$D{CA%rH<t!9am&1;CM$Vt0Xv10#9c7XHtIedy*G4nQ_2OT-8U#i( z$VaHHWAdkSjp?2Sso5@E^zMituH9k{XGb^^2+A?HQ1cSwV%!RbH1bbEw(Q@;f7j)E zhprcE!LkqSsrly_n^h|0XS*TQX{%eZT*!27F*NUO%q7k;HbA2+M7MsC-l3$VmeBXv zdqT||sHBJOnGatLPJJ(0y|CJ1vE6yYKVPel2WA+S<ki)SRkdq|hOOcCyS;Ykh>q6; zs>1&16SBIdb(ElZ{VnMh2MfGT#{**T#IH2pb{%r^w(<Cb-<uJFd6tH|-x_5^7NwTP zeR@(#<83|CTKs60I?T2JCfVy2)Xx^v+F|Pqebc1DCO#%wu<&Z-MzBfl7ukahB`#*V zY1p0_E?g*j;9f#(;Yaw)px;s&V@_tO6U7*^d>=u_$g#psN>>+yTkuNx-E~h#x(K)9 zruw8h)tY~V4)kN7>SY!?@%)AU`}4Al_mf4^H>O(~<DFq-mgsB+?*4UIVmeQpaM>sI zyQ{Ef0TEZfh7YABamElsCS(EOF>9e2+S|INDGh`$?ESFY8(5H9^sph{I%8ar7NwpB zc4bt~wk6LfmMeS3uX1*xK<Y}5?{KaF{u$C!-9YU|a2+l~oRrkV7x}M~=Sb6X{=?iu z-m^p3r`dTY9E6Iy>d_%2{!a?a)@}8fUgZX(C8m7Sxt@Yt76gOS5t6L<jrAa?*+&Nw z#Je2j%Py}n#cIAN74JoFZ2%xI=1xU=Y3%y6Q!%Y%%67>~>_4+37`NX76|omw-d^!| zZZJ_%j$-sp)K{3{Az)1P^8j>V;|Yorl9PM*!JnWDYhNC-1_Jo*|5&C^Cf&^wPGRAF zE$yF3M<pr0)=?yLT(o2ol^@=+R>SfdZcYv}+{&*W*>gjYeQpwnX*FZp=-j!@QC7d= zU5Iu*>dO7J1Sod(zL5_01JGs`r@B~(RF{&gf&hvll(!kQx9gqeWS49TcyIjchI^P* z6$UhW+w)Wpx{7{UlK7IAeB9xplG)+>2sO=+>|1{Ukr_<U3^pfWea+;iF7M-DO4P>B zFUq28+x)EN{&ue;;E;;>7Oot4-Yhovw0|`KAcBnh*MP8V2&ra|_w)QU#pu%JGF3^~ zjp~(n5H(Gbvj^9**e{=dGTr`^t2JATWE9#cmBLytCZj>jCE~(ZVG)+1#Q&FM`*l-Y zB)Ls=T=Vt?-dm3I3-n-od^slB7TXPK=dTnEsjNG1jD+fDIU_nk`wC+M#r#ZB3jW)Z zO5M0hvg-*q$KsiK8!?GpM%s^k@J8Gt!+r#2Q|VIY4?lxhLC%J9eCtt*oLrYv4%g&R zWvw?ANWqa=J$lEC*w`MX*){O@kb~BG*wGfDn~(G9^xf_k9-f_4iGNZ&3TlgER8_Ym zgN2QD5pe1FPXDsG=F+vhz_<;ihGJ}y>R5`9JNB?1`fmppD;o<-5}4f(!GV0Bb#wQ* zU|iINsH^Wz*=!<1(B;NAX6;i0_J1awUwvqAjGLXjL>ql@_#_3yWS@ND(l8Tn4>5!~ z!orTJ60v((nt8)rE_wQgo%>tg!7IG^W{p3Rj#ulgd$|+O>3fBO((Ri#LtT)5=K`Lx zdld{FnJ<EqZ(aL_PoD&yG+?ix407qJa|QFd^UQe+>+cdX-%MS{N6-c&p}EWAFB6SB z8j=jS;r`{s8+djBbMv)jPP<4<Q>@GR{(hy@(ltT&Yh%RUwU_Hy5CyrmIMhVO^S-qn z;xckxwig^IT-PP+<Mu<?O~Bfod|S;9r;ocajM?~gqymGm5E;WfSbaB`cc&%2q-+qY zieIHX+}PB>A=!^o5hU6@!d=7&!Q@_F2{QzE(&nKQzt<ih+c8F}O9rJ#{7&xV!m>rQ zq+d!bqDfKogXhmo0eHGRY(jeBcy_1oyw^_pspYdWq0xsScv%#8i*(9HCkb_1ZKY=} zb6~gH+LC%is4aO^R%LCc7b}D8+gwhf@B*&yoLLcxwb~*2wSL3D{3ix`)T(~^=W0Tp z7{hdjA2pcs=~z%0!hBQzc9M}jZJvd}l=o>?d)%lB-}nzxJhM7|wLfleiV~_`jd0WD zcIEl0Kypjn{O`<v{N}e|{&W|D<QFtL!d1hnaf$C!V{nFV?Qxr?bt;oCG7Vq3+A5!p zXN2+(%iH>$z|h#9cQ7lt+)q$v1~q%*%XWhJAU)krM1yG+V%GwPu?OL7ihA*Pu>h;k zx8}CJ`7W(p(F*X-R{b=@rh%tYhH>G$G#*?ji==;#oe%|1kpF;k3-qmsF~lJ!ykuVd zFG-p@b~%-FxcJ=}u^Q0^8`4V7aL03AuT3%zT(${-LaI~aA;Er9#E_rjyg#&QZI89a z{wrRMD(gm(I6A3BYV}*Fnwo8^lhVQW4_vP8Ia|^}{moyMV94?S$*bwfhd1jA>)9k} z^+sfUm{kP~<NM!#54nPQVTw={?WOeHs}TxSy8%J7p3KE77iO-`-w}a5dmmk^<|$ge z&D>6+_l}3u(ct_`6edujs2ZPLp$KJ<YI|zA9Bm|#u0IB%Cco4YjH7N%oBzOtVVe*q zvpI_{m>z#&%ms^Q_))(BrqU|i;$Y>lps8mAkp*CdN$H&`GG$RsK9aAxq@QTu%1~!s zhXQ=aQc>kqe{RM4xqAd$=)E6-kXV8h*<RPW7SQ(afvZD8qe`HD@s~|!70!p(2lM6& zVm}fjypB_TNac!fB|9*XA;&#mL6iF=BiC@EYM^+#y7j?3cyD-AB%U~wYj0P7Zf23_ zCLSw<wNG#DgD_z;Bik*^RXccC>#ajnM#>A#7=!gdw=H__Ni{oG`FcD&o`Bn|`z{(J zpyP?+ph6++K=si^zKZvztgoUBOmCFiOAJ$P(#JP2(`{CM@ABsdnb>mM$^pRV^KDn# zb4Z>4Rxh@P%wf3$)6_rw6wvK#xglOckDQ#B+ZM3?TwJ6_*5@-L<~8M?S^Q+!dzbDQ zg4aUmiW^x=szNxz>{o2G9<yuX9^x~>=8?B!)ztw@1Q>)2_2A4JMq3V&cGmId>_xXn zGTGRv4b{J(_fdPoqx@B6lFdb5e-zY9_(NI3LTLRN?nBVSFD@uN8UJG!T5mF+aJWmW zf3rP=FZ!DzMK9VIP6yp8lU(ca^L_;5(R~cSqgMg|3Nz*tuF+%^R4O+Mevh7^v1V_a zUCQ*u-a(7$23HkYJo4HNq>()4?-TGAbcv#e@rX}|C%5>Ul2nX}hq}uNno<e`vK}lc z+J}{2w~3>E-DP~<RQ6Ke7p{^FL*OQ%A1}b4YBFCy)_R%B+~frX`Z)DiKB78aSL#_i zQJv!Ti(oQv&SrPPVkSk}7|ZKOgU_sRnhvEAFTL%3o7&_bn+~Q}ki(4ZfRCAtTSZ>P z`)y&!HnhQIVe_OXUZxIJaA|03Jo6K0Y*|NJ+?%0d){}&6$_I}~HT3ZeQ*o!N%rX<~ zJihKr%hTTVHGTkb<+3fk+qVCe-D5q%!~57_1xa)d`JN^05jSp46?1Q#^Wt09r{KZZ zD>~hLgWh<2R%SFvf?b)Iu3ARrRE+||e3SCOT-kQ9)&2qJ60ga0n`BGOV#_9y-JbZ$ z{$%Q!@{>vuXNZAwkPgSFPFpG}s@Lf23MwZx?SEDW!5D|FP=Q$Mefh<UItwwTyzfR5 zW_iQq<GjCjBGOPimPG&@*bd7R&A?jTO|eT}faynjk3VB{_!;-c6==2oH34AJpD_BJ zZCG-@Q>YD=joT#?iJdFn^oJX2-oiHjQ+KCsAkatbKAj29!%Y}HS2~^T0-}aM02%(H zd5~^itKP=6Ku;O+7WsmYncyd=Z=r2kC30-_L56j_`{|_-MU=?9*IRW)VAhT~M)ISu zvP5^Ii+}<>huUuiessb8+?})P(x#22U}lkX)k-*jXIp(M0qSbS@E?Q8_%#-v8|e|U zkL9-)Mr%>2-~DC$Yr5<zw~UO5-xsca>dM^Z{cL#tbAfH!mq&QyL*Igm+>~wgtzwek zpuL!QdzT4ghl=Y%+COV414T$ZWu8am%v}4F`VfG--pJg->db#_?#QI2ZeESV*}m{W z0j&rv0UGxdG(bXw-E4wO+VtNNVrw%d_VT^NA0p@g8Ow&Od7)ZQ#(}8_#Mn@Nat#q# z3%^HW9=^93rHjJ&bWUSVv*9X=?O`xnsjf}vs3LppqVk)3t1~m+biu9Z-wQ~`$`#u8 zPMox<TJB3ygazo|uw!B5xwjkAZ;Pe|#9)syIdjHJb=}FZ<zPEY=5dYR{TkY!(_q0P z2lI$pIR9j;r!h%0I`>VKOSQ*hRvKQ7<zL-?Wu~5<g$uAk=PN!L6n&5w-rX2Oaj3|N zR|l_NbM_1@*$jeP23AaP%~93Vm7?A>4N6Ty#h2yYxuwx$Wy292BGG6#AxXqic#?5U z;d47o2@R|y6=DPl{5o6bKgl$d)63MbH^coBh_jX^$2EYu`ngZC%bbFAnrmFW)+wbO z&?4ORVBew-SBYVA9`mr5{g2hXGfT8@hV<F-{gt)rTyy46u*XXG!(5kJh1o{Gzx@%l zYB9?0=P1sMPReop+d2(u3dr-S?X3KCUU~)xy<~Q`)UgKx<-gJOBn5Z2uw2vSE@kJX zmdCf;13cKq+vAoQN@4*HG}9t>N67f=-9F^%5#BMM`i+Z*O)*$(ngfJ~4`eV7(vVz( z3KqY@`#EYjtqK;>^&!h~TFQ`rhb{FKGEAwOp(6V0j67ZRy!C24)r{cV-<9Oiu@Vf9 zjSm{et1!>yuXfrh@v$l%kqPkfvhq=u-ts!-S@t@xcp}TE+5N_tdiJ|i?COwGqLyb2 z7NN78vy%B9sxx}^3+rSpo(hxtTBaEtda2RWHi_z2_vJcT3TY9}P%4_;q<BvTw>O&t zm3@Oz$_xpwNK#5kUXvX}z|VZTnD)+i){>)LYkWb{;h&Hl+ebkOJjpVvN8Qo=G!0oJ zIKFqsT9Ed*`49g0(q0uCvcMpmQg$)Q<EDK7Xk#M|sFHCJ!;St_y{$mK+~#An)QYrQ zsNi4gtaB})Y@TfM`y+v%i)X-i*bQZw>3_zhYO1SE;Pw)@@`4z5*?7)yp%3Hycb(Q) zx%zR!!;MDDA6CLFwEL{QbM@;xfG+P<tjxyHcZWy*pZ!*XxHpqCd6)e}m>}Wb3=)fv z_1|G6I|}*5@_1j)Z-x2#BM$5>&@0gtHn6ZcKMgQYu^onzotk0Y=9?bf>@2KZ=0PVl zHC(8w?+9sWiKDjmRA=iv^1mc~8=X`rS73dlVKxbwGJO77f!q<2OcF=Dcq5+I(Bvnd z#4|?7WywAKwg*jz|C9%8`hSLTtM85?9LG@y3Ccu6-&$}mduewDORhBTW$6K3Z(YB^ z_`=wnL7O@s!G`&(UjyfvQx;xg4r3?>Hf!4Z-wtRCqH8z@%+SFct!)Oy9R-K$1je!f ze5uBr;ez2d%*F-B1$jQT$r{Z+%O*uKTFNR+r}$g)iF)$!hcBeDu>&@!r0ABz3Xl$N ziSnxr!Q$-;rYb>I6BS=VeNqSMJ|DJX_lRU}aGyFYNw7FjziM2(<jZz-r4YtB_)x8t zT9_TfF1?S1;6FCZ>L24*WftAWGZ|py*?lwq^FLHI{dQN3Q3Uq!T*qJS<TYPmDuMhT zwU$o6zAklEX_#~P*4RSr8R(;|xOz4P0p0>aXG(q_$4V=FYkGCMjfI)pft~Kq0134F z;Csh-d&%ZFpgiA0xlPr$<@gwZe<)4(tw_%u3kCVY87U9tVxE6x`z-X0&Ae-K{1g(q z_e0i9=FzfE*Ld{vv7~W+wy<z*fzO=}ovc}qY-T5<HVu&ShBB=}s-(cfQFaD8^?8x6 zzY8H~rO8IG<Z{fSyC_`5x1(;25`9nYTd~T2ChAyAx<A;DqmK!rwBkSLux+EB0vsj5 zaR}e^$#Ek`2SzKmC+q?2GAb$BTjru!fNqmu`4e8{2fkd7_SM-hF7><#NNG}_)ES9< zRzlq+GX}MuQ;|YExcXc(EUO=YVto8nyZ<hez|xzHc2{Zbcft-AtH-qCT~?icri<^s zGEAr1bkpG;yPvaVojB|_=@=v89GXz{N%8w$M?5F$(0(`1^yw-?clxvj)y6El&9_^< zgbND)<DWtjKf23|e?jdAI530F1|Cf-%9RO6-0mb<hn2D^%TpNdF5doO2mji{{<80S zo^G7MDleXBrS{0;3*O!X)|@()wJe|!8d++;{Pei~a)~8a&fw$`aObu7QQ~U|Mu&ig zhxwpH!z5vdWWRL?&3HG-VDDR|HkB&9SvR@sD%x<E8=1N1_-+=Hx|)KB`E4DUlO$Qu zf7H>g+U^(~F_gahVtR7cUTT`{FLO^pA7M<pCRp+!i2TauQvN~vf>UAqLFgpXdgS%5 zT#w;7k3UCUjUzN@A#W9t=lsLBhMGkQm>Rm$wnUTZ{!n}NnJD0@_4C3F>f9hB@KiU9 zV2&5i?FYSNu=&$k^s`6q3rLDTgUM?)Z_V!LK0buWziu~(1{0RU=AuB+zFOncO_vPt zXE6?mXAT^g@32+ZqEE{#CoAu5$8;=bd+c<Rd-%CecCNln4NDnU_8UKL5vKIsFM|Oa z!nFCKCr-0HcrTz)h56@)(3IMLHn`S_=9kUloWBc^fDyPSxl7>)?9ju4p29>y(57HB zUqLDZUuwgnjXK!NtO$VuDFo!(E6%(0to%@O%SMnn{2AKtJ3f*IB-1OT{9unOx)Z$^ zwPi~~of+tTAUb*h)y4GY2h%}|5lVtFq37h1x1P(fCY#JnqUBfPejzB3%#45%hmMvE zI|tW4qscU1saip=N!A+)+|U@VUY~7sQvgG8oE|E$>g?A1-r~2Mx!Khk&IJ{h@^w+F zF-F|BObKZr<2ND)x{`g#4@6?3FCf!jFQAjJbsu3xz>WWgZY2W`8n{>4iA!WdrEzn3 z7hel!f~h-|JFfNALtlT0I~i{E{Zu^Rfcl3a=W>mwWUMe#FNq*vOG81`P9GM%dz{Dz zC>w?pW6yt>Ji1oi%^^ylb4%mXHyPha!@At3kPqsO>^;~LlScrOACEX8nurO>Yo?Q4 zqvU5oCV8?>UNhUA_PgPlT`HB40;*2Pb}W6@vY2RKsr;;@4cRD)R}Vw0`}k+0+dgPL zgv12qL$+k3uX2UHRub8>(9m_~P?(RG8JEr?#%r;>7`A`Oi4{7A*YE<WEqu~!<BZ+D zb`1e`ed>&Q5B~e0%9omdTYn=F4Jnj{{!Ao?DJ(6i{%5e4jjiH9K@YMbo^$bW&LbwU zYYn`oP{)H=$s4%{8ix_3GPGje<E#51CAz=&oc&__3Pgqy2wxqtMogPsD>zG@HHI=) zZi&5s(!$C^mjw|T%SPc&TA4bA;PM-Fl4MF4rxuB=KUk;O<kHA#C_8bGNe|<AoiWI| zZ)Q>oZ6)1|9jpRt4x!7EohO(hvq%ZRKjOFdBQT&s#mZdI*!uo@zBCwM0J;88_679% z1@tE|L<_D2oK{v9y1dwXo!K;y<0Vk*lS4Cz_x5k5pdn}6o71J7CJI}XZF;{|3L-4d zOhf172U{ivdr7)AN2jY*yZ*JzxU2$DJ$dn{ARq4J{cKZ&yM3`Iy+sn}op`+8ULisj z2;`S6H$;ypPZEGh?4mt;Hot&oZJYDj`C}veHsDiGw<xg2UN_IcfTyt&zN*{1B<*<) zcyppg+_$N&PeU|0Amp@?B*l-*1&*e)(Bm%$#0dWRODid=FX@en9?e|s*fNdgl-@We zL3$@>5ig*FAE%*rB%Qzo*LrN8>m?6_(VjgzfHUJwSoJaze%#uPwQl2jkJcQjqG@-l z^5>H^l^<9hnYO3e1b?pe6jU%#+`KULApXhjL;P#rIm2{zCS|#_)MoS{u8N0t6mg}s zl4|;F@d9GdEq(!+S-pVdO8s#G;xPvA!su(qTYCwopC04IDzYnJerVNTN1n#t0+v>z zaveEpmnQnP9feQ;(BDql=aN(duUvcq{k~wjC^Uq`v@X+k1}9}D$<3zWzRrF%mT}5E zc9w3c1>`NT7f=NJuC5l21|Z=D3xQ0W2JzWRr2fwHo=>nyP<)zD1#;M3+GvcyzA}cl z>dKF$|Fb{|{=0g1glT-RUc{W%+qjl1Njok0Nebc|!k+;EF9`oe=rkqHDJ@-UJ4Lhl zp{~7AAR!$a-cv(W^*;)G0WnShP5WQj2$`OCm<@0_qTc7Ax@*JZ^qw;1eN$nW1C)0_ z1l%zk&7fNR%j@o)fYAe6>NVm}Hp5IN&?D};n`MV&h=zD;qQ)UmyCpT^i2d@=S{oC| zjeFEw`l0df?|*f(Zls~3vB57O<66m5Uj)(%D3#|7(Paeq62mzEsC1cnC}Sv6myclN zd%i+4<2A?3O6k-b5(nQ`JV>N~o(rpN#OT=X>Kc|ilI~d-4!A|pia=}Gu-KUA({VJ* z;kq+u6m<L^>2gqSbD8Fv6;Q2SR)5aviH1qPfarBA057)v^ig}fsko89RE;OFFu&mK za}HlGjg-;unQ7~4ygUyn@uqpIK0bv~C(m@(F^b2`B#+Z_>2q=uhoBlK&^yn3Hx?)C zN<;8nqtn9|zc``*^SDgQOaU<(dW{7&dyWLE>sg`|#1hRl(+J`UG0z|Q@ne%r6$+Vs zNWj?(2y_AGbqT8cTfmlUI(Pe<0Lw(=@6@0&Yo-r3Z)ALsCus|J-YYey!x;j^QYhr7 zbI~mLb<senF`aj_6XZHlElQqv=u^F0c1Gb5Wm-U8GZ+i_Kd1#>K)&<98`cePuel*) z*3_Q?i~Hl$irii782C+lj-&XpF1iq+0Vp%fS1*~e&7L2$=D*IJBFj?g!0!7bB2Pb_ z<cXDLttn#eVG0;dlg>zjw^l7IelS8mYH@<;YeIwZ$RF(3xT_3h+KZJ0E{uQh6iDG? zmD}S^;plP&jONM=cxu2fib_c*De2pbioDszO1=J?gx=LGi?LL395!!GXYtP~Gb*aY z?iR?$9OfAOD)002?2JnaQw^B9x)9w>jx`ld!z1~dxlCsM0&+_<+-#MQdB`krv1~)i zR+^yB*fS&UT|P1U_qQ^XuMYI5_rN3cN9f7;-=gSfR^NqaUCs3Pm1jF@6j<u+3|=y^ zzM(|v?!<R+J0E0>l5r<-g4}glGIE*hMDbP61_T#SYoMkuagvtGLfxbsqf~Vtqtod0 zdI*1aAS`6-S#o^1kA!&r0!o*Z{I?i-i&9gF8af&oiZ}>;B-ASm8XL+{k&C0|f|P}a za5}y@z56ravPVjm?-PpG&^(()myI&1A!nY>D$sgG_U#&dM=u9%1gqP-`qGi>s7p<l z`{~cmYxuL}e=QGs6#fnu=Gt_G$^U9)aZ9k5s}VqKzJA*V1fSfQ=bU!QH3o$0%`lBN z@JU(ilv%92*9{AKX%Zxf!75_Qg*aUrB7H9Jl8Je0zQy)em1mugjXgy1m;^@XKi)?H zjw7BV+5}ebL>buJ_GzuQKtNeSk$zVj#g}v@rzFr^FDqn%<{Amg`TS)c_;vA@mjw#1 zIX407<<MI~6As4AXpwZ6;-g@@0pD$GxTItZ+$9*b(T%T$QtNNR+@vOVIHuei*R7CH z?(hmB<n&1zTs!qRl7=%0%wGinCz9o$aR9c&X#_iZX?Q(t-X(TOdnG~~2toWb&wdM% zx20^McPLLi%)n*&fa7PE>Jt}NO^3z0M&?~0Qn0#y413}m)sD72x#b*WOMZi|I8&Z0 zWFPUr?j#g&o3ISvh4qq)k?l_j_WNbdI+4pV_NaCK>^xWf-Y~-YN~4g{bv%6Y^HERr z{~ZA13+NNz;7XSfaY@}bJ7w^gN4saA^auU`SjDwT@dtO~>W4yw1+eHYtn5#1mvqT! z{l@3v=?iPoJ<Zy*0sHT$s=JMRkzu<*IZ#oz1e(VCFK~M?D~sJRIw(fe5pU({B)uO2 z7g7OwsjhvA&6xY)u+XW~F&;|j=<MFi6V9pRxX3k?B0@na^qjQtk-N&6nVLuKV}Gdw z8)HyX=aV90VU5qrKT61@ORuOYN;?$ySF=DRZ$?Lb=(d<M8aru<G;OQlo{u{9nFKv# z-#@EQYrBu>6e}x7m{}K#cES}~E(qgXNixz`5(Nl~3cxo7AcD$H(><i2W8`j6$nr0s z@6B$k9x8Hnx{Y?DrW`Gh!`e=P<~>!V6_dBRG?p?A%IRU<7K8Saij&&A(D4*r18PQC zvtP*>zM+FI&^K(oP6sc0@}-6I&b@<F28AE9h>Hi*#rIxQWg*&(LQgdHP%43#?|Ai> z=9=haKD_>e>ZLKD+Vre@bo^v%l#ZA6E;5#$F-a3cULS(xYU&qhQBZ<!%r3)8COYM2 z;lWnynr0sPrqRdN!N5}y94^k51d9gp&5GW0I=2_lkHjFi0ka3<Iz;cTiB_Bu1GO1% z;-VPIo{@@fPfxpCbAf6Y$3E`{e(HT!<6+n`nxER@1r4g0uNa|&mlx#eQ;@0y{vMFO zGwFwGd}oqn<3tm_9Rl#b2grq2$%m$7kaffd=BgKv3H49->6~z0o{jfRWmhnCUk@4@ zxi{a#0Sgb3wqaCpaVx7{x|^4Kz@9<IIl!mUWR%SV{pd>9f+i2TkSIkM&-%cQ=gMqX zPPeTxl!P`;30X+T=y(RsQV)B{LidNa5$!BDj*Czlc$&E28IwvWDg52`nlNMbRVW6~ z2DzdDi!PQzQL<v*mv*HQ%#AkGba`Iv$n^N-9<?Lynu>8D1LN`4<+}>VQE}z=DK*W! zbC+PXqp4hLU{bz)lHHR~KUTc$D<*KGMX?TAc_05n9Sc07I`r%$l%;lLAoQBD2gr0C zR8GGhUhx@MwpB5l_fmj0p~s1@js4S9@@<#oQ|bL{k24o}JgN2LEtFV_q|j>Afy5-L zRpOmRaHXX&kHWA4x8obZjWk8pFa>20VM2OR^EiwGp?rA%-1Gukbvj7~y@1BvErg!c zm!}`j((wlyoEKt;+NiHOsb<a(wmz<}8drZFZQ*&Y#PD?QThk9Wr^&@H;9iJ(oPGiA zTt$oVaQc`L`)i(Q|Ec-FUt9lk^05+qAslC_LcgTNr7J&mjFjx5JA@fR0#9G3xi3K| z^g8j;JP6Vdg)XPRfd29a=r}5iZfvD}d^lEt`2F4{IEk<F*Su1Pa+DOkRVkyoOE3~n z9JNte^?Vy;`Yc6OmoEmGi9e^_f-9#4g-PP8^LlQqPdBS6N~1Z<qB^ba;1<RmF9RBg z+RTFh5OjZqA#8gU#8`kB+)8uRiimobA0WGHGyb0mO~&K>dA8(0A}$^wTyDOk2Y1`9 zs{?YE%Q2hWn#)tq%;<X6AXQeSyB*nUGZRTI(4=bDFDURhhm%M()V;j6#eYELU!u*e zG?IX#iB5aet1spScrd4-(0_-(x|80KAe=B6Auq0i=wSfJZDZLS{bRdV6Sh0OlY)lL zewE(!mW%}BEZ*gcUCQD3VZ`-QeGV@GXH)o(v6Is6=p8F2BG3U%!J$8C!Cb1yc>%+| zNn4uVaGFQ&M@4y)6r3KjU^BpZ)FX%v6QJ%>=%wwE2ptocliUh@MseIV{h<3^doFQi z{Gbzx&EpIWsq^qT6j3C~DD6@p($BIi-q=W|#q51gf+_V>9Jkb=jx^$R2*XoJmg~;@ zm4;xmH*`M;dun9)R@puFo29izV>xtx?-<cj__#=c2YXh3JaL-O@?sz{s)uez|8uZ` z@=n#9%WT`nQX8a1<OP2tVWiQY4sNSSq}UTow1|Ha{5XHm7VbZi{rtmpnjJslso|%2 z*Y(P4u^ZEg|2w30!Dmmz&#q-4OGyEsJ#`H5A&a1su>{SPu~rCNpnqO}VPpNd1nA{& zQ)=So`Uz2+YyAe>Rg6yAIZD1I88A#Ua@rzpQW5L&G*)C!n+WHstsEEpx*JB&f{0Y$ z3fgo-$Q5D(DNyzHBTtv$-aS0PFjx^0&RP<U`9amV7j3Yc^-ZIRBk+`I1@dF;L%*b- z*TH?gtFL?K+JkwO{`hqENklpX+o!#n2<2tBkY=PRtK!tG^b8DkI+}U=JmL2E=yt?* z?gpGO8de4z#Qp48DD{<KmeRI$w}MbbA1)v4S81g1VF;z|je@pc#^{737*|oKw)1!E z7Fir~E9BhiXOzxXoFE~Kugg>$L|F2}pQYXdW3$IA7DSk-$qvl}*3_-rp`32Xu%0-l zh6EA7Vb)CK?}|aUMMg8l&fS0U5d8;&ar`<iQ;2^s*87=xmtMNndHKK2apaqJ!YtQ8 zcQnU6pf!=Y`T{y@DtzJy{2F>a{|tqn8lwGpS9doZE9Qp~$=ut+z#VlxCp(BFtau(| zBLg9&=Wn_@ZNMd=csmkVyH<8!?<w2<zc(B;YkXJqVK?=yD0zjt7ypQkJ7(Z9#D&VC zx0o=u0m*A}z{}JH)jeYt&BgyGa2_%O(}APA;Fdw62iKDOef_&&KNc~asHxikwdnav zYn3PG<n}v19a09+@}JPR0ISdu1U2@jlWtW|&0oXBc3u;hFG|{`KpxK&<J4VsE98qt z0(j60?Pg?n`<m4O$UD&xU;bSJ{+YSP265i|NU@xBxtS}@H{U$V9zqM#fliP6!?|mN zGoQ3JE_=K)??WsP&c8}5StVc9&M7keVmnTbbq6{h?)oJ9zZUulh{sRZNxo1c;ZW}c zd+I0_)zLqH>piHWdA#Dh4m=HYl6+tr11hEY2h7tSHATY*&t)99f^aJ6+L=zhlZ)tw zjzZ0L+XPuZP6~fyw{-X24$sy7Kl^9fuMktcq!L0O5$~V_E9<KtF~99Zs<zQ$Q|$t& zecNYZ_}NY8ZW%mLH}v0P?=834Y}xrTVC%XxK;9`+o9uY0qc~B2jS6(kkf&$gTgO@~ zU)-KO&~v_7U_Z?HFM<GfRcwYEX=G~v6hwaa%!$AV+gUf^SRPr^z82Oo6H|XKEhC=B zVv~=x+$SYa_{MlGAKYFSIvO+(dWR<oq&*i{p%09}iNK({K~I8(P-skFdz)tg-m(CA z{j36{cr{~#-w=gTn+7?aScy+>v%h^$sMBaFa5_w;2^j|nWJ7Q{7VioPE7u3le^teA zR(o7aGoD^i5Pn`^M{~wR#L*z6TP35f>xPoov=CyPl4ni5Q%;$r*<+oJ%JNKB4=<qS zA~B8q<%NP!T>DQeM$Qkl-~k`6UpxP8z!>r>kc7mN*pBe<;PT7o{ED5=hlt;!=6RP% z%6M!UHtf9+0&(=ZHVIB(Yp8VOISB8WeDUG<N9d>}V52nSJyq{NXs_AdaN`UI^4@O$ zrlx=e?{lL5tf}Nfpf8qvOegABDZB0!Wt}<9upD6IT+X?rA@E=BBhK`7a4MhLbFyC( zqH1b?+hn0Ia4a_6$R+etiRzD4(7f{)4Nu#Yd|s8z2$<>Td_X&;`S(PFh*~^SBXJS@ zA!>tSwE|b)-;N+p%JTZ|uogVkv>tb?5nz>)l%PTS&eWq7C3hj`VFO073vguh24HaB tP=2vWpJ7Z<U-+!51*-un{t3Xb$O1(id4Ke?<}-@7Oq$Y^a^cJB{{SFl2mb&7 diff --git a/yolov5-6.2/data/images/zidane.jpg b/yolov5-6.2/data/images/zidane.jpg deleted file mode 100644 index 92d72ea124760ce5dbf9425e3aa8f371e7481328..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 168949 zcmbTcXH*ki_&pj35IRzVK>|{u2mz!BCNwEZlMV@8kt$Un(go=%hR_5NLj>uB-Vsp{ zN$4PiB26TL&{3)=`d)tj+t#|D?!C{P`7~$FI(z2Koc%m||2OmB65yP%zL7qFfdK$u zI6DCU%>ncPKt{&@X=lN7)|gqDnVFcF*+C!{R!(+KP7Zbs4lZuKb6niK+#DR|1kdsE z3xL63PM-4+K>-M#09fFE24Mi6-NVGp#>~tnz{SBO@c%jf>jLnyGLA6=fD94<MqUOW zFT;PI0T<8a$;|M-0`PwX1LN5oSwO68>>Otun$H0k8Gt}WCgA_f`mA^K*>wODFEgLG zq7Dnc<vox@kbqKLMj@-DZhbe{>dOz9vTJZW8@u3nh|q;gm!+;q%Un}Yy^cVt>D|1g zZ(wL-Y;A)=+uGSXxVd|HdfoT-!8{BJ4GWKmOh`;he)9BLN@muJ?3|amukzj&6_=Ej zl~+_YG&VK2w6?Xs`_%KfmqhOC9~hsYOioSDe4YKiOr@=?(%05Ee(vob93CD2I{E!S zxERiG{-5!`1N(pA;yuH~$ixI>0{ssz2F9?n6UfWNEUw7Hr(+4a7sM~26vrx{n^9Qb z%_gaA^#kl0{DoZ*cJ2G6pZ^2xe<AyS2Q2>o7qb5g*#C`d7QhK)ID2_OUce2&ufHzx z8zAKNG&q3O-qlkByS+Jl8{E+lu-6qZe@LvGD?F)>Z-Z!V_8W{{iZ*`6!3U`s<3?&w zh<<j26S`*QxMN+$GeE5+N#@~mH?9+oQDBXXM``&uyztFR9G=gx3&8FD&8>TY=CY^h zYgye50f8>2szScn`j(oPMzYf|q3_fL{M{|1_`V?nbf`hJC~Nm-vG2C9Ll_-gCJ|uE zU?5qdKh`QI;V!S`A@bACtSX0&lJU+xKQ%8ng6SUi=q$QyG{V}Y)jV<MCNYbWkzd+) zDOQQMHC8#z+WwP&K<M6OtZJOmJPX_5VF~WK-V4bz>(feFUG^-CjwI~DQ~j?re?;GK zRFkkjq@T58temM{O6=le<Ls9{r|q62JQ_AKtniLYPa^R*Lx1+L^h<R{JzSbaLYwOv z42^TXW3WMeh0kUS(gT$<6|MaCS<xi5@iyjgAaZy7-HBgN|JRwcd$u<eMgC=rc}hjh z53s2HFsSA|-B6w`<QThPqdyz^(X0skJk&sLuJai`azty_!!IRYOaD(12p{bO8I!5} z+hr~ue(Do$nEgT-(1V1msoR20jZ;3X%s4WbF}RUI;NWYaE(T^gm7#0Z@_`7kmS}ZU z?j9|eVZ;cO762crxa@Rqz8%;o=1i*z)<>#H@`XF8svWEFd4K~M=t5-U#*Y3#lpcTA za70$lJCTf(4YRD%Vn%Q*D5diI>zCcYkJFuo?p8~U0D8fQ8Vdd5rC392xmNaYNa$O? zsh6&JNd*fIz6jv1HT3<QVR{9q04$YR)tMc+?SN)fLTq*k?V?wr^>Sv}VD_T#{TI?k zUU+1XSm*ZAEUgkfxsyJaY2A%X4hj6a5_#IbZdui2GH^e5U?V|{VM3~)RHHOlh~^1T zawZp+Tp7NQEdIo*w7`?;+_QKdpX4l0-&>w~K}zzhNG6xxQ>fESMpjHbfIePhvPE;J zMMhp2?8v3zsTae5B_Y;mM~Inz^x&H}6@QiOTFpl=*ds6z^NMF^-tBUuC%lPJ{1bP$ zrlWp8V$%6bwuXW54@H#r)ys-$h1EvlvL6cAYg%Xs|Bk75%j5N=Ltzk893k=#x|v{m ziDy8cRU<EDc8*=$>wwtLP6RO6pKlD(%Lq!C@9;fmV2$6_;Q815Fo)X~a4%?d00ADg zKaEpR-gE|M@kjwh6GTi^<V@Qi)_?R6-}{u)!~d=MfxYt{8<PS=9fvroaTvGI=MMzz zMZ?jv>oysLO13-AV<i~Xy!rL*ohTxp>oj-$P$hElu!XjC*k9woG1Tx;7ty!-3)MtX z<(f}&iv`gBfvbm_4fL;4_9PKd;O1dz=j>ar8&OEfx+=w}L~2lf_v+isA2%Sb%D7H% zzbA#wN6V6+vX&^6`tv1$Oe3j6G85YAI6S)#p_f|8{g{)&zo5z{DQh69`NyW|RmpGg zp@Dty+%pkX!sN&hEg7_vkXC)S{hd;UaKG$4|5y|{dORZbNB9k;6nbWRm3)(@=D1|b z_u~%tA2O^|NhD-8d=#Wo>K~t#Zgk^Ql#SI~a(bpvTIiMx^r4zS_Mr?DH<=R^9l4tK zqk{!0*YPXb$BozXQ#k-g2-1#oc7$W`hnr60&*l0`2lNFLX6LEDt@Mk*>Q9COQJpeJ zpV4VP2Tn@_H42}SSIoCuXdqmO?95W)Z|^FhuWdSm?53*J`WdALr8A5~b9s=A<Q<tu zfz6JsA-3~u`yi3<;YWwz>Mf&IFIw)e`S<;)ni~abR(^eXAF!$wvqry>>ei#~2l`V$ z^Qt(i(4yRyatTMMEZLOKr#bM?uHv(jC9kI21~Pe-Sm)80`Yx+@jDk|)Y9bIMBpJ$H zGwt~NJV4=&Do)v!Jv1_3V}Z@H&3W_N${}6FbUwALa8&H*)Z0DxTxC}d6ndb-#=f19 zTI|9w+sSS-{)JcC-p;61P%38YXRjVC!qa)FZFkJGx(WDe2CT^{!mI`l?%CO)<CO2L zUdV6Ocz4LR;gPP>-&daZwS{_7{NE+S>N|!qprDZXP@qy!p4~OK%Vy!Aouk^qGA{Y> zkjlGmjBsRVsrBjz3z7&l|6I`_-X%tjOY>P@8h>SPBQ1+0g{w$^d9D^99!iLDBKXW( zdCBDCwCz3eBV^3~?#W!;Dur!JJuqQ#?)q|6Ct|n(*pL>!b#m+{qhQF`zQVEQD>PTp zqnfuVCRuo~T5WMSy+hp{x0wA^<YHu5e?t7XB<n2W`=Tb~y*km8i^ltvJ%!U|VU!-< z5DWIyt%xqokEG<pn}EF;PB-MP<MYzk6R0F-vKAqm=|}z-qWHyaTYmGc#uB4%)*@6z z`u$63ut_)8#d>_YtvV*bA#1MDD4C`>I^1iOBhEQ<^89+ma+7(%@l5$SeUzTd<IYjA zRL*#Z^115_vFcG11Qq5K0PC(*Zj4hv7i1%%^4%hBGx(aPV$yslPI=>&0W6n^(PB?= z+gf3!KyZC562)ehF%8`(99ButhUTlP`sQn<E~S|zblRX@Bg8Nxi-9uUMj0(XlOXd& zLX|snI`G)CLhv_MymgkjPDz}wE;jVI7)Tq$tPiUgGI;^qTAjvYwXDtq8?qK#RyI7# z%DXN~eLzyN6S;~OI^>#2%3E1g<v!?7g7-~5DJepm!14U#?c1FE7cVso@%RuV7_rzE zOv34UeL42LY#?Gp?Lu1}zo@<8!M(*MT-WNB?s@u&kyUhfIjzM-UkTAYYW!aI*Jb@4 z-c2*X?zDl9-+{jM$~o4CeZG1L{c;54x{Xw9Qv)Y2PSII-PI@-<V#T^mjek&TY%6pL zT~5m~S*fXJeGbd-Nx$W`;OO<Y=Iy&buU*)zSo`{`UO&I_9vtJ~JG7Eh1`gpTedg`j zMYSk%(>2oJMIRa@v;?>(pUc&o@c=0(%^EM7t<Bts`FPbW;cL0FhFVSapSgKpk(0k9 zPQnC)*2mku<haK95TWNDYx`_jz66M}t&d0_{dmAWcpOBK+0d;lKGsCkc)=c$u1na+ z1akY#8=DUq32hTz)PIKLp8&YocG2RoOHfQgT8Zn*%o<kqns|3W^uGR913n!=+GxrM zux>gR7@?_b>_5uT!DBr5>MlB@{76E3haAAIuA<)^OPY5H+2Jy?#wLkzpOoIv*~|Yp z(nQzKNd0O*X%5XqG98XqOEyY_7;-s7%8XMgjd%Jr(v0I~WD{MIcQmCdoVj{4&r1PX z#?;v}uY-U^VXGBQM1oq}sED-HchsIC2*E^XZkTimqfFjTPU?dxN{YTm_3dzv8Nm+0 zDVgajt?qP4MNV{ah1QZ+iSK!T6UQ(W2b$D^7+<jI&49s#HX1#>v|RYDE^X=I2=cd$ zc_7eT!EJrr)}uYK)S<17n;QYy@u_;5i{&nws??wcZvUe2E%4-eVKH$w*{w(~)Pa<5 zybY9(%Q}aaqnWIvJWnyb&isOk<Fd@zXOHMVC>?sSUFd2*hnyGS9pSQx&=WNR)>rO1 zb%a6=$~k9fG1)I_aBV0`%ft&LAYFaTtDn=c+FCv=cs|m4O8f50w$p?`y>ZD_mR!^8 zHc-~|wO{y(ZX~d<@^z1*WCavx-7DN!ez5Dbhc+OZl{`1T9Y_wFZZ@q0FHynH2&Cxy z$s~ZZSf=>{<8Gp8v5ZrouwvZdXe37Yfzv;sQm}d;8M$r+Kxw;;?dJ^_Rhaq#GY2Ap zzb6Ls<DLy(G@BG<KUgzmS`wur1oDS9D-Z~haN4E`w>r*-;*nb+++ctZ@#bJ40JhAl zRXCnBe@Ix=Wq>7v4$4~vX`+9n6^!8IUzD3$esS>#jVXMKK7X~py>c5w95XYa=K|#u zo=~wHU{J^GNPh??hm2wzibvG4Gw$sOCp0les4%6qL0bhrQKg``Ne2852>>duUVgQL zB0e;OEf%}SMp?n#w_O=liSR8UCV!S<zE|8jw3z0125D&T9I7kprFt|~3=kIdZLx9t zpKI4|YW1BY)Dx4q*$UtGu2rX`XNLf4hV6ED2F@%BN_bo8D7KJ&ha2hhrTIw*L)?Ub zWa_}mFL6)nKK6wt4ztbA*`KTi%Vc9gD`LPnTojs=&x*ZAxo4npP^s)U*_;SyhxGM{ zX2(FDbAtP&kPiM>DIaDNclW5N&*vBw+UFTYZuz#qRLuJU(!*1MX?j)=fpRA*Ha+UX zhZetIXeY0aKB?P%u4cBs!Znt&-@Vq^@RF6ayCG{XG-_g<c=5gLaFeR?W=fMdYiQ~2 z>&6g)ewR<2&~!CkqY__2iBzH0vVbduu_uN>vvX7QXdwZ5J*Hq<N1`@xX3L=3b>V7u zR$RXZkZ|8f)7&cWt8&)I*mug(`vL^Ef2iRNG#%!S|4DY(4q@uk;2j-^hUb5H5?KfM z*{72D4byJ*p{!``t(a?1-~uIt<;?{l4lZIHpAC*xh25~=jcj~nWCrCwK+<jKe}MOM zbuED5h<<xfbCu^7H*HRrt_z85%z|A)2{Qnk0TqQdeZq8_NV_6(<3hueKXi5$o#PsZ zw7v~&%?_-x@F_y-K9e+^aM1gd$Y{i5)1a^qImh7^228#-0b%%H@vXOe$@W_D6x{}O zBz(?R$-{1?zV1JO+67q!t3LvNm&}d9n0?-CKqd%M!3%z|V*h%VTa%b+)u^`A)Sff; zj9^+E7+4iKX(V}7{E>Sc_UBYHT_4cq4!K8?$s$!k{GpS&r=(W>Yh6Wr+GICeww_By zoqb(CvU)K0gA?|E#yi_UYk@+UscF`Cb&}sjz8Y9y|D<rD-q@6_*=Q}1YXOCNl?#>6 zpSM!p=j7ImUf*Cm@nN~4oOfI>s#TR~^2oexKV!{s(<J?sWh|n9bG*bQ_{kfm3s3VC zn6UJWb;o^ClhU0lPnR%RGoE-{p!owI&*e5qmn1e!pjURctwpg5%;#QuBquIQdj@nX zB;8=I!<N6fVU4e?k%?#4s?wq7y-WIFNs2rqF-IKceW080&wqL9LS$%n1g&gNbUNV> z3w9arsqu&^iUc27sIP0z!E#9Q7J?lx7dITCa;bWx&7j?bEd<%`@==il`fi-*rq0$4 z>E1pp=Pc$bSm}^HC^ZTU?xk>M9EUT$uS_j!P;|b1@&0IE=+Z+iO00o6_kiPri&yAi zs2>pFX|TJ`oiLv0S_Q^5Y8>788#$u2&PQqFbVWJw@z<~Upk}+fNdm{Taea{RQTd-P z70v8;o-8RL7@kUav2s;{FOqY1fIV4<aIz+y<eb|PT-Jg?Qy1GfD~q52HHtYui}+pG z0SG8iMB9<}v+>|VTH>=uqRvtxt1mcxDAtAj{ke2*_RI*UkmJJdSU?+6gU7)P?J2(w zd8xp}gstCUs2a@uc}`!*b4M+2P5z$!`IYp{a7oeZmtlgWOKoBdZQO4=q!-Z-+~UK+ zkYC4Sw!5h~Q!7J3lOI4}+^*w!)*5FsmKgue%Er$%OY#E1zFHmC355HreA@Z+jO^{E zak5VoJwQp5csF3G&m`U(4Y1jE`7oqrLH7uVUon~=xouIA-hm4r6;MlzuI|4#sxg)H z+0G9`V4a&sc^A!`+@l2gWKH)i+;ogMA6&!o4=)<uTwQ#nvmQ^2L^~<w7iU{V#&g|w z9C}nYq=cbZ<S!=8wKw{zbK=^Cm=1gI*z4(+$=Y!yTVtm*q#H~(c+3n{!qsyBdGsMS zg65hZlAK2(<X02V_d);)Wq?feKd88JnR6Y-F8jl75j|I4MR!MvzHxACmo<X95#WV} z^hn_%8&0wibNC2iHB<e|RUxMM7!M7!%mSb&usguG)hAOu8wCy9Bq%z3)3r97zODxl zO=zt~X9+(=4Ybp|5S2m3wIrj_Tie$1c6_e@zc0M<gD<2;2*oX`ZmAozZCk;d&At!@ z)KD)H-!U4(aHVB?PX;rZeiUtP+6T{nvAI8zL#gQ3j^dn@mYo+D5B$0@Ij++BTFfQC zEnwb8&ZT$chcO+&l7}AiDJ@f*a?z)8G7JVS5>I&ccHmi~gN|8_h{crm30VXsO&K=X z)3y<t0J88c&t;!V``mGfDsS?mc$xR<I5s94ebZqyppyH1#z?eG{->m1Ab4RUXsW%0 z@5MlcB4^|wS+nvpWMMBIutll_d$_Vfe=w-P0=Jo5UTX4K-Z7JSiTP57p3O@i(Bq6X zM4rm%ze0ToxPAjTOPm!GV#>lHRf5D^=eb!}<)%Ia+eB}h-^q6*)^oaCmvTXpRro(( zUi6b#9={^KmG}>E^<~HXg;A67=c@S2lFUCx!Y}5VTxpi~46RtROnpQ~(Y&Th92}iQ z23VAkhs3EP;amcgUQb;|FW1?)e6Y8w#&yCci*DyHND@jsM1~HVA<^GdBh!pKSYE?Y zQogvC3X8=w6S;FZIOVkh$~t}K)_tCj=zy>n$2&I!wleFNr-{R%ZaQVVPT5Re?B-&q z@`F;1v{yPCo$!D~ii|$s%E^d<WST=WSF(ZZx!|DPyd&vqp37D($v4$PcWxS7Ts&0q z5mCui+M2PMnyks?KK$Csv^{%P)7iQZ{5geNd*u6nfaz+y33M(J`p4UcH<VGg#c`!L zvzz}og?nT^tftU!)<QKFdGd5e-O997!4s<V@Sv;4TN{a!H<im3RRAGH$emU%%@tM6 z=zf9bC85)3<AT^SpR}d5nC4WBcU#iv&;pPfG}Ttdk#AFq;kU0Bj|Yn+xMkV5szyOx zE@UbukS3f}mbbHCO5)N^Rno3`(5xJJGtHdnQliZ(?@XNz@1dXvQ#*Ei1=|o9CS{;g zPjtD`K3u%s8NBDIt)L&#r%9Cm$p#Gu84uT#9`AUtu-bP}A)5cPC1dvVx=6}dW|@3A zGP}-B)CISCkG`&X#e~@=taZ%#8`T`Y3RtDviN#XZ=wYSO%5Q0C5ITU(31GzJrO66r zdZo!KH-~HfYIbG0{IK29StwWu!bzVZHts-fT)9|n9u&_8C>IGrJ>Rxaea5h!&{tDj zT`{r}&6cCI^q3cjAThIk?UHnhO!54ZsdJ*quv%gi<3FQ;cfsV9REQ>iDTl4tU;_<) zM*ECw+nW#egp|KE;nSXthU>E)OC*q@L=R1yQcQPrxZagHDM)1#1Lv@D9ifjCA6ASr zxfIst?54Cn@T=4<hh5p+-88B3t!9lGPFJLe0?IDEau<^yHxSw}h@5O`^b~W;`ZoUN z2ml%)$J^Gx@5`B7k~0yKoyl*zV*sJ&5ib>5oIW}geN*!At_K^h$BEHD@zV{q0+JIx z5^HM{GPax*hEyj4Q%B>q|8(|xEO=9WsA7@S%N;^nQ@Yw9rXQ@U<>vQUmUYP501`aB z#1~(K_TqS4#+b<6c2E<uYu05kWXBy*d-L7IUYU?&jW6SGvTwTnRv6j%$>VebTTB{` zs~xdE!!5J&-ico0v-wpZIH+4wIz!*&sUg6N<^4&gS>J}KUoP;*6_MDp@^EH%*TP}x z+-H%5U<Q>k&YQ}Nx(VG(wlG@QCy@*ABrn-ePWK?|2uThcgGRK^-prNfVmq+C^UV&o zuR%_NHGfZEE5)sKFZQx-w_usONXyEUiKGt}iq>SGDZ#{8?YT6EyY(l2PIy8a@J12_ zSv@i{G1hyZg-tAD+s5PB8+IcLt@Xp|lebFl+n;bn;5VA>s4EPd82oXeX_I4_Kh`%} zGNJqK@~A_Z0!JT2lU(iNd{cL+VACE`*nbjp=kxDr52PPvI5;~`51(~Lt<Qtr;?(n! zgL$7GT$2xGWy;%4=s?g0CEQlU`nuQS#*=gTDZklk8q!P5w0CiosdU!9MZoF4V=pu- zJLAE&Tt=VJMwAV|v;Vvr9Xn|cQ)i529Y$xOp`zpxpNwAV4Lk4HG^Wg+PVHk(9{)D# zCTh|1Qv1MBWkb6MbSekwG{_UShv$2Iq3lw(2U3WvD=qT04;qi$ws<K@y}xTQV76pO z3=>FtDg~;&XW33t&eYx>fBi8w5M$pMzShrC2cz*kvi^e85%J;8apAdPoXrw!4r+lD z3<{0?1-}?=bZD=mm(+D@lrZ_9h&`Ve`d6DIEEJ-SYeG8+lQJ*smBi+<cc)72esFMR z1504q4e^-ib#%e=A{Od+I{`;8V^3r)BL<N$=5{|K1?d$;Pk;@7)9*i)M<GH1MM9hQ zi*ysusTKXFv=s~?ygVNO<-BOz_VWkgdqg?m@;-+b)HOK;1J9w=t4BX^xQ9TFidT#S zMw6+){mMO&*li75#5y{w{ROcYJ{;f2z!{ZSD_I^0<;N-KrOxkKl}U9Ptn%Uyg-(5A z95;dndB+}Ro}-2hsCmB4e%ilalIc(NW_hdZuXnb^DLeGqt>i~F7`*o3#Bx&PwCu9d z0({s4uK!7(Tu3&UjdT}1e3$&>HTvUCr~Tld8JoHfTag!y3u^lTgvbjWe%D3YG>Oh> zN+HOWYlYT$9P|CzLcS|fVksjnoI&gBj)Gq@2m88iqzdX^zb0p~4Q1*63)g3|PSYc6 zxDp+&=o&#loqi6V3m9$JEgRdj!q9Sdk8p)CXKd?R-AzgH>o<-YGfvQ^#o9(WKpbJR z)3w8~)KLfl_ViqQ^8l6@|CLz>0wKX&CxPb-nGFXqDg6zBENnsIlJ`d;l4Z@lT^q## zz%qykmr7~3FNnAH9!{4%-u;_6iKkG-qr|`PITsnpgbGP_*Kkia=QIF2C>6nZl~~VK zsMgQQJ@@>!fw=sIRP$9Y8b=yt#HZujh+bd<{$RE7!COr=u9lRnN7VaHt;dbyjR8eG zP0|3&82UvY7*#(Klu{IGuTOzOshzs3ju-XxuRG+Pzh{#JRoI@byUGHkdDWUtjxBt` z?4Q%r79k2-JO^x(#v@b`-(V&Z9VzRQZJckUSM+uBn!%)F7-JDGxqY&Y9k38LmQ74w zkZ=*CA~(m|!C&^Oi%JXzvIvR^W+@i!8*CbcnW~5HPmoki){P+R*CqGo9*h{SaRrUO zx}REfrPQb7le}?e%{(LMV!n#|eJVtZip`p8EXv)6$HiiX?Tl_qbFz%zxHH*fwShL- zEz<G`y<aM#hv)`DG`ZC5-#4lE(OfvGU{eoafYj<8gMw}I6b}ODX>A*g$HewpUi(__ z0tY<6BB-sleA^`N5;k?gToOtd{`2X4{0zxJ==ZpSX?q{wP%HbridzoJf8xUwtG<C4 zczp}5<}Q~R0guDG03D{!lH<p$8z7d(fJ*>wv#sdx+Jc@fjL~}VYaYd~=iHB|S!Orq z0dfgAR-x5A+Z^#U5k)jVtNt>o6Hx1^E{d{mZa;^8+QY|oaez4Q!qxk}%Rn1B?0m0D zesWeJV)Smcb-Q(2g(R?C<d*+X#O|VpS74zI6Vwe^nh8|e0ZAgSm9ZvzXpb@-9aUBf zyNQWr<5%1tKpbzHbL_aVE#Y0zSTSiD%`L;;u$T!nRr|RM!2}j9Bf$Hr<;%CrF1Agy zs_U-&y4aKQ4jUG|q&QD_V?3JrPiG&1`8Hm<uMpu!#O$W|>{S}mOIUm1f}<nFd}@D9 zk#x^c3xTVkRXP?W@*kjG*p3*`1q=O+s#oMqXY~~0Y!1GwcgLB7w?+F7<N#_@-zO4> z$scTr#G>wZd8@gBuz?s{v%kd2tLLZh84Zl1@Y^aC!C#HA@;YP<N}EUeIm7-n_0_j& zKB*nLEjs--#!GoczDcV;)v%a55h~xm9yBOAK8RnU$_DEcFne$gXHCa-SFoIw4jur- z!b%}DrYwl{al57u)Jn9aUMS<v<=|p~GTGtvfECX`cl|`COruB_HV^^KGELX;tHyd= zR6weDJI{RbH8q(_#!V_Q^q(z!mWF^EkH|En$fz#d^RG#!(0NXV?$!Dlu&oTj@1e?9 zv+E9$L*+XMN?&zCyVl2+--gEo4<;Yp`48aGDK88IulF+&V=Y=W4vxVK0Z(AB1g8Sd zPjj`|ybk-!W;ICogcrcOWvcz5e35!}c`7|t6G{GVAfKeOaL%8)YJuqnVWVaE0VpJM zLri=1WrjYP>wq);i2?@=8EKbQc&J>}3u$*)6fJsySQ4G|RGF=UaPr>_P<wcM@y?5` zRpr*4S<GmO`)fzx1EVYvvMkba8fr7OSLGWU2>Q|LQ;Ho|gn2xp5^l&mTb&70c6qqk zn)oX5rJGS13h?AlPrAX4e9_2sgmuD*8KUafsxY7*zO6R|Zs69`sYyIUloiH!gK3s= z6ZQW><j+_=$6P&7g>cCVl9t`Qj(cOAHMGwN4isK&dH#W}{3TE8{=gC)n05AREOF0$ zlnlAo1@Aws%4G<w9B#Jz50K@|^2Y!DHh^2_644jKzS0q8Ew4PSAr0lJ_PLy&X((Ro z!o9LiF43C$CZrfEEHWB7oiaFN0b&wq)7;2xpxEkrbf)ES_*=1dcaKO9mtC<6OD%fy zvc7tzN{Q;{_SlKH_cm8f*MOv477i5oT8@lK@0iF_J&C)A&7PzD^;KQ&mjvPh4W$Z> zYG(J%Ik&j~E<6?4R9)?VPY?iu5WRwJmxICtleB^bYHmDfiS|`;*3uQR$zgK$?67Yd zRWz=<p*SCm0GpZ0TL=UADSz0zKh37)E-!Wg{>1qOv)=JBl#9Lb@OuOaS(D>`)t7}K z*Q+&>-=s?&73)VM6xf1&d>oWZ!9p1i{5acWRH@8%A=S4go@%R}_k*UbTa&$47)4lO z)*-Yg%8yKFg<O2lz<$b4nK5Hq!^5@7@u8}m!gT)u`agTZ+hW|b`0`2ok_)}lY$HW4 z67xpSswY2p_BI2#jA~I)CW4!`FB^Ee)TAzAC|svd88qzE%^-t4V;>&Cr1EousRH6B zLHp?ZD&v959-!Dil?}@>3YBPG7(7mf!R6U8<j9X)Z~IDYvR!Xn@E~H}<Zg{zXBhUG zW2}wC64>rhBB$%kE)Z<!!7pcSgwFAt^?oJB(%;pu)f{>yypKFQ5oX-UT<~f#*I&eJ z@o>IyX8A=*x*Z(Qn<fS0R@`<tw|-luWo3|x*gQd36LQ&;$OGn!(5c><Y}xQ09#6~J zmcX(8q17xi?)EE=KpaBAw5%xupd4QqgmZXDnE+TQ81-+?R^E1JQY6v}E*jH=E@XV} zFBL$})wKdd+p2DF%4N2>lbFM<A3avb@n{54!J|HwexAa1EQk?IhSNmcdoQ;q6uB2a zjGXYXkr#U2rM?VR2*h+Pg)Vn+{0T{?doGuK{E_C<^*&adCj%F(3CCHaR)vtlHiBOU zz6`Yc`z1-MIqjitEf-<#DeW)3gres+`jdA;5>gYeZf|8;27vyYZ7TtN5lJt1pLYWJ zF&a~u(~PUOI#O10Be|uIWiM!V+`dAGEd7~`kO#Ife4@V5_Pr$<yPBKXS1j!^NSaUR z13MUqxq%YK{$<N1R$^n#op_8BVw}VvRCVIRs(Vt=BvnQ)$iJVJHBX-;b!%>T8^r*@ zcRpJIAXfqaORCBavm2||cXaE^J;dl>*>m`GV1N{`zLX~3&y+<TMHlMN1RC{^+#kPm z%PB{saMBUViP>~S2eM$A_?rN1>-H8pq*ar0P37T-4v*Q3ISIKUw{C4!Js2Z!NL0ny zAw=}TSemN0QQGrB!A+c^wY_5@$ETMXf!qdD&2m)@`ufX76Ihf1+T+R*TrVJvm4kBH zb=C5))CiCi3$3RG;is0nFTRS6b5zf*HOpt#J@T;+ZM95~)=Yf>^27{#yK#qq8h}Xb z&)~GOnJKb;-_5>HheL#_k(R-OJ&H7DO+}j;i^oyw`r6$!ZH<{mkcnISw0eYP0`@|M zX1nQJ!(fLxX0~aC)$Y6#XJFJM+tbTBtB;CsYW&XZ&fK;lCQ*GOfq~^w+{yJ<UHcxq zE5Q7+)x!vxc3pAh!E~vlg~sw`&(dfKqnq~q#ZI;uLLP-+bYg%28@V!JLy>*eQL$ZZ zR;+(-+3?2dxW!FN*4MD9=Lba=8~7xCn8+;njc%^{lnl!O#on?^R*1~B<II?CmZe|? zyAF4qRD?FHCxZVrclgZ*#YgfkR<pL|_8~l}-s_gL#=^hM3rE4hD%O8KE&U{YnI>e@ zjZewdX2YEK`(}yB!u6xDv8nG7h*2Fvv->^J0w{ICyI}zMs2Dh(NB8dEczF43(-l*} zRT%}q?u3f&vdW?%lj3gPRH(37DD7v0&8n5<iLiN@Pt$MiV_W3r(*`qbKRyND%d3|x zbVjrf*PZ2tBoxeo0i%*<6?t9lZ%v9Cc{{iPGV~jU(FTcxCY(@A><whKN5T)P9djAm zf$%ru<+(p-3hUpdI;c`(`#usKBBw_O<!qM>11n|bpJD0o>Nb28h=HHZmKpSZ`|MnX zk#H~&A6z7~!M0lVN?R9n=M%B7s!s_?MjX~8;*92#4F&_1WG;h30g}L!spc>8DuNan zncNESvG?#F=Ra#nWVv4m`P{(!4rbTCZ_p|NH+V~-;oI-NqKyXhUFVAsTDN!|${uz` zgEQgVqlp*mws$JZ^%qt0=6VE!ajn`-2@^EvzmVBGF<o~AMI~EO279f11eMHNytVpt z6GsCu_WSyOo;1A(vAm%MTdAL{_~4ky!n!;Df%-G-l>Z}YBE)gD(N|D$ZdXg!tQ#hc zkGIvz9>4#sZa3lD0z|caxxcK#g+s5@d)$!tO?XtOJS%=7kJSA8;+q(gr#1qTVR|^3 z``?i?QTTSJ+mY^%k){m25+Ah}chD%Vg|<QL4{jdt>LTKA%6sqcu&544%g64W7ZIU5 z2u--U^ds4gWC_KXqbH+*5_o8^%&D<cEQ^BL<mNZlZ}*SQnTJ@U&+lG+^xK-birAX^ z;k_+vS{{4kjWYl4UiZ1%04ai5N55q`W76{GPS&nZpx8g`&FnOnkmDMo6VVqknk<l9 zs#Gw2;)D_pV-IX|QPNbj5+f-D8_}%ar*9a-@PVxB_WtdY+f|1$P4{v$mA7Q1CHm=c z+rv)XH^p#jg5{TIl^D9Ez-Y<Y>Y=aM7A`HA5t$c#BCTBAaEE0LMToG$BNUr0PpkrR zyY~UtHHCb~9Z%zKGXt&V3grq2oidd)rJFya@$jgMWTA{pC;)!}NAqZf`1R#Q_h8@D zIwZ}>8VzfCIJxujI8=?;L6_(yewp<{8!cQ{EOekY9?zkS0<Ouf!|@DVo0hRWNTK6u z%YJF6MqXKcgyd{fbr*ywVcWi?Q|DhuwYMmBns6{X*7c<kkTLycq_x^j{3X1fMlErl z(Y+)SVZ}pt24np*)~%-EDV<)T%K}%e9Tjwi2IA7+A8c;hR8ci~EW&&J$N{>vv_LkJ z&jVM-de8AWUw@B&Ng=3f)3!}!r4hNd`W7QxTsN`y-c*x#TDu8%!q`M-zt5lZVgpQ0 z0V27_Diyv#P4`}FxC4}jJ@timYb@wu2OL{6TfD_V6&`zgL4E7HC_Z})T)}0)9i^_w z$*5<*04LrxX86FDEMdQN={{;o^|dPPKOJ!+S2|PldhY#Tm}g<F#ID+Y$7w3=ntC&? zJQFwC{OkR}XMjQ0GJ?G;D9?1}pl-9xcwlHWb?7}nKgj+#^~oJp7@k=J)egDl!#4YC ziGKE^_UgRY>A3bCE=+4o8O36}zesh7d0>Z$5U7r3-Z)JWh*t_fto}36Ec8SyjZ{~g zbt#ZrG2H;16-GIf$ef~?iZN>gSC=S1&69<nTH>B`dcLZ&p(75#{7x%z8l2G+i}kiz z(gSo;kMQD0!z6Q&-n%W?l1LbSe>fQZ@*X2LGjiXy_eAJ~q~?EEt5&PpnJTeORMSD^ zNEjhB$w7amV<@4uIVCSM4FgPFxC|4;pwxuCX0Fv0>5ltM(CL>~oEJn>rD94C&L=BX zV({Bg_oaO_=j#^-3)7l#QRGlbj34hbVKP7vkRHZ}biy@XTiS^XdMVR*Ele=fzxYF- zLiq2Ak_=nf5e713Jue<9sQs~vhxzznVG*~0S1Vd1CVSm7^;n{~LoxGS9f-51e7T|@ znkpp~w}%f(nP6Mxc^BN&@5+Cf=iW5Mw)s}@T9DaW2cgsl?K)7mOr!0a;mX%xIct&s z&ZHFPSaw}e<oY<i-W^^(m%ZfG8JXc*K{s<6ZqW<6ki={oOhul3PSu@rVhL+3GL$d) z@BjQbv4m`6tGT_qAV~kZL#w}u8x57sn9%+dK;v}3P(v3&(ta3}+zCIH32^&Zpn@vW z3hJBvwg?`yauCTdN!5uiTe)jY(Ch+cj`QQ1x?bmpzDegKsO8l?qXbA1SZgmdHMg%> zIq>N&y5r2bvdBJlS%R|AKs9J+IRiv2dIKK<WWok5w$XMgzOp)6d0g4fpAmDR*_8k3 z+gHP}m_y3Zs=93_$@3ZCuKgk{eUlbxoK7L@J2l<<)jBNEfcHw+MZdfs{sqs-CYLeQ zc&}eZ%db}IZ0|4f>774)opMl2t$CuJJyn_*Atn4N;}o$WL(`64VThx{_GGY(dQDkm zO|{9%&(GR*3uo2cO59+xb#PT<H~*3%K;33Wmw*BHs(P9k&!ayR7CENHjogXL#i#+S z0x1vx=_-Evg^Rde7pLvP5Nx+C6&mvbm&nr*A3j=wxRM5Y=r(4fY*u3juzdM*xfPp# zV4!iR@BC?{eNa?esMpi%q#q@;!%9Op_b`dK@(qqe?c2X(U33e8RS3a??o`Y1$iG!C zW$2NQ(HWu6z9oPyig)f&IKzkmuLbJ6oenfNq~p#sD@LRR##tHzZ7`BEPT3TSF|OY+ z^SKX;h^GN8LU#{KvxU>3VN6~s*R;6`RqM6#H)hvdYnpGxj-=>ccjsfHf*tIcUWZFg z{|Bf=!#tn906^1v)-AHqBf2+0wau=}xbpsLeO)E2q0k7!VX6M$g`K4k0Kb(iOtc_? z=5kQ({`7@<eaDS3$S|g{L^0Wqu^SSJ%RL^p$v)0XMoPilRNP6bj|M4$?VBi=6}L{; zh$2cv<)*n6OPiSL!eRm*_4M+7Eb>p$go?4<vwLj;p!PK`$0qFOj!?oG>2|jC#-pyu zCP%<dy2wo6&Ag8f82s~D4<zvvbX|Z(yx|hV%oIL|Unb<nR@}G6cM?HHIooni8REF3 zg@4<kN@mXAvMRaxCQPcVy{cNiSC2c0q{pW=ZCW}9T=_nEgpG~l@masEr@H06-Xd<G zlhG}SpL#E-<M_}EiDdfmn8(3cOT33!(uKrhO=zqB;}}j7I-jo8`LEe`Xt-}Q`Ev#O z<e5ltP_Nm$2)hyGZmHnB*?0;<$ho_X6hY**iwJ5l7$#6toGPB@uGCz6kAREQWp9hp z&`vp*#T2x5b?~bl@O;fzCwI6RDz9HSGc3NXyOYQrWH!vdef2Hk#80*GBuwfCJVfZA zvcZl>$Hskqa<@8U!aheE0?^hppvffu4nlEdv;hKToGeb78<0r9uvnXHi!<SGE1`BE z*uXMxZKYXVM9U>|e+<PYK8vfTwN{99`eqiJ<tnq=e9fK>{ucfpfcLk}12(kqGh0it zTgsOxmmu-)jo9l#<x)&5X&`ld?pqO)V%vr5*4Zf^J<(Pi?h0GsFsmzjDH8G5G5IqB ze^Qgeol9_rB3JCY{jQ%fUDUBB<sYjd{|HJZuIMargEXdIs3+#$VaJs=Ry*4P=5Za3 z1VVGbtScMm=Xm|`sMU@NgWJ%_OG5!)v$Yj;JZW*Kn-1Sr)$>~kJtEBaX3Iv{SL_~& zzHO=cfx2L_BUP||P^)`|niZxh=O&D*n}L>-3|5>kRTpS;TpgzHtlK+0j0&2*rwOlU zh--lh42JZCFm_BdAYog_ax?a|Ic-kv?r)6enkO2b1|?|#Ex-1BP#AjRlV5N(a{A_X z1Kl#D<Qvj!$_jnj>djY;PLfjYtiE|<S&--R{a6L{km|2sTOsn0l5n%fH+>=QFX`21 z1?t*J((QV0d`k(-iDF$HAmp&d&EjeOda|nxJ-)O<ME~-$H!CM`O!%Xk2R2VTlxUef zh+a&;(;BuW=w-U{6DDT(-k+F|;SE9jIdUYftT{Antm*;w^fRB%L5;8V^C7u*+?Z;{ zDJ(L<Y46z=p}W>;6#p+&7k*B)P?dp=zyYC{oha<T=Gn!Y_LN$&N0p>@5i9Et29n+Z z0L$Og>Z!P=qwRyvf<nS(E1<m6s+yUL5Ajf(5pmk*Qv{MK#L_5~92jFw!5&mq;hulH zY3Q++1})!Csg^wPS{34&Es<wck2)B2NH$Uk7sI-wBY&fx-L-Ob)(=4Ui9`YfUwypP zb53#Ws?M3pSt4u0XUnsR53&?=B80ikR!%9ti{uZmZpE-{g|WBt4k&gp#bHqpmW84R zgVP}VWRfHd>n~ZbZGDL{e%>)Jl<u3}0}>$xIkw2vTdUu8t39iowGT!-j)>Qx;*YC2 zd^1@bIY!s*RoqIno;)ZWsw{5gd`L~$b_}&vcq#>;=7_*kCw98nG41Dfb~Jr`rcUcE zRBL#UyJi=dUX8;OXHk0R6nYILrwSu3hKu=&goACISWwK*f<{4czpS2PYs?IWfVR4n z)hv_hD;DHI0G6)F<+;#u`-)$h^<tC!f}!>M8UzUZMq$1kauN<8G>^X`!#vCuod#Q1 zq^3(OL+yp)EEtfIQ%zT6)9aw+LTJl3pBgV?1DGx^ejTlTc=^@H!F*w8Q3UdE*nQz* zCxK-#ch_N>^;{n!AaY9M`zv>i0I75t;j!|?Rp<J)YbnatR6mUJ8uLYm}&9wl^ey z08~zZEdXLys3OFi=!^+rr-yeX-G47dP0rA-e0aaVZNCyvDk~7_l-`t|LTdbBr@law zLy*Fu(=z&D(8vp&BA?#5wAkLba)+%7a{0`FWPP}a7H?bp^Lk~gnJnX5xMp2`bRGBz ztH&AFv{P`q39!UxFv9GqGWUoasyNYU3?&!{iI_W0$*Zbbchq0Y#9fzX2`Brwy~oa= zAOM`9(5ZCciRJsVJfAX*`%J?{03NESI_6bqW>~E&0nh13ZKnAQwY6GAAi(u7kH=|R z&H9Gj!5#X-*t|tGN$I(YG!15*5f(L+y#&{qc||ocn-#`qU{0#cy{`T^N`wslYPM?~ zUx@!9Jz|7duDs1l*94hNb@Vhx@*nKl%09XpMx578|FpdtJ$7DY@}lHO#araV`po6P z45FZ0tbk|d#M1e#*4jsRr>M=zmvLWNmFIK&XF6jn7dnYw{{wh_o7poL^l6bR?}gVt zCTJ#K)0vhfQzC8GuRhTd^<Lz!b3Wf=>9B@=#@fm^C$($zPinN{u(||w>wZLIfO+4q zKVAO;8p4uJMM7BH8VS1=1{};U>P{NkMQ+Rd_?Q|s@4!q?esIUSLg)L*_&f}aMz2jU z1I3sv3}Mqj%hhr*!uKolP@f~+l?VR=@N-3;92*no4G6a{>{I?0T+_T^G<CjvHmZfl zo}Txi?7<slk-H*>H4&(eMwx5dm5SGD1$aP%5f$M?qr8)yh<Liwi<?83F)8a4Tg$iq zChoHNHEF-R;pu#<pU2<LXGrqiO!K2@;x9MnUxn4B#F~w;3(d5(+Y4%{V521o9N@Rj z`EN{V@rSQDUi>&B*4WFiiK@Qd`sep*{f#-@Zm<7i$PAIB{zlv9P1B9!%kSe45B+(o zNN%QTQ7$EB;aB0@zPUfmal2Oux9TYe&pSBYtIgS^f6_RD+2;RBxFsq-;XtB(KTJ;J zP+GQs@Mz(~g4*O?_!6nUBs_F+WAdS${}SdMTvh$(sK0!&q&&~D(Y#0S&eg{Ee<HnG zjulz{&Sxly{XWzBD0bml4lUkg(~r)F5WD4<k2#uOKPU%c+4uk4eHtcu@v2+-NLy+H zk>8!uwk#Y-4SP~cOTI+#0RHt++6F_{xw@P35ToFKqj%XqsFzHz(#Arby@d-bD?>9r zAQpa2_x`)_H~Tc|$EbZCDO#j?kdNF)k^7R;mq6sl!4EdkKd;A~>P5Dw{!YryDJ^@H z_;0KBUe20f&GViQkg03cTHbPxP~1e(c|B;C*7x;MNcAM@lDB$6BHeT?MsbtCqKY2W z@P=8#1#)Ixf$|^=wdHnHlFbi2+s%*U8wrchpR1`Fc^{IzOMONXFPFK1m9*EiH+=US zsTaHZ9`VMEuOB~;VC?NIlH`-#O_z~^G>11%_E6<d+#}eYl(Keh#tqAS)_#=GPo659 zg<vnM<0;SBoUSwBCdn;Nh%v53((EjY=H=zs8<$nF3De+5L;&RBFbWS2^$Qq18NQ$8 zj=5C-S}Ch7d;OcHuhvqaus75VToG893<4rXe3ic28}4W|H=)ZkR*#jWPH;vf1UYgT zujm1RAlGM`%B=BeBaKoEO<4CxTPMpN<cAXb(4{krW6f|s^^Fg~LP04KmksoAjB_l; zv{vv!&eSm*F!|9znW{NR>Vu|qU)e{8rf2P%ZS!3@>+23v74ZsiRb~z>&q&kud1#$_ z{S0NsWUfKo81E*U{bfe!9ZUBDfv2_8#XenI^!*!$g*vAzbKQO28k8Mj;T8a!Di)eC z-R##@w3EEl3PsDkk~f;?(S-ZV9mkei<9`rd)cPCUpK3|9lLp-|{>Z2pG$xaYGI(6= zHCr~M^w|xM`Xx+sZxw=KtfMkwddrvD!xU+R`Jd>UugxNVD6}mX;80>%{w?XDMN2V& zz@C{;0_FCzk5eoR!JP(sy<Wr3Zq8L?=z|?oQ-y9WEG<~()z$o-`<ki=!#s7%iJ7{+ zuaeEJ*G(df0byQvhG`b!Le>{|=0FaHxmlue>Z^Xqg4HZ<LbkxmicrT`!-Z#zt!36W z$IKViIkURSK1s#)3a`4j@E0BvOx)W}jJhCa-uh@kQD>n$RL;4$u2H$|HDA#aJpe#m z=hWvfrQoxnYh~nWL#-4%gA%5aXL2a<TNzy1E$J;;H>^FLq^Tb@-U2*VjSnGL>#08! zsh<X4x7E6yeE^kbOrOt`8444RWlr80QL0%ong!j{77DbfBWs8@^I`2PZB=@|ARtIB z{8Zv~AV*dcp7F--$x+g0W423C*b8TFMzpBQd}Kh4_n7H|@We~_b!rD|SN&HUg052b zAgGOn57TuD$G4^{6F7LjtCVr<l~MjGz^}UI%;j5F%+JTgGQTpConbmyuIUkHj`G4E zcJ107eSc*KKMa68takMDuT*zqVsI8%e)n={yU^QCoY@AC54gK&eeGt2y7s;Pd+R2# zOM+C<L<&yG{^_V09cx==YPa%&u$5wgN@k^I<;5E@-5>cTaqKq!%>9I;-eSNww$mrE z;gECYPOi!<4yhRe84s8b6I}Q``AAXjI5=DY8n>7IJI&a+FDM~l6TN-!GC+Q^du~pu zPzC%+Cc7Vyk(FTbsgbueGlJ<~v$B3BrpKSEmEEH`(r46M;cN&J`t4SNkbz%SH@f&R z?<O!D0t=;9^TdC4gRj8{%bUjzDh6-Q5R@KOajWh0(<pyb6X6}DtlK9PUh=VyZaC@I z9UCq&Gh6n^{{S+}uhHtRf1ZglfTU`fF1*kOJ{mC;u{$oo`rmyMcClLBD~AClx}c7> zb!KQXw0YWPLJYheiXgIfEhzx#uv%T2E4=x({~`{Bwyi5u+hGY4XToX#UHzTod4JMv zMX3Ni9+TgbzhGXj=EC74a4jVPQl-M;s|~mgY<{RHGZMNdt^Uo$0iFZyso87eAWyGb zHk_QxPN#(k>mv?`?2Pe1rSEaG3zcjvPDDY;+RG*CYo_hZAQypibK1gBck?P9ZuIJ= z5^=`d81sSrZEQ`TqJ<F~V7ot9LG?hT`H~k#EsxYk)Pf23GjY1-#oM@wBx~}-$gHCQ zZ(||yF#%6BH?F4^fmT6bP+OweE;^zaoR8hVP{$OPW-=N2EL4?c5knx=_QjEQ{(Z=; z%(}fQW^>ZArvs+o>~+`5C1x%BS3dIIK8N<JVDbu}l4e<jpMd~Be@*a?=;DF+Oy4`n z@~V`4s)cI2*<%NDn7@^<7AY4yczNCn8gBraEsf=4$Gaa?(ehK0aYNRC4A!|g3OiBe zv7r90mCqhuis6b8S;YYbNTREdLtnQ~_@|f#EJ^q6C`3pu7G=(RJ<yK2FosiZ3xLoI zgoY8icC7>KSAjUi+ttr~Z@(hCr8D}^Wd<&M$PS+E)?>hD#J>;rS&Ic`YW<>0s{7C^ z{O6K1li?mA^}Uu($y1+upSai^LZ~cFvfF^iuO-9os9A4UlMGQO$>vg6bW)Rei-(aV zNeTIT+V7gi2{FLFDT#v!s3MZ0T;DlsDF_HGiH6g`Z~Pf+7$1E}f>Jep+v=2cy)J@x zNxq5Pa)esPcrHBk?+KK>9+bDXRfMuCH1vxOuZl)6->0;&X>fl$Gr&##eEMy-#W|>r z^Nh3lZ`mbJqC&4&{SpfJMa*5e&@yJWP$rpHJM|iBlrdeSgy<tGiP`mo#DZFg`j;*@ z`}Mnfaq50=Bt@%dp*)%y@JTRtFA-+n_rfHArcy-Z?uE41L-35OU*j`DVUfAE=t}y| znJqr6yAtEbY$DEHr8r$S)sn|WyLyYBHUE1mWc=D=rTijL*@OQvT9F-d&nujsZo@(l zT}Qp1<`3{oK=A{rN@v8A)ZogF#^hd)`CI9F@{4N3nC4N*(#s+gWIs?Yf!yh7%0~n! zgzl$3iplQ8KyTTHsiiBi{~RsxyrYNBN{T5{>6fhJDiRrk?|e6+GdCK$aI%j4h=m@5 zJspE!{RHjxxRj@5nSo*MKjYR9tBxG<r5o%Fo!%CR9YGm3e8SmZ!m>I7ED}a!GG6z& z1hPs2k?W@CW3w-DYpwmZy`}l=1ukV=yQcDXfLxboc84nw7N>opNUpE38n`8OwnN=% zCxgFu+g^Gyq@al9Ze9Sn2j8}Csdr8g{txg(2s~jAeX9%zR=OUlbx2-6&(;)RWwy{J zB~+6$vi9x)YzO8gndO|(h(?r#s`Ax8<9LK?cj@}+@YC4SioAMaBn!`p-&09CCsOhZ zIqE}c{(!=|VEw!LiROiUr>X9)S}p?yi`@sm(IKn-*SShM@S(#-M};dyNoI9JNlMgI z^iYqt#muO-jQ`A|DSgjkw8YFjOJo4O1oP5NV`XILNxB+(<$nXuKrp}AbGR<u-S_%> zip9M=Hy|h+gWnzN86#*joWI6ND$2RQZs#@4UqTu;LUIpd>s>~qRnhQy3y{RuH+oh^ z-Ha2DyVAMZI@GLknu_g0q@CY*ZR85%wTM9{AP{&J*XmKr<`qyAExU0&vC_GnRT+?w zioE*wtR)_%(PtT`ZVneDw{R;C;IWXLZDZ<dqtp;8vji&3{6O@sa&R5KX5{0XS36I! z(HF3SP*|6Kag2YS^vQ@~2qY-yKD5){132S2>rEiCU~mUO1xnLmo~&fAxUNP)IM1ax z;aK2&yzU3n+L#kOkDKY<qyh3+a0$rCt!`wy1Z;j%6y%P8Rlx{3U4xbS=A%!Uve^eY z3@Xe(EMc*e*BQlSE1SU~$rCbQkh{36P!A(3jl>LOj?~C_JOTjZk<D8G2>{*H0s-hv zVA<BAb#l$5`*x^9(BnO;Ue@JPA2vx)K_0b^jpY@|!=7*tPg<VdQRWPsXOL@1HGK@_ zey2$V+HC_PC#;_JXi1(_9iRf-=DGNtix%C6ZaVS#R)iM|ATCH@80^^R-nUPwlS@?1 zH!AE&Y^PLi{{TWNmD7Oa0lOdFrAe8$WES+}6$IO21d!fgIUL{*V^*hQnX8p<pE2Sx zRAU(Fk7~xdXI5n=s2L-XpRH)l&nD(2LlKTgLs@rRlN%5^_2RYWv6n5%6Uq_Tae^>8 zted%rX4r5s)OywH(5h6AloQl*SyQR<&ryTUJ5=)~3ME^KvM>S9eD$hs+qSP5&wpBc zrI_-2bCFcq<8KE5dit7%%@Jg>Y|q{&j2}@$zsZJRF^pi<FFd#^$8S7-G@fSD*ahrs zoyT1cl`Sl4thsVP!ydm%o)hwuk&O54S#ex)32gJtS%T!QKp{qQIO|zX4CsXP)YA+` z0X%`*y<0}}6q0zxFe^GMg3+It6Vk0Ls!(D0UPwN*jFrx)zQv?PzyxkAZ~*K0)S^J! zc-q~;{u-|p!$=4Os-EJe`Pc!&5OG+v@2RqtmV|D*<Uc<hs)fh}u)vTyVy;WOAZ*SL zARd(k)MO~yagKl*xT{$Z_0*;1<+%kx?8m)Cuz7^5a6Yv=ChwHDBcFQJ(7ZWus?8c( z#$B0!#@zMxuBa_eI*!P1hkQBxr*#x<@|Iz@Ae`6SzW_c8+1cA!y`G;H)}qpa&pK}- zj?3D(e}Ml03vINma?WXBd#T{hn8Gk)R`mBZ_7}q|$$T*^_PQRCH2SsFo@AF-L<pfw z`u_kEW1tnJr)`fSr0(o{SAn#NG|d(PsY4VOnAo^Lxjw*Cd|~6?4fqF7`&PMs7?BUl z1Z%n7y8xrTS<wcs4W!aYkxg>LaGvF`3m)FUSBLye_<bg*w~ejpu-r7~bZ}UsWMJ}h z*biF8&FO87td3ve{{Y5Y{{V<ud=Th5I<s6!<*c_O&z1p>sTlcHz0XRy@R#;=xVqEY z>s;|0+Pr`XZQ3C2NBhT)eXCdDFM_Nzy-q7lItPx{A?A6qIca2b*Bz_q%{M_?Yh&{H zPQyN9V3GOOkat=GcR4%l9^1iw7+pV3vQ{?e2)wwBc8+`3ka(u%{{UFqDyrYJ4B$(E zG3j2X<4H8TD``%ntG1~lxnHvxcCJ9+5IX%U=8uT_q;OAdaMzl2Z7JHZ!7kQO@6V+~ zrrRf$`<UJ;llu-6b9Z4pJzvR;Z$D54QPaLBXu7P8X>EA+EJzOoidBj3D;|H2_g)%l zZFD_8(-JNOx{4W?;Bs?ZPMzWF-yU2|aVD$%oFtUU(XFtKGRLV6*A<oAwSl6wtj@Q` zUkh|uS@kPRxun)6!E1FtAzwm$Y2OKB9vAUUV(-FFEu%0pT-;5#@!TjMrDk}4!nRsw zxfP_k`^|A0=OaE?9{KO@S{^2SQ%Al_tv6KFCWQzdWu=$O2eJMyty6Mp%!_MucfKIF zzVUXoEYSE$&MRRcm2NdCaI22N2d}+skBpkPfS~iW33MGn7EFDP-LO<2;R-rcPY!<4 zmi`#Dv4>XC^*v4k!_2w5jSwC&(2Uc3L*S2wKO8kr?GFb_C62cj&vR*L<R!`Oq#iTx z+M%^2%Pkppad$^WKkXsmFB>E}Uah3ImeQ`}nI!ph>?_6oH+(MAd`D?>t?0K=-WXtU zi1=q1=-#~dtNN$I&kyML5?X7T-jAVbakkadh3B0zj@idU?M$-pz4n@t%x;?h08gGm z1gJ0o9R@y?DY$8SvRl8rm5+k2ZQd)FNteoCa8M7reJO@9!iUHmtL)zv{>ZWT&h7Ob zBK{a9oA1C*2t9L*dRNcC5Pk^iz5|j-<O?taoygfde>&IMwz-k(QN_YZMV?~OkeTQ~ zHAZwKb;02J)|`<I+gOqG^{SUD0$~Uvxjwa&UA@+Kw4SKRx&vzu$Brv1=}TnfZ0svi zf17YTR&~Oa3{D9-;CfeFZtQVQ+hZ2s5;_sw5n0oPT!WmR{*|wAzH1TDy*(=~br?B0 zKDE^z#|)dfoZus4?-t|QtFX%vyPRgHm*gb%6&PMJ4o7^}*VM#`GBKWW)YOQ)j1IJ$ zGH?j?r^X0AxIJm?E0!(CBp*&IPTU4hL+j~T(JFz1oR0OQYRqwtJ!uTvv3xKcdSsg0 zwQNW>E`85x!L=-0;j&1rt46|(NIkJq$Em++$2|xKjP^CRXu!r5&f(jfV!5kXys{4N z2*Dj|TGn9b3aBm*T1{!GEa>gz$m_HYm^GnqH(j7_>OBo}@Z1nVY%YJh(zGqES9k%( z)bt{eHZ<aL9T<}##@)EZOTDCGc*^p34iDj3!tIq6Kqnsf+e&8=Fx!kCG7fQ6-(sv- zySM;jBphcwt2S$fRV8=~ah2^&nsOKBIT+6dv*)@jaz=5`W}}+>4HC;SL5{nRIpYGU zn}N6m9Q7FKRVI`$IN*25{#8|^*nsai1Fu?7W3H3d=8?Dvcv3T*<Y$VCOTwcA<^Xf( zYLi@o0){vP0Mi;m1E@Iz(AF<kW7(%R?P5!b%!+apA?;cBGJsfPD!_4?S!N7`9-o#f zg~iS?c);U|I-Zi7-IYls<PL)bR8Clo9AtWWQn5KW$6oauna}mC+UR)DrpT3dyMIcW zAY1|l4}W@Pxll3z7&y&O3Y9n+$vtZ(>~$&x(16OM47X2eyBuJR%bnh=YP?{U85usp zuf#F9a>RO8O^ewwdtK+|18C0~6{7@xUm%_b89i#OF?^+t2qPa#yA*tnEN=jFxYm1< zWR<L5vy_AKf<fTtp!ThcH4YAb@b6gmvovEn1F0D#{*|d~DviK`4guixt>Cr2h`LDA zNmuVWp1=@!C)S?twie@%P6+g>5H{_^gS5Ba>Cd%2<s|G=kUL_#p{AxXmr}LE$XA|n zKI!9{&v3+^H;++Qu2q@Xf>e%i>s4h@&<um#yA-XfGHpEyp*IE`u+LtZrVYazGB7zE zYI6}n3Ft>!gKpMcndhgyHq+3-D+&lX3xIv8Rg~d+gV!DDL_{&l<Gy-|azIf>I3)3f z;<;wiI%87AZkYS0X~r^5NQg@1PS*Z@wDpA>7%b#;z~ZKgAfTuOu{?i<E6b?tdUU0A zbS=CJqj*3w$$a&z5yW5bZqFDUu~Um?R4S^cj)S17*3b|G<T2!d+PvvIyPfN65P4*D z%IEI`PE_1-e!jx2`5-GWZR|T9)bAlqcrBI5#~7)0dKGdcLISh!TkhwzOo|%}GB9zI z(w!6x%0XSoI$(6E%Is3Ag@7G#*YT=~ZP^$~Ni9MW#lUU3+<sy^Rp_@eZ8*>OfW=f& zyEt5eGsqx{vuxzQQc!dR^H<BIjJf>Fr+LD=fHDq9$v71i%XdFH9SWLoA2;sQlbVc1 z0op<1H7Xk<S3Z|3$m*`39&yhfr7#ks0rub@m)517NsJCk9>DWd+Xr?t^9*6DrV#QX zQhf=siwZa1Dsz@Upr~2=;DvbWij4_7LlA*_FQKIK0l*B+lZ>#%cg1u$8s^lBe1OVO zWqanRNEaJ<40@WmaHDol7#YAdLgn`cBjo_#kZYkL97@j29Y@N3W6AH2N<${%4mN}O zQ)C0?Cm<dJ6W8fTfn*^Y1Oc2?*%&o#39WE)2^-n7fO}Q46gC$*9Z3~g08ONVNa?n% zN6N7y2RQ)Na%6JqIud=!!2}Wd)0IoM;(k-cJ?Wq7i*nySJJo~%!6W6*83Uzo)MrFf z=rRa4GdHgwb;VkOGb8O*B;$4fsL==kK{x}JVb|WQBZR{41mgz+r(MS1Vlfya8RQ)C zQz%%^R^uG^G{%uZ10<Yv0)rx9epW0w$jxsRbBd?Ec3Ft3schvt`qquR##HW)KkX6F zcC5Hq`P(^<BRR(gw5?nM3F8MJH*@J-@K-$9-5m{(0U{-i(mG=q71HU-yAg*S2qTPF zEn_E?6Dxqcj(N>=I&8s_aUMxM6xVE3)z3Pmu5~t2h1v@TVo%Dw{<Y9sHed&UFb`aQ zRm)h*=3$0O=m$(z^}PE}EEp&m1ZSGF9nOX+UBJm3F}oebS$S~ef(Re2X2Eh(As=s< z_scH_=~JZ2K>>h33CnR)a+Ep~G1%NMY>}F$IaWJ}<Iwi08dN)-asrI*J;$w6lIb3F z1P!DX1aq3n%-%HnkzAe2xmS3>027MIxP&Tg+Kqve&m-yWSEZABH?cSdvt@M(K;=gO zXQgK;8>lo<xJ~Q5n~aPCI(`+Mb;Oxtk^yWA(w&aewZakCj+KpjEK!EfCp`hIoUUx5 z`jJbJM&%_>RU@JGtoe~;2L!Mu7=G0)<@sc04anmySob=H#btI33CJCVbIIRhRJt&n zk+cFbqjpF5)_v{5N55+oKA5W4x}!%CDa&WE;;?lMV631iTmX2_Q(0f3(-!P$OQ;24 zTRTTjbL&+`pbKDSn4Sr)eqB*X+&)$u_2V@JdZRRh<{*z=_0vrmP2BISue_iR^&k!h zTI#fm#&rq^5_;E~={k=iYjd7>uER>W7y+LQMoILp$h+=yOUU$FE3{3Z?TnBJZne=^ zUlu6k$j8fodi&P}VL2}wBLk6-t#r0mA=f(<N#i8qyOTKQ+Q(mQsA53;0i0m-TM=B9 zQOc^GmC4#%FO<JKF$4q0QCn6G&Ku?g9(v=wXqvx~%_NPrnnHz3XFW(1<w+F=N;eoI z-k^zci}T??1mJ_sOqh8%!js3%PRN#?g&Wmf>KOq8xI7xg)LZ2UFvkRzKj)=yU1Yf= zV*@zvSQo0Qn8^#%cS0)}XlRaaQE?z*asg5T<M~%LbN~Shou@b$>0K_QS8?+22sk;e zb5dkd6J}dE2e}@#gLY?PXFaOKl14&hlr95jlU&vOOk+lkv$G?f)zn=D4S)&*k%8ao zSXYq%nG961=tmf=S~ZEr>Jb@{fF#CFO4mPgX^q@%9WZOQx`9)6NXu{t?N~a6m@?tM zY;<p0<d&yQdz{<E0+t@5+loSkenJ-`kaJoO0cXhQI*eoyOj}iEW-E_h@UC|H8ri*y z3kwomw<zt7^wAz)Ad`dnRrziDkgPfD?Ny9hTx1-U$Ue2E>p?YZ3lZ4k3%CQFrl&~` z{{SowF_5(AqXBYG<Lp05mIAHw0gy=taIEFn+BZm+HFLLU$Rnw%2sW@#IRlbA8dzdt zrA|N}bY`b(V1N=yjE?<5sat4ocXA>`0G1~>=OZ;{Ad2X$69XLo0EH?e1|*UR?mJQl z$Qv7idEJhlly9(_u_8#S+zvrF$?5M_Vci}_1bg~=)CNB-;|B}~9QvAkUpbR3!GR+u zj-9IcpF=ja)Y4m}G4ILT4o==qDmktJcMG|PKpXj*t(J`K`<WTY=tV-;JCN<&yVIp7 zGL=5U&o0hFu1{LZzhZYVZ<iSW`qi1P_5xJnk($oDxbqQ!$<IJKRH?h%he;G?ke26x z-1=5U)9*aEBh%KdPcG0i^Bj8c4N#p}ft+WlBCSsELOq?CPUUkU$j4ww>r`gJJpdhv z6>d?x7{hvTRc8l+$AQ|dK4M%-@-ZBO3j2zQt_Cxaoc>hVh{FNfoK;7Cq$wFaO<L|| z^kvxYFxbXD>hun!)v?IV1!1g%w<o_nYTdNN63xLq^F)*AX$J0YtiY)2$mfc?45fy7 z_N+*zBz^ut?^=*fSYsJneKB0JS7&@SH6WAZRXGIp1HD`WJm+ceS(fY-KJg?D^?VX= z*xXyMJ*%2Z(mJB9kn4=@Y#vYXRcAohEI~cUt8BYe5IF;%OjBckK6-ld#ZpSwB5Ll% zXf0kw#xUJ7J6Es#7w}G}t?H3OV->^CaD1p@kE@>Kp2E350eE^1M^uF`IEkbSCdJDr z&u>#-dHf#m)E*1ebZB(jUAo=h?<0gLCf*WwEPE5z7113P+2mrT*Se2b_$%;jwBNH^ zYQU?+s@_x)?ZNMsHSc#mAGfrV&$YF*M;Kq;e4r?)<ehZuJ8;)l&`1LLuQ3BYwcx)P zZM6vXvvX&z>Kcr5l8b3?7GsQ&$m%mna^?7SJoObHi1h7b+{-G(XR2Dp&&gPina6%V zO7VXZ{6fFIzPQq?Og6$dDLm2@cU8||GmO`r-haZ!vb|Mr54E&vqA_uEID|UqfE9VJ z_rjhQ9vZfP5qPz<{SMCDw8GsSAefHipPkKNCA*R<bh%FR!1tP8!~H3>eP-g;#1$bP z>5E)R>E*}Y@D)qNpBr_H%Q@21M}03&Sej3_>ocvpPCIN)xczI+b?=E#>Q8&(Z7WK% zBHVeg>bl8qEk{5j-TDO;<C;%}^{<cKJf8bj@eJCeS>JIii?Jg>KI)E$DtXmaZib0+ zp`If6uj2mzi8{@$k>R^_o*^Mu7Mb$n&sTXmpU$N52ZAiTHDNNx9j2kHMIQUx>6n<~ z80I*}d2IJJ?iN=*2=LaM2ZB5+d#6~$ZQA2i)LuZZ0uD}Fu*Q1V%D)#sX`c-0H=3S_ z;Egz4X%-C84OV5!+_~VDUagb-Myi~t$4Kf!jQ5dGPma%4yl1$(^KIY?BZ?9i&2~Fg z7rExWX2u^6*k4}hclzC)l^&S^ZBl5P%rJ4EDLWYm<J!J#_)DbgSDO4jAk@Rz=@uLB zrJmwFtGp@L0qKnP70Jh`MWOk(x~`xuUh?JcrFk>5W+b1+l;>nrVxFhJ>VFd+Z7{!v zbVbp8GYb_umFfn%x;g950Aiqv#~v!Scy%bXd+YcR{{Y9dY`bxe0a4Ib1E+jwwecLb z_V=v>Rw$T3Dt_#Lz-!d}F>QM#h`#W;=~rd2l3SvW-kfI`>(a7SVJCK9BiS9VfW9+b z>-Scc8up!N*79+(ctbN}<E}WbYt?)wq-Z`FySMPqm7r=jjvo5!PugXObrBEl=lHQ+ z3-GJr--j(cWpiiajRHLu=EyS%W64Os>A~yI@~)pq)DMUJO{`yNI?TGBld8L1G`B!* zJGz6Op4F7=I5v~}%T&3yM<4Oiz|!4WL91+qZ*=k&<6s-63_eyT6-&Y1AiA}+x3-y{ zNKeeDPYcI-($+4oC$PRtnTvV3U!AfFgTVYNjFwxgO+CXDLI>U+mCZa)Gg=)H!!;Lk z*}N&^sI9dXjpN$R`Q8`+7rs4z8ub4Fh~EUX&xk$+o>}yym4caKyNXOW$o8*`F173H z8`x!vRGF4AilunQa%<@CfnOYFghywpN>GkVkU{`^W74}JUy&(pjv3PLq4AH#?}1ld z1Zi$!o++6KRanUxAB}ia(~dw~Wd6SO`pNN|;bpJHn+Y!Le5;r*AS&w$Zt|FOzuLbl zJa3~-;m;K6dR&Uz?WQ2J<Ps~k-qCX-rwdw3+?M7Q!wizxY;nhW&bSyEJF<HF)!C$O zc*^w1?NnTFM=j`mt61K~@@7@R!7a3sc;MrT&YS{y;0|j_VYskS&(^c&QrSItuBfze z$j_bm=zRdFHsb{FGt#WcI2@7fP`F+Q=j&Q4vm1~yWQ^wqripf*Iu4ZFV<#E*^r;Y> zk(#kvp<*7H&U<rLt=Mh^bM4xxM5h3D6?QNbuF=LZL$d{RYT6%|;d*p6uWm>RKf73Q zJ8)FsbjB-A-f<=|k;i(LR_67q5`dGytth7Qn}hYNI2hmna0g#{(1KEOqy`^amwkck zZraMAboofeb5{~$xNRGO90S_1QNCO$12twdAV4#N`igrIxw5ya6vkAyuQ(MG-71zl zP5|gR6+p?iZ&GoBDkJg|%2*IOdeD}GxoTPPfpR(yqcuk2VkBU!tCC0^sU?)R%yXWg z`qe2Jfn{O{$Lm5&XeM?F0el~BYPpnxSbW6hlXAOtH~^2vtCu(dTb}r&(X@MyXDT+6 z*V3BO0N?_8bDCt2y9BT;+t#Yi!T8QW^sJh(-%6#diKLLA!6AX<W~ogmX2BtI-?b9B z7&sXnvrtI;l!5>Q)1_yw=cuYDr((m#4?)dCg5(Thu1LFi+t;wF?3i7^VTU6%&fbSy zDGUgE44*+#jm*7pM{!9Q1QJ^q^c5s)#~2_D*gRG(+hftEM(Cax%$x$to@)KOj1@Tm zow@X?(E=kGAaT%Dm{C~<Mm>#VboU~)8*GcV{{ZU>oE04H2d!wMAOV75x*tl<whW2` z5zSkKg=XVu#~9|S$nlzSEkNOzrro*z=&R66vnWUloC4iNW+VA!x)Iw4ny|6)obBh= zy=@Kd&Sq>!K0aJ-+T9kPEZ7eq`El8KJk=-=;QYkn)4fj_CpZU#*EQP<SmtT<86%?t zgqG*%YOMHgyVp4iI2CS4{{W1Pl{o-&x}&&^yozuD$lzB(mX{%>%G=57g+E^OBqM?j z+;9a-W5bu)SRQjp3}HS}aNR+nzUF(e?1e~HJ4pi=rx^B(k+VEuy=lTi`N%l^YR8rs zFU%z*Zoxf1waZd=HiEfXBIE=+J;1A0;Xo!+^An8w(6JLT?F63S9xCinFefd`ACzLe zdXjC}^=QV*<KcjSq~V;M*m|)bVUx5m9X9r)SeyvgcKmhYrCEk41U&QVF^pF$Z=u~6 zuBB8%xRQZ^;L@rE`JXxH2WpiQYwb>0jDSs8TW#^S2E`{QJx|iAF;ZmCe5+EtD(uR{ zfSm~LDs@32Di>)4@&{k7S%xjl3Xl~>7%=42$s1(gsTlO+S7d3l>~T(_waQXP=@<ZD zuUzsmQ(MKnC_IpIa4>4%iN0*-1P!MgRPouFPUMSuaq~8DTe@A&e{0nhL~cujArv<3 zXMieIwv?~jB^2;|v6|G1$jcX&ykSN?ewBP_tsH6s;1Se}kz0Eux<q?h?sBr*Glsz7 zcq{iv{{R}HJ&<`r1pt*lDeYaW>8O5E7lF>+wMuIM#fVS<Ba_Ek)l)T$?5xf}+c6`0 zs*%p&%`vSEzF7wiox~4X-<MC2sSLSJau=zn{>8KcR30!C)~Yso7PUt;cWy|=c<6m= zI$hB&RYwQr2D(eTCutXW#~iZutc#e?vnvdYj-!%l?Qq)mGA3oqH{HkZ^~G1h2PK>3 z?m_9rUcG=sq?Q9L2OUjjG>l0|#xuw`$j5qDxs;X5V+FtjfJO;Zz^NU~Q4ze3eq4;z z7$t4PkWP6XwO}y{PScWl=clz~*K-{bCuy(|hynT^fAFhO-ZBvwd^qjv_|{>$&eBFk zazGtDs$`i;k^$i39ffjAD*BeC)f#O!BL$o0W$V`zeWA9TfxG*l{{UK~W!f;KC;;ou z1p;PvBml*_p4Bl-mh4>fi!kZNa!2y3R_~M!TaR;DuuHfR!u~xCT(?mBI&Q(h_pZ2l zoKto*;si693hm<<`c<1%JIO1MK3;k+y=O-IR1MkBRqvl#(Tgsnix%V#1~XmM(dX1@ z?rmFOl^NvlGsSM%$RcG5-*|OAS3PNll~kXYaJlbSZRZ>Y3ykBQYqc#8I&G(OuCurz zFu>y+WcRLy!gf&4oGW9te+uHPZpW3Av;`m^U&^;Euayf7ump0#hP1IAZgpvTR#Y5d zbsyHQ3)KK%tcR}L^{!eCLODo{%MuioAaVHA@mzwdleCYOu~<p;I$;)X{iAB_Vn-bX zQkq4P0Kp}Cs65p+y9%L@k~(CLDx=;gU=DXM-Msequ6ao6j7<xfRSJ`y25<#tUEVWg z6zyE~QNXG)U$YFCECD-D_|-Y}4Tz*1k-+C4ona|7Y@u>{i{CLB0mgC<9Ou@tudi2W zkAgaT@H*5tce$06uwMMvKYwx#;H<1c`Mz#zE@N&+O?#-QUAb)MC*HZuLsekJVMqH} z>+MUZTnlv^9OHmb8LoQv^CyfBIi}boCGN2Q05}AW!1p!JU+Sc>W`0MZ&M9>Zpt#6x z`8ndTX5_XyW1jh_ie{S=$*L&?DJLzToBCC&E2AW&ILThkSPjgfwuUHhGuT$GjBJ5M z0U6F%R>`7VZ>id8b26fpJoV{ahLv)|80C&K4RHEUV9|n3Ta$rZhMKP$mcSU`5`Ok; zq7O?P(p^sbPH=`IN`QC)SRcl>t!4|j5xWiC*C${QELcH|^c)=5N2d_s7=8ZYx|3%- zk<?kruN-89=s@Jw{iK0F86cm|xr--PP`iL5k&#>0l4e9DbB^ijT`F9sER$zPZ7|w8 zMsa|Dy^64^7ly!gIo;fv&9u2#*J~ZX<d0GH6+2x>SLJQQjGT^ZWum${^&NQrTdwBX zLC$;o*EfB11dO|e!pD=zHKTiV$jQsEHO^k$Fk(z+0CgRWX7@B&85)er-zu)ntO0Cw ztQ)yJ=2zSZ#sM91S~rrJ+_Cvaagr+@=0+s&HZUh~JrAXG%FUfI>}OrhNx>{xKo}iA z3dX%%yQE;Hm-xEY%<Ils*K=^Ep{#r8_LX-dEC>~hjn`u$<}e~sQ~~SM{VOK%2g<=q zIX#aCweAm^kGl#mIbUB)R(0phz>YhE&<f$6hfFnQG?51-c5=N)98^&tRy%tBb!GDG z#{e&_BB4{rJ9-oCTy1N1b;a94gz;h`+~oJDl0Ar^sURNpr6Pp|M?Jx+(x`9=+m!@k z(ycod^&nrEaui_Hu*0@Y;1GKrMKft#tjmMf9<^>6Ga~SzLC3ynHp_}uEJiqG3Q6^= zEeSt3JPZOG2lS|I!Ei?7)SsAks|rNG5^&^p9cd`L=sV~kU9HNNUVZ7y5O!9<BzDg< z{{Stpq@e)+01-TqPs=$4NCPK;IU<Lqz>|BGb{*e3F$bKUqNl-p5%XYjxWM{Ul0tmK zPT)KH3U5=CA(V_9pVq4VNs44MNJ14O<{be!AXN*KzB7}!9;eo{_HB0Dq<W6#v+k2D z%D*V|^{giCv9xtYJ<)bjs&YZ-8-rA3^9JT*3ObOdHFoM9k~0uNQI0B<kmQ#wjxa#t zl6~1_E0)MBg&nc&RoO^5&OsG*kV>F%qo#eT7lX@28QqSV6;YZ*N}b)&n{slBqi!+6 z<KL}Qm~JITGoEWg<wzM{VS`j842t8U6P){3Tv|xvoNmn7f-7ft&EJa8xN?~aIqpqp zPT_LgemzZQ+_INEeQTm8JeH(o)ej|!HEJmxn<U`$#wwF?#DYGRJ-U+k1mdZyl#Ppb z`8YWsaBE7{_bx$f_2#oIS8+JTduFz*?bxmu;1kqV5{-`NY+kdCah|y6{EE_!IVE&p zPQpH4mla;t73cs5vFTd2iMOj19RTZ!!TFtWPeEdgF$zf_9&#%~P1Ba@>&sN$#C*d& zy=fwWhDLLYagO!1q*)m+5CzNj$86SIspxAY(z)!P1bicH4fxb<SIk&QV7Sgm99P(X z2=oWjCb{ty<3!h&C-*q{n{GHHb`|0uv#*1m^2)}{$1wBcEi*Fx)$h-xeO0O7S$H=} zl4z~gU$dsmXh^`3j|-Y_O&RjFrsp<mcy`UNMa;V7_V;oYE{gI00IFW2KjT;*6#gh^ z-X619VAP?$k+HE}4d8n1Bl*`Es`$TKeJ<w0D-?qA?5kbfyLD1N;)>urOX2H_rIPvM zYwL(0AS)26qxk_`ZOy04pyLSNQ_p@Re$hJQHw|?6-efR27PfH=uqXJ5JlB)z{{R+l z^*Q0y{6QqM0NGe4kdWTkC#TY*@wMdt0NOWkSxALgY?4G=jQ0vnd1kX?Hmj*bW|5_a z6#*6dpQU4HuT#Dho6#PNfAM3)zZEr`Jt?J@-%5>qrHv46f-m+*Ku@Wz-^ZU8FFZ4$ zLE&!(+&z*7K`O?e%QKI>@=59KUR|NZFNgH>v9#K^mpN%B=v8|PCb1UK{hHr0Pb(Li zeB_g!05tU3KVLHamE~(0J|fgLuMla^qCjLzNo3!7BqaH_j(@&-l^ro%UxhperhGNi zbnR2cU^G)nzS~VwH%b?teHY%ktvgt;_-)|1btx@upuYipxvx2CAF{?f``6AsFY!LN z<NaOrU1L#~P`GeWKY<m0x~ez=wC7tz0;4IvBzN9B`0uQEs{2uvYl~qEA&S>awOzKh z>7FtN-Z-xwxVxWIx$|`y)tGU(4itI;*jAmFhi5;#2oyIs#xYkQ@I>Zaq!#C(6gj5u z+0wADYYx$@T4<JQOZeG9z)ijDxbU0nDR~r{e8$T1B`dxLBXR6cr8~hN4ouTP^F+xR zVUe71^slab0r00x{?12|HC4v%m;g_?_OCj%NH(I*>NpuR+2vjp@OAfy{#{vq*>%^> zcHG3Cqv>BjcvHZU$EHS(I*u0{5IE`STmB#LjkcMnnIM5e9B>7CcAW$f`A{{w6kakH z2M6A{r6k?@9kIcvBgS=a0ZVrYjV-txz~l0+17Gl~X#|-ecLlbBsb648rQ6%a9dI%` zR~_RY0@`?r$)i;A$R&=`$^2_MB-njk>Dc&#UC?EQPcjrNnE>xR<2CGm0VB~bH8hU? z{M)nOd1ZHCR38w$4EijgRak+R;AB<bfw5Y@iS4cK5fSBJ5sLEu-qqDcdh%TP{7oKP zw0hsfsBgRtXqvZ&nbHMDS#6N*S(NoW*Ta9c<%N%oFV|nTw2w``5H9$mTzR9{KDGK$ z@l)Zo#<$?zs~{dg^A*(RD~^W0JU?ko4Xr#cd3tb?K_Es~9Fgr_!c8?LqC9$1wCwjj zGYU@NNiCcl)D0VKE1YfgtMU-Xuw&Yybpg5qj;6gBwPVqe(8!V<xxmId<E>`T5hnwT zS3@FiIKavE^sM`vZMi#nJ%wo()fhPTIr-NI2hywgd$Y$LwXHRvW*;cxsz{h5e+_Dz zW-VBtxELMjRd$bY+*Hn;@q?bUo><R4MQd^r9~eAjoSL|Y1A~Ank{)r_im@AIfa8x^ z5d90*vTYy}$*n7LO999%dWy%05_b+8IK^sPzS0Rj1s1r?n{cIw=N;=-CJL$s6z76E z)+M+vwC*7Fz^w=+DoN^3>q}yK8t}`P*c9M<b5_yRqc9jfFx(oU3EIFM?p~s;M$5tH zB<Jf!<g(mLv<&h{&VR;+4Yh+D9-^4CZ`?RS2>Ef^hi{OmIXL8#R+myYD@>$+5de&F z+Nnwg*HQ~{!Okk|*eprTe~T4bROf+}_3u^C6SFhfhT<EJ)e9#l83Vp*<cX317$U03 zLhdbr&*xdR&0<11A#;E_Q(Of*N$03jN(n+nGBeVnX30Ev<eHZgq7voQsWTpP#~JBR z7D7llJ*rv0>Bu=JJesQ`b<h6*uBP1%)l}Y;H<&OmbIn(LD<NP>&uY6oYz9tA2N}gd zCQ0BEk;V;q9Lr<wY16XQg>qSm1D=?vQ9x0<f%T>k7a(xmhow3<JM+soPAVH`WMGkU z9J2sd9{$y7P%s(k(B`S6!AR$EJanr_+gm3rG1{<qy~wKzs}_)!L4kk=ty)s3yRdQJ zKE9Qo<{!RK<x)i;#{6WH$R{6-Zxr6=%~y{rcQjRiJPvzt)~>}Nkx@u*o8|``R!lO3 z{CPRRtw>y=p<&SEX12NJSiF;NPzmRu3ToUzPBN!rjF3;|S<p7(LI5+>mZw)F?qXDd z{5<E_*6@>R#5A`pGoP2`J5MK?W6q=zv;uRJRo>-@+QbZTkMO9^CmX-uCbqc^Us6?K zqzqwk#WWBYXP(E>p$;D}gVU!@lnL+y07rZ`PH9S3B}T>A6(r=Hr1P}Y$~WhLFnP~< zq>`v*8@B*CIq%-B23J)i;IBUQ#ZpbQZwMrd(8A8^kCl1oJJtJm_Ku{5_3KpaZUM_P z7s=x%2c=m{mB;{r>N=75*9@=CW4bbmj*Pt;?K^{Hp1(H~*`3gBURNVM$)-g!oQx3e zq;NY@?kvlZwZOo0QyAJ>oAX7)k|rY#0_Qz@0au}j%H4Mod-fGt0p~J+3Ml7j<29`c zM#HDi#&(<<?Wav{jw+RHqS$OUyYYqDhVA@SI$CXF8HfX&xan4*xAPR1=sCxwT8a;y zSraJ7u6kE=DV}_)B9GY~L<INgT6WfjBS!MuW^f9e)yr!zfs~!f4_xOJsi$d%H0h9A zu5n!|n(B^eP2WPLuAPh!#g&@_+v{3!SO!3Z?9bgkrnT*~#8~6O-Q0@MwzA)ogbn;S z=WS@<Pqb@8m7hxqv4UXd?+VVl(+QBS-Q&3;yO*%Uj0oOOT%Ib0{+qT`Ve*nXdeEU` zquTa3Ijj!ju@RL($T`ZI%AU}yMVSb}>DN5hq0OfikL64rcYm}!>lSS_N*2Zm$t#LE z5z`u%Ryd2>Wp=>mGm<+F)z0cR+ZdC`Jbf#?y3?cB#|A$@MROXhuu+0`>^NNa0;QyD z&T;p#<xVlzIU=#7f8K@0+#W`2cT`L^RhTz#O6Kmz%1%Z{B-T8lazY7~6Og|$oMdyF zQFOtGW6x}!qO*+ak~eYraZ#JGB%F5YYAtgYD;nuK?f`V|YDBnf5yI!MHH#JST<0uv z+NKvFN8b5J<n_p`?C)}UtgLH!;Zz|c9A_e&Za89CkUnGDvVPhdp~H1vDW7aCI__i1 z#WfW6G3U_TTa}JI<d;?>fGXNt7vOFf9F^!Rn~LxN6dWf}pIWsI(Gn_?xm$uWirNsi z$1LZ4j;`A0fJr2eewD8U%H}?PQ`)&pIhSrpUBLCtUxM&&;f_xuHQyAHIHb;)UNWO( zh8V)*u5(t!+Qf~AS7FlwzH6CV{{SQ`Lp*bzTA6P)g#hFej!sT%V~wYKou$5@X2IMJ zI+MrgSK_}-q=vyKBpmQ-i?!5407iF?I&`fFFM}1&ET?xSrM{)W?9%y)WpXlcgU)!X zk!mZGmctxmXRp31k+i-!0a$>2PfD`)!5NM-g~m^M=9I0u+ZY`?>RX5bnF#y9o&l;d z>Ms)&Y_olM#bAv~Dxe0!{{SkEOSURT<=O^tPb60q=8@S7ZJQEmhZx}Q=sl}C<5kRV z0)fv2@@pbXwlU<8a7jG&^s3TNjzg6Ps+#6?F84asHl5LKYo?KRDZpcl_32qRcVal* ziXFWRFH`jPsLaf=5{-o!;d&a(zL}URu_`mh59v{U#;P4zTK@5mR^84sSXVb?mGB7t zb64)z$;cQ0)=c}O$t}A)l@+3Qc4l0b)T41HnxGO``c*Wxb}fPrzo)fblMdZ6j(YW{ zMHwlA2^s1KTCQs#QPiTAq_OPY)umx*#fasPN_<x2=YTWnD@xwo0wx#RCWy^kxl=WC zxN>j-QWOk&*IQv3jx1$Dry!{4Yn{_A!2=}jJzG8Nrm#S82i+WG9&=rAXB6XPbed>V zs=jC$`LacH7GuehFgg*~S36)<HO6u=)OW>g!!OD?We1#&--UI>yBxBK(ppY1plt;9 z?^_mkDpX*yp4{U#%358k#v30mJeB7)rE7K+Dkvv!LOTlSO6Mewx+#oDkB~nZ9gR5M z><;Sa8F=^Ru;aW87Y@fgiS(z7;k%a@Zg6X%Y;xOO3zu^P83!MSdcwSwV-Lt}-0iCp z&E^8k`2!@9c>e(PRxS0|ExQV%Z*h~FhFVOcaOF=p13W0tO3S%#UA&UaD%HgKV4;h1 z*F8S9pC-UE#H4`Za6N09US~pX+7vDrxeXyW3)N5EHIaF8thp?B8(ScbYW?ixX2Y;- zak)<e(=~yqUKNZkcaRUrPfXSxhSBSCCty|foMWLqGg()2sbjf{lfVOzX(qhM##x6_ zK+Y<pw+ik?RAaqy)M`7OFt)-gvl0UDP&v;WRIQ8y!uP=GRMtRP<bV%vdbtq};1jzG zj03>;t~qO|){+wezE$P1RrxAO3Nm=W$;C|UrDWJkDxTbCqAIFS&O4KiwGr!cRj7-! zp~2jv)ODm-h+(-|K{?BIsjZ>}p5I!PKuI__4c9-!Yee1jG_}^Gkbsaj&{;vr%}EN3 z;GLk1jidCYM!8INBer;}3lfm3eozNE>qj+#MX_VrEzto4_1edrRIBq$sw2V1Hv`(6 z2uS&00UzESL8+G@N3dge8|qWu#apQpm0bPp-93#k#0s_)bNoFjc_Z9L+=lDH;QP~L zO{%A$9Ag>AXiUz{vL%aZtZaMt;}uTvFnI$%(yx=qZ<x62fsjYNQl2(f&m~74Fe@25 z-7}&IEeuPWa=9E0#~D20sk~vy!NC6U>6+NPgfDNURCt$h2&8AQ^{lzl)aX>(Ga4)c z3Je~(?^UJ9V5IFQpsg1u7<{|?5!`)iKIM^DDo7)d-l`7L*iIHj3y`c^<@tv^cC4F{ zLon<)#cEu?85qguBl^}&+?+RJM+Ee)>SrwCWlfUVBQ-)oMn*dKJ*wrvATtBF4%zQi zr6qD(xUSgiq36mvkq??d&N0W~SFIQ393D8uQ%%mxfC(LOTJ~{%P3>D-K!R<WR*-J? zAo4R?mNvpn9k~GG2D7Z-Rvh;@2D%#?Z~-G5h{a(p%=BRweM#+Y!xqCR=L0^qw{2!) zRpY40$j&OhogToY!jL%0t=J(9SgVEu9c!LR?srBpX(UH!YrGJsa#yJJuFt?)K)coA zN!)>vnL1!r6|_EFj6)SabaBRO)BX_nQs-XPZQ9Zmx&emeCmiSXq^!`Zq^Y)j>F|@n zkoafAI&!9GxVeNFgARc5a%%Rl$6eQzqCs(Grj4=37~*S#-MyB%-vId5_WuA<eH~*d zC8PxjAM(s&2Oj3VbHchsm9Ci_Q7Z2YUE8TAsWr^~=XQK_uC8(xKMiI?6W%$VTr{^X ze&AwwRnK8wNAYt;)F<Dhz$0h@1?}y@+L=6WVfTsj>0aIO3&k?uTE(Vmes`SDwE07T zI%N8q<32L@n#<vzg<^)>M0LXu3Yp#Hu?H?kcJ%b6c&NU{^q~2bw>~cMr-qJ`b0xjN zj%)Ls$e12d`+>kd)#dtsg{ND{i{>!T`@-CiJ*(AVzqq>&ZZNXU<(#m|Irpr|Q_h_& zkm60*b|a_KyjfLUkE^AGaD~~->N+{OyOwl~VvR6^)UG)-Np&c+%bm{zY_alVZZdJj zc9X1D8fK@tNtICGp6Ae4pIz8$8pWKKDFVdKKIv?lBQAYWlquNrj~VKE$Bni5bqm%E z6zqZ_#BiwWqqcjRqiLgFDMPaW9^;Db?0gfd%8b%RtFf?mH$z*Hd^*-lNbx`}Gn|Ou zILB(~oa~jEy(&&xvj;%XZZeY?npe*ONayQaHm3}Bku2ib<8U(B9X}eIP0}@c3$3qV zENY|f?a$?1CaryF+FmY!iLf_EAjUIZeMzgHq$#Ui8QvY&?V;MPLasr<{+0D7!mHt_ zLk+xSs;~gGm^^l`mnQJ-h3%v>+sFaVN0-q3E8hMKU$VfV8*?r`_`&*DHAb{(?53Me zEgwcTy^fU^pK$*GFyN3gx~I`K7(7F%n|M*mrUA&u(w6-FyG6Ho+Aoj-*f=E8csfgK zJwYx!_>%yzQr)YeN-NOhnrbbjsp)a}NZebiV*?xt$<}-^EsSXRARZ1Ysn9j}@6-V_ zWkJ9KuIoExh;%F7y%$c6N_^2iayYz2D%`R@bNH9x(|2I!XDFnG{{R~CuLAv>Pw{2B zxcLgpg>l&CzO2@CsI_hJNVvv&b+0edeh@(xv2w1mOAE=lB*r$J@GF9nN?IG^?I@`q zLb4(7&)Ke|5~Q%<WE}{_es+G=J{-5b{@JyVx>(xVyrGnznqH_6wSD=ctN43Dn@_*p zIw9K|4o2Kp$v?Iqg_>^!>sNLz%@W7v9j7hVo-5i<RTJeT*FDe6F(&Ps@#YbRKJ?rT zxH#RO)p~n>D=J1Clhd5$p*F>_jD#ngj%&R&9U1CtBvO-WoMRtO)lOJIS0EC4j%!h( z8-_4F$fzZVWP(5k__0ki4mRA!c(;ZG40{@*acr^Yzdijcb?vqxTyjTHDwLMY6y-_h z6{KX|rV?EYNh4KacK7K}NUN4Otx0Y2a8FJ#ROCRU=O9+;+{VQ+yySH6QpdZfAbL>X zXCM-KVw)J}9V+(`I!H@($gL}BHth}3t1UWr1RA?;#EcSsg#$M1<p&@f9>=|D#~}<C z7|&Y5wSO)0Iju-vaRl+6r_z?8YqMe*hTIXz;Pcc~$Ry(dM+d!S#_No6l6d#4)~;BP zcLScZ(_5Le%?QuSmLDkKH+qevV#I;RT#?k%Lmk6|yC0P+NPcDIMtgJ3TGbisD?2if zGk`jQ{OTr9ai7MdQpAzN3}<h1PEnp0<))p*Zlx!UV;KX2dv~gmqUDK29+jmuU_=f8 z$jHS~lyEVUI?`;lV>Uztl0RChD{cqx2-J+9TGN&?0X+fd+Oy@4aBlwqN>{n6b}3Bx z=Q%j463d=W8HcB(UAR!7?a0RmjAPofXBccL!S$)Kxux0NO&6Bg8Dt!0sk~vy#sKYF zQbqvX$s8^ZYJkM7y@q`SeEWS*)zZGj1%Q$moPpM)5e8yaNF$yqV+r1I&rWIE843-g zu_P1PvgWzEvP3|X3Jx%TT6}I*js^hr=M<xM-atR+tv4X$e~Z?d*G6*HYT6Q{j#uSn z+k=l&Q>Gd+fR^v?imIo}KQ}r3DoCd>9FxHQFG}fKSsyiswe>E<%7bVG_UTvc!DQrT z)0|d(PI3-M)K!S?8*^c>7+?@Mts2uq%6c<O*@puGPI)7}NFAA6?in5b0K7e_q<<_u zPV8hHb*lhvOtbdn5mcSECfx@k1x5-8Ty!R(X*pfTCp=S|Ic<a?J&jjw%*;a!ZNWoZ zU#XiWlHfCKCkNZ0sD#Ti0fITe`M9V_!!Q6S1Co2wR$-i-yNKZQ6_a-wG(6EC$_V*S z0FI`uTgk}fNcJ3x$`hFxK>#*6Dr#8WLjp2RGm~8I_VYGcdK<RS^L)%W^{b0=z?=cQ z89A)0Q-RlUJ#so#)Fb%1=Q*xx-QAlc(lp|nY#7`##^KxPQwI*CXgf#Co!x!vluQ?# z1A&DjB;u?g7#WO?!<=Tfgl_dFQb`&Xgt%7R3oZvec&+;g!-hLgnVvD|YoE3}fD|rI z1P&{t)5iAN0ahSqZF*Frq2^VSPR6yJv0`#h91=QKwWX#CHa4jl_BC3<EXJFL3V(Fg z!~hZx${2BgYq}{dj#)~@i%Sj(TqtgHfm=4Zf0V=J4odJd(vwYtYLHcU94YE+YS!7L zJA#D(V2afwj5&r{S}J1-8$B>{&wA8NJZ@d63u7uz7^^m@suYFGk3q@xtI7!ZcCc-~ zbc%KkYZ((+4>7Vf`tey;_WLFZ+;8U|wbV(Cps+01IrOYs=#dx<61dJ!N}i?O<^|Lt zGr91)cYFOS67f~!GHv-l`B?S*YoWP>hEO?;k1PdZY6?S~XDz`erxaQ4Zx?2BH|iZY zTmn1sn&UOKNR^os5xbmMZG2Kq#zJtU^U}CoV1D(1Am_J1Qte|{$((Mmt>y5_InNz& zT+RDuE4vB?eznnRvI#ff{J<RJn&S0IPU17oVP_*pQCm`l)!*L7QO6ZROR(zCyJ^ld znuhjcyCWY_S(03w;GUke?bzm>PGoOIeT;25Va|J0hW96fkLz6IcVuK|gWT1a?l&GA zZaL<cDl_M1>Ac1WIV4f%4hZYt2C;?C(0_{*;W%dCpIQ>LA<4ZBsOG~KQ}d1vdsWEp za#hJ0AB|u`bft5j$KI^Na?C~!-($vWM71+Ii+j=vw^8Yeyl;1|cal1E#tn0DTpR$$ z<~-H7?%R=^FRgBjcRDEb68Of_K;)i+o;4AZkGwjMPkO>jhFmE87<8%Bjy5*a+<J<? zLoQRKwY+9ftl3gAfx-ILj5nt$xn}R`J*%04_W(?Xb}&ikD@p~CQA#%akVzx8bIMjX zgjYkRhV528<Cg9RIH|?+G6v<j$JaH71g@WObr~de{HoknDyRrJkGVdz!%|jPJql2} zwT%h20H<o_3&B0=yqAV0$!rEa53Nx%Z++m6xg#F686lx$Z<HzH9<}GrrP1nBrKxxA zCT#B*+roj+{c0n0&5hXO*Z6<NtBFZaKpR2%hqX24+(NG-92{3PWOS%5gPKz!I}&*q z;<F|@j^0x~yz^GxN7_>$Dd<mnp)vU}k_qEJ)vRUBqB4{c+^2Jt`FmvWPeD{ASCfFG zsO{X<xnxp{pP!s_P)Rse+N-eR2R^mYc9qeEwJG@-Bmskraw>RuPt%HMe7PJxM?iTM zA`={goMWX+cF=K&W+1s82iC3I{H!z3RScG57<BzBLc(FUY2M*;lEbYDHK}cLXl>X? zHh@7S9OQJZ+X;^HM=W{_aa`53fl7jK2R`+&1<A-6VEkaI9V@<^wK!)TEOl0Fo>?H4 z$-qt63-4NX*DRzy?Zgg;y>m9VJCv~`FvrS9e+tpJmuMg`$3E5985~lDj)E(#(EZ|= zI3b6BYQGiKh@wc?vkn*)z!lCV)(|%YuLKjEeQ9C6V&w1VfJv^nzUL(4bF58GP@qyl zAf5+WMb!Mylo9hD-Nkb!QZW`(Ja;Gg3S(-@FgF!Z(-qRJ_Bk3!oh#odk9v{^BWJy3 z-d|w`cqIMcd8~KUF_Rx0;FfL$Qf*O6ICdUjI3uyClD2}?>S)V&8+J0lV?L+ev#&1< zdvZqq0OG;p6_+lmv6evU820a3bLveZlaK<APHUb@??Y(44IAA-VObckB~N44xt&7! zncQcL<T2+tsIPTU+lymy<dIlcnvP#+#@?fzMRLor(5%flFH#iF{lxzO2>z8uYrVu{ z9GcC0oU)zS9)_WL31U>Q%zEazWVyFDOxuoL17s3?IH}^fE6#SFx%Cx=9m53!Zh7OH zk*=CNg4n>%J#$>nHd-A~lG5g*T?ba`NjN#<igb4%jlmb5!}``yykm?oUEGY*lJJ&7 z1{ih8z%`STw#QUmo~Ha)48xTRlgS-w;!KLbft-FdhXwNP1i0Ey-N!X#USU|^06HI9 zm3C}vD-Fm1Cys~Gtzh}9kGqbU<R4nhhUa!NMgZiRwFT12Cd?HiaB<U$2DRM0n>L)4 z83O^isggZ_C?T*2BON}KLNm8&@J9!cnz~3u!3P7A&mPoEO@yO;#A{_6Uy;smO#~7M zBoetf1E{5U5|S4xpnTl)rzB!EZPFDaagX7sl<c)GG~M*rhiarucDN_CM=I}J5_sby zkWE=>8fefAkOns%G4EAnCvMfqQOF?vb;l{W9nhwtX3rU8^Dzp%U~^PuQnELFzjq(j zwVgsUN%w{^$9l`Ujf!O85=KYAYLz8>Hg-mx*2Yc5j9Bmx0zp32n=|ZS2^l^6R;|ou z4l(m*9QLf6r3bDT9B0<LpwLQ^+|9g@uqe1tPb8kTn{kp3NXX+os`b+RqYc0~2hy{r zD}kO{p*^d*8k`kqyXa@ma1PY@M+B`?m;ycfRp%sb#x{}CsXC3>J&#K5iahzzvl7`b zPTU@PR^5bT<PygNjyej?w?d>62TpNYdVG0OOA;~ZTc@cimZqhgdjf;=6VsaMEMpFY z;~44%W9jj>6pRda#dNkY6St;){{Wp#-j_S+K{EBNx@|$(mpCJlTUM5=gyaC_KpMXQ z9DVQURBV7UDxvv^!994byBJ+d1|^6i1bSC1yE`e<MTnu=+cGhnZ3m3~Yt_CGY9~b2 zEoD{n<llu}fqm=Ep^7;QvMx#W{&m~@K3RsZ35yIj0g|Tx<Wx&Saa8X~qwWt2Y4$n} ziGQlV`MtX>ERq$#0QMfHx;-mdy3_QgxbqHLFsg)ef;lzHTI+WfdMZPBv6*Hup*Z<M zp12;BUsLe{8<}nGrB+pan-KE6R~)5%4~$XwwIb9!baWfEn%R8aKuN#OcKKsaKfB!5 z&7TtfAl>+u>g!TzUQ*MvyO{m%+}C;Io9Q8+QFg$N7{~*6-Z<w5yeGsHeXVVxRVcrG zK<SF&trf2`J$xKgq>2f9dpom-Vh<z}(>;Z1!6S!@Dl(w_z}0O&4bh@w<@Owk==41m zq`8eFj5-sOyRYG1M5;#GA6*!`YGvv(&vpz^K*lFIES#Fk9tqdAC>6}hr`u<VW(02? z>)YnhG*1oaQfnHt%WZ7{+{@I+dn(tTYaTJb@ny1K+`$f!;pp6~K4`?VFVeNc)QU|r zlC38lR)?Buz8HqZ76|-RB$Jf|fl>h^{{Sy~lSI*VOD9oft-$KXfh46#KSFAbyW$TI zq|z0E6a$7}=W`F~S##@}9n@?s_d_ENK5XKOoULeSNw~gddW<*v-kB=3<(Ziff?6(e zJDk?7-OZnfbcxu-46)=4O1O3W>(2Zo<JoN{SQ`E3D4-8F1M;r7PVtVPcC%YtMv|kp zM1z7oYk}S`L)L_&IGS32hHSpY8$=|7Y5787l$z{3KWR6IZXud0nInYYU@s(-Shf~g ze33?MW|k#m_XFpi{CZbYsp>}0PP2{f*I}1xfSmO8sc!F4rOMA+(sdhKtvOO>mE}MJ zhHvLx7l*8b_Xxwv3g;t{kUi_md^uwU+(K5B<w+Mmc#N9#uZMOvl0NO*lxHSJ<kLyF zWD~NBJ&!;TMQWx%tib%d;<YdDB#zz8ZG~^|cCK>R>CzO9S~X?hg?eVA=RpJgmVM-8 zg^=VQYV@4B6_1>i6;h`&{7EftyxXS=ax;TnFNR=Ci>ZU6vVp({y>K>{E*P|ovB)`L zU6+J4A|?ZZ9P&kTQL3Xf-q#*sLHj3TOIooJTFQf+xyE~n`0w_h@f=<j@a^PxZ06ei zObN4}y~ckIwf2{Z%O#UKF6P=s2c|3YgZA0+kK5*pLTE&gq+7hzIAHs_epU25p7XQN z__ZEsq<lrG>B7qLOL*VRjZOru)rC`ga&V;l)ww;EB_O`-y!w&tPzzNE4mccS4%NRs zv^~f{Bw{>Uen6)tt2Lm(908sMZ?&En?gXjhIO$M5rsgAP3cLyww6Y&1%n1>b<pdCV z0xGP~9!MD;hPS1)K5sl6XKp%GE1Ph74mz6JGT7&I(z|CjcK}@FLHDe=A>iP1?_DM2 z2nG%}5OOOP;w1%#AP)Yu(H3(_E~Z@lFhB>f6$e5yoOY{nu10ax<2~xDC{_c|*2$S{ z>^)x}De2ayjDX9}T7?H*hNOvrZ18<5(+e8b?URGpb@i+E?VNFu@6xdmx*pljUbUrc z`*!olIj5*t*^W+I<|=yC=p`g>1Oj^>TEs~REtA)!Xxqp^9Wl@hRJ}-O+D6_3W3~<{ z{4#Je`1Gm~%m^otqp7PZ;EXBTk(|{feT<qW1a8Z5o(F1>5wIxESFU-@K^r#ApP9O3 zb52GikDH8R>+e-#KOxT^6@Fka4l~o~RAp1Q9AmF1ty`LA2k#6Hpw&6XUpYDb0H#q= zQW$^-$_M9FB~Y)m2Vc^!TsO_h<JfalB{}Q&&%bJvXpHO7;{$@Z^~tQ8oQ|DI{wmhE zVxabJyp9cJT_-|M;Zo6P^m!uQ#YbO%T8kel0)G%H@P{%S0!BKTR@$SH^Bw`mdij^B z`mGsV8OAUO$mO}(2U>5G91Wqps_bgO{NYdPaY;NITOn`&$n8^fjX8|t7|SWj=k=(W z4gmfTa5<}!LzCa|s0hbZAoVq^%qvM)fuzPkI3(cEA8FgOBOOWNqm(KfhRCRt;h2IL zb<d}@bj4ZfeC{GwG~knau2_HvLDH@y#iJ??-+uLxZpQ%kHF^?oc4IxsHKIvs&ndTa zV$wz|M+?{!{OZJ?dA9<m01wWy7ViKf1#ECJR#xHNH(&wNtx9hCiM!}paKASKLVDnI z#a8l_!;z3W3?8&S!BpVn6O04Wk#@Kw91+r<yMxxiK*>2Jhfu@4Rw{>cpO|Nkb5l-8 zV8yp*xTwT@6SM+*9w{cneTY_k0;B*z&myhEI3SXscHBGE3m)<^Gm+ChDn`lx0pqR( z4JV-0&3kDJ50q~tdg88$Jg|0<N$uEHExfpQ0Z9O4=e20Vf~%G|UZ=fe;jX6q+E~_x zWlxv_2Tm&BlrUJ-79)|0&44tV01B1J<B`p2+q7z+3^q9!?OR4RcQbF9Sr_e@fGoqD zfG|2&L8eTDc5>Mm$*db(s{P%}216c(wzSssFw6=8*bcSn(uw5Mz0Rt^%!n{maB{$O zHMwCD9KK7T=NJGA=51U=5q5-9G6Cf0wQpI<#o~P6^&>q`(z@dwrz>Y)r>^~k9-{zy z*F$X*ov1!h!N47Bo73dl7nL|UAx{FjjXe2_^KC9b1g|82g<4iZ^fj#E*%s0PVoy$( zsoY~2Y>+#iY9x6gLC$@;jMUA73EQ;e<|K8gx?@PMa028KGI5M_HI1k!iE!kCTO*E! zweB#hxb8XSR~;)p=#@?eNnG>JD>m#}MjhZ1m-$3%o&g`{n&<Drwit8Q9M<*fW<sRz z8QqoZ(~9S{22>4`&P#GJpT?r*isvb;OSL3pjhM~{QCudvcPUf=D9KaYel^@`ueoxI zjE+F)Yl+q)Ra1l^`Q4MjslQffw#N;sjf}u&EHVZ<*B7cF2d)U@jC8KURQZ{J1QEf> zt~*d)^_z}yoDTG_*okU#+KZ5{jCJZO9pw4&dC2Cq^#H^8ai2=Un0aLLxxFhzW?<Ec z<C_G6G6h?W^1K{>TFFMsZ5&m&<|+W=81GimDVLI9a=9S;Q`TZh!RmUCN~)6j_o;K9 zgz<`xP`fTcE;jAwj1Wa#g@T1*103|M$mIZr$Qj^z)z}GMxa9CfG$xHpX*L2dI(Id4 z46^qbIT`I)_Tf%9ci@`83;B*WFl_PZ(vDzJF2>ur&Oq(!R$_~L?mPwVf2CH1c)-ev zxf<<d?4a>Y&vrEu{kUMLzrc9UdeXNnilZRo(Ek8B&xht-4npuit4ibzppI}xO>xS7 zPN-A4ryauyLu76o=QyeS&@;I2Zo|^Efg@`IJvijmoy_2s#{>XRaa<K-dX!+xLQW84 z0P~VNQb^ckQIg!80mVRsoxuF9js|H2tsn<EVlr!jR&qTEt1AzY*-lq#?gO0gY6&O( z+cLK7@zR-aaywv-pm(a0Ty9V!Q;zGNp7i4O@*7rUrs(z<0CggwW(FJrP6rvLNr37X z9{Du{%)k=B;0{RUwpPA|O<fVYV6Nkq{_kq7I;*o1P6y?hlV_L#Ry=YKdWKjE$OZ`= zNUh!WIoxzBH)bTR4%1SjFa&NS4m0agO#yM7Z3D3so?9-^G1t?IEp&ydB!K`t9o*!B zo_@7*AcufT0oeNeYNpnWiC#0tM@pV19#|WgKPM-pE7+usD@%eoZ@vc~jcQxTvuI{H zZ$Zv03O8u_Hy~tZy<CpqNMc|aSGWhQbj94o!ESVxw`S3lFa$9pp4Fl+asdu9-rcK^ zO+*p{0!TkD2THh_!ynzV0tZ8mb6t>UB}k@@q+g(XBQY)Q)|zh$s}}pAv4QDa^m>qX zTs8>KPB;|T)W9Dzag)Y+n(K==B@?8$ye_zoQMaxIQ+-4Cgpu;DGgyOBgt!MGPgc+L zsGCtLa4_Zac=YX>)k@nl7f$A++LG>*=FU&AK~(3|-N6O6_fwDOSu<)pkV2PVL)Nn{ zH6T7*u}?unrn(XA>}p)<rx^qSIU^j_eb%Bj6jlW1kiDxG<5I%lkU%&j)fsO#f}rE* zYZoVS)jMooyVMy*(#JlaewCRe#z_Hy8Q^C%1KgIt&m*y@9m?~@39KgDFP6oDJMAP8 zN$2ZMS39%0c;siLP!kZPw{h)Ed!k6e<nVD=@1a{7vRttNxb*8s+FJvVrMnu-Y4?tJ z$3st98*uxl-1Rk!eGQYbq_-uQ5<XBlsSLY`!s7$E&TBbl3<8zs>xz;&cv08X=Cf+Y zTx6M~mktW>3XXSwO22P(ag1Zps})B%86&9XtU*2r%N}|t?O3$VgwBc!gPexo4nQ@l zX5=7pdag2i*Ewf%k^wj%@y2Ub+UI^(U^qLEYR$H37~I#2U8})3Q^t8UZDu=%A1OHJ z`PO_g3Cw(|J8(z8)~zFMDx?F?KU&WAG)cY7TbnDKHr}VcX~Ef5n*n!@{i*}=6bFX- zaaI;FfI;AqipFob*$CZ|Our%_`>Y0iDyt(0akK?ff$566(3t_q;2ey9DvaZNd0qj- zWY;s5`ks_2c^UIYa#2pwM*cbxS=S5#u^1f*3VNE>o-#{dWkJFB6-Mv`!t5gefw!;H zi0F4lK1K!dyPm89o=;AHtz=!Dr(*)R?_0M}<+qcZ4WJQ_YZ~Wrl3N9RE2<XUzh$9| zJ{XWNMsdYZm3p7MiqyM6r`YkdRT&{Uf0Td+73kA;S2<@!$jF)zA#65Iaz2#`!TZ)H z@T>0*N%?zprSkTsPCbq*sY#_{&y^K>v6k?MJPZNXJ?m!7F;S2do(UD50uTo$IrQSS z?H6dk8PC6J(MrZ{m5psVN6LpJcgK3^tfTWb5D8@fV2+<k=d4(Qq$pEeHkeB?_hak8 zrrpt`Ad}OnwP6SVl~#6D$P0m6)~efLU@_c-+Oq5bWmR3I4CS-lx2$0=8l9sflY^Yp zKJ4s_QEJjQF>;%f^T%(ccRvrwhgY^6caqDuaO?AQu38urL%SQ8ACsH_Yo_p|Y?`!f z5<1G*0|%+~u3ECSIY`<xy|Yx`Q|zx3X^R(zB-XU+>wAqyPmK#(G2Ejb-Tsy0o(u6c z&x^I2=+Lv?$n7(%YmAb50bf7qpAvjcqIj=d5!}f35!^AEA0#h0#eEg<hsD}cTw3bZ zs-M~-RdA&+7}v~T@r|bHY<c;vPYgBvo4Z<+el7SzS<<Gmj^@&45^`9Nl}Q~9c>J1F zpKp<7P>B!9zh6rI9`Rz^>iQS<j;U`0#9+b#INnEZQ(qtaNAR_sj0@!Ml17oFU>B$3 zU0H=#D5V|Q<7G6bI*(0{F}4X9P#0sfV;JdOR+Xw)SRw-IC1d-rM^ztrkFc%-Rl1fZ zSkX_KIx)`!*0}E#_|j_|YujsACRx+$?I=8|cgNPeD5oc7x%L$rrmT+7$KMt#yici3 zb95PeIis(aZ)^_JbuNDS9+?&MPmlg9YMw3B<Y$&hZDGp661NIFaZ>n`S6hoUvx$7T zv(Gss`kM2*n}Z|Ds5dhA^{-nEhe@>02Nzk%Su!jC02yCzD#Y#j=kca#-ZzpNa?Wyi zBQ>9KZ0a{inBC3^suNl(4dVd&SFajW`FUEg;JMUJ_dP#F@q1i2e>ZU*KtI;I9V^6* zJcWdfjE|Q!;1<s<vjUFG^flOM9wm|uxnu91^}|;V)!a`{4U20@p5G6|>z@tWz`^Da zCRm_3<kx-Tzl!4O-^1kqM0rEAZaB#uG3#GBzNj@TgormCa1Chqk6SkOx>OtFCI>QO zcYJph!R(fnJ%x*IFPQt=;a`lc?`_B0n+Uw0n~}$A^&boPhfcIVZk{xIagZ3k6dL^0 z(|$Hy=r(MY^APRSo^$I_#rs3}m_v1K1^j|JMpZ&*6`G@0XrQZ$rjOL^JL4CFW7L|? zNn?&?f8CbG6nnLHHl8BWH57R?>$qJ<ClYQI_|v9%x5YZm>0@_uJIdd62j(m4e}i8W z^$!lD78-<8#)oJ=Y7kH3S<aPeYnpauSZqZqva`_pjqiTb5P!JD@-g1JKLctknvU1N zAn*lwj)USf)+`cqV8O;iEp@&WyL8m!Do9{*Nann+XwyyiJzP~aDiU5tt9a*AI%bad zPU0vGWILXN(!UzMI{30r8T?AuwE=l0#Ab60YFp({rw3@S(x2M*;#lyP!bx*B$?n_8 zhaY&HazOU4%85eU+$+laq})ky#_XPd8vEK!PAW|N_Ju!v$j?h<WBf#(e;Rz2ud@uf z9SL5Qek(D##@~>fg4J>>RbP~$IT_!Ia+fPTXv3K2&9ex;L=L^Zs;rjBZtQ&7`@Z$o z7y^^>jlGAZP`S5Q&Pf3EKT6NqU1~pMlR4XqRx6eSu<kq6DQ%fa2O+&du7*GZ5wNf) z9-ob6Ud4_1`AFz-n%**JJfgdtz0IZzmKi+Y_pD2+L4Z#OwRP7v>d4r^J<Va?Lyi8P zmDdZLH5HxCR^}E~C$Bw4Qe@b8CnmP<BgZ9io&{uFCf6P7qoIz)aCWdDh4wW30C*f9 zdSb8y1C{3-)4>_ZBN@d#kxI>6u#b)h&5reYDahaePpPc9obmw#dm6Hm?Z<4@14$bY z%y2japVF^e$W@7Mdk$+FIj{!P+dP`PZz&v><EaLMB@=cTyPR?{wEqA)vXX90g534z z`BpS@fJ1KG+N{So$ODhBYIp2&$r{TlfDY297#z^klD!BdebZUu<3D(hm(ql~T&~m5 zVY$v~_cG-!GYsQ6z{YdMMAHyd_NwOSu^?>&`?#o@=nzQ3?TpgDV&aLWl~`w<m>sHv z%gD&*-@PQ04(F+=jXvjMPI%^xcP(l%?p49dW%~X#l{*$<PFp=H)bbY@$m6l^RGG3* zB!5cHvel1WRU-kp&!sBI=RXP%07>1{nwM_VwEf`O&U%j3H<lGwJu-N&o05G`&?#1H zLYkq+C*}tj9sZRa#6gtvl1>S3wW9D9WKy67IRI1-ZW)LJp2D$5S3S07MDer8{eT~x zR+c8*0T{^72DK%HnT`{$ap_spC@s4j4h3{1b5xt$&zd5k@s36gMO0-Wim({18CPnY zuO5c0$r%lupf)=C3h#yNcsPl3F_z7OIXFJmp>7%Wj-IC#UKqf^Jb{DHYQGBLbvZri z+vPZxtVKfPY-6|_X09$%lB}n=Z|O}~_H+w?aqdlAw}Dg>oad5B=CX1rBtx@t2Wcmt zml&x8E(R17Uc6P9q9I5Hfgdm!&ot<fe8O9BEI<R^mHQQIl_pg#q>P;79rIDln+GaR zJL8jA-X`St-PgTEDwaSUzG8W7^r`AnOsVCnfX9wA@ANdP127=2;lTh@(yrh#+-DgA zpm1RwI6dj5eMX5xkbYcaJo?qxix%Mj0KiWbK@=UFbJ+AXp=~DABpjdij&W9(V72!& z?S@nZ$ZYa4+O};;%7B?9<AI9j?A$wU$sl$;t8(6W)DM}kdXU`Wx?>l+F};m=fQ`2? z3cZ2v+O#cXXk4q0lW5M~$FQvHHjY_v*kAy{nzy({<%50haCrS|t_>Vj8okboPhic7 z816%~u06QLbQTho+M$pfckB39C1)c>;DhEyPe6Ot&Yw7CJxrO&&ls+iE{7zM+-b7! zY(8+uZ(c@gsIt2e6;u2p0~``Zt#CSR-U|)D9ycD9(^+5O;Hb#wCy;2lDmFViNeBzm z1Z0wO1zNVBF@^w>w=6TjIj(xz=@JpOlmX}uKZRVjx(aYM`-9fAax_T4F%5-Q$sC;X zn$Eb&q1l1YMX3$(F`(YtpLR$cF<G~_il}!Dp#K0CYc6!lP<Pa?bU<g$M;PObS2e1* zF#hZVjxc%86|a4Au?AAdap!h=S2=xl2J|bt9T@aAjHZr`UWYTPH|~m)v}1vemBed~ zyI-BY_^!WExRB)Ger_?_6~t?#`94`(9FTEBsIFfxbBxt@JDd^-{vtUw%iqGx&fEH) zxa50RPpSOQ2|36=c=9Wk)SG7RNnzL;6t%INj)yg<1oE31I6bSKxQr6VpK9rEvg8Ad z^{i{S#_gowdJ5hS+8mQcKOm9NQ==`G<eoig)2I!Q2=u6fuppHTM{io*{me^=F9hSD zsnNb&*)8;{NaW-IGuMvQY9b2o4oT_hP}Pbq!o!1}-9=xv$z{mL6-EV6xCbNG(zGB4 zATa<Mo@*APa{L>ZuHqGkO45L<b>QQI1!qK?i0V1WJ$S7Pc)n0ZKp%S|vXskEvoF98 zTo1;y?Sr!9U;;9Is->VfUUsQGan`Oxg@I9%yS-s5t7de<lP6e0fZMR2%+<(8m5|CA zNXhl3f(^j|!5z7&hzS1xC=Y|_Ty-j>ta=ckYca8}lvilMCj)OaGP&E5R{-QNG%}Np z4({3S^rx&Oe54({$6Df)+>%FpA#H#Xk@YQ;ka64mDTyg=HjTZ?^r>Y+%0l3Ci~-1{ z5ClRIhUV$VTE(NOM#Tnj&9RecISY?kfXquTW#kizvexARCExwi+M;-5#?1BT*~V+9 zLl+x8H!FZcj2!WfKb<|4ToMQ&v)lElg}zwu7~|%}J{Suq2nfbAj!CUlZc9!(l-dQ$ zF4Cs}0tOG@YE-r=#~>avlh^523?IKc)P~2*zMhz=1+Zq$NY6u>*O0-bt1>2w5w>y( z8RM{~3sE7A{JW3gT2Ba)KrxIQWPe&oVaq88Xa|xy8qr3}Ln&Rdn%k9SRwq46D99ev zOKpReVpwnoV_E?+epblr!kcw!LwScBuLnPO@T{8Imle>@*ti9c&5Vpx#$ymxC#C_w z{#6|0f)rx_V3X<XRV9$PRse(p7!{&@0&!cS^IQTL1}Z_%G{JnQEI#ud{dlSqO0GUa zNm0#3B;^-?LZ0>42d1Y4;ndY@)AzT0*yTW|P5%HGF5gVnLtGF>)5$&RKeP}@CxOZ0 zx}xv7gQd->xVN7%Jn@Wzc%_>65%=WuQ;vVavDSA3A%M*iT(-;;&tfXMk~W4Nv{|^g z+_)LR?mcTh;^mP>I+KEPie#4sg7bq^q$RVvC+qy`Iqn};<<`SyxL`*(B=f~pdCQPM zC3*u^3i*wKMsZM>FoUldtfeyE8Si4hn8~}IPfU)K838%={u5G&ak!8PKBkz^6-<Hc z$4|zvbM9p-EQmK8X9uwUw9o->PBHbV7BZ})@Cd<bQ^4SJ^rM>l9L}Adq-qMW=)j(o zZaa>7rxe|fOmIao@)Q)>PkLM2&evna<xVll?^DM*s)f!!tyIB@w+1IP<a92i<BkS< zR7q*6q+OYz6rh{{YR#)Exgg<BJPM&4n^+QZf1Oy3$<A?s>0J7?so4ow+O~2ZA%F~d z6|D?}4dVcG#&KNiEwuv%;PuUFLn%033aHOK=B4d(rYz`fW;@iL2V5;_L$o*pr(Q=& z!_#N=1&>YzZCj}-!S`+?V~(P^DmQbkl1&!8hC(tnhxwNWty>WZ8+OyP0D^lOiWu=A zW;q~Z2cW9~RmySqPSKOrux{^D(xn?{iGr%J0JaVR2fq|FOUYawoO{&E8n9jDs0WO5 z%`cVaE*KIy<OABUOI;6Ij10-`N}fXibHbbq)eF_alG$u?j)d0ish40fAshlnQ&~3% z8CYbJ-ln%lTxqME-Prrbkr){`8OOC`T*ZaS!E9p#rYoV;EZi<I2t42(Ybxf~E4Tur zjo9?9;`B#armW6-RST8Kb{wB-sPQh*f^(daoYuw6YE`*VSZAjusffT_{oD+6uE<|b z#uKKQl_WWnIL7nZqiBxo4B+-7iqL4nk++`y^vC23DPz+fmD>iFL&~cJiqWGe;}|`S zUxVg2Dh4}_m0gr8k{c(W^{2tZk~;d1wXZ|YlS^}RPsacp`<m%&CM;E5f+s*i*DYlz z-d6=!@sZS4^^D{a8H;0#XRTGPwIy~(TVXV6?HZ8Vjx&yHcTb#{wq$MtgeMvIu13!2 zrqBn>IXEAsZdl4s&RaP-+ni>x=CRQUSy=3CCMwFz6-ur#*EQStF6kiD1kdvb<7OBh z++*In-pcDG9hfg-E3fd=ytfj>fH`F)O8qO&#<u85F2{Zq-n?1Z_)EjOJ>P*YC)C(m zO|9w#8;gelwyEkpDo+5~X!<9`h_sy}Q%zFAN}R@Ws@dsYJ@Mzn2TjpDJ*8V*Y;?CW zuuP4+k39O<rGCL53*_-PjP5mihG(<1j7uqF(;Sb?*T&(aQ<JgVn>b0iv+rMv46yh* z)?%$3NfM}4{u7G%N5uNE)u)<iPs+S26M#-T`&ZKc02n-J9GYBK3mW~NFnD3q<BIsJ z#hS#D>hpZtW86VdFa>mCDk_aAv&hP*I#k@It#ex9%GUBM%CWL4^2_qEKVJ3X9})aN z3{Xro_YZLL5Z+{1<Ji}&_<K^fy^$iEGC>(3_8wdFt<6`!5crPJ$!h|^5&}cH&g#58 zlXj7&F<Vr82jWD#wvIsR$m4^NTr{^AmXW>#0Nq;^_7<)1zS?a{bi4A~Vd0yn73Cg0 z@O*aSQ*CM)Kf8{CzKai58#H{iYE>q$6TzapxVw{S`J3LfZ#1imNR{w9bgfgQTH0JJ zh_0lQ@|8SOHB0uIKPUl!xXvrKr0&#Wk2W->z9w@<>&zQ+0Uc`Ymdz}iM+c^Av>I`m zemMkZfnCRiJS8lyvJ^NyF;O=dqM)TI9Y@1&3O=)}!D?e*WII*ykUi_a_~Y;^RQPk@ z+kJla28&IV)-{?!K4v`t?_DRtJrL=7&8*W#xCC-|CccRMw)`1$@fY@L(66i)%%4fU zN#w(FS8mdA?O#7RIag77CVexbY%e<0{MNm`hTR782c~OJ!(JxQ?5-nwh?ZgxOyeWg zur<F2>PdHrt>g%J1*+GD{vTcH8j?g|U>NdGO7@-}pC#oh9vrL6GEOkL_CLWbQ^1}r zF`YKz3oS)XJej}+z3b`td^@J=npfEGE#sErB-*ls0E}0_{vG|E{6;PzyzuF0=0Y7n zJfHGw>wkq8o-($(w$nUEVD?uE05YlKLEo=>`P@}G!E-`aN6_KrPP}bWJhDA2!5V$m zjU2Z7*xT>GEP7X__&WVRwV}u?H{gsK%!@>gErh#BS0J2>l4|dQwYW5&6n~|lYe*61 zc_hHv6cd{96eBv3Pr5s1xp30-K0*Ds{x4hj@5fgD8`Cb@TWtZ^B`J`6=KJ4Va4Y9a zc-7_H7j`&ojPqOmGq@Vxj(kCSr0lrVCzTn8EUd(iew9``P(UQ$XOKJB=#heiR98dg z=u^CIFk6MdE4X7JLEsv+umO-aeF>?dhht-5Voge@OXOrJ>bU7yPhAg6FtX7Uq==Zo zDmLSu^+s!Kh7F8$1PmJ5bSl7S<>`aov##R~Ng#v$-1Ml2W<;TNrsq9z4hd|K-9=~W z3PX-gFfwslcQIhG9Wj!70a;gDyuwQs0AMaFqAOc7&yv$a0`4Vk_~4VCD-!w)l6#&x zuAbr^U!sc2xVGTuj>5X)tZ>df&Qk6KRmLkC`q(R$UzfH&!n(`bP7ene@7}R4ZApB7 zHPp2^UXJHAE>(ye{uLRQZyoCG>@1SxV{K7khRGQ@#TM=)(?gZ;`A{%>Vy8*E<ctcd zf}@T{u4z(Ea957iHt1IGQ%VVk85tSR6=+=K9i$W6j@6KlwQ{GE*i@?_3_!?Q9`_}? zn^4@B!l)VPnw#zAKn;VAD-9-P`2oS|aZWSfae{qKJKJL^9RgmBm?RQ?C^uL@7aa3g zBI_%)m-00tT$0>20UavaGqJR8#z!~@tvAmI$8Ip*rn6S(dj%j8Io(nMSdG}mdsMbG zwa~Qh^ENPf=M@nrXE+Vl*wT#jBLlW++Z%IXcXr7YJjJ9{ae<S7f0ab>D`UQWD*phH zv<~DRqrD-Apx_?-cC7h}O52{iup-Dy4cOz3^(2vQLA7y=<0Gw23aK0^J%@8v1Ykr0 zoOdAq0807UJ#{|DCV!R@RfbgOoEl?Bid&LbIm>kwc1StKNM13X^#rScppn$@d(<^^ zRZ_-Xzzkb-g?Yyuiq4$}@G0PTt(jp1Y1+Y$8OB9Ynj#&E8+q@|ZyijfE3HgfqHX63 zxZ|d37K!6vNEjV!N<{`nJp8TLaZ&jtw+xe>;=5rd%Vc?V756E_8S_3+AD*VPppExn zXC8o3+SvjbhSl}&T9$UBAm9LfDavLrhjIvD#6ij)PB3cB7Rtc=dY+YOVGIhcTrVJ= zm2L}087GCtKt1axE>vq6tCWfaDpYJeI^<NbtCrpdTz?f`lGAb8Mm<2M{hI?|2Mg2d zS-D*rsOn|4usH<%eQJ}T-N?&l?vq;gap8)E1%c;1Dx8pz+%^g7qmU}$d1@)EEedT9 zm{{SsA9Q~@iS5Sl#1>KOR@s3?ZOj{|A6je6%MMujcCBM|pq09mm3N#4+B3mDjZ7Td zh2&?U1Emg%xoi=+dBFWCyGGRryNdEN+P9C94?@CRg=O3b-Oejk(&PZS`Ac!lbLltD zoSny@J!<W>#>mt*NglkK=}jEXKBrM_K7Lhjn@AvMlUiPJ&&v2-p-ppE_hb%)jA!39 zsc&$lfZy|x#zucy+6^rZd8EzDORz|0%C11l9Fbc#mv~*EHv@uCYUJ&%)d^ly9tZ=a zYFk~ZbS&U5G1UENy_v|<*z6(Hn3V;C5(3~J4R7iCi@Z#O=TpHWsINbc;EXWZ2>{_c zR>iKMVZ#!<@-x@zQ#shu5xMA*>Zlw2VP*hum2m2askvVgcV6|v+G-8*vk)+O_p6Jj z61jE&=K%MvXIG)rsdYzKbz_6Q_Xaos)MHQ|bhD@($9m?H{{ZG2akr@4dQ;n1BY(F! z>?;>lJ&uUbwye<9ulF-<8CK-(>T93W@77rg;}Nb7(0MeM8jzA)mH~G1$DEqQy}S$@ zkC(pT*06PLp|`OqY8On%Km|j8jdD8F?96gVAm`;ZuX%O1cFdOk@NO%aylv-m;m@h# z6e^mM>F8l<l9pYJ31wroPfmN+FMYYgHr!<5x~)PcoPeYk$429d#h%=3!Nv$bjcFR1 znL2tLt;|JKkem}(_eqA^)Zm|`bysoY<>{V56@zyP`H50M@6$EePIo-|k!a`TjDSxh zRZ|f`#{|}#(G|uA2CGQ{$RPKw)hisfxluE?o^U$iuEu!C<a>3f)dXx#-ZNI>QrO$u z)}_AX#y2OoQMdz>o}(3|3}yIb`7_RHtP9_7UbsCgM$|R{UUB-?4ocb`5rQql8QNQE zVmZcZQU%_J<U2?Nsj61!066625zT5^BNk9jIl%<iEarB`nlvonAS&Ptbmy&TTgQ{Q zsZzWTPr{pJZWWX<B$L4=we6wZ0M8jbcOd<1gWBEL^dU<@mhk`&%eBY(;;jpDj#rW@ zSRe=)`N88SjMb%pHckj&E0$BUJ0VY-a*&4@Cx!3LO0lpcZ9ngJHF2ViRSC%BoKrlu zR8k3ENZNm$W}eL(s9QoGDUZ#arvn7i3v}8E?sy}vYS2Q-FU&T!KMImKSyyVWCyozV z(#`Htid&h|TE{CAF|>TYjYQgd;1>k2>JO)C+50gCP<3;h{{VN|k?hZyS+GVnkF9mW zIs;1D7}45@+l-dv5PMY7TL7DazDGqJPrYfrn5qHJGuH<-EOv<)&gO0Ff=^oPj1{yw z-(wZ6j|0p&$5-UkK0z2_eq}iC*Veij?a;hsc{uE9yw<9#f)3z&n%kDgGmiH%Je4Xz z1a9Q8^{D)j3S~y+CkNWK8VL6StQa1dJu0k_5O{uZ&U;bI(8kTPJwR`|a=`QhwGyYw zdiCTJ$F*78v4AHXy{WRqBmk)Zp0y2Fn;7?TZ99nhk5FqaXFJFDK+ZANwl0yQ8Qe+E z10L0jbPi7A&Uy;w*xPhQ)3GIY1t;FA&u~E_KQFFo#>0RLVD_rBL&*$BUX`RC<j$Lx z#A^G(l6M6@ooS|0KK4mH2dzqBXut&s4eD`GJVPLb$F**!eG#=RHS`qDTX#P;F`8>T zU<T(M^GL&QBn_jW#YS=S6&UY=dQ)?D(DkX|G)Om%;OFT|esPjmlic*EhDx2p?mY+` zVywX#!G3Yj)H$TCSJg%cN}O;r>S^t6NaSF9cdHS{yr{!x*k?6nJ7#dqbA=zBV(NL1 z>Xt@hSOyD|w4R63n)bm#!Q(uiTHl7)%0BKm2cBvPtiWKZpd90+VeM1VoVBpJXkope z1FjD4N3}%Ie9R9x;8x6#1blFKKS5Fbm}C-04;4|Ums7*7Nv2}S30=5eIvgAfQ+%Zg z1_}1fYBUNTrqPe$=~0_-ISfh9euA}g(DUU?%zJa5nFqFMf*i;&JNB&^pvxTaJ!&aX zfB?exrFWpcpK`jP>ZI{jRauyvg(TzK6&fe6I6ZS$BV01B0playp2)Z+iEY7BqaAvR z(zYZ5yLiaQxT+}@7+_$N*0inA?H?!^;2xEZ$5b@f*0cw^F<kx8#w&i_CC1^9*}=)k z$gE2-pDe14xx;Sst?PAV00X#Zl6sPBno8{Mr7I&!7&G$YJq}u~MG_O&cH!TpLui|0 z3_w5LtM<{UZMX$`C<FAYB^w>|=iCHJ+fWi;Bjp{9PSHC2tIi202CQ4FqwR1HpvNMl zMBN^9oF1J&3Q>c(-3hesb1MLa3XLL@)EdjahkCIpzMFg3MR2FfWB?yvF<EyIDMil& z41H@}TOOS`^*O89&f?_&LC0R^vnPc7%gbkt!=SC()e50W037uC@mW`F6cTdzBfmA# z7&{&6qA+e^c!2>y1mmSpxKF*2h8;z0%k#T&k8I|%ZURU0?I%2QT?#F96sHtr$THa( z4n_r4Dr4+elY{G5r;BL-4X4tokT6{Qq;&(mbwyb4aT3167<qZf&U=ouM7~_P0H1M7 zxa}DjW7>twmMg&T?_CL99z5q_{i^Pe4cG+oPg>fuW4~}a7<D7PVZj!AVTj-kr{1;g zP_8-J-3bSgQ!BE4rH%Vpv5lj?Ng}pwCo3Q?k76sGw*_&6Nc7GLty@Pj0010d4tdRU zN$75>u7^=$aftwbmB$K4AlG^D{`_0&dzrad*abZw<v11Qc2ef)ax%%lZ2ooFct&t_ zXxEU^9lnOR@ey;R(ba~l$x%p?#Xk@4z9Cpxn-y8E;RY`$PVO_1E9igN_e<0~6XCsf z8;fg;X_`ch(fH#%y@hH1&fW|E0E92aAKG{Jjd5WH>w-tk&}O|~!u~w)UyUc!Kd`N( zeOls1FAQo%+#XANSIf_pLzV7&Ri!CZZ<g`uVEj(LVYn7%D5E5F=Duv#;DxW}Ic&Rc zV%&f|tK0q|-+8ZajUz?0kN`X!SCfr6UE7wCa#;QTm_JJ4OOWYWBZsrQi%+_5E=>Ob z69dx~*=XKBiYT2WxOKGy7-sM7>0FnKJUMe@<dtk6m<1cNn(~hmzNu-bz)%pov*<V- z#dX4;GrBn{&I?JN@vE(trx%%JWhBAWlPPhxAB}lOjU&`-#_#NPk}idi0z%`A*BAc) z36{Fe{<;24<(05Ln5!}P=fo0Q?P4AhafwF^E4fCbT5TSC_A<Im;(S5k4L0HzR@2H# znH=$44ctQdZI<wyWMx;H^qp@^i&(m8CxK87@%O0gbelUx+K4cRB%Y+#eL4F*Th#L^ z(sdq)!|=C&Ugl+a)Zm_b3|Fyf-WiH3WDuwu2Py|z#Iw1H6hwg(uRsqby$`|*9rRvY zj#gZJrA9MaPQN+|cy3Kr=KlbOE#QYqTbTqZ(G|{5%yNH*zODFoq}zDY;idMOd%dk? zjHyC08`Jf#n-jn?CZ2Dd{J2m8RPX`MO8PtCbhop3ckK32`LPuRj(AlS<l+^j7JImL z%|>yN@$bi<f-`(L@mz9hHqP1={yd4t0UOe<_;=tmnvK1^-idymQ!=-f*ldy1SKU7l z{1K;oLhvNoW~ULGYPXiea)kG<iQmEgFZd(kRf{I`MOh0)Dw0Z$!||(>+oq=tTHPE} z>Bco3IsBRQSHiD{x|WeVQr@WYQAXW}0nd8&Jzmnnb84p9T3x{v*nGeqPc`HI3i!=- zG|0{Ektoa9;j7TRIjGI9TthK(pyaG<e(0}1+DYHLJ1S6XZH|*)jvX$+NC#kCsXfhj zH;=WcEc_|r+qk6I-`Vp<j8FH5Gws&BTgTeoR9hF@v~I%x04nisicFUO017-$bnJZA zg(3(C3|;Y$%DL$-Y)n#HGig)h!%5Gv@%5dH0HK_@*f&37eQQz+MJN?m1<u?N!8IgN z2;2fe1J~BB+Qz{A!#(gnoqmAT)zR~Gw9t(#B;FVm45yR_2N<WtZpax}C~`U))K(1J znK<BN_5A8dZ2*m!5HZLAbmqC`7WX^jqB+T;Z!v-u1Y``ZO=mruhGr*!a6Rj&ySEJ^ zIr&+>=*9(5n#E%zg>#-s^rMyD!6cr?D}83_NM$SE0OVq@=e9h^GDdPev0cU8uyoy( z36G&aTF1N7cP`Eg4x}~!_O6Jek20)v(Bp0+VqCLyKXd`e`qowC860vm&$V?E*tAG- zj1l<ORn@3ctN~@}Q$4GyEgo#uv^i_I*apDK9nVU}o(wk}gVa}3eQrqL9Ak_R(y^{0 zB;Y8)<eKP;>~KkMW0TZvlbkoV0<kWWs0uo9&MU6Fw+u1HI%Epxui-sN01o|gLsm0e z8EcmBP6uXkGAXjI(~JT1sKGmZjYW#)B}T)1yq>^!sYHZ<#yxOzP{v5l)}9!t<LSjd zg61ak8Mc9rf0Z}pIPH#<iyJl@Zb;)bWg!>@<bEA0e2m(;3IahpvNMXa6i&<!3@Ugm z!yMxxv>>%7fV`2~n_@*c(_kED>r=%ET%LnD&vETq5!i#Y?8ztct1(#Z8R|*>D>mC^ zkzGniif~GvIK@jGZJxNu#xq(`*k!rO<D42A%%f)?iL6_((HQd?#uiRGk7_`N0dNn0 zn~KpkyGBhW-<T5^8RMSSnv*Y(^>Ju-xKcML$N*HrBN#XU4WQujlULr?_l$TfgOi@7 zm}A3W-~o<(Ysi#reH?Y%&XPA}RaOdm=dDzDlZ6U0asea0d)Bn}`{Ya@9YG}YH3ZQN zg}^-I0(q?UIvQ3orHO*$s*lvw8--FwCzGB#R;|+R&K!-Sx2;i?L%&YhBONPMqtxb= z?9rCVx_mLf9COm6XpAQWmL&A66EE)w+A*9FO&Id|{{UOtK9$ve%X5*dj<$_qi*oam zoB_>g+9ETn1!4ilI#n1$DH!HG+0T4dy`!qixCdw(y}ufl?&>J6XJX~8r<zb>3VVNz zUKZs}K3sGItuits17HUu<{dbzk*H9+Q~)qJ?eAQ!S4UckLq)J|cJtUCGf|sy96{HN zpI-H3$AxX@b_m7~YOiuK<RQYIi|Is1B)b`RXXie+=xaQ_LyT--IupfPy(-e}U|4M# zAl7{D%t^>qJQ1Fi)dzhJX*&&)PdqYiIP5^hK`zm>5?>(l1~6%@D@eo)k7LC)O}oe4 zV~z+tD|Bb2uE~pUjAghTx_&iC<T1e`JOF)aceu(ZJwfDpRe9zLtVtsSuTpDxC(zDa z$fd+@xrZQiG)FPR9sd9*!On0+Rhjp<QVu)Qk(NV-0k+`dwR9-7b4lFZNy`-|;k`0H zom#fLDY*tz6Vn`n?O2xgJA-aq4CG>`TY>`;PUFUL$gOW<nCPLoLP_1npyIDZcv3~$ z#~J-Am`lD!2m^0GI#sBzzI9d^L&!O)W?fFY(@@)=n1D$c9qRJloJW={`P@M0MRD-m zus}H^9D<{trD)n+Dq+;I9Wr|6xavC{w30f-)WeXf$JgoYS7W`AK`uE5Bm<mRF9gBH za2V%5jbDoMC5q&6_YVi&xF<Iqk5-%$M@1f_#ef7U#yO-n;UX#tal0hvgIxPwvUF0v zE=M_~H~V8?Ltydj4Pe}~NZQdz)0*@<xl@yz064&``>Ub1<prbzlKg{J-sm6-NjdH+ zv6-;S++gP;(xJAu5=z7~Ncl$p09%2Mc&w}CC69l?u3Y651SGdyb~Qp*U=JkVWC7Uv zR*5#QVJRr98JAc<NF*`&Kr8&KCiy{-xdav+G3{G7Y%qB}hEJ_zT}i)qD~?GS?Ojmr zbI#VWg?knhe1(bRXP~Tmq}dr!^~G*o62y$1r`MXvxQHlh@^gSaMRvzUp~on57<0k_ z<LQrTr19a2!2bYu*0p9-Mg$UDJbfyp(SlACZTIV49L&MfOwVt;IU}u43Wg_kK^+fj zQiPC3JurWrIS{!Sz~{9#%8Uz8WR)w>btk=QKz8jbf!NgukYk?R>q^yComD&XK^<!c zB#qR18n);g7yuG`){TlWeZ+L*6++H7`^|&T0D4xvq6`Kg`eL}JGp;eYs|M67&hFUs z`qsUmByKrSy^nu-$hLCLxE-V)n<K4iL{9Ux?kAic)yXc$Y<$b{s6<A{Wd|7U2d!Ez zqiz+P=b+-MSxLZWY&YG*j<sb@VRZmyxWjW;J@q=`)vk$58QMu3yAXLE)gs2jV-N%S zV>tTMSp}1hM}KchmJU?;W4}!Hsc|)raZ)ccc6sBF1_fJ*6t5~nV++S3nQIELS0sk} zz#en>RrsT3P+1s%4oK_oU2sY47jJU9TkK^R1@q9Jl{|K&le_{zBxjnr6kC{J1}CTk z^{JwSIr9-pl6VAHZ8)c(-iWN0XjC$&Rz3QRQa!3C%GeSffDUVBI{`Eyc8#R<JYtqh zASF=DI$!`g{x#H<wmI!{0$VVuFaRTw$6A4{Sb|#)oMnLOaa{-5Gbs+aTzcS|t8-^0 zXfUcb9!FzZ^f8od^f{@m6FdMI<P~bCbr}jb9mIAVes$4Y+K@?5+eh&+9V(60mK1^e z!q^IU<a*RK%c;vNCv;$W3%N!x`Q+y{844sM;xOF(1!+CL(m*7WgZFSVRi(8#J5+A! z#Ph{-xocrba_Y=`=ywc+10(Ma^@S`ftW>UYc**NsecUSG422yAd)5B{1$-p&SH!(h zE&My7UFvL3!qFiL2<}+$1!VPC1yM!&%=4F0SObyB019!kVmB(}6V|@c@NfJRk6V&B zu6$wQD@_(Q$!j}d=gJ4va4XgH@7N#VC5j-ry4N)~AZ5(LF`r;NR}ArVX=y1M!OB}j zv-4(4Mv&owByva<R%k~UVfkY<`hh3xG4OS`{?64S$UnRn<ed7~BdveIJ^TT9PxgO^ zHOmF*wf0CW6`0}w0GRaX)Ny*npPVy78JV2zIPQDXKFxuir1Q;vq2llOCpNuiuP=tY zRj2Dw54#Sah8aop<BIwF$6vG8#7~C}DAznObsRCb{CwH3oe^JLt#&L$Is7s`%2<js z-%nG^gajTjkELCL+vZR>40s*tSmFygfDbLlRB%E3s_Yi{BP`yzHBypmQ_`nO6IVkL z*tA5PZqM+JhOQ;CRRxr&BO{8kw&@TU9JfqolUCzbP*s@Z_U($~l&)N;+eT-tsAm{o zsP(Akk1ox;fCoS`&uY;St2Ws%FnZ^jt2AJ62Os@<hVFTlsadv+X`;(#0Oa#gOBf_` zgWCeMBpZu#7(C!q41tN+@{eBCQI~V(F%<fgOhJGrar`?`<tYFTxHY1%nE(SI^vLLG z#>@^!%tvb3)a6R&mZ7PTAjl7Zdt)7as;t(Wu~j(fir(@GQWbjShV-g4Tk-|~W7LYM zRJ+t2Bx0;%Yi9+!FR80A+qn!0QPU&6IiV2D2s=)C8h%s~z>?>jR??Q58OAE(qWk4Q zKF2kqV*wzjDoE~sol}4olXEFRc^p=~ji_{GU>gTM#*=o`yIk1Qtu`nG9Fd%g-Lkjb z6fqq4AI`JvVh#WpKPdy80BcgqbRd>bnQ%8_h83DgyQ01V{k&lYcZ`FA2+nHsF@kVI zV0Il1MFdQNTO;P_fmb#d_7XOdaB_J1(aQRpMx;v%YRteMK_C!MPs*%D4hohGs&F>0 zKRSpIGEg5<pVp_^6+z)tb*&={Xm&=TT}UR4V#dN)F(iyuRpM<7r8vfUJ?nAdW_`ss zDCZ}PR$iqC%nv)0^1-T6TOHKvSscymOC(-kQMG;gRt@0T3Wrt)kZYyA0yx`Zg1mw{ zel^KzGJr~ff;tTFYoeTPc1ICyQAT~Z>6~Mo-Rh*rs}Ynuden_3)3rh4uJ1~L*p?Ur zo=?)cqfHr9#Wb!}kQ^VIB%j8qPtmcH@9S44ak-C7_o{O-DYd@n&q~!o$nt996^in{ zR08<H>*_rz@Ht*F$6!0vSshrMcI<moqL8^zrw6eVG><LS*K=ywSx+hk1_wE<i(FxM zZTYy)d)6J4fRC6G<GyQN2}8)cfCCu-)-rtx_P5m8fZ!0Isa`qlS8d9M05B{%)=Cnp z2*aMEo|SsmWjR&=FgYU}*F25mI~)3D;Mom~bluKHb)FuETdhVGh+;%=>Z84JP|i$h z7oVkfUIf*l({=l4r8^*286<Tb>nY!s$Q@*z(f2Ncs@_=qGPkf@J?-x`7`&yOhu-4{ zZ|7WwhpI#HXT(-M2C-Nt@dmKUbqT=B#Tn!-duP3R7m2<rcwfbz2sGr<Cm-5+c#ZAV zmuqfbxUUR@;jfB(H}SVa@yCfLPbXM?@Phl8s9)3CzHb#u-t{-r?mc|J7Yf&nWv_1U zp|kNAw3>y=@$yN4qqnVc+I@uAlCDN0UUB?}E2H>;%J-K}3G)kXVbJZ)Y99!pzY;Q` zP^+AE{Oie+(D$PrV_M5du!#-L>`^nkMOCEezTkS-i}>5Yu-$6He<9u{a;l+nK+hHI zx`w@DqFpRf0e09WfLw&Ga(!YO!2bZdMm)A#qF1Aae(tB4ijAdYc^%Kf>sxhqk|aT% zbM*DEE%9ZQu8_<GpLaPR@%UGzd`t1HmJthRBX>v1+*^wI)5Ln*v)q)Bk{FZ8$jy2R zQfouc<&8aL$gg#r%zU!Qfc8DBHeGR|I1ETU44TQhzua9&&%I&Id}MV19faWL`PR{g zwCHlqx{l2Dzl7ctzwvd`P8I&i4-Y3npG?=gXdVudEkY-Vouq}qU)H>H!v6rY6|cgd z2<g^3Sc+MEqxOkjF#E~+)~w&PR9dErB!QAUvDeF799J~&eIR-i`69KNx%3y0^+fRH zmA;<$Mn|6vpl}s^NUwPPman6`&}X(xdCwUNQSumb&3<7&#jEXGS2wq}bKFerg3~_) zb{Max{{UyNjgO*B41#|!79S{V06U80t0_}zQd=9+aH|<pgVmo>>Yo>M{R6}oItARq zDazqXw?UkAu2WOiVDTlR*vP_5V0dCVW7yZ0{?s?tSH2e>Hq+%;H4AB%%u)B94^S)5 zej9vFmr{};B+^SEATVRW`d2QkbH(V-S`^^brnNoCz@HCq#<tCGG?Jj39$WOsVb5yz z*{>(lblBjM*<+lHxr|_r+*MzMUuV9tigrL8oRX*K&#A7L#-b2NSkDSa2a{Dalp9-| z6Kz#dJjYm_u4eu4FOKHC$Kzh1C7;8mMPDx7@^p;@E_X0Jv*}*5saqwjmzuzg^=^cF zSI=J^wTU$?Lrv11neDAm&H_GEGY&ZQrIu6nn55rAvDG<fG`gNq6`YtqGJ*zvVOOn? zovMfD+t(k~ooy3F>AAjAa7Y~Dtt5Gr9z4R{y{qpUPebP^tu-WyH4(AK!a4c-)xjAU z2dNzGJXC23+DmO!Cxy*jf*kyyj&Le@7UyDi(4%u|r!3f0+@60Lp>b?T+!?ob9f$t_ zTDlLiorQTqI4XIl-o=bzytByeI5lyN-i9t+4n|ubQI6D*aNL}eS$FmxVK0!M-u~@& zQ`su=zc68d02PmMVYvtifH^y=;~u9SN$7BQ)(oVw<LAdY&MOk~B7uM>Ju-S%cYk75 z7k#({=NQ2s{c7i~tcoAFFiuL3O4>0@0Q^7$zu=TkM()>Y9;B%1PjgszcDo!8yTKX7 zc6WAT3<=$n!kWdrvo22nHts7$=5S3U&MxxY6+JoXF<j=MX|azdZFg6eq=(!y)EtiW z&FXf9;O;o=4H8BU`y6f5J6|{lH4;Qv6Vnx`cW6|ckTb{?U2O?CJaN{d*3?CGfVO$Z zy-tx7WhXr_1zv*9vNny&?^oc{#H2F<zS!wgZ8RyFQCc%L22MLw^sr{YUY)_Mi)}Oz z3h<zDS8a6C<s5v(b>gbr+7q#n4UXImq<hwkc6i1(KBlzBpS3b@-;YYNx@&I08<2k( zJZ7QZz>L@;bPMus$2c{iZ2)1CGEXBNs@yg*ZouFkySe-;O4~~y0#oPiJ626IXp|$d zGBA)2ls9TwY|9q;aqZf=7&P;RY+xrQt$${r>%+Gok4nN`XG~q5hZQBFx5`rouQgSy zvc!@Ge(4>nues9l&Bj|DPfE?X)5Kv^F5{o2Lf=DV)6n#lMJx+rBckJv#-frl=Hn{J zM<jKv7Kq0d@VH<|8~ciff6T0_w~U@MTuukkq-RKiHY(f}<Y09k=BivkH-dyH#&X@O zX5uj*$c&J~C+k#hB0`~gEIVVh4mQ;aPRPi+R#jme4_uCOSyQOSH*$KZt%)JX$paX` z&m2}ZprR63e4w77Qsima=9HIGjmz|G?$1-{Rm`8mxE%MVT)tS9A0|1?LlM|MVz|Ho zK<V#VC1a7hzav5t#YZ^<&~~j0auG5KTwsEF)-uhLw2lGnd96D^=AEEtzTw`pnz9@k zX7#kdqPsRSc9yG&aG!UU3!XYwJS<TZFAIWk>S}Q^WXZJeJxHu=uBP{9huSiP1R;Rw z>+e;jknPK5heEYZOO_-O!47a#pURoNfh^21$i{ja5@T|G2(Jn{H#lL)6^>*Cft|0O zok6Qta;`{kn4Yzlb1%z)M%-kNdg-TRjyjFDI^sY<-MFwljZ~iSV2Fqd>)x3q!hlEs zG3%3A(_M@M>(aYaE^|7L)-+?eGGLyg)1juxI_@95W<5ykwUU>GT#etmCj-)~OK`4$ zu0rFbZxv%FI~N{NB8=lW>JL*)Sy@2{cHrQH-l!$cByZwV>UvX!%W}EO`jJ}M*yfb( z?r8}DY;+y6YEe56lpUwmvKn(2`$x7#Iyv_S^(XPB-$6NP=4~y{BoZ4vYH03DmgH?t zfL1z5xZsjUcInMqhH}R_7$X@KjGHxG&Dbt-!w=MPjw<!7)-VBVj&cVTf-VF|gCqL; zRqI)p43-BR@H%?eG>({Vbg|trMfpHpxKo2y1@2?qWXU7~#Cumc4bsR6-GD#5YEyJd zsSHUx;dol}=dP!t30WNgy1-Wh=OFS;HLkfNzV4fVtdV|FAH9OZZ}~LwcFGU?Lv961 ziz-q^u#mG5NyGG@OB#We`GDjo&1XkBDgi7AIQPe`J~;%8dEcCZ_{Kn~<tLeJPV$L^ zGchQA1}idh%%PB#>IgoyqlI(_ISM}RdWx+yWl@R2Q;(H;)g^5K>SSEJrF^sVHhOzj zJ;Z#-8IA@B2fcI?p+mcCV2-}^m3?j*uvb3dR`8NqBL@rW%u9%hHWZfk?TXF0;FiZD zfN{lb-Nm;(Fgn&%+kh~71I|0v>Q`W?-B`q)Hpx8?U`158jFmX$vz}{Cal80<Kc!K) zfUrD}I@d~i8OoiE_XSw`QpFilmKe`9F2Hl1d(?{-P6^y`#Z~NO$oD0;2c4jU>UvhS ztU@Uh1D=GAl~URun|CP(8T!_}ss>(E9P}htEar`42Xghg0kn+gr?zWa6=f@u17oNa zp8!z1dFQ4(R)j0T1&eOyK9$DzyGK%1*uMxWyf<FtcdORpApE<LM<jaHNDE1^Mh*rz z?^j?1{D&CmL9E--=F3vr1BOz&i8!kc7^*PFdSg8(h;73%@wDMobrkD(v5*w?>T3;m ziMESI$)Vj4QUK05&ow+CxmH26<K|Ww6v$DK5>zm3^*_q5+QF6t6SQHDI}b{<^=CrA zE`_UDisK5qdNJwwR-L`D1Lhq#<I<tBwrIc%`;#QLMsh1wC_}I+0|er`BDA_AW>;7X zIKcbdb60HbK3;mBgE+=2ac&m_A&BUxG7Vpb9k?tG?@V|8mC%}q+ij5jn{)#h3xkk* zQ{%MH%DCH%<oecxcH8$ebW_0{&!#GNUol4fD8S%~=~j~)(Q0H19Lb&u;~DEv+*#p( zAb=0dPaxMukf)efN9Hn|93J%9Z3%KmP&g#<_|>f$oZgz8UCx|5#=ziq9{$ytJ-*B% z5g5nI#den#8&%{Z+~9T3eAXVJV;eU;58cIMQcGizG}*~qTOG)%069E$&%H^fczWwr zy-QnUGRZO78b+myx26Sc*yuBBSCLvlZ6uS(L};<DS&23J8~ZPQ%=TXmw99>KS&1&S z`4loMDBElZ=s()`u4MV7qKvE8jVQLyDgB@S0AR~`Y@pUWex-w|v|3^u61_(A+v#6d z#h_{44bs<5(X{)0Gf!2*!)X{nk8|F;VxS7-yk~y4a1zG@zrACauVqK`JbDwATFaQ@ zb({2yA#)}_yI4)ADI<Zj^Vb+PM^*7Hv}{yLnIQbEaa_}C>2)ZR&e)*i0Pt(zs&b}& zg@>aB9a-4TsV>2>@^SZlD7V$2WmI-3#F5WR;%+s+^k>@W#IVGG<N;N!^=aYxCfk*6 zu^tHRSo2w39m@{}w>=U^RdVC^kNhD`FWX0y=;|F?jf^r6;A_s{*RHha?q;6j?NO^` zQZ>UM&rf>MkHqaVx!OQ0@-aPrl~I$io5QE0cPsec;D5uPhy_34An?_xx++jz*^eeb z52;?JzH{-%>>Y1sGf&{Z614G<c35i5gPy=R{${=Y_r*ppCm_zv!!B?~_|%EwHn$Rn zb#+uEY;2HgvX)_57me;jDLPM@oSJ`u`Ss&(g<dN7Zs@)t(dV*U?GvEi3otnQ!;0o) zk2qCeM{}NnzfKogw%2V&ovFbE<&1;(*7GQ2aroEH{{S0*WW7G>2|Ppa+G7X+wAu~a zncwT=xBkj&*`bT4U)_33vDXa3OWm%t?!Qyy*?vX?<scJ+djA0Wt3GhD9OMihYe!SJ zpH9D;&iV-~ZsBdRTh5zaGwv%sTzRYy%6p#G)z-vUsTu1Rp+}6cMI)S(jN+HbaQI>Y z1J{FAqFt&+Fh@h{QV7GoK{)pnN!hC(Jz6~1L|<p;0WrHA(ui_|jsV~Vt7!{h5}`oO zImtA!p;C6Q4fAu?G&js}a;0N7cs8ps&T)V%I^rUuIKdswZq1PADak)t%eam~aOVq* zjC1<ds@Kq-T?~m2orVB<<c>+G0_C~;!;(EJ<krSUXWh<w{{Tv^ZP^&M0~YD&TPZ8q zocyeODrS%pPs&CBHPc!~1|I<K80NX_NQ%g$t{8P%>2#>_cb;%Q>F8@j^w3(G_K^Ta zNl-W>)~%o{512=m4$vQvN3};|Zm;vR5u6>k>sr?E7GIbzm`@9i-qlFwl6#@i0;O}g zmjf(4eJb6mvxQa39Fv~h(p$mhuq>nyaDByFjTxV40EFd=oaEN(E$WQ<`B0%4N=|ux zrN5O<rCmcP0lDe^6y!jSxr6lM11B`=NHE4gK5pRlt5MS6s*RCMk&UcdsK7m|KKeG; z#F9@yK<QeugBk+cSNp1>vh_DG#>W5w&O6qs2SUVZa=NGnCn3oh$EHnjTCAa^<PZVD zQQEsLTy94S7jWkTpsp)b$tAi2$>Wl1cqEOMBFf0knX)n%qi3G=5tQT}gSn_=mBTQ` zan#gJxP#6ITmxGz5zSW;+ZI_c#Db(}t!Lc6=G~GGJ$R{Skg&iwC!xhsoSp`A>yGtp z98;}*2t(~|a7TKU)_gfU{{V$ll!hQ=4`E9TgMplL)7GJ@oc`6{Lu%RZ!~#xx9@VRF zaur5-^{#p;Laq-^pGwoTljho5uxi&eg-+(}yo!yL{A)%j{Kwo_k~;ChtO#c1esDqK z+O*)gJC~4hE1FBG*9pCjhfkZ#UBrdwpzB(&-T7<?ELRu@(z%;?Tjl$pZ{>l(ABAc` zbO|8ie`asxQDke)bz|8+5o*6_@ePfw&EDu5;Z&eFPPO;n#vcz_UTHc-<V2CBM20p8 zg#~N#Gr*TFn&d4Sw({s#zd7nXEA%78de!ys!p$!F_9+Bck%$nUK4lz#D)TXvr^|S& zqpt^24y;t2ozD^R&Z@uKKoZXK<Dt$gZ^3ZIZv+1H9m$dbuR8HQtZmq_C8aC_J03<4 zO6dG6tc24%)<GJORFZM{*UCw|So?Ten#{=ffv-iSU4ayt-uplc>)yGzykP~UyU8fp zinu<nT=$Q>Sl@1%SD70!5Th6*4)x@E-;A6SvD<hg=Qsm3-$o9}Ba0IycFW%qJYcu8 zJML$}J7ejvSBUC*gH0<o@8To_+O|ALuFG~CdovPwZ1t`x{`(Sb7|%iPUcETo*!f&d zdp=Ta&vzh=Hx?%uuJglQ0*2-R_N+w5oz2J<gP_N6X$*7CBKeKm(z?4{Sa}Q<O^cjl zb*{%HA9g#OkX+B2W^ajp553i?lFH#99Z*-B$>6P1O_=`ahzA6&O?$SRtRx7eOio82 z^vztc)Ggz@k91MUr;<qQIW<wlIIA>gQx2so#h!WKABP&pitm=v(#m^_ggl^LN53`g zfAG&g5xh4Aymr<PVs4In;zMA42TJsB*>}gbH@_DznskX{k|7!r00RTkzSg+A)29*7 zaETyS`4n^m>s&Rl6r9?WO=$Z{ZAmlWuO9pw@m-g~=C_kjlJ%IZw>z>}sOX}+Q^8uS z+6JhRHt3{{z~r6>(!W%^e`#f^X#PdKD6vR4Fj1WPX1_SUX%7vr!|#Z&T*n!T+VPG+ zA1GiwYnzr1Jdr(!;^w5L-;wr5?Ee7cBXes4Z`&q5@o&9~_N`Y?k5c{XfUHhK9)i9i z{hs_{w{03_Re{<VH#PNrmFsyi$0qgKp#0qpc`opajE{1g_LJu)@nbAj5u+W^a$5sG zkgtukjYTz`e^9wHZrw8~l6VR@0=}j3-mY!*3%TTMM+7e54hiG6e1oUXS{T)`uK8id zsn0d;Wb~49ndRm+7c^jLLRF9u0}?P;bQL@i7~E|E&#rjIM;xT>Z0<SE(fsQDoO#CP z>NC^yuc)#-=t)~vT7uur!vaPKJvcROEyEUIz~?7DKPqj!MT2~~JP@Su^sNY?U`_|$ z`EUnMrB$>o&ibx|P}-iag;T&EPW3ZepL2nX59wCzpc3JqiBEEKfmUOTv}K6M?UB~B zidz};X?Anh8hWuINJ4S9BcG*Y-096Ak#=Vu_14R5WNs5Edgq)9u5{K{8$gT>Mk<tc zF_XIVJo@ua$z|xoV+XOU8|^cw17ic}jMt`I=|yC7gYuk)9qS6~NfI+DiJ7ywG3{DK zYI*aK=XaV$RHy?D+*SqdlvU0KFgZWrUYl{J6O;_OQgQ;C#?&-ckPHG_8@BfqrLKAN zl5F!k{U{V|q=^aRisdyuCkHOX=cogU^{dS#f`P%v#ytnUa@wYpggGgY#*<nYT=HE) z%$Gf}+Z9$jM#vxnef=xD)bwxxa0vFSQ>3_V2Jd58G&_`Stk{A$=e=!O*a3n-2N>e5 zSy(X~rac91S?Q#($jXkZS?cs1%6583$_n90HKw{6BV=KKUT`@TwPmKFgOz4)O!TcN ztW>xJG84&F>s4zq4qbF?f+HDRXC!k{!=^Se7mk<%y>>C_zGyps>afokCay=LnFj!m zY+wp3n44!KZ=xPJJBB{#&TC%VOaS9<Sa1VZS8d_%EQS#tdb#I5_^bB15Hh<lIO)pu zJ*pf{6q-3}eIVp9jE*sZ(yTUy{$?BH2aKMAy7kdSp-0^+dIMJ?(Blda#!8XY)-sDW zQbz%Eq7WNmhZ}MN_ad>b{5|p=!+Z5U)$0=INrz&p8CQZwBC{`aHDcU>xMPLred=6p zXr<V~Ktg~H4o*uR1xDG6XbHGEKQf*_8XiL%_b5RFJqM*!lHuDp2O#s$O60Rg)-L3V zyWA6u<dQ+CZlPVDd>}r*(xq8R++*0Sjy|7SWRj`e&Vf!q$T`J6TWnONrJ0j+2`JeL zRE%@m-nsom0<r^-P0Q(BEbLk)5#w>rH*_Mo?NI~dY`_Pe-&|C391~X5=B`fG#z_<_ zp~tUId(zy6T(DxLxgScc=M1P`8~fPlP}R|e`kGKM!N==b79^`5;a;OPk!<BcsbP;( z)~`b-Vi`#z2ZK?|rlL;n=C_~29C44vrVLpK`=f7D&}Ore;awRspO-lF{AuYbp$VP< z$0s#BuGX<pm7U3CV;cP9c02z7TB&h6EF>w(10y|8y-Pf~8*#=!1e&FG#7M^&QZbQK zlf8v0b}C%m?_vid9epb<X;oBg1Y?ZmtzAACg>R7Xe+taGaQVXg-ErtEtw%$Ry>%<g zc6`93f_+6(xSwbvImZ<o^6X|g$E8r3=x3J06W+RFaZYw7mf$WhNM5+jN|*a%037>{ zhO%DdWRrjaq>gdP-Jeh^MdoA7_cs#cGXkVGe@c_>ISi+v<381kYT03ff;~-NSqB4? z#a_&t+`Z>-Ae`iN=9MI8^%>yRWFvNeg!k`OA`OBw)}gV-eG8DW@7J~}#8T~EIQI0a zXyq6yboK34VmatZ9V<4wol#v)B#=2=;Xv*^YSc5~$2<UXGr_FL_yDs7Qh2LkY~*Av zdJgrANa~H&rj$~V3XpQ=IOFs+JU0L)1~cC|BC-7TT=9(a%})i#3JDw>g|11XrV>{* zgoW`N<&<>5{VK?l_ln86Pf&51%UKvNEJ*LoTS-U&oa4A11w&5S7b_ZVD-F2F1-@cO zTAn5j*ibus%luVB7Y{Oq49a;Gb|hs5m*r9U=Cf&AaNU+d?@R(02dMR;WWm@8*u-NT z^Gm-ms3i3Hi*PBx$Uwj<K;w*zdS;?mS{o}piW3GI+S~R50qt405r#$~&OjuJ*|>vX ze=lfHMdzB#mLq_!J@^=;mr~42n8-#2K$khobjB+ZXo`|sn(4I|h&WM}#~zi5EJfLh zsBHDe0=gqDE;g;Pg?STX07xBi=~U%Rlg>}AYE1{4<Q?30s3f;Ozd>CQm9#Ro%)cmd z2SeQTs}MoTWOM0Ln8rZBBy-5CFhkg!f-|2=QlDa@1h*x&fCHVtzolP=2H;c?pI+4z zFe>aja@_$O)#Zf6ka~6eYmu~Q;)&yrEDkWkjyu)cbSnFlXD0`aDhS3KAmlLb&0c{> zJe)TeQAO;uFt(+ec%M9HuN?HPSX6mqIV0|jj&oEk)6Brj1#YL(v>_o>pku%TaOa<` zbG=@M@zTt<Y>XL0V}M6IRm^<BM<c#FdsTQB&0ts(&N*Yy{VPThl{|rk#t6nwrA6$G zknM`h4l+n26WCSDQ~{8#NXG=8KN_tW1OTeR`{$)-Sw{0RNTUF706Yq)rMa&&=xW;) zX#Q*zJvP>@t+&dgV{06r@TwMZ2UQF?CpjmN!nSQ8-c$^A<oefTH+>A8u8FPf0wZlw z2{{KHD&%TI0tR@`N_DzAC|s7n!KoS$tCr3W3%9*(8<iOkw|;Sg4`x%vJ#rl2ow&im z=kuteh18RixOc}NO1o<lq7$9q4tT~ZbnU3y>MB9JZqHtTjAPcNjsv%l19j)US&G=m zFzloNKJNt7?;q~*otgY|TBgy2wMGrvD=;sNDLGTm(y(r=yw>vA7F>dOuCD4eXrDhI zBe2bMKMTAhHC<Th7cs{rqGQSuAG}9jsIE*+NYjg)j&!*Z>)*2f0KxclMqd%@2@`4( zWLrkq{nBHp9;Uvy)AcAV;zW_c40R`p`L^H2vFV?>g_F!Fw`u4PZ_=`Le~VLLr2(P? z_iDmSf<Wv$SIt8gQC0SlIIG1~Ni*w-Z{dy)G`QK>v&DF?#h(;O4XyElRKgsbo`SrL ze0;oH2rZ?!2(I`n-7r6hd*-;$i5@&UmWcOu?q`xW**uQ?xIW#5dNr#&WL3^eaa3i@ zbGrWkjwF`pz@N<AF_FkT^v`2i@p$4`WB&kH>g~`DL9aH~d_fFn$Vp4cPVBEw!l~PM zg`kILov;Ig-oAcVX*Xnj9vc|qw>`T~@za>`JB3_)tJ6O9B;F%^Nm?kbJgxx*^%de) z{wZ15qp4O=!<GY)Th_iMT|p7e&{rVt!RG^|a8#n;dyvM*l=b@$5F}BwGTm?I=Hv9K zBk?3~W;o?<FLqFqjC)s-{{U@E989q|8}suXdG@N8ej>cGw?|usah=;7W1fcwvi41_ z1?~BsjP>iE6s5zd4Y`o<>G;q*NeogeN5=92!Rwypyo%q%%XCz%g;)%@9A>n%`}rm4 zGRO$tI30K<p;Oe|ROXMF>=v5r0ls%J$QTm&&*5EGnc@hCltCo1I~Wnu*1S^RRVb;r zj1z_kJNniAA6$`OaEHrX$7VmfQz&bAob#Ht$6fJ{;Gc$mIO*}DIMO^=0sA(tploB= zCG`i_wR|PxPX_CM4?IP2p!kx-tTh{VDh7U8hi60lN_}hYD7;hV!xH(8<zuceew7cz zuMBA)89WsFKCp}ZrEG<?txbpTZQOqeZlzD5ucN_ZC2wV4<jw^-Qg^4fW8l?8fH9NX znzIlAN|TT}gWKA!>s}tc@Yb<)rfLz0uAq>i>=<@o^{TN94tWEwdh{ixgK|^V5`xTt zZpR>xdRVgTS=VR{v}Tq+kTF*vx3+Op>{W~?8-eF1wF%iA?G)x^MI}M{9<`r5c~>j) z<FOrURG|cCZo|$6RhHar0A~fc1GQc3(HfYq2Ep7D&d@kDU&$=Hw&3%|dRD}c?p_86 z?dwp>YE^n15%;T3ZEj`CtWmXv*bRh+ZvDk{I$RAKs^>WV@T}{5W08j2*;ou8t!&xA zRDi_gvCq=FY1y208&^6=5OJ2?03Uan+KBmcec{01f!e5P=&p(plLX`{j{WOWDE|O< z10D(EBbw}tQ#hwS#PLL}mv+j5kf*IZBl!xT01?Os2A7b)V+4#6M<0j1Iyknr6kr38 zPgC`+(z4Lyl(iim*ZZev#sK8w=~EmCh(-BxgOks;YBHsm0H*_tgH{XyTzuP?`=^T1 z=1N6Ng%V>9!{x?13ZXi*s&YwPxzA&Y)|DE6m2yh;+&fl$;kJMZ?NNi8qLkl5lhwx6 zA<oiQt#JCJTch0>1p&w;p0(ZU3>_7Mj!Egr&#iHqlAJJ;VQ#-K02*mK6sjDY;hDHO z2lO=*t%U@x7<D4ATosI-26N6TnE}fH*$2O+Z?=IcyBW_RWj*;ABy`18ol5+{c_y`G zv)sTO;EZCcOJ+bI1Hs06fll_&=4L~ayKXbwQlZH>8-eZbR^_uHz~u3YV%uPq$6n%; zmtt0ft=kR@9AngVtr#T;%HP9|qqo+nZ3BV{BehQ-0D+(Oaal<lMVgSY#!d*vLe<En z+`Qxl7_7TyF<>(h*ygWCjii!$U{?)G>~_KFp`!)cqbbKh)OM{~SM$^}WPm}(^{g~j zVUT%Vm^Iq?Bg5~i+!9ogox8}vtf|MD*ttzoi)`8O?br4_^_}d5t4APWbC5-Tn0zkP zEj~5;1iH}RmpZ1Jq2Sy;eg@=W_2gIQ&y0LG4wI!UDnncq<w4E{D_8bx{iLtH40zJg zYnddH$s5U<DG5Go1pMEK>OPg~`#7lC9ulo7Rp+_Y{7196iLN7f+B=w^47uf7zG-|T z=f0ORF!MfL%5%uT=DkbyqOsC%ykBGDtqORj(ELMcw+SMB-T35j-n`?()?pGzeBH4W zI|o6GbUwB4c<LU;ql(!5KLv^U#TeA<)cMQeSBa7xYUxQJ#N{@y=Oe9oKB2Dp?&Ln= zNjc4SUml^COz|Dk0&wk-lhoIat;ye#NMYO7y*xD-xF&e`>`bFK1615Ju1U@Z>sY#^ ztd}8x?ZK;-*Bi(U^LtfoWM^k#(>2!x%RNt?sVl7+6j$>}wMRJQ*GZ+`mnyF=&#P7* zn`paoKKE~W>U8T{8~urK7(zJSI3l`VD@`;yQIp-BPLpw9$Qn!Z0YKoMPqli_g1jN4 zc$Y?+<uwT2<y3@4<mcYJ8&UXq4xo4Gv#|hVuKK;<FNa<>Td*|8a$7js_|7@$Tyvz} zwB~yBlD90N{ZDH6ZQx6rKN_r-^B|Tc`^E8}U@PkAu62tI9b=YeB#=bAw_?5*(R?TI zBIe;_wp)alu|n$DC9}|1(Ov?&_@SgmuwJA$(Z)n;6plBOj<w}tC{Fy(Q?4{=xY=DZ z+u`_@(OdZ!MVdrRV>qvs{{U{ide2$#&Vh4jFcQOd0gsKxJxzKK#rxe;OYo(|`@9zS zh`wWmeZ^0vYvHYX#9F6}@6q)ehPm3=RLLqU3>_)Ds-u4DJo>Mb+?MS1ui5j(kEiRg zM$(AYn=Hqj-rrjL+rwJBTv)>>-q1Q{4au+0--Vh~_WISU0h~BEBc*-i;3?1cTm+UV zhz7&l*Dfute{-qyIeeOh<Y)fSej<-b@G-T8ztV4HSPL=xh<P|3y{qTz0;9^o8UFDd z1$I9jyiRrB7p0U08#@&J;5}MGc*oFJAz*|RE4PE3wSA6VN7>L<>UcQX-qyUDH*N4# z1v|ELyB$Sp*~R8zh$^Fy0p!+wkMQM`xA9}4_N|*VRA54{CzD>nS{!Pvv}OBcXwG&P zayEc_)~qN%10NwAcfqQ5@ovNX*~UQ~1#CfRp+Hl?<dN%D81*&wub{+_$(S9Wh8PS^ zG5A%rh`eQh!Qn|#2kA<d;zH&A^0yUwD}8}Lj~K=<Dy;5Isx*o%X(GCw2Gh^dqWczj zWn|iN2waA()U^f2$(AFiAFWth6Y{S7s`Sr#+A+}Ql~(pSYn?kSBcl0xj@)DQted?t zvg}3}WOM6X{MvfDs+A>&@RP}^GHGPCT#eZ$rZH8@a?Wj@Z*ilP8@BBXer8dOn#{h^ z3hr>lf#9he{uSu+>E(B4x!{r7v9Gl3?l>TW*A=CkvS$>fspXe?Sdqy9ry1MRHO}g~ zF6DIvQ@(MU^((z39$87_8><fUM=}DTRl?<fIsEBzr=b^no<*o=jAFwOSy+#ic_X%K z8chhqOL=6R1L!N&?=)uJ@~cUo_BrCRZoE2@uniGH4(w#+vTDO`vBTSGOtN4pW*7ux zrEck(YE0pu2)yuXehm}_<TmcO#xquJ^t44dQcpO?ddAi*GL$-aRbP}4PXr3ow$at) zR{$$#X?9-KdeX_G+p{DPFsGodiqB6c3JSUoOAfiI^%H2qi%ua|3Dvs)04mtA(Sz;E z@~14UI{r1gZ>9iLI<C>kLHz4p&q!7cv~>WIY4VWWj0m($L^mAspO?S2T#rdrBlmmp z)vKeouqP}4<ELts?JyLL+f;49=xBD>7ny+`j;I?EqshBD=~pAORwsZFM?=MF$!5|F zk({5_og^WK7y^3%=~+E>HB82PG<0Bu7Gd00MdqHO4i_DF4_fM)J&*E%j)3F&)^?)^ zb|8*}0FHSzHtJo^1iZchN}}f<DCeN{rpF{?uM5v5y=yRC9D>JlfsdDpmNz4iSw~e| zcCJLV)cc2IX}gpFte8?WjDD2KRdQ8^SMOwZ_Nv>-ae;tFIX&qa+{y_f<@KcWVv~wP z*<<8#tOr6X15}Kab0ZMV$jRtED{|sNxG8*r)Q+`{tV$Uif*C+6GC8Sw9(`9GQON2X zfJZ70Gm4<nWU0muago}r>JHm74p{X9swq+qN!^NzbU5V8kQ8IMeB=&AX-6w0V`v*& z^A(?Ehh+h>d+}PaL(F`Z{3&U$t)<DM3KI;6ZUN$?WihDAl|N2t)@ZThk+p%z=Yv*c zIA4)|Y-cC6RjkLW)TUc^EXqOXNa<CsRY6c2a`!!|?9wU%!FL}{l}_M-s=#d^XCjh7 z?7EqEpEn>A-!+GNtW=Os2O!q<;}S*z!RTui`GZH2F^;@fTy#ey-OhI9-;hWmv*eSK za0sjS*bdu!)^U#;h|Whitrn=`l!%%4V;qA_kLGN5^r<|P+wsLo3_D3~K^*cb*Hb$- z$HET$u;#R3Y_=G4k6Nu93?FbjH)B_$flG1MKYF3NmZHhx8@BcXAc~zhAhvP_DX~T6 zft)iF&0JJaLmkIC91bd5MzMp~M2xZi_pqx7g#f~2wm1~^iM+65z<vi#zO`mJ4t{)c zFfeN;G<B+D1Yjn4$vwpi*pQQ-myD58wYkqibDZ-^sI40H#{)H+mCaOJVvpV^+;V=k zG-Di(n{R4J;s9Ysem$!67M@-X0m$aLoUC;yHbrg;8RMrydeztoXF2XVj?~!U04W&? zc>2}IBg)~M-vhlzINd#qFbp<Vl|L&1*XvfnC`QoEqpuh_sO_V|fB*;etLYioFvF5f zXSYG}Hagf09mhGzApZa=olbFqfr5DLOXUTO9AxIE2n2gous}HXHH@9jqXx7n%?h3l zNIloJRJnjiaKCpr$?scj127l_h5&KTYNsN+h#Pk~{D`UMvbnN>&)!6E#Ex@}0nRHf z=FqQU$m-S7%?M$%fX6(X)_ue|AQ8atR;QrcTGbr1)@2y8jlhiNqI*B$Dg$FGJ!^92 z-)RFOf&T9~s13LX$^Zq1ao)9azT;H%Irg<IrSq_!<aDVav~9!_yXjhuW(WswPCzui zN(AH(;Bo~uJwd@~VhE!M0A5!(IH?kB<NzBP!6KwFg}_ib<gxGVQ8OyIBozmN-lb~p z(T!a;EJeBgO~7-VpmjBR*lq)IVCRxgHBKY6h6g0%;~gs054+|Kw3gtJ{OFTz=^X1z zGg{ab1TP8>I`LQS)W$NH<%V|ED?|^F>%6xBuNeF){kn#6`u4}xxtq49Qe6!Q2bPL{ zQU-DlU#P2A#~Vu$OLfgujx3$3GoR9~MmG{%kjIafvv$8Rs=Lt_V~Rc7iOvpjo_?Q7 zwPpLik(lo5(*TN~vA*w>fma;!^HuvWBiX!^AMG6A)~SMe*yt@|Q-&BDdB>%1S)p}8 zq@g1pUwX>ZSygcRN#h)ITb7o}lB|K*SPWws2Q}3V45aU=ZXCwT&gDNY5A&&*7T8xf z3xJh1x+{>ONj-Dx?N$;KwSXAKbj4~b+jdfd7Av@N$DtLX(U{a7#4sR|De+kp$^h9U zeFaW!%0@~MM^o=xrFKh_ute^KPDW2VNXa6c#9%g9s094oGHMAC;4IQB?!el>@IIoe zYMP9CJ&Rn;nIj)6#GP5Y3{q~|mXcetwC=iwr){So2hCyTg+DT<ax2i&RkhP>ZQ`=Z z8+6zc8~_e0hVW{sf?Y~b@ai+M4I7MYjC2FiscYKnM{y?BK4H$?rvtAw^LWX+^W|G3 zfz-aJ>h-@I{gV^<yBqH8JcI9Ceea7)Trw6c#fbqATz9S;QrD%vnrD+M7gY>#T=t=_ zyeM~l_2>cbSkt1>&gATOmtHM+6<XqL>lr&=2Xg1qvakGFF5_ldofWxcC+0Qh&*G+* zRz{O{>|`J1Syy-KBk;vWPtBf1cfu`cYa^OX8<!fnySd&KmDsX!e($AMI-K^(Hh|Ir zoVR-CZuNB`fL>P|_hV2UW#!s;0(uqxlsbDgxp9?_g>}4=&cL%VImaW~v@ASaQC1_e z6(A|w&wqO2-t02%L5<yW*w7u}``A2iMRQb#bEQ<2b-C)=XNc9*M;p6giD3P`2=x`X zbs4TgMKD>EebT&R{{XFCMPYp~X#2mfQcZVSJ^b@cmv5AE0X-|stsY5S_Av8vR=Kwd z$qmK=k&}=+AE~aYIEAr|7tE3e1Lkw<)DOm~>CnY<8njWBz#Gf=KDE@trIxnd7kFF^ zsx!CVxi1#2-1MVPT?H1RGNLxvMgSenZrdu`B7|jApW_?>ilZIBm2tfglp_JU^!BY7 z^!V?so6crz9zZxF6h&LzGOf&u)@ZZChZq?J$QT&*t5Mp_XJZ>-c`B#x3X@B-S#IIC z$(^K+a)2^G9YL<LEe06`TN*+X5JoUEeQT*va@OaUI?g_)&Hn%%JRx_fSqs!fmgdlJ z+*jt2f4iS<wcrS$7^>uuYww>Ecr<EOlG{oJ!m{H5eq>tshsRzKpTK@PyV53BOL>^j zXgyT&Mr+WaRm$|_wk8!hUY$w^-~d?gI^wL2iohKD@l@d;$e<5h)oB>8A1HIvX&5!p zd+2th)N{kUh51yjI3028QT?6M8H}E|Bcb=JgUjEv42*TfH5U$d6Uv_1#UzR|Wwgu4 zGtY7=Hnt22EJ-5@4?~K-BCvENvVV&_W{`p9jmkp~<aGQicCV?0(z%-q1>fdUpmwc0 zC><u;?h3CI$j6wB6}N6Yu{C<qH&<0vW&@6#8t$Z-=T&KLbUJ8Ih!+Y<^S7z3SO6=( z2Z9bytzufK2&@SV8?G^0%a=k60qf2)?_DYfoi}@zA_<mbv_5xXyXKxE@>Brqpn<pp znuQJ-11?V9tLf@$#9LNY!NQ(*1J<>@^f|XBR#ZGL{(6Iq98}B>(%aQrZ$rt?)}f6G z2PKcpGm(mL0yQLtagIUiD%7>HHW129x}!G(oaen|UCh!WVL{2j=lRv!jFkm?W0f6E zXI(P5Dn=OdkZSHLYI9n+#!C`0`3mE8MFcs{bAerz_%FN>kVnmv&2tx)-eVMX+qaB& z_NwM7D;%Vjrbb|(mM0YGY>KJMZO0rA^}4nN<Y1f?<0p*N>!tx75E9+ZXqq1_%m%Or zr#rjVX0jV_2JU|DIr`UJnpd2woS_4t6sJo7AD1BTGAggp3Bj|7I(8&{t|SAU-j!Bc zCQvYNap_&t=!_d{50v_hel=3(N#08NWCi1=S}xHJHr<?DcBO#_mhMeCEwFQp;9vn= z6~>AaEQ2HUs)F1`04i96#wkiJ&c#PVI7PH{B(UH&K~pYsfyrL|jc!=@Uhh+o{hbRi z843kr$!R5|j*@~f*dqrco@<rCvsG0`skh<HHT5gifOT>(qrH1~g|x)bBv+FjLXX}y zaseFInfMP;(d_lhFte$d*a5g>2fl04ek|(IX?`2Jx3rrVGa-*?Z@ZEAt7>%lb$gsu z>q<`D4>s|C#UVe4u6&Dyk~MO?p0&(sI^XumHz>-JDacXCz!l`z@jjn&+vna}Il;|s z=(jSgd*W@_80%YgIjqll@F&L${X4_M!n&M`E|`*e){;tcZP@iup4IAF2a5#KKuIiw z0!MGHd~2v*7A=v;uR!>B@d!9J^GL}u4of!&74!L?7uqE_pI4LPRVVCa)am~KX)74+ zwZnA~VzMrJa1JZy$!#P?B>r{oemwCkI{l<lO771e1fFs`3iGpX1<pWq8S8;um^nDp zQE2MN(^IJ0XCkV|bNbUKA83#u0OPKE*7fF*<S;5a=e0p^rFo|(@~-&3j~A7#8XIX2 z*wh68_V%XFBSu?mV2avHBOG86mmFl&QE0;Aa1KHB>&-i>-09`IvM^xQFD&2Wo<;uv zWlvh|yeaWlSkZ1Hk|sD_17`;v>b;kOqQAIU%ZR}1xb^&N-#!_B&6*ys_E){RW?2T} z6l5-Y*ELyFdPwV`3{+j<^cnEm<7!W-!xiKX31U|b-`c*8(7aD?s-j68O#=na{-FC- zex3U&>7F07No=JOstw`ZFi$n9r}#_kb2JEyo?bFY<M6Kw61DeUhtN=!S+Cw6QTt75 zOQ-xg)n+l0BpXvb3HGm$ybYn7xeF1yIAUw`8{+4~Kln~O7jt2=<|~xR>U!~CD|lz& zrT+kj<-3aRH;tp<XOelTqgpiR$|>r3IJ$CGla|KUfV3T#(Js}>kV|uc_}9H_zBZ4- z9u{fAU$kur7(>y>z&P};Kk%NLCZBKitA+B>er9vn59eHei2O${iS=0}az(lwkfNM! z9;8;-Oh49V%=!^5L#I!cJC%~+Y3`<)=2JY=67J`zbJW(ogulE1$(F`I$4bhyw^VF` z*atlGirKPN$Rp(nI%AS+?V)6>j}fk?L28P?lAtN%@yR~b&{@R$)v=TVCnK-5VOftb z0M1wribqd+=`7X3`J502M;vClW2!T|>TT(ff^tYiJb=fF+O>rzMc{1*A&IQ5FamHJ zEWa_wTIj76q*IWqoMRnxTI?L}p!BmSp-Ehye${dtVIL?_(bu3IDp;W|QTBvU&Iso< zWe_3U+dv%gS`Evw1Q3NQ@}4@MTF{QsB-+6cp2Ix-X<>u+oQ??@0<S}CSb#_XbUpD+ zGbYFlqA*|-As=@<)hV>#OBUy~bc<{!i{)H^a1BQGN_V+H-!=nQvC!pmIIGPyaB?@O z91iu5b*6$jBy?_i{x#m-*bFxV*bXZq>d57HF7DYqt6N<h*Vj|e?(7co0U&S=2U^9t z(<Cl;Wkw4IQGh<8y$=4sk%dw@z$8{>#+c=f0AbVLG_7ri%z5SBmJ>J!7~|fk&7y-M z;45t#w=aMH09ASo#*_%#oveB3S<>ljnIHlI#~ju(O2bUz{{XUflaL5JhNgdKsEoR( z+IR=jyBTazL*aIgr`**;rkL<{s0@Cf8s}=}iCbe5(!{DU0Z!%U#~jx~W2fy2g#<UJ zttG99^RmiVaCZCF^_931DQ4S`;q6ey^%-fW?EsVv2k?Q`wV~4q^2i+UNYCk3Y@$|H z0OWGpNAQ}}w6rq1o)tJHPrV3-c2G?;fB*!O=s2ZoA1!zUw<838wZ9Fv6?XC$q4c5Q z2X^zp@9JqwxF_7_n%ipNs~n7T$<O#zNn-Mj2?P<1xbIun7V5E%PV#UUvHWV3wyI`j z+8FXS`}<Z;QjviqJ68>a$<A@p-l*J06cDi%U^BY9X|(ns3V;VfGsvnFT7{S^4aj*U z9)gpRXUC}J##e^V$|`t?UznWZ_z5{Rmju#8SdWvs<E>eOLpcQCFyl3Y?tQDMoNmkD z%0l2_y9PWOf1aogGF!OLYA8YTH>+fkw<nxa*#u>NQ<K1KVx?H+olC6(Pn;Iufz;-( zby>(R>T!+$HK}til*b!gM<s`^y>t45?<BuM4oK}#*~fQ#m{%p=pcp>1me8LxD}&b_ z^zj=u*3L&9`c|c#vgaiO6WI3rYZmMgT-uJdwM1n^Qb6aP^{oZD3^F)8jQY`OYRbg( zjB}2)sF9-$gkUi1+)`H5e5EqG0UI-(;8Xm+F+eC=9B^^@)SQM3#y536eT7FLc@{!c z9jET&HC(!A9L>E-Q%0bU!16_B+<d|Dl6wl#mnBZ%(FGhSUX@m6RfxD7vBw6gH(C(V zenutp3}YF`aai|?N)Sm3JJzlHoE-Dqn#q`#-Ht{xgVMU9taDAIbGK+o`@|l+_p07Y z5~m#FoK}s*f4n(39*3nxj)yqMdbV;&Hdjco)q2%|9`Bd0tt!L4$8(->R^U;B!=N}k zR9xN=B1o_}8LQAh_(DKX4nZEi^(1krAPj9@q*cX$kho)xGg(SjH&kC?k=l{Y0XfMv zVmov!dgB~suEPmu8%NORtx7GvT$8lty<+8ct2T`%bVUq*FvswZ^O}E@rO=$Q>UN$7 zwLC(_v4FVlJJpEbEOIu1>+4+ZO>B1iHGPQI1t&i?SEy={A_~~shCM;6NSg$B%N~T| zIjNR4B0a~4?s}XW=W~5dn9}OX=>mi#FX8?*VIXpTVaOT4^s7r28wa-_RfsLw$t471 z9YrTS4OKl#(Z&}ej4xdFs|jzl*K2QK$pBQQ1y|bKwh0;O#ap%mW3d5T9jl(T9PZZ% zQ@(@k;6T6wl2?<CMOwDDC5o^ZJYf0{>qJl$3xcPBJ<0W}@Tp)FDuOe(p0yI4p5g4+ zkwO%O+mKHgsYSaZGdh(GlA@%JEud}(@a<BPLa$aJU^Qmtu7;eJNUH0CjDY7E1RkQQ zzEFX*FI?nSgr$72s&<9+ADu&W30T7%<EWuKm1koTbY*r6w{Yiy+OwuZBNFT8735@a zewDv>Y_f)6bCJOuR!zhvLz98%GgqNDXvdN;#OzR|ze<Wl2WVh&q_0l3r7TK~Cj1OA zIbTX?hE2SU!#Txi&7lvmn6R;C=!!df@l6U!upE#uO=zr2QJ-)<a-*QAl|Tmy06j^e zE~GhhGi6=Fj4O1-S1BU`2--&j-n3?j#(I17s7zs{R_aK`K<Qg2Zif_|-I)|ov23^m z_dNj>rDq9wGk~B1diJQS&@sj_j@ZsCLfQgcWaI#PclW51v(Xb3ec3&tmwc7M>6+Jq z6*(+as}2u5nynh5;~=w-m;udb+b&BkR1D+{S3T~o&bX^e!`9sGP@gVwobiF)tt2d} zRY?juXQ?$ZD((4sVmVSXx~#3cJ7;c31LhqoK4#8@mGmHrCT9+KY;--VQqln+1dQ{X z;+Y+|bqIF0e>&2&v@!+xh|7J`+O2D1T5GAJX&SNIIw#A=sr9aw&MczmB#t?(TU&7- z&4Og-f&9g8>8Z6<Nn)oNJ^8NsO6cU9ab}D$N`&oP9=nL>Ju3aZw&q=-j#sGY)g`QW zh>T<&K5q4=V{GxpsQ4SON$4@{U66~|<#Q@SYbMf8G5kPus|#$YkG&&u4{T<&A+-l` zjua8s(yXSM9oRU|akWSDu8V3)n|d7lwxQ!H<gjiJx3zQEI$_lHkF&=*DnLUR-?{Dd zuJ={3HrjQ|WfXyhX8!TuRy-aaO$s<?xE@u<+>kK`dCy(lab9jVqNfXYDy2sK!#7@) zVzDHMpqn8<PNetxde@d-%Oc*&^2xoi!6$_tmD2dS8DY7-iHfw2*v{<!Ij%lfo^Y1& zA!jOcyP!F*3Yu?Ynd_mGt-&M0tctrrmiEuBar(pULdyA@13rSgtz1cEYaO(YxGBgA zyq-E{xmonLzT5ZHamEPX{cCthC*%@Ms~oCZ29#t1$ak|7(A8U+%#(&e$K5Bn_pY?~ zdFF^HATc-@IOpHms9e~=XsaCZ#pj&vW&R&(?@kSzvWrONbr@DAL%F0<GnF{SQwm~N zJI>&9f@^aAIHF}a-VY@9$F*WzTr7?9g>OTiMN4U!>V@AszXvGT$2``poEJ=|A2`n$ z9jhwV;wLyQht6<##dKDeq!l4T#(nFSw7F6`Df`cI<&58Da(+=ZF@`(}>a;uN3=83< zI2Z%<tQeXLj4HHw`@pxYTeZ7uY4*IxRgduYuO_2YZs*Zqea5bOewnGXN=yCRe8aXq zYtj5At-*a}WBD9oJCCh+Od5eB<(%MxIrOfF!+PYJWQ!U~AYH?p@N-^uOGiWLVK}F5 z=eVteYy+x?E1YdO6$@F#Wp@m!q{heO+{BhW&$z6;16lK}F)WIu7>o`x??Kf=&K28o z#!lW(=}Hr`)Vb1AJ=a3ftuJmNySI!b!$uUcovNe171qb$<yCbNHVMEvADwvj!@m<n zbE@0M@;OX!uhCESucx$oTT9J7O}hDv6n^xa1Nc{|LUNkCS@SsjDvP@~8T>Ssva6)1 z&UkUu;~for`TJS?6_dnT47!e$3ftY-ui6nvC73A50QwsGr(e^p^ziQLBOv7M;5QYI zb8~HfXe7FfT*ChVxY|xf%m~S?9Zp&EUt`aW7T1yaI~Bt`F}ua(GpNr!4PK3iT&m&J z0C#ogy>@>ZJQCgt_=$gI<dbD5?;)5EmAN^^a#6RJ_eKY7*K}phlU+{u-o&3f5DCb} zGmg}(&V|{N_gKQXILW0~B!oMI5s{9Dn<j7zugZTx?^?xbQ<5T)18znejx&;b(rwtl zmLO-GnvJDzF^E3HcfA=`k&uvCdG@X1p2swr+<FJvr9j`vBOF$(lILm351(EK6`K&= z_)v3?rEFR#4YeczhYU#TUDVZ%DwfgQ(X(K(>}>7;a(WS3O9G;NsvQ079%_}o7y+HQ z>JLL&aGyO@SOK@VI3!ld^*H3WOcb`%EW~7ixO5+dSdKioNj~u>80bKzhzxC&Y!kt5 z*rkdle0371-5Kl6U6R=6YT6ef3Jc*>0l){GdeRaZ%YaVaFnST|N-^duY{%4erWtnt zI<|RH#yvT#oz}%$LcG{mNf<BAJ-sU$>m`pZgN*GJtP{*90B66cs+SO~L><^pgnQPD zL_S;eIm^31t0@4MAH|MMV_n0vlDJ}i_o({URe2Yb!9m^c^{PK&-60`B2d)QGO+9R1 zv%bb1o|MuIwsJWDe-&(5Xre`3h|U}DXN-H+{-37q3ZyplBLFY+u9DA3BqL!+&vDLc zq6<>JowPXkv=uO}W8e<`NzDht<m2~wRXGh_gt{=1`9dUC=V<HnrI$lU*D4wJH$&RC z(kxCdspk^u92GI;4^leTRmPGc-U1RajQag6)Zar`p~EN-lkbYnztIF+oT?Sa-t_kr zu9=gKmD%MpX!r$LKYQ2ZKczQL@Y7vgtYHj=h*b(Qa(h=}du+3eTF2%PaPoFh>T1QF zwPE3?vuK}c)OO%bqYD}7#a)tGoE2&)>{?43Ux&Ia%19LIvw$53{IgF(?_MY3eNiR3 znb0RafbU(8h-JRj?hKN<ZO%)vIbwR(D}QBe8UWG)eZ?E<&P%q=4&|kJ1dx_jQ;~t* zuiyB;P``v*T}dRa7ltRbO{!la6Xhr%HUR_mu5#~CD%d#BwN16TYUeGjtgSID`5^bJ zJ{r|t0?6NVoP5<Dw0zb$!5GNJV?`sO$T(nn=BarN`JI*VLaady2+1{<1<To838OgU z<^c7mtaT$Sdl>RN(oBGY+!4}-l(b-^;_i;l^H80%=;k9f?~k9}vMsfVB9#5zr>7O! z{0Y^xeMb6E3V4DvO*d4;DR%z=dfrlgRvy)r@t@%)vG8NX(&>7cGulXe%UiS`B*=OY zYl?VC*~$p-hBjAR%&q;VCyA65B=tD{RW6%!5>XyO7~qkb<Pz=F02@8|tJc?~zT@(d z+coC6a^17GHE!<C#_~jHfFJ?f{{Sj&mB>cl!sCuBntfX!A>;L=O+=#Oq0UD=Y9mdx zW2f82v$eLrib<80O_B!Z(AUx52>fOCc&#l<2g9k{Ivn<|ku=>&q@U+u^Bm_D?SBn5 zCx%OZEr$#TCmed$4k9frPg@6CGj_T9G2yQeL8@3ayv&ROf`>Rb^sLLYf-OPGLFG3) zn}83cc$b7cRPZ{MkjW9q!nO$>wcP3cB$HFNKfN-<A15dI*N0Z7j_0`;!8@jH-s;h{ z&s9jl`A&aY^8Wx8>G5hB;CR4TTOpWZBz<e4@nyZ`&9M6~%Fn<f^~G|RG0&vwcQ;y$ zo?1m2!j4I9#=NK}DcyBE%tVx>YaVOyL&Y&WrjushEJHFdai8~it~S9FX=wosk;m4l zOLE$U?31=P$WC%QX0&ZlBz7`4m(U9R6A4Z<V3$+Dtt-mrg{&T1;jzL006DFDWW!)C z??5}6&bNr|$C;Jx3F}(cphRN>4l%<6(ATRQGtX?@($$w{REFDvU5Dvi4WVQhT&n^y zPaultZKgqj12FCm20oRq1>yxDXCb{fu9)qigK3>MoZF>R%be$N&j90!+puPm1aq{r zcRtn2TV4QmmH-@JcP6(j?v#PF{oYTZtrNJlM^9}bQH9zEOoP-_xEMPfpl=7}4b5TO z-4B;1p1jr6oJPh)BWMFBJk{(?-*ajf+JG#BEZm;8rEj&>fD8#IXdT62L2$&4r7%AC z9E#Ypx=>Vu!8J(EPockQwc}oJz;dIws}d;M3aA)40CQBW<wbv$hEF{?0<HOrkaLWT z;}xpf=R44&b8Ygoa9EC~rDt4Ov1W{vX9_cqdeWABNa~Cj4hpd7YP76y&G$*bC3;q{ z(86tWF>Y-<!pp!5$2~=7+-cw^Wx&Qj<onk~@rERf5C>0FRHe3%{lqP}@}%?>-oj5) zl%CC9oD@GMGnL?qsd1->$pSU!sV9-`iU7_)F~8}Y1>P~8y^ngUbpUafUzqcfYo2ED zXDM^1#;VGL3_H~s;oQ4-Hy9g8u7dV3cNI8c>D*Ra+fbY_a0fWzxtXT>6>aUlRSSUK z*!9h9+FR`kNXNE+oo5Ldl}ds(@#sx#Y2{>G4eOs#!8IC)zh`VhsM;5EU?1;Rg5f|M zug!y=DPU01hTFRs1DqOHk8@?V6~{R}4L+Kgx7eK~9%c?Uj;g$7hmaWx;{!d8MNwOj ztW<L$<O9}}+=%nY2hyTWz&_z!ShDTG8N(i))lPhpN&p#%+H=#?)2F&td<NjI0bn_( zQTLSKdVqUWy>=}!St4gULEY-j-k~~pWn#xC9Xe*TZKGyYG5`VOkZM_NcLpG29+^EW zHjNSa^AzGjr+3YafNK03Qv`BPIjo2QR!z#I9DP0OQrwa<4l~I5*B>$TvZ&q5sUd<@ z&In`l=hCEiX;*NScXRTws0_>r+rzF2`ufyUOSEs`u{j6R)|{kdqjH_x$7|t>HvU2F z?O8VtPVPt_P6cUPmUqZwm(PAGkxm#dB#ivs39R|<wJAWW3<0?V*dJQeu}!k5Yyvw} z5XP{Q8yV~LH9fl_1e}g?2<=(iYRcC&p^svg2ZBCgI^v~_sl(ugUf9J$Z2Oe4<0Ba~ z^C(;c&PFnQeXCT3CXfeZIW9J_zzn>KV-{h7!6O8pN=I;mb_W<FXY{5tpnw@cSL6=( zt6Jz{*#*WVUz_IR0o2xA+bk$m6m;j<)!F3%iiP<=;|Hx{-Ak6i!6%$!tz1%D6DDWe z%1JzQ6_+%f3lgV1dew`kDIrkAf^*MrYR$U2C9rT#J9n*?sN|DRLY>Nu%=yne)F5Gj z11m$4%v9$C@}&hv(YNubDl4Nbq&eC^3ObSNR$z@!A27(r9jdf01CH6~D*dkHIl&`8 zjb|ow(~XNzpow;ZGmh1M2+7)6K*`1c{c5~8`@Ij+wJoAx-zX=H<kuwSZCU8Xo%Sum z1~Gtt0aHD)?FC25PCaq&PO^&`!*o1@*0c-+s11U1f=_zqb30unYZ*-j*BeR67^Q|S zu0ZS5sU3amQb<C$KYMQjCZTA+BP-XQ1z{;_N`k%0@QgCDgOV|x)p95@<f;?MIW*O_ zz{5ThI8r;+m1SMZqY81f6VkJCzK2{Ow__S2vJJ%b?cS|K7!Q?!1E}<<gi72oB|+`$ zQm8wQ8$4sCDLHgC<?|#1%N;kV>EG*Cp=DVY0CXJ(TBx#~H?YS*1zfjqO5h$2Ngb(N zu0?%|(MF(+s?v|;R^TCBcBwe_s?hBx3fsBPSG8Y5<)ZF<eFr$GT7!cguE*T&IRs!2 zOjFw=C_*p>2>!GxjoHWy5A>ngQI66}40Yn4!ez^G&f6F{RXhQ-eeC<x7hil2FC~UZ z>?!g-+_GSjIV5D7go4Me2YtgdYBH+_@_@jNf%$+L<F#j8TW-$M6oPU{`@`C{8YX4~ zfH9o)&!t7>NxnnVKQ|}&R<YM(7VV*fBq{+>xPWtm%{BMLxMB*oUjG1<Yfo#H<PELP zbJnRnpi#i@laAt=No;e@OwBO3L4Y~VK&tXZw2-4GsomK7R+~a(Bq<7@?)Ueoe71Q4 zh4mbd*0fuk(rv8@0We4`r_}cbndPhDl!kuZ^>LzXxZ0-&9QCMkgN9J0eqqIEuY0ow z$n9ZhcWnR$U%Gk&T2SIL2j1W*Va-&6G-hT1DC%n6v|(KGcl17lR&^E4De7q;5wT-} zNB|6DHG18EU@*Dup7lZ{EOxgG(S1j~Xrw#9&ngHfJOFXpxn1qC(;dwSLrfO~C5{gq zX0%ZVIXr(+-l;>CQgebjW2S3D!Ib2DtPcR5)GJ=rI=Wo7ZxXY7tHI}RJYu!&qK%kH z1~I_E<kdTCZ!C-r%iLq2t$R2`K}J{reqL*$5$cR*q9=|sp27PcL0h_bP{?zW&pk0z z?Ld9|fnlGUBLvo^j19*l3dcDd<F$G;m9#jjH*1?(b8liYxb8Zit!%<Fgs{NQ6k|E8 zO+86=VUg;89+kap!*FFM1FGV?;;eAC?#&x@ESs>P4y1RjOLR^_$=|}ZFhx|eDJ!V} zN~4Sc!Odw~MofGVN8PP$pm`#msirQX_LlfNM1n^_&hR~J8^+N~bA2l$ahPIJx3LGX zuCo4bBHeQ6hB(Ux+m=yWKB;vz)vz<7u$jPST#g5N`CP_N+gqVAZcgW&Yua;O-$`(v zC<F#jdK`7ECesWP85K6W@XQbET{f?7$50XZf;a<Y<YP5Y!~n;cVg(myMgHk;>0WYt zt3vr-G0bZ4J;1kxMo||fv5cPl)<yM<7IH-VmCjvU@JR1ldcOO6W_4}D01^E0T$T0H zEN!@gJ8tCCjI_Da8f@qF+wzxe;z1zY^6fkUT&$DJb9&6*K01Na)vaDc%aU=7<$8+e zC)I>YvNCc2B(L7C$Vw@BoOL4EYgCkn`O2cYf&(6F8sM2H0S@ju0aPZwd1P(Qc8)+a zkm@D~!31YLd)D#MSm%;YQPMMsm9hip1of*kYY!4K2FidrJY(rqJmi$CtAWo$)ccxS z>r|33+kwxZ{&fv0C3Z|xT8_8ZXJfcXRfkL-D`!sEC0Ue6yMqI{nDnk)V=%4)0tY!1 zqfwGEz&sueb54X_sU1+N;?>#eb{hWxl>sj>A1*#c+()HuXxiiCN*M~04(Sg=>5B3D zZDgFGU<vPzE1}Z$IDo?zW<3UeTHvWl+OyxIi%l(0pfpbwLp-4xTsyBu?~h9B8(ZF} zB}n57{6E(<;r<rZqLNs|(?E>8Ba@T(*QM!NWL_kdL*4Ch_e^cU9<}CFR(I%q4LY9E zH;%`ocpJs`mYS+Y>P`*|5s(M1eRJV0YfU<Jh09&5oa_j#f%G-;jgNyT@V=n)Vp+&Q zR|j!!_4J>^4MR=w28VANZHDqOw8TaT{{ZXLg;h&M)aS1#)s30zUL}xUgB%5AjAZ1u z0=(x~GTX^-Yvq(I%0N(d*F`RgHk~Z98^&Z)jh#WyTDNUy4yProjDOX?&;HW-Qk{Q) z-Z<xnUd=eYkC4A?{{RZ5gJ?RmahREAXjrM-3oy<NeA>Z&V8?d=b-*UR!u`2z%>EF9 z<T*u)QHhlmeq3OJYvaXa3BvWSe*-RhSMxclMbmcjBw0BNfUXA}@I5NL(iS7-&UnZ< zAB`;Qf*licV;Rm3M=YLNoPE>Qy)=$S^b?JMjDys%>r-1M=55Cy_5T10uN#?h(1YL7 zu0a`)smN97(~8y!qX{xwNQA8Hpp%{lrE9?o?ral}am`kSA%)K;2aTj0`&OO3qb}Yu zJxzB-XmZQYlG~LT^~h7fts7<`#s+=QCZM-X%bnRHJxA+Ol42-9${yIQY+)|N?Zkqh zhEu}|9YK%)`+@8SdaRP7F)Q-($v(9pkc@O-2h3Nws<oYnYUQ}4F|j;n7|A`VIRO&1 zZSzNw)p_abP(8p#2&XDK6IKK6MJ{p)9OsPGa_UN2j3^KsWpXkHtyXQaA#^wgrhRI5 zxZKV*<c@f%qI|a84T;VVKq^~lYHJ8{Jqq$DBLN0M$ZYqkc2*BOie&)v{5?sg+Q4Ly zSgzCuj2=yOnjV+C8Dd8}Lv_tu70%U1l`9izx=7A&yz<SCPoS;)O*N$lBmzd^f&A*; zm8I~mLaq+s{uREq8>1xvLcQ_Yx|6cdmmbCx7AncPM+|*2pT?g)o{&erP!$t{Avnce z)x1Ne={BrceAiKupl~b7wf_Jb-D;AQP-Rv)NYG#b??P_&NaC+v6qTDb^?wstTQrFh zHO!#r3cbB^Tz0kMR=bsBnO<1f5|BVL0rV!F=195wRI6?3iOD|IN^Nr2PF>dO7EVBX zb6Uk7HC#;PqAo`)^PqES4Wt?W09W@*4*9Ix*{tCiQ65{6$DO#Yb5`+`jvYor0DgYi zt}jsWMa9IKFP`0cRovrCyE;vCTuG&MN8OGXpXupbb^Xxf<bXO1RSC6ck?`Du-@nw= z3GUro^OAcS9;S<3%DRBd7E{6Gs1<>IZ<C$dNIffZOPq$>eT8J)J2Amv4?s;V%1q_8 z0`Zg1Dx2ZKU<e)Sa{AR|QaIqAzO{?6#LR?op17eEas`!@_&LX=Xj|Qb^0y%M6_qG3 z$%4CisbiEY=QyWfZfQL4XF5!b;Hd{Ha7Q)v=fb^HN&Tw64&3-ZTbU1ubcD@}r2OtN z$6jmU!8n#aTbk>B5qwF%_*>(P9b-?pc*-~u1^zY9D@{qo-4NoQgS=<p4OhUr_1>9% zZz9P9kXsxdaad7481Ds0;=e+^B=|o^_~+njFBWMjADu0zl5K;dcL&^8#hxYje{rQ< zy2}>U4S-Z}_}4vpNv>$E3#VU|@=tS(W4jIaPCFWKV89mRj<s@a8f$lO%1F;jh*})s zmA0OoSDDJz$DpQ~x@D^<hE(p)(!1XY>Ni?xLOx-;IL~U~tSp)CPylw4I#<v?3UqBX z1P^y=l0M*f6Pz6SeJh6-H3-_<otRZQOWb;$hk*5~`|GG+NL&X@sXTS#iuY{_(p@ga z46<@C9Py9FurysJ87{@lI~puyKp5h+?isF_q)OPv2*(xjmE@<Q(E5sQQIEdv&d$<# zwIZ?Gs>pGSo_`Tu75hf`s%<{v*TddSwvt>ZxozrInE}Q})YsJ?0Q?B|I>n{Nq`NK1 z<~JPuDu?_Oli^HP{sz%Jcc<H+mqd_TT$Eg9-TEFo176Nmm%?q-Z*7s}V{vn(B^zkZ z&-f+^aB!o!+sPHPW78PRdIOMtrm$d~$f35KxZshD)}5T-6(&aK0|0cdqNc2JP2Adx zF$E-i*(R@BTms4*gyfOfR$Z}nlRNh?C!AG=n5zx!Fi1IJ#dk+t4?b?kLv1oJ#?8zz z->qs}T)&pfxk>0ftB<w6F*|2&4;Uw{XhC@+7TW&+hI$I=O2<Dno~L7Ls4}XvmD|wn zAFXWLUKNdSN`@Riy>PHzfsk;dlaPCg+0*aciZcem94mTy)uj53OGCV|)I8D2TxTCz zzXih;%VQk|*6Un_o#E=l4Y}G$$ib~EeL)7+3^p$$uOhVAm#Npobff@;;PpApYFb^Q z73ITZa0W-#xT`%)T0&K@n|Z<Jw5@dsIu`^Ugf<DPPg5rJx!&4e0)UL}=ufp@7onp7 zxCOY!eEU}yZK+7z!Cs|Ow3ks*NysD|Ans4UrD~a!mCgH^$zW6##|I{v!5{*5o`cr2 z2B43(Jc3XE0IH^YuPHD>u?HgtubCN2Iv27JJPyErTB~|OpdgM11Rm8F+dQyPkU_xR zRqn5YE1)W%{GrEso?)o<E8WbcPu?U94Wp;lv*wx9<2ycFZuO@<&zL@JjyYg*Pqk;< zTyBH|fWYG-vTV^VrEA%X?J5q@*J;IL+*}MY@Nw6UwPyNeh&D1ZM*w!NcJ}Ayc*a#v zLZ=3?Y}UrKS3HI4dk}c7tu|fjgCM~jGs&(lJEdH0DoYN=we<VL2mxGRj+o>c%J&;P zYfFqN2up2jVxJ_3Vg-HbPds!!^???o!AQtX`-Lo;(&T)_bH@UkeF@OemiIDb3=mEU z?d?=$)D%cd9uGn9>sgXsl-!}Vvz&~cqt>$LzsJkw{D5^QB-BbnOH-kJMLMb3jCZS0 z-kD2{!*SqawQzH4*l(1L$BY5T)~xAT+cyMmlyQ?;w{hE3)2$~_7tG4aIKv)IST}xP z#tP(Q4%N#+stt<m&U$m#+Mjc(GHfJ(xXv?B*;dr}X2cN|3X-_TCbZ#U<tlu;Pi)m# zZT6P=i5+o{m0}fQa=U@a$Un}!w^LmYr;HLL%K{5`;C(77Sug_a&r&MPah6}3mg|vG z$pF~I6(r;nid^@1FOtOui9&)1B!60tIC)}EUfpq4%q#%t4^jZ6F}4X&lgB5&tvlUn zB%flQP!JAS^c?gw_1dn0@<$oZT3eWm9Ag;mR3w`S*vZMkt>ToeW1dZ?W{o&*Sp0)3 zIU~}o`PmpFA$>bmG#49`eB3Qsg6+3%UzZ~s_pMh}%-*)KaIj_FoM7^C{V9s!Q00i{ zimUd5kDb60zcDoo*FI>-<N?NMq-N!)T-`4`?LM`SeRH_w4;?d8+{#qs5%Ug4Ybx(M zn5h7sob;_yxz8zTRJgef!5H<&ddZsLu_S&ZcdK_fZ0#JJWYr%e?H~;Ej=k!(Fk0%! zcX^wF{IxtPz%TcE(!p=Fh&-|M9cpy8WqkD=X+8HkVznO<D>g7r4+phhg&X_83{_-| z#&AY*axgnpu%rwDyPn;v8Cf0F;%HhG>NAd<iqy7!q?KX;9E0An?VE4}41#b6rD@wC zW$pR(t|^{{ILX?^y`f+cP-i~9hHFkW3gdAtjz&dg+LF6?+Ht@&bV><~Fx<KBakjXn z-0i<cK5*Vq7yvoydYXyQpdfU{Mty0<WjP-+sN;^tqvv=7?&GLD)IC<>S`IS12*@C9 z82tU}R8W}R_s%+siBmFXx1sf`NTuAn0lT0b!0(ES*wrhsh>Af9q<q|g)||P14&Z8K z9e^1@j!p@uBn4Cgq-U?LX{UB*m7T^z7UD3V013%FnzstGFi-&uI%mBqz(Wp49D|N( z#8G_Xp#z+r=hB{sOf@D$<)RJ6a(Tykxo;pvTpZxw=aOo%U6?L2^BnnOJXEo<K%@+3 zr>-d^TiVRHlOg5L1ad_+_5{Fxn4SsgQN*Q)Abg<l=qkifB)s4fPkixKlD?)Ak3uDk zvV>oooO8ewsR$BA%;j0L&Nw_(hKuAWg=3A`^!BNvg=BISF|~N^F++M-#!>E8+FmiW zLcVfCb;UeH+f?VCfC2i|u@G`b?Bf{r9+a}C=geS+=zGzk(HKb?#?TZ}PT~$vwN$yc z+UF~{k9yj8ixoVm-S<G^t6au5w$GLNliTT4qR|}B%)ye+dgL9OxW{^mTYZcIjDR}& z)}+W41h2_na642+F(dQUe(IBgc&B}JF_LyM<+dcL0Y^NH^Yy4&)OjkTlEu1h$^7eK zV-qN5TmU}c<M5<(B;Y1W@xkp{-$apxuI`L=jgyreo(=~G>r=-Q1sTsyJ!?bAE3|?0 zo}QTZrMHQrRVjiAAfCWfyFEe|S`pg75g#O=QHs>HKmw@w_YQDrw&{_AIX?V@>sPJD z*vhc?+&k7S+1%`ebtJYVjlg3kspv&(*+dzD%7Vj;<BU~Uz*yr_xll5L6>{82eq~i& zgDNmZW}V&9*p-&0=)*bt%m_Fwj+L)yf+hfSj(2y@xT+TIm5g*G<oo;9oxF-15<$-c z9A>*9b51%N7RbR%h0aIoSMAFAWlIJmjIXUyw2%ZVwUjZyJw`=cw>w=!e8)NIz^_J{ zIHv5jHLL<lC(ZI983P`bscRY_8$l{M^Uf<a#xSP<931T?we1y@0mEc*gUxp>4k@cM zV#0Dm0NYT4Mh7F(wb6<V&48qW2pJ^z&2jqIigYgqTFG;+>h@YRN;fOsTr6b$7pblu z*Y>;kd#QMe+d%OB#;M}HTIs}a+i5n1mPS5>u}R9x=5BCHR(js4BWjaOBAMh!Wb(F{ z_Nw4=Gv2um7T>L%v`M%l<AhV!+>X`P_<GXr4-DMNb8jpc*Ef<hwsRkv1~>r;^{)^3 zpM7_w>en;*MN}rn1o9i&zDpB7Z8>s^8b4C5sp4B`r!qW_N#R!<=DEwi90~1YgClCN z+<52luQt`ZOLeK;k1=)t#X##<^h;wk)KKg!@?jAba$UOsJ!^^(x5n*b(xVqWj`qeu zcWX0TFc7#KS&29wO5wHn?IH7$*5FEtalt<;cLu(=u+)AAd=JoUY<?h0y8i%+CWU5u z7?hZ;$r%XSP674Jc}I)>D0n}`%`6&chBRO7sap}pXAa2}dY0;I8nr1>N=e<mi1u)p z3e~UeBg-C*_4Gbn@eRW;I~Z}vBzCSg{^QG&E66=aHSNAL_-dCLUEZtV!8P5qAkA|D z8F*LQxfS6T(gPtNaNH0^F<zDyajdzK;p6b~!%o7Rg>@%61azkPBWNJw2Z2#W-e}5z za60F$Iyt3cV<0MLA*-@WO%Ee|StKe`InO;Rc<<aDt$>{>tAa`Sw*$s0=;-^Dsri42 zd)6&<DK@kxoHVhiPnXvf4EC!lva7NUxx)I^wwn){iVS;~sQOg58bXk}eom(~9LYNu z$tSVR!3!=oG2NQbYrTx16W1SwGV0G@%C>XcrA?<t8nU}6bAym-B$Ssiv?Al7rKC!r zZ!G*A1Dg6D;P|~)Ni8({nL_}ivS0(#f@{Y-J8>{*#2R6oCp&gzAE`C;ufo3+>lSwq z{h|%F`*6VEZEnLA;Nqm(c1O|Ro7(5A$KyX0XqORvufwoQX(EWl!E`bN9Z6dCUj^!# zM!N&t8&9#{0GQkI^PaVHz+M>Az9Z;u4dgcW^Mw1Q@ae~Fbj5MLDDdKZE!Cou8Ffu2 z*`!nrcs|o^+3C+!0=eT!$~@87+ErIOr!CKDOW3Vol`fTco_7qIj?VhnF%hyV<0O;T zsOa<GYq~OA+iDs%tq33%hC-}3=OFbpBHBb5x7kItvC59rP6;&@j><NaTIzWR?Ny>5 z9QXrKj?UmlEMgY{k#e#!oZ`L~f;N#C1cxiTYY$&a{WJK%;ilHU8|$`~Htiezf<gpX z8=D*o{NuH<#Brk!-X>F#f-%%rxtIJhT@N=GD7PL|Wi`1fati02q*O_7`^77`HV+lM zb8F@&$_~-X9N^V4ZdHa`1rOfFe_HhxnzM<dQi{khRp{MAdXGxI1)<4I1Dp;9aZ|#M z+qUEmnf0w3SOIbtED_T^ezn~j+f$Ldu=@yCP`im-9!KUX`fl72MpTTE=}v+N<yA{F zj19;2sUv_At+eC~xjhASK_eMH#BmL(zyhZvZ8azk;N`ae0I~*iN@Cl%jBWb!NL7(Z zJBtkU?V8;rV=LH!h7{z3&*6_+W>HseK2eMiYB|6=Fg{WT1J<H>212krj=tilqdy|r z&eD*0Z<~>v3bb4_JGugR$gIS64gf$`8<_VMJIIRyZf&^E257dH6_At8Wn}=a!ZXc8 z*CtmA#JR=-j+v@2aKVdo{_=yGvuf;5DVFqJzgo$rcT$PdX(MXnVoYO<WQy)|TUFh; zvcQ9YM<CY?rkt2T90R+bYV2Xu#gtxSmdP0bT8P>wW0sa@YZS0rK#0Ln@wh8-n#t6B zV4_n8ny|&m2R(k3=bkC}ffk!#Ec4yR2vi|_(~^G*@oiJ%8c96<Q<>iz1h2sNz^#(M zyw3*}jd$gx_nyJy9~XVKr_;2MZYNdC9Dg%jb9b!YTdbeDAc2-*bIxmmm*R!hv@^wG zOfpZ8GEhEaS+`y~mN-LACUe&v>vXJ-5#CzJ?QS*ez*rT0H_l6co|Tz@;w|xvxeh^W z4_e^wejvT%hiTZOjyuv@c$F^X%)o8#4|-Q@YAn~EUJ^4SHtZbj^v!2Ybgs>o+s|WF zu9^vyG;%8Qou;v-n4@hOBzN_z8qu0_UX8_%Ur|+Lyeu1&yBNtms)v}tNo*Q75JCIg zXK13sxipsm42*p<)|g1(jy(k%S9URz)EY)3%^-~N)OV(=E8j*_nliu+q~@|OqF~$% z9PmYNk+hOd4{TLSn_}fhcK7K*)J84cvRy9aAe9*)de&r-x{w)2HK%o9C9|0$9S%tK zt2S}LsxH&=&FSwz%tdBW1`pPl?#keUf<5b@o5R}yY?a4)&6`ai<a6&un6GwyLHike zYkdb%e+z0?3~X<kY)vC&RgY{RTJ|rA{tC6!?xh||f?KE<{Hx%d9jDT-pt^@UqHyB} zoQnGk;rGPP_)Ih_V{?|ci2}$sWwY;^Ik{Dtg=nc+^*9|*z)z)1Dg-SPcWzJr09vi+ z9}45~3nXh4i0pQpukm|Vzj#+q)AgIkqPj@JGh~C$74~nz?}NV$C9t=+c-H3hjo&!h z0rsqYioNfloN7+?N5HyQ>|NpwP6fNOwrRsD+N;M(?Ct&n-1sj^jkOzjEu=sRV!Uqj z&qH6SnlFYljV9PfV{066{{XYjX`UqTR*mA#9^*^Y^!RQp=3T6Xa7Va3jYVuVD$(U< zeF~MS%bMu??eLF>2ieh*;dYX78EoL!sQ6dG)|T=at`~n91J<@YS^G2G{4&-J=71&C zbZJ|5*$HQdo`=`#Q`n&p1(W1u2dT!<UjdE6RKnHedZ)8LL(09LE*$sObSvNZ$^1F0 z+Q(`_oCY8_J9=?m$>Jev@u%Q-iZnrkCDxlPTN{#(u$9l^1$?V%e0*Q8T}^2IbO|Sv zyLt_$2lcP4J`w0I;g1LE7dMKqLa;NFpWzBgCpGjLTqO%w;Lg39i%)a$w#nKkHb_sM z8!|8--cnSL%vPPWggTZuEIafSmuY<!-QJ}%GKnLS`gvmGs<e!1`bN*VnGV6o9jn=D z(r1GgcqVGWd6i&EL;NQk8n}|>2yBy#)*7)<^ADAJFzhPYT(ES=%CN^?-K(M<j!C0U zB|^mQIV=1_xT)Z}FiNESxi}<>%NH0KXAzEpaZ$&53bPVhur<=OMlQ!s9q!4AE;`_2 zn$WY<e3lAboG~B}I(=)8iu|i`R23QZ$@CRJ_L+ns-oOF=uh5?LT`q`TXP{f^>YEfe zP<g=|RoHa_3ObHd<m1qKSDoAID$TsGT#j;UMjdWORv?6DKQR9F9;ICG<J4nAylmJ& z`=7|xmA0^ipw2<$;=Jf<fGTHzc;IjiS%+EMjf~kGkUyn9YY=**8lodB2}nEu523AS zFT*R~fZe-SnAz(=xDKRr>&P{=X{u%sl1V3_Jt=c^3p3DS)RdJ+ZgZbnvu~)97z30! z1XmSlf3cQL<F7pDHGlh1<yn~I=V<_AH2H<gea@ZlwkZjee0A$gmi2Z88Q^kr(z*21 z%V#8W`Wj<js^gMRQO0?s=W^p4BT8$t8#4vUvE)@LuSVhyU3wgLs&9CA5F`MSOB4Jx zN^6-EZ{U;881)sKkzAv%=G+M<b`Ky{72J^!TnwD`6=M4D3P@nQ;NWmipsahFljH(P zAzN=eU?1mD<X0$?OjX&`gS6)zv+Y_o*TN&5Z6u5?bNSaa)4!UCrvZT@cM3qM<J2%$ zaaCi+>Xg?|vpZDO1d$Qu4w*b;8jkApe5ZP;7~Sn$<aesbp<4tF2&(rQkqQeOlgB)o zX^~@Q=T=mkA@IsT&N<uY4N$$l3{{ZfdJx92t~Eor{p|WLb6In0JBcjB0y+aw^%}9M zHl#O5LF93eY4%#vD=UTo9E^J6xm%0D%B$f?$sIFM+TMngF(rL7T<%skQC7M=S4;5< zAG<COUQZQi^)@3L_x1sedG3>Yg-}Q*oSfG5Hvq-Md4s;*GxV(P)vP~fWp;RC+wJ*+ zkj!{2F;4q2W4L|u$0x06$!uAlfZvZwQ4UTqli!Y&<8#>ho=cSy(_%OWpy|-(>rpg8 z!6kO@>sreLNx>(cea%$4w*-!GdK^=XwA9nt-qtakZ6|K!40%4LnYFO&OJla<(yv`a z2p?RKPkPV0k#}_=xWF8ad)Gu~bPko4g=@3EGswW_1FdCCHY6t`WMoy_#xcZqXCtWx zt!7N%<7otAn(L+5;;RP5SK6Q+PIK0*LvqRj^b5!YX0ln%?Zf3imTE<lVHgB=B%Ie% zM+;Uonr->{v6_MI20l}s-D<l?9n<F9gY+VsCIW!Kb<T6t)VE_fMcYtw<}p?{EyvQS zPIJ?@Ow`iKRQ$lUeX15;GnG)l^VXYvOdNG7yhPx9*gd`IiqXj{v;*84(}vVBUBe?h zW~@hJxPz4kum+{d-9;3e)X##~Y5+#kPZeZo&7YL@6|ZezHmbPCw|rKDX~js!Hl8|G zE~Sq`oHl1PEF2)*x#uCfigZ@Fz!}DJan#pEEr*f{xZTGEY9VB&ka!~_HJ3H_JEE1$ zh#_PLw_ry#r)L{(Q=T~Jahi}>AdDy^@(5gFt;GsPiU=fk&uYR_y1Cm9qQ*l7Y_`GB z_o+p}ErM~J9z{j9V|MwD!g$Y6F-Oc4f_HI`#<^|WZcCv#k-WwPa7Q>jO*vJL0O~m; zo+_r|j56K20oJBfSyyuqqXRiTY8vVaSJ1MHi2?H#G281_@Cq&%1}6=UwN@nE9__;! z;~lEV$2e`kcckQR5_Cin_1<%znx=_M4uxDEq~rlmD~THo$s7agRulzX1_l2B+V-TG zs=Im?Ae2bC01c-<H&a$g4BJi#BX$7kRO8H}enA6*D#77*1tBq<cQt8ib9lRIPKAO# zNRJ~Y(A29Z0l6pck?BxHnNy9wF#Iu7rM^^gf^q>J>f*H2)$6Jyk0LP4TRA;FD%30c zjF-+jo|&dwL`-UU&qAJtr-yO_xrWkmR~4*ao`x<~V5_<U=ZuWt9GvE@+YgWwZJhJB zr@b*ma)X?JIOO%E^8`dFBLTfS(wrYeX6Bl^WraoZ$mO{0)Kd$OF&qQ9^TFdj^s6GD zlybwd;-ZzxF;ae3=yTGs<Y}g0<eJfsC3DH#NaP*`SC%r$%tjL#tEz;ial0M*)DMFT zXBYznG3`}mjycIEsh=ne25=i3h3G|8c=xK1i@8YW)K-hbj2x-S#uQUp1(AtXUD*m$ zbrfohZke8mzhF?yp3HI2_*2px7U&K-`kJ>STV&V=1Y|o3u>@zU>{Z>$<FC@SZN7$j zCu1k<?uf3A3lqrCL+?+D)65$i<;cg&)9^K}mVuRmb;&&XRO@Dpr)Ell)6${I*wQf9 zQjN4BQyWQR!6b4j`b0<{Db6sh#~+1F6k8QQ<&Og+txC2#c_1?>Amf}?HgY=S%MpnY z^1{0k19Z(@5xlq=C<g$M$Ta9+$^gMZ#y~wyO3Go4L3KGhuniHXCo5Rh)r3~EM2i?j zQIM^-?+(98y=%&aJCya$dZ-{Wfw+YSqaRwo6UPi}?>ZkXHxs+BwR&{vO>{VFV=(JS zE1I@QR#2tOWDl3Q_pOUITVNt~<PH^%O>-%6a01UI%Gg>k$afz*eFtj2CZ`>oFC;OP za=0@Qx!%1MPF+t5wqqStG;dGhYb_St?x!!YcwoZ-ekY}Twegqs-PSE$_eAhZL1z$s zuc-wN`0fyq$JV(|+FRpw)RVV{beW0(Gk0*OmOtDdO8KDkTBuy}-D;B6vrk>|9;xD; zNw0N%Lg!PvbC#OsLhbt3=#Tsoi{V5c+M4ggO-9{Y`#pZerxs87YUAf{eTD^odU#jE z8i$H?m^AG+)?3TTm@IKbyyWyX`@Qfx;Z#2dehc_(!j{pjH#YW*J>0+Z(&5*0=jeF+ zE6L3(`x;!a-JMt}UfQm^BHxLutf0NRdDjw7-eFLAC)E4b&Yu>%4JG-xo)Sz+E=K%i z)w`V6uz1^ExV3p2_T3_5_tkP$$4<57TF;Mk`w7F}OoldH&acS|y)j=K3XUr0vFy~P zW5l1~MZKiL>7s4Kmyj_#MtUFqwRAoR(d@hzr0ZTWzKlsGiyIp?kp|N{0wdu1b*%3f zd{mC}P?{(Tv<kUaQ<4UFuRi#h<7<nrgj#)pnar2ko68_Qf-V3!`t+hwsaD+GPo>N7 z(2Uc1*z$Sx9ZTXbiSF+%WowD&k))ndGJct=H*I&}$1MZ81vm_(f)Ay4{s7W{u)H)0 zM0@MvTXOXZJ63;>wf#F!wHC{547YA_z;aM}n&{?=lBX4PcjEC9NzJmy!~Xz`R|#~m zPR1EgNGt~usp_V=kBGWur}mm%S|W(2JOpfo&nCF#)LKnINRg~c5AfCPPf&Y{WL?>e zbB{{hQI#sHRP;}De4Zy0?c&t+B|1p6OceyM&pm}!lH7TQG3k&y(QSM7t5ST@tq|Zb z&hKiuWiXN<AsdfFo}kxql)lm9I%?|0DD>%EhC%Y<y;)5@NaQ50RO2}5TlQBm2!22d z<0p#Iw?&arqybor?OxS{s(Z}or$+4*bemR%M&<ciryZ*Nw&;)*!hq)^Ba!P?K?@*M zJoGrH$`)I0PB7f<J?nyP-szsNB7(X(skHw9GE%Cf$DC%a+34`u#3mpTIw|DT+r&=F z!A9@9&su`vq)-9i6M>HPyQ<=>x|}jf_b$h%Upui|rnR>W4#XG?dsfby<9q!kDG**u zD>2Slx)JGF77^}*EX(_#Hy%1w-}p^DBjLCeH9)SyP*no%W?uEilAO6zZ|GEIDt`Ah zjmsa6`u>2?-Pmi=Sl#D1f<mN_crDt#sQ6j?ZcndhlK6YZ)|S2@ideb0I7vS)mGDoC zyjS4Q5^Zf9%LA()l&0Pf_*XWvU)kIw_IGRw9IiY1SAW%PwD(_`A6lD!{{Xy?*Utm| zN%(yfvqfbb_7@WnVT_O6;~g?Mt@~dV2(_3Y#`}AW?T~aF^smeBgg+AePcEkn6J04l z+m7L#tKR~?=J-Y8So}*Ab6w5=wqM<xoU<Ql^6O#TCa(29uLW8aAm4uHss7U66!iZ9 zg<lOMl4+FQYQN~Vs>kJKJ<rm<0iC34lOe*hHcrfeUZ4A1c;3_Ecf}ni!`8Aq+82f3 z4K&I39_hI%4}5g5D>9PBx*kZu&THMm(&df&o*hXpdv+zt$Uy|LJ;COyG7aPdf*U1G z2<1YSCnuf0l_M3EIsn}de0>deB%8I&TkB$Y;YLtc6jRVIHK%J68L$D`2PL|J>sj{E z?Njp(2ORbK*5#;Kn63z5ypvrq@-dMjtFAVNE6}!i9+f|kQ3xyZDd%-bZ3C%Xl~4iT ze-&9sN0dMX%AT3sU9s54*E85GYqXu*@LHg_&i6eZ(><!=46#!AAxI!&ty8->$!rwB z8P7`SNXhG?D9R4tNl>722V+&G3-aWL2aY>c`P>k}v&hKE=~UeUC}zVFbMl|(TS6(A zw`~YZ6x)DLW0O^$W?*`dJ072fO?5KFbDio2cCQ51E!66x01_3rIpkKnx71wr*qNqg zk+!zbPXyJgNdg=@<epfAT=GnJ1uc>X=T{)S0!0enF*p^JqkT=3^xW<A`{j-m0Fn;? z*E!;^A10A*(2PqU=jJ%ay<+&2#PR76kQ}_9z!Rl-*NJ>ZEb_BV<j8$ZN`?9yIGkPA zvxm%|#eOWGQl0nAT)FB`YUd-I#~V3e>x#>JpR`QHn3J4<DQ+hV9^Ko0vs);nd3G(f zpm#AO<Gu}M-QP`fAj4%Bjw&xPSvl|0qf!(%JZ7Je?oa0VX_7EMogvhWISO`+eSZq4 zb#}Pw1~~dwbd#4E<da3v>~wbeyEAPhk&gXqQYnSXZX^yk=aXDaQXRncA6~V$q~2wK zW5+?B-qk7gBh=nh-}8)|oM6(3@DE)5YDj@4Pw<}Jl{3Y$f`ENNswZto0_|Mjjos<e zu1-iNj<svaI2rnNrkHZaDsVehB$^JTSmP`+fC=tuR<$_E0AS{=TEUZ^qd6lLww5aK z58VUbii9@KP3=Q27=U}$E#{l$u$B+q$UO~q8ikOAuow(GS0{0HP5%Jd-0cIOtyZCX z?pf1rr=AZgWEsv2p7ggidpZ6Q-`1{1v4sE=>4E&}Nt8Z&(?T-hL7oSvYUsQ<;z@in zs6%j!-)D9SEMVgU*0BU2k~7Ub##$pA5P0wW>Q=0oM(Fzs!CLe)TElk)!IXehp0)IM z!(WIk8G$_CEW`%{<0ij9{s{QYEX|}(H}4naP3PsseJA1j+4RZL!;+^51B%j7)7?Dg z+Lf92MuqW;`@@n(%&m2&%0X<Llqav@Uc=#!iJCu&A|74BM=$qFSH>O?*UqhP<-7jq zj57E7R%W5B>OKVVAbUw1+dJ<AIO|w9ZBB?(aM1fh<4=n&d?ny%HG2z$Nuiz~5wJv{ zwhEE&Un2Ow;yZZjQq?THISd(^Lk!bK-y}I0Vo&FQD(8>9cdGnNO$WjHE%n&(1hN~s zjkBu=;@h+Wzuv}iUL*0x<2{e;Wv5&Ca@R+<)jU^nrdX`*vV6Rs^|IrhPeEKbj5pS8 z&9XiG207teq_=4L!{BGbjSs^b1Kw)aDQl-$jLUgD1VY{NO>>{LzwK>lru;7Pou`Hh zLt!3^JV|`x5<ILnCzig4C$C!gZ{R1!4<7!}pA!^#$6l7^$#7xP;a@7w9JV-&edF$P zUY-8{1upn`H^Tih;krR^@1^Rp&Gyw%g?W`!#t*Or@m+MN@@S4+P9k-sc6@8$-9fb5 zNFZh)05kRPUW21*t9XVpfZn6Md7QkQrb#^Jv^33C;bl@v;B^P3RO$0CGHKOx?4HM` zd6?P;N}i{u6v-v>hyd~3M_+2dv)7_vkj&%FP)uwaf)8rZmV7AWa57GFQ5_D)D9v4L zSQjiGEW}~D=k%vZd%-G49C~qB*Ea#3TX|dz=hmq{rO(QH{MEXV$kol&zmg^+j=g;; z<4`VDnStklo-3Re${eoa^9%xd(;HCv!3qkf?r}qs+?1?!E2%U{ca<xg{MBe{WdJx* z7<31NTv61SvB?WfT}Z|N+&2T$H9Y0no$_l(_+%rF{RLXH*7izRx!S}Xx!~8IuCI{K zxZv@&tw*Z6unOuF9(d=aM>y13>9#t|PFIb{Pf~vEbozd@BwyW<ppXd1U!{32pL@4y zZLCPhBm66@)3rjSGQ~&U3J*hBx|h`&C^ORG)FgI5t&Vs`>yGBG#i-^@+qQ*nLE~`m zTt%Lu@AGdC-Ff2`cxvq7TOd9;!Qj#DIvOf%>UIl%u&{{d2a!!}O;<QPbSFIKxrWw8 zFbaahsi^+|wl{*S77jTyok6N@=TQ2qBd9N&jOW&(eNmVK2rJ0Xy>jvDOxqd2L!6Sl z@l$=VvUagioZ}o;POhf@%KDl&S7Q<ar1!w}_N=>^3mFM4HVo|?nq;?b_-+V4Fg=A) zxtOsh%p;yqb{@4p(Y=av(nF<{Lq<n+`^5C-sJ5Y!!#z5a-iw)cD`zUC@!yPAT<35t zjrbho;F{7hFqJjAwz`ySwV3mbyS|+&Hq}J#KwxqYAlEW)z-8kBTQ~>X)}j8=AY^17 z=QU<rrsVpHvV~K)^yAXA=Dbnz05)y)=~+#GxeG?yyA#~iN4*9zKyRTGF(hA-`F?Jr z=FT(xsbIRsMoCua)qyq1kR90vuf1Bgm7P)k;OGH7pL)V-=R{7^PPhP|Bm>4PemPcl z-MxtD0-RSBWpG4C=If8W(zfkq+5+IH0DRqzWSUxB*+a52O`9nr0PXLdzmIwfh~z31 zGh>sUm7>udpfTuix4jZZ<ybBY4lC#RuetSch0Jm`HV|h$a(NY6W!hPX$_eN@n$eyh zq~MZB7_7;p>dZ+X<S46By3p*6Ei7eD!OI32th<n*zGJXfjna@v4naKgS=T_ZEy!WW z9gTFs=x_CXG)8>qDy$CX?#HEN+=%|}c9Y(;CEo9Y(4K;*+#RE7!8z^TyJ1sfj;<Bj z<pY-9NFxWW1<UUFHmC#fG^CJ02X|A0=}8iX+D0%&Pd>HQrmT2%XgIRcAY|v0?aej0 z+@yU4KHWUCfWeo)y-v_|Dh>y?O3qR_IUCWG9y|bdbDo2}ShBV_IOE$DVmm+?SRcm~ zcG}$}1OiKrPZ+6k^Eu@aBC-I3!+X`ZEP-qy1@$=VR&A_#+~au913fEB*4VfJ4ZNHW zK~r?}Gq=5FQ-;L`NIkF{(ya&!NUGTiah4US6^a78kYTvTsi~gZZUV$SymYLkC9&BC z(U#W#03cEO!ZUz-)mbeFkd#0WADchYw~ec^kg<WsRq91X)+9m?mKXuThU8W<e5Yhx z_c0#d%wP&O3FtbEcc@G(2GBU}NXf2&EeVZ=##IA%PSp&y<H}{{Z(I?MD>mN7(e7Z$ z5Ov%!l6uq(ODeZa^&K%<(m)v)?D=~h^_wNTdMR=<v>v?FUrQI}F)$d0Y%v+nQYuJ} z@)Y9)WFDC`c{xS>-q#(+y-Klc+mpG^N?IaQWU!;NAm9vVj@4~ZlmsAc9FhlmY%mg3 z@z1Xnptj_$0-WcAo`cq~aysMOfIuB{ij{F8SjkW`%O2De&T+$Z$mo8xJWvd)s38gH z!>v-ZtZNoY0{o?v0(xyc3{}`il1s+9>ON7NA4)A^Rsg9W9?UC77!)$F0eR&5QFd;n z%dtiU`S?Hx=Q+(>F_Dd=v0?Xs;2z?h@PTr`1I8QW9jb?owZY-P56Ly5GG4jD06s{^ za((N%l{r*u$380+3^hJ!J$oHBhKTbj`LaiBt;lIxX~sP&*zm!U7h7#c)_Ig=BWA$% zubUIb`i;%|%O%vT@?bvZ$-wPe_8vLDigkGI8C_0r8`8aK(2RN?8;H#7)s^Dxk45pG ztFL%z40l>}x<l7>u_q_$d)E&yilvevGF^eR^M>i|T^yb<9wpE&Z1n@Vq`^X`ED!$x zUc572ntcycAsnKv;L#3*S3-j5k2Te)CwWPo?Z?Dh`)iCP>wbM|B>10tNZoPrXCY5o z;qGoN7AWOIy<J0s-9hdvE?rtO>^3eljOL##dks{my0h04;$6ZhB7UO<N&RX_z9vf{ z087X`jP>@f9E($hn+HDJ^r?TeAwiw(oYMAidbA$aqw0GN&%`UHQRT|2af}ZB=ANGr z?#d#G2;-BUbL(C?CaSxGdBpLIdQld*MnlM~x#FKBdLeVoFNpS|@d|frHNy}SfO)~G zzu`ZX*b^eYc^Uq-<7upu+#kk+tjajw#ZR(Zq#n|L%+F?r;u|3$=g#lpUWTki<Np9K zsEYKV108eCcw6f-6T5kC-%4-x%Ag~79P|R0vy0Zl=cvBZJ<{XG_n2Upf=6MFPBZUJ z9yPhQ8>X4j+o@SQdsl`xh_HE(;Bm(os9(jb2GJ%#9<^MFYhqNUx}Qba`1aC3Rkb4z z00SxHA57PGq)Bam6mr9L71l-zBkuZF#WU;vXa{iw9_PJm_*=y~t)<e7JGo(T-57v9 z@mFTHGi#ex&$MqZ?X4p~CHcU>k3CPIs5L(s>0StdE+;YG>Tab{*o>ljXWqVikKz^V zo?Me%8Ks3bq4hn@S8Z-hYf%j>gr27-H7T~q<+9xO&kXDL-YwLA(SAhml{kcOtK4F$ zd|~*Qo*3}8!&_XRJjJ#!2N~(t+PU2aS6fXXWQtZ!2e&ohpBy}0F1M=-VpK;E+p&M0 zTUOX2`JK-$x{`fTc`m1sq?%SP?%a}1cHam73HX!aAB*igKjG~@YwOwFSNCa^jY;L3 z&<e@$=818yYBqX(jj_6(cUY1zKKUo5e#QJI_)nw$!Jo2Mi9R4|Fv8w2{>y2eVmVnH zVknp2BxbdYZ60ZC6P@I#$A8H3KiRYPW$@0E@o~HhqO#s6g_UnSQ>>hBxw_z`x*p08 zTzXgA`m#eWoC65TbRhSynEwFanl`MT2sK|4>ZOje;!DXd?q`(bxGr(erF{Y7eL^_Q zk|`3#!0mP9d)L8cmHn+(<b9T3L)k-K$0y?`Vfzs`0vX8%A-|n`xA8;4>2q*zZ37QC zDA6eeP<smWuNipKX|8T9;+0Bo!6&E#rYp{MPY^?S5Q14&EEBb}f=zhzq~7fGRVB@L zx%2j?;R~xNZZ2+~RZ!Voqa8a`TC@$Ud^xa&P3P>|xB^KRA0sb4E57k|vkVryB%ke$ z*#rUi7<VK3*BcJDZ~Qf>M=VOKZ!C8T6#8+}y5%X#JjnI1a!{z0jlTz*Yp)S%7KS`E zy_0zaaszGP*UmcJvP~n&GwztPZgP6_(!PiAeY~xIs_J%fmV0|vkRT&1k<%UP<~?Up zXP!ZTs#%WS;OCJ~1s6HVnPv?rSZo&-_L3w?^UEu3+<R5cN(Qlu2PAj;`c`&>1T*Va z#%@rb!y~0__^pI-f}m~PjMuMGT5*SS<z=dElq_>JOh5=b16J(BkS6jQVeOiOMnYm! z#u)dlnPCi>+!PLj6y<xe9<f?#LvN`V9G=IHyw;2wyRO_ZBN)qe6@_q{q$4B)gOOTR z$(}}iN40UyEzKy+sc7^%oicwk9l68&+}65j@=BT7MmY$)eszPQ@N#fSAdJ_k_-@uM zMnq*J0E{61wdPirE4k~hekT{Ecv<yLKt`k$IV0=sR&`$p$*1ZuTDc_`=XUFX?TYnN zqCue%cy`9ol2sIX(c$Y0ZCk`;i=xaM0%>{$^{z!$?)?s5V)yEKKAqtCyl>)|^cb!m zOM-M8CY<?sC!s#o+Iar}_DBB!g=gWk)UT&#^;MG)-NZcDHkJF?InO7heGebOIQ(8C zyR|V3_}4MKhbTzt&ua7s_$A`4OGr&WR=6hB7b9%ss+@2Vy?j0`)3Sp3n9mOi%G1%G zkoOuh=@<7F#x`joVy;;V{NA`ewXJ6>ECYEw41Fu^Pm7<kRhE|a%0AJmYFGD=z$Bjq z_m=0UV71JC(I2yBjo`amxb#A;HMCKM#u=EAmagiUs&zg#Vf9Ls-y~0*JP_Krym>U3 z9^u(a9iyG6wS5ur`^6q5@LrDh(pt#`?-`B=*|GBxjGX#ZpRsm_rKYy=YVdi=()ndu zk1UbY*T4SQKM$ht*M|H#tZ4CW(_?0~yD{{Pw<_)IdRGF9ty`4!qY2^Zsb6#DnA6A- zd9rzvNX;a&6OztONi?2dkdOvPKuGF+Y5XSa5E0Mb1FyY87Ys)%Nd6l4+)`FJ)3dmN znB%EnFh(lGJNA`G%PRH)ltQc(80788PIFVo3t;jvcq~s}rE{%UnX9<_FP(!IP!A+y zk?matsOCM`IV7AK$<yriIVDk-Cy;vmYj)m0?g6_PZNJjG>8@QF$vsO}$R1Z5Z6mLG zv>#+_yoMYA02%eoHW9Kdz%B{E#YSh_87{2AoNXBSYq}S)7fW_kyTgUslpy5s)K+w} zF=j@>=LJe&kH)laz;Jf9&wO>Pxue26?&x{rt#v^qxtr5eR%y30s<MOA7^*T5s?YN0 zpi#+cxA#|RQbTjN^fjL|mqsms18~^j*IG))9M#pzQ#&f1shpe>o<(C`$PVIiz<c8+ zv~KR3%Pez%2p|q?nwoEwm<(j~^{Q&?Lz&9%<7An@Ro{g<C)?Vt*~+m4EWdR|OAqB) zNETKh6o5u|d*-pcQ{ot+A7+8LjGgVC3H7XJ*ur%*DR{G8ig~7)TWM}^IRoilTdeAy ze9SXi8uqW|J^{}du3AQEroaH?^`prgwy`?h6&c(>9+e_)W8Va4)~spzOp^{5aAS(u zIxAbM?p$LWRajR>5~oa@@x?(qkjFSt)1LLKdJ-a3eeSr&O3S$c`haoQH7upMpDtLQ z!1t&?Juov?if4W}%|o+=;~DC6N1<B`-`k&FD%F&QUxUErpnezhq>P@UoPRnt5#4B$ zHQK74Sn<ilbk^E9nMms1{i}k}FFcu1iR5CvA4$0qL>W#)3}kbPX^|y#P@c%ZRSp}T z-Kk=;e1gN|=NYXA8|67tp;+YOsi_tuBw!Jb){V6@PQ@!&_DlD74D_v-0oVY-r>Lre z91t;(4{r5jH<KC9(u-JcT~W{LQwwR^1BPspYmV_HgLz4F3HgRe#dQ8GQyfvSa>F}~ zVp`pcxZW&+4`v+&7PBoj(N{y%#pD}H{`p5kTOmsZ9eBwCxI3{XhpRTwRA)H$uHQ+y zTj*9`dUY73<PW&4nQ@Po1F5LE3_q1$nl-@y9<@=_00D2C)~PTcitY40TGIL!*|EVd zUt@eU@kBl=(QT#$UD*L+xOE+?<T)*4yMdu350vA+O?o%%=i;Z)yh@rS<epSBKGY}s z$EW98!RT<-r+tsJyeWG&mwd7i1bc?!eLXAG@3h@NU;87=EM<3qO7g&ZewDy!x?_Ee zM8}}u9@R(3cbcz(z7_b##F3=3e`jgZn6M5!#v2o-0PR2$zov6UsrES`E52DD4fxOF zezAA)v&9}G@cy-XqB*^Ldr2&1F|tCRBJ=oX@vJRtR=x3#sV1qe-`wk3jHBnhzLd!+ z1E9(NRpqcd##PJZzVk8aN#xgCq3VKUL}mo^u6C^MdtAC%9?$zfc$fYVuZVh0#i&Tt z<qIKhxb6Da-QVz3=&k%?`yqHw#gLV0EHztMRmW}WRfpyUerxGh1`Eh0M+)(<V8^J% zeevTD6i4w>{t3t9Jq~$R?^4n&*7iJden$<T%QVw*nr2s8#Qgcv<`=dq>O*09!NoOQ zp?{PX$;K<1@NTLEi5cKvaNRktR`B1$tyji(DISq%_mfNaVug1%N{2NSc{5iRvN`r~ zEIW{{;qTJ6^bKfU#pFAU=y*Nb+OVe6r_!$GwY!Q)CXJaHB~q*yb;zu5ww*IpUD*i4 zVEfeQ)zMVs)3-y=uJ*cy13aEH(z0g+w(P46=N;=-$wl>|&Yegk?Z*bH$!5F4sU>+V zao^U5D`<6cC#jvhmnC-r+i}fBxtHbY3CSeYwz1om8DKdEqL$NWW+%&RbMH{t)H{`o zgf}@Lcg;m4rcKxYWAv*A+>ww8=N!{g$%Kah?L6ldle$+lQM(x&vJ}G(I}uuz&H~1y z6VD`ds_@&L%yG3q{LNd2ClUo8QV*qJChT-ZDA~7|u)xS3o$*_Cm!B+UNnCy5-nrXU zZ!BPPeesIhvH8aJ1gEYrc&=GblT)rVlRA4#{K=ioyQWCywPU#`dJw2M+%gSwG0JyF z+qhAR(v8e<<UZvmzkJs_tkXK<htSuK>77B~k^D!u;Zhrs9$GeM?di=>iT1hPcN5>z ztlOw^j80erPDd0<zN1)n)ys<Dg<uJB$pNuMa+2)HxGzRNw6Q|CR$fUMIqE6xZq0%+ z8G8=n-m-P|HTu4SdAZsNz+;bU92rI(@KhX*m>#sR6B!)_6>*<${{USv(1%^4_(;nR zewCyq<<yB&No-f1Hru?MbCL%+6_IlpD9p;aU_by?>%vhRX~7314#uiWY_cI@4_}+N z71>T!TC;|5zK1VymB0v~<D(8MKHwOo-O7SN<G0efE2|Whm<`y@dFfS6kV3g!gV!92 z?owNva;MzDlm>`0j*o!A<23`X&PdKrQVng(rYfo3^0s)-b5&-5+l|WEU;^Zf=iaXO zGxl!!8EF7O02{Y)&0K&502Kj;%bfJ58*{ymbCZl>rGgFu0rK?(jMg(Yj4bR}id<k7 z&N`{ibDG<;nL^_^IUh3`#EA-mH(|KWPfy0QEu=px6S#r$lhfL`+18@gtlp6@L+u-Z z$jGYF%ku(pyST+`O>RPxz%lKC&{YeYbqnS(3b^Zz_4EBtu!LQ-F{Jt91eGLrJPOIX z`IxXc0Of|>Ptexo>c$Qgat}Ce^_z6A>yi#Y$Uu0lW1;BMrE{O2d~h2qynq(7=gB7+ z1pC&l+&?P?%H(o$(y3f3upz>d00oCy(lX`H^=aYnxruWV7X%PldJ3a*hap&nBy{gv zS0XeU_Z_*&P%;H&&a3x!lEnS&bgr0A;;V*MGhPA|jDW!4W|)z)9fV|pImKFF5Mw+q zKBqM3pxO=r$nJaBd}n2;^BBB6t~%Zv#yICccQt-HH<3o(amLo~Ot*{$O~WnM*0kdr z*>iwMBacs7Ii2)AcBDB`1U99%khoPOW4NsgXj{vC5IG!TrH(Q|Q_2o^4&tuc4fqO6 zMg~dSiqFlQ6Sq);*<FH?Jj{JFT6XrO(}iVhVCS)=irrizEM8+SKK3*2D_c&1Ll2aU z=Q$lIb3M$Wxt^p6Z@G|d1dgYrTQLPgn8Nd%=dZA<k-{Sk0;`tccN%-b3Fi#JoN>Uc z9JRUC2&Jkq&9eeAfd2r*bIA1Km&*A}OaneM$6?;IUeVkJ11E2;4_X$`hx@xgAd}Pq z?^53~vo?ogE6MW8y7b2&R97(W+<dk6!RkG0Sz-jS3<45(9OvGkk_BKHP8Imc<0tx7 zE$Vf~?Pzn;TNW=P9D;GrPCcrl!N}QyquRPDY>$`#+n(T_1y%bjVG8Zb79ch`rS9JS z3u;YR#1L=bsZcs&oY57p-pUe3W7id`ZB&OUO5>@=T8=ndc-xG7j=t2JR|J_HQ8ANg zCj$+G&086E01Tdbe=1asqU0x2lkO_VlrpSN;16H%td5kLAxm|L;Ejiz_vuqXAMbZ6 z^cf!crZh!lFR->r00W%W>m>6^WNrWuPI><TBAi=GeGA>#y=7(?Dgr>pYf>FNy0(7k z9sARC_*F;E(DWqs?N;?s_G=kkNn_bp)}1uxH56+)k);PYJrT(Gm&R~u7j0)8izVX_ zLT%<T=zZyYPjzRgY0+AU6%5JGm_A|0QC>CT<9*@(02CcU@mLujED1cH{{U5X{v+`e zQ`qTRl1P$8B6I-ZJ7T_~l_f?tTc4lfF%repb8k+EmTNkDY1)jjf>-9?`%=Rv?!g~; za2wXQylWJ5?7e`3vMzWT3Vkb@hC?6+g2S-ly1dRC=xynD>>Ma;9OoqTu7BbhE69?e zIc}phZ6+4vuml`>^sJu|NG_qtegMZOnwO~7r!xi9pb@#;y|YkE0c@!t9%)?pP6!zk z$z%+;3*V`yYiMYl#u*A{4T>7&f{f&hcJENI1Y`r&n8zca$n~eP4N3gMq-P`n-i5l! z8R^tjQ!W7quc)RMBm>_$q&ryA8i3DSFdZq6d`KZ&k4mAu^(UWSS`>qVa&b?fSh}}T z44ucGywkqg!AH%z9nDc^IW&2MCu2xfWyZdFSmfj$)eN!&fwe_eW+VfgQf}aIPADCT zizZZbu7=WY?5#91w&`vGP=C6;&2yH~?wNCw>zcPc$-0zrgi*CddsBN^irSq8mGck@ zIRmA4UJ+llTn)n@^!Kkd(~)I$8Nl|hOYr6`?Z(~+9Fy9fiCoS{ajR=74xUhg5;Ver z$3Nj;J?pnGsOz%Ho!gtBuTAluu(rBeD#*aFBOcY}dK67_sTK-djyS2+$ZFA7XWk$1 zOOM(9A0PZnJ}T8MeEl~>Rhdz_Up)QK%NehwKj5+cHj_d9o-_{*Lgfy>tfEL2vHQ4` zz6kWrE7<=4;Ge$=7vZPCJsw$L@^7_e7jteOF$eC~$zSkVyYkxK!ksy?(QUi9E896y zTh?~>S43xqPD#!6W~b~|@m?(#;NFpCa;#D$5s1)Ws08Dl=Dmww@!hVYr!>~Li7DhX zQT(NSh_4U*ko*s6sC+Q7wYemTHps5Y_X#}nUb*8h+1l$$)2=lQCsZ-X{<mc0Y$N^Z z{L2udDzcJ4NQ3348}>Y##hxsJ;iO+IERIQ&a`eZcuOrv>Cs`S7=2=xTSSxY`T=7)8 z-kGahTU}Ys0Uvz^QGxCop{_D(3(LnP$&YyIBP9Mb>C)2Xoarw!nehjS8dhcVS7Mxu zb@~%f=uIW$>`9PAD&j>0KQFkhxO_KTh7(9uRdK*5S2a@OMY_>iNZ|xR20@Gy)7H9d zqJ*6HISD4!v|HmXmBYkiKPJ}3MPOWLHXb39$h?g$FWrgrmw<EABD?KK{{U-S<{)16 zM&u)m<FOUU>lV>Xr!DMK0Xi{RBRmy9N{VuH+vU*Swd$>PI88^vx|WlyeT?8b5LQh5 zq#lNk6gt~O6b$Io0y0qNHDg)TZZ1%nC1+(E5_?xOVp~zX4D1Ri&&(^<r_EN=pF`$r zTASouPP0phMW@8Wu_S}k)!8pdP?$n7^5?BoTo~|jaxsq7^|l*V<vCHsVK$SwlhZ^? z_Fp+ej!$q0O1lJGG1uEZwNef6?%;(aVCSi=1YkCkjpwfJwar#q8&PQ%ZEj<?ae?zO z=O?9lM}YN}jnH|4j_j2@X1tDDl3X!dk=%M!?I&9{bED%7r;W#o;HgSei)inoS}}T` zRxGh=R@+%n24B7D=}Y172z{F7Pc7PEkXt=J3i1yM{6lh)Bgv8vE7;ewcq7H|0Uq+t zo?9o8pK9~kX<Aw%+=L-lQ|Ld0dS;?p7^00_vCLrSfnMOF#FE-Y3oH??3X;6z(!6is z$HYxO+(Po9PzKOq;=R*D@njmxpikVOA9?xDwG{apwalwgoj-e)=)t`3g`SnES?ZdJ zTeq@Sk_cNE^9bd>wej!7d%MqwzBbikRQvgjZHEOh+m8L~>)(oAC%4e_nWfq%kr#Ol z(;r&+S5o+iZ>IRJ^Ix}UlWQ}w?(2@6`ikgrjk#B;rXDFTX*H`iJQ3kx;a?Bl-E_RP zm=;_B{C6YTzLV0m%_rk8!i{UfGPj=hmJE?dtGJ0k%8~RUzA%sCB)&4%HGA7v5&fg* zniK>A{WJ8%d(Z62;&$-Qi6dtN?1os-D)YFXPtLm{r3opfIYm{cD7ES8e7yyv@S(H0 zS2uR<(8!^1Lm?pkJXC>q9l?usBN)Yd5A9vxRPaZ~oqh{{lTOv6O-|e|8S^-N9^BWI z+u4L&qyV7c9Q76SmcH!yXw6#b4T=HI(~NVT{{Wp_hS+&yKfG>mame-*<U~Iz<&^R; z4{CarXv&q_yN-L(QNF0v%`MATdv-`u4p#${)7G`2KQGOd?eg>9s9Qz7R02a51md+L zMG@zc263J~xvtuANosR8<jH_SnAx*$Md?topap==2s=+xQY33L64@XeZO%a$;O3ho zVH2+1-OnbvVu4;oTga6dlEFp~C!M0RCJHhJG8AV$$7<5LB*7vauHn=WMn091EQQ=C zZQaz7+PY)DqLf)yd61H;oy<80pf#6p+jnH+C*>Va<ytfCa2Nu(Z<`~p(z36nR=@=0 zWDUcmZ@M`r2O}R;W=Nfv=VSgghY%CURZjj+Li2-K*ZG;V!3VdlDi|Y3737tSXn>x0 z1Kyk3$mN=AQl_P+yc&F)a3qm?4nXc}$^1<cSq2-y9=XY_zZUrU+G#dV&}<m#w!G6< z)*Aj@<n!!nE4!RO7N&LFrb#lmZ1u%!cyq(@>T|{bB<DRUj+ta{E|dUEF~=3|z76oS zdJdSkvxQeH##c2+#!pKkg_nh)(=5wK6fhY8j%$?hHS|`@=!~THt=|`Tw5pXuf};Qd zUR|kbUu==L5>9%Wmn*WP1ho=rjHIz_=i9ASl#Co?pQSc71YnYWohmtrT=o>wFL92< zjN=*YQIWwtM^jH2b_bv|fdY~-l6q!~_7V`T^xd}tog878fuF*aRObVydYUXOc>YwH z9>^`XMIaz#gI<T>T~UkzE)Ft4#c*(-BRC+Qwb1x}_v}|Gl6H6FCXSjC)y}}Va$7k$ z&H?F93^wlEc{!~4ro`D_x_RcLX+&U>c<X{_yF}S^HH3tm;4*?c)RIcWuQ@pbJQ}HC zD3x}DjPvsMtI|b=ImQ6TJ*ks>ZgZY9^4i04kGe2%Tn?9YvfzyO#dp3i8??3natY*& zX1vDUU6cO+_32-sY2QO{#nvBcv`dK8VHc9UPu8+LEv+?#{!wGGjtD&~sI}XuY3&OT zaywTCs9QFjdh4`|9x9sbR9^8tT|k~QBJw*CRp)@I9CYdJR6G%@t@Xc=BZ9+#4R6gB zeqsounKJBVK)YNL0UfG&Wt!6B9YV?cyQrKxu;Anzii%|Nm~O}6S{hZD)nyj!-dSbg z&p>I%MrTsaC+ZjMuIcg9!5U_*3`;H4UnR~utco$uv9GJ4_*0=jfi*7;YPL~LX{bcW zIyeV#BEKyE0ALS^n*RX9kBfisjYV)phNgVKEzS_Q=ttJSSY*`Z@kW<5x|3<C!__;Q z=}t@C>~T0l<Bsh7Q~j@hV=ZssMcvN7VQlw)6q@0YXN+V)lft!py=gJDoH%YX(!Zli zzX<6c6TBC$ct6B8k=)x}#L>$PtCG1G+&#hPHTV(n{{Z1F@4+97o+a>Y;xQU^(<D+b z;o>}_ejti<Z8YS!TmJx=r3=9*w{-UZ03sb9SQDcB!yo60_uqy802?iQ0pM>J={kn% zi%m~Sp4uoexmrdTQTo@(b~o*3IOlFS_O9l`Q%n6krwrkGn&eI09de4b(Z<}{NucUM zMgkBSPCD1nUjhCv>b?TjtaTkKb%IUXB_#pM5rd5M;=BXIQoYI|l6ORKze?5cR;(hL zH8NuzaoVQ6DAbFLwqvC!MJBgL=?BLjgFY7c!SFj(_=n-EV{76K8WC}G8gjDd0OuU^ z=D$4k*j9Tqn>i{ok=)nNz5)HEej)rh@SdTeczaN@{>aoKD=n?e0q{u1?Dgqh6{*1T z+e#;p%Pa0@Yyp-hCb7fDRH>?R>9g_^SDTu9@9K1Z0lf3A3N8s?AM5X3J;jPMWFu#; zYtOzK%JAIArBnrNg-Op9>knl9X55BupFv7V#h$GnekVIEwmEN=M;NFjvE$`d1GafJ z)IFZ$A(S3)8z0W0HZB#uP}l%u)EmkPY;zB$1!Wxd$>$lNEV9jyr~}fvfu|Q=nKxtm z-_nvTF%XfBw6#cT2Rbaut{HKT#-&SNoR#HI1Y@Oa{{UugEP8XuIp&45DS^tbOjJo5 zL0GE<3m6Hv=57uu?X+24gpi}KJ?YWgC~`5L>%1T5SM8u1*p*TPbnjk$M4is+cj!qJ zTn2SG0|YOvYuiD%s67gR3v*Q9M2(Z?{o4NkGg@#acmp9wBe50c&2rkurB7YS64)We zSg|LMZ(6@;Y_4(}ws`4HfP$pp0(czutJZe>3@#UvKDEx?wr5gHp<>qEBXu8mvEwV= ztV<9i`D^n6cMy70lX8W@RpW!yVx@hhf|G`BNl}50)i%4h-ip>Uni9xLrqBj??@<K~ zH>upGjtyveDcOSq#!2XECV@bFWOm#JKPv2m&UwQ^izz5jjFIza9Zght46cE|8R&Ws z#<UDO7?}WA@t(B<!lCd+<$gdN>$)z?;BZpVp*^c?K3@!fhN``p4Y_~^9Ff|#OhA#8 zF{+$n)~npaLiu}wgWU8U)zKO0V?Sh`tjKFL+kuVG*Ko~IxwlqK00GAvc*pqG+?Ko* z#!tEVt3G(bpd%oIzy~?}D*2u4jg=VRV+P_D`BbX{cv8F?8W9@><y(`t9Ytx+2IuB7 z*f|(D=A@1+$an2_+tl^VIZI7U{;s)<xUE_^ih##IH_y&bwO+QiDno56k%FM`D%5t3 zv>bpz&lR<0Y+evT<8x;xjw=phPh+7wks^XNhCB>&lTj4&l&MTG<c1wZSY_S`+yPz& zdsCE&2IbrjLdUKv!cl2l`WkXhMlHlZ6aCP6EHi=WSyymjcQFdB(;VPeOCpv>W&o;; z_3K#oa14^l0V5~d>07A1k7kRp&0Jf8aItSSn|6<rh{A3eIp^@Mj%Wtb!zYu0iq5*V zkRWErX2=AL14D~vyFsIzofbHoj2?t~R%=87>&HA1*0wJoV5gxYo_p3w?lI62_|lEy zv^wfWE*B}!7$`CV`qNZx#@<2cR$c<@w<D9<qX3|8I`DJayQ#|dK1&%6r1q%0PS)Ig zGgqzUK_LVZNWk?KnjMjf{oITXQ&u6kAh02a@QmXoy5W7#iN!lR8!->v<3BhY0($*x zM$z&H6nnO79vhLpLn#290&8B*U6KHJLGuHOnW-dsGJ4qAu?1Lk13aGfy>AZo4y5h+ zb6Iw11|-}u-`cjJVxcw_2r+^ilj~fS9=AFvQj^@CHB*7G4mcokYGDX@4n9>pfKNe5 zXrz<#9ofOjtH~OY!GOR6k%N<1%3CCNs#esdw&N@B?^W*N2qY@GJ@%d}VMre_10-M! za%!Z-BvuMB*_YO;EKMlvW6B(>Yzw=&TB^}tm&gs!@x^J)Xi)A&41c@Qt1vqOz#I@V zGen|_gRw?fcY+Dy+tb#f^1vmE?QiybRk;z7a(3sYN2Nw^qjxIU!9KaEOQI{ET}=6v zSY!syae>Avx0b8BX(55g=Cr3qUzS2hT=f1~st*andY|EA(vwLQdyP4ek`4|yQaSq6 z<8Wf2oDq^p?^Vex${Rd#K&v+LsSXB9V2}q;D;Al&TDf5&!-3RihUi6TS;7!6%DD%y z>rq)@`T>k`Ta0^((})5@VO5nuIUe<lot=(|tCpaQMp23@I{yF(HCImYeY85v_R~fr zL`|hwa!pt_Q9%r{KO0j34gvgYinX*icau(~MhQG{8oq-8LjM4~XUt}}r2hbMADPm8 zO4GE@8~AGC2rX4E;%uX|cw#{H74zqZCXw{(?+jjp4a(+AV$1V!+P&(_Q%f7P4jr81 zD#xX9pBH>GeAqlgrbY$bvw4mXaNu>#dt1c$gxWm+0K+$Fs#?pX&B<UwF&yq5wa@C7 zQt4OHFG9a5$>~<LD}=Gt6H&H5B%n4Ij2_~&yhC*syBt?yAcO&*b5fm(O4}F<w8AsS zIppTBwHXzIDdx3qCJDJY&#!9dZ{%4Sw{wbRBxg>U4l~79-NzUrtV@7M9=^3%N6b_V zdehvrAx!h0I*@8P2e0W?UNRI8SRT~`quY^4Wmd^8j?~6EH6*;8W15Sc9QL4SGI8u_ z;5Ko`N{=}Lo~_Tl0u+!q<2dU~-cJ;aFlbT8=9ug+QN=W5W1MEB;d;>!-s(TjDIi3p z{J3&H@!(_9mM(e4MJWbDj(sWduH*NxPo*1)o0?$S!IuEnbEU~E$M=9xD~8j@k`b7L zkJh?)bv7`pai-tKuSATRxd)4Ga{&y&i0N8?0Q@ZeGWd<5>8L+>cYPFU4<qjmD~a(H z%QV<#$?PlW{{Z+W?t}fW`#^Y5vVxIZd8GXYYN;=I8P<HX+55TST`DaTLDTg3Q_G6h z1c(9b0I$p+_$^cnJW=qfd;*?L)O~PrS!?ws&TK>p$m6|!aeu*Pygu5e!|wy@=($}p zQFvuwGl3xEC-A76Z<x}I;}sNUe#^S@TX-VCs~n_j@&@b2TK1i1;;YLXv5+NIO}iX) z&3tG3Ie56+_#(+L7^>jPIOEd0>+c%0vJmb<X9ok4EAv{hO01FkO&R-<nd+Ap`UasC z-f9$>so(%sK6v7|ZC>L;izoLk>fm4iGx%2zsrZbDB-<mPVf-(QW2Jevx#Aa=;zw(O z@(=ZgIM1bAIkvc@;d`^a@m{}UXC1_`#)w$;Su#|Pm>J@{cf_7GlJJ-joRN@BZ?~_m zD=%E}EVnB0szo9{-dQ^Rb6m*2K4VE52-A)f*JU_K@3G4&%V?gH;Yn>Y_@KSi3~Hz{ zHxftF70rA^)-<hh`KQzDg{{v?B#4kC`i_;!-fK?iV=saI+~%p;UHQ`t<+6Dvnx#dn zw!)?=JiM_p^=o-#x0GNh9*3=B=}M_M7$+S-?_Iv3Ya3g?&zI?sYUUEl?9#Ii1~Z!N zr8Vr@JSy$VT*llDwl&%b?S`oh!zpjwfVsfurDj;jz#K0b&su!5w$s^9Qfns*Jy5xo zwJ*KOj(+JM&(@E(20d~Q0FUcgCQ#}RQ`6d<E=mwHk<fwKvvlsPN~@`;{{T23@-fwY zY8T5%l6rOntrpTLRTvr0NzY2VAdkraD9ZJ&X6)>3&CRP}rQgYIard~$#!Y&^gEjoh zspgXGbC7>Z@s)kDWDMuIuCK!PY`01?z#vy9B9fB1-Gjt9%_j6d$oOTgE4F2klx-{( zyPEnZz}ov`bI8WgesYcSh4tpXO894bR4NeC@Gu7eoOQ25)&3=0>DFmy47;L24b+63 z9{69Sc(A*khuK1^sRGySJMp^v#FCE+_-<=h;!KN~nXw~h_(!HI;eQpTs%Lm7^Ca@v zpvFKXb^6u@t?>fp@8Tx6sZVml?HAHAC^#E4^8SLoGT+A<KC7idvrG)?*u$?u-<tYZ z(fYDZO7FSib4I%NC2Mpzp9J{6>%)5ZQtW})B#2K1PqlsH`#4CxD)C;KZyZ|$$0~N= z1`h|@iui-YkEUMSM|Eo&tct_u9mh;p)nBq-j1G?_oy;;U_cq|5UZqBJfNE;gge^N8 zVO2)uO8WFW{{Y*r?g#k6pxQ#p#@|b8ec0=@hJPbpKEPH<N|?+!=s&&hT?g%x@dxc+ z9DE{$%FFf{Wt($zwb)}L@T@2zcOZ<gz&!OnmGl^Y-qTe(pE-#A#YaVbn_two9BcyM zH#xvP54A}ZzSd#_f)7G7ijghC>{7#V&PeN@N}k>TyaBb3I3quauISUU(B<ZG3uu8= zeyz@Uz^hQcKmZV+k)P*D6j4S%%PHsvc&TJWWjmOz8#xDnE1^c~VXKlxLgekr;{=nB z!ka!CG7ya882;&}FcJ`l=ky?C0g8>{kyV=oSw=`b#a|;wY!bbU%Y%Y)2tAmNF<H~_ z!AqQHA1LHjox*?#%LCO;-lnteP%{=Q!2T9E&*NGrW@_oHU73?93PTL{2mC8G?HP+Y z<Byb)+P3Zy2^(;y2MSL^=~ON))@V*fFhS3~Xrz{`<f%^YLz}oyEc%{u2T@!P#Xl1b zHpMjPN%N1)@+s};Ytl6kw(v`FClRWbY>q$`^N)!yr12K3G^@G%)+Isfj@hE^o<1q^ z=yErglU>SKoS*Ac>H0kPk`0PmJxJ!gFTmdjFFZ>+m4KAaa(NZ)x);GcKS9|g#>OZ& zHhX)0YPnKco>QpyNb^sIUkuek-(LKYAl`5}`c=P(-ZG9CYiK0eh`Rt@K3eI1BKYPl zBG3Ci$VC#SLlonu^{<@u&1PHsmUd!Ksqb00%v4piBh>X-Zlz`{dEgG%tce`4C#N)x zHW=q5dr}9>bvQn>BxtP3k%&Tf9Qt;qvE0CPJ#$IB0QEnG1cuHJ&DbAGHry=GV6eg9 zgTbLj*4jR9;F?l52L5!N#~l9vo+^Y*w~@|ERI3IP8NuugM+0$?xC6CZRt19*oO@E( zG-OcjQ-Ux$eQRe*h)E*kfJyFaILDlvbK4bSAkavJatA+3O$*TKZ&9sajlm@JHCydq z<1PvHroGe8r!tapf%(=$Ugk6;VD$ZHZCc^8(Cjo@lrA#Eis&51;I`e^I3)4KaJntX zNw$tbARc(G(WEj)2nqq<d;8TRDQ;tUsaN|k#&Rpj?iek}9{dqrv*MQW^s=OK2RZLv zL3aCYNcZNV#<5m9j}Kk2V22nr4~;afzv&1#s+t_zZV>zNU9PEU*ZOLVZph6wakpo4 z&OAS;ww->BlY&66WkN4>_@+z%!;Dvl-az(OOr&6`;=Nnp?xrua-z~ml9u7Td>JnF1 zC!P|W2VT_68Ja7lAY<mqB=K7pmYeq#AdX7p^{i=7#ge$lJ?h@N8K#d=)4WeEgR1FT z?w>nDcLO6MA;!rRf~0;``p4iui<bWY68;@{bK(x0g}z9|zNc=d1tl2WkUe_-HTm)T zBm4={zi246Jr?TtT3#)=lG7*n$5CHge$PJ%bx(r+4)K?U^+P0jq<1m8tfz8M2>vv# z=s`*<&t9jWQcf+aX!bs^Td1!sEj&SEh6O>CDErEK*X0lV76-zRXnz<qeR&`uHSIn& zNtf=IjF8#)#w+y`;I5<g{{RnMTD~y^n?jFIO8NKx3UlxPd|dsVZgovQ7MED?tDQpK z5pvHLNf+|x@T_g`x^I1rRk<TmrvCt=KM!UblrZBzrEB<J^a;Yd<P(l7Ahy`bHdKL% zOD8bh0uB@$=RIqct24bFH;Ak}xpNwV9A_ZcKWjhOZxpYuJoK*0R2qheCcrYs&*5B# zr4N=t3)E(`>8YC0p26Wu^}n$~$Ee0f6&|T%P|2J&dI8(sxW55wB_|O#3QtdZ^qb}T zO}e<}jz9f%jh)9WH8K1rVAi^;GICgk;Pf@_G3ooDhJ1+}sL323dh!hpPqS(XyK3$u zCAwF(>6XhatR^fra1PVJtm^kYEF-dMl)l2O&OTr{Y~#H~`c^pFr_`U~9<|XWpDe_2 zo(TT5^s;3jfx$fceih1|w>#}~pBi$3xFN@(=bDCHHH)3Aka;JjE2@smouoEFKQQf4 zn<w+K2O)6Wbv0>~V~_sNc6Z&ougi|r3+bdC&b))1XQg&iY2`^QrC4K(b*LJ{db5Gg zCqDj_R=%T+(aNo_2Mi5K4Z9ggW*;^<$0D~TvoNmWgRV#;JXL3bLmXfO-1Qa1QZ1d- zwkt;-?Xm4amMxYU;;zC%o?GP{61{4+)58M5e@c-ZjCmvH=L8z_Y9^0DosCE&210X{ z9Anb7<B>>U2>_f9f0bZ)WSoJ?0I~F|miMU~KQ>7Xj1kUjf=jDA6E{*_q$?F5U}rh} zO-~%V@VO#FPdVx<BHrUaFa&e?)ySj`C^^r~ka7A{#aU=m)!mn!LC?ysgVlS~1zAVV zRYI{iJc23fG2u}{D9dF}Ij1v{GQbS+gUBC^Zw*Z5in%OEzzV}Vw)*xpTgk+@NBMD| z$Lm@x8Ej)1>5wUd%SIfi8RskQU9pl&LzYzfl+liJwOMh_I6s9l;Uh4CFBs=N$*WSJ zDnUgBhw*k5S)&eA9zg#0YT7Mc;!4P&ELaCBT%3H}2&xW%J4jg^x1#i|YluSO9d|GB zDd~>YNt5Qv<v|$f&TDJj-9>0;AP0HlX~-C)TYP{O4nX9Sf(2VKVp6#zDB!T?@u@^) zNQa`gQAxWM%iWRMKnp2#7#}FlrEl9s9^_7gsLOC`E)b?Y!4+691Rg$>uVm52Mpx!; zoOG;`yCufT#VA0JcE;S<$UoMtAS|JsK-w~MR8@g~2-*e#&N!_|6c$c*2IB|Q-m&&p zTAI<Qu28tN%$Pz5VV{$wR-WBLK28gq0!DFLs}MuSB?bcl(yPq~k!0M2gUTrFM=psT z?HY@r%E@M@jfb{Zp{)C>Q|1uBxB!(Ux*F>4ZQBEP1Q2iqXU$}SJ*yam7CnDji9@OF z)2nSxCi=(BjN=15;F{)c;#lQ5P%^j$dRKpa0;pi1G6S?T3|Bd*+F|g68++q}ShZ(+ z9gezdQ=5`7Mlpfhj`dPT%V2`Lxd8XAE2xN&Alkm9)fr=0$v{aedCz*<n!c#{+<dHv zurhaaUVxrO3pONH%AL9E*wZE2fPg}uN`$LOT0!#hoPpZCI%za~9wpuAY}(C+86c0+ zw)ESjC3BTM%XF?<*pQhAb9Lm_t)$>P22cht4r(Q)h7@TzGqSS0C08sk!@u}e)wR-; z3K(u|4CDD%8*OlQL;)p$t($qyF(+OEkz5k9-1Xr?QQaL!o>{(NPdt0pg}GTUxxfp@ z*15Q^3}rVGL14J+k8@h_U8vo)caefQ#y#shTcObCw2j62R}9Jl$36c53X0-Ask?v= zL*AhmD(i#8u%Jvf=OYd<Nvl`Br!`tuSFu{*@~D1N6cF9Gtoe529PylRYV^`5gn|H7 zI0O!BHfAos<v|0cD}Ge<Joz^bNF|-3XHWs>2OX-XoL8tNhfJO+&cYTWAeQH!TCUR= zm=*!>KH>YnTF%1ea@2FVlV}HaIU_wPyB)~Vau^(Bj)s(6G^_v_J(PE<Ge|&f*&Opp z$4w1XmF~u{B2_2mKA_fxqvM5KuWWVqtj{p4gBe`@o~E>|i|!k+Ko}cMbIn_0dQCYR zuw@9r+>AiM{RL>nGQzx{Eb<O3CJ4-o5pdv<$E8KDYKdiHcgeA3C0CB(vZqbfl8QPi z){P2oY{KzIy)D6#D|t4A1b`1X^{d|wwO=;Y@n<MDW2aIpn+S{yvL2xH9JOb7e^dU> zx7DNE+lk(yzRHwUIHeQw+SMIdIZLU#;yrz1)MpTrgZB$_kEJ?IakV`#r<uHz+EDcA zTs79Vx2}_dtf%gd!mGorNoJCr`;_uQ?d?{R>St>!89LUPEs++N0|H#h0Unv9@a(1F zmeOnza#N0TT+XlJS+BKS(#XxU{JA_2YQJTDiPGmdf8qesc5G_nwHqh2W(4OXpQp8Q z`hx=GW1m{@b(rJ5MV=$c8D*{mTSks@56kqV(k*OKkBJ9ElSu3Yt<VyBccxoP1cPwL zJXDTDT(;AZpGsG;S_nwNCpqm=NQG46l6mH)^76rf>(knm(2hymY1msCa;_UB<oZ(> zV~k?2TtXD{j2@Lyi392DNfd~H#V<}rQA^da)KX+n09faqIix<cgr7|N(w=eJorhs_ zxKyx!s!v8deiayO4uXYkt%J=L?gFsE$UM}ru_v}gG1vv;zj0P{_;;`*oP)^qritii z*<iQK!1uwePqc{Q!Q%rUipcW<wiSL}^%d>tc!H~K#~e|xir1GOb;j<4Kb3u({{RHi zv5s$!I$gx7cEcOUA3YClE8>ij!yJnHpZ*EKXvy&&D}Znk6M_yhbNs7HOW(1}iP8t` z^`*#?%rds%MnM(wpZpX9!D;aa;0KCy;*TZFFq^0pbMvPl*U^?2&mEvHyGB0>^WTYg z7TS)Pbrk5XB!%O{bU7HV$y2hC=SF<8O#F2HpL|awejj@_c1KPCJq9}0v02=`$pD?( zc**KBUp`&w*Ix>LGWdtXjJr{8*`ik+QI0_e@vlm?)pZ9T?Z7<b9+mm_K8Gb&%C%?d zSS(L96qiG()~`*r=*TOchdpb|b-hv6Nh1sqSmm3!tGd>`cu~ZM=Tn7Xas_$rr*U&| zU4bpTC#`eBoRZYqtyHxp)NfK?TY|vyLB>U7T;HPS3%EBOYL?opg)sLfIV<tG5= zp|0ptyS$GYrDooSkhmf8Tj~v2hU9G=Z2<9Ea6>5@3C<6tYei-W0YNQ{V-=&djJ>0J z8fkp9C`5!3I4z#FpLYkA#J4#es$&$8;RZn*mOUxAjpW2bvX�n#M^%*&1_Q8RYE% zfPHXHA-EFbBN*cq6t^B^U?~7+9MoQFfI#Ppt2r%9T)Gl8n8@dEQAv_ta^$b2HXvCK zT;rjjkf&~PJqJowGriG%(r%!s&vWZnT5PE~7&zcoQi6-McsQ%k5g}94j=18nlosfv zC$VnQ0P=tVHR#?1@SNJT=&KRkk=viZ*CpZI6Z=Bx2lu*j-n~ZS#nAX)O<fmG!rn<A z`b^uhV*{}FuOhsp-z+yhOf@$3XJ4s!w%5Y;iKSXTC%{*jbqBr;L#66bYA|^Ute8Tq zrLsWv{Hw$@PZDm_UPdJI*F6n&-U8NA<5piXLIVIdr#ySs(89(EGv23&Ujz<k;+Md= z?9}S|QF-j=JA${~2fjV4$fDD4mgrk4lomL`o<XnEUxnTYv+;`?NsKdFv<!T$gs{i) zdsa5L`y2Rb$HuU0(%ua|-XbJxJQ5`%lh0vaMNYImn&*2SC0s2}YW<z;es}$kQPDLS zEiSHEOnkg@ADMGrweWx9{ink7b#-%dHNa*0Euuep`+X}T_O{X^(7$MJ6UPi|6}-s= z(1gY|n845JUQG;)rvMH+p0(F36)Z$kms8A+HntX{<=q``j(#BOzB2fV{wmcR87IVQ zs7@k{e(KlLo(I$ptDsq3HrJ3SPJWyk`4{Zs`pS3@EJjBi>*+7q=Tl8%!mATt`9qxb z&qH0_$wmq>*&I==I+a|e?%C>IN~mB4;-@TqD2g{AV4R*Y?N&UNk&vkhRP8w6Vw6Q9 z6%QaT4)1EHK^<;P5*J1%sNfvc!EAi8TL9zkf!2mbbOp#?W7vKbWk5ii%Rb|`0CCp3 z)OJRYnnieFbA!2X1_lQs>+4c9M222lBRM0bXj|FD7&Kvn5?P0(NcQE?g8l6Lze+h$ zXQ55I+~@A?2GYSYHt|?ez{oPYombRn71v)|D=A<AJOG(I9{g4%%wAqXvXOvG0pHW> zP@`vddJ9x@lfk?x^8WyMM+e%fJONfhc^z?{mC{LUk`<AV?!hCDl}hT-B80igU*Z_7 zq@O}u4>a-i={!Gi0y>76s;&vi8RS-H!_R^(aPVH=6@uRdhnRW%X?`Slq74H708WIe zu_dG+4tVLB=4bfdb#~EN!zY&#fU3FTsx8GIA&pK|nz{5z)il2jSf#as#EhdGm-^S9 z_}}6L%LK5YP!C2^_r1+?k$8u7iq9p+SdNU`{uSmvHt~s^kd2)2k3mVc&M3u1#_?vk zCFRSLDLmI3Ex_J>ZhP}gy}x<oa#)j!rX&~#^Q4irv?pmx6N7+znj>N{-xUx%40oxa zjIsR<S3wp70s-oA`O@I1UNUM}?aD6R;+o(oAY>nYhMOJx2nNBp@_nj5H!3^&nttz; z^aP5H13O`uVvjO)Xtfb8M`51zY9WO?vJQBv(6`IObM&hrvbpX(XkzMGiwvN3tEj5D z3<mF7%(s*h$MikxLKoZy+;i_z{DS7BU_G+}GC<%8=473f+%W`$)6%z+V-8e<w2I~R zM`*8INWdqGdRR%@LvKmD5wek<Pa?ez8JKC&k@IoJdsmcc_eC9YGIL&$rpe}Ms6qD` zrc1r<jNcT@-(rvuat3)d<oAqC!yI?7PVsEV>~F?-=qt-+e8}CoqQ<c{G(-E~J7ia< z>7?9Q5!)RI>t0!-60!rHE7p8COqNJF10S6XmU-um^pgyWDy9_oqv7tRH2qmOa<B3g zuHVKQQr$qwvuFcwHRYDB`fj8fp;pcf8zCokW8Q8dP)PuD(5+zKLA8g=yC9ytR=%5c z{iCPBGW^7-=xQ67GD#zXc%fK_eUC}~mVPc={2=(JrE0OZE!K51AwMqD^0t2hYxbL0 zv9b7<;I!2=rj6&iv@%)Tf4sR0NbQ>bf9>4EFb=rms@Lj|{1eOef&SU>oE{I=Zj0Pn zE+8($?)nO~IYLTNCzdk2C$l<_*(2j%*Zf7Q=$e|PuBmN1*<8Xi#E8UkUr|pCI)mS7 z7qKjs*AW#c+=fONV1GLJ6U8<k@Sy(yZ4E~6QHJ6l4)~VkZs4BTKv5%g9P!t!eZ{M4 z$v%;5uG<i;ZOixhPh(xx;GC4#Q_rI|qTw&H{{Rh{_*MIBe$H1v06sWtS~5acNWEiw zrbq|M(J{{4`l;f+dGg-fu)`;(PL=ze`+fWeu>GRG23+gfN+jMQ@bpc2Y-1lYpc!=h zvTN}o?k$CuRp6XwxHW}E%#}|2`khoK$o-q!r<ynXD(2=UhpzrBCswj#nt0f9rz@Vd zf5K`YxllMvftuIxcAxfn(&ii$afThMp7%PPu5emq(`mYb0)A3`Yufxfc$c<V^D;{G z9V^E5n*j?6RA6Hx(z_3by3iy<<wsymOHDhD%13K;00E9j9=+?-J{jvj+7`cOk<XtO z01l?S=ISuPyRUM!Yr-18_Aav&ts#yTZ=3zvnvv#?rO}(GC1dC~t(q~M0J-)3O;|`X zut?}bcU}%E)|w-_wT?*6^^^t&>sFov=C<Wt0l_`1&RtRTYRM*N7&7uW=0m{2{*<xW zv2U3J7UbiNzLli}ZW(f)A^XRSlkHNizTNu{2+m0vA6nij!)ZNHlGdAu8$dW2$>ddO ztQ-<R!vm63bgkJf!Q=opbCb}IYJx~WaKsW+@q<@xsIFV@vCQAutY-<|oK^+gDDpPq z0Unjt>MOJ`PJ`z9X1ROe*~0G5SPrJSsv~+)v(sXWj9`Jt<J%OBhDIUA(mxNSD>fs< zWP}H+9z{lkNEkQHcmtlMyxFFDF->YtCL|CDI5-$RO)PT|9gB528&4x1wMC`?=WjW| z9{#l=$r_9^1>~MO*96s(yjiVnI;m5;aXjastq3kbauu>iLDLn_T1dO!Bw={>tIIH0 z(;qO&+B=HLMH*b#Nt{MDF4K}r6M$;Kln8?DCHiAMs{~AOfWZcN4cqBbq=A8E1wieb zf-6|QQ9X7yKGWrg1fC8;ukh4uD#;@a*%->M-lshCS>ja)HpV_~diALm<nP$S3=Rh! zMRX~3GF#ZR0*%495!7R?EX*C3EJiWSR}*eI9D&ijsmRJe!RJ1m1#cUcqMqV3c%0>V zAH~|MJW|N**q?sB^>A&F9mTPp3mRs^SZ_Hz@=a;XnY3eafsX|`h=CxUywf8al?#U6 zy-!-a@vLA48$jd$I2BdgFIEama(#WPH&dafC7syhRR9t;16D2WL3R0o0Ps3ysXWSY zmI|xa2Lhvx?jTN1Tkj0?#Y|<b%<4wyn$dS1q=I*39^Z{_TkgjE1Gj=PSQZkYoP40h zIuXaxwr!b`GBcG6$F6f;illfnYuj^4)xxk?!8sq5GC{Oua7J;o_NFX>6nxlkP)}Mi zScTpX891nMR?zw?71Bjp$cw^8(pdBIo|Qu8)nrrmfl<I5<oc6Zv8FS*TP%5F(vaDW z#H(@oRuYOwsSHCoON%xm5``<+);;Ztm282xJr5Pt&t}3vTmqn;0N~X-yHVxfu10y! zLtN5JsnF|nJm&Vn(ZB#>+;*(Hn=)G{7_ZX1twPO7J#aqh?rRp}$gpjr35<_XSjJ0Z zixX3w9E)3IvoIi!T7${n<97?5)zRGPs#Fos^#s)!Y}t8L2OTS>HC3#9>!jR_!yeOx zz$2|#hC-{7yc}eIT9M)V$AD@zjDeClJ$)%UnjW4T31@a`T1xMQLd5m?dwpwa#~xyZ z3{;Gttzg@sP#K6`K)^ilTXu5<ke+!M>s;<vN6^y3t7?sSNslZ^4eiZq+gzN6B(TN^ zBc*eqU8*zkIqH1{Xj#h2qBd>8I-jje6-+uv=wqEsD(XorPs)1J+H<(>KwE-}JwL{% zTig<31=|d}S(N?JR#rwvS0m-g&#CmPgK6q`wW)H6D-r=GB=e7IsVb=X!x-B+<DAu* z4jbk?1>l;fO314J05%jF>!#9IK6bj)sdNK|P}yK|N3Lp)UNqVQmSc`;{E>N*24V>4 zaBym{iMBT5haCYKrf{WqWL6(5kcSPDGQ8%iN{4m<U7-BH44<W2k9j+}`FR_A)N>$} zm;hAu+&z5_M4gS}sZkUm0o1yKz|R9UeliHhZ2c;!Lfd&Ef#J<rhwkNw1PqgowaqPE zmWM<gk)>}8o0*1q9OIzpgIrgL?`70)i^#=<1cXkj^{(RX{w*`Z(@Nz<%!6uy)km#) zq?dUz6NV@6de^yx!+RyoEzg?A;@x@jN8v=0UauPuAamH)E2v&HO@Fpuouem_iqMkr zeAeB@Iu;nsbNZdZX&mErL0n_CdRIKO?qq3tnV#9BCmT*hL#bc1aI&e!Mh#%t-1%3s zp&$(Nj@32g(R`3jI#ljmx|ugEiHm0=(yiI*CM~Bude(j1j7jwUY7~&8W1#h?sLsS| zZ1E@!+ZYwiYPV)dNiDkus(qk>GRLoKhFLO86T6yS2D_5N!Q2jlr{!cPILYbjRW0TK zpOkg)RuVw+Imq464#JuSSqZ-*k~-vZ%`At0K?gl4VSMloJ5;#y2Htt;LlH)Fz#J2f zl~!fL6O0r2Rn}sKhJOmJDxBo>J*c*Tilugpk5AT^K;ZgQ++q1AibK%SMU6Zkts;QK znp_RMo-sfp9FCOz20k?dCY;I$2ACfW?@tT~IN)}tu_SDH1Cdwl<np3yADE7{MD{11 zY3$e>af(|3V`~ApoF4h8Bww4Zev~|=m=ba+fw=&5qWXdsCEUQ1^{>A_;GK3j@f5PK z`?078J$bKy;02`sjx%4O{{Zk#h!wRv&_GbggDiR;z*h7=Ba0V)O%K!bo<pX0W3+Lc zoY$B9K}n>ynRc)QV+8({-dkSc&Nki~jB(z%9~53As|hlyK^Oy*UGr(H9#*XU#r?WG z5hjnXXnr%cT#(;nx+*cZ`>aptUU%XD02NJrVH{~F-;ABSSK42+kA<xKec*j}M+zj8 zNLa&>%DRlN>MQfF!1{w&NcLAMW4MLPZ@Z`?f-B{*^pw@tL+bL}Ltf)&ZLQz5Gc;@i z5(9gG`s<p#)JK<v;Qs(B+100MB4Pkwd-oN}-8Ne%AZNXJ>1k$rH79*YnoxdW_>)k> zD{dr{wwUTpLXLCJO(RHEK*vGOD@3k&@^>|@ZsXneK^f%M)xFy81xFahYmMGPBpy2T zts4p2LAQA$&>C(nt8^hWZ0dT{N{XR!e(pykn!>xB$}m9Oy-jIJYN_|OjP%D^qjhS7 z_;MS8iiDAJli1G;RP63KsS}VoZ$7mlg8_Kw>DHQKY-O?3f(2HL$diMf#BokVCxE%< zze<f%ha_~zZq+elVgV#$kU{HF=u*(06#0+86|rezWR^I>@6SAUtjIx=<iK2jYogM~ zNCwoyXRdlzEon6yqiS|<Q*o}N&@|#Bap#Z#z~xPH_qvlntn#rlIV{e8@ju~LH4`<% zZU``=uc@vd#9Fwqxp?Mn*8mJgy%+0P;c(KQn`dO|w5=VB4Sw=FJhBm!+Pbd~>NlEU zig+V(dW?($E6I)Y_j3Zrocy3yaiHI8R<`D2D?PfV3rap!A6oV6VdSG^Wg4@Kyjk=Y zf&Tz&{YT*Tqis0Q*6gSsypC<B9mYF~`UgY*0D^%0IrxhkN8&3Pd_5>YnQ(T#PdPRD zxvFbzeQ;ZFlOw3<_*EY{q&(vX(v&jAI9g4ncSkyvFODiq_0QV7$66P}KaRS#t>KG< zbE2iZHqgpf0F_>G>MO~HbJrr6pyV8n!k-!f%rbG-z4}o0aEv=2GghOmQdJtY*|(wG z7^MS_M}F1x5A5q=ZN{$wLW-v;&jWWtE9XloRyoj-mE(b5TYL}GL>d&=U?^GDS2*jA z*{$!Tj3M!((4mLR0Jd32d}QXOjyTn`xNYbLIr`O!Vpt*#8EgT`6y}G_eZZW7oOaDP ztq%K+wzM1AZvjs#2U@oh29V$!DDFAMHq-8a4<umV)`hjXSIGlC6dv`wS3^iPEu1Q` z0s&=icMksbXUJ&*EJjGi)fmU)Rv-bC5;p$;vx<-a0B%=3D7CdcN^O|8mRJC&IOFF% z7O*ZYl!-=ggqF@an(J<c==zXz%8s7Kx$QzMWq8lt$?j?!>UwmwX&A-~<6@97IQ10< zr)9PhLljffo+|V^_pal?{VF|j9NCsq8A9$Eu6}QIo${k(d{^<GUu)kTY7i`h#b&Dl zjCbm5jPTXF-)fM?IWE8gdQ|@a5HF3_kG1yBL)|w&PAPN-TPS9_bB`^4QR>w8KRm5> zQeLM20E~6-B55t)lQBj%e5Z_x^ZV=OxMIYTX>}XpaXUF|?&hcyxRadH-*Y<&xa}nM zry$%1bLm2%Ve9NF^`)7Rj491l<79AK<O7m(S~m8Cwm`_mY1wGxCgQms^?2J0U~&e1 zD(z)sJ>ATCAu$4Qa%!A|EuTuzy_672oDe!zQ?oM@k&1@KmB{3BNWdrD(!vNN5$;VP zZ<J>w(xhbYPT`Evu=*Em$CyCK0D6khHtb@`@=sdMx04Tye7((VLdmlkz%=eAQu0{{ z$ioBq)!RZugQo|PM5?@P=bRpTQY$V--VI9BR$WfI*2doM-Ei0-V~X?t02o`FJxn1a zarLg6&O)(~86b><&OxqY#!l}%EW{JH1kxH>l(fk=ONKr3UZJ8sbnr3=7~;H&!eWwx z!LLs6+}>`TA>?csBz3CT9riQ)TX0RQH&r?O4SBm|oRf}gv+<SAA_=>Lo;_=eUepy8 zWpiIg8IcBd=c%t*@XHpn3Zp!8it?=;OF9wLJ?qwdHyW+GWA5$a-ktgxy~k@4D=FcD zQMU)Zd8deU!y$Q*4neO%)Ya}Bmkc?^O;9>foNO_c?i&;<5v}e^@Z$K~Y0m+WZ;u2i z^sb)f468UfJ-{6+gwT}e9w&_$ksQYxk3ehDOs5#nd~@7V+d`e5r#Ennk}xN7k;k=n zKL~y$Y99>zO>3%IyGP}?E{cBg=aF26`~f6#FzUpU{?D~T5ZfR*!RdqPPo<3YKVx;D z4`_e3XTWP4yD9c-cCq=^cVLalC>;(uWQ<mS!!L^Zm9N8{Q%CU~tnIF8vA&&sYLWcF zfrOJD;=V8af&Tz$hxkkJ6+A7hTy4-bC&D|o`j<b_ze@fg_yWsQl{{Ib$Svn&U$!(W zyX`O@ryb5Z8tTK%O4MpSIvfDqKq9|Y;V9m;H|y!#^Y7X3#*u28jmD35`G)=jAC$)+ zoDtvJzZpI#_;%XM;x~<S>u?M<8qL%(mFcuda0Py-Yw^$UYsVJa^r$U#w^^<%OP`oT z5aT}e`8R*8$*FkDTDzIcokH$u*pZG|$^NwKr%q3^D-R_&tM0C1Xu<5Rz+srfbJ*g$ zy-Lw9^hrokSb$WHYm_jE?ptsqAH>&ZqsV5nNJ$$=#t&-cTb*)x9&qt3-L#Q7A(ta2 zv2<Ie(sfd-afahH(`y#y!&sMrvO|Cer=@cqAhhx>1;P)PJfBJ)x)%oTbJ}$2#-XRA zgy0--Kb=>&Lb5wAVcXKVuK{ZY;?zW2cd<C)x|_r?3<0>~s5Ljz!6j#N-Tn>ur0Y5% zw2|{IvD>$)D~>DBc9Xbclhb{C)$qSwJ|6K+yplG{X?{r#dS|9<>Bhv5kjn8eA2N;` z(z&Lr?0c9=^Fqv9RAavbBNZ${LJrZ$<LWAC5klh|SJO2tR>4M85ZS=R3sbw9=!%lW zt$<Si_a^{is?8A$;gfK!IpZyWKwu989V!`N`CBY-dEHv5^+Qs3vN@eZMy<b`u<9$2 z)MZ$tDu9+eg4NjSae!2)V5klihZ*|U8G8dJe(NqyIp;rG=BSm9+FF?o8aXhhaL+71 zl|s{Olx!Ui@M+S<nUEKCP%^+D>shTS8BPesK_<Mp>g<lltuAPp2?u)?C!Es~Y&qI~ zVmplHsI<?(7{TD2@liF-_ubAEkO<%!<&wH#vow{0+;tq}@m3b`cVHGIayxwuU`c#X ze5V8)4tmgaH7SC@WXEoCP@{5rj)>l124?xrays+grh`!gpOk{D^0_z|u2J<5F;r*g zE6(0CP5#kj$0f7C=QKFCpenq&ot#>eWDXQAa(#Z3_^#QD65|Ku$mHg@==EhFBOm^? zUH;QCzX3?jK2y}zysxN6qHOGK?$pQ>63U|<m>#ua-taVUw2}$wn&TtYiZgA=7|&nO z)w^9x?%W#~<b&507jZgaG~Ld_&Mu&5_<0AlO3ahPl_ck;Ju91oR8KN8WWtfo4oRy~ z>cTb{J6CU0!Nn-lw#Q^vrkvceoMd$CR4!c^(jvi+IO7=i&1X-j7Ril($>ifTn?AL; zaL461Bc(*8t<lhx<8uAo?&K&lz~?L1@v13(zh>4YaexnM%evKCOn^aPKJIahnxgui z6pi~-au2<2PG=QZ*zEM{q{1K|w_mMv7I%FVuuw-NbIoviW%`rLbnWR~9ktd_fJY}a z^iDcl_$bwBo6+4i@)?+O^KKkt)~+jw88OqY7mU^<GiQD`5zrT_(M!2OVsNJ;9R+6K zp2w$05hQA<^Cf59ycNM2=~8VBSOPKEAbyn%n}saJ0UZu{5mG{|(g{}#qoC+9-nk_k zT=uErU6U%$611G2+#Z#kaTIKXIV2wDwC+A}oD63G^u<z;1#rif<YP7F)K+Jq8s6>B zcJ|){WR~<8toO4L0NC0wf=5GJ)2J*X86P%IYA+!MKsm`gj`hhWV2t_BUh2THEPg@N ziR5Opr?SEmj2@U3)ZE6(tfXWCz$2;8TF$$*ZN#tuAp4+n%^cbq(~55AGj(PoZbk<j zRdZ-bBMiScOlG<pi+#jy8+&88s*eE9PI=@SF70FJaPdhQkw9aaQ)cc?Nj(K>+gq_* z?a2oK6OL&kgA!w489$w0v$x&CoO8%y(v|Fc5J@2|;Abnih9F~}m2TQLQh6jE26|M< zZM6|qG2cJqQwTTaBF7oQ+t=`<rDLA7bh{sFOCZ1s2*w+&TL7#e5&+02C$@UjR`$3j z?-9^~D#{>k08`T$>5r{%%zVxv*hyd*m6@}Sa0OP}KvJu_cgv75_?pm^?k5495rgb~ zDwN@mEJ*_cX*fBqh&5|i`MgH=MJaOgG7K>X<-x(KpDQyrA(xOr<&9os1gi`ZPBD(3 zjaL!wlz^p4I0X7tw{@ZC+o;kEZ{{-;+kwFQ-&$nKlBmw)$546`R^AX$V;i%K;F>`L zZO075pOj;0u30<kjo}kK!~>{ON4H`4RMuAJTZKkq>ANkS;-_fT?k95d)b%v&0wb*5 z>aj$@zR3}1!RUPly>;QK^VHX&#f+)!so8Zo4-@N#YpGz50V5;<j;GqWYgxW&5U}1) zLr&Et5$bnI$tOG>2&@&kM7`Mg0~yVI5?re1%U!p2L95*uow9MxGJAb1I^yf?Hu=vu z#zCsu_1K!=kO|Itta$DkEcafWdQ_*-*K-q7Z?ozyS2#UKy(3(+q3!L8Zm@GWAaZ#= z)m|wuxhFMfcM?YV+pz}*p^?<^M@m^3l1_cOs2t=9T}Fp9ow*%7X^cqcy$E?eo|L%b zC$Fsxt%ZfM;;dS!XK+1pRbgyN_|>a7+c9CDyyA}`GU_fEj+o}ARy~^;JbKh_y)n<d zD$BJ>j@@ZHB6kvG401Eae&(w?ZpU-!il2KPaq@xG_o$c-cJ(yCt0In188uv~9rIT9 zWSsOJ>IYMdfk|jl67V{H6cd7Y{3+eY&(foFj(XEf2MwfVmvI~p2c<DM_Y~v7q%m@O zpU#5YxzE;^LGMZr9@GIKYz}z`y*DFnF@g;#ZOei`8ff(IO$?Ub{c4lIC$)Zrf5AR( zOd6!o2P&=<obz9wR+u*t{d!`))%}R|v!-~mL_&Xi7z7U7^{a%fByi$Vak2W74Zs#@ z{0ceX^{yYrO(nvyMj?0vgUxGcdYP8Re|QLAl=}3neR=SXcV|6u>t2TH=anUG4;t|e zq>@cBbSkBe2;#pz{{U!T2oD4NP<zWr%2?{3z0YAU@qTssN8(x5CXrVqh{5--mw#!m z0*@DXO7eKuH<oMWz*KSw>-uKA%JEh^u(cgIrhLAa&36!Oz>+!&&$(didyLj@nRdx; zH+;Nw?^o7iBxG(FJb{i)eBD@b%INy1E@X%$OcBQ&aZorLhdB1D6J>$<NHtiE$L{3k zxuqRWR<#<@<yiC6^QkQ75W454X?(C*k2%L<Op@55FgYaFwq02^XHy2rh>#7~9gS4E z&z^Y!dkplfy*}yVO^v`j0h+sqEyx5`Qd;O~eTI+$I6MlgFEV4){&hQ!af}01<^_u5 zgN$%$64W{mW>&xe4)oPUX*1J~c>O9M%N_t-$D!t@f;XAK3UYc?B!hDPl><+7s4#tr z=DPH=Hqaal^Mj7{Q$W$=g#_}UPcRTT=sV!n#;1QBm6J~UTWaA{@y&2mpS@_Soph<+ zR$cggpdS!;iD8oxTieGa)X9wEIMA^_rF`pua{At_cY1kg=4Zei26!KpeV6+tcvkns znum(6blXP0)J~Z!FvI~rGx32|zisb;I!D8Q4*W6HZ8Up*6I{DVt@Rjfhyp;02x7ju zBxbv?mElfqo86v{BMT=QT)j`5ei8gTo5lVhw}|vDz#}6yq4CSb7FT{EZx3iu#|D+9 z0SwYY*%woR^S96*g1sY2u#e%t!5wqObAc7}sIsssO0kwsGQUBSUo^v(kCIChmUGme z=j&dk8ueuAOJ%V0ig3Wvr-zTm)!*oYX;#M=6*?dt4m<HkpbkFqKGgE3I0GKJ>0X)g z3=47J>raoKG1tC&RC!V{w}5(zv2Pyq;0hZOx*o0NI&CLCYt?=l{8iLE39V?m?y=$f zr!ikf<035eap{WklAt&}N#d{SF}(gBaT<A#8-f{nfO^quqOSTMpc-ZEj<X8Qq}<1- zTFv)mw{XFRGoH0zksGXp5ISS}*XKT+tzCF(>I<tY%bR=1ztx+0itOjG2Nm>Zfj??% zXnZLoJ|%<C)@?`bULlXPDgO7P3aHITbD=cPr7h4q@IfqaPeKMd)~%;KasfXm1Cw5B z@Vnw(mGLIU?kwG{ZsX=lIhY9txb+q35L^Q4&$(E9p>bL%^K5m&HjOw_ad%YR$0t20 z%%xud518}2fVCV9$gSKrIVXTSijyk;05CZKaxt9Mrgu}lv@2Z1rHDBT(<7d13sQt8 z?65rX>s=+n4<)$yNX|RgH>t>90~^5Tr;o<4oS#G6!#lGs*bgv(ps_jNb*TJ9Z~p)i z@P2HC#`QSB#aq*3CPJYw<aXqKb#q#^GU<c`+HxBw*06fq^xT%m=AVrb;qmUXAAhwt z=j&1Gw`*@@6|ms1%zm}I@iR>}zZA8_lm2^|ayyFSH4BflTsvcTHKN%3+OP2>yvptK zvCRmepK4Wzv8|mqNs{5$YHsxyrj^WFNQ+Of^9bXL>~x(F1P;mo?eAA~KMxp`7Xh=+ zBc)BMYKf<>mI&UX0FlzP+e16KJ0d%`iU{`Y1F<!SeS9!Ua&yg7z15y_cXvHO>sixG zWKr1E-IZ-LBe|HgjK`e%R0Z%cO7G4w&q`*}r<#?f<!UHlyQdhXg!8wr9MekYc0QFf z3-be<WA&ya`V&SNk~#{}w_;EOj4!8ptRra`<r{I|)~p~XqXL0FNsMgdkO(KPDmDy+ z?HuPERqJj?Jmc5BO15FxC?pbdN0B~-drOvt;Aa();<oc5jlbHiicK-%QdcB?mCg8< zh?FoTf&8j%scD?_JV-vZ=)M-ZBF<R%edW&;=L^(#uG_;is#-Y*_;?jpvK-8h70<rt zDaRda3MJhjtD3~-Ysb$d9A==ijL9Yi1KAxHhwaPB$i^^!mE1?GL#C)w_{UPb*Ck?& zX>1PANF7B~ySRB+ocHURPsokV+HVv>;PIBmahizuq2&JnR0M13isI2^cO0GvKq~w| zzz8RhGeW-Oww52_4Mo~$C31d7+yeHmO42nGf26@S1D&7}1$m9i8@L=}01TchW58PP zlMJ>}wn`t9*ieOS4#M(WKg<C=cpOv;zb;A;4<{z8-`$3pa@jcP(=|SynfM<u9gS75 zp^LgJ>K7Af*AQOYf|Eu^&Cu8DZ~PPY_Lhg@_rufSeQM=Sx2DD-B1ZY7L%=opHL1XE zEu>S<7a$Kx=)Y(G0E_yU!M}(aX1ifARY?NOqmAjFL8jMWx%#2;kKxq*Fz_deJUX(p zz9O`krKmZ1rHu4dAKbzHEAf}c`X&DWg1l{cr0Ouez15||LdfGBgNpsd@iw&o01!MC zqkKZ}j-e&H-`a~i$F?JQ4bz|DAousL&u`n8_G-J*ZgfpX&_{W%-G+OM8+S8K6l3Rn zWaN`x)#Hf5-L-YMe>8Zoz8@3Hle7E0kCk?;s}zR?i0l3pwWP`-lY(0vtJZ!K{=`2R zejsTU_ZI#Uy0*4+v`=}67oPZTarjr$o(ul~f>vMKEE4#)#&%W>fLaR}T31%|EO0Br zl;Z_<&wW#r-J*}rZx?C)eXpFk+=RAqT)oA))GTwfpO=tDe$QyX@J+9S+C`(wtDR$8 zz}((s{#yI|sw%zD>|y&b$QMqR!-mdTNZTUb$gPvp1fS_#uNy@@S=9_JX|Hi?elB=c z@wDw#RfYjL=Dl$b+EOwXB1Fy?n*CDnZ~POx_HdHsOY1KW-D-;yylgJ7o#V>&I2f&I z^k3P-;SADQP2oKj)<{?gp)eWce@>*-&lg4(lX^2+cpOD*!ZB^HBl34o(Qob@TF%nq zR#w0;M9fFv1${yA_San3{5fW1(seJj#GX?FXC_>Z_{DwQKgS;gcqd8Iu11MrqrKvn zw$q}uL36h_1(Xk$@vLtPe%IDF+Qy+}cc;f1z~G~y87uf#H1iq>tNur;hsrULPEn5D zX!*ZO_;KR>RWk>MbxBkvShcGS-%9GVui5*@dXfOX8oPiJ2I-2f2jXk#h`(w-4ZKCR zxn%_GUJvD5_lo}jY_AV!78A5~@=HEHcDe8GNoE*(T|dCLfX6q>$#0rGtv_V{03W*K zTG*=NJ7v2Y$@~T?o}v3Gd_xeQ_?Fqszub!Pay|XcR+Ih;1$6dEO|7#sGX^UBo_#Bt z*MH!ldb?UqmUi&K<^EZ7mQn5vWb-JsbryB3vlSO<N+^Q&_G$Q>@su7ExN;bU#Ic{p zt#Z1r?6vVm62-g|dng?m7e@UvQd)n(LOeldt$EKX%^8WJ+H?1hMyNFp+rPznq+;GH zr?JZdXN`t`$*kp$O=|{rLockJl_PJN<-RQVdE(CrZ~ofwzOknuY;T&$_JiM$2*r8* z(+PL9Wn?)kk<~qoeO;jb+kPvzaF-f{T8tn9%WwnacLzLIORfAp@Q>|j;Z0Xi)AZ{< z4*2fI+3sMxut5^skTd1TqlV5p^%a`03CSy2owLGLqfOLylveh7{l~<{;Q2}e93FCN zoVU1Nl;gHd3n7vmwo*Zql05y_2Mj*~D>n78K?HHwno^Ft98;Cm(8+ZyU@DW?d(<te zqUYttdy34vn+$LW&swDH%%cM;zWA<%O*DCPsL{B(vBBEdImS;Jr8>i5NeUOBJ<W5` zGZIffF9V*{Ff1K+cRb`(s%vAP+ew`SSHeYXzBA8U)a$5~WFssT_U&Byltc3FX7$HP zvI`JSdiFi)WfqNNQs~`XRIwv=?)c6yYG^f9I9!i^U(UJyi;z0>%|1B}N|UtYbv4Z> zH>v4Tskd{hwbk6XOatk+oK>-?JE#&3{)0T`xj3D{Eg0uG1Rg5%S5LI%xIAMy{415K zGufuineUhh2hADVxRKhZ+}<<b892ut^wo0_E678PXQ=hfMR30;!sE~p)|0W<%#tfK zs~c`789d^m`$%FrI0x>Y^tT{mD#tt?dR1mS7%mPm&fe9m71`z1scW0|H*6U0+k!H2 z-!;+c_e`J?LvlJEab9_8e9)`z1p6B3^y}=z2_;D!`+8T>#pr&1&i2mtdjqr$r=uQz zm7`}nImmLG&rY}^xcdv$3$=P2Wc26Ox(f@U3mhqJ-91eWqiS<|Go*q~Bq+&dURj6n zeib^+muFn>as~nR^sL3XW``KVoRWKWsY{}kEAuG9HODyhJvvoiLdDG6NXW_Qk<CP8 zX(R=eTo1etP-(15P>aJ6l`T$E?1dj343a%-$*7{wViT2-0FQeHRUJq?(?azqJ+_}( zxFBPUji3zUrb(&AzwXo!H+8N_q_szNH{9ngEsAs-hy?ST;<M+s5=s0(umsmfbqGWA z;5XeT(zB<B9O2BE`LcUfY25CE*HZ#m2rfw8I0KGqyW6S*v>#zxQroL;E0k|j&T5s! z0Y|CGImH*$_UP3z<BOFWNh{ZXQ}nC0iSu$YKfB(NeXQSkxZoA<L=4f9u}(S8PdTjY zdlc$LqfR9&7y&l12dTw9GF<VuAH)X-@u)53-iILV>z?_mFlT54?aAdy;N#M+_Bio1 zRkSC818&0<$;r)56+-0>2Ve(Eh%OPBx?pw#y-K@*B@_U7t4*y>nypiv*ayk8f8IG@ zDhVOV`Jco%2en>~GFR>b%aE;{nrxAS5|XZ<@^>D;g=nX3Pa33Lp2l3U;4pFWw;+m% zZG#>GBLf3G3cDl)gYZ`b^4wIm)<!knMnmJL@exnjJ8EI<+GSLShDKwIZpWvkN^Qx) zkW}|1)!}cz$OsAUILFqkEuyh1SOc7>>}!{sUGz1K9qh~rtrcTuZU#A0de=4J{b_9V zFB7p-2rh#uf(}Lp(AMvX?v16wLZE^ax5|Ah$h6&1+iIG`Y#f>6Cu+Cx1I2wV1`>@v zchvc8!fDmyT?l+rH<zr;q%v+|cQ;d9rmV&Z(nZ{Iar0J=y?f_L70w$t+Qp7?eQPTA zM!AQ1U{r!}>+N2WZJuU^7O!y6bV$Gib*hsxh>JEj=nr~LMnD@ReAuju+p@{GkbQk> zx|BOn8}P(nA4<(v*h=$SF}I&&GtSdgnR3})v}_Aejq>%+)|%fk^yAi_Ajs*+?NL8a zGm+>hWm@cr@lU}Z8e!zpj+o6CMOY93Pc=QO6@I;YReF3!4l~k$G;Bu4W;+h_j0%&E zbJm#)mP`y&v$FsUue};>K%IE#eN9CvDmdWcoL?j6Jawk9EDy{GrM7^`h}-}N4~mXJ zLUWp)LBf?kH9+K*Jdy<)kEWzddFKY0Mowwx7|uDSIH$2lYIVkNY4`+Yn;6R<T9*W5 z5GjKh#~{)icBd7<-I_qz9WZGC7CyNYyFllqCN~302?vu-;Am)&`Pz&Llgj~&SJD3f zv;MLF00_^IYzSlJJev<VCqK@<eDHiLF1czOAa4gEy`xLcm#*2}Dviq^Dt{WrbLEma ztF!fE!n(1V$`E$)y+Is$WYxWGe$WXx>&Lx$kHRky4NE|^ZO0`P?j7-7kvyMiRtnC< z42|8smF#>`O&(44vpo02DIzq0?b=BrBavQb;%z-HEu=?M!PJanJXf%5aEAnOzc>f! zTpqn>+gr@rg!`D}n)B;wtc{@T_dhzmCiqGG5#x*7bsy-LE$6_&a1<V^^%aD!9Z5Wn z=N0t#?Gf<!c$Y?L?a)VkXPKit&lw>58u?z<>vG_OkU1R)J@Z}_eRV#I3sc%c&!K3Y z!vj2e@l4oqJLkPUn<Vk_(C_k|F^(`Rkv}7#P=g@!J+V?Ye7v#A&w8f!NQ`$jM_xFn zWz?0F6p%5`-RqjsMop^`&1;q)<Z^MIGBMh;wCk}j0msfe9yqGnPMbEdJTW3*xyDX; zuUPS?!HqY-9|*1dSABVN{k3~|mR5Fo8zdcE`tU2RG#r(ggQ}F0N0-Wr<~PlTJ-gzf zc-RcCGtkn?+ekSXBRxA*jN##8e(3z`f^l@+nbMug@Y|PT&ePxCwzMrV?(UKl8<>&D zTFkRh-1P6qTJ+zCnqrwm%@JeN<FFm`SyXN@X4K=)Bv;h0lFr>C46M+OcJ>v*Yx=w2 zHa8I(o-tdVJ-PcW<gp`Tc`Qac4@%-Bm`aBk$4qyuC{kKWbE<V*eZ%cP_$S|srSRsv zs?8ivByrn$&fD?#dVndv7;QXP`$YU#lU>zp<b4v&O})LOIc0(z{p@wi9<}8E0I~PP zI6NWoM#3w%hC54)!ziDj2ep2TY1+4kz7oNzc*|PWbd5K|mV!&Ifz-)122mAz^TjCA z{{U!d?tS(GwiY-~Z#8*EY5qs&KkdUMr-rrP3U~uc%3A3b3x9Tsaz4>0<38a>>t8eH zJYy%)yMK!R023wn!SO%EJ}|q8LN%M$o+yX>vyY-L;4xfOmfl&({447y!Bc{X`G!9e zEM_8AruAVNBy-ojO3nAj8%IiwSLMMtKD90nY#uSqZ)9)?F_D0J@=a)4L|F*H$81(} zKS09+KZSHUJ)oQcj!$X?^e9aOB4_V5Ju2ao$?)y-@wrncv8@~XBBSLQ?bfJkN6PS( z?iZ7^9QNj=jwcGYURoI$gUEU*t2XSw7d_7Gn#+PFmB9ldwGL4T{U|SErSR^*bEMtH zacgrWwZu#c$rE7b{443-h99*tFCCYRArhe>S5km{z#azW_OFlNx?~`Mf-7%N)L0<T z*BH$vyBAKRqp|vJVS5Izro*Ud(xugmoTSmPAp0Lf?NT$c$&<NMjoBTm;SYwt7JNbQ z^5vw_uEIknGTTfy!v5uZ8utGH4Sv;)E5{DGp~d96-t*WwQ=g&j-j}p%MvqdCA_;4w zK7up(y%&sjIIOFfH%Qq7Zx|)HH6MpOU!{1~!7lV`*zT3NSWW|{)K!*J$Pn=RvT!*1 zR8DC2=t}8HGAn5Fw`v3@s2vSx-dZc^(-1SXWMuUAs4OCHHCJO~ag)-t?p5QobHK`; ztL;g4M|-J#56<7(M%Vi{;*P5#F3~(ldSj@sCAG4W>O}w&Pdp0xJL9K=uRLw>en@TN z^AbB`8&GE_*0%f^`!mmKW1m!Cv&7v;QU!EIJ<o#1O-8(<=6DW=;ES8*jI3^V91;gg z^sOVnk?BwgE`M+UIVY}b+ckSn2>d*<kPVj(i-4{2o}D<aoqi#FPi<1_NUab<5dQD- zrsTRDe6C)Dyiej-Y?JKvxESQOdh^@;Nv<R$o!?r|yS;m-CPpNa(3(XBkGc2hQyooh zZAmw@q!2#}QkX;Bnvw`Ys3ei^QoKM9PIxs!-%^aJmd{?C)A`8B0gq~x<4~Bu$Lmp+ z3_nv#sM<pa<o$YznFb#u40?)cfHDU|)4fhl%DfLx#+J`eMy8(2A^>}PRhNKn!sHAN zm7k}K$%B$lp{=OlE6``qgGG}Ep;7`>vPlc*Pg=VSg=OTDr>C_<@B+Y$xjjdv1~M2N z9CpPU30<Rp-Qjh?e38i*t{=wCrd0{XPH|h2T(l<}h&9Z3s!uXRIr`IA9Ct7WTIw`8 z{HqxWI3RYeTDI)p$kV1`J7R{eT#SpE46`{sb6T1;vpcCDi9M?-H8MZc*IA|87+~Ly z-6%mVi&t(Uhy^&vtl+BWo<$e8SYo4+PHLock}^*jr_j#bO<3hsKnHFC?@}o;w@=Qi zKnsEL;<Vt8%U*cTVM#84<zmI9uvnbqv93+-+f3G(m9R6&uC=arA1pWn)4gU{_zz$4 zj;@xvE|GVr+{)NQw}iVn_5zzii%jU^yIc4nlfP^X;<WT>g3bXs2a-VMzLNM0{{RHS z_^snhXzn~g3V2sdkcJI>_?K_{gOOif_#^%aOW-XIINMtB7OARE7i)+%#H9YD(o#q{ zUqka6cve`6-MM=<G5A#v1^hqp2ami<{fptfGUHX$Bzz<gL|Bi1r@el_H~bS<;Sp$X zHDIZXuiF0i>BW10!#{!^2>3T`BwiQMV6d7+3oYXf)5r(+ob&ipN}`Ir#;LpNc$e%? z`#$*F;eW#$?H9+l5Ve+|fTonKx=1oP+{1u<g?$C0{5bH(g@1o%q}s)Bi_O%iB$poU z*)>DO-xaif2u6O@aG~>oUp#zN{jOsE&6?XumMJCN!y&mVj+phYDyCshDX8ju7<{^= zTRT}EiR16uV%x)d<eDy-40qGScDn}UM{EIICxEVC)vd;{sOtO7<g&#hfwS0({L$2Y zEjE*JH;A3m;7=nfE05l*XT4`b`%-E#Oo<e-B9ce|;E!*5@nwjqFNs|GRe`0;%T4n6 zpRdWSY4HV&TtxhKU~4DD`cH&!G|4Y@i(3gT;a%owRY4f^J!|t9!e6yUqVhu>&E$ce zMTr+AlEn6|{{Z55#{FkOvbTd!nO%`YqSi$$9OEiT_NNSFqokr`{f`vy3XJ-W&&M7g zx6y8VJ)*}hi)DCOQdn5D*<;iL(>3w$#E*x5B={HcPJMsGH<9>@Pt+qn**b;VVk=|c z%wPHF2SHk21wJ-Gu4=~O=0atXOztC<`g&Knd`h_R@5J8&Y91EU7_2uRyn^O@JHs&L zU-Ru;v9EU3N9p8ywCFl5Iy*i5{%6Uz{w~t*?(Q{P>&Kc~f$~dnA!+CO58+>G;$iU{ zf5J-~`d0A^lBA9S72o(1_D<Ao9`9B0_P=j$X9TRVn^yB4WzJV`Wf-UYN7uYL;mB6k z!oC}x<!sQi-Atz^-0@v8h0@mdHJ&Cgo#WHFAhy>nS*~v;5yU{)hk`-wO?e;0ZxdZc zZWcR$%n2D&k_C4+I-a58yC@d-Q=9Cs5Md3l3xG!))eAoWcyVM$mfCBk94We#wokYn zYpGyrJ#<HdQ!-r7k=*&VZxP>l!Bm_x5%K~{eqHM1XIj1h!>3<P81;_b&p(xYSEXqh zR*`U8&r7nk-N_NcpnD!`Wp7<e?VO;;-H(OGdh{cOrxj*!&b?}ywtRqm5#rmQE@(VI zsa$Suixx0H8g`@MFC1B}>3lV+A}%t*EP#7-HTCn&B(e@&*+;GoM<nuWAUuF|+q)mF zSFxsuQ>)TP#WTs`n>m$avDB^q0NL^w^Pi=CDf>74Rn>eMZGC;HCC#eG8ze!~X_2;^ zS6O|$i6mDzKYN^$_}3e%+nL%%EOw5^t5+>-H94M+9}!-a)0OUdz0@94&oSmnWoev) zk-do|ezl8p%k#Gc_O6><h~e?PE_n3Cb5g|4n|AZtJ*q9U6q{(vo)YAONg3ykYMhYZ zn8xmVcdh>bvgCt+2m3~(78oQh7x;<BLH4cVC9&nyi)J6##?o`Q80$zaok@0W%bbq& z)Ip{fMrK2|8Q^rJIzxs(F5di(wS4I_A7t819PBU<v64<tIRp9CsO;KT0ZGUi&NGVA zeLNm8Kq8(k&QzW=!vV!9NjIrbgGOk#KE3dFbo?paK|7g-)g8#KZzpcWD0ZKek~&l4 zv3Us{7oo0MO*LeCG^stzxNXdPb_}QYbJOWpAVoMh!*Vu`zl~Uq#aS{z9lZ$pP_dZH zGLp(T+IS|pS?p1ZL!(UYVhF|wEP7JNghbiocOI2u3t;cJ8@7%??@p56d?9d99(bj0 zhoK1FXk$wOE<hVpFIML@LE-s>63U&zo=tBXLRSny?NvU=Tred-0OGZSN1IxUz1hme zbG}2nf_WZ-wCwLU5DcUa)q*lxB<1tQ2U;SzE6zqM=o9RIe$}@-yKDZVa3F!5#~BsV zY5IZ;Fk(=i2(L1*yun?+H>qRS+PZ5URE(Y2R_X!hYG+aGIIgFmTVIJ-97x2RZBvYU z)}_3|1UMy$?cTVJKKU4Z<B)N|t=l`&R|@1XBXd^;N{?8h)1@7m(#4K<DPrTX`=C{% zF_jrPB!D~SvF&b2!ij!E*B$F-&B#(o9QGZn&8T}+wcNTR1rZ6{$FAYPt1q)7f}^p= z@~Y_DR1k5`Cmm^i(YRn8<Z*#mHFcre2Jf!L8<mZT*f{T=zl~$f9C0B5pCI?-pZ>LL zT+OiqWlwhe>n`qP0hyQ*&4I^$!iDB^#!4j_NlZTBk~z-=4|=6=%<*vBlhUtE<&Dff zX&Zyie+tQ+nU#PHG5jK<(Cvj@RzWK$`F9*Atr4>ri>Vx*Gt(5=<P0;Dv~ligyQypd zbI)A#rsCd++2b4;s{v>bpEPaS2{^#3@hZuaoRE0I=sjyH+5E;;Jg6AKttfs;7D90t z>}nc!vCTYJIxaxP0nf|<;B*94!2ojHkXUi``c-IMWE+&@10)gpRhX5SV36U585|G( zy({UfI9#sDBaE)x5s}}w<3YC%g;3ZB029Fc>dY3;8YsZv`t=ogAxRWA7jYf?R#BN2 zze6<Id88ez0qS%5R)MubsjwZRfyYBvBC^_0s00(73b>G&BM9FwKXjk#Q*`W`DML%M z99uV%10CZyBOPfcg>9iE;S>VQ{dmP|3t{srfXaFTdRHa!M^^sA@a@4;8RP;rQR;vC z)zt*&H4_@GQ>NznBZ7xg{@vHL39tlFMpixVk&Jb(Bi61O!(J{J0PIwiIO4h;4_X#C zm(eH)vLFn@lC{V9y@bELP<LdIYwV#OSg0SLN=~HQn<-vh8Kk(kZabjuip#aWRdWoD zg<RsRNp{l(kaEL<GwE43@-UI6Q-Dr!ny_7qTDqSx-A+O6T>P$O1Re_XtvPicwAx@} zaOqhRu3IBJedyJKEm_JG6?2s%pzTmJfgkT4J5*|XvJQBr$TyO4iV7#f$@2rpr9&cs zPSJpAisc&>H=3*u9MiaLSI0D?tt)Uyrqva=9+c(hZ8Y?!50tN^O@Wu~$QaH?sTDH? z`G!x|wLxrn#&epUR@{Vi0CuTu>_(R&W(PRyP2LIqp0tePZwDvZnlXdUDS+(brxeK) z7AGHGX-+YYp7iVuq!al1(+;E#es4}cI)wD8oqC>_s5?-!DIw7uII9m6Gj;1#;6J<^ zX0`-j;|CaQU{gtn*vgO)*lvQODo0M0eprUp7{hlJS7}^&<C>7U9^YC}p#BuBF^^gR z0;^^hI=_c@ziZbKNC#?`{Bd5PaUH}8kF-ds&(gS0g*L)#`<XW75;31%O?t3}P5|h@ z;2!nCUP&~0^`E?bMf)^(!|j?CqB(yxKX>x=I2|kM9W~6>(e59-JQZHm`Tg)$#N)#{ z;#!t;ibvcRr#<<vv~=GdX!<vX=DyW+8+|^~6wH^mErg7B2h{slqlc`WJ3fa5lXA39 zi^LEtQNH{rBRKABz`inkT=37r+clS6)FZdJbUQ2)=D2T6DC7g`Ysh{z{@phk%(q%E z!^pnLY|3Gi#5ZVs=|@6fL-$9y=Dr)(bxYk>SGl^>FDBG3-Ol@qmoD%1CZcopj>mNj zGQH+|*NVSsyRR8sO0YyUy*LmOFTE>|R&VKCrmc0RYxbh#i0yC3K4d&AkM@VHc?M28 z;-wcdr~pXV`qvb&tD5PZ>Kv}|JBxI^yhHX|Nv=B<MJB7<TWdSaX{TKJ3`9+HR^B4i ztiTXn%LpAdHY(5jCc6IR#;tXc)AxspsNv%thTPI-^}mGmi?<CeyvRH5Twqs2rFcCM zqL+!}C+;h$VeUY#2<m$7vf(7XySQV(UoiBpm%>^k`WB@P^rgJy=WcrXgH++B=2DtV zN2&B@!GDGF>e{`rSUlK+bA!n~)uH=i+$6sc^j`+rZZ=*Pum(Y#gL5~`bM6-czK{Ku zEOeQCCf+QZBszVayWGy$;RI?~x%?~SJyQN}8hD3W@ipNsb*$dWdd0ehWAZQHxT}ig zh1usuTDh~&CeWIDe5fF<Fl(H--4v2W#Ha@cJ?qvkEffr7s*VEI2CLyQtuEF1CO8=# zG3!`PimmE)Q>^2@$1A5wu}8ZMy}D+-@8J%cYpK{gXD=fFM;Onwcuu$B>+cNB6nAQN zNIpg%bdT|`Ncbh<(PQFEIOJt}V8?Q|7~}a@&Sn&67`UG14y+|4-o@XFKMA!RM_BW; zn^`VN2QfwoKZRj<Gxl=vcZsz)llv;>&djjib8x!?j^t;peQBj##<me(K<aKwkls+^ zu13@Jtvy@fELJOVb*yR)6@|1Od%0hg038RptSI8&DvVaAvpgjUK7M26kJ}qf(Y_e! z-U;w`hHRm-xYKmueS3I-d9uwXA2IwhUpx4R#yaPUA%-1OR=U2oh~*)YLQ#H#y1$A( zG`aYn<DFx~mnDF@aF*#O-bh!3AD2IkaE}+3#N#WDE9>dfPBE0$r_5BXB`HRmYA>Ke zCI|rW^s7aSD9PO2u~d*0eCL9B2CPRQT(RMQhZWOp4o1hu*ngM}!@g-=UJ2V(u8Brj zI4jWOwL~Pw0b+ecD~!JrZfqQe^fl<74X__&Y20Ihk9zZa8AOhuyB?M5ULM;XmK%0k z)YG-dY_F_B5>~)2qd8D{u4~2T$?)69z-Dp4uBTIN%1$u8zV*iV+EBW3FFD=@PebcN zzd<Fb%EGH}5aTV3(_T?0J&(OIMg>3_IT`v?3nov}r&CqAVHgljFgw-QCC)at9e$OV zvUddIHEARsT8!d=*5^TCeDTOI!~@1Frql0~U;qiu2t3ybZ76rf2pIdvpsU~83vD9# zK(mkeX`VArKs^@UR(}uNCE8ufV=6ZFk|!$PfE{ao>-MDayIHNRrllFc+4iYn4K6xY zi5thcxOrxko>G4E8q?FF^PC>0r;;t*l?s!m@Vgyd-^4!_>TYJb@gAh^f4eb3pP;Wo z@E`3B;{N~&N9EjJKD%eTEopq&;~4o{sQhcmF6BrBXs!uvpjQ2lhS~I6jao~{E$yLT zjEx}k8IM2~mm;-|KCw|gWhQ!jpBe0-@ssP8c5Z@YR4~ZA#(Vv1U&Wua7Ay)ym6g=w z<AcWrygjuTAsB>i#~D3-wN`l|z6Z@s;GBHN6<nzt^L+B=db1bCK0LeEu9>8jpLTQe zaa?S(yzjV@Pipijyd|dIMZ+`%3}tz&seB7@Zs5d4%xCU}7&Ow<Hb*lBv&aT{=dEbl z>HC;-(z;7O2~G$>1CySBbTxk4!Z$`jf+7#CYsybIbDLXbiY@@aHB#xo91ttClfb&H z;}JkeKAyEe{50_dtO3)QsXV^mFg<B<iA^(+k#G)9N%g3}9R66ZLx<r7`#10JEiG38 zw@D~C`qby)zKdpe-RsERNmvs-J?bpBD*aLC7(Un>RfuCDc~TF(dOfd&JSsp5CC$u* zfl;^sSHB*$+xUOsHKw~d!>4$1X$+0DOFNPW9Fy1&tx}E5ol9<bWu$J0J92Z@x1o%@ zYI?C9k6QYlPWWfw&j?w{m-;QXv#e~{8iGtPoOM2?vg|$^XxCSsWcERrfLhuW+NwRh zsoEraNp?PN@{CF|k&{hT0$dfz>7Lc~x_mtF#8Q+x4YEXp9DsKoIR?1z7Wfmx`<_c3 zEfoR7Ff{o}bGDW~a=3s4xG6aFt~*_Q^JB2Dr>uS%Lw&f55R1tV$Of*<@KeK(LK^DI zIj1X<h)*=EtO|B}A0t{p=EwzW>JT&*AY<6#zM!=D38CFxM#E1_c$j~DsN>$Z^zVXx z6}0mfZ7pwGIauUkM^Dz8OSn4Cy%F)QnQ7)qrG^w9eXFXH2@E1QQb`yN1Zqxe>xg_G zp=pSs*TdR<yYc{NgCDOov8H%M=T9-=x3`Wk8MdM-Mmv%~=}FmYFKFb?hnK>d=AkeU zX&3Vb>9XC9e@gbxg<r6z#t(|N$#taoR(oqF=gzuu82xMOU)e9gNA`^Poposj_3%c7 z!LDXefpWn8(0vIN`kAF^HkvM<4V8_$TH3;)BZ@JFQClfOn!AnInyFhzyDsPCcZ0v+ zke?Cn403Ba{+XtuedSgz%0CMBuMhtK!5{oP6}o?G_|EaJ3gOMH0FT3Ueu)u*z^o4q z>jzs)+r@0#n}>!TINFB<=iKI|rZL7XsHNz?&fy#!Z+XeTpZQq%6T#o`N^gbU8`R^v z)b&kMT#7aXTgX-*-|rF0uc-V9@Snk73+)o$!yX&cw0O{C%z_cT{ao|<*I$!a_p!9x z0Cx2?^HuS+9<e<-bfUB@ORGi{?O;OnIj(0=@v_41s_I-E06lA+@&5pbQ$n#~2~|}r zaoZK)1LD8-H`=uupPCZDq-12bd<ybsUcF1U&uWeq5!I`oM&5YU?DX+-Ji-m^5kWkb z_Vuo3#GW|0@Rx^P{{HoDUEgvs`BW+G{VV57Z;N_YkM(z#UY>m#8+nA0?gV}dUWf5s zOLh2oE@UZpqsG9i?#bkFniQnfq;{$?j?qWUA0K`<NvUeHppoHdo0J*AC#U}auD)^B zJXY6)NYfauT=#Ad6>sB?w+-I6E5|WqVlc}2AP$2*)#G=1(=?<9$Q?6Xk);-{iuRI= zw2p&Y*KRdkpJ<VU$aZI-Bj47!xit%@7^q(}CkjF28fer!!?chYj|HpfpM$@#=ArQu z;o<T2z2Z9$1$aGVB0Wn}Lh@W=gXKm#fOyHRBT73nvDSh~-&4r+?ITyPvbWW~(`{m5 zB3N2Ufo?hFYW<(Y$^2uf-~Rw=>M~tlO51>D$Rnl)rF%U800sX5XN^AGe`$P7@fV1E zqC<-a5*VN9oRBM>*ZdLiBTiJg@Z#!`+yH#J<-06*b|ebtYYzS?YIROk)KZLWyvz>? z>i614s;1Fc_B#eT*Vf+zFX4ju6U7k!0BBvf-5spQ3l@IsA6`3G!B<`&o5NbpTIKGc z1eoN{QJyni<>6nBHae~SmY^8h>LL|}e=)#T3OFLT>e7nUA=1Qqyu9A0=?{h?x6*Zc zYlEiRUFlEqJ-aUB7(c`_)~|d@_(P?5lGy6{OmTVeDKBX_#B(7ZGV$$R0q}$NgV1Nw z#Fv+;bRh(?@4^5&<ev2Z0EU0GMcn@Y67RJ8*PiD=znzQ`mcWiYa2M9IrCp`U&|+|o za#M`Def~$vx6|8rOT>2`9l5wvxsKu5)*NljMUDXV$4c6@nE+Mql0hfEaUbweZ9dK) zkM_x-ytaqz5nV<i;Ko^x_)~ry>N=IzhAgDjCi7+l0^neg>TB!iIm(i9>U>O`VOCIG z8R+S9+<f8p510k%Rz%GZA1Msn5u5>7aNYTDmBulhpmiR;)qdJnX>*e5a56g|dZw+Z z)fxShcHbpR?<DclzqLCdm;=2PvOqmX4|=O=Bm-%}1vx#=KgP5?qb4%jhg^|ZN!aR) zx*6A&%OXfK!R{-U)ok5W$lgyl1Y~BrCyUBf#xf58i~*kJv+k|pc^D{SfxhatK|a-s zdK$*<qsp~iJjkXq^8CDk!1~ucCY&NH*~llM?Ova(X&cqPQUT}i&2oC4lnbBTg-=pz zf>LiowRxPVv;;B7%nv8}RMA_yeAwJDGBf<EP}l;&n0&xzj^duS4Zk~h#&KCGTSFNu z>W11{EP<PD7~>rEsm7nQ1}Y>2p$DyBu(1&{2HM9N1JbnZ^qr_xp#@KD;~n!!%IfBk zi|leUY5Ny(2Ml@v$g0M{*|2$RbtkB<+T%#%5(xt*o`$M6k_#ySk<$Ql^`@rYjF$&{ zBy$4A!5Hcfdax~oWCmQQ7|QZ<TP>$5?FW)ZG2GP9>BIor&OqdmS+=)lWjMRo!&@d~ zDggsO#5!iE%WE2zCxAO1xUQb+)<Q7OHjV=x^^tcQmXi#m05W~*BP*Vq6`qD(Hmc*d zBi9u3BP-)$FvfW6O`Y+#x{gU6wI7|o=R!E>GtMhS+207JA%ES0h7H#Z*i&8*gZN25 zF!!d1M?ry*qXRUXmwyMK!0t_4cRB0Fsl?q|m?U634!FUr=VEsO!T#-b`ks}z2EZNo z>s<Bbl+d=}kDJ=Ph}7tQbyAyJnKrUCCn^c!82Z-jmBW<>Il#sM{OW?+GLf7DMQK_< z%F2o{(38{aM5bd1+3Ig;?5YE?Jn?{fS4nAehTxXS>)yFrSPCg1`JKgX+fC)B?BSQF z70E4K?s^oLE~igrJ41|seNAuJ-U$HvsxjY+;$XQ}RSCEpgUPKZZ`%O5O}W9(3{Pt2 zlpAMsDp>4=+BzMff@gvT25FMr0Q|PqJqYy`gKMZURwSLh0bWLGJG=87x!=!Xr;ny9 zHBI+ARa>o1Te-k*nDTfBu4;ty7T~cb(RyaHrPR+m@OuH?t9`v6aRjjkjC2&-9lhfH zv{TTxH2k`^P<cHtDulBup134+C%r{;s3HvRZg|>%ol=^1C!k}T^Tj`9q8r4b(UM6) zK*OGQ5Go*~kg5ha3_U5aO@(p0APk>cnhcg4246$POHFBGCtsUZUbP-r0CL3gPds+5 zI3f8?;6f?LInGUI+K>}F!oT-VQ&*9cI;ka!9(^)vk;&YpR_exur_9W~9dJ(mhc%@R zBm`|L<aRs?$BJf*0k=6h6=ftlKKU#U(z2X=?qjB%+icc~Rh@CUPI`mXVy~pAFpQg9 zJ^1Zd2{~p=CNbNmHF_JeGB$?C11F_(IJK%eBcnH>ky{J*Rl5_@-mf7?IbWGnW7O9) zmthGzv+KrB<yWG+A(W`#V15)NuX9WHHkX66uv8htFy_1~<JP<;)a>-IMj^!V5IN6k z_3NETTg5ZUC{h%#J9rqcmb_c6NvvyEx2(kZ(jL8l;18vHnRPB|yzimmX4U<j6$SQ; z8(aKpa;D&mA{EK3y<S4d$ayLNH4dpik#w?d<Jy+$>24$Q56!%CE9x!O`0b8K?mo{W zD~<s;1Bz^^_K3Fef;x(Rt!^^pVMciOtowP0`CE)|DcBojNn?03*-56e7s&+kSMH<p zVmLhY;<DLHWcpB2*c*(BYcRz~FvK2D)|(;#f5L{wyvAd8bJm;4JkyU;j+CV3d8CRO zX$U0J(M^mg<#D$koiNml*#jd4P)jUZkCdF}9jeCQF@?zPDzq#%V;t1@A&w79TaZTl z6Z%tGhA>G7(v^uPG}3Z?{b>wxw?IFYDk6|+p^EqEPTqD5el=c#d)RE43Q6Ls6H`vv z9P#Z?9%*h|M@Pf2*18De4H!7b70&~L52bWgj!Y;+XCtAeDUeGZM<1P2X!_xDYg$Ah za#s~fKyq*~L7v-`N?>4sdE%N>1JLo>tU8cEG=Xy7p7kYmJxAdEnQI+FeS>IaRb$uI zy=z3ax0Ws2eA#-A+iQyWL7<~}HaVT04aLJ?s-Ktv>t2a#XqIDQ#Ljl-E&Q`wl_1=% zdDFX_vCivPZ)2&079wT&fd{2C;t!9tKO5QD*j`JwO|n2%(SGZ=>h0=kPZ8M^MV@HN znF;DEl)aoNRg7ajMP(X#TIEF}lhzV6ib+BR+A=UPUSTsAm6)95lbZB@6&H(7lP$}2 z8Lv2G+t#}2t0T6Zxki-$3Q(n~Pk(BBXi3g7{cBTOk?c7Gv97zpz7CUIoI5G<Q1VFY z?Nt0V;mNh_P8(?Bb`05OQNUj2zJ~CZf~C|hA<{H>j@4yHU@~#)G1Sz%wPbVFsN!-~ z`UG~$V6cG$V{1q{sq__1tPh>#D8N?QTRAz;HSJ#%JSV37EYft_RguoEbi6>z^Lw#A zmB9F0!&iFM=#CgzDI+qT0Qan67tN{1&vkR%d^h6@j|u+Bn%04AS#JD8sV16-aLU1r z(=hhH1M#mdYea(AYJnI~6?TroyMGw{mcq+L(rrO#^ynLWglEi^y0`SMHbs*8wv{KI zoib}gx!!@z(d=aXiKm&c3l<<(Pp0^G9WKl5my6|-_jh{wn%MB~h2w$-ySdCrI6?HT zYsY>pE?Uk4268z4Xq`n$Hd~3=`W#=4^+eXDc$GZJSLO#F%Dn1pnY=%$FWFn?1919R zZyY<N-_A(Jaa^~Etc-eql~*yiz#vx#@jf?mcumJtby_Fw7bk}_p<%0AT-_ARkqBRE z@5TmAaNaKX&#rt#@-6P&ZLDJ8Tf>p&A6Gr=2gDX)dw1HWa`H3Z>0FXIhD>J|tD%I$ z!Slj4XQHdrsT($Sf>8T7C)^Gyq|kzgBbv{#zHD+%4;if`kT@&bu4~b`gSuv9pvE?k z4{=O<AY5l@^sCnhHsG)|O_aaOjiefG<6Xz2Gp@!TDdMR<VUd)uBphejra4&#<G?hx zQJLf2fxSOk8AzK;AWM<}=DlZ2Z0NAQ@;3~XBcZP#(_}t!9CCQYdaaC`bTGu{Zz{AW zV>u$^$ZjBTNcl#3b+0|~<88EsGq>l-O6(U?A`m;U&P93OjPE44xj^4^5=AB|Yf}Yg zVx$vHX6FW*M_P9_u;C#^#%gqsvhvtpYO1{{#k+b?I~PsK=s1rZ1u95e03Hu+^+<Em zty+QETjgEseLZOrV__B>XoQjyPhs5E+f8-k-nQ1@0l_tZ>QkGUFvIu($)~2PapW`+ zH<JPT%Dw6A8=Wk(!DP!V<eTo9aw0*UpIU+SV<^L5N4PMI9{#7)*F6=-AmIN1I-AbH z8T-9}q$Q@t{k7qib^!9-F<00_Z?xQ8ou{fG$rZ}2%YrtR`M3c_O>`C}$3;ZB)f8P^ zH{7t#0Q$N9lx$6n%_`F7><6}o$%AlTwA{W2)K^b&K7--I98=#uqo@qCf%3%|^aJ>- z%(WjCU+Whr(#eQpBg%m|NWka-tcmXCl6H9{EbMYkE3&uT_9(s}Y0<kXD)~U<sOn8Y zH^qy45==I6xjoyO@&%QZNe7Z?(8DFusS3oN_@d3|*jXNtfANb^kUBud6>foe{41QF z$6CGnZ8NyfTp!YxMDQl5txS=_Y~;2v#e0v#kJ)<nQ*@V5+i4JBTYotn@mI;!nYqR< zM0l>7WvuvyWr8J|a>p24oaVi&;qUCN;y)CXmg?49NJck#s&Z@UF9>`z@UOyM7HvxF z?6E@%ZfUMCta<7)UN!NH_RbL{#+Ts3_H=xs+!MQZy3u&YViz>^y^g}y;Mama7`!K1 zxVN~zWXjtH1-kSnwRJZdgfi*E+Q}i)?WFmYZC9$1(4O`2Plr53d8>GWZCg{glIrF8 zFDn+WQ$G`~gb_s}NUIXzSRN{GB6&4E@iZ+0(#!2v*T}x9jJf=44^#M!;cXc}vsq`8 zA#!o~{VV407W`4UxMxVD&lpxG`d2p=yLGEvD3U^VbCc^)@3vnmvGm#apW*wN8+=nk z)CBo{Zv0fbhs2);+*ve2-c$ib@Kk5;_2#~Mj@-_Fix}z+U7FS{0MtM$zdF>r73qPv z_p4mVU9nj=W6|dLo284{W3aTE8zGRbHw=FY8{%D>EMn3YGNHpeu7Aj{9ygzCpKJ~7 zpIYA1JU4l$JZbZ7C!RXz-i}uFxI0H<(!b$8n(1~%p-9eEN8ZV;Ehghq)XStwM2s_* z$qUUh!+#Gx%@Fe<+Q0@UJb_-RpxD{k!?GofS8D$7_03X>irmf1n`B}5f5EpCt6bcj zfG`D{lHRzlD*dQFD;oelA9#JlQrv};Ql1~b6n&%mo~FHj;-AEuUjTSE_ga?WM6nE8 zz={60L&B*3wegpLEN(ni<5a%X<auuIF4kLz_h#wz8O2JoDlp|&XYB9%6Sv_^KMa3o zT_QsdmwT(Ryp@Q-E71q#&3!{$Z^D=&(|iM<*+v4Ty_|7?J(O2qTn?tLrTLxB=(wmW z8GbF)#*5*7TKut3v)aihVc3Nvezk}2*3jwS540qIl18*yq|f)C<|p$tf%{7Mgy=s4 zJaKyl9#}NV7!3C5UleOU9=;}cw?NYDwCk1AEJeIZ8rDzV1=s)|jd_^aIMYhoow#_$ zteWPvkH7Vg9C&}j(eBhWdrMzH@_<cvC&b^|&%k~Py*h4~lk2znD#8W*+7aq&<JtTj zsA>{<z9HAHB#ClbDJ3NCtQ&1-z`ho1iQ7w;TGTi5kX1*o<6aG_?Al(7U%d7y(4iN0 zoBR>&ekT2-^}mR-8RfN2KF#yx!5>rUT)wO0R!upPErs0dzy*Gw`u=s}`tQa4PWtf% zo1w#D0}&dhR#VU)%DVj<S(i-Gu5K@yDDQ$HMSq(Ld(^5*I~~fZpSp>l*7XfS`t5Jg zBS00mxWcE<)(^*D+8MN+Iu8%{Ys4o0C{cdd47@3PV~@kVarZthx!13?tv24~Nz39w zs@&l5fmggm`!$VIOSF4?X)X0XFMOtF+mJ``6I7uYKO=s39k)D7!ny{n@r%bAXNUCI z8TB1j<Us^$_e&n7k6;HR`&ZLmIQ@ov4e-u5ZG27Rjb~NV_76S{2EiIA4{?%m*gR&u z$Kd9RtNa7_v2Cy3JS`QqrOL%5Oc=!@Aqa8Y)?bbOI_e%M*P_)WyqP8ts&e=Mj=x-< zwbLq&n&g5el^9F+wV%lE^l#Z8;U|hGc+=wsp{GoL<%RB+ftNkH^{-U;f$_UT&@_pB z0bw%UX+9XYx3aa5%L^Qe7v_Dwr1M`JPvg6*tyJ7BjE)E+2LPJL@qdZs)wNf?IQvwp z5?0UNz~eQ`IaR8;Ww-UY*r$c0oT=~U`W+9&ElWtA_3m{0XsqONODrP;p4jPLdb*sf z7%LUy0|%2$j^2CsRctBFc@?#%cmr6~BQim=1J{oAycN}@x#CsC&Qfh`Q`7V<OIK3t zt}XHxdvq1(o)Gv)8z<VPxDukT%!8$K_TCEC?5+~ZeNim;9otFBK8C%k;5WfD@grH( zG@Gv%URm5im=fB7w{aY2>0I@c<9BqC6r$=&-A?9zieFCf_lNDR>?4Cpg%@m&bC*83 z`qkfrUlo?yTeiQ{ZXr!SO<lt19N?dCdipEFKM6c7@GdJ$J#Onv@h$D_60P0Oh$0Of zOPq-SC*>dmUlIIh@rH}zZ;HMmz3|nwwWo)~g4We7qw?dCQ-dI1bDUQ$3X;Xtl{@X! z*1j&T4$^;dtMPBg&GFCT{-@%GO^`~l+gheDOfm2Y_a`;kX>yBeXq6WTsk8;{it{f9 zd2vi#uw+s4<aDm~!f~`PAY+ZA*1pm(_Gv{QHyVzt+~vDEyG+X(e84U+;4fdsw{0B9 zv?7qb209Ambo<byL2(%Cwz^9@tboG=u=$8?F;OMf=UirVmWWK5B%Jjb<Lg>Te7Ht> z<Ba-N9j)Ma$YX|IL;UK`+jnjS3Mj?_ISpL0S36-+>q6X;{EL(faq|)D*i}|jh5!O` zTR7-w7a$e{V?QuZc>2(n8SmJVae<2FljVAyaCcf2FKoQ{fCC`llU)7wo+TIx7aS9u z*HUB%2?T(8sUOO!Tw9SY#bDeGqzrx)=TzTQ(5CdU$IGL}&Pc&O)7F}{2OE?z8OKhw z*QS~bhvf%$GRL(k)0tcpQZen;xaCsr&7CR+6_%EP_b4(R;I9I<VY2gMQd9-$lfkVE zJvRgvcEI5Ckz4lKdbE2sD`4an?Z-;Z%`MJ_2hin?iIh0n6!W{N{3@l!l=v*lRfljm zuIub;ux&uwN8KD$5^15=IaWe>+G{CQdjzQ@dF0wz1c4eB{uV#bRaq?<F71N{^{(dY zPERo6F@P{wbCXyajj4=~56U{4(lfiUq+rs!IjP~?#Xw(|mIQD=#<}a*hGYRi2PL+y zE2_J4ql2{p<YSXu?xno%#{s*M(APv6wKr#}%w4J`4+MjO$>;E@Wk`15Z9HW5tsBK< zh?2XB;A4SVB0{Ge9!>~371OI)9)upmoCPXK9{9#7=;hQfQME@co`#@p&OUAwaB<$J zk0loYdiJVU>P=LdX65FdHn}Rx_-7~5urD;FZKI9Hj8}1aY!2iO$~R;Haw{V8$&`_| zdZ#}x^{t^c_dY76G;wli%ES@K2Mv+wQ`^R>gBS#!3F<{`O>WXRIbx#?^5UY76-O#i zV>t)CU$oP64`$S~BZdMG%DaK*6>=yWBP)=4;P5IyyCDD!73Yrm^{2+|<)_G7w@OM^ zRz)b=az(-&tB;uabf7w+0Jj;=eJYvUt+iO5dgrAQOY^Y=GWW+!Vy-KyWH}>IZp!0m z+wZ%ADy_})jFw_YY}Q}e81TTekOv2kY9^Cm1Ak6BR*5B{4o=&ajpIy7XXCKWa%t;w zSTmOkx1c@iAl!v>f+@dh05Z1LOa=>7<8@;mcA2KvBn{?4$@x{W&$ULbC1!SFSardw zFEEjnoNiqFyk`cbNkXwX0eBpCsFkcrsM^%hh>V3@%00Roxfmft!wt{Mq+klqhC#p_ zoaExHq^jRD5=KDzMRCox?-Qmj`<qtnmqf-~@rM3+t1T!Gw6M-{D;7JG=8dde;Es3| zY3@1Wc1LVxxF>#l+e5w<XwyrQM(v>p<C9M^d4W_oQ;(Z*<ch{?jm`(&LV3Z#6+fKB z{NFHN*0Zx}=X7Un5w#uKB1SoO_4W6u;J#FB<92w*uf1Ze#uW$MJ&t%DwD|8re6Dr_ zf)BspQONpibSZh8X8DH^s)5&VJc^#)^r<8;Ag?6zSPL%a<n9D=M*^l>oss|tZq=_X z#dmT3HrI`YfpF^~M`YLv@_DbGZ)GUQlFQegwdj8kwWheeTSYq}jdIxQ^{+d-A&Kq= zex!TX)L?1*I(L0fjm+zNYSvpL4_03?A~CxorD9p$U>KN?I%Cqduf}uL#@uJ7E0@$2 zqnNs$dz$o?r<ENEuUyPZo+}b)%0C$*wBnduARMa>{<U822HHS5&*wu!xl$>{;H2l; zpK%zJ0)PYUR2(`#JReGYGwdfPudN#n!x>sOBR^Vj!>=3>RvIxl$RnjwWihr7QA=`% zGHv3RYE>cAo}!{4gU=M~2udj3nkkJ9UZSObX@FpgbL6+RD+4UsuGU;*p0#0y0mom^ z)ktzjO1LscTc@QYNfWWbBy&)1=YdkrI6Rzs6H$ORjz2nnV%%^eraDsY135oIQLY2^ z?M`yI&ssppWjP|4PSHyL0D77Cg)~ywQ(Xp@!|dn?9Xgulfz58|BpYx6`Mv4fBwcsh zPdpwfv!>#E4wYfRSLd8m4tHY*IL%AbLp>Q)qXf22b4?0E^ffCSAL~*<AD=3wc9tLm z^)%3#^#{YvJ#4%Sq{oRDbbeu0_pN)2gtiRCWk~LGpQSl}(KM?|c-S8*-Z-|7ISMme z=DTqA_WY7$bGIY-Yl=;_+C1%Bxr^crR!i%GtCo#81&{QsRkRVt^2v{2$E{tJ#9{ZG zF+P;GnibBj>+-$`$Q_MTApRpoD{gtOjfmQ@u-aX-f!J3Qbr=BSjGF7dAjjqSnp<R- ze~^lY9Rp*U<z<3LT=2wp71I>#cE@6fT-Ju2VI}nO#}czUovJ-gpr~NAZNLygJvgtW ze`gPbuXq0d6)p5Y#T)FkiI+KV@7AgpBCSqDU-(t<hVs(R*4`+Y^*g3r;B$rk@A%i< zo(lLMr2HZ9J8Bw&sK1d*WDmM=xPX1DqWzwJ1SW}T{{RUdy%&`<fV3$x;Hu+~&bVLN zSK_4JCDkL*wD$i1Lxov02>>bRe>%C^lDgdTT%Ap1ct^w;?YwE?87`jAId+|bNd{Oa z)~cie(%;E~B#JVC5}*v@-mJ%G6|`>3$1E`H+~?Y`wVVF{GD8i#t@8|$M*_HG7WHQ8 zIvCBm;$yjFXKblGc+GVl8}PdEadI}G;R7CjDv!hZIc6^TB~CDS{JlkA@fNopk7#zV zX$tTcsHZxSp&NrTz9jgDEjHFGSRAB;?O?Uzvpe0p?gX*<i&oybt3Ic6^GNPXH$%~D z8JBZp604k*734~%w0B`<(i;B&=yu*=;4r{FkF9b##rp3ngPy<|)$tCn6;=pCF+2gD z1#*|9WRssT^NiI&cQlU02_y3zfjKRn39eVf76#Jma33pn9gTIXx6a(z1GQ!9vZcyM zgl8jz>0Q*@i#nj~smnnzjN{U^AiCT(_3xb4Jd5SI9)_oaPTA(WdL0JSO0AL9_X46U zPBYi8MM37C#BKwwDtNe1Nd>-@M6CuDGH^j2hJ@UD^Vt0=a=dlq9@LEvBrTE;wJ#uV zsSUIy3&5k0d0O<VIktFtN#__D$F*>eX}%Pc0$M&YI^w$+nSbFQA%HkxgXn4MOEaaN zqf9qUR}JC^FMLLN3hQpCA30-@o-^9GokBw`<g8A4#%UJ<wG>beXxz{Mz@?<6rUQb3 z)Z^GxqT%tfJfJ?64(=HBKJ=?A0mU1N!^9FZWP|?kr;w-!b|=|tCYjr-5<Mz2$;~ez zSg>v|HlV=o?@f+Jk(Eb0)N!GafFFsgNLCcuy?eDVvM)sIWQ3~*pB%UMew9t8GBIXs zvE-6^)Md%<z@$<ef=@jvSsL{;?Ky>{WxzZNWKccK!B>`J(x+q#XBq~>cNN)uInk}9 z)RJ4ks}g*~vB1SNglKpN;J&Zo`NKnJBSb#)?KmFhy<B`U@P~mCG}U!zC%gb|f;<qX z(3<DIAbfk5NYL9z@cS)-NtI@RkV<2KYr$Jvy1lt+q?wvlJh>$1hbGp7alYr+9v|`7 zg}gekv?!CxTP=)W3cIWR)E1r{vu3h|Qd5#*U<e+S@(I@7+5)QV8>z)&-s%!gz_T%L zT=uNma@~T8Nc5kH{{S5I?}(RDeY;SeXm=6ivtdB&Fe}gPL(eGV6`qN_<Eb^brrT_F zEC>gRw2~f(?KCow+GjW;uN`T14O&p8QJ5!8=ZsV~1ndZ>b~<CVS%XNL@^(O^mg|bp zjc#UJSxt2=a9oqdd9L$B@Y#+q&wz29`c~J4J|DV6_Nn8-C>SKyNquJpowMMmDli5p zx+eG7=Oak%5IJ0`jFX;8_O2^l)g{$$yts3-C*`ew66*eA`Dua9Fs7^ce!|u%8s_QO z4ai=+)bm_Q4Qh424}2cFfQ_dK5Ko=F%Jyv@*GkeYQF5PX$=#pQyc%yFMW>cn+#+<( zx20v>d`h^LfHw!q2RY6SM>j(GF10?f8pWA>j3PGxZt2HgrDbZKB7)qr#W^JiAO_%Z z*1lA@_^WdpW;=%^NB65TZ;CpV!niXw)1BDpX)C=Llq_!iY4JSXF!5X(dd_9EvHjyH zCuxztz*gVE_#?LQ9gMqqN#n>PJZF<$W1y3K?>msvJC`}HPViCkE>=kRWMv}<86vTi zxnzv0c0XnQ68uGq=fk!U$mNR02K@CHuSK86_He|m#~|<kJev4R;LndF{>y;*n{cD$ z4bWG!MdE2Llt<>0n|NWyYtoBSS7_q9j+Z)b+9$;k_^06Kk96Ben{1jjzzj!M3!cA) zd>h~o9Y+2Q(ym@qQT901fH`77$2In3(4ALL)U2kHd{<Vo+mKE}Z$dMV#=k2(H{u(; zD#r6fnT&Jkmy=n@ql|@e1$h~gy)@F;_44VcNuK@U4<5lUn5z4;^KLzUwdVT2i4yJP zc<_ar@ioU?YO+r@H|@yC=CWtho;i2<!Bqw@25aVA+dhUhlRY0xoZZZ`+}x@a&t3*A zp7FPjp65|$t*0gxK^W()akpL}x^N>&Ry93+Ya-_^NpeZgCp~K7<kgujvP<1PPv91! zu=w)f?mV)O5Pj{_AoQ<V__6V6@7Zu!V~k-DUyKjwUnbh>7g}x5xwVy`nK&mW<{pN% zPm1NeR%?ecI~*MJs&SV!*2h*C7fvy8p65lZ__Fs_Y#Cgr9Byvjm6aZYrr&5<g!5cW z9;XpkwvIe)Vf;a}_*QJXlx(;Sv<{$kH2W!1MR3jcxdDI1w)l0q(a#yZUCw6aXM#ht z_r?!g)2&)-hT75YZoGFjwXJx5-CRj;H<;vZbUlqyv%VU1i0qib9Yt)^WVF=t<exQ} zERo#WN9G$@vHjqL<M6FrH{uuebbd#g%6%jRSEGD9@%^9M;aj_S-AUM0)O^CdO8vea z+su+`nkA*=Ey)2w6+N&;aj8<5yE~?hBTj2ryQAm5HShd$eFEuauWs1wSm6ba<zHp~ z%pbF##cv3_y1mDS?b;iL-x!+lBXWIDwR%_VvErWwY1;fcPLrhR+JBxJQ#4U0nY0e< zdFx+JN#d(GrSef!rg&rk0bKPxm95b9=~Amj^G9>@zy1mf;SU)2H$m{;r?21HJ8RdH zTTN$T4#*J`Dx3SC=U*0CAVO6})X2h))%Oql6z}5}pW<y-!k-Up8D*PFm9<Skp#;Xo zcA_70Ij@H8=2Lf$Fx|lYE9mn2Fr!6sD_>tz<gwC}tI0{+>-;@(*2wF)5>9e`E2Y!5 zagH)DI+MXQ!dqMzfdF6;)OM>{X0e4_mMjlZ*jJ@3j!0>t>sDH-<yet`nB-^it?PY6 z#HicAY-a#)JuAy>bs;RO19CCJHPTt@O|Xr}BZHd7T-`RA=&))EH*Lr)GQ=DLYVuyJ zak29oEB8^GBDhUARSg+d`G4B%YhF9S^8DGz6`Ng6>CEb2zIfb{-3NZTHE3L`pj?no zSjTGTBE4>`M&sAor(4h743o5j$m(%il_SixJLyl9=sfmsnTOruVxHdBGP*F|xq}hk zll81vFAx%{aks7;zok!Yd=HovmpSN9f3117cK44)l$zBWu*N)+6}t2Ft1A;O58pfj zgzzgm3&9WqPMGA5d94Vp2kye<gY#Zo;_rJNtvTG&wt*k!R0ls=(YKA&cmtA7Te0`7 zl)D&Rpo8h2D$-y6@ljX;K_)!^09xd2w`O&7T+%8-hf&*)KxzrbGQ$HS(-jNf1SA3r z9)NR-sdIjjDQ9wooD#?KskOEnmGoqHSn_0(47-NX2YTo4n7S1H5TMoj$sRz%b1>Q% zjos@Sdy+G_;Qsl>{?JuXsx3{6iA;eKLIbL(8@r2`al%zj=;uBPQ!zDLa6zs9+( zO_i0GZ#n0lwcQVYV>Il}OHd`ZV3p4xb*#pXkTUuV=Nx9X?@%<O0LB2vu4_J33&M;Z z`)jHw?Tt%nR#?jAn{ht<>eaoz^Y=#{ho`+DVu%Pr7vGR--J<O=^R*muaq_q0SFYtw zqO(U@$P)?}IX}c|g~Aprha}@Wv0D<rcM<nju4;wMMWbT*IO&7Zr$qEVZd#bKTNwZ) zvQO}ic&e#x$_r#2-kn8g2%HrT&J#Q~IU<Ox)XN^&n+ypfJddcYER)p5tuBht!qP7Q zWFMP6)Zb<-h}j<FrD;K6V^<*Llg`nADsiW*u5zo#Qd?*h7f)hk28<akLWlWI<NSH! zHJ3HHL{2k+a6206t}GRPV5~_8?j8+cT|!hGk`E`7&2+}eXmZJ0a|UN9M(ilgIPHq9 zb8tZUPJ0ZV)iv2j%d-YKA6mz`xnv|@6Wcv2c&6HC1m$fDK6n@*xg6&`Xls>h<0bLb zR!P0a><lkVVy#Cj2f;bW&T-q)x?F9kmD?}Ja71`2a6af2G*YZZnDD(#Q;CQw!*D`+ zdK$Er+t_8YdEoTTbIB&`$E(oLh0B2MaHD`TjE`E-5|x#4otel!yj3Uz<8f8TWl_*p zgivH~bAgaon)9l=Xm!)olSX#7asw6UdQ-x&!6beh=9_MtkYsMj>57{hutJ0#Fb`Vf zQg-)F^`b;=8zgyB6}x|pOACY1xC5pzGfZRzw?x~JK|IrzB9W<9IP4pmiAl9?$3$e- zgW2D1?hkR!e=2-e1<DPi550rXeic~$@222-anhd-a;><q9Guf?=_8>{C84De42;Jt z*~kO2sU>p^Oy)oWsbiDS)j==^f<qp>@mYQ=)RxlA$W{Y*KK0c~mpf5LRjVp+a%TnN zJLSB;x}DVg!>R9FeD@+YVi^8)tE)L7lzhMwh9<c?nMr<FXV$)^F-kT^#L4qX$?i)u z;fd?JxIHT};RL(;d-@ucqz>2z1x8Oav14h;<eqCw5ut-DZv_7UDdMDC&`#In`&PBp zn(QsNllfOOJc2pj91wje^%~T(a}08j!G2@u-m@lzs~?vDRp@TP``F0+Drbde93Hf{ zD`P1oXt?cDI{D*wAJ(Rx$bd*aI`LG2DBKzf+zwFEm)<Z(H9yOAoDd|&F;(P@p~2%6 z0EU`IX~fcJG!!cGX-LVYfr=`GO$q1Lt;R^;l0g+tJ~7g*gP7`33~Y>j0r#khCyv9t zNXh~0k8D&7ahx1>=972ORvb<`5ubWO!vqo2r8Nl21ZIX|{{Ysa$YgELIHVM`l=>Ec z*4~OYTaY<9tV6)9jT7gIlirJpTN-kWtMZY}Rh2Q%w`#R=1ZWs%t}%+L?X-Fm+KZVo zzaw`&`4zR`>ksWO5$Vt{1sdT2By<_gW3rFE$u-*iD6?CS6xxDV1O`$Ee02S2xTLf` zhq}2%X-M0*JOk8Xxs7$c(J)3}NcpnIrD;j`814DJ+o?6qBvWe|nxJgPI6HaGaz;0H zJpN{#%bp(a!|RvGQ!g29pkSQ){VVCOhhG7e{5gNAUw-bw(%M^@WXB4srHId_1ycQ= zz7xx?Us}c?ml81CF^#KVN&ePPYw(lyMe*I$qZp-=Pg@l|8+@l=$KXwRv8JI;<_q_g zQa=`TOW~^Om)Bv73GO73Nk76^<MhQ;RdB!#o$*%etk07kaB!f06=PzfjEn+tkSmz> zE^K%o!k0cN)~z(lXqm1q<XB<=b!Ipf`ycQV_HVbfw9?-C)+Dpi?W2o?`6Q4JnSlD& z#eeWk4~4egKKSWpJ?utXEhgFTm=W@p94J4DuhqX9YVqkhRJN9Au|x+uINj_krVS){ zmE`9yBguX`c=YKSRmFvjg4zsiB}Os;#sz#!uG|50a9Er(?io2e*S!2>)uy>%sO-oN z;t2KYUq5RQwAYU!0kriay<;`Z?#Npl=BIq@-db)ap<b0=Ow-gh;#z0qbk8-vXW^Nz z?$c&kMmRf;cr~l4>Ct#vG>DPsF(Fj)LG4&g#**e`b1jk2UfwQ^5or{8<Y05oJuzN$ zuIiIs&d(#@9u)^_>-BQ?NhxLzD-w6(fIU97$7)u|4)X7eVB~kNBBOO3-otMD7?Z|W za&g-SzrAz%uByP4hdyHDVR{O?s_G(nogmIS7U^94=ddhE_3K>G?Dj4#Eg73Tkt-9H zVmf+Ob;i&MIAi*cdegc&QUVni<-Kc~*R=?&p=CpdJxzAOJDWv0Xi~q`7Tr!5H@#q7 z>Wujj=N_i1++4lOlE;q1q9+yT#tCkA#vG!OSdw`(<!m2MdTkx6TNce5c|cG){c740 z$;dU618rf0TK2=v9eEw7u>|M{IL>`4;>K75)cT&(miEDzagsS16`;{=3d%+Z!4&VI z4}C(yAtF3y4Y(1N?OII{hd^lGc2$Q?yj4vZlwNE&T#o%STRPsuq&$iS=5BC$Qbe<h z)UE=+<eVQ$<yo@C=C(D9kja30^{iZHtp?H9Q^=qUQAGuX6dnZ>08vF0SOS%KGzG}! zldrWjCQPygTmjE|YPZTqV^QatDIl>T^~Zl))TqH_9XP7{jVN+6%>ruXo8A)R+lsWl zAh>}%xZJKqV1^^TF7kSwDO%xTY40Ssc4uwJJxx9-L|}T=Q;J>Wccu*%<hf}}0zmpw zMGoc)-<?4iRy}c32|yg40jIF7p`&SR0*1iI&lRs^;04QZ>0HO!Sx*djscokxJEU?w z0ih9QceXR;QMN@~9`)#c8q{=c0et;R_8DX!FhxCU#Erxe#97)=#|yt4)>X~g%6c;} z=u2jyr_gp?Pop)zjk;O}hSor+2Lruv+Q-Fz?Eu?lI3u9qynSR1_m@7kAu)hR0251> zKuI03@kP0t%z1J#p1o<ac&0fWc1jQ)xIKNVgfkUm!1SlW+vFKJUbRSV9X0;CW{@sM z-$7aPYFoE_#CGdhk3Sv13TE<0Zh56{;#wDe)J{fl-Dw)-mNF5J<5f~pMsxVokxlau zaA||k?>r!-^!V^b;n%f#M~5Zy&UrgV<AIzC^3Mfak!taVB!}P=+Pxpcvk^E^kghhK z)x|ZgrzJ(H^$)?#WU^bR1=Jm&0fU<QS3zc)Ki)W1BaC&;d~5KxQW0D-?kk<VD;`Kb zmGu7rguGl5*=C7%GM%g&kUjBTlqaR6aLO(0dPaw7arXGaxmd&f;(CvI{K)v#qD$cq zj~@^;?Yj`_ZE%2a3Q6+{{Ug)7UeMj2vbrNWoXFgSBzjlIpS5R&h400W?akYxzOs!T zVz}Pv#(ub|#d6M@iP?m1GfAI6+}z8KM#2s=p0!p+`52rAJoM{bJlX`e5(ur-%^^OX zm675-I&TZLlIoW7*tPsdds94ReAvOkWY1Ba_498JDJ#Vu<DV<lnG-8U#N&c9%~vM` zWNrvDN#GjiwQn6qYQ{TsGO*yYbgny5*Y9;Fb0o|WzkyB#bW*`iOWx5C>UKL#OU1Uf zaylscM7hQg<PXNQEav-7nVEo4S8!iLUSDQOxLz~OdNO|FPYSrs%JpG}rv+qlN^f$M zI@1|8l*)$Tja-LZ1GrI~V!57DLygPNbCFh1lGq2{o5ItU=y9z${4DFE)Y@V4v3Bq6 zP)R?U+c$C#uX@bW?p`+oZ_0m)ro4w^mqx(PHI#5ri_p1ZWY(<cv<)Xw)vgvTF5X+~ zqn22q<-ZEKd2!+x9jz{HZ(*J`$&OfCc7H0x@Xv_vJTHA~s#-|V$!#jg2s?UxE9lw( z0BC>hjV{{iIUaeX{{UGOXbU&CNZ?m}466-^(oW3taT%5)4QB;(%0IKe#2CC6;)cK1 z?PjqH2ElbY6haBkK{f3E02RM(O((-X9l5vg)yx{_h-Zxbjyr#v8*}~n8{4q;ubjMV z;@wxqwo<`&JXY||n?<w<o-@Gayq8k&?Z%6M_Kyr0$U6uasKs#XF!EJYuNTnj!|@$# zM17M<G1t1rp|0whj<KuVKBKGZ5*e;;WjSYm=sl{cvn9wN0H?9_p;V|lN|w%l3TA(N zssLuIO4=eDZQYvk9hUCo9OJ!W*<TctjO1sr=Cvln!H{~6aa_oeMC2YDCytn-a^QCw zcBS(wlgFv+T_&HY9-Dz@=hD39#_MAPoO|`Iiq7?c!3B;w_NZ{Vt?YN!x5h+P<pC$@ zirui(iA4y?s(IYUw|e00^#w)%WD+t@QJUAYxKfL_<dMh+fl%SxYFg-bFkd?`Qp&)e z&(g1p-Q<nMTd*CzmB?G)D0RaEpb&ViYiY<;+aURlLB?<^j&XaPaFxx-<|uI+ft)mi z4o|IWTV3WwBO5_EV~@hQ$fVi>xed5|;(w)RMRbbe?uIxd<MI{7Ry^v=^eE4jrgYI= z`I0f+l5lqq;;ZR&u}Si&&royvS1y;ONGNu@lae{9lJ&5mWn#)Qc^Nh4)rOWwr%tw~ zQy!pFL?G@s`<-)FBfervhR%39e?eS?bC4C8zD}gKTEA&@17%4gwR!a^-bZw5r>Z(8 zy>}TTD~>QdY6<RDS95dgyPTTNl29hjHvj?Mo}<#EY09X^J$bCH%X3F7vRli7r*PT{ z>`x=<SrS~cxI2b3$*Cu~9$S_<!N@0`y{jtbbyUFsa#Y}S9<^}0+^ESSNv?t`WU7ta z5PMcV{OFJ{INaRrJo8cAUn;9CWaGY1IrYV0>KDyBn8b=0a#)^DE6}9}a~hQ`Vk`Gu z?5nrs1E&N30Iyl>zGRFul6n!=p}4(SSdovHjiBU;ulCXkbMh0FE9+hAozk&CShl8` zI7s@EpniW!zil8`Kw*>}7t*m(QnC<8!*icXy%gcFNp5)NslwY6EK-xy^tmBrW+w-q zuQg8U*h?P^#^0M9Vzfa%V{F|RIZ@AQdPlvOZOV`V&rH`FZE8YkocH!*VDAN+k<CkQ zrvWDA-^Wvolb>4JHu;xs)yX}o<*k-U&&tCb5yMd03u$C#$EJloyS+y_%~)+W$vdzx zPdTlmgbk-4ob!{?p4ROeI}}pS!3uH(GG!YawZ)dy#?8E(isv;eCIR-0FFX(NuHyIi zY86xhM?!O-dgiqhF03~4dE=q0QfpI^X=|b9cky{-0tY<sc&=*p67n-4;ZHpEuESM; zfZIq=r-Qee!Md~zaDR4BL)yJMYRc!4QEqc-8DE%kGm=}iTep$hJHaF0y-xPb8*6|; zq6KCwj7A3_=DMAk%=EEt2)FTqibivu0nKUH#PYhS`GNi_r*9rXM<n`=!nZ7-+7%Ro zj+h-Ql2(b;9ZN7-JZf@De13ImIF=<F7Ysl+#tlyzqLmmM)cmBHS(Rm!ZeX7;1dgV> z=S{geZgoM$EeBd*4$uiC@Ns}C7B4RgjFFrGI{j$#6!5LJk8E>NCfM==Hc1CKti762 zI^!j4G$^)b!5}kZAc0ZJxj~jJgmMQMtATc_s&(M<deu2{q^NZy^;}~Wn}xL+nu!ZB zMqWakbk1rOyHH3_dgtnD3z@LTXdK|4II2lGE^r3Ye}=b=6Z9wBH1stVToT}gT=YGU z^sYO^+LxVqf^dKkFgPZ*?rv7z+1o5h90ED7GuHKYl35*?k4|gW!ckFeo@O?)lvGGB zWiRG3HhIP?n7znj$lMKR!FWos$vN%mS-0*T_kTL|5#q9*{{VhXN|J?OGs)|UsU(3{ zj%vEh8Oh`@;~Azh_Njg%wq;g3h^}4Ovlh-ttM_sjKT4)lp47&j$bS-QXl~vY1QUVU zqbau@hMHH5fk~ISsF%WE!GOW4w|4sgbss6{MOEYqxo32s?3d<Kz|U$0XSq#Sqi4Nb zGNr@>5Cnsvr(Ef+jq$K#ZbmATZi%o#27&H3ka?n%oYP6gJCrCKQA<fk2Sze#)MRbW zYO;>rwIUD>4`bewGi0p9AJU?52+ljwyI}BhNLxK|_)rL9_olZU`K3KLrkVyN6j4mD zJu73w>=mTQ{A(Qat#1#o61GJ&OW54Fk8)%j_No%bcel4aD_!9U7{)p7Duk#>$tN_o zGAZmlV*@>fdRM`~w$o}CZZZ`FN>5yq+Pv~O%MsXm*P?h9L2IPAP#4UTu6ZC-%S1&_ zg!F&6JnmVS<qBA-73hBe{v6zRzgdhJ8_S)8e4_<MYsgYok&+PQH?T%vc>^{2H~Sm> zD2MwR%Kj~)G<A=!C%s-85pw2dl~uJHM|0@EgMS6Bd=;WYEQ+E>jBYsR74ZlB6{F%R z-gp~F@cy3ew%1ykESq2Ce=HNyzeD~d_`=)5o*cSGog<h+MhU?KrG7Yn!9YAkWvh6< z!TMdC(w0c2yqYGHdWI(oN7lM!Cphy<<aJY}8go&PP0yFD;AK@iLmYEY8(F}XEc3=H z<S_07o)2$YnQXGa0(WM)`kimF`a%By1e(#B-TZZ^Dyl?nA%}i4%1aZB*Vf+=^>H3! zjeraCf;v~oU+_&26()<Jc=Jt?L{lxi7eJ1nsVYa)n)(C9J}8RrXJk_Q#{+NcT@cjs zDyvxYKZq~p!zA)C^Ru)bz*m~scuMD1yW1RWs@)rIRcqH}(`WGo)PTi=KXi^Mo;UF> zk?@yCjTEGstn0Q5afXnbb#H1_B^ay7i)*7eT~fnO_<yG)w}>R1t`aanXE^><;(E@v zb*kzzUfgXnIXF}N1Jb3}{6&A_Jx)u@>DpNspOwc5I{{c%R|^u!^JH{9^Ij!dj#q4@ zwb;pm#tXZmjAt3*ywk-R$Der18*NNrAUPSWpAu`pM9@O}n-~KeW7q3kYTGpOvyge` zBDhrDO^Z(Zl;$EvIDBO1r!<dbRI|+B?djX|tFH<~jLx9r^sZ}N)$oiGMOgF8diz$2 z2+>CD&+#U&94f&W0C_m*E6sH)=f0hZVpJY8R`tzc@1|u|I{~bf>0YHMa;vk_ggH=v zW}F5n0~7<A>9ME*iZewRq=0xl{VPvSl$HbDvUA$4S<X?^XT1#)(cS6M;Rir^jyhEH z+x)rPo;hySPer=Qscwgg-e^`q)T-l(eJp0t&qJ8*_kaNhAd1)4rt<VcMleoGXOYEb z-N0?1D!c=nRJX48dIiL4xWX1W?TSL>)brbkjM5X^wMMDEsR`n{AB5UXhP&gfGf&iF zX{~2+uBvgK4JkV-o27jb#~+ui74#p8e`h;esU(+0yK7Qhg@WUh1M6O4to$SKE{<5f zp7TZzF9*yq>sZ3HC$lt_DZ_Meba$&)8g0$16_yu`hfvB#^Qb(h#&(~|w@k|8DQR{Q z)MA^`fViadNktS4QfQ>3y&(!HJW^7gY3Kn(B`$cR7Zbe)G<Twau<&>zy*H@GYC4al z9e5pR1UPp0tB?T_XN&{QRa6J-QcExkwNE|i+?FNG{&boC5!=$CCz=?Xnr#CojFktI zO_hfj^r*q~?Lj%CaIm<kqxn$ecBqu(^VHLwv49E1Av7*P9dk-fK*uMoL{2k85;@N_ z#!mS`*CX1QyB!WaX@*SWnoZu+2;cD5plxpzGlgT{y?U03dWPy9q_NMZO7SS=G03hm zNIgY*Plfemx=7o87z`1fMRQh-(UjwKd+&npp345(Qo{<|9C2Rbqj<3*gkkVWJd?u? z_^+1qPZ30$4703iJy-xMr(cWS7V!K+Tir<~l@2_J&QIxHcRb^D6marN+aE|D8hN=e zhCa%B)<xIDTc3_{O`^f5CY|C{w~|dIE(ghTI*f>kJvR<B>t8!+pSBK<r>u#h=+j6* z!aLzt9)ud;{6YI$c*j|lTTMtbX%)9eHMu54J%~MxYfcrU({VJ7I*F+*534>0{?5AU zc!J{h#;{!YZ%NVB=hv_AlgozE1m)Bd!!u(8>t8DV)Sn(Me`p_!_r4^xhwPpmutn3f zODteRWgp6%dbi#`TASjZ?N{-0;~$3Yd^h6{9N+4iJP5vJl7)pQBcYV29$_EtSC*oJ zoTwaQ73w6Dx<_r=Tk2uzyxcPmgw-0+)l?*y#sz0pmljyCQrB^T>s{8PFt@P`&9{Is zD~r*g^KYXB;|Ddj;(M<uIM5vD-jNd5K|_fXf-zG-q1b?PisvEJ3Jt!!3GG^Tx19h# zQajQUM%n-{I)Pd-L?^doZ@-*_Sr+q&2w}&qYegXv1x`U7L8^&2TQP{gE5Rz{W3Fq` z{ucZk@y@+&uVtgmbm_@-xQz*108Vl`a1D9n(Ek9-R2XIL+v;od&;AMP`&9fi(|iR7 zgFH)j7Kh>%f3mY(fFPMpb`Zy=b6V4{>?EgSlMzMNk1BRP0MtGzX<i)$-$~QIwY4Z@ z!`w(dMP)vn`d8@(!fy|JH2BZ^EqIGn@hm!d)uGYnx|hhp%W9rcAnoc1VP86YB>k2L zh5rC*4ShUQrX|ON=D(6;x`hM4V|fnWpP=B3b6)5Bdwey~e`jxn+MkI02Wcgvc!mY= z{lsy$VTL(*GG{$V1OY}P6+BGR=Gf+;hlK^qqrUgt{JgLO?67?9z^OaEM{0%c3hGg& zKJxR5w-u<ifmgCF+>_~C^`+BYYq<wFJ4Zb#7N?+gKYG~r$E9*}3|ui8&Twn3jP8Tw zImkJ{u69de9zmSpvQJuuZ3U~j91|VH50s9%u7bwxLV(PEt5`~fN{oEMu3J9I4^P6a zA<ILow7M7tPD#kcYuVg05CKx8_0KiQL3OnN0F&Oetmjq%NZF2uwI?2=DOuR-p}fgo zn;7d_a9stFFwM2PfI3$x4c-`of)7t>zXj-xcIO20d*-lkHRn5PThx<klgDh1m8JIR z+9ldTw?m#zD~7k!e67DY+Ck!`8t_%&ho%j1)TG|WY%41yb}{M&H{krFU={6FBh`^W z1(itPbUCgawZAbDw}b2rAKL!_D`7_jbON~LM(Nz^r&`CN#eSz@W>Pw`j@5Z}6A@+4 zPH?B1^J`sQhI6}<(477iq`n{#$kLbdSd3)xiu0#N$E{AXX*(V7_K@0mWGR8P^O5UN zT<eG!mH9x<)h8z&^~Qg0k}<rWmz*Bm>a^P4;H|h7QG=eitQ8w-^*VjJ=yg{bvD(hg z6k|Jk{V`ehdWkBeu^{qD;MX%Yu2q5|9P!hwQlD0k<v|SHbDz2@p+Zi~<du6n8u$8x zW0Qu@HO<{>kCr)1bjN(vYrRN<cR1XA4PnoAT)L|OdWP%Py-HM`iKCXLB++Z^v3EEb z>7MlKc|?j%K<BCcm4frII8qc2Nb8!=wwajlcdjrFF<tzMDB}9X+0i8HDgm%@)E?rk zMQ|4+jhN>IWD3W%X4~^Q&T-POi5;>!ocHvoloCaIXM3~Q65z8b8QKr0QC5+Ia^PV| zInD)hF=`B`3Eav~(8T=0v~Beb&+_D;<1Bigaa=Q^&q|$W*yv!C`J1+*Gyebx;{)2X zB4HUPIXL8FIQKQr+upf9d;q7Z?N=bVK*6wA8Sjjm%~96RV`W>bH&Q_=mkO-Few~d% z?8LUif<ZqwLTVd(g*^G2Pw`c0?#!q6cmcW>9MV+vb`z_nrENzj56l>q{w_BAS1EYg zBFSycM%}};Z(U4G>c?)y?0<@~uFx_#Q@jE=Tng!hI~;SUn{4IpB36`~pP6{if5Ne^ zEymIn2~(0!Z1)w@+{1>!#s?cuU&6Adw_w-<<|Ln+rFJMLaLx2*F+4+WJQ2=18n5O3 z(4c1-+&X5quWkI|aH_-}xa(BKubBS;GV-UK9AMW<fyvD7KTeEeGH}E7t;;kB{{S#Q zH@-Nk7Iy9CaydNXsTH$sf-}oxlaYbO4QD!ccQlOBCvp)1Kst0iX=U8U%zR^jOAa&b zPl<CRXRb5P_|?C&ZopCi``IIk#nWqZbyDROh;AE!<B`Sz{{ZV$q5lAQnQWmPDCwG4 zfs2RU3jvOL{VAd}i;VDoTzlrTl`Cpjwqm~hvM>ce#tG<sYPH1b6J}2bAf66tS@&g# zP}n$Zp5E0)?UWo4SmXG=hMZ}63Dqgf<}e{xW2Zd`ra==sY{_2u^r=-<6|lq9gHuIr zjN6NCkgn_=m9Mh0C)$|0=~!Udoy^$-o@>iB%VQ11snw5MSE2Z$Q%LXa?YAn0$tAm* z<2*vB@`(dvbs=l2j8sv<UZ*^)ap^IM`}%Tfz3Y}B<ly!dHRG=0K<QLxmvW3840auB zdsxL4<bB+Z4r;S8&U1|OQcaPNbH}w+W4DZ)14tKP?}APVIPFbT$o~Lq(9~s)(~b{* zYD;syy7TW%F~1@v7~qZprsQq|98~vkl>n3N#Z~1<;+EitG<nWBsE8}nRPi_WxT)G8 z=mi0L5L#Ze5-v~6+#1rkw}SQ^@vv9wYbI!XvOCn)vV4rCu}wP-uBfW$QOf#JLHp;u z6kM>RG_)RQ0YUZVo;f49rU9R7RRf-XN(p3y5Jv7n=}axaJYs@QF-<3$014)h^ra)- zjAns>>q$iifk48wGzP`XbBqk;vVqNN_<a8Wregq>80L{LW33Tl6zhU|)oJ4j`Qrn% zTxnHe+l|DY2c=M)lh=|>GbPxmIT7-|rFsvCqBgo@3__q~+@l=i*PX6syM{g+a{xg4 z*QZ3kyF?)EMG6#ltSUB^h7~2LyW!BXYA_e%?#?lumHN~BCD`A$z%<n~QxEo(%;qz8 zLZM(Vpn6y2wTgX)SX`Zwk}{;=0bhOo$iEb=ygA_OcsyS`*1j5znpmz?_N;P_NWkmG zIMkFEx{MT4m%MVGApN4eUE=GlQ%1ehAfHe-uLRM{DF!l!1ZKVp_|xLE;}4Ab&A?F% zHl$g{8k~g+Il=nozV_5LuZ7mWIMh5-4y8QN&3SWl&@%1HkVrN8uMO&I{v_3J*Cj5l z<(Uh00i2QgS5vi-y)`XcHk5O)VUMU3^$sRbGO5=my-5<41Du1@)9tPN>yl10?rCUK zNgrf>!Z%KQQLNjl<Lw$dh6AGj<DM()Z}>-E=1h&jS$SM^HS(wY6U0QH5j7~Kl}Zg3 z;Ox&&m>T!*iT?l`#+&wyE5n;)xKEN>r5`ML9glNbx{4_Csx3=@5dJ3VUkt4p+QJz1 z9eL9W7I3it0JQb;=DDoiYr2%WhM{oR*RqyposL51_*c+X?NUi5xRz<BYm2Ee%`}9P z#QU1#^({xqVH8ch^PapY_4ltLtlXX0?w-SS8|ba$^CWGoqbj1f9cRQ7+{r2+3cHBP zx8BWcYd0Hrk_59b;Pw^DvWOV&0h<{s+db>fnr+z$Cw&Uy*Ubzid?3jzhdkALxzaT| zNJR=p-sYC}{6sPrgPbmZTF1MUnlzSR2s{IvVyS7Ns#hs$x97@WPSnP5PbR#_#M<e+ znWBt<ql1dm@rQ`_mWmfS=y6<0W1e|6=uo8X%_F*%J1eni2+b`O-D9XJ2+b`N0E^a^ zfH6fIfK#JltPj6RZ5hE7Fgk4-_^afc<DeDVTih9tWal{ieXGp$`TV&toL6z9U6)k@ z2cG7Ip^TBOb!YadPww(Zf9X_hka;sg-!9-+r)ucnVjv{rp4E?iZeyP@{Gjr4+<R3& zAw=@4xO|J5W9hYsuT%Y<JUwx$`05LkAGx)O=5yN^#d-F(ZRYD!Dh?Qfn)<u;Q1E0+ z;Vn;DV0TS$EurIvRT*x6waJN}v!>bCMJY{O>)T8bMwwDZMo8^eBY~nvVB3eF9<|n7 zXvEGwRRbNmesxjw_~Hcu661v(MSSe9D<4TtNa3|F4{5rR?3%*b<2<pE0X50r{3r0m z(aPy<0XfNy$Ul{Ooc06-!Ua`0!Swa4YujZ>7;=PmQ=Ix$!nD=WdjzOcmaQH$sr(7i zE`D2U%Zq34xCRx&>pueZOI^)m(cT~&fN;d;j0*ZD;@C#S5IxB6QT>Si>;)>=&hK2- z@WoV)t>|&f15LkoL*yM>!aAmnF^=xWXixh{aanC_=y1aaIIpyx%~gq!JluiAsvG&% z9-;96072FFi=846Pt4LrHZeK%73f157PUC#fuGrD$jupCoOGt*zKqsB0_gW`BUoKc zXxaOc4azwD>&^U4@QYE=BlAR%%Lisw=kl(&R)tT6oO7j8pTv(k#yikPaaN|Xk|$(k zJCxw!qG%md5~uO4Oj9DFoKS<!CNWH*JBm@7F-J-TxP52`2Z|}6=QIHQ`+88$S&8+g zo@k^N6!J|JQPzP9+!{g0IL#(`rR`5ai^ei39OsiqVrby?qTnC~ospc=bBX{afZS6+ zJ-U0*j@{_##TyFZsH+y2w-%ecmnd7Qs@csQDFv=sy1cxRipw*x^xai{y?turS0Ruj zoa64Cbg4ywnYYI(NTByPKa~o?y^Q{&uN9%D+k)P7fbCyTTC}iQLmugsOCRB1T955M zW)?BBG0|zUHctx~T(@J_n!cF(xyKbk*kSquk4n~pFw4Nn_o`ZxvCr!{41+w5D=b#7 zx&qDs#yzVmy#|rk-0-|buLI*CR))D?*HQvHEkoh8^5K?3c7QlFYTr{?ot3axJab8E zX7@SCbomgTIQ7LrhlP(MS6s^+ppCymJJkuau`YPp4ONhopHni|Qgw0jekQs-KJY#; zMgZ$v<;Ixy>`H<_=}T#F_T*)-2fawzO!O$_R)j8bk^V(NJW)!G89PTo>sh*9qKz7d zAfH;*kZ<{iJC7&UksBD=m&896M{6F6z9iL`OGgg2e{6p&Fz7(fYW3@%j2=Dsm*Fi3 z!(KP>74EO${W4!SPqUEmyzm*w<*}YK(!5W^c4cHsl)x%^uh9Ph*vr6P0QlwbLs-yf zwu&DR+FZwU`je?Hw#&<b{oHi-tmcyP9Iwlv^3TOj2<ZM1_*JFrQEJegb5Oo`MvxHs zvBHDqmHh#10qb5F;rJw;@trwuy^8%){igo_Wsd;K@O?E{bxWO7UDRV1-W`e<ww5CV z?*9N}4A;n?1pfeJoqOUQse2xkV$(}!yX|d0QaHlol1S`!n$j&oJKX0}Z%HdN$|1L! z)CG}BmOyYu4l2A>K4EjW1E{X6$381h7kH@ML8e=1wwCtkV+NmUNmW?#rOO^mF$9zE zS@w4S0J>tp0#8n~*4JlUCw`|q)*D-s^JmhSZ88ZN&(gYyEI<c$2OJ!I>d$Kuta!%b zk~3D7nR4uBM5P8;_pJz=?$5tkYQPh!o<{?%NgNq&bA{=e(#f0>c9Cr^FfdLBw`!PQ z>~aqT4oy=<!6bD(Gv1i_Bj#LE<ty4~U6TCm3<<~?{3)N>$Bsuz&XKam1mU<o)d2-g z0LUN2D<>7XtYr2z*HvZ!6$B1>s}X8BkTy@LtN|(Ah0i>e6y%-9&5{5(BXx61ns+** zQKO}gQwrG(Ksg!BNSe6YjlkgJHP0p31$ke(delpFLXMuiS1hQ-^g5wgtqz>)3|J6J zUAR2be`<0t+#kxhq@0!`IVPn`l12*<0plXGR5^4;s<rnz7SxLcY=Q@0T8eAp@$vGL z&sxPdfS|^CKaEEu?XV2zp0!b;mWETP-sRhi#ys%f?H<)qOQR!WfPF<k&y0{kBi^76 zTOD)jU2%s)na!fya~Tgz_6=H=c~uH9!x%i)U8)vbe-Y>_TFD)b3g9oV9M!n!LX$OZ z!!FUt<B)4gIM@{mN}O|!^_y&66_vuAp1J0<tw}~!!94fq!mx4IQq<Ym&AoQ9U7@p% zc&S$Hp?rx5Oae!#s#9H!gc1lNAc4}Tt=n$}P6+j@bgpcw*y=5>epPU!9On#rd)B;H zLPb{HyKx|a)K?t@>x9b#(Brq#wzT~~DddMk$OE7?o1(9=vaI`^TFRgyC6$jj9+e!# zHze&K@srxJBD+~PD@e@WPKVNo@5xXUly7lIvNUy7iKZ=b+jnDV+A?@GR%rIOLWijI zB9yTl7s<yZhcyk%pDL=jIA93JHL9nfgQ`-v-MH<?-N(#2dRBeX6bi-5ZWzGqYfeSn zvNrz!m>vaEc*DqB=T#tMcTd8#jXh3xJMLtQZQ(vpGENS7G>c{#$r0rD=k=|~>_eO+ zd@e!br@dN^?Oi*Q>Q;<{83mpOqQn~#-A1RgLkTDFmx2JD@|zVG*jD@Hv$6Y}7y zwlF&rR^ro07%RUAoQ}UrUd%nBGgi!%1Z4(taoVKV6L1XOdY*Aw^IEgH3WbOrbC1)# zGFx4%A;4BoQ;L^OmZjLmWCgN6A9L?jqzjpLj(cwP9+jze5apL?Q`C;W^_Oy`k%kqA z0dQ%1F18msC|piX0ALvBe%{8YNiWJiTpz7kx^Pgcfq}~r$I`PUm@e{8=D+|Rf~ir{ zLS0g5qzJ?nQX8C+)7qpAVMmatZHt_KHBuXdBq2gL0E5!1c%JobbSsji<y7I9sLvG+ zlK>k*<i1Z-Up>z%@o$QS=CyesZbS9Y@~oEEjnZRwYa3A?eYo6DC$4Kg8>U7)RHb7* z^)=^U@)PUV-l?}F1KYJaIX5Rfd-~HR8QR3)&`pvW_~?3`)lz852iG+*U|eSz9VsPz z@)x}xg)Is!0%wjhOB{qaY+{_`g4n<$)F&Wy=9^=&vl^|`JvkkPW=j~0DnSReTGB4W zQiWr|HE&t4Xz?gtmAT@Ac6Ko~m0`|)wWDblnuH%ps8GlTMhK~GSjQ(lDFYjE6C#nG zJ5@z(r=@FN0VH_<V;!p{vKoSxqX{g=lnhc1w6xJ-MHErg1)v_;#V6sKKOE2k=ZYyP zJPL2fLSq!7fl7H9q=AV=6j5P?X=qGV^bz!|+P$Okc&8a6f@QJR%t=wm<GAW7l#+!9 z<-sF0YDr9hDd|~vPr>5@90F<RjElY+fL?2nZ(o%T{Cd}@X|bb7WZF0!8uR}E16qRD z7i<Si44U+fIEby|0GyMOnd9qR^*oMwrrv|KBq*sMK8LM)@4-9s;*SJfXj0CpFP_T? zW+VbofyI3Lsb+7K0GJr$@N1;_YvQ>)J9RTFl2%yc3!EMgY*kX1y<-<=6HCRAUic%z zUM#oN!o`1YXC!!G!<IWkFW_tEZwf|I6OWsYIO$(*e%bfhUcLJ`>E0uWQFSYuxNQ8z z9J-vd1N6mwW1&J8*)n$LsPA1eQBU1BrF8|(xx1Xiyx^bKq_ZSku{aD*9-S!=10FWu zbPL{{5(tzr8_w<kG^{;#K7jp|@9u3pUwbvJ!$mBbWU;YQK`Kbk@)he^<msirOP0%J ziRqDE3-ANPE#dug{@}s(mU|f^NVi}DNaWXXe|tW&a&9kOl(r7gepU7r#a^c?vfSgS zuc{xb>r!eSV?mhHuqUYYtifv1IRS7EK7U_oe3Hi$d*{M|%KGEdp_cfV1IXWJgPbNl zcJ#$@>Xq3FCJwJ^(%(9xkg+K&2Oxem#@}jt%SQ>x2L-WOn&*h7yLPsN{T|o?7y<JW z?rWZt%ZVFsIbK&a$tSLZS`f?<1m5kOHhymP!g#;Leq2&0esXX+b*+CBYiS&EVallI zp7rG#uA=&t+e+LH!n*MExwU6~8h>blSz2is+~to`OrnbQwmSlfD5iiYqKX>=#kwg{ zNX<4#3iRfmX)?wfIqkxVmfWs>asc$rX7prgnMC}(c%wP1w@V91cDQePtnif`N8wF7 z?p4H%@ZgSXs?aXhNmLW_WMhitf!cVjEiU8Am~)RqRbpB_TH0~s<%q%SS(=^Kn2rpA zcJvs@HCES9GFY+5<BG_h?7W90jxcDw%$3nX=&#xgnZtp>1Eqe9{3`HA{30I-{4u3@ zTV*z@bu%dIB%d)S^A+&-!M}$y{8sp%;r{>(+YyVqm1)W9u&2!D@)i1fsp+V$*6@O` z#-ccebG1}peuBLGQ_{@qpzSNPd8Njayd39_$E{~cXhswO7@i0`*Li(pV|)M?wgKdt zz`L-(`?>Gan(?OEdLG;+w?`L$Z@HK@5S}pI>zvdr)R0Ed!=~R)O6>J3Sp#EW5%lM& zu5$V$0pnId+XJn0FMCy?=tie9If)@}J0k=(PB^3xef*XLFdJC)t5;EDX<Tjug>t;F z_|$GdRSXGnkC;{SChk*LS0OO;Qo)EnFBA>Qy;*QOlgB>QYBmL<8*oP%=}OTT&iMlc z&H+4TsY=_4uEt#PGcO2pgOk?0{{Z4DCBB&Ddf=RU*Qh1COBld7>OmL=xbKL%QruWD zC{Y+>W2e1$(6=&Z;ly8-S3Yagbh&SDTg*~&-*|Vf^3%dLLeZMyC3V}7aniT^JK<Pu z?M1_d*g525ALCelFYyXmhe%(i0~~Q*L88?8O=Qj|#X4S@Zby+3M(=~ga*qHF$4^sQ z8inb(k&fa<d-baE#AP|Dz0Fpd71GhA`=h6=FZN`>XKqDo*;?fEF1^iOm1BxL<P2~< z>DWp3IXAR;$IOI#)J8MV3g5iCSpgUXRS4rv{-pL4pODmy;-`U16p{E=s@g_+j<s$p z7)p$;MHUWYpAomEFO=Wi{A;bY(=DXH*nbMwveE5Pf$~!r#$JmF%=6{5k@_h(=YdZ9 z48-HhZ1%{nQVR{NERjPV4<wZttl?t%jl!L~h&_cnAm(SDOKB`CxzK^?YBdVYf_r*b zVdE<SWoUyRHgHXHcG2a-b{%R<zJ-W1#+fsa2fa3H6K*<;8rO&AgrCnfmwhHl8P9BH znJKnW&I$FV<es#x>qsaxLgy52BcY_Cnm|2IbN>MAr>Vin;-eWHcc=1k)97gklkc!O z`qato$p)ZM2VB(A?j!-h9rH@$HL0g*@{y6(sI6EqBFhZ=fmwE}9IqMeT8zRwa!9}f zjBrgc9LBRI`?5O<qN8&K^*w3#G8t!PKD92NADecI+cikjWOQi>veF10S#w;vO!2Y7 zHQHU=CA4wILB=`}#be!RDR2yt923qdEl65!RI}BZFn64a+qAq{QAy-`*D*bmw(LU# zO@ih~7;<sxNGzVH?2Hl22mld|m78~@1zd&q=}D&Q;Ek+6&ji-*n35*t$4;5eQe@ej z<+AxjSPUBJ^vji!0*pHM^sM{KJcVUk6YWj2W`*;(f$53_%lf^p`*#Ea2*4m$ul~b+ zGCmvly`@=QUEIT`Ud*<)F+(9yB6YzX#(P(m%);W>4cKgSJ?e*mb*Vff<BJ>RICv*X zmp-AgY9$pYv?p`*t$rwcKJj11Ek945!sAbaMY}qEq&HKKEismsLcNJN0=S=q+AaM4 zD%Z5jUlrZ>cShH5X11BE)CQ8=xxfVUBp$WrUMKMGnBF_md|3viX{krA!upSs1A^AO zRAjL2laX5AvxkXoJbm#UEv~OTn^tEw;dn0NILYiYT=f%H<!2?OI+uD_`Rn$x@D`8o z<MxKvyg%W~ONcZ}C~el+ry28(-=08wf@^}XfHkNt3a}&*-oEDe!Qo9O<F13PYd2Qw zapGSM-3wo_SvcQwZinV=!@e_*rF>mud1tHK>JwPnJ*B9)kzs;KH@cuW0Jp7lDRV~W zRvouKR#Ng6)Zutuerl<8Y6&4np}?)vYzbWagaC8anJfZ84#G(8D%0q6&$-LBvnkFo z&kK%~EKuV+j^6dBJ*zB-joBQL(xVp2jCUy@4x+b5n<;B_WengK+mXjTF;0;LL>!Ed zTD~9+k=G-wSCZKGBL^Q$(q?N#c4W^MbKDc0)k3>QGJmCOO&MTL7XzuPQpQ5yV}aE7 zq-_~AQDRd$2R*5!vJNqk)~tDMiZXG<M8A0F9QDBKQD$tKBi;x5L{LuL?ZY#6^rxg` zh8e~>8dpGYMt2V9y<pXu(HC`aLdv7i`gf;^Fq^TGdr=aF2Rt6M6akfaAoHI}hK-ZZ zb4h{njsWe=CgR6-M?4N_RKPoNj+|7H+vl7C-vCmuGBsRsbCJ+utXkT%_`vDjrHU4j z@wcxT0=Mie6;O8=^zT~4!evWMFuqFm80WdIIJC^Z0~agE`qsvuq^ym<Zyi9#de(zT z4x<1DJmd<dj&5$pHyx9p#?nu04wZRr+B|M;qzwCFx<jPP5ke4>SDn2otolyS%tDR5 z0|I$HswA(mqQ6nsW>Vzs7$cub%X!<)Jd9(~wdYnS<+3tygW9n!QDZ!v+4QejQdaXh z)mL&vyYk8mH$3j^&1u`;?Tlca4sd-d060K;t8f7|IF*P1bsXeVcy#&}tF@`q{{U(h zISjji1Ofeh>UGqM?;-bKec$U`s!qTXcrVcPsXXixlZOOg4@x72x^^4HX>+AbU+xT& zJMBE5YH7GE3EYDxqZ~Ka-mxRN^Kk4oG2ny!D)p!e-#!RD1sy=E`n8Dm_cR28cfx=h zpeMaa9BvsmIAC}v2WpBqRBXXG2OytX(TWk~gko{joK<~Z#$MY}&72I*oP&-)&JKO+ zW-Ck(q^WMa9D$mS!q4O^LX{m3ImL7qmf|Jaz?5tpw^~Y#_6J(aQ!#YWw35Fvw+C-u zV^$MSV81XwcR5~w`c}V^xY~Jb!)ZN*SQcEdP&aeQrlDjnX>$qfo>>8GDbH5)s<)Py zIbL@Ty+&((TTQCXj1b+<bMIOAFe>fZOJ^jG^wljcFKwyIUPFZb>JUNiShFVN`EoKg zl1J-ZPN1JCzyldL70z6#Op-}+*X8M2MxSBIrH+2~JhAz9sNj-%`c_QnR|K4n0Rp$L zV#}4=xiQW<X0k36lBZ^Q#&i8EWkSly87hx*mc}5Ql_d47Zx(|tn<B0T?z!uV-NX5u z;PJ}(Ru79C7VC_m=bV0(&xxhWO|zzy)$Dln^}0E6o`$jJgf2+N1zf+mEpp(T9P|{y z^R76-{VT)YM0PE;E2EGBzyJ=u^*JJBI5}h9nDHF*k`EZD!);|4JaieM14L2+uZ#jc zX@$lxM+2d!%0m-@^{TTuTo8Gx&=+E6Lm=RE=xPZNsK<Whk!CA`I-b1L>cPf(pGuOO zwxu*X8$HE!+BNJtt(2Ctf2`YuK9$SM11Q`%6t;IyV>pp=4I%Day0m*MhmFA)Jx_Xt z(_sX12(9_mHOnzN@iL4P(y+)eGb<C3*wJpJp(2yz!)NJLE*EPOI(yXfFv%c(HBru6 zuN6s@hUYX;1}LDgqJzgYPytDdQ-vih04Su-N>k4iAPQPaDBJ>&jMC9XfGYNm3A|h! zRT{gb=j}rSBzB-rW22CP5a;h_pGwNSY-b&PI@XlTLJ`mk%GlR8aYm|1W&?^(xtZMf zKG;X5+oXs6V;5pOS922N<Q$<sn82*vBEmSKUB4=-3=Cj{j%!{7+Q@e?7~~P&x!jfX zI9%5;Uj8-(Mnj_x2SZV4kQp^d8WMB62Or4Pw<|5x$c{0NcCI-!>mLce6J6_9VUosK z=W-e-<6Lw7=Ju<l2PS6fC?kUXq<lkrAHxp`cye`-VwU;t*Ky<JUBA}6r%U-Ej|u=$ z*1fm(;?Vy9;TiEqf^>PM6W)tSZfDqXs9AsjepTZ(N&=`~nMN=VTIsf@Tx9uUb51S0 za?D8Uno!`NTyylRI%b(JrF8|Y3i8b>g;>>dl6wlZ;$IAEJ`>b_&wmG#CQcV2v-pnm z)3ExTm%^Wt>gklI{oXRekF9zzneOCefO4k=+<c=o=idn}lIm-<m06WgI}gW-?{zI! zIAro6RYn~G^&eW`uHvP0if+=d%ef-c`7P&May?Xi1#^0p#G53zG6Nzn`~-a~N6L8{ zGDs92clE_!_=@DmZ5$ZJNiAM{=Kj&0?sHO|%Og6LC!M+NT;8>+g;tI>%AQF*t3y=O z$PEHE2SbYUUm0twZeG$BCT8K=upX5(sk)BF^x)?7F?>y}oB8~da?qzATEQJDNX-CZ zy{JV+Sst2Ps=@(^S`Pw%b62rJMHC8X0*WZ61C@6$9<&rVCm931HkDYeK<H{j6y$sn zlYva56zl`tfjJyf#U|DSbg1d^sn4}YG<7;P;dq%CoDti-Lv=A+wmN!sto=IVMA>7H zN-r;qzfLnv=x1ZxKVtoN`yck2@KbKuF65TY{*HtX*1t?I>;xWcL3vgxL-p%llAp8Y zpmhHLj-CR!EJ=@9x8!@cAJ)HM^{7C*yWFH7F^?zSy!!CFHH@r|8&b25P}^0bBZHnu zu6FGeUO+}d@r}KB>s^kexJE%@3GeCbE1J58C|M3h-gkAcHgL9$9k8oy&KpsMm6>+n zH}N-0<}a<rUn{kT0CxJ<ZK_5cm<`LGr1!33_9aD;iTQ!*Yo5`1BhsZ(=OuX;%G~Fu z^fgy4wM$3H1CHjkE~02;`Ec0dlaOkQM5WcY5sdJCY9$+JmWO(lgb1cW>cMv7ameTJ zHDVa|1wBaTrAHmVn9R}u9G)>(&=C*HxyJ>4Dy*ACH*G`g<yk{?#_Xx&8t1%UrZk#k z$ixr<+mVXvt&otM4Ep1WH4Qo|n@Iux08|EWM_TTs9$ijKvgTGkX}#Cl-o{v3Oks#B zIs@%qSFT^lcRLnrjQZDq@iH~j^_k&~1Zd=t2iKb6W7D4DvQQD8_3g!TMISdM%O+tY z4J&Tj$E|Bx*x^Hwj2zaidSq7F$s31irG0xG0EKKEb6OF&OK`Ts3xIm!vF|U75~aEI z%~rX-GL|45<AYU?Jf6PvuX2(nG7Z23o;aza<O~m+xvJ=;m;utS+gh{WfOFoa%v%IO zk2vF}HFDT*Jc0&zsUx%5g2bHl&vRC-;lpx3#Zfo5rJFeRftL3MuA9Ap6W2X)-l_>v z7YZ_IKG35%<NciV_o0Kit8Z@CM<02QAB}YO8ccQ&268ug9>0xpmKv0H;4>aaI0mlE z;wPO7A>0m58`6{4R2FW>G4USdB%UNj-Hzj-u4cwQGq*YISA0!7++U6S06J85Y9j}s zIO&=T*=k99If(+PI3tl*(?0Xlk6N{PId<!iII1j0dSZ>V98(bRXgrD!N?eRki(*kl z8OPVP0~|R#@lV_jBPSlT&;cFuP9LQN4^Rq&&U@7G=XUHIXQe@q7dgr4#aXo{jAS2r zEGBB(0@%+^xB{isE`nMS(Bp%iY4%a_3E)<Dh~@>62OiYcg!M3+rEB<l+s(TSMsd^H zvMZ$U>|Rt7N_{awq_!j0F0*h~cHpBOdQ<E#HU&^d-r&|%+1+sM&I=Pyw{n>sR-}!Q z(aRiHF%m#OTFkuAH-b=L_8F-yu8V&T-M+o+YSM8i`=Fk~(w)fjM-F0^)<O<J6|JUf z#w7u{=NUD%sp)ZDMAD!c^zU5U)>2y?+eibYH{BJ@bFQ_$OQE!!j<_DQ`-?oNbinP3 z<!o;r2ON+yT`r%fEyfj(L!A24PeNHeoNiCe&~b{y*JJXoqhO~2>!En|HuNWx#w#yd zw`syi;PJ@<nq7qMeO2&D+r>T=&?9)#+*&~`tc?lzpQ!<>GxmJcBenQ}Y}ZdDR%YSj zFvE~rEw>zUF<lqzw7OQW@L$B%){88f-KM2)a#^_9Z-c#u@~$(((@mrNOVtw6LkWuH z$q@&ggy$3`cs^4Wo0;_1r|}l=_C4{=v3h(P9QM8;(<PHmH?OnHWh4e8z6tzuUm$o* zrn<1XxSwa*XPKsvP+>PS79e_KHPwFCI@gN4L*xAyQ}HIVb*c$077HOJ6(WQHc7-1O z>z(jKMfA4~f;Wym!0TBkIIEjcij0jz5G)HEWOAdY(xQ7%7^3{Z^}wx9FKOg)*QY~J zuraeXbByC154BWP*|gn}i13oeGNXm+I28c50B#?5xfQ24+A+KD4oDxRM%KX`k;uk9 ztEZ)z<;mVxMp%hY0Asl)wO5|me9ycy?OKvA497c(03T|v<awKi-V8|?6cKysV@(JP zfHJ*E^{P`q9oGs8;{z4Z{{UwZ(Cr;?X_9G*NGyeY4J%)Al+ID1+>MZOe(!8l5?f%e z13krb^XY9LBMiKN4QI<@q%H?j&S`0}tX{jAhBg@r4=1OkI9r^r9Czox(zIU8=Wgr_ z@wcE9!E8&FINh9&dc~u%oV2k`ZO$@AIp|L{Ab_aA!98(T5dxeA1bWh<6(A6H`jJ_* zbws2fEs~&)I(yZqpe__H2X1@Q;{mc2PbaArr)z2$5}cl#)V{-HmNuJX$?55e>GaJn zcRLi1)~jijIbEy>+%cSF<J!Be8%rFWyAuIQsN~hg$iiBYSZKsVi?oo#Imb%gu+Yg3 zlq0t7y=!X6N?1^{=aMj|wQj>`kpN2J812S0iibXie2C@0;UC-zY;DcTvh&SQzR=KQ zD9?YTdK^}fxIFFv;A7UR+-R``We9PeeJD=*gNft!5cz61A;vli#J+%qU{?fmuA=(b zyA=zN2{;~=&t1j=!j4Ed$?acV?DRY+&dkI)G61X_cNjgfP6)^XkU}0#4=0*g0cK^v zAaywPr^bplq9MYJeATRJ*<BiQ^JptV03;GgZkg#$5p`~JjyCg25X*GP&Nw|O#2}P~ zEI{KuF<U~Nx*0j>O=$|2-MF^noL04?0PV==2;-0|8W8M9IUVvVUf8sQAO^wYjtw_O zuZW*%eGO|>#Gf%3BY}?9t!|*mjl7eMrzW#4NK&L7{CvT<t*tq6wOJK^8p=>ewDdX+ z9uldr;NX#;QT48Z)&+D>Lv3HW8nE=jsoAj0%8s?sTDB2OWPyRn=kcy-D?6=<O*LY{ zfIe`l#CJZl;SpsE(X+`E<zePX2~xegVAGU|BUu=+INO}#idO7Pb}LU5aW^Z!Zyk6w zn|lBzR^YZc1Fdbcs8h5Cz{VI>P0MalRAi?>7m#X_=*4vPIeYk#;a~v{*-#H3{;KEi zCGtX?a<~OR&o$IvL<=w{4aoqGb66KKc_m38t~vwx*71n%)aS1X%+AE+w{kiYSQjd# ziNhf|&U;r$bh|hO%X%M5!?=XZH*5eC_ksN@u9Dp{FR7kVFvZS$53jv*o-c(=C<2hg zpO~L+E30J7o(h67gIFFfw=wCfDFK!#75@MX@^f7H+I-X{ZidunYKb$zH3+<$rzG+i z=A8){$OPx5YIx61YkfvZ6;GDOa{VhF)a0BK^skLxXScaKw;qGJ^s18g9DPBlrf{I= zBi^dJZztdNqh<{ujCTQm0QRcV4cN~F)bG#?;Coag;jw~g+d-lR`@~Qkm%a^HHrx_= zR1Fyb`+Cy3cTBSd*=7pduhOhdY_j~r)6%mC%UhZgM{=eo#{6(i43@hUH2c@ExW;mX z^Y2<0YaPn@u;VBAYKEg_<w`)n$A4O<9mCu7BzuZhxb+s`5uEYuRmUA_TZw$e-JH~2 zY55d{2L_#-(ru*!6d{EaQB8nRMF8fF04O6kqKW`gN$W{P0OZmD0~Aq302QI4kMy9! zsI1^~T3R%Dk(;olg!VOV$p}g4eJcL|fOLk{{6P)}$q_OVPfS)$p(o3M-oB0fkp2wn zpAef-n#$GY$q_4T`=D}3rOM^*qn50>A#*C$!bg}Qrw6&>yAKL{I=t~VrE6hh47!Eo z$NH;#W!%NPXVSi%(m!OAYpPj2!^Vi9eXZ`7<$!$$Qhh6=`!<i^Zy0I%2ZWgEvRO!` zTd3mN?;$*M>5kQKqM@vhBb~`;dFO#YWJ_NN-NQGFZdG+RQ7O~lJLHLp;4$f%_dO@W z(0FT3c<gOkOn@)?+4+@+)K^uhJXZR>&EQ!zi}oR8pKdt=vFTi&iRIL9+hmMlg|ZAW zDR<Ag>0L>3t3?yZ?_HmsU$*7n+I~M-+V5veT`m%&obtqzUSV$$2XX!{TJ1k+$VvU9 zwWuU48Vh((?>RZ!pX*$NDZPL$2Gd-xbJ<JXO!U8mw*E!s?w}b~SfVke^MW@InTNO) z7sPc-y(ZRiGM_2N&>M4Y&N6*-SpE<3Ww(Z|<b6^jb6~>`vFC8(f<1nfYvMnTY`j-3 zlv-uGL1hdmuErpqV-A=dKop*`u?qW_{u;@3<<A@;n{dHp`u_kb?@g?Bo8@2(gl8?@ zxNn8B7{%Km1LYj<_3d4Zk_Tqae6YVZdsmZ+U%a|F=X;4c5-Uo|tria+zgqLJ6l**0 zUMR-=3~p1vt&bA;n86&D)~wOY<L`ly&lSLH7b8crl53aDnCRWjaa*0(n5+7jekj)y zL$`1w&C~tG9QE&BVJy#aBS`F7*yNK|HEl{wPVz~dlaum;*i}8%?NO$wuQS)D4n!_< zMF3)o=rsx`qLsiXqKaS?9w?xU&;dmhPyt00QnLYi8hY@glm7tMrE~%%Z1d?&9QEne zixN09b?9gWu{k+3);T;=hCY;pbpHShuG+`qCxxyNwlsRRs|G*y)ob><#3&@cx!V{D z9F;ly)%bbg`-5w(>C=OThUzB=9*zxu-)k2FNn)1+62TOoQe#tG^<#T7Tehbys6JGJ zG8FTJ(z)GGEO|_<oN?`44fKoy;Y02xh2s^?>N|glLi!QfxaSM#YZ*4qTKQPdo{X#b z8s;yfJDB7yN6ZQ28tSz-1h&vNo;M2SH4KCsPnbv{f%F~gj!{r|JqmJY<?azi^3AmY z=xT$8V7vgqv4VQmjnvAYbnVH=?~0&Go(U?%^$SzUcYB?&sh~oQGAjiEfXi&@RxRRe z?aOj@;~jHFyeO%I@{YOpt1)Id0SsAs>>Pe3lw)aVIZDdp_Ua;rNY(MQ@JY!B&{MDG z`#rPoZ<lUQwK^1LR2fjul2i=w+ORxrel+bSL%3(lIaA*r)z=$0W0}vZK5qDlaF_lm zoD$80f!~_vB$gWpwz&h`b5rX#=3DuuZ@%nJar%_)EQgW?O?wG@sU9q!G@E6ePg^qY z8STLx>z|h4rEHeT#wtS;k`aJ^D!*r;O*v2ywtM25LQKexHg1YdU$xTYl&{KpJuzL5 zhu|6J8{H1x_!ZE}q1xz{!RJtjI0W^pvWwJ?ZFD%h9}T|U(t;PiAJVV1R@!_$2I6=< z@lfjiD~2~IY^MW^<E?XzdvSRCk6(J0?q07`PUihtw+^*cuitMO2c`uyM2VJ^k&jx@ z(d4w4HrR{cb#ABWO7<sHC{1@JaI7)vI@Dz^bDu4Txvtg=yJ$$nE3|bFR;RqMod#{f zw_lf`G!?HygN9p?_t5(DSE0Qw22MER9jmAjX>;djkq5ZVLpFnLG-cs@W419>w#2iH z)j!g&gJ9qf&YLR~LC|{o;;i0bZ(DCfJ9AmLcL2L`eL7V2(6XGbxsN1(YARm2q@#00 z9cTi8F-khq1_Wa?&@eMk>PV)JDT?Ei@&KnvmB{NzDZr31*Xu|JA>0pR>sKuhHaW?v zaf6n~&1hIC-lNynnJn9lSz`_x01Rgtu47cXH&;yA$Q)+6JNtoaVowTjz|C?yixN*< z)T@mOgL?own(QrN7TRhIeg12ev5(B1N4<2{cLVn@j4sd)XzCJu3Kv$q?mQ7xO6?1b z4sp$I21%pH1+Y(1S@$pl{5a1_d!s$IBDav|2d`Suh02h69-{`cRT?~Gez~jA@^hLH zT-Snr04F#el>3WBxI#b-aniHmVls2|=C4C8(mHWeMVW(lro0Y%u6d{0%jL3;K^4_p zTBYnfD9>UmpS-a!z856-z^Soovp1l-^DR&lyN-jkMS48g{S?-2n?IC7oM3dVONJ6c z#1K1yO+MsFHhl;C7G2ME;y)31YAH4iV@aAdE5R(hfm8ngV*#ptx-hFGM`W4K@<GAp z@UJudoP1Yv;SY;`7`}~`B5xK63pNLq{{Sieb?Uw_Yp(_TQSly<;JvlI+wDf+VUFN) z->+KI3hko_XyVL&+GU{B$Azxpk>rxz$Rmbq;fo*2v3?&R8Xopt>%WnXhOK--jB1u! zw=b3xDvB~e^ri3}x0B&pa`{$fW+S-gp{%5=j;JThY)B5x<uT4W)jOgPE*lBdk3&`` zAhBh@1aZ$Jo|Th*a3d}^W1MHPG~l|jYQDr0%0b-N<l{8Pn-~f}$5WcB_W+ZDh3m~5 zfox~5Ijzq&?LA8&7Gty?4<!Epg-Z+@K-vKSag)t5Be#*3P;t*(VyB6G!lWh_+)=Q` zsMvr6-a~ioM5>1%f^a(asf0xd!xGu-I3lEl74X1r9dJD;OdXbne3tvj3ZNgoxc;?T z;>iv&gFP!<qf?WY`ANZH*wX!&vJg|K$jRoDcGyczPFh<64@~6pYP(t}8DLJ+fr{vE zY<4o^g*<J~H9|;s<SLbZp4F6-x#-cA(UJCbQ@L_mIKcI(Jc8NCEIMR#6>Px#5=m~E z9Ar~ON~+oAy5t;IO&#!BmEnV9U=xAehu*D?IusZIc<MOoS@FgR>9~9Q*42b6Bn^{* z27mh1o7~Z)wntN;TYy6aJBI`??d@KJr0Ma=9A~b3j<v{WcEx~w<YWK?cK-nN*P>{! zvnq|MMh1OBsB$xsT}=pWnFa{oi~zW;1&1uVkIc+>5zykF2rz=ookjpBky5HSA1>4_ z(6aRPtW#~=$?3R}!mY87%B18kLQP2a?JB+(1v(DocB=|LMr8^HcH<ptXhsPk8Ab<A zgjR}HBGx<)P(ESLToKUVAFW{DCK;IW**pr>y12|F0stKkT-GJi1<BjM!Q0>KU!ccb z51Cd<?9Oe#;9#)oPf<=t#Aw8+=bp7`ZJ5l*XvxRTQ^%)nBrsq-d)3}3715r+r}tGc z)OV+(Z6*Qq<&<!1Sm{O4cBV!E!K7_5lK`s>=Zy95T60IC3v($Hs}&jJu6tIMt8M|f z9FdA+TA0@?u2>xOsn#PC4Z!@z98}JtXcE^$O4>kGK?H(+nXRii{J@~+YWjBetQd!u zNFePEmC5PFXj)tZ1$N-$Ao`l-=SG%&PQOdI0!0`B`;Thgx4cv?qn0cKAnja5z3$`; z+_yvT_|}vft1l$=<2m)LB#T~WVFlti04U({K=1EUo1-%2akw0FT%3A|+wzsl_dV*$ z>Ws%Nf)5#9#-Y11(z(z+pfShZUZn6om7jHXv9l6(x%=BqX346vI~F@a`Y-dWtK0qT zGFxw64O~{YY=)B1n(lceV&f`=5L*?`PjDo8BXE7V@9k1vTsds3I)FzFRb;u!NCM%B z%N6cDt9Ue)qLs8L-ENSa1`-9p2C}YEi3;2hdyYT-b*V1WTW;jXBb?+_3DawZ#~ctr z%GIi=YEy${Bu|v?Dn<`Zrn3A~7@tACK<l_f*vAJTb*;7u89BxQ#xc%o1I4*b4)wFS zOk^C=uT^_FFCytd^F;FfDoalk=__S-AddPW!@uzg<h8#IUFbJ^B}WKbf(Hb8)jO++ ztZux>a)&*urqg~REyP|%t!|fUzzxK50I!K%k8al3=3X_G4goAV=CfRU<YK)J9V0>2 zWG!ib_EuxeGIRs$S=zsWF5*)qx~<BCjKsj7%B^_{_c)?R<2cPU<bB`Qy;;1{?yVp9 zmhvt}M&u(EPX$+=zT%fdLfjK5BYjBCZz&+K9Ah;~1!-I^IX&vc`ZUNg0XXEERu+Ow zVvMKDaD9h*t!*P(+$(aV98+2;t&T`#^fcCypQ+6@QLCv*xW_0t+&Lz)UH1$MyBw=` z2#t;i=zZ#wp++irB9a7#(@Dvt2Q+P_P_$<hP)2EhQQm{Vqy~T%iYTLC7K2HgQJm7; zNITI*6#9%PqKZ}ktxX$&DfJbWYg0{JTd^H}w3#nrXUvm;6rM*N>-D$x0n%)|6Yz*j ze*uou?Gd%b;-*;0{OmtLUzk4!d@~=6ek5pGRKR&t-XWB?-3S;K&$cV~cf&si^q+=4 z9@O;PDOP<B^_KB1q*431HUZbtv`}(R&dl>M6&h(<L(4ul#j9$5AQyfO)D}Mu2*kHB z%Hlnej^jL#MLWZm9tg0}?0iiP*Y>uw{{Xs{LU$_3j!kmEv`4~E5?$!SS@4U=a<ZQ) z_Qe|vpbiQS^~d}h)P>facc9)Y+1$J$RgQGn7DeHPI^>Gzrxyg4=Nz0|wmoA|@uU~G zJ3P!GVTFirM|!Dyt3(x&7cm3d8O{$wTvnTHI!?;5^PCN%kEpH5&{)Q@O8Xl-h>+s| zQ6|xGwuk12?E!w;r|li%Y2=g5D{vyn?S%ssgJ_}f4?r{c()>Zb8mGn|8)^!{)=f%K z8G2wG3{qR30}c*3#dD=|)RxH)m}G_E^VhXT5AhMtKssaIqz(_u>Uk!S+l-zDdeONr z-C7;r!_gdRbCNd|9J6B;wX14{B4tB?{7es8=6oJp#WKVhn1O}Ha&ywJYbq@yf3*;s zMs}L=F-`NFRTsT;CjRH_+wSgP%wW7A^zEAR4;^@c^&6ikIU_k>PI2vBZ;N&IOKC1- zAR_#TqxioH@|mSG%JMhfW0O~hrFYFEvV;>{%w-f(6N>as&;t~-Q9=ODXrK&HOah81 zpasn(6a$(!5V#$v+qlwIi%WL7eXG~4HLC{fM5sx}deqQ7E2?;(RJYS~n=6e*{&vK6 z_R*JiKEP3JVBc#<vNFVSMS8Zk;Lj8MD)@Whe;MiX{{UyFi7qZJtu8I3D{!JL2O}JS zbJm=!k&iQO$nrg7N4e3bXfBbGL}H8&W(Nd)MN$~sUh!k2uBZDfc(+&ACskW5YSs-C zdIKcWzT-Fz)PT4ruQlN0fOFciPUz7MBom&3oG?hoT3{U1h*vyzr|33Vv~shfju{zP zeM1WUx0d1N(=@px<;|73+6Pc#TKq_d4p%+df0(b@IqsGnA4`vxk+l17ybc10m%U?C zV+xxTwHXu~F)5CPc;>mSN>HJQ1V2og(Z0Mq4WWoRIOi45-&_y@X5Kl;Bi69xzNIG2 zo9Tkc#n1vc2R$p8)TRK)5V~&1&DOTHIaxStD97GB^{#ID_DJBI^ec{l*Cj=%+fG(7 zE?hG)1Qy?%5ztjq;1k0UkXw!vdsU0~Kf*V2oQ^V0Qz{}%zDQA$19U&uvGqG*?zAU_ z9__ar24j<ozi*d~3j>!N`Y`&|Y)_q|j5j-g!Tf66G8OB+0UQOv2b#4Np<Kp|uz2ye z18C|y4@%^IDcmY}Qsvkjq7$Cvcdnu-&z4nkTx4YTu0!Iizwt_60f|bXJn@by>8r}- zGnS0`R{6ZyODh)l^{TPypJ{M=lTqAU6beVuuIU=QFtGCmMtU0dk>tCxb3yPxymdQ% zP<bR{HR!rWge)x3JjHs29N>?7<6-fVS|AZ^*g9jaX6n8>nZxaT<a*K1r@DycZQSkr zTjM()4cV2q+HN)wI#-A5zAC)dCuWvIvpfvbbsM?$TZVRG*sANMZoxf0DLqx$q*9MU zswt7P$zjs8zz{;LPanwCO8|sp9FE<ol6jNh4xI?6VDl<nUA@fs=WckdjXq&*5aegB zYNR$IGr5O70IRXX9snmk$E7O=TN8QmPDsH3_4ln?I|nf-Ac53oqS9^Sna;%Cz>ERV zRh?ZHS&F>x&<2eTG3`~MH@?KuHKm&7S>st0=V&!YRPjU*TZpXkWnuFYI0xFXb*%`j z0(dtS1CUNgtXq75K_pa^yO!QuM#LPG$v*X&D;9E1Se{I9K^dxj%>|?elYvV`I~E3t zD4+$!1EHXr2NW`FIR<$qo}g}~0#~+0Dg&J3npP7gjaauIm#u5rE(aqZdscO_Vn9bV zw{8WzZ2f@iLUtj$nY#VJbx4BazH1t+UtBfC%dt5FfmP|6tr4Z5#9r}EGDkdB{Xw_g zGh=BTy($d|2;-Jae86$_spJ__#N?j7l+wAIdXBZ9%NRX6in0|ZQ;g#ko01fBx7^k1 zSpmY3c<)BU?m;9R<d4ddC)nT~p7o)#Ad{cMt26^}BjzKhq`QcoFeGABf$N%Zm6YV1 z9Mn*-NiaoNkwl)DJ@L|*8dev$$5Ghly;`2!T_FdrUOHA3Y|(;LXB`H5*3FFhQIVDY zv^(EYOsOsWiFV_R@&{VBPWVdg9FI<F^~?(}Bmk#49<@Q#+w#ModI~1+{;K+3uWfN3 z`sgM}Q|hD|`&;5)hAq5p@f%Lo0NVz&q(OF)d4Mkcm>~TKuY_)<RFo1vLU|^>xbR-7 zb>e@7UJ2A<ki7au<LU0se}frOk4oBu{o?a7s=eEsq*koYab&??Ycg)fTppsgA5Lu} zPJw)}9A$H{yPDCPPgAJfM#dGoc?_TcMnUW=OT|~KtNc9D<x3N6`dqJXb0+WgrH=&t z1yyL;OmyXV?r<0PvBbG<2pPcdT;=8N*I-8F^**&?{^^v-yQw%)oZx!a1k?WTXP>F8 zqp39{($JjTXFIXaTC)tlI2a&w&14&Z8MC#N`iiv#n?^I&(zNtBS~jic45fN|`qkB# zv5mJdJ+Nyc8OO@JH#~~CW!|~K2N=SdT}azf@Y)$zmuBawz|Xx%ueHDjX&{V_n5uD2 zj!KZKIS0K?vXyU`h9Kkv!KOCRX}IADWdLVBwLU`f6r8R(>MEK@8FB_n<c`>>R!0#G zpMH9Q=}yGj`w4UcsUY!;b6N6`k(?&(GnG9vR_2fh+z@feJHMr8$syRdDo;$F^^~r5 zQGW3R&A8woQ_xfjzr6XBw>T9frCGs0HaN)RH4C;|X~$fUJBsIREe}>Bk&Bi9oP&&3 zmYBpo*B}AV6V|eUS8NV2GgfUb3`_~Z!Sv4+oR*pz-p8Y8a+N@2Wh@Bk+<Vuhcz$A1 zGQ=|vn{ekf<QgsLUyv{bd!G5PLeMn<8$_jvR_BAj6_dNvPh-Efn9C-|Opd-_6{KTg zKIvjPQh%*;`gPngZ7Sy>wu7JZn%A_sP(Ue$+;Yc^)^7Sc9NHHl#!ln)_M}xP<c7%m zs=cWskh%bzb>^zv-k6hVWiO25psMCui21_iatT023FMyCf-^jYn4Bof5rdOiziD{~ z4hScwa%)#kjE$~Wp~>2J0Bi15T@MO0w7GiD&nKW^fx)edeK-KFLgWsV+c-nGBb}p` zZZlg}&|yI+3jY9m^{gjdwWB&6EsBFlNj8v#D)ac!CW;12@q@yipr1<U?CsgmG06-v z4^PsEw?)eE2MP~fopW685YxTP-6W1mYZX;i<d@3x)jqXKYd~ZkUQix{oc6A&;?$NX zyMp5&k-^Po+}im$Dww0|9NV!fPCFQYta2zIFdn^0p=HMMcLnwpJg~G)CJ)T*kWZyl znbD&=e&`q@9cXoRE7<oe!Fp}+obKpydsNWsVm53xN1?14BoW3CV+-gHA4-VckgBKU z&lv)#*S^FmUCyNH;nj{t1~{gjU128~Jm8%7u2kP`QgTKI1l2axu%YtXTx5e)?YW2S z+B;X)cBUhd_w?lT_NtR=NaV0$OMU9&B-X|c%ufe_-yN#V8iUAymQYCOd(rI@jhH%Z zJr0mutCGdr0CUe#OnZ)cmfSIbdR8PCgbbq-yDC8+%B{yJ$RlYP1C9we?^5eoSrn<= z-bKuoRo%PLlg`>hmLz1H4mj^o!d0;0y;SqXOhy?`7*)ncN|{!%s;1clilpQYIO=oF za=txL{{RS{q{MF96CMUDt(|u&s`5xbFzH<9jiK{ADXFN*Re_m-?~h8(rEX|i=8&Y6 zu6*luyWkv?kO%~ORvd_8lOxu;OVQ-pBV^!?GxV-z;!W&*b6!4&V%!qxk%0_&t&Km# zcUJDDW^9g!HGl?ADtmazI5`8>f!Q6bJ}$m>3iBBg2j!4%$LB<voxQ<tv|7P1E5;We z%DIi~pn!Q5G;*E@=RTdNPRxdCwWgUr%$Cm<27XuRR#HT0N-kJq9FA)?CnvT6<l?Sc zxeu0Of#@obo9st@rAaC#04a`ybv4i3=(F3g!Zrt|IIi;SCH0m$R>uS!5nPqs&E}l$ zjNd1y@Aajy(|0h4XwN(mPLf|RVTU8VX@6<ODa6nz_Z@1T>4*?eaz}2|T^epxqKYXL zCfZOjMHFlSMHF|YfGDDh04So0U=&eBAPOj=ivXZzwJn{av?OB{mOAszYQUvJ1;#Kq zp`$q-yZbxawYIH$ss$c$#pJ^w>WofF{Dpqk_;bdq<DZ9m9<gn39vi(nG<4g_x~NwD zYw{C9@YKH!?eu*%bBnpHlJ;aPf}UW=AC@chKlUH-O6&d&*Ze&s;pNigj_Np%IEnu8 z2kY9krtHrqtel>Qxvb|#xVE>JPcBK}G9zd274)w;*0eZvuNB35wul)+258i8E$dw; z#tEjg)Vw`&0y88`@s<OiVO-aXd|#)0IM5qZ)bEzca-_!?8Ioql0SB#g%1RoX@lEJ) zH+rU(phbCcb##%*42&2T17|z}E9S3@9~ZR`8%s5wn<0Zt$@3)W(r|w7pscSM_{scN zt6bbnjco+-dEQHPW1b5iTH&?rZYx_UcHzkka0fgC$*&&1A-AK@+9~XO?WI7|Y8r!_ zkZxbUUTdI?>>GLGwR7GZQ#>*=95c+#lkQD)TLxE*upD|1t#wCZ(S1ic7EIt_xaOE} zI4T%)`c#r~oPIc}<#D@kBp#Tm+(&=l4N}iV({*dRwO5sVv2F?Hc5-oC?}>GpHG9df z=6#FH70&=wT|I}8LB`SP{cDQx_lXRSY#?9<{Io0ltIeDo>e$Uw=a-Sr_>)>Xwc!YV zaGWUh_pE&8iU7rTMJTHyy(E>8QJhgh8K7ZB6jQhb6j9AE3MitB08yOMiZB2e>q!Vf zz^htx=H6}Nt}#_>LqpS~)b$u`p#i0pf*>aYB;uXzsHLj0dGDmTx>sg7$m`a=i}1`I z7}tC+;Q9P`y7b-~(2R%5)29dbOxv9lH$um_uN}GYL_Qz!Z}v8$t!eSk8z_0L<nyCe zJmVv;p{~2)zlyK*4IanBc2*WKPiq)yWz*!(nIAwg>)xWJMC}#3Fo$+_pS1<ggFYa5 zA5QU4gtdzg4rmrKi!C3((6;%ZhxnzGgZ{OT%t`hcua;XmrMQMmX__fe$0D3Eu)zk9 zk;ZAH(a<5`s4PolQXWk{G0FCzTNm_;f3)gWaE=VKMxUDjU$UB*SfYXxysBG5fqQWp ziu{TAZKpn`<IfFR1@ju?Q?@{Zulm8#zgzX${GCGKGm;pnC!Plau&L1)&!L4Z!Q?7X zuHRFESr<i=kT}jyHK}k*7cLYGV1dc3yVJO2<dQgUhOv4gmghgIN9M)>!hwQw&JA-q zh+()PKKbcgb?{NUcF?K@?DhO>mDEG|jDT<C=g^A6SCcxRj%w+QMMDC+zGKB#X<Ozv z<Q_*_vv_lqP|UeJ4u1}6k_O0S2RXw7*0O1xDU!zQr*Q@McJ!&CkxG(7Z4Hc%<xno& zp~^Bo><m+oFDNsdmn-Uhs#lq9T@#7QoCanf@I5nJ$HXa&{v5tWZJ;9u$;WEk3`4d7 zAdn7w53ON%p51S3rj3}4#=zr|R|#F2Jrh1bxw<9ujC)mdn5I}Ay{guyW?{IRHYX_L zbH{qEBtZuw0P-u>TONBJFBwNHYP()D^*Q!6UCH2g&lJ}C*z4=<Rc!@xLM!D^0m%2O ztEj?LsO!hQVBnLEgS9zw20x`PgEo!CM;QYnxTdwzk$?jC7_7+n@6Al7bAm~x-(pE# z<bj;z)Dqk~WaQv<#XXmBVow>ssbaT6!^}HH9z#QPy=LOVQ0d4WYku2aw0Q|@cHGC3 z#-OvZvuOBVoOS1|NhP(vn~2o=mZxsPbGp*3EOm`NnL$IehEtF8n)6Q*X(vX#bsVWb zDX#wj!o{tu<zl!|+t#r>ZEAH3Lvf7l=tVcFo~hjPnOw-^ns0CGLv{RVDIEbt6i`rO z6j4SvrXfJ*tr+K}B`S^FP%DqlK=!Aq<c`Le2IeQyricPYdUvAYFWE<vy8wWAtGblJ z3nm%mz3MwyK*t-q)eUNJ@`#l1y+tdLYqK(yMo9FescoY3W>N1&%}whFJi9D)-Ofcd zlRXCNo(BYo$=IWh{=F-q$pGMXKD3dOE4*jQ0OOP1k|y%l@_h$1_x|pBcc{)=<x|go zI#adu7N&%4xdG~aw5+3Y?fdmk3CeI!J?lYbM%oIFnH*E-E0w}+ecc9X!WGG+b>QG+ z5lH|l#OL&+hv+><2TW$BwV%p3-Lz*k#zDhmjL^{ojxt9)(Yh7vYl#H0{G<Xqnxl4} zTON1knwHK$R1dmOQAOJ4k=GSSn{+TWBbeWwPh($2e#}?@0Pv9bE5+U&^NL-hE2vrl z{p9=D{43{M)43%KxIL@9{h7RTAA^1>XwzK~Z6|iLxK=n{Eygl^fu|PJxThP&$oF>E zuI0Sa-uX-@ig6=H%laRsb=FX&*M<B^rO!9o8tx-JAf2HcbGUo)UtEub9uN5G@UKjY z813w}-98y2hVmrZoOI9Eiuq>S!n&uz?-^UzYe=wu{{YHIkmNG-EzNsaiYj!~SbWjt zQmH7**~@;1&6<_j66ZUC80U=EMAsn*1oi3dU023kD0pMyMz^M+EfjNku$%#y+m$%3 z1+JGPIVaM*jgHl-v3agla=frT#Z3jk;Ee7)vsle?OMIkt;8c-b6lOb*Urv;hDW<eX zP?sx~!V&1Auf;y;G8-IpHOfJMwNwT?p51Fg8^F0Gk3C4Bl@q0oK+E@!BRq4*rAo4- zfC4!<8@uMP?e73kRDcI;Rk3s*cJ2c5M`|`9$5UZu000V{5OGiYK~~P~#2%HA9O?>; zfES?0>r;KG7|SpLalt1C=}zq+QP8(>KJmHOa5^5fkuA{PSAm0^0Z`mte7%Eo=eOfo z@?H}rLkylXP}#K=XQ`lWatH%z=f8SB(!8<82><{&&1bB;m>lHw;+)NZMt=7o=cQox zJxJWpl0d3HeWTQWDpj1Taq{P|HAu>13xEzV2<w`YEKUJj43cqEYZ^9mx>fg<a9l7o z*=V|`NP@Hc*x)x@X1u=E?5YM|mmK~zw`r+>0elWV@aLMAx}qf2k7?5NTn(GDq<z!S z9@V{Vs^om`Tq(#<dv~uNvDbER&45P-Jl92Qt@5E;r_31lscX5;-lwDg0Bsb6s(|a& z25?WcXWi>0tDFs|uYTPtlzniq7<`{x;8tbdh&HKbV1)G>jYEylT_b|CxZKH*pm$vG zE2GmGDx3vToD^O&?kkP5c-2cYe3{1`PHU{v&y*17rx|Yl09yBFR@)gyn%L>I@09}J zE=NPwx9k{Tf;JwCxUO#1RoFH}nCjW>>04H^6jf*8LCEJP9jl$yZ&ODEbarmU{O#$6 z#wyFi4qb7z^SEdAs#a1bm6c;5UP$d%7BMyha7fP4&{s67jYO$+2?0(w6a?TLgIRZx zmgtNNV~=X+fE!d3^YS(kS@)2Uy%n>Q@~{5@Ua|J+F{)R39G0e`iFCsJ+j2RqONVR~ z93Na)O??WWVYm~LdSqs>?jl|pNiKLiaC7ff?cZ>8wb<wG=T-gySw;(TKN`h*!dMOG zBOsoFwzVjN##E93;|INRm*2XThb6k;o(C1QD{~o24HHYKv|&j<I5^|^)_u+Ni^*bn z=~bTjqmzI-bDE)hdaR_LqPJB$88}$I4bU<Y**GU2)w5$b+N9@iP#U<~Ymw$>ap#)p zG@F*&w{}?c1azm)9J?J9E)=PhfWD))YW=zL_OIVPM(;|?w|4Uovj!N+z^zCn*mo1p zraRVdc6*v7+|ae!2pw6vr?;(4aKxMf4^i9NtH2sUNx@8Kj@4yI2wVPH4^FxIRxY#Z zX&8-ds<{ib`kZG2+PVJ#6e7vty-zKYU}evtKHinmyoF&TDI9mMYsE!j@W!bqQ0^fo z(`d-%quRDxg^!(lRXW2QQ7AkPeznSz-n6y*(|35x4n<P7w`t@G0X0bpXs!@P<}l*5 zBey9ZsWqcvp&u(GVU0(AR@Dd`oZ_n1BI%jmHu4Ds=cQY;h-Z~GnI+I9;2tR#Q<63W z9w}@Zv#5r|x81;Ax$pF+t+0$HTpV&q?O0HFhER5~z&%K-7uK(Mo1(eOoL~xV+)Y^D z^P*wp`N&86)XD7@`YnxyOmM@R<X=p>LQ3U;?hQ$7HAsi<)=~#J?MYl|Eyy)H2eP<j z?Vc)&6VTS3_3Y9NPZ10U@ecKv%vj{mS{8~xb4yQhgzHE~DZpZaGg1LX6jdexMIbq) zp#W0!r0<;4(g8D?C<7Ez0HD!D06AAIGtk$2@UKFL#C|%_H0km7SGZT0lhG9JKgzgR zK4ux?73x0=G})k<T|y>hkbIG`9S?kd6rP%#^<9zf{{R;6KeYU3E%GpETm(W7L>K^m z7_XrJ0N|hABacb=uc+C{KEbHzj~NZ~1}btZ<vUoOS-k7RltIylQ|n%#@B`uk{5|pX zI`Sx%J4mGc+Z+chxB|0`wdQA<-OtcJjK31RJK?_!{{U!emq7))sg4!<^EmzyUjzI_ z_@S$ON!K4xxDJY>h$4~lkgq|seLB@IANY@0_>tlZonKqk)xnVcn@@#y#R7H%)cTs^ zTFTxcPuiuGNI3zx8T77t)!h9GOO&%LAj;l#*ld6Z4NRS7T$7Lc{YOYiNhmSOp)}Gk zI;5pLr5j{41C&ry7=zK^=o~4{2&EZ~bc>AcMg;x*_x(NkKit!8ulv5PbDi@(U4Kk{ z+9CG#g=<N}eFHnZBAUyFgKykPKqCYMATBU{Jk~~uze6;F--9kb_|>C95PkodrWo~{ zCae0d%;CKs5^GjmTnAR(spG^fp(hrWY{z0Ffe&v|9f=xM(qDgx+4Wq}I8NV;D-`Ev zKtx69i+#c4ikWAr;CX}aYrkH{5;c^~DE{&_o6E3y;54$7_*plhXq@`R7mnN4t$)li zb@=r7Fq;j+L(iMS)q|$Tm`+ymX<?@njx*)O%hDXo?6_qz9p}UQ-`*HWfGLdQjRf@5 z8Ng<)0EN-u!kqU!w>klD2|HpZtS+7noIF=zROq=25g*&Yp-6}kdz$%mh3SXSToLt) zoXyZY%Q~PRbGNULRmcD^@5@D1chK*r*{=R8an=0J?zT5#_o`yS!3QFKCk!IM9f1Q2 zM-aFO?4Tq5QCvbyQEJyimBUxsbuJ4B9x-5Sn4A=taQd5iS$mY2_>CkAVJr5HmgVOm z&zrs1C2dueJ2JF6#~Swgp6iJV+Ak&Zn2%~1_|!}HZk`afoF=!Moo#<R$~j{r_Vvlf zfyOPd<yWH6UDx5arn0BFAN^sP2sODYA@rPgt6Pb$Jn1VC`-d#nuD+rr>--%V{GqAj z{@Bz^Z~LbYc18mC7P7dz`N|R@7eprWtntFeWZ3x=w}^l1jd;8m`Qa^pJ>CEv<VgQY z?M$6H&?N{3Ab?S;YmIsOl@wu!QJDM6N^~T7I@wk?F-xV0xxVv5VI#PXnTjWagQUqa zTqS&L!I)EschMR*cx*Qw7vhP;g&yTn7^UnGzcrSS_Kz`_lDOgvMCl-f>_`o*z$}z9 zCKPIH@}$%!`b2&)DZl4p1Ro~!dLZHNEQ`v=Re&u@-9{LC0qsodPQ5hQz|x!-eHmKD zRfh5>+31l)VVZS3`0Vj(dRcC9Z-JUZnGzMu^3c6!_nRMBd**0HU8YV;|7~>&4JmCy z)X1X==-VkZsq*gLFsL!2)(DAH$~qS_l!l9f<)B8Ic!^?1%f`90PnZ(`GRMstm5+G* zyEX&Il%H&Kroi4d`Oxvi#I&ROIcv04&bDH3UAFpT!ma?ejHTp_AaXM)uJX%rx;i=e zMt1RP7he$y@4f44nS8DqnK_E&40hZDyS<juqGt5)A^ZvGs?3w1GeOw9eu}%OTcJNL zIf5d4>Qy;k%icuOo83Q#*sw>434q<~n6fa36Y(2Xq)D?=p8xik>HJ~vMeoG$V6}10 zm%;0&6SgV9SRk%Cz=N{<@PA#p1#|+yI37Gqz7o=?4(X5tb4X<^jgLgl)mY~HV+MVA z>#wS17zXZX<4Bw@`N(y~g}^mF8%AQIYo*PBp|4DrmB3uzOYA9A3C;8?|9Ei<`>Z>; zpwuM4@%b(Nbh3h^AB>q|)BfP+@n58@)zqGV)*t1DR=|WK^RaU8O3b6}TY%Z7b?MlW zcrudBzr4?1<LEMNOwGe&0id&TW)3(dL_42;Rg0R4^a^E%$m2YP8d5K#*O^Rg%D@$> zPc*;}pqGsKGDHK4*GC3c7^Oi%_~vY6LA}P#QlfGI$tHQXu3q)48qQY%SYTkkB2v&l z>c9~9AALyq7Zn;GAkTA;ijKOhW_%mw2ek{VI_-|cmO*ozT@v3wW}wp)&BAYtXoL)* zf#M1FzFt>&><)~&Ay>e-<rzQHo4<USX=jpOWwTWWjjk20Ie$mD&G%-`L)<st<0p1e zz|5+`&40VPpS|uLqS&fkypr)%Eg5!%*iX{F#(&$BtB}6bbKT>a^QoSPF(pZO;PH1Y zc`DC$r^!oei|lt=z3lD}17E=v$S&Q@(h+Y|CUWRqpP_I4@9f;Diaq`@&g9a^hI%s% z?7F_#RtpihqQ5AzA-`N2_^$SSy_gm6({K6Xe{)1nBwG0V;Gc6Ue{}x`V7i}9_8v>t z1+3>bO&AJNcB@(6yzyIXWr4(&iT@lH(YSir@M>W|kLW`l%!#SHoyBx!u4P6dZT)D1 zsL}qL8HS56c*1fk-JxR>b#Um>W3wJRAS6BgkdNg(6GB<YtZc5)`{bsStpI0Gn`&)s zBIqUPmOZn4SRul-I&^cOatO<X9hjanED*dm#q=vl)O;%WL{2Q{`NdmVO-do)ayv62 zV>9YNrKy|Cv&a@}EUFn96f<e8tZ&7+9xZiXOy7fy)Rbikab6MbKGxy#i9K~^a(}Ls zDvQM38=WDo`2O8T78@>iYn_liqe1qUxNNRh?rZ|QHN*G>Lm;&`rV#2(zQ7u3;*`Rx zCjae<Gt6n|XFJ#ZMp{im)hjlKQu)1uJWIq2O9^#rUr3|}eNvUZHaBJmIOY3fe!+mw z6_npJtHKT@&P5+s3VFVQ6(2AC9on-F@cDt|){_N*>3zWPALluJtp5S34Wr#QkZ6nf zZ>=WsMi>U!ow$+qc_tfFN3zTxQ?4aWFW7yB@La_h4`#=0hoS6n^!5Z@R=V;=Rs!h% zU8<%*r+r|N`T<uBrC)^SxY%vqsOWhzH16OM6)mCCtk^|RP`q5XyBHvI;67VqO7U3) z>fd#BS^b4Hl2<M4@xyUGcwIZUaS_W70pr1e&4Uk{%E|=cw*;<lJs)o-9R@+ehewMq z27G1aO4|AD&1sk+UR=0CMw`tffJQlOh!uTV-J124lyQjAF>xHtYrOl0p)@VNA-wA` z#RYIvz_9bh(`K@Pk0Adrs7YDgh~codV@htC@~_9Qq;Rj9tUcSX@}kN84+7b0sw<Ar ztt{rkog!1!)w0wesS6_Q7hr<5HtnQj?v*lrU;Ny(v`|0-exz|A4%4OJJzDKwwm)ws zm0<Z3+QM9y91IzQK;OS|v2Sk?--V_jc(utDe5K7e%FTr=@Cfbf&XzjKO!()@9#~TO z!@ms!A0>k^Rh~otR4#yy`Seq-m+>C$Gx+NGGr_nx6ElLv_mnLcE}k*Vk)_|Lk8ZBR z9|SV-zfT*X_V1QY!z`m{!h6MM-F`fFHbPQOwb2N>9W>q=w;Gz)I>N6y-4x@u34(Oj zbwmD`vVI|P1>nW)3Zy-X+!}$=$W<~{>(JKuJ=zjfT)&>s3NbX#>7-nbDA!0G8i{oV zM%`CzvWdikj-&m5?pfEjNxo!oWWH}T^s5?_3p1lSlU`r^Eox!cZ8l6sJcFhGxl-Tp zFnU;z1Co7Sn{cCzyA|wB|6)f$_=_onT_fM+xN6FKUh?Xg-yU<1^>xG@;>amq>u#qa zBLh~XXV&OW6PK)xXvtreDOgUPz4_#Qxg{|-E)v~IUs@*GJ~=Wcu5rlWY%4s-a`3sW zBMc?^Sn5c(^SkGwr0_j&8_K1tXe|4g({q0<BB)8FxA?Z<QEI~5i$_!GiipjZl6TqS z53hNtAyZY0uP0o39dmH|=Rh_c`H5GU@mHLAgH|jPoj`Q<;O@oHdxpV>1~mocqHjbo zou7!ZeJHzHffrGF(Oj**#WYqWVl}FV3Eq$Oj_~-+5LI1p2KYPap*b<}78N-(dCp{@ z<+6s6Zp*^^tjzGST{#}a@{`1!r&7x(F;Yo?7>gT7T<%bLZT}@PJ1d1!Tk(n|cVR^r zohz=mj?2<U5%(z`V4$>)d($c6W<4P?+Zk87$}xN~F)Q$kH>TWJ!DD4^0?xX1@(9n% zVCBC#mlI?mRK4j_9(7i>s_wvyxms!$k?#T%){&6c;D23t#2deB&kj@@I}(bg17^J~ zcOPJupYW0%rT4#mAFg{U{{`#0XWi~T@2i6@`5480ggCNN7Mxc{e9qY#4!^)A##++D z48*_fn6SM75D}wmnEyTE^9)%vb!3WIk0ajZ>pUBLf5k_k8z#{n48z;nJXJig7WkJI z;iBO#$@UBMXP$iJOS_tofwsy+{ppR^SHyBs9F-z`2I#MnLDkGT@;;Jv0xNh3{rD#i z>g-OeR0p;J)85(iG!tpw{ay5!aMM(k^@C=%0aH=<qWG@wqR2N50w9gLfUW=8s_A^s zH6l7#C!j)!1+bka<!`Jy)lnR}V#ekY&B3rzp3hdp+j(4;*ybxduH!o78(!U=*v$Jy z!zPML{MdH)SZl0)Z0y!oCU3_g;|Y9Jk&|spH(fcV{3&XT9kkT&2JKejyIgXR4Nv=a zTU;S-g_Gzt{-@Og3gfr|W892V#e-sxvZ)^s8mReCMUrvvDdrPY)8PX9)CQ{Hu&Gwk zXzt>YK`s1s>De!kbf6QIEK2EeP#iiSFwK7NPI9Mk4VctY!A68;_|QBgS)npQf82`u zQ@E}ANF=3&Sc-o0KR`WYWVqZZm2P@~afU^E_Ek6Vkl2IvH`x{G&txJ7C@X-?@?wW? zsNg)1-L8y;n3wcQ>ZamY59IM!F(?^KSL;i(^$@<2J5ZQz=)~6oi&zgSnfxK3)gpYd ze8HA6SH7YQWNrU*d}689z6q!?CQrfLgX7E>iW-8B%cROPgr^^R{1~@gmM|}uY3RYi zOvBSbj-<l5Ld9lUr=PV6_9iL6C+MS_M|HZ#NxI}9CZ2!N@5e3g^cG&CK`eCs#$1VH z416!_)EVf1jIcVcRY*o*d`PN>98BZg*qbAy<75}J(;9_z>Xiq{l=ew0B<mhJdwoce z8ahDET}~GJg|9#HI#(m&leng*rsxs^aR=K)StmC-`xjCKO5L>!Il3)s6W{eVM^x^- zh?9N^wXNyl<m-eVUe=apKc?JkrS|h*>oCIV#_y=LXtfgN=Fa|5_FS^u=u^qg6WI-k zm1sU0%+3`dUD1=DWwtku7QHGlA%o7>ByxC3t0W2knJTm+=$0yV-3GvBt0T!j3=u>b z`E-d1uHa!%<WZuHY~xX^hac{DA01sYYzF7+1oD0TIduE^s_f~b0hwzQRw)wiBv(}f zbpeb@v@GV@wwf*)&Br%)Z3<oz>sbLPa)fTTj&b0nsROQS)~5BsJ{Yyw5!BvPRAuIV z+P~}!Vr%%iM0ZI5oc$3bsC=liu<nB9^OiP2QjD!2=l(W+E?aV5c{~Wn^;i2ev>!Uy zzbY0(kFj=)j_@4)0KG}%^j7J;5tWeSA!eQ3e3~L{cZu5@Q{;HmE!Cp5ms0WzBgy<= zM()^hqFC)`O6b<X8PmDE$CP?(mcvbY!k-3ySW*6TZ4Ta**g#Nj>(+wP_cB1FIAUzt z7aU39Lb(PT=Mw+Y@@srR<i%xms!YQ;l`n5jTPTE_QV*KO04D}qig`ILf_o`Cg~xdT zzchz-^6A~*I%8z97Zu0RvJC)DS=Xi~yU*%e7$17yepP3vl(mbBRQF$Nc)VHZA9G|@ z@P${M7<RcM_J>&e(@+QU<``-WxWa)&(tM0p=;*sZSLGHG&FgrBC7c`%c$x$;Yc<Nd zln<Tqrcg9h!f?GZ>zRrIYu6K@0$6Jq-v>sP-IaF#AF7Jg7Z4<zS0~~8!<HV-B5L|9 zA@Z22gxUXsMt!b`#CRuIYGSI?g6>!fBj?u2Xtv`owEN_$#^dcXpOty_@Vnx`Za}bH zXC*GDnR;D(Guc|nI(8=%QhhInU3MtZ8kWde>#V%;zt%c)D%+4Ra^-V*c;HJE!u%0> zZ}a<Ibq+yax@6?zN3Y<Dmzc4)P2q&!V}D)#q+S~1RekuG)H<R^=0AYeoQS5_IJxmE z4^M#HG!B!*^n0YM4fd#aTP&&3DW=!Sk?1>x_}}O6s63&u83AMyt}<O%hE2Au*ORX@ zCPVUi=hF{+-iSOtFLl1v93=WboduVGvi<G9G0=Jw`C0Io)$3^aC;hz9T4`|`gF&MQ zG}j&(C>wO5=%+!r&IA*7MA}iNt`h*A&JL{2<XAqB0Fi%xY6ZLt-s@LQR_7vKDpkU8 zm5@lx)Wb9fq*(TQw1l*M6}u|-lF0rbjenp(WKwh(Xu82g;yc^M3lMqKjh>MKz9N^~ z^XPQ|X}6C86CuJC!lAJq%!oqV3N(tIMd?$Tv!Jp0l_Wtql`**<7R83I>M*xGDN#56 zrgX_MV8;9XRs&c}%!w&sC<_EJSO0?rV#<{;tGJxDz9YLivrA{k-OIXA?qISYomZkm zvKNahK3{5Rm!>}o(B8uBbklHmHEPIw4G*n?5Zmi&o}aDsMoHl9CXvkIoaMOtvX~e{ zwQg$`Ts$rY5$CS_r3FYZd1v$^(=lgZbEm`&u|2ak>M6}I;wQR7R>^zc%N#kORmZyt zvwP73ys5b1Ul=(0`BAIVeBdwnm(Y0W59={E2?5y=rwd9l8atpSh{X8vN3MN7Q^s?p zaUDOdm8-;;(}6k_SrE+8{DF;N1~jUh{0Rs-pT74e|C94q65t~%Q_F4OR>Qc4T)%d^ zC0+H*wSbI~sWG5t5^r2Od#$Ns1rD(JzIM!q@d{TACUW6N50@2GkGy^)Bb|1u8_LyM zD_s%XCP&7@3R{YTeTa2tM~dWXvNq1Qn`Kg?k}{>Z%6`v3dt7fZv_j<tFI%fofx7BL z8VSZjcA7#P(wbbGwDKGSMp{8Bjqf*Ee_F<>N_mB^vntUOa(Z*qC9S@mD_t8zB;l>Q zme<$@U4C9d4Wd#a9xLB>uu{p%9b|Si1q)KgG-4I7Hi3P%4oSx4j)<!&tIS6#<kY<! zk+%LejjtPBzkG_0U${7OnD7Z&XBiBFnsK45y!p`>;+VLrhX?c=pC4o}Y~pC=``PY{ zc6cCm+Pyv7zXGOZV<x(HKt4+mv|*9>RLI+B?p;ZTShtC(BF|@(qy#}>xoNdUmS4lK zF<rGvZi(`5>L&N*mL+H#agbimqUiz^Qh@N#fO#N&UReQu-1m^nnz(_5s^TP4`@9mn zZubImiGASuri8y?;R8*2%3DeR=ek3UCaK`CvG*QgDvMB?)l#WhzU0%mu=Pb8RJ2fV z7~904n^OF(be%fysZ-#al8|8dwr4wINm3}<cN8+T(+QpE=c|9$;EneV<eJq8B*Mnn z>TJ9hD6;<a?fPdbrH;EU&r|S9?iZkG*~a6#X)VQ|O~;4UglE=2^*Up4D5DmgdwB=` z6<9(S?oWF8;vvq}(V+OI%BeM?6;FfVk4Yt0kmTq$+F|bwa4_U)BL6zlmHyirbMxt? zyia*JTKHTU>>^(_)&3uV`d(won<M=N)t<1*^A*mi`%(FrxsEX7^b`H|&|{WO1Y8?j zxo!2*U>iCbab0%37%j;0vA#?T78Ol<QGutcN2p)5zD{ej?e5c`_K`T5A<r^Xtz1Z# z%CZ99cQGLKylOxjG0$4oDPsHntUrzMz(z8*%GBba<2IQF!-+Yy7tSAgWMlgA#bPS$ zIZ8G~dGd?DkA$}z`)G>r!*=kPzhp*rMDUi{*cNI%h`xHmTm2|SRw7hz)i(sc9y^6I zH}46qlG;hhr&75%?tgf@5OfV-t2V}z1PN+7ChKaJK8mBz-{&soB8rMvr88(HA>wf> zO!!}jlpjFEEtc<ErbW`7uLN_P@01t6jg&PaCJ+~IU0L_$*E~|~TTT4&<~L^(EIT+p z+@{>|VPHuoniF55l)1J>CqfUK?kQ(e%y}5J^qw5xx%2ZkSE}%D$=+P{bU(+C!=jI) z26Gn7kk@ycWH)+DzvHH?3`8*rUy~~|7;8Qa`Q<(^-2(N=3wliUS6SUA=84NY>-k*m zNHUEYZG{k04z^5H-M>2HXPWzF;NWaNPqOah7usF(^uWNp-uM)+d+>S3-b{O4{p63< zyl|uthzp)oE_?d=Ze<;4%7J$1|J-dGa?CrU>&zZqq0adiYDQi<HA9O=0sGK9p~PT? z;f~<z$To5@E8j!&;d2pM#B_{p=1n1YOx+4Lmhb0UhXR)3VD)$GfP}0%GyRS%?OaWY zt~(2zSqH@Ln<5J@<1+#>>8p*;43T~zmt!h?-ulY(#aA-kt`5wf>qVC;Ui}_`8lQiY z&ZR0b1@k3~2<s^oQf(B%{8gEmKH#>RNbaIecCi~gw-cr9I7K>_BtITVHb7Kc^_dI_ zcac;+xxUbWHe6Iuswh`#jF~iQJMPtmDu51+#Vtt$xiV8UYz$!5D^zLMylAn(1>e^M z$Vy7$frSTPz;jN)^#$=DRw3S&VS3AO4%eh&_4%K50^)w~mhAJ8s^kKVU$VyE$EVGi zvOMdx6uZMwk9&1viR8e`DT6aJEy1ew0K*(LN~zNQ`7wdZF+p>&ECa+1F3v7Dnzb&W z_vZCL$1_3K;F%L7IN;fZ1(L=jay{|27U3--sE*~+AQ9>bO~J}7Se7hYr&*Cw3Mg3} zSQd<mOGu!9RyZKE&@&ATwU4@{m>|kb&R`4Umx0gp2LN2tIXB@-g$MqgL39NR-SUbn zdHTFC1gWF{bWF6zPmG_j6I?VqI=}!OD}9awMHmJNmwqJNs@KG&23AaU`oDse&g~o8 z*IERBGcY<p3A#Z`bv~*2T-&`s)VMm<%Bu-{QWNWR`(gzp#r(a*#YVY`#JhYg4~Nvt zVT==vGzr<EPvg&galyxp<ti5+GUV}UlHO~)aS?u{`5e=ev+^IH$y&Yd=*gY>%dFwp zzz5%=J1M%7^<^H6D~{_p?wdZcT^vp(`n!?l43Y_{dAXGAb_6jh8xD64bHDcd3<AmM zS<l)kfw8Q!v%e2C{*BDK*k(Bn@TE9jgqi&qT+_^xpUue}>*6_?u*~JFa$;5EZ59eS z(89wE+BTZIApK+DkX@es*mFp-C)lJR>S|1nuGLEzkbC*#G5@bl(Gx==PICW+7z6$s zVid~g<|BTlo7-N>rxHS#V-u7$v6@>|S;W{0&(@hNHBhELBEf6XMpm6m>PAdJ@~PGx z%hg&PXZ^7WfYMjaQ{D<yv&r9=f_!jU6*%`xYBguDb(c?Tu<x-OeI~J8s2tB)&ob@^ z_Q-OGEB4r7NzrLvT^vhZVjeT&>$z(-TP^O*lb<jnLAn&-*%LVOynf~w1Y+=yQ%m}> zFoD|}C2-w?WIU0Dxsk}fJTcj6#9GM~(C&xS!j~xV&vD9iJ1KKz({$7X<gVzdYOOc& zdzf{~2TU|gytC~Ly}|-{UM9}Un+`S0fEwz{t5UH1hm#KJsJ|Yd3*gaiNTm`1Ple&O z<e=<z;T}ld@NZ?TJt8s$<&x-!E8(DAtw<}zzLlmuFq`~nG(MfHLsAOc)31tze=J9N z@9;(CHaVC_jS%EP%OsD-CC+7jpm{FE3Xxy&KH{#{xyBMea=RV+FXX@9Zc_R|P2*lw zm3cZLR1c%)oHR;EaT-qV1KiEYcBW87laWB7<Y^@bct;i>W6)~Zn?~k8SE@MLIv}-C zM7HB24K<F_NI~7Zcakd8HXaRV0<$IU^?blj(`MuGt>ArePH+h!$Cv}neP+hs%n{^f zo>ouhu@qaiw+&j~PY5zs$0_r9qM9`p!C9X&+-f=wuKhu^$h9HVc}lz>dxPi_)-a11 zeEMBlL<v({^v)@fiAA(uy9}ed411stZTSySQIE7PJcM9TVOk;@f8~GspMe8HOnXhx z{YBJ8v!Xx6&$y26evt^uYKK+s9XF_u7j(xbIldKrt>S6w&ANEBka=2s(XD{BwLddc zl;@hR6>w4z*sA0c-H8S>+>Ali>qMik>Gd+YHcG}(+6A}gUHBm!ofKe=0biVFI3vA& z$$Ek?hU#G^=7yNA&uA|uakx{hjm<J=cF35B3%FhVGR~Yvs+<l$8A|VrXKGC`bflW~ zrj8e&A)|}?CJ7^T!IyM>HYFigFzWgul8TFc+6I=>r`Cm;;3|>IxxIzJw~Nh}qhP_< zsrR~NNH*J<0LuJ0?Ob2!>=qLK6}+ga0`uW3(7d>qlM_`3g`V=%yz*2|Je>5hk~#%} z1o|g?G`b3Obsy^JB7Q}NCrcwN#QmGOzvi<H!dN4jvRRF|cp(_s?R-^^7~Y$HD_F9B zuC%Z8%<i@H3&>eyknmmWuFUk@)4n{RuS%FfEqW3Y(6(INxLk$t8WHwJ&lmdFJxlYo zLBiwhbtl*Fbd^l!IdZ~=B8Qxa7M8F{#}Ox*2uk68&nJ@?`~7R1<N$-*EU7WmOu+kf zf3s(Rqj4%Zyb}`_C1war(xZK^Alh;tvcDkH0!-;b{Yvpm?n)?PoUkn078S|OH$Iav zi&m4#-mqd#)nRbuRqX0wNz|*hi1mIi<d~=L$;+sF{yySYHkxz*A1>|KDVQ!EkDj#j zP;DjegQrco&x<4psWHP?X9xGzPrPd00nOA)M;f<mOrls+edlZvO=FwU^LtaxhoXq6 z50_&BZGKsqd7}PN(ZWfd$#tm!AtG&x!(Oh_nieg{IYH7Q)~%MQ*ehouD1MQJqV2JX zKo=;In6Xj`VAsli#oCiqre<OkY%nh8X<_hDR!H`Ur82=rhUMB6ohXY(CjtPvZaZ3- zJvxGkeZK3_Bm~~n#O^O@D)b2FX7#(Sy)2M8d=R-$Y+#%ABG_@XkMF=Svolc`BP5vu z?_k=#Vx|iKx!J4=kMq^f91-fozRtYnV)kSTp;H@<%#f3rM{8Evu!-B)>_cex)}{D` z(Bpc_d|FeJJ_D1Qo2&~*W}9Cr7oC@I7XCfMWvlm!#(=@^US{Pvvsu54r_9uH^E?#Q z*`L4DgRV7ys1Hf>1-Qy)W14us;4w}xzCN(LhH<iUa4FPIHM~`9eEx6;f29J>Kq(y8 zJ==tN!<o$-<VeRrUhy;J=H3mb0naN<Z=SDG%*2`KzoTODOg@EgHe773=uAI044FVx z<s5r*6?9_fCA0NDHi<iUzpz{RW;bLgB76ih%k;<qIrjCYj0IbE4t?nkwse}Nl}PYA zSIXN+KzCi&inzbZA7jUWqNc^<`k#0+ZvEr@8fIf?0yx^InyZ&=Jyxtau*qirQj2uD z{6jX-I%%AY>9uF^H*tC6PbPx~vBy4b_L5cg0X?#{x{ZUjT~*M!Q!z?`Z3ikkzwkM- zXBX_v?7_0d_ilkN^;`??6$k`(T|Rfq(O0IrW$CFTTBZ>W%bO}hl?69E;c1fmxTPFa zu8^P{fTrdF0TM08pR_!}`^+rAopLnIhL!KgHk%Y!nUAA~p<Dqmm;+1h0q@G>E-Gs? zF#Y1nLrKtFlh~1t>J;rb75h!$4Sl2ZhzzqQL-0_Ob!5;+`MzZy@|C>hEmy^Lzn-W{ z1iN#N$udm1pR`Pc=5gB1AAsN6RK7>=K)DgmhmVQLUKs@%ETK^aZca`<BvLj1u6v{k zMb%8GAi0V)MpkY$E+VQ42fdD+RQ?(bAjUF0oTHgTs-!L-XGCOmBcS`Aer=!wFi;ib z1{`UbBNVLzfm26vRF?c2KL!a(0&+>FP46t;e<M@98z4?nJhJ}7#g02Yik)tdJea8% zX4v8MRWES`a|^ukm`LaUL)HD7?uv@=x4eyX*VB<Ozm_*V`>i$w@5rjw#OCf*{H9*N z9;wqL`|!`2wTym1g<0?E4zqFEICwC>+Q|kXMBZ+mFbIsh0B=1H<<&XXE4Rg5z*<+R zOym-;N*LcV*zKUp4W1^<$S;zB$<+L>P@Jh9?>X(CRMHx*B21s_gSyxsO>i2jOND=$ zA+NQa@gg6lWO#Hi&cpgHlRJ?k<kkuh*B=@?qBQ1BM{a8&0>Kc(oxX{GVz3gj@ly9O z13mFYt;hG)bL<FfA7$9Pgz%e<y$|zoO^oy*D|GmNY7YYK({}tzKlc0cpf`%LNR<Iy z<8Pbn9T~d2<eTU&$f;!lZ)!~kT~SKd0e6@$62=rz<!8qDC#d3htDba>GybK`1x}N8 ziF5<H#PR&k9FmED-x->J?k>HN{vHpB{GrHz)A=m5cmS-a`FE~jA4>rG_#5y`Rviwy zp#|>3jQnDue!^33BADHs!B@(}XVGU9&^v-_rqck#zU4_=T*@_HV149H6eqIfpETd5 z6+^aXDnS%tobU4Ewf||}J;!UJ%aCpT3~2nf0zV=p=2oR!s<~F-G%$~XXbZ9S((I+& z<3NhmIs#uTZ0=PgLDKN*XO?eGJ{yXC(PY$Nxf&I=9(|e^&fJh%{M3~|*IH8q<)rx| z7#s_mo_(@4Aroe(vHr`i0(X+jX0&4HBFG;U-&Oi)!Rl4yB3xtPjMu79LI}B?=0tl9 zD6tcCv+1gGRzX8UmW2G?-gFxJfxJKf5f$2{Hul;=k+*w=f|3IkR>YH6H@FC&8M!0w z<(A9)-iTj!Y+x<w3#wFX(KLwA`yZ{1LA<(X+7PGjIwr;+F&-8+XM$NfB#)07Y%<Rd zbRvw71VC2E#?cvWoHh4;davFkxI57D4%^#|0=On4HCfSBDEQS<zKkUJX=!I>y-1~+ zG0XQC9)&*m*nGe#6?8k*Or?~jIo~FY+AawX@WS!LVt(`jgrtWIJ?t9b?M+MZbujr% zXg909m}Qqz;6<$@J5R-@r!$Vx;S4`IvwV<yv;u6#PIWX5kweCyKNAk`?@(Q2n&W&U zf`!7EVQIKr<#KeR0d{CjcT0)U>(8C>9>buDa<tyCIzh>UVWj`%m|GKVXP@I&K;sMn zL~hqkv&>71<paA@xh4S|S2QN@b%#;hRCF?s(4kD3PVk+USMnyg<O5uhr>DdC&m(i2 zl7=pPbVln!$R_-%w$RgM&V+C?pkH9%QmjT+#*fm#{Dnt>d`6)644VPM=5OAoqU<&C zThX6#drmX!sm;3vk+Q$s;?;a^q#jxw#DmohCWxnM4$^sQEyeZ$txDtX;@aFBS7i+C zXsNa5DNF^zInRKDy!B9?(q{Uj>O|U*B}uzpLSJ|ESim>wAK&Z69q6{4n7_rM^My?u zOJwr@FW#-;5Qzhk-f}>4Z!0Q7_jTO&KH(NMuBPWIFXWfQo_i%Nhlo$mXmVbO*Vbrm z6)Jb$dJMzm7Nu}dnq%<-hj|Y>NpbrOs$9r?Tye!PmL<%k21HXNXPThl{p2V!b;S%W zY_O`PND-4V`Nw!}Tw?QnwYAiShoI(HqHXF6k)VbADPZ7caJ7sY=c%9YRQ&`o%iV0d zJIs+N^1Hw8O9$c`kLpqT3>dz;fvJ58lr`8XxY*d#Hm8;DIafitF>3v6&v2<FeK-{7 znstp&i6k!dXlE&sk}4%#nV}`J#T&wHKdxR>!wq(6-CQsejO%Cx`Zn=-(%M!bev$^b z^zV-p<V<}7HvyQT{H*=^2rT`1rtqS`05)2RsB$GC&QJ6tJL|L2@a@NZ`B}r=Bj!Xv zZYtk`?&wg*7n!z{+@{P>&bbeVIf^Gs4Jf8QzKY*(s+&J=tV$ekD8DMp&GAe_9X%6T z0TIA}+mXp_3ija~Wn&v`AJSRbKhRhi_DDFdqd>79*uWez3-7YlCcllRR({BN(L08F z?bmeS0_~@re}5!siTTKEQYGC5R=x$EapDMP6a!IJn%jLfj<h1DPu4!Kr<sR&Xq%u< z7lt48ZqTJ?$OC^579>2`V6DPu*vQqB5a;4T4BcN?Yeh^WuEZ~Ij@;LGhX<>cdfE-u zOjBgra^IVc*0C#a0jP{DI}Kf@f9>-&PP6z(0v|QPvnuQG0Y)<y2>q9&TtMWNe3~Ce zd)^e{M;(7iw-n~zkyR|`5<~LCfYN@dRR$n(yOacv0N6q>m;1h@WOBedTG~H4Y#N~z z=|7Ikd&~CtuV7(QUjy~&fVC<rUu$cM1$r*oU8D3q0l?VrbE$y!9l6jkehBuNuKxfp zW3g>{9V20_>c2DxVKkbPpsTzfF)B%}-{K=LDOjP}xnT9N`DYUgV__WX|BJ&Q4451W zE_Yn<#bW@m{q@LwCIUp@<QB_8)yv6j(IjJ*>RgRIBmS@yL?ne-B1tF%V5eHQl|&MF zmaGo-936_Cw25(o_bLn{8EQy}tOJ1m0zMfxZ%7EP<y;);sc|s+5wLy~uL^L@u{?2j zyoq82l}bBQjQ>*idLBAvY3I~!pDTSmW`@@2W=}H4g35`Sz*EgT<dTES-~%Jo3v%E; zIvBuCT`NugH@k0G*nFP<tk&iaHQ^+o!6?%WHj&)L?fjQyc!WrtFlh0aF_9%=-{udC zklKf&M@iDjq1!EoSuei?okihL-91h5QVV`NsLPtze&0$ANH!Z=zPLAK1JBSyNU{^h ziqGu9ORj|mrU&%IF%}}x`6vMNMt=6YL;tY!5av)#^WJkfy+tn0y9hn)v{X@jW4w;7 z4nWjgnmPEcaMy_HrM~Q^V-x)d_KN8b_!AbZs_<fXg>s|yu<%lj@VH4Z^|^#SENagp zBdPKM7ctx%5@UIABLztEhn;(rjB=|W;Y4~sO3&u>Hr5DF;O6xn$cF>I?#EnSwH!|e z=OPPcJBEAuZLh9=UXeP~aT(QkE^f0LMF4PJ>#Wc`%(}=-@HuqSEUU!VU?4!|e%C@> zzvdT(kz6#oG_8T1_{(D!{r}9+ST&FfaYK@cJuZKN22jkYhc{0vP+M(|aZRD9=UHCP zuDy8YcX=MQvbMUMfZQE;TF>t?Ye||<X+tJJ^6NsYOjQr({iXLy<4swVy1uPD@T-~X z;YF*xTx<JT7an$k<4wqKGnvAdbzQFAYySZPA-TM(10_IH+OEy2<mZlzn?k$p;?54W z5i$K{br$=NtkJ^Vkh?4_h!1wEcU}uVGnxFF{qlW^M`-*)glGBe8|<vuyd;_LTSN3F zVy@%Fxb;cRsi@>}E91$YQGt7~&=w*qYXwQWRPfOtdqyHOapt;k!xXV7e=I|wKhPZy z3SVxmXc`ft`Rnqkj(9FVNo|1_f202RY4T#%(1M$GZ<iS5YW%Ah_Lg69vD?24f+`aI z*RrRgi_bMGYBL=Ck<(!mo~?5ZgJL-mJO_{1vqRzu5UO!)9CAD+pV(tCsFzj^h~Gx{ zk<x~b%1S+ye&CEiArl@m=cR(LbP#js0N7_KshT29G;bW$=xPF?!c(3PqXmUQ9JpGL z?7djIzV%2Mc+-rvb$=rZTHI3OeZo0h&%<5B_9Onjp_-xagqGINd9kAOEcw&@rYLn( zTQF`WOHiXTP=^ZQPZB{5YoSJ6#oBaEaALVJ4#GPoX>#8P9EeK*R1q2aFW?yD*|Wy_ z#dgLqS{#FMm5=WH51>BT-_#LQcYHn%3>Y)|t@O*&hD!ZT^^i(nb%4!xH|DGOE?<QO zuT~-bQZE7Mmg$0bB4?4+Tk~RgUTEw?PjoS_-D!l}zDDC#!pH2<v7gK5l?}FC7D{}L zFvK$B2BI`Ebdb<#6KV#!NrQVo{tz-HM(ptsJfSdLB*Gf(C@}v<D_aqm(pnDOk<I=T zHPkiWAEkfT;>=ZAc$?6Q9#~u0=cVbUKD<TFRI)3NS3z1Hm_u|djHQB@)om&d^wfHG zouIyf?#|DYWRbzOUjjeFmj0pG+0)VCc8;A9j5Qv0du`!Uw;#z%;?nQR=r24RJU?#& zKL$DIp=(tr5sNA=n0VTpvH8pLC5n->@rW@S>SMzoY>Spjvv(`@tX6SvX~4bFP&B3A z5FM$GVW^2Ybk3yh8t@I9dyDcie7f4MKN}a1PQ(!-#mVDvBk}{5-C`~}K%;>ws~t{} z2GBL8(jI9%08UCzv8KMD1LU7+bh*YEf{P0x$)~clcorTMJ!_jHpPqDr-INq?y*qu~ z{Q~=r)$NalQS))2sa$kS`d_}wwxg%<UJ|YFC2{jYMJW@5NCmB1z3UgJuF2wTG!yt= zqbRD#v23D&;4A!Z#fU8Z=IP7J+VsI$zsivxY$oZyZr#JwXG+9cZy91oycuP;D>ON* zE68uadq(41gpoWCyTQQid`Ropo^Oz=y{V4l;CG<rfYh2SP9DtNm+xt>%!Xfo!NV2Y zn;3suRhypX-03v8@QZ=|f+BL$rh)3hy}XYXPzn#&e3YcRWf2y%yo8JcM}x4dp}p+o zZ)uF$!Y4R>@W)`@=>Gs6n*j`eJ!cAx(A)E6-k1{S^NShOI_26dX)ABpiF4bGk#zxQ zvQ`WG_0tBf4!-A;x}q_I_?_HC!LsP*@kXn^nvZ!G{@sXw2@Xcq0K9fioR|tPa(3P^ zdf5f^8{|gRBRbyIQ~jQUjc?x2LQ?S<62Abq%bNzatl8RUt&lTRp-5t8%?X0oF%vTi zVLPEG(VF`YRN{Cv(44;*DD(04>M9zB54?pzVcz#|OS2pJ;pV5zTm*%)ESB~Zu&Iwr zeUG{aS<~L*IxHJqokGg`Y|JfW%Krmcu(Q+ND`;I*mRy*yfidHrMjMY&*GJB?YLE1Q zbE;Lb+TLYN!D~b2+t7VegGL1WQsg2TV#>r%)Wvx-=#lVI33fNT*ZL`O1b$iG*BlJl zGZ3Ywdh7n-6J2cD$n~(TLG1c<HE|PHe$^L?jut|s=~nf*SjcXK+rBo>ki%OCyn7F} z1`U|B&vkV|FZ|!^(}DL9YpOD2+s;k1eNxPy*w3sapeuX5PBfuh+2xLgqEX$u?kZlp zolpaps0LJ1EBq`7y)Y_d?(69=$DFzN7_1#FJfAqw`X%CSe!fPt=0>UGjwN1CVRew; zk3s#jr5mu`XQ)vpQc{)%DM6)I9h!p!6;-O2FWc~c6mI2Ew>C>_#am_()x8n_w8UK) zqjdK7SN7txdirP|mH?NA;w2n`{+S!8U)me(y6<x&G(H~9LnMYOEcxUNaW(0<tyvyP zv0ucM7a?bt11?A~_dLfEocY8I)?wSljE3@Qc9yZ@z7Xx}aLUY$+`biamwy7C(6}%J zZyNiD@*<s1HT73fMuhBV{W@(#8GKExTu+ftmtjp>6*i|KWw)UW4<}G%UrF*&J<Z^C z;}O9pF^B{GTPG(!z4Kxd-i0N-sVvT9P4qP)uS8j~ixWtei7#aC$eN042DqA#D%ck< zz<+)WjjLn+l(>pRxx9z*3`mW!ztUKtmfN#tMswt$CZzVXtdF`%pVqF)wHf{9q#<E# zJZyPfo-GRh_a7j^sEs{#9eEa)dJI5J{$WDN-hl?fZi*iV)nx?qa=~LOzJsL>OkM2; zIiRzq@&hq1B|9}4Zeyiq-t|4u13EPaZO5lh6nuC7&MNs{R-Hh!_Jr+$lPvAhw**|0 zh4~%r?^wQa0o4XEl`+QKSGk4X*iIX(T~M+w2loBUDLwZlVt>-}%j!82WmVC|?mt@w zR^`)p{^)i9DZjlQJryMf_3;h*|H$hy`zQ0;JKRU0<IY-EW1Th@aO(N1a#h+!<T}hE zWhDIxw^5Cd=atd5Z#JJ*f?2O6vSN;@*!;r+js!}`^qcRx?03*xwtM?IfhoE478*vn z#F>BMKjL95TLk1!j&JQQ{{x6(jA{B_uxT~X+0o0c2h$U3`BD1vj*<Z%5CCp)Jl~@h zzeBD~G9`j?`84^TSwZJ|%0H`><1g&&uqE2eBECd2G+~AuyBcQOU|FhPrBb&y1WoO6 zV3*~o)Y?%>KXb=8nmRrEc1ems_o1?v?IsJpng?3>64bT2`9b;4X0Qh**;WN^Ra)_1 zW7=yi8=o!t)<zxjmYx&g0nf6b7_&_UNyiDxv7$Dnr{@wqQn&3)UqZdh-Y{;ddlV=8 z5&06M$_g0ReI9)Otfw`CYI8nGCE`2=T<#f?O4bc1?!`=@Ku%5)N(z>lnBcEcgSOn? zm7R{w)$NoKljrJMhy{_$o}KRo`k<(!RosNlhfFz73fXS9fitCl6?0C#zo$|%ctt$c zBK5Q?)OEy=^6=Vrmi#?d<}5cqu4xe%=Ho}f+S?!(G9WWu#3&1o*jIm0vcoTf48B4U z+SNzhKsV>P1haEjn4EsR)F+Rt2RZW%zMe{Eh~eFdnQ^IAq4~NzE`u}^t4UNwzA698 z&In3Ym%6I1bQ^x!jEBoK7{sx+>Z_MxyQ-Oeh)7Sy`QnP+IQ}SO5f}Hm5Y0FABVOk# zYD|h8eyb{bd|eYX7L>fRMYwKvRsBVilv_w71SE@REgI}<BVJmjUAE%QiyKN~PizFz z#(U6q2I$qvc}DLx5r*U^a&2U*jcw0jr405(vo|4gg8|L~LDbeDd}u|kRhih{a}l10 zH=hVA$p#zSi1ZNu3>M(CZfl?Q`Q#xpwb0`d=Ynpl%<7P!X!X&Z7<g0a{@L&*PE8`k zo>$IKaT|($cpF={nRMbzOz_QfwlvvH{iBWWvv*SPx6bQd_byAVMUI$7psv}mnp#I) zOB$F7XhCQ>bHw2&y|NPuOFz#TsGcGACskIjA|iXy+nAOQUpve!r%E6!9AjW!_v>>v zezo<%3)HIaUH!+@p<Ov%D?WQBu^Md&DTURVPXd%?oj?2x1-ws*Uv>d5YqU0k(5ZDY z_%Qs?YB{aFHAT$N=PPWMTTMBtMS22n4gE9^v?nEATF%~vC2=@l26wu4JqgSa+6cxK zTxOpBspflLzva$9rcULPTBd4)hLr9Lo#e}-VqrZ;DdI?AEJk)myoe*zIxiJD%c#$> zqCm~P(1@sHusU!i?`8MzcfwI>1THHjg6&-f)}&o($9x)|n`InxJ1lfl_LgHV#d)RA zlB9O%4k}#|8d?ai%SDWH`^ZdrWYV$rNG$72yCNXBNgvz=9_&;Y<CWgQbu8z1aS>&X z7hhtl&1hWf`UQ_Q{(3}y@m-xExIZxLSud~#QuEP~pUaqJ7W4j$rO@dw=(tf`_3yc= zW;P?IVv%;8LSH5||3GfE3CKxW?XZ8hjo|r1Gialh@Q9H);vjKOtlMMbC75EtOtr$M z;uO7ZHz$f}ON5LI$2sZ_(9_kF0HcLepMmTO;|zuhA}f#d$iQ+HLJ&h<+W9=Kpnb(j zG}lz8<gYhT<1M}!(;RnV{6ZvmW7Z#I!)5>UFDM7SEPmp@cVzo({ciU%FiZ@fTr5QB z=fQcaYdJlIxfT#riJj_(PY5si!+amOY8Lkg`s6D+$eBx3TE4BHhkCtYNTw!79ZW!< zwdd}UWd%#%gu=IJ7%Y9^!g>=TMjrM){S)iow%I4sYtMK5FlzrRU*idKOv@PI2W+)t zJBc<PBmW&@{6x&A>aQX8bz^=}-JF|8GHuiMlgw`8keRu@Q>!5<20PL&LO-7Rg)Y+D zI=Ehw-*^hzv=08*GwMCdnGv&73*MG5C8g3X@63(9Ie!A$5tOXBRr&FZ_|w`J3<BgK zj+xP~W@guK7y9<}AbMlYDH6e86!VjQTiT??+vIdGiCBClq&izp(8TMB3jlao)%ld) zk{5|Ld0ngZ-YaWW$CCXk-Z>)WXbssMm6xPIYZgcT;UKQ!M}xesQcY!Nyrl<b^JD%X z=&Y*R<(Wh>HM;8_C%y<N2#P=~{#><HBX@}14Ar=2(`J6@Y2oGqUom|W&{~}4|8GyH zEE97TBlpK00GJ~q?Qlh80+BrGD!9%7#-YMEk}<i=2LP8i+f)GFP&EtLSZyGQy|IX} z{RfuYs$X-RiPx^DD!<z|<dN^Go<F&87MSGT;ad7yDXvSYSD+t*5@+36dQBS6n@fF4 zlu=f&DAT|5it4n1O0Oiyn}Fw4l0~Qh(xpV`?QOk^-8!|@V3X$cJ27M|xd`diAG03g z$_a_ZKLXMoNSZ?zx%OYd(ejSTor4~g&l(1d*&X+@b`ETSrdWtw(JquJ?nIB@|D#Om zxeVU2cyey}GhK;x@OS<qN7Mw@QttR71EbssB~#P1j!k6Rf?h4ecss^zN&3ThSX`^t zpG-d+o6LD#b!(!1z-9y=*|FRGDf)cVD_Yw0xbU&cOr;|Tl*^Yjvt`!88A&3G^oux{ z?v;`0OcZ^jr$Z)5`<WorDWQz{gMPZ1pQfJ{5)LsO5x(pq08qWQ97MNsZ?%vk8sR;i z*?zm>M{bMBtI|hYxkMVa=&PzQv@q*ovTmpxrfg*&Z#D^_O<Cc|8@A<$NdA2sQnS0d zu%7mrt4*+cB<91xim|)Uc+XuFi@(LjmQ?}xTGp7&-54Rs$IU2H>B;!hD%)VB-Ddz3 zBnvfVix<oi8|r9))yStoo}bTL5$-Vj3mgt9Gch0OS#W{ml<gU~`lWcCb_P8DmNv1* zA1ZD-{zhON%G6%HRSV2()Ai(*pC|Og8}mp{7htv`i<N=oSr*CA<DNuKR+{g>3R=~c z7=A$}Y09VGe{L=b0?Th_uC4MM_9Y4NWbVY_Ld^onz8>Z^jFiDZs1cbk<AHj*I?La^ zKd|YRSrP&eXsxmOil(o;Ys_D(_$<cMVWn7tYASvqJwT?T7YTqmltlAywZ8F~XvoC* z%&w~WLSuuX=36T}e`E#gwp?s3CUiuK?pgg~zet~Ac2XmYPgfYOyUa@SaisdNLzq_` zOq;2bg?zC@s!#GfXQ&Om{p4h;@7^AQ>4zNqZDJW~b>`>BkDsZ2F7Oj=sSdp^Dr+jv zA`4>m2wIsE++xz#g=p$3N|J9QQ15i(A=p}Io_Rzi(Ehv#X`Jn3ujHU6oSXI~0-PNL zCZwG)n2EPZyJ($l4|ayFUzpH^ugoRn>z5_=O%Yi%Wj3m6t_&n^t;u4y=`dX@LAk2( zJ3GGlIScpPT;2xsoy(Y@%cC*NbbF>0SP-UE9lx)5nu{X|g~LB&)|T%c`*o!=$W<yo z7?$CArs|~b;|zkQq3yOA7O3$N7&@XYiM-((;_8R&zL2OD;~RYrFaRsHXOccsi9q7} z^0rV6#CNw7?yxp_ix|Coby)#f!iRK&YD=sv$UX1|q#aT;Wj-pMZANUZ$hjZVrE%J| z&_5hrt|#)}Tgqg~Ry8Cc?gY$!c1m2qnH&oBgLWXGPMOiCx}B6fWsyXF-%8Uv3A8`; zUGh_1R%9p=?IDBdy^CmE8R@1S#ydOR++1XOv>{zr<@d25h6$ER&pQP>z(28z;v+_* z?!6<Or*9ndVi$`u+z7KLvsbHocx;LT$J~Fv9eOrj1WQ_pjNq&KT@+TjFPW{An^97V z6ua}M9~=DAv8tgP90rgki;Ws_<Wr0POUU}IXwqaMr<#*?0P^(j^qzrRR})+q1_aJ# z(V^aDz_aM9UTxwue&Y3(L2$ljgo0t4kVednq|8_U1+qN_k1*1E$gk-Qo_rCTCGKa~ z*WX(Ab;2v(@TVtN7ASCmSUi`*Db6DI<rzCpuPb@e(+Oxs1bx-NcUpdl&7riIHoR%e zC2g_8C9C2Zs3~A@W0#yz?@ilRpMIqQ%h@*{WqTC3j88%|c6An-D4)Q9R}=?ERbd!T z@*VJ1If%e+V)$K}g~0_dfHgK+@Ht5m&-x!q_uu3}IFL`)08c-uHEKZG@Nn31+ba;8 zqMbh-Ru{tvlG>?OW8eVzkCP6l>ai2^!GKN#2K46(DXkBV-B%u8Q!KxY=!nz!WQPMl zW$v&E{yZ&nq@ku15w>VR(Q<wqVXry%rGy$+97Ij9RMZXNah?n75z=u|NAL>FtXiYD zKj?Id$S`FSuT%`?Qu-U49Seqnkh33TNZ1hrawv11`g`w=z`f<U64<7w5CJg^I4hMW zqlpE<Ofp{+rhMQ^CapG@kO>e_{7pbC0DAy5a()<1!r4MMt03}$fnnUL31@`Sg$(?d zJ}}w!+r0!YZY=b}anG4>0={-P@ZK@6RSBD@D~N^XM-2b~fs@e7!Us!;9W;t4Lv4Si z*?vj|ZDTHRb#{)o8uGI~9ODw}4rnf-M77j!=c5mk9=?0xhf7E<>6|1~4k}H9?mdux z4>&j92D&__IpUQ_#}P(q<%?gd{D3V7dCfLE)KKDa-W>ATF8P+{1A(pzSaTsZ0fRgO zM#7kx*{d%M4!;d>@Sz$;kMY(;7IMS&&752IN4c|=o{+6JAL|-Ff9uui>nYK@$=+@D zb+{CLnY&-N(S!d9=OuQt@Dk2I(+obwXKhd_Xsh6c;ktcutpGB(-#_T4uZ|txm=-5W zFWd0ab4L8i?JzNFa|vW}Ufz2$s(;j^O}|q%SMMWez~&}p{}ad*v3Y2W>SiRQoj9-v zHo{}w2D3wQoA#!1vvUR9R-2y}g#X}JX6J;L<$TxL`hNjN3c2;XL#dlfHi$7vXB>v= z!`8H2&QV#5JDh@g3gY}ts4k(a&6nRAksc30j-*#*JIUyeDzoZWvPZbMRE&T}Jo;AN zp>USb1zv~c!K#{cD{XEZl3ltH)C#SsP9%35h+*8<cFyM%Z+*<WyRi{DW87hTfAy=E zzqk)CbIx;DH7lkP5DtA*Rt3f0?2O=gQu7*p#g^e=R$>V_JbG4af=kzCJY%6W;^o^U z@M*G6u`UNpezjM=qe!JA`EfFkH)pL;k-5kjtB)U=OP)PPtyPl*0tN@CrA3SAFdr=B zas4Y}Nx2go9COFLViI=}4;3}O^w{|-Gr<)0)K14!b)@;ww1~Tvdx2c#?w;{vk&*3P zcZPL@kcg!t(1YH!^<NJ~a~m>{cN~m#6lnBDcjb5Jd2V>Y<LlayM^F#tTRN_e_Uv#o zgIL5E!8yUC)s0h6VN`>Vayg)6WOwy62|DCZ&GU7mpveItIXFG4NXhTl)}Y5i4;1kG zdUc}0+haoAhye8+Yi`o<Od})#)8#eJ+e&yC=C7r~Lb*5?>+eknedL>*o~Jw!O+Y-b zPeJMHRmSUygZg%>n^Xgqz#N?S_NCC5V;4}jc-%Q&8@Q@<xh>1g!Ey4Afb^=Db|I9> z7X)=$FLOl9>M3a{mN_}}tz8>On^wF?V@4#Ak~>s-Hj_51c924)-2OtngTnqBheeD9 z1I)+H-`+Kp>T)BRr9~YGG`$scyJfdTP*?9CQ&*4fq{#VPb``0y6c9p_oE+3rz&=nA z1}Aq~!=C$`_wIN83BMEAG(;B2$s}+qqClKUxa6EE#c{t5+D4jma`Frel^j=SBQXQF zlh`+>ttVrdX>?)VMJ=t%?S2kd3&&cnx`V=Sz_>w=mx|T9kSybmmHh`pQB4$Yv;Y`) zQPkHo;UToqj&)ad9N~!I;;W5HX^4y<FM={_N%ZLQcMzoV0qIjfmexs~%FKU+4!?~| zV(qBfF{IKSbdpJBFOSoYO7m?*O$F1W-FF|Db;Wws&B<WJM%BhXQJ>DaPY`Jl-rBP= z1#qQ<gOAd*<W1|)wEG@M;>pCO+TC(NZQnOjQrV**3*2-S4f>nk5h88KjAPomD?2r9 znFDWcTJ$L|cSEggQb-;_o|)r;(yo7JkCjS*0LQ&uNOraX0|y^kvlIbYnVT(~Vzse1 zT}&6WSe1YTamH&S#Hl1&Eb{Fj5CJ}!uH@Pz(i7J!laAHQd_`4{!^8}My+%7z(#1z~ zd0iAyQ*)>&>p|v<06;N88Kt6?fGDDZGe+PBlOK&O6u>B=iY@^~2Z2H9OaRa*rOhD; zj&nt5TU$q{#v@kQaz5Za8``N!3q>O<4Xh3bG_C?hyVwf*SN1~in9{s8d95<9nRepd zFjtbe%N+hy@&|@Axpi$?3wR<jNbVFWj;GSUM7#~9L*b7PX}W9*3~;~$?j0PAn(=c= zytKJGv)Rh&DwVmVvONyTzyxC?93FYCdsuwQ2xQ1O<+!eQOq=&ZBMaOP_0wtd@DYJ! z+khC?#y50*!j00odMg~h6?Y$Q!l!#RkxMG|<cxG3>T7lR6}cgMXRTUAL%0r}-9=`l zV^svSXFqjkwU~j%Fb+A#YQ(*@VxaJ+zI)eYEL(}%r+@H~+PQ1x%et2VvVLrI_N`*y zLpjGoi`1f3mA4XclhU~>;k}2=vjgsd&NE$}u1A}}1axERT&?n%9gp51mGm{}(QZ1k z%BxK~qmtAa<1V<|%6Z39eNAFtPQlLR%w&AK1~7f=e^65!Nrm~Fg3HwVS0jHjt3F8` z%J#*51qXdu^H_-L(N6O0Hg+%_w-d%|Dp`vhmjIKJSD(t6d3aTZ8C0mr&1SvPcR3&v z{oa-A(^?)iLr6-^fH+S70RFmFZO*s>vyezR#ZrQ8xLgCCxbId_20MY;Gtdn4T0M3- zJx5$hsUB6f<Z=&DUTflAN9`K#mJj;4$vjt~>c_~m$7~iXO?aznM*GB9t~me{1fJCi zbw;sT7#gc);lMfOvQJvSs2#Go&Rf1}hH`UMYZPf|e>`pu03Nj*%y)8g&rwt9sgxu5 zjV0V$55KUfxi4~t-nkj21K0|fCU){M-kvSPjt^=FaxJ{$0;Tdn!RIvf8wOZ_J2f?> z<BmC}VP3+R)lWQ9D`N^d0;74d$DV!Z6^U+Xq52nNlqLZDt3ut*GN5GEGB8op;<T(J z!vMhG^!K2Xpt3<D50?#&Nv-WOTawd!aspSd>}xkhh)u!jYo@gDznY<e5upSJZj{xG z<)((6wZ5OKBA>G(IXp1q1Jbj#9|K$5w2_nm9FDy!Zq_?}B_mIjnMQJlioUb7khID| zx4)sP*I{!XJ9w8ulR?xT7W;>kZ&6wHsAP~XGtGLBk94o?UByvU#5iC(SDo6x(8xy8 z4NFF`mYSLl4Yip#1d)MU{NF5{Fnud->TpPlJTF|;8KCn%VbFJ^RnbXCSRVPS>+;4} zjy<Zklu+^k6`>43L5|;AJw(||vj*sK+NX|2Wyz<QL*u9(l!6vdn0Fl0*e`ZT6w9=n zlkJMHBe9bh+nSX@10)Zptt5-)bAk_S9<?E{HKT3AejL`cJ6bkY>(;U@mA3B3;A-N^ zi_~L2ln9z;7~Bc`J!z`p*PQ1)Di1hggWvR~sVyPE+O+o6EKa8c;EzfOBygabbYLP4 z%ilF3k&yd8F2bl*AxNJijD2ZdKb#)ItZo~+<c@xn-O5*YLsAXfVmRUsyo~x#u;ZM7 zJq<{#LWTnYdlS}z8OGzZ0x|#;^ynJca-!|z0@TkvRGf~yVt`3F>FOyRc~&DMJ%twP z!tD-Oe8xer1K%~Huz3XFeQP=+vQpXaz%_kX{hi#f;Yp^Q*qKYhu!*&6hwiz-6|1P( z09cW^^PXylgCYP=H++ye^{u<pn3D^*uLZME!L3makV9KY2WIB1$iF5BKJ>N<s|E%X zIm!2;Sn$V=G19b+t*M-@-OA1tdUM*LC6$goUOHx`Ah9Fm1afgvZRPj?n!h6(YA_GF zq<fl`c)|`r^x)6{Ad)_BdKH4PBXA^R0;c7)WoworVYq@n4@$8g%zH1X$6Bb3gTWa+ zIOeB~wvU+Z1HLJ*GJK0aAjU@CI_8#8HijOZjYZ}Ha#R&OWQt_65~PEJ?b8%%)U6ap z$u?Vnqp&^kQAnXN*J<@MZzQsi4;&v_V><<24hLc>Hugan-%)(QCPo3rBpPp+6rYzq zhL%QEPzV`3)J9Bl!zZW%y=Km+`Hx()79TJBB=xCA(wOb-Rs6+alh&jT4gmYZ^r<y0 zq4LIf1Gvptjmox2+z%KvQ4g4K>N)RLmA1CV!3U)+oy7c$5zCTOU|=wFp7m}v3gZBR zdjZaBns(0zJuy}mO~<KT<n^mc`<%0FJqyA?unoB#$9iZj@?o}~++gG0nG2kpox>R( U)TTw=tivogI5l>*#uwE8*<&4X;s5{u diff --git a/yolov5-6.2/data/scripts/download_weights.sh b/yolov5-6.2/data/scripts/download_weights.sh deleted file mode 100644 index a4f3becf..00000000 --- a/yolov5-6.2/data/scripts/download_weights.sh +++ /dev/null @@ -1,21 +0,0 @@ -#!/bin/bash -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Download latest models from https://github.com/ultralytics/yolov5/releases -# Example usage: bash data/scripts/download_weights.sh -# parent -# └── yolov5 -# ├── yolov5s.pt ← downloads here -# ├── yolov5m.pt -# └── ... - -python - <<EOF -from utils.downloads import attempt_download - -p5 = ['n', 's', 'm', 'l', 'x'] # P5 models -p6 = [f'{x}6' for x in p5] # P6 models -cls = [f'{x}-cls' for x in p5] # classification models - -for x in p5 + p6 + cls: - attempt_download(f'weights/yolov5{x}.pt') - -EOF diff --git a/yolov5-6.2/data/scripts/get_coco.sh b/yolov5-6.2/data/scripts/get_coco.sh deleted file mode 100644 index 506d46df..00000000 --- a/yolov5-6.2/data/scripts/get_coco.sh +++ /dev/null @@ -1,56 +0,0 @@ -#!/bin/bash -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Download COCO 2017 dataset http://cocodataset.org -# Example usage: bash data/scripts/get_coco.sh -# parent -# ├── yolov5 -# └── datasets -# └── coco ← downloads here - -# Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments -if [ "$#" -gt 0 ]; then - for opt in "$@"; do - case "${opt}" in - --train) train=true ;; - --val) val=true ;; - --test) test=true ;; - --segments) segments=true ;; - esac - done -else - train=true - val=true - test=false - segments=false -fi - -# Download/unzip labels -d='../datasets' # unzip directory -url=https://github.com/ultralytics/yolov5/releases/download/v1.0/ -if [ "$segments" == "true" ]; then - f='coco2017labels-segments.zip' # 168 MB -else - f='coco2017labels.zip' # 168 MB -fi -echo 'Downloading' $url$f ' ...' -curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f & - -# Download/unzip images -d='../datasets/coco/images' # unzip directory -url=http://images.cocodataset.org/zips/ -if [ "$train" == "true" ]; then - f='train2017.zip' # 19G, 118k images - echo 'Downloading' $url$f '...' - curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f & -fi -if [ "$val" == "true" ]; then - f='val2017.zip' # 1G, 5k images - echo 'Downloading' $url$f '...' - curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f & -fi -if [ "$test" == "true" ]; then - f='test2017.zip' # 7G, 41k images (optional) - echo 'Downloading' $url$f '...' - curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f & -fi -wait # finish background tasks diff --git a/yolov5-6.2/data/scripts/get_coco128.sh b/yolov5-6.2/data/scripts/get_coco128.sh deleted file mode 100644 index e7ddce89..00000000 --- a/yolov5-6.2/data/scripts/get_coco128.sh +++ /dev/null @@ -1,17 +0,0 @@ -#!/bin/bash -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) -# Example usage: bash data/scripts/get_coco128.sh -# parent -# ├── yolov5 -# └── datasets -# └── coco128 ← downloads here - -# Download/unzip images and labels -d='../datasets' # unzip directory -url=https://github.com/ultralytics/yolov5/releases/download/v1.0/ -f='coco128.zip' # or 'coco128-segments.zip', 68 MB -echo 'Downloading' $url$f ' ...' -curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f & - -wait # finish background tasks diff --git a/yolov5-6.2/data/scripts/get_imagenet.sh b/yolov5-6.2/data/scripts/get_imagenet.sh deleted file mode 100644 index 6026d502..00000000 --- a/yolov5-6.2/data/scripts/get_imagenet.sh +++ /dev/null @@ -1,51 +0,0 @@ -#!/bin/bash -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Download ILSVRC2012 ImageNet dataset https://image-net.org -# Example usage: bash data/scripts/get_imagenet.sh -# parent -# ├── yolov5 -# └── datasets -# └── imagenet ← downloads here - -# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val -if [ "$#" -gt 0 ]; then - for opt in "$@"; do - case "${opt}" in - --train) train=true ;; - --val) val=true ;; - esac - done -else - train=true - val=true -fi - -# Make dir -d='../datasets/imagenet' # unzip directory -mkdir -p $d && cd $d - -# Download/unzip train -if [ "$train" == "true" ]; then - wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images - mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train - tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar - find . -name "*.tar" | while read NAME; do - mkdir -p "${NAME%.tar}" - tar -xf "${NAME}" -C "${NAME%.tar}" - rm -f "${NAME}" - done - cd .. -fi - -# Download/unzip val -if [ "$val" == "true" ]; then - wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images - mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar - wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs -fi - -# Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail) -# rm train/n04266014/n04266014_10835.JPEG - -# TFRecords (optional) -# wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt diff --git a/yolov5-6.2/data/xView.yaml b/yolov5-6.2/data/xView.yaml deleted file mode 100644 index 3b38f1ff..00000000 --- a/yolov5-6.2/data/xView.yaml +++ /dev/null @@ -1,102 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA) -# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! -------- -# Example usage: python train.py --data xView.yaml -# parent -# ├── yolov5 -# └── datasets -# └── xView ← downloads here (20.7 GB) - - -# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] -path: ../datasets/xView # dataset root dir -train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images -val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images - -# Classes -nc: 60 # number of classes -names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus', - 'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer', - 'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car', - 'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge', - 'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane', - 'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck', - 'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed', - 'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad', - 'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names - - -# Download script/URL (optional) --------------------------------------------------------------------------------------- -download: | - import json - import os - from pathlib import Path - - import numpy as np - from PIL import Image - from tqdm import tqdm - - from utils.datasets import autosplit - from utils.general import download, xyxy2xywhn - - - def convert_labels(fname=Path('xView/xView_train.geojson')): - # Convert xView geoJSON labels to YOLO format - path = fname.parent - with open(fname) as f: - print(f'Loading {fname}...') - data = json.load(f) - - # Make dirs - labels = Path(path / 'labels' / 'train') - os.system(f'rm -rf {labels}') - labels.mkdir(parents=True, exist_ok=True) - - # xView classes 11-94 to 0-59 - xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11, - 12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1, - 29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46, - 47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59] - - shapes = {} - for feature in tqdm(data['features'], desc=f'Converting {fname}'): - p = feature['properties'] - if p['bounds_imcoords']: - id = p['image_id'] - file = path / 'train_images' / id - if file.exists(): # 1395.tif missing - try: - box = np.array([int(num) for num in p['bounds_imcoords'].split(",")]) - assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}' - cls = p['type_id'] - cls = xview_class2index[int(cls)] # xView class to 0-60 - assert 59 >= cls >= 0, f'incorrect class index {cls}' - - # Write YOLO label - if id not in shapes: - shapes[id] = Image.open(file).size - box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True) - with open((labels / id).with_suffix('.txt'), 'a') as f: - f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt - except Exception as e: - print(f'WARNING: skipping one label for {file}: {e}') - - - # Download manually from https://challenge.xviewdataset.org - dir = Path(yaml['path']) # dataset root dir - # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels - # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images - # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels) - # download(urls, dir=dir, delete=False) - - # Convert labels - convert_labels(dir / 'xView_train.geojson') - - # Move images - images = Path(dir / 'images') - images.mkdir(parents=True, exist_ok=True) - Path(dir / 'train_images').rename(dir / 'images' / 'train') - Path(dir / 'val_images').rename(dir / 'images' / 'val') - - # Split - autosplit(dir / 'images' / 'train') diff --git a/yolov5-6.2/detect.py b/yolov5-6.2/detect.py deleted file mode 100644 index 0a88608d..00000000 --- a/yolov5-6.2/detect.py +++ /dev/null @@ -1,260 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Run inference on images, videos, directories, streams, etc. - -Usage - sources: - $ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam - img.jpg # image - vid.mp4 # video - path/ # directory - path/*.jpg # glob - 'https://youtu.be/Zgi9g1ksQHc' # YouTube - 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream - -Usage - formats: - $ python path/to/detect.py --weights yolov5s.pt # PyTorch - yolov5s.torchscript # TorchScript - yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn - yolov5s.xml # OpenVINO - yolov5s.engine # TensorRT - yolov5s.mlmodel # CoreML (macOS-only) - yolov5s_saved_model # TensorFlow SavedModel - yolov5s.pb # TensorFlow GraphDef - yolov5s.tflite # TensorFlow Lite - yolov5s_edgetpu.tflite # TensorFlow Edge TPU -""" - -import argparse -import os -import platform -import sys -from pathlib import Path - -import torch -import torch.backends.cudnn as cudnn - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[0] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative - -from models.common import DetectMultiBackend -from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams -from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, - increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh) -from utils.plots import Annotator, colors, save_one_box -from utils.torch_utils import select_device, smart_inference_mode, time_sync - - -@smart_inference_mode() -def run( - weights=ROOT / 'yolov5s.pt', # model.pt path(s) - source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam - data=ROOT / 'data/coco128.yaml', # dataset.yaml path - imgsz=(640, 640), # inference size (height, width) - conf_thres=0.25, # confidence threshold - iou_thres=0.45, # NMS IOU threshold - max_det=1000, # maximum detections per image - device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu - view_img=False, # show results - save_txt=False, # save results to *.txt - save_conf=False, # save confidences in --save-txt labels - save_crop=False, # save cropped prediction boxes - nosave=False, # do not save images/videos - classes=None, # filter by class: --class 0, or --class 0 2 3 - agnostic_nms=False, # class-agnostic NMS - augment=False, # augmented inference - visualize=False, # visualize features - update=False, # update all models - project=ROOT / 'runs/detect', # save results to project/name - name='exp', # save results to project/name - exist_ok=False, # existing project/name ok, do not increment - line_thickness=3, # bounding box thickness (pixels) - hide_labels=False, # hide labels - hide_conf=False, # hide confidences - half=False, # use FP16 half-precision inference - dnn=False, # use OpenCV DNN for ONNX inference -): - source = str(source) - save_img = not nosave and not source.endswith('.txt') # save inference images - is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) - is_url = source.lower().startswith(('rtsp://'))#, 'rtmp://', 'http://', 'https://')) - webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file) - if is_url and is_file: - source = check_file(source) # download - - # Directories - save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run - (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir - - # Load model - device = select_device(device) - model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) - stride, names, pt = model.stride, model.names, model.pt - imgsz = check_img_size(imgsz, s=stride) # check image size - - # Dataloader - if webcam: - view_img = check_imshow() - cudnn.benchmark = True # set True to speed up constant image size inference - dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) - bs = len(dataset) # batch_size - else: - dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) - bs = 1 # batch_size - vid_path, vid_writer = [None] * bs, [None] * bs - - # Run inference - model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup - seen, windows, dt = 0, [], [0.0, 0.0, 0.0] - for path, im, im0s, vid_cap, s in dataset: - t1 = time_sync() - im = torch.from_numpy(im).to(device) - im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 - im /= 255 # 0 - 255 to 0.0 - 1.0 - if len(im.shape) == 3: - im = im[None] # expand for batch dim - t2 = time_sync() - dt[0] += t2 - t1 - - # Inference - visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False - pred = model(im, augment=augment, visualize=visualize) - t3 = time_sync() - dt[1] += t3 - t2 - - # NMS - pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) - dt[2] += time_sync() - t3 - - # Second-stage classifier (optional) - # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) - - # Process predictions - for i, det in enumerate(pred): # per image - seen += 1 - if webcam: # batch_size >= 1 - p, im0, frame = path[i], im0s[i].copy(), dataset.count - s += f'{i}: ' - else: - p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) - - p = Path(p) # to Path - save_path = str(save_dir / p.name) # im.jpg - txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt - s += '%gx%g ' % im.shape[2:] # print string - gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh - imc = im0.copy() if save_crop else im0 # for save_crop - annotator = Annotator(im0, line_width=line_thickness, example=str(names)) - if len(det): - # Rescale boxes from img_size to im0 size - det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() - - # Print results - for c in det[:, -1].unique(): - n = (det[:, -1] == c).sum() # detections per class - s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string - - # Write results - for *xyxy, conf, cls in reversed(det): - if save_txt: # Write to file - xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh - line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format - with open(f'{txt_path}.txt', 'a') as f: - f.write(('%g ' * len(line)).rstrip() % line + '\n') - - if save_img or save_crop or view_img: # Add bbox to image - c = int(cls) # integer class - label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') - annotator.box_label(xyxy, label, color=colors(c, True)) - - if save_crop: - save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) - - # Stream results - im0 = annotator.result() - if view_img: - if platform.system() == 'Linux' and p not in windows: - windows.append(p) - cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) - cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) - cv2.imshow(str(p), im0) - cv2.waitKey(1) # 1 millisecond - - # Save results (image with detections) - if save_img: - if dataset.mode == 'image': - cv2.imwrite(save_path, im0) - else: # 'video' or 'stream' - if vid_path[i] != save_path: # new video - vid_path[i] = save_path - if isinstance(vid_writer[i], cv2.VideoWriter): - vid_writer[i].release() # release previous video writer - if vid_cap: # video - fps = vid_cap.get(cv2.CAP_PROP_FPS) - w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) - h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) - else: # stream - fps, w, h = 30, im0.shape[1], im0.shape[0] - save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos - vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) - vid_writer[i].write(im0) - - # Print time (inference-only) - LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)') - - # Print results - t = tuple(x / seen * 1E3 for x in dt) # speeds per image - LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) - if save_txt or save_img: - s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' - LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") - if update: - strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) - - -def parse_opt(): - parser = argparse.ArgumentParser() - parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)') - parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam') - parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') - parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') - parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') - parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') - parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') - parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') - parser.add_argument('--view-img', action='store_true', help='show results') - parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') - parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') - parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') - parser.add_argument('--nosave', action='store_true', help='do not save images/videos') - parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') - parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') - parser.add_argument('--augment', action='store_true', help='augmented inference') - parser.add_argument('--visualize', action='store_true', help='visualize features') - parser.add_argument('--update', action='store_true', help='update all models') - parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') - parser.add_argument('--name', default='exp', help='save results to project/name') - parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') - - parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') - parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') - parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') - - parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') - parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') - opt = parser.parse_args() - opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand - print_args(vars(opt)) - return opt - - -def main(opt): - check_requirements(exclude=('tensorboard', 'thop')) - run(**vars(opt)) - - -if __name__ == "__main__": - opt = parse_opt() - main(opt) diff --git a/yolov5-6.2/export.py b/yolov5-6.2/export.py deleted file mode 100644 index 595039b2..00000000 --- a/yolov5-6.2/export.py +++ /dev/null @@ -1,616 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit - -Format | `export.py --include` | Model ---- | --- | --- -PyTorch | - | yolov5s.pt -TorchScript | `torchscript` | yolov5s.torchscript -ONNX | `onnx` | yolov5s.onnx -OpenVINO | `openvino` | yolov5s_openvino_model/ -TensorRT | `engine` | yolov5s.engine -CoreML | `coreml` | yolov5s.mlmodel -TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ -TensorFlow GraphDef | `pb` | yolov5s.pb -TensorFlow Lite | `tflite` | yolov5s.tflite -TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite -TensorFlow.js | `tfjs` | yolov5s_web_model/ - -Requirements: - $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU - $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU - -Usage: - $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ... - -Inference: - $ python path/to/detect.py --weights yolov5s.pt # PyTorch - yolov5s.torchscript # TorchScript - yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn - yolov5s.xml # OpenVINO - yolov5s.engine # TensorRT - yolov5s.mlmodel # CoreML (macOS-only) - yolov5s_saved_model # TensorFlow SavedModel - yolov5s.pb # TensorFlow GraphDef - yolov5s.tflite # TensorFlow Lite - yolov5s_edgetpu.tflite # TensorFlow Edge TPU - -TensorFlow.js: - $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example - $ npm install - $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model - $ npm start -""" - -import argparse -import json -import os -import platform -import subprocess -import sys -import time -import warnings -from pathlib import Path - -import pandas as pd -import torch -import yaml -from torch.utils.mobile_optimizer import optimize_for_mobile - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[0] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -if platform.system() != 'Windows': - ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative - -from models.experimental import attempt_load -from models.yolo import Detect -from utils.dataloaders import LoadImages -from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, check_yaml, - colorstr, file_size, print_args, url2file) -from utils.torch_utils import select_device, smart_inference_mode - - -def export_formats(): - # YOLOv5 export formats - x = [ - ['PyTorch', '-', '.pt', True, True], - ['TorchScript', 'torchscript', '.torchscript', True, True], - ['ONNX', 'onnx', '.onnx', True, True], - ['OpenVINO', 'openvino', '_openvino_model', True, False], - ['TensorRT', 'engine', '.engine', False, True], - ['CoreML', 'coreml', '.mlmodel', True, False], - ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True], - ['TensorFlow GraphDef', 'pb', '.pb', True, True], - ['TensorFlow Lite', 'tflite', '.tflite', True, False], - ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False], - ['TensorFlow.js', 'tfjs', '_web_model', False, False],] - return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU']) - - -def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): - # YOLOv5 TorchScript model export - try: - LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') - f = file.with_suffix('.torchscript') - - ts = torch.jit.trace(model, im, strict=False) - d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names} - extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap() - if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html - optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) - else: - ts.save(str(f), _extra_files=extra_files) - - LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') - return f - except Exception as e: - LOGGER.info(f'{prefix} export failure: {e}') - - -def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')): - # YOLOv5 ONNX export - try: - check_requirements(('onnx',)) - import onnx - - LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') - f = file.with_suffix('.onnx') - - torch.onnx.export( - model.cpu() if dynamic else model, # --dynamic only compatible with cpu - im.cpu() if dynamic else im, - f, - verbose=False, - opset_version=opset, - training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL, - do_constant_folding=not train, - input_names=['images'], - output_names=['output'], - dynamic_axes={ - 'images': { - 0: 'batch', - 2: 'height', - 3: 'width'}, # shape(1,3,640,640) - 'output': { - 0: 'batch', - 1: 'anchors'} # shape(1,25200,85) - } if dynamic else None) - - # Checks - model_onnx = onnx.load(f) # load onnx model - onnx.checker.check_model(model_onnx) # check onnx model - - # Metadata - d = {'stride': int(max(model.stride)), 'names': model.names} - for k, v in d.items(): - meta = model_onnx.metadata_props.add() - meta.key, meta.value = k, str(v) - onnx.save(model_onnx, f) - - # Simplify - if simplify: - try: - cuda = torch.cuda.is_available() - check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1')) - import onnxsim - - LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') - model_onnx, check = onnxsim.simplify(model_onnx) - assert check, 'assert check failed' - onnx.save(model_onnx, f) - except Exception as e: - LOGGER.info(f'{prefix} simplifier failure: {e}') - LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') - return f - except Exception as e: - LOGGER.info(f'{prefix} export failure: {e}') - - -def export_openvino(model, file, half, prefix=colorstr('OpenVINO:')): - # YOLOv5 OpenVINO export - try: - check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/ - import openvino.inference_engine as ie - - LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') - f = str(file).replace('.pt', f'_openvino_model{os.sep}') - - cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}" - subprocess.check_output(cmd.split()) # export - with open(Path(f) / file.with_suffix('.yaml').name, 'w') as g: - yaml.dump({'stride': int(max(model.stride)), 'names': model.names}, g) # add metadata.yaml - - LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') - return f - except Exception as e: - LOGGER.info(f'\n{prefix} export failure: {e}') - - -def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')): - # YOLOv5 CoreML export - try: - check_requirements(('coremltools',)) - import coremltools as ct - - LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') - f = file.with_suffix('.mlmodel') - - ts = torch.jit.trace(model, im, strict=False) # TorchScript model - ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) - bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None) - if bits < 32: - if platform.system() == 'Darwin': # quantization only supported on macOS - with warnings.catch_warnings(): - warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning - ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) - else: - print(f'{prefix} quantization only supported on macOS, skipping...') - ct_model.save(f) - - LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') - return ct_model, f - except Exception as e: - LOGGER.info(f'\n{prefix} export failure: {e}') - return None, None - - -def export_engine(model, im, file, train, half, dynamic, simplify, workspace=4, verbose=False): - # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt - prefix = colorstr('TensorRT:') - try: - assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`' - try: - import tensorrt as trt - except Exception: - if platform.system() == 'Linux': - check_requirements(('nvidia-tensorrt',), cmds=('-U --index-url https://pypi.ngc.nvidia.com',)) - import tensorrt as trt - - if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012 - grid = model.model[-1].anchor_grid - model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] - export_onnx(model, im, file, 12, train, dynamic, simplify) # opset 12 - model.model[-1].anchor_grid = grid - else: # TensorRT >= 8 - check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0 - export_onnx(model, im, file, 13, train, dynamic, simplify) # opset 13 - onnx = file.with_suffix('.onnx') - - LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') - assert onnx.exists(), f'failed to export ONNX file: {onnx}' - f = file.with_suffix('.engine') # TensorRT engine file - logger = trt.Logger(trt.Logger.INFO) - if verbose: - logger.min_severity = trt.Logger.Severity.VERBOSE - - builder = trt.Builder(logger) - config = builder.create_builder_config() - config.max_workspace_size = workspace * 1 << 30 - # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice - - flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) - network = builder.create_network(flag) - parser = trt.OnnxParser(network, logger) - if not parser.parse_from_file(str(onnx)): - raise RuntimeError(f'failed to load ONNX file: {onnx}') - - inputs = [network.get_input(i) for i in range(network.num_inputs)] - outputs = [network.get_output(i) for i in range(network.num_outputs)] - LOGGER.info(f'{prefix} Network Description:') - for inp in inputs: - LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}') - for out in outputs: - LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}') - - if dynamic: - if im.shape[0] <= 1: - LOGGER.warning(f"{prefix}WARNING: --dynamic model requires maximum --batch-size argument") - profile = builder.create_optimization_profile() - for inp in inputs: - profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape) - config.add_optimization_profile(profile) - - LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine in {f}') - if builder.platform_has_fast_fp16 and half: - config.set_flag(trt.BuilderFlag.FP16) - with builder.build_engine(network, config) as engine, open(f, 'wb') as t: - t.write(engine.serialize()) - LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') - return f - except Exception as e: - LOGGER.info(f'\n{prefix} export failure: {e}') - - -def export_saved_model(model, - im, - file, - dynamic, - tf_nms=False, - agnostic_nms=False, - topk_per_class=100, - topk_all=100, - iou_thres=0.45, - conf_thres=0.25, - keras=False, - prefix=colorstr('TensorFlow SavedModel:')): - # YOLOv5 TensorFlow SavedModel export - try: - import tensorflow as tf - from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 - - from models.tf import TFDetect, TFModel - - LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') - f = str(file).replace('.pt', '_saved_model') - batch_size, ch, *imgsz = list(im.shape) # BCHW - - tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) - im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow - _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) - inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size) - outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) - keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) - keras_model.trainable = False - keras_model.summary() - if keras: - keras_model.save(f, save_format='tf') - else: - spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) - m = tf.function(lambda x: keras_model(x)) # full model - m = m.get_concrete_function(spec) - frozen_func = convert_variables_to_constants_v2(m) - tfm = tf.Module() - tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x)[0], [spec]) - tfm.__call__(im) - tf.saved_model.save(tfm, - f, - options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) - if check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions()) - LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') - return keras_model, f - except Exception as e: - LOGGER.info(f'\n{prefix} export failure: {e}') - return None, None - - -def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): - # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow - try: - import tensorflow as tf - from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 - - LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') - f = file.with_suffix('.pb') - - m = tf.function(lambda x: keras_model(x)) # full model - m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) - frozen_func = convert_variables_to_constants_v2(m) - frozen_func.graph.as_graph_def() - tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) - - LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') - return f - except Exception as e: - LOGGER.info(f'\n{prefix} export failure: {e}') - - -def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')): - # YOLOv5 TensorFlow Lite export - try: - import tensorflow as tf - - LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') - batch_size, ch, *imgsz = list(im.shape) # BCHW - f = str(file).replace('.pt', '-fp16.tflite') - - converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) - converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] - converter.target_spec.supported_types = [tf.float16] - converter.optimizations = [tf.lite.Optimize.DEFAULT] - if int8: - from models.tf import representative_dataset_gen - dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False) - converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100) - converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] - converter.target_spec.supported_types = [] - converter.inference_input_type = tf.uint8 # or tf.int8 - converter.inference_output_type = tf.uint8 # or tf.int8 - converter.experimental_new_quantizer = True - f = str(file).replace('.pt', '-int8.tflite') - if nms or agnostic_nms: - converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS) - - tflite_model = converter.convert() - open(f, "wb").write(tflite_model) - LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') - return f - except Exception as e: - LOGGER.info(f'\n{prefix} export failure: {e}') - - -def export_edgetpu(file, prefix=colorstr('Edge TPU:')): - # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ - try: - cmd = 'edgetpu_compiler --version' - help_url = 'https://coral.ai/docs/edgetpu/compiler/' - assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' - if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0: - LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') - sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system - for c in ( - 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', - 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', - 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'): - subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) - ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] - - LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') - f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model - f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model - - cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}" - subprocess.run(cmd.split(), check=True) - - LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') - return f - except Exception as e: - LOGGER.info(f'\n{prefix} export failure: {e}') - - -def export_tfjs(file, prefix=colorstr('TensorFlow.js:')): - # YOLOv5 TensorFlow.js export - try: - check_requirements(('tensorflowjs',)) - import re - - import tensorflowjs as tfjs - - LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') - f = str(file).replace('.pt', '_web_model') # js dir - f_pb = file.with_suffix('.pb') # *.pb path - f_json = f'{f}/model.json' # *.json path - - cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \ - f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}' - subprocess.run(cmd.split()) - - with open(f_json) as j: - json = j.read() - with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order - subst = re.sub( - r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' - r'"Identity.?.?": {"name": "Identity.?.?"}, ' - r'"Identity.?.?": {"name": "Identity.?.?"}, ' - r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' - r'"Identity_1": {"name": "Identity_1"}, ' - r'"Identity_2": {"name": "Identity_2"}, ' - r'"Identity_3": {"name": "Identity_3"}}}', json) - j.write(subst) - - LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') - return f - except Exception as e: - LOGGER.info(f'\n{prefix} export failure: {e}') - - -@smart_inference_mode() -def run( - data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' - weights=ROOT / 'yolov5s.pt', # weights path - imgsz=(640, 640), # image (height, width) - batch_size=1, # batch size - device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu - include=('torchscript', 'onnx'), # include formats - half=False, # FP16 half-precision export - inplace=False, # set YOLOv5 Detect() inplace=True - train=False, # model.train() mode - keras=False, # use Keras - optimize=False, # TorchScript: optimize for mobile - int8=False, # CoreML/TF INT8 quantization - dynamic=False, # ONNX/TF/TensorRT: dynamic axes - simplify=False, # ONNX: simplify model - opset=12, # ONNX: opset version - verbose=False, # TensorRT: verbose log - workspace=4, # TensorRT: workspace size (GB) - nms=False, # TF: add NMS to model - agnostic_nms=False, # TF: add agnostic NMS to model - topk_per_class=100, # TF.js NMS: topk per class to keep - topk_all=100, # TF.js NMS: topk for all classes to keep - iou_thres=0.45, # TF.js NMS: IoU threshold - conf_thres=0.25, # TF.js NMS: confidence threshold -): - t = time.time() - include = [x.lower() for x in include] # to lowercase - fmts = tuple(export_formats()['Argument'][1:]) # --include arguments - flags = [x in include for x in fmts] - assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}' - jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags # export booleans - file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights - - # Load PyTorch model - device = select_device(device) - if half: - assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0' - assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both' - model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model - - # Checks - imgsz *= 2 if len(imgsz) == 1 else 1 # expand - if optimize: - assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu' - - # Input - gs = int(max(model.stride)) # grid size (max stride) - imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples - im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection - - # Update model - model.train() if train else model.eval() # training mode = no Detect() layer grid construction - for k, m in model.named_modules(): - if isinstance(m, Detect): - m.inplace = inplace - m.onnx_dynamic = dynamic - m.export = True - - for _ in range(2): - y = model(im) # dry runs - if half and not coreml: - im, model = im.half(), model.half() # to FP16 - shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape - LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") - - # Exports - f = [''] * 10 # exported filenames - warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning - if jit: - f[0] = export_torchscript(model, im, file, optimize) - if engine: # TensorRT required before ONNX - f[1] = export_engine(model, im, file, train, half, dynamic, simplify, workspace, verbose) - if onnx or xml: # OpenVINO requires ONNX - f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify) - if xml: # OpenVINO - f[3] = export_openvino(model, file, half) - if coreml: - _, f[4] = export_coreml(model, im, file, int8, half) - - # TensorFlow Exports - if any((saved_model, pb, tflite, edgetpu, tfjs)): - if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707 - check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow` - assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.' - model, f[5] = export_saved_model(model.cpu(), - im, - file, - dynamic, - tf_nms=nms or agnostic_nms or tfjs, - agnostic_nms=agnostic_nms or tfjs, - topk_per_class=topk_per_class, - topk_all=topk_all, - iou_thres=iou_thres, - conf_thres=conf_thres, - keras=keras) - if pb or tfjs: # pb prerequisite to tfjs - f[6] = export_pb(model, file) - if tflite or edgetpu: - f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms) - if edgetpu: - f[8] = export_edgetpu(file) - if tfjs: - f[9] = export_tfjs(file) - - # Finish - f = [str(x) for x in f if x] # filter out '' and None - if any(f): - h = '--half' if half else '' # --half FP16 inference arg - LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)' - f"\nResults saved to {colorstr('bold', file.parent.resolve())}" - f"\nDetect: python detect.py --weights {f[-1]} {h}" - f"\nValidate: python val.py --weights {f[-1]} {h}" - f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')" - f"\nVisualize: https://netron.app") - return f # return list of exported files/dirs - - -def parse_opt(): - parser = argparse.ArgumentParser() - parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') - parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') - parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') - parser.add_argument('--batch-size', type=int, default=1, help='batch size') - parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') - parser.add_argument('--half', action='store_true', help='FP16 half-precision export') - parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') - parser.add_argument('--train', action='store_true', help='model.train() mode') - parser.add_argument('--keras', action='store_true', help='TF: use Keras') - parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') - parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization') - parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes') - parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') - parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version') - parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log') - parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)') - parser.add_argument('--nms', action='store_true', help='TF: add NMS to model') - parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model') - parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep') - parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep') - parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold') - parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold') - parser.add_argument('--include', - nargs='+', - default=['torchscript', 'onnx'], - help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs') - opt = parser.parse_args() - print_args(vars(opt)) - return opt - - -def main(opt): - for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]): - run(**vars(opt)) - - -if __name__ == "__main__": - opt = parse_opt() - main(opt) diff --git a/yolov5-6.2/hubconf.py b/yolov5-6.2/hubconf.py deleted file mode 100644 index 011eaa57..00000000 --- a/yolov5-6.2/hubconf.py +++ /dev/null @@ -1,160 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/ - -Usage: - import torch - model = torch.hub.load('ultralytics/yolov5', 'yolov5s') - model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx') # file from branch -""" - -import torch - - -def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): - """Creates or loads a YOLOv5 model - - Arguments: - name (str): model name 'yolov5s' or path 'path/to/best.pt' - pretrained (bool): load pretrained weights into the model - channels (int): number of input channels - classes (int): number of model classes - autoshape (bool): apply YOLOv5 .autoshape() wrapper to model - verbose (bool): print all information to screen - device (str, torch.device, None): device to use for model parameters - - Returns: - YOLOv5 model - """ - from pathlib import Path - - from models.common import AutoShape, DetectMultiBackend - from models.experimental import attempt_load - from models.yolo import Model - from utils.downloads import attempt_download - from utils.general import LOGGER, check_requirements, intersect_dicts, logging - from utils.torch_utils import select_device - - if not verbose: - LOGGER.setLevel(logging.WARNING) - check_requirements(exclude=('tensorboard', 'thop', 'opencv-python')) - name = Path(name) - path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path - try: - device = select_device(device) - if pretrained and channels == 3 and classes == 80: - try: - model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model - if autoshape: - model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS - except Exception: - model = attempt_load(path, device=device, fuse=False) # arbitrary model - else: - cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path - model = Model(cfg, channels, classes) # create model - if pretrained: - ckpt = torch.load(attempt_download(path), map_location=device) # load - csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 - csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect - model.load_state_dict(csd, strict=False) # load - if len(ckpt['model'].names) == classes: - model.names = ckpt['model'].names # set class names attribute - if not verbose: - LOGGER.setLevel(logging.INFO) # reset to default - return model.to(device) - - except Exception as e: - help_url = 'https://github.com/ultralytics/yolov5/issues/36' - s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.' - raise Exception(s) from e - - -def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None): - # YOLOv5 custom or local model - return _create(path, autoshape=autoshape, verbose=_verbose, device=device) - - -def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): - # YOLOv5-nano model https://github.com/ultralytics/yolov5 - return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device) - - -def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): - # YOLOv5-small model https://github.com/ultralytics/yolov5 - return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device) - - -def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): - # YOLOv5-medium model https://github.com/ultralytics/yolov5 - return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device) - - -def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): - # YOLOv5-large model https://github.com/ultralytics/yolov5 - return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device) - - -def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): - # YOLOv5-xlarge model https://github.com/ultralytics/yolov5 - return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device) - - -def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): - # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5 - return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device) - - -def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): - # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5 - return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device) - - -def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): - # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5 - return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device) - - -def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): - # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5 - return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device) - - -def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): - # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5 - return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device) - - -if __name__ == '__main__': - import argparse - from pathlib import Path - - import numpy as np - from PIL import Image - - from utils.general import cv2, print_args - - # Argparser - parser = argparse.ArgumentParser() - parser.add_argument('--model', type=str, default='yolov5s', help='model name') - opt = parser.parse_args() - print_args(vars(opt)) - - # Model - model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) - # model = custom(path='path/to/model.pt') # custom - - # Images - imgs = [ - 'data/images/zidane.jpg', # filename - Path('data/images/zidane.jpg'), # Path - 'https://ultralytics.com/images/zidane.jpg', # URI - cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV - Image.open('data/images/bus.jpg'), # PIL - np.zeros((320, 640, 3))] # numpy - - # Inference - results = model(imgs, size=320) # batched inference - - # Results - results.print() - results.save() diff --git a/yolov5-6.2/ip.py b/yolov5-6.2/ip.py deleted file mode 100644 index 4ca5f9cf..00000000 --- a/yolov5-6.2/ip.py +++ /dev/null @@ -1,21 +0,0 @@ -import socket -import sys,json -import numpy as np -# 创建 socket 对象 -serversocket = socket.socket( - socket.AF_INET, socket.SOCK_STREAM) - -# 获取本地主机名,本机的ip -host = '192.168.220.151' -port = 9999 - -# 绑定端口号 -serversocket.connect((host, port)) - -# 设置最大连接数,超过后排队 -while True: - # 建立客户端连接 - msg = serversocket.recv(4096) - msg = msg.decode('utf-8') - recvmsg = json.loads(msg) - print(recvmsg) diff --git a/yolov5-6.2/models/__init__.py b/yolov5-6.2/models/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/yolov5-6.2/models/common.py b/yolov5-6.2/models/common.py deleted file mode 100644 index 17e40e60..00000000 --- a/yolov5-6.2/models/common.py +++ /dev/null @@ -1,771 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Common modules -""" - -import json -import math -import platform -import warnings -from collections import OrderedDict, namedtuple -from copy import copy -from pathlib import Path - -import cv2 -import numpy as np -import pandas as pd -import requests -import torch -import torch.nn as nn -from PIL import Image -from torch.cuda import amp - -from utils.dataloaders import exif_transpose, letterbox -from utils.general import (LOGGER, ROOT, check_requirements, check_suffix, check_version, colorstr, increment_path, - make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh, yaml_load) -from utils.plots import Annotator, colors, save_one_box -from utils.torch_utils import copy_attr, smart_inference_mode, time_sync - - -def autopad(k, p=None): # kernel, padding - # Pad to 'same' - if p is None: - p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad - return p - - -class Conv(nn.Module): - # Standard convolution - def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups - super().__init__() - self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) - self.bn = nn.BatchNorm2d(c2) - self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) - - def forward(self, x): - return self.act(self.bn(self.conv(x))) - - def forward_fuse(self, x): - return self.act(self.conv(x)) - - -class DWConv(Conv): - # Depth-wise convolution class - def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups - super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act) - - -class DWConvTranspose2d(nn.ConvTranspose2d): - # Depth-wise transpose convolution class - def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out - super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2)) - - -class TransformerLayer(nn.Module): - # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance) - def __init__(self, c, num_heads): - super().__init__() - self.q = nn.Linear(c, c, bias=False) - self.k = nn.Linear(c, c, bias=False) - self.v = nn.Linear(c, c, bias=False) - self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) - self.fc1 = nn.Linear(c, c, bias=False) - self.fc2 = nn.Linear(c, c, bias=False) - - def forward(self, x): - x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x - x = self.fc2(self.fc1(x)) + x - return x - - -class TransformerBlock(nn.Module): - # Vision Transformer https://arxiv.org/abs/2010.11929 - def __init__(self, c1, c2, num_heads, num_layers): - super().__init__() - self.conv = None - if c1 != c2: - self.conv = Conv(c1, c2) - self.linear = nn.Linear(c2, c2) # learnable position embedding - self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers))) - self.c2 = c2 - - def forward(self, x): - if self.conv is not None: - x = self.conv(x) - b, _, w, h = x.shape - p = x.flatten(2).permute(2, 0, 1) - return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h) - - -class Bottleneck(nn.Module): - # Standard bottleneck - def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = Conv(c1, c_, 1, 1) - self.cv2 = Conv(c_, c2, 3, 1, g=g) - self.add = shortcut and c1 == c2 - - def forward(self, x): - return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) - - -class BottleneckCSP(nn.Module): - # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks - def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = Conv(c1, c_, 1, 1) - self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) - self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) - self.cv4 = Conv(2 * c_, c2, 1, 1) - self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) - self.act = nn.SiLU() - self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) - - def forward(self, x): - y1 = self.cv3(self.m(self.cv1(x))) - y2 = self.cv2(x) - return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1)))) - - -class CrossConv(nn.Module): - # Cross Convolution Downsample - def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): - # ch_in, ch_out, kernel, stride, groups, expansion, shortcut - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = Conv(c1, c_, (1, k), (1, s)) - self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) - self.add = shortcut and c1 == c2 - - def forward(self, x): - return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) - - -class C3(nn.Module): - # CSP Bottleneck with 3 convolutions - def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = Conv(c1, c_, 1, 1) - self.cv2 = Conv(c1, c_, 1, 1) - self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2) - self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) - - def forward(self, x): - return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) - - -class C3x(C3): - # C3 module with cross-convolutions - def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): - super().__init__(c1, c2, n, shortcut, g, e) - c_ = int(c2 * e) - self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n))) - - -class C3TR(C3): - # C3 module with TransformerBlock() - def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): - super().__init__(c1, c2, n, shortcut, g, e) - c_ = int(c2 * e) - self.m = TransformerBlock(c_, c_, 4, n) - - -class C3SPP(C3): - # C3 module with SPP() - def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5): - super().__init__(c1, c2, n, shortcut, g, e) - c_ = int(c2 * e) - self.m = SPP(c_, c_, k) - - -class C3Ghost(C3): - # C3 module with GhostBottleneck() - def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): - super().__init__(c1, c2, n, shortcut, g, e) - c_ = int(c2 * e) # hidden channels - self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n))) - - -class SPP(nn.Module): - # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729 - def __init__(self, c1, c2, k=(5, 9, 13)): - super().__init__() - c_ = c1 // 2 # hidden channels - self.cv1 = Conv(c1, c_, 1, 1) - self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) - self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) - - def forward(self, x): - x = self.cv1(x) - with warnings.catch_warnings(): - warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning - return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) - - -class SPPF(nn.Module): - # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher - def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) - super().__init__() - c_ = c1 // 2 # hidden channels - self.cv1 = Conv(c1, c_, 1, 1) - self.cv2 = Conv(c_ * 4, c2, 1, 1) - self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) - - def forward(self, x): - x = self.cv1(x) - with warnings.catch_warnings(): - warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning - y1 = self.m(x) - y2 = self.m(y1) - return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) - - -class Focus(nn.Module): - # Focus wh information into c-space - def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups - super().__init__() - self.conv = Conv(c1 * 4, c2, k, s, p, g, act) - # self.contract = Contract(gain=2) - - def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) - return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1)) - # return self.conv(self.contract(x)) - - -class GhostConv(nn.Module): - # Ghost Convolution https://github.com/huawei-noah/ghostnet - def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups - super().__init__() - c_ = c2 // 2 # hidden channels - self.cv1 = Conv(c1, c_, k, s, None, g, act) - self.cv2 = Conv(c_, c_, 5, 1, None, c_, act) - - def forward(self, x): - y = self.cv1(x) - return torch.cat((y, self.cv2(y)), 1) - - -class GhostBottleneck(nn.Module): - # Ghost Bottleneck https://github.com/huawei-noah/ghostnet - def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride - super().__init__() - c_ = c2 // 2 - self.conv = nn.Sequential( - GhostConv(c1, c_, 1, 1), # pw - DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw - GhostConv(c_, c2, 1, 1, act=False)) # pw-linear - self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, - act=False)) if s == 2 else nn.Identity() - - def forward(self, x): - return self.conv(x) + self.shortcut(x) - - -class Contract(nn.Module): - # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40) - def __init__(self, gain=2): - super().__init__() - self.gain = gain - - def forward(self, x): - b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain' - s = self.gain - x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2) - x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40) - return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40) - - -class Expand(nn.Module): - # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160) - def __init__(self, gain=2): - super().__init__() - self.gain = gain - - def forward(self, x): - b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain' - s = self.gain - x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80) - x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2) - return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160) - - -class Concat(nn.Module): - # Concatenate a list of tensors along dimension - def __init__(self, dimension=1): - super().__init__() - self.d = dimension - - def forward(self, x): - return torch.cat(x, self.d) - - -class DetectMultiBackend(nn.Module): - # YOLOv5 MultiBackend class for python inference on various backends - def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True): - # Usage: - # PyTorch: weights = *.pt - # TorchScript: *.torchscript - # ONNX Runtime: *.onnx - # ONNX OpenCV DNN: *.onnx with --dnn - # OpenVINO: *.xml - # CoreML: *.mlmodel - # TensorRT: *.engine - # TensorFlow SavedModel: *_saved_model - # TensorFlow GraphDef: *.pb - # TensorFlow Lite: *.tflite - # TensorFlow Edge TPU: *_edgetpu.tflite - from models.experimental import attempt_download, attempt_load # scoped to avoid circular import - - super().__init__() - w = str(weights[0] if isinstance(weights, list) else weights) - pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self._model_type(w) # get backend - w = attempt_download(w) # download if not local - fp16 &= pt or jit or onnx or engine # FP16 - stride = 32 # default stride - - if pt: # PyTorch - model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse) - stride = max(int(model.stride.max()), 32) # model stride - names = model.module.names if hasattr(model, 'module') else model.names # get class names - model.half() if fp16 else model.float() - self.model = model # explicitly assign for to(), cpu(), cuda(), half() - elif jit: # TorchScript - LOGGER.info(f'Loading {w} for TorchScript inference...') - extra_files = {'config.txt': ''} # model metadata - model = torch.jit.load(w, _extra_files=extra_files) - model.half() if fp16 else model.float() - if extra_files['config.txt']: - d = json.loads(extra_files['config.txt']) # extra_files dict - stride, names = int(d['stride']), d['names'] - elif dnn: # ONNX OpenCV DNN - LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...') - check_requirements(('opencv-python>=4.5.4',)) - net = cv2.dnn.readNetFromONNX(w) - elif onnx: # ONNX Runtime - LOGGER.info(f'Loading {w} for ONNX Runtime inference...') - cuda = torch.cuda.is_available() and device.type != 'cpu' - check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime')) - import onnxruntime - providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider'] - session = onnxruntime.InferenceSession(w, providers=providers) - meta = session.get_modelmeta().custom_metadata_map # metadata - if 'stride' in meta: - stride, names = int(meta['stride']), eval(meta['names']) - elif xml: # OpenVINO - LOGGER.info(f'Loading {w} for OpenVINO inference...') - check_requirements(('openvino',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/ - from openvino.runtime import Core, Layout, get_batch - ie = Core() - if not Path(w).is_file(): # if not *.xml - w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir - network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin')) - if network.get_parameters()[0].get_layout().empty: - network.get_parameters()[0].set_layout(Layout("NCHW")) - batch_dim = get_batch(network) - if batch_dim.is_static: - batch_size = batch_dim.get_length() - executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2 - output_layer = next(iter(executable_network.outputs)) - meta = Path(w).with_suffix('.yaml') - if meta.exists(): - stride, names = self._load_metadata(meta) # load metadata - elif engine: # TensorRT - LOGGER.info(f'Loading {w} for TensorRT inference...') - import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download - check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0 - if device.type == 'cpu': - device = torch.device('cuda:0') - Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) - logger = trt.Logger(trt.Logger.INFO) - with open(w, 'rb') as f, trt.Runtime(logger) as runtime: - model = runtime.deserialize_cuda_engine(f.read()) - context = model.create_execution_context() - bindings = OrderedDict() - fp16 = False # default updated below - dynamic = False - for index in range(model.num_bindings): - name = model.get_binding_name(index) - dtype = trt.nptype(model.get_binding_dtype(index)) - if model.binding_is_input(index): - if -1 in tuple(model.get_binding_shape(index)): # dynamic - dynamic = True - context.set_binding_shape(index, tuple(model.get_profile_shape(0, index)[2])) - if dtype == np.float16: - fp16 = True - shape = tuple(context.get_binding_shape(index)) - im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device) - bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr())) - binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items()) - batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size - elif coreml: # CoreML - LOGGER.info(f'Loading {w} for CoreML inference...') - import coremltools as ct - model = ct.models.MLModel(w) - else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU) - if saved_model: # SavedModel - LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...') - import tensorflow as tf - keras = False # assume TF1 saved_model - model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w) - elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt - LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...') - import tensorflow as tf - - def wrap_frozen_graph(gd, inputs, outputs): - x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped - ge = x.graph.as_graph_element - return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs)) - - gd = tf.Graph().as_graph_def() # graph_def - with open(w, 'rb') as f: - gd.ParseFromString(f.read()) - frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0") - elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python - try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu - from tflite_runtime.interpreter import Interpreter, load_delegate - except ImportError: - import tensorflow as tf - Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate, - if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime - LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...') - delegate = { - 'Linux': 'libedgetpu.so.1', - 'Darwin': 'libedgetpu.1.dylib', - 'Windows': 'edgetpu.dll'}[platform.system()] - interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)]) - else: # Lite - LOGGER.info(f'Loading {w} for TensorFlow Lite inference...') - interpreter = Interpreter(model_path=w) # load TFLite model - interpreter.allocate_tensors() # allocate - input_details = interpreter.get_input_details() # inputs - output_details = interpreter.get_output_details() # outputs - elif tfjs: - raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported') - else: - raise NotImplementedError(f'ERROR: {w} is not a supported format') - - # class names - if 'names' not in locals(): - names = yaml_load(data)['names'] if data else [f'class{i}' for i in range(999)] - if names[0] == 'n01440764' and len(names) == 1000: # ImageNet - names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names - - self.__dict__.update(locals()) # assign all variables to self - - def forward(self, im, augment=False, visualize=False, val=False): - # YOLOv5 MultiBackend inference - b, ch, h, w = im.shape # batch, channel, height, width - if self.fp16 and im.dtype != torch.float16: - im = im.half() # to FP16 - - if self.pt: # PyTorch - y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im) - if isinstance(y, tuple): - y = y[0] - elif self.jit: # TorchScript - y = self.model(im)[0] - elif self.dnn: # ONNX OpenCV DNN - im = im.cpu().numpy() # torch to numpy - self.net.setInput(im) - y = self.net.forward() - elif self.onnx: # ONNX Runtime - im = im.cpu().numpy() # torch to numpy - y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0] - elif self.xml: # OpenVINO - im = im.cpu().numpy() # FP32 - y = self.executable_network([im])[self.output_layer] - elif self.engine: # TensorRT - if self.dynamic and im.shape != self.bindings['images'].shape: - i_in, i_out = (self.model.get_binding_index(x) for x in ('images', 'output')) - self.context.set_binding_shape(i_in, im.shape) # reshape if dynamic - self.bindings['images'] = self.bindings['images']._replace(shape=im.shape) - self.bindings['output'].data.resize_(tuple(self.context.get_binding_shape(i_out))) - s = self.bindings['images'].shape - assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}" - self.binding_addrs['images'] = int(im.data_ptr()) - self.context.execute_v2(list(self.binding_addrs.values())) - y = self.bindings['output'].data - elif self.coreml: # CoreML - im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3) - im = Image.fromarray((im[0] * 255).astype('uint8')) - # im = im.resize((192, 320), Image.ANTIALIAS) - y = self.model.predict({'image': im}) # coordinates are xywh normalized - if 'confidence' in y: - box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels - conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float) - y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1) - else: - k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key - y = y[k] # output - else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU) - im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3) - if self.saved_model: # SavedModel - y = (self.model(im, training=False) if self.keras else self.model(im)).numpy() - elif self.pb: # GraphDef - y = self.frozen_func(x=self.tf.constant(im)).numpy() - else: # Lite or Edge TPU - input, output = self.input_details[0], self.output_details[0] - int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model - if int8: - scale, zero_point = input['quantization'] - im = (im / scale + zero_point).astype(np.uint8) # de-scale - self.interpreter.set_tensor(input['index'], im) - self.interpreter.invoke() - y = self.interpreter.get_tensor(output['index']) - if int8: - scale, zero_point = output['quantization'] - y = (y.astype(np.float32) - zero_point) * scale # re-scale - y[..., :4] *= [w, h, w, h] # xywh normalized to pixels - - if isinstance(y, np.ndarray): - y = torch.tensor(y, device=self.device) - return (y, []) if val else y - - def warmup(self, imgsz=(1, 3, 640, 640)): - # Warmup model by running inference once - warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb - if any(warmup_types) and self.device.type != 'cpu': - im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input - for _ in range(2 if self.jit else 1): # - self.forward(im) # warmup - - @staticmethod - def _model_type(p='path/to/model.pt'): - # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx - from export import export_formats - suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes - check_suffix(p, suffixes) # checks - p = Path(p).name # eliminate trailing separators - pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes) - xml |= xml2 # *_openvino_model or *.xml - tflite &= not edgetpu # *.tflite - return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs - - @staticmethod - def _load_metadata(f='path/to/meta.yaml'): - # Load metadata from meta.yaml if it exists - d = yaml_load(f) - return d['stride'], d['names'] # assign stride, names - - -class AutoShape(nn.Module): - # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS - conf = 0.25 # NMS confidence threshold - iou = 0.45 # NMS IoU threshold - agnostic = False # NMS class-agnostic - multi_label = False # NMS multiple labels per box - classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs - max_det = 1000 # maximum number of detections per image - amp = False # Automatic Mixed Precision (AMP) inference - - def __init__(self, model, verbose=True): - super().__init__() - if verbose: - LOGGER.info('Adding AutoShape... ') - copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes - self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance - self.pt = not self.dmb or model.pt # PyTorch model - self.model = model.eval() - if self.pt: - m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect() - m.inplace = False # Detect.inplace=False for safe multithread inference - - def _apply(self, fn): - # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers - self = super()._apply(fn) - if self.pt: - m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect() - m.stride = fn(m.stride) - m.grid = list(map(fn, m.grid)) - if isinstance(m.anchor_grid, list): - m.anchor_grid = list(map(fn, m.anchor_grid)) - return self - - @smart_inference_mode() - def forward(self, imgs, size=640, augment=False, profile=False): - # Inference from various sources. For height=640, width=1280, RGB images example inputs are: - # file: imgs = 'data/images/zidane.jpg' # str or PosixPath - # URI: = 'https://ultralytics.com/images/zidane.jpg' - # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3) - # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3) - # numpy: = np.zeros((640,1280,3)) # HWC - # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) - # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images - - t = [time_sync()] - p = next(self.model.parameters()) if self.pt else torch.zeros(1, device=self.model.device) # for device, type - autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference - if isinstance(imgs, torch.Tensor): # torch - with amp.autocast(autocast): - return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference - - # Pre-process - n, imgs = (len(imgs), list(imgs)) if isinstance(imgs, (list, tuple)) else (1, [imgs]) # number, list of images - shape0, shape1, files = [], [], [] # image and inference shapes, filenames - for i, im in enumerate(imgs): - f = f'image{i}' # filename - if isinstance(im, (str, Path)): # filename or uri - im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im - im = np.asarray(exif_transpose(im)) - elif isinstance(im, Image.Image): # PIL Image - im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f - files.append(Path(f).with_suffix('.jpg').name) - if im.shape[0] < 5: # image in CHW - im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) - im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input - s = im.shape[:2] # HWC - shape0.append(s) # image shape - g = (size / max(s)) # gain - shape1.append([y * g for y in s]) - imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update - shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape - x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad - x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW - x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32 - t.append(time_sync()) - - with amp.autocast(autocast): - # Inference - y = self.model(x, augment, profile) # forward - t.append(time_sync()) - - # Post-process - y = non_max_suppression(y if self.dmb else y[0], - self.conf, - self.iou, - self.classes, - self.agnostic, - self.multi_label, - max_det=self.max_det) # NMS - for i in range(n): - scale_coords(shape1, y[i][:, :4], shape0[i]) - - t.append(time_sync()) - return Detections(imgs, y, files, t, self.names, x.shape) - - -class Detections: - # YOLOv5 detections class for inference results - def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None): - super().__init__() - d = pred[0].device # device - gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations - self.imgs = imgs # list of images as numpy arrays - self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) - self.names = names # class names - self.files = files # image filenames - self.times = times # profiling times - self.xyxy = pred # xyxy pixels - self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels - self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized - self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized - self.n = len(self.pred) # number of images (batch size) - self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms) - self.s = shape # inference BCHW shape - - def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')): - crops = [] - for i, (im, pred) in enumerate(zip(self.imgs, self.pred)): - s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string - if pred.shape[0]: - for c in pred[:, -1].unique(): - n = (pred[:, -1] == c).sum() # detections per class - s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string - if show or save or render or crop: - annotator = Annotator(im, example=str(self.names)) - for *box, conf, cls in reversed(pred): # xyxy, confidence, class - label = f'{self.names[int(cls)]} {conf:.2f}' - if crop: - file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None - crops.append({ - 'box': box, - 'conf': conf, - 'cls': cls, - 'label': label, - 'im': save_one_box(box, im, file=file, save=save)}) - else: # all others - annotator.box_label(box, label if labels else '', color=colors(cls)) - im = annotator.im - else: - s += '(no detections)' - - im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np - if pprint: - print(s.rstrip(', ')) - if show: - im.show(self.files[i]) # show - if save: - f = self.files[i] - im.save(save_dir / f) # save - if i == self.n - 1: - LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}") - if render: - self.imgs[i] = np.asarray(im) - if crop: - if save: - LOGGER.info(f'Saved results to {save_dir}\n') - return crops - - def print(self): - self.display(pprint=True) # print results - print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t) - - def show(self, labels=True): - self.display(show=True, labels=labels) # show results - - def save(self, labels=True, save_dir='runs/detect/exp'): - save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir - self.display(save=True, labels=labels, save_dir=save_dir) # save results - - def crop(self, save=True, save_dir='runs/detect/exp'): - save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None - return self.display(crop=True, save=save, save_dir=save_dir) # crop results - - def render(self, labels=True): - self.display(render=True, labels=labels) # render results - return self.imgs - - def pandas(self): - # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0]) - new = copy(self) # return copy - ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns - cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns - for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): - a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update - setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) - return new - - def tolist(self): - # return a list of Detections objects, i.e. 'for result in results.tolist():' - r = range(self.n) # iterable - x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r] - # for d in x: - # for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: - # setattr(d, k, getattr(d, k)[0]) # pop out of list - return x - - def __len__(self): - return self.n # override len(results) - - def __str__(self): - self.print() # override print(results) - return '' - - -class Classify(nn.Module): - # Classification head, i.e. x(b,c1,20,20) to x(b,c2) - def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups - super().__init__() - c_ = 1280 # efficientnet_b0 size - self.conv = Conv(c1, c_, k, s, autopad(k, p), g) - self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1) - self.drop = nn.Dropout(p=0.0, inplace=True) - self.linear = nn.Linear(c_, c2) # to x(b,c2) - - def forward(self, x): - if isinstance(x, list): - x = torch.cat(x, 1) - return self.linear(self.drop(self.pool(self.conv(x)).flatten(1))) diff --git a/yolov5-6.2/models/experimental.py b/yolov5-6.2/models/experimental.py deleted file mode 100644 index cb32d01b..00000000 --- a/yolov5-6.2/models/experimental.py +++ /dev/null @@ -1,107 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Experimental modules -""" -import math - -import numpy as np -import torch -import torch.nn as nn - -from models.common import Conv -from utils.downloads import attempt_download - - -class Sum(nn.Module): - # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 - def __init__(self, n, weight=False): # n: number of inputs - super().__init__() - self.weight = weight # apply weights boolean - self.iter = range(n - 1) # iter object - if weight: - self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights - - def forward(self, x): - y = x[0] # no weight - if self.weight: - w = torch.sigmoid(self.w) * 2 - for i in self.iter: - y = y + x[i + 1] * w[i] - else: - for i in self.iter: - y = y + x[i + 1] - return y - - -class MixConv2d(nn.Module): - # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595 - def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy - super().__init__() - n = len(k) # number of convolutions - if equal_ch: # equal c_ per group - i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices - c_ = [(i == g).sum() for g in range(n)] # intermediate channels - else: # equal weight.numel() per group - b = [c2] + [0] * n - a = np.eye(n + 1, n, k=-1) - a -= np.roll(a, 1, axis=1) - a *= np.array(k) ** 2 - a[0] = 1 - c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b - - self.m = nn.ModuleList([ - nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)]) - self.bn = nn.BatchNorm2d(c2) - self.act = nn.SiLU() - - def forward(self, x): - return self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) - - -class Ensemble(nn.ModuleList): - # Ensemble of models - def __init__(self): - super().__init__() - - def forward(self, x, augment=False, profile=False, visualize=False): - y = [module(x, augment, profile, visualize)[0] for module in self] - # y = torch.stack(y).max(0)[0] # max ensemble - # y = torch.stack(y).mean(0) # mean ensemble - y = torch.cat(y, 1) # nms ensemble - return y, None # inference, train output - - -def attempt_load(weights, device=None, inplace=True, fuse=True): - # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a - from models.yolo import Detect, Model - - model = Ensemble() - for w in weights if isinstance(weights, list) else [weights]: - ckpt = torch.load(attempt_download(w), map_location='cpu') # load - ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model - if not hasattr(ckpt, 'stride'): - ckpt.stride = torch.tensor([32.]) # compatibility update for ResNet etc. - model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode - - # Compatibility updates - for m in model.modules(): - t = type(m) - if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model): - m.inplace = inplace # torch 1.7.0 compatibility - if t is Detect and not isinstance(m.anchor_grid, list): - delattr(m, 'anchor_grid') - setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl) - elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): - m.recompute_scale_factor = None # torch 1.11.0 compatibility - - # Return model - if len(model) == 1: - return model[-1] - - # Return detection ensemble - print(f'Ensemble created with {weights}\n') - for k in 'names', 'nc', 'yaml': - setattr(model, k, getattr(model[0], k)) - model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride - assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}' - return model diff --git a/yolov5-6.2/models/hub/anchors.yaml b/yolov5-6.2/models/hub/anchors.yaml deleted file mode 100644 index e4d7beb0..00000000 --- a/yolov5-6.2/models/hub/anchors.yaml +++ /dev/null @@ -1,59 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Default anchors for COCO data - - -# P5 ------------------------------------------------------------------------------------------------------------------- -# P5-640: -anchors_p5_640: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - - -# P6 ------------------------------------------------------------------------------------------------------------------- -# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387 -anchors_p6_640: - - [9,11, 21,19, 17,41] # P3/8 - - [43,32, 39,70, 86,64] # P4/16 - - [65,131, 134,130, 120,265] # P5/32 - - [282,180, 247,354, 512,387] # P6/64 - -# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792 -anchors_p6_1280: - - [19,27, 44,40, 38,94] # P3/8 - - [96,68, 86,152, 180,137] # P4/16 - - [140,301, 303,264, 238,542] # P5/32 - - [436,615, 739,380, 925,792] # P6/64 - -# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187 -anchors_p6_1920: - - [28,41, 67,59, 57,141] # P3/8 - - [144,103, 129,227, 270,205] # P4/16 - - [209,452, 455,396, 358,812] # P5/32 - - [653,922, 1109,570, 1387,1187] # P6/64 - - -# P7 ------------------------------------------------------------------------------------------------------------------- -# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372 -anchors_p7_640: - - [11,11, 13,30, 29,20] # P3/8 - - [30,46, 61,38, 39,92] # P4/16 - - [78,80, 146,66, 79,163] # P5/32 - - [149,150, 321,143, 157,303] # P6/64 - - [257,402, 359,290, 524,372] # P7/128 - -# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818 -anchors_p7_1280: - - [19,22, 54,36, 32,77] # P3/8 - - [70,83, 138,71, 75,173] # P4/16 - - [165,159, 148,334, 375,151] # P5/32 - - [334,317, 251,626, 499,474] # P6/64 - - [750,326, 534,814, 1079,818] # P7/128 - -# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227 -anchors_p7_1920: - - [29,34, 81,55, 47,115] # P3/8 - - [105,124, 207,107, 113,259] # P4/16 - - [247,238, 222,500, 563,227] # P5/32 - - [501,476, 376,939, 749,711] # P6/64 - - [1126,489, 801,1222, 1618,1227] # P7/128 diff --git a/yolov5-6.2/models/hub/yolov3-spp.yaml b/yolov5-6.2/models/hub/yolov3-spp.yaml deleted file mode 100644 index c6698215..00000000 --- a/yolov5-6.2/models/hub/yolov3-spp.yaml +++ /dev/null @@ -1,51 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# darknet53 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [32, 3, 1]], # 0 - [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 - [-1, 1, Bottleneck, [64]], - [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 - [-1, 2, Bottleneck, [128]], - [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 - [-1, 8, Bottleneck, [256]], - [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 - [-1, 8, Bottleneck, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 - [-1, 4, Bottleneck, [1024]], # 10 - ] - -# YOLOv3-SPP head -head: - [[-1, 1, Bottleneck, [1024, False]], - [-1, 1, SPP, [512, [5, 9, 13]]], - [-1, 1, Conv, [1024, 3, 1]], - [-1, 1, Conv, [512, 1, 1]], - [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) - - [-2, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 8], 1, Concat, [1]], # cat backbone P4 - [-1, 1, Bottleneck, [512, False]], - [-1, 1, Bottleneck, [512, False]], - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) - - [-2, 1, Conv, [128, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P3 - [-1, 1, Bottleneck, [256, False]], - [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) - - [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/models/hub/yolov3-tiny.yaml b/yolov5-6.2/models/hub/yolov3-tiny.yaml deleted file mode 100644 index b28b4431..00000000 --- a/yolov5-6.2/models/hub/yolov3-tiny.yaml +++ /dev/null @@ -1,41 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple -anchors: - - [10,14, 23,27, 37,58] # P4/16 - - [81,82, 135,169, 344,319] # P5/32 - -# YOLOv3-tiny backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [16, 3, 1]], # 0 - [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2 - [-1, 1, Conv, [32, 3, 1]], - [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4 - [-1, 1, Conv, [64, 3, 1]], - [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8 - [-1, 1, Conv, [128, 3, 1]], - [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16 - [-1, 1, Conv, [256, 3, 1]], - [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32 - [-1, 1, Conv, [512, 3, 1]], - [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11 - [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12 - ] - -# YOLOv3-tiny head -head: - [[-1, 1, Conv, [1024, 3, 1]], - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large) - - [-2, 1, Conv, [128, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 8], 1, Concat, [1]], # cat backbone P4 - [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium) - - [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5) - ] diff --git a/yolov5-6.2/models/hub/yolov3.yaml b/yolov5-6.2/models/hub/yolov3.yaml deleted file mode 100644 index d1ef9129..00000000 --- a/yolov5-6.2/models/hub/yolov3.yaml +++ /dev/null @@ -1,51 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# darknet53 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [32, 3, 1]], # 0 - [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 - [-1, 1, Bottleneck, [64]], - [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 - [-1, 2, Bottleneck, [128]], - [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 - [-1, 8, Bottleneck, [256]], - [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 - [-1, 8, Bottleneck, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 - [-1, 4, Bottleneck, [1024]], # 10 - ] - -# YOLOv3 head -head: - [[-1, 1, Bottleneck, [1024, False]], - [-1, 1, Conv, [512, 1, 1]], - [-1, 1, Conv, [1024, 3, 1]], - [-1, 1, Conv, [512, 1, 1]], - [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) - - [-2, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 8], 1, Concat, [1]], # cat backbone P4 - [-1, 1, Bottleneck, [512, False]], - [-1, 1, Bottleneck, [512, False]], - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) - - [-2, 1, Conv, [128, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P3 - [-1, 1, Bottleneck, [256, False]], - [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) - - [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/models/hub/yolov5-bifpn.yaml b/yolov5-6.2/models/hub/yolov5-bifpn.yaml deleted file mode 100644 index 504815f5..00000000 --- a/yolov5-6.2/models/hub/yolov5-bifpn.yaml +++ /dev/null @@ -1,48 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 9 - ] - -# YOLOv5 v6.0 BiFPN head -head: - [[-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 13 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 17 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change - [-1, 3, C3, [512, False]], # 20 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 10], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [1024, False]], # 23 (P5/32-large) - - [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/models/hub/yolov5-fpn.yaml b/yolov5-6.2/models/hub/yolov5-fpn.yaml deleted file mode 100644 index a23e9c6f..00000000 --- a/yolov5-6.2/models/hub/yolov5-fpn.yaml +++ /dev/null @@ -1,42 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 9 - ] - -# YOLOv5 v6.0 FPN head -head: - [[-1, 3, C3, [1024, False]], # 10 (P5/32-large) - - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 1, Conv, [512, 1, 1]], - [-1, 3, C3, [512, False]], # 14 (P4/16-medium) - - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 1, Conv, [256, 1, 1]], - [-1, 3, C3, [256, False]], # 18 (P3/8-small) - - [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/models/hub/yolov5-p2.yaml b/yolov5-6.2/models/hub/yolov5-p2.yaml deleted file mode 100644 index 554117dd..00000000 --- a/yolov5-6.2/models/hub/yolov5-p2.yaml +++ /dev/null @@ -1,54 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple -anchors: 3 # AutoAnchor evolves 3 anchors per P output layer - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 9 - ] - -# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs -head: - [[-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 13 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 17 (P3/8-small) - - [-1, 1, Conv, [128, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 2], 1, Concat, [1]], # cat backbone P2 - [-1, 1, C3, [128, False]], # 21 (P2/4-xsmall) - - [-1, 1, Conv, [128, 3, 2]], - [[-1, 18], 1, Concat, [1]], # cat head P3 - [-1, 3, C3, [256, False]], # 24 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 14], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 27 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 10], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [1024, False]], # 30 (P5/32-large) - - [[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5) - ] diff --git a/yolov5-6.2/models/hub/yolov5-p34.yaml b/yolov5-6.2/models/hub/yolov5-p34.yaml deleted file mode 100644 index dbf0f850..00000000 --- a/yolov5-6.2/models/hub/yolov5-p34.yaml +++ /dev/null @@ -1,41 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 0.33 # model depth multiple -width_multiple: 0.50 # layer channel multiple -anchors: 3 # AutoAnchor evolves 3 anchors per P output layer - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2 - [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 - [ -1, 3, C3, [ 128 ] ], - [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 - [ -1, 6, C3, [ 256 ] ], - [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 - [ -1, 9, C3, [ 512 ] ], - [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 - [ -1, 3, C3, [ 1024 ] ], - [ -1, 1, SPPF, [ 1024, 5 ] ], # 9 - ] - -# YOLOv5 v6.0 head with (P3, P4) outputs -head: - [ [ -1, 1, Conv, [ 512, 1, 1 ] ], - [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], - [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 - [ -1, 3, C3, [ 512, False ] ], # 13 - - [ -1, 1, Conv, [ 256, 1, 1 ] ], - [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], - [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 - [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small) - - [ -1, 1, Conv, [ 256, 3, 2 ] ], - [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4 - [ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium) - - [ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4) - ] diff --git a/yolov5-6.2/models/hub/yolov5-p6.yaml b/yolov5-6.2/models/hub/yolov5-p6.yaml deleted file mode 100644 index a17202f2..00000000 --- a/yolov5-6.2/models/hub/yolov5-p6.yaml +++ /dev/null @@ -1,56 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple -anchors: 3 # AutoAnchor evolves 3 anchors per P output layer - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 - [-1, 3, C3, [768]], - [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 11 - ] - -# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs -head: - [[-1, 1, Conv, [768, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 8], 1, Concat, [1]], # cat backbone P5 - [-1, 3, C3, [768, False]], # 15 - - [-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 19 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 23 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 20], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 26 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 16], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [768, False]], # 29 (P5/32-large) - - [-1, 1, Conv, [768, 3, 2]], - [[-1, 12], 1, Concat, [1]], # cat head P6 - [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) - - [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) - ] diff --git a/yolov5-6.2/models/hub/yolov5-p7.yaml b/yolov5-6.2/models/hub/yolov5-p7.yaml deleted file mode 100644 index edd7d13a..00000000 --- a/yolov5-6.2/models/hub/yolov5-p7.yaml +++ /dev/null @@ -1,67 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple -anchors: 3 # AutoAnchor evolves 3 anchors per P output layer - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 - [-1, 3, C3, [768]], - [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 - [-1, 3, C3, [1024]], - [-1, 1, Conv, [1280, 3, 2]], # 11-P7/128 - [-1, 3, C3, [1280]], - [-1, 1, SPPF, [1280, 5]], # 13 - ] - -# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs -head: - [[-1, 1, Conv, [1024, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 10], 1, Concat, [1]], # cat backbone P6 - [-1, 3, C3, [1024, False]], # 17 - - [-1, 1, Conv, [768, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 8], 1, Concat, [1]], # cat backbone P5 - [-1, 3, C3, [768, False]], # 21 - - [-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 25 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 29 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 26], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 32 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 22], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [768, False]], # 35 (P5/32-large) - - [-1, 1, Conv, [768, 3, 2]], - [[-1, 18], 1, Concat, [1]], # cat head P6 - [-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge) - - [-1, 1, Conv, [1024, 3, 2]], - [[-1, 14], 1, Concat, [1]], # cat head P7 - [-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge) - - [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7) - ] diff --git a/yolov5-6.2/models/hub/yolov5-panet.yaml b/yolov5-6.2/models/hub/yolov5-panet.yaml deleted file mode 100644 index ccfbf900..00000000 --- a/yolov5-6.2/models/hub/yolov5-panet.yaml +++ /dev/null @@ -1,48 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 9 - ] - -# YOLOv5 v6.0 PANet head -head: - [[-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 13 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 17 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 14], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 20 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 10], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [1024, False]], # 23 (P5/32-large) - - [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/models/hub/yolov5l6.yaml b/yolov5-6.2/models/hub/yolov5l6.yaml deleted file mode 100644 index 632c2cb6..00000000 --- a/yolov5-6.2/models/hub/yolov5l6.yaml +++ /dev/null @@ -1,60 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple -anchors: - - [19,27, 44,40, 38,94] # P3/8 - - [96,68, 86,152, 180,137] # P4/16 - - [140,301, 303,264, 238,542] # P5/32 - - [436,615, 739,380, 925,792] # P6/64 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 - [-1, 3, C3, [768]], - [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 11 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, Conv, [768, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 8], 1, Concat, [1]], # cat backbone P5 - [-1, 3, C3, [768, False]], # 15 - - [-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 19 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 23 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 20], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 26 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 16], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [768, False]], # 29 (P5/32-large) - - [-1, 1, Conv, [768, 3, 2]], - [[-1, 12], 1, Concat, [1]], # cat head P6 - [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) - - [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) - ] diff --git a/yolov5-6.2/models/hub/yolov5m6.yaml b/yolov5-6.2/models/hub/yolov5m6.yaml deleted file mode 100644 index ecc53fd6..00000000 --- a/yolov5-6.2/models/hub/yolov5m6.yaml +++ /dev/null @@ -1,60 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 0.67 # model depth multiple -width_multiple: 0.75 # layer channel multiple -anchors: - - [19,27, 44,40, 38,94] # P3/8 - - [96,68, 86,152, 180,137] # P4/16 - - [140,301, 303,264, 238,542] # P5/32 - - [436,615, 739,380, 925,792] # P6/64 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 - [-1, 3, C3, [768]], - [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 11 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, Conv, [768, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 8], 1, Concat, [1]], # cat backbone P5 - [-1, 3, C3, [768, False]], # 15 - - [-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 19 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 23 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 20], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 26 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 16], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [768, False]], # 29 (P5/32-large) - - [-1, 1, Conv, [768, 3, 2]], - [[-1, 12], 1, Concat, [1]], # cat head P6 - [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) - - [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) - ] diff --git a/yolov5-6.2/models/hub/yolov5n6.yaml b/yolov5-6.2/models/hub/yolov5n6.yaml deleted file mode 100644 index 0c0c71d3..00000000 --- a/yolov5-6.2/models/hub/yolov5n6.yaml +++ /dev/null @@ -1,60 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 0.33 # model depth multiple -width_multiple: 0.25 # layer channel multiple -anchors: - - [19,27, 44,40, 38,94] # P3/8 - - [96,68, 86,152, 180,137] # P4/16 - - [140,301, 303,264, 238,542] # P5/32 - - [436,615, 739,380, 925,792] # P6/64 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 - [-1, 3, C3, [768]], - [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 11 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, Conv, [768, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 8], 1, Concat, [1]], # cat backbone P5 - [-1, 3, C3, [768, False]], # 15 - - [-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 19 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 23 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 20], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 26 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 16], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [768, False]], # 29 (P5/32-large) - - [-1, 1, Conv, [768, 3, 2]], - [[-1, 12], 1, Concat, [1]], # cat head P6 - [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) - - [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) - ] diff --git a/yolov5-6.2/models/hub/yolov5s-ghost.yaml b/yolov5-6.2/models/hub/yolov5s-ghost.yaml deleted file mode 100644 index ff9519c3..00000000 --- a/yolov5-6.2/models/hub/yolov5s-ghost.yaml +++ /dev/null @@ -1,48 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 0.33 # model depth multiple -width_multiple: 0.50 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3Ghost, [128]], - [-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3Ghost, [256]], - [-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3Ghost, [512]], - [-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32 - [-1, 3, C3Ghost, [1024]], - [-1, 1, SPPF, [1024, 5]], # 9 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, GhostConv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3Ghost, [512, False]], # 13 - - [-1, 1, GhostConv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small) - - [-1, 1, GhostConv, [256, 3, 2]], - [[-1, 14], 1, Concat, [1]], # cat head P4 - [-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium) - - [-1, 1, GhostConv, [512, 3, 2]], - [[-1, 10], 1, Concat, [1]], # cat head P5 - [-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large) - - [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/models/hub/yolov5s-transformer.yaml b/yolov5-6.2/models/hub/yolov5s-transformer.yaml deleted file mode 100644 index 100d7c44..00000000 --- a/yolov5-6.2/models/hub/yolov5s-transformer.yaml +++ /dev/null @@ -1,48 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 0.33 # model depth multiple -width_multiple: 0.50 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 - [-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module - [-1, 1, SPPF, [1024, 5]], # 9 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 13 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 17 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 14], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 20 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 10], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [1024, False]], # 23 (P5/32-large) - - [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/models/hub/yolov5s6.yaml b/yolov5-6.2/models/hub/yolov5s6.yaml deleted file mode 100644 index a28fb559..00000000 --- a/yolov5-6.2/models/hub/yolov5s6.yaml +++ /dev/null @@ -1,60 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 0.33 # model depth multiple -width_multiple: 0.50 # layer channel multiple -anchors: - - [19,27, 44,40, 38,94] # P3/8 - - [96,68, 86,152, 180,137] # P4/16 - - [140,301, 303,264, 238,542] # P5/32 - - [436,615, 739,380, 925,792] # P6/64 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 - [-1, 3, C3, [768]], - [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 11 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, Conv, [768, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 8], 1, Concat, [1]], # cat backbone P5 - [-1, 3, C3, [768, False]], # 15 - - [-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 19 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 23 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 20], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 26 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 16], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [768, False]], # 29 (P5/32-large) - - [-1, 1, Conv, [768, 3, 2]], - [[-1, 12], 1, Concat, [1]], # cat head P6 - [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) - - [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) - ] diff --git a/yolov5-6.2/models/hub/yolov5x6.yaml b/yolov5-6.2/models/hub/yolov5x6.yaml deleted file mode 100644 index ba795c4a..00000000 --- a/yolov5-6.2/models/hub/yolov5x6.yaml +++ /dev/null @@ -1,60 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.33 # model depth multiple -width_multiple: 1.25 # layer channel multiple -anchors: - - [19,27, 44,40, 38,94] # P3/8 - - [96,68, 86,152, 180,137] # P4/16 - - [140,301, 303,264, 238,542] # P5/32 - - [436,615, 739,380, 925,792] # P6/64 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 - [-1, 3, C3, [768]], - [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 11 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, Conv, [768, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 8], 1, Concat, [1]], # cat backbone P5 - [-1, 3, C3, [768, False]], # 15 - - [-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 19 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 23 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 20], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 26 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 16], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [768, False]], # 29 (P5/32-large) - - [-1, 1, Conv, [768, 3, 2]], - [[-1, 12], 1, Concat, [1]], # cat head P6 - [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) - - [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) - ] diff --git a/yolov5-6.2/models/tf.py b/yolov5-6.2/models/tf.py deleted file mode 100644 index b0d98cc2..00000000 --- a/yolov5-6.2/models/tf.py +++ /dev/null @@ -1,574 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -TensorFlow, Keras and TFLite versions of YOLOv5 -Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127 - -Usage: - $ python models/tf.py --weights yolov5s.pt - -Export: - $ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs -""" - -import argparse -import sys -from copy import deepcopy -from pathlib import Path - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[1] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -# ROOT = ROOT.relative_to(Path.cwd()) # relative - -import numpy as np -import tensorflow as tf -import torch -import torch.nn as nn -from tensorflow import keras - -from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv, - DWConvTranspose2d, Focus, autopad) -from models.experimental import MixConv2d, attempt_load -from models.yolo import Detect -from utils.activations import SiLU -from utils.general import LOGGER, make_divisible, print_args - - -class TFBN(keras.layers.Layer): - # TensorFlow BatchNormalization wrapper - def __init__(self, w=None): - super().__init__() - self.bn = keras.layers.BatchNormalization( - beta_initializer=keras.initializers.Constant(w.bias.numpy()), - gamma_initializer=keras.initializers.Constant(w.weight.numpy()), - moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()), - moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()), - epsilon=w.eps) - - def call(self, inputs): - return self.bn(inputs) - - -class TFPad(keras.layers.Layer): - # Pad inputs in spatial dimensions 1 and 2 - def __init__(self, pad): - super().__init__() - if isinstance(pad, int): - self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]]) - else: # tuple/list - self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]]) - - def call(self, inputs): - return tf.pad(inputs, self.pad, mode='constant', constant_values=0) - - -class TFConv(keras.layers.Layer): - # Standard convolution - def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): - # ch_in, ch_out, weights, kernel, stride, padding, groups - super().__init__() - assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" - # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding) - # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch - conv = keras.layers.Conv2D( - filters=c2, - kernel_size=k, - strides=s, - padding='SAME' if s == 1 else 'VALID', - use_bias=not hasattr(w, 'bn'), - kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), - bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy())) - self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) - self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity - self.act = activations(w.act) if act else tf.identity - - def call(self, inputs): - return self.act(self.bn(self.conv(inputs))) - - -class TFDWConv(keras.layers.Layer): - # Depthwise convolution - def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None): - # ch_in, ch_out, weights, kernel, stride, padding, groups - super().__init__() - assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels' - conv = keras.layers.DepthwiseConv2D( - kernel_size=k, - depth_multiplier=c2 // c1, - strides=s, - padding='SAME' if s == 1 else 'VALID', - use_bias=not hasattr(w, 'bn'), - depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), - bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy())) - self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) - self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity - self.act = activations(w.act) if act else tf.identity - - def call(self, inputs): - return self.act(self.bn(self.conv(inputs))) - - -class TFDWConvTranspose2d(keras.layers.Layer): - # Depthwise ConvTranspose2d - def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None): - # ch_in, ch_out, weights, kernel, stride, padding, groups - super().__init__() - assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels' - assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1' - weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy() - self.c1 = c1 - self.conv = [ - keras.layers.Conv2DTranspose(filters=1, - kernel_size=k, - strides=s, - padding='VALID', - output_padding=p2, - use_bias=True, - kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]), - bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)] - - def call(self, inputs): - return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1] - - -class TFFocus(keras.layers.Layer): - # Focus wh information into c-space - def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): - # ch_in, ch_out, kernel, stride, padding, groups - super().__init__() - self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv) - - def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c) - # inputs = inputs / 255 # normalize 0-255 to 0-1 - inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]] - return self.conv(tf.concat(inputs, 3)) - - -class TFBottleneck(keras.layers.Layer): - # Standard bottleneck - def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) - self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2) - self.add = shortcut and c1 == c2 - - def call(self, inputs): - return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) - - -class TFCrossConv(keras.layers.Layer): - # Cross Convolution - def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None): - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1) - self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2) - self.add = shortcut and c1 == c2 - - def call(self, inputs): - return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) - - -class TFConv2d(keras.layers.Layer): - # Substitution for PyTorch nn.Conv2D - def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None): - super().__init__() - assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" - self.conv = keras.layers.Conv2D(filters=c2, - kernel_size=k, - strides=s, - padding='VALID', - use_bias=bias, - kernel_initializer=keras.initializers.Constant( - w.weight.permute(2, 3, 1, 0).numpy()), - bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None) - - def call(self, inputs): - return self.conv(inputs) - - -class TFBottleneckCSP(keras.layers.Layer): - # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks - def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): - # ch_in, ch_out, number, shortcut, groups, expansion - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) - self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2) - self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3) - self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4) - self.bn = TFBN(w.bn) - self.act = lambda x: keras.activations.swish(x) - self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) - - def call(self, inputs): - y1 = self.cv3(self.m(self.cv1(inputs))) - y2 = self.cv2(inputs) - return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3)))) - - -class TFC3(keras.layers.Layer): - # CSP Bottleneck with 3 convolutions - def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): - # ch_in, ch_out, number, shortcut, groups, expansion - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) - self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) - self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) - self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) - - def call(self, inputs): - return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) - - -class TFC3x(keras.layers.Layer): - # 3 module with cross-convolutions - def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): - # ch_in, ch_out, number, shortcut, groups, expansion - super().__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) - self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) - self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) - self.m = keras.Sequential([ - TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)]) - - def call(self, inputs): - return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) - - -class TFSPP(keras.layers.Layer): - # Spatial pyramid pooling layer used in YOLOv3-SPP - def __init__(self, c1, c2, k=(5, 9, 13), w=None): - super().__init__() - c_ = c1 // 2 # hidden channels - self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) - self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2) - self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k] - - def call(self, inputs): - x = self.cv1(inputs) - return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3)) - - -class TFSPPF(keras.layers.Layer): - # Spatial pyramid pooling-Fast layer - def __init__(self, c1, c2, k=5, w=None): - super().__init__() - c_ = c1 // 2 # hidden channels - self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) - self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2) - self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME') - - def call(self, inputs): - x = self.cv1(inputs) - y1 = self.m(x) - y2 = self.m(y1) - return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3)) - - -class TFDetect(keras.layers.Layer): - # TF YOLOv5 Detect layer - def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer - super().__init__() - self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32) - self.nc = nc # number of classes - self.no = nc + 5 # number of outputs per anchor - self.nl = len(anchors) # number of detection layers - self.na = len(anchors[0]) // 2 # number of anchors - self.grid = [tf.zeros(1)] * self.nl # init grid - self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32) - self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2]) - self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] - self.training = False # set to False after building model - self.imgsz = imgsz - for i in range(self.nl): - ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] - self.grid[i] = self._make_grid(nx, ny) - - def call(self, inputs): - z = [] # inference output - x = [] - for i in range(self.nl): - x.append(self.m[i](inputs[i])) - # x(bs,20,20,255) to x(bs,3,20,20,85) - ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] - x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no]) - - if not self.training: # inference - y = tf.sigmoid(x[i]) - grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5 - anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4 - xy = (y[..., 0:2] * 2 + grid) * self.stride[i] # xy - wh = y[..., 2:4] ** 2 * anchor_grid - # Normalize xywh to 0-1 to reduce calibration error - xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) - wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) - y = tf.concat([xy, wh, y[..., 4:]], -1) - z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no])) - - return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1), x) - - @staticmethod - def _make_grid(nx=20, ny=20): - # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) - # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() - xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny)) - return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32) - - -class TFUpsample(keras.layers.Layer): - # TF version of torch.nn.Upsample() - def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w' - super().__init__() - assert scale_factor == 2, "scale_factor must be 2" - self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode) - # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode) - # with default arguments: align_corners=False, half_pixel_centers=False - # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x, - # size=(x.shape[1] * 2, x.shape[2] * 2)) - - def call(self, inputs): - return self.upsample(inputs) - - -class TFConcat(keras.layers.Layer): - # TF version of torch.concat() - def __init__(self, dimension=1, w=None): - super().__init__() - assert dimension == 1, "convert only NCHW to NHWC concat" - self.d = 3 - - def call(self, inputs): - return tf.concat(inputs, self.d) - - -def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3) - LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") - anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] - na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors - no = na * (nc + 5) # number of outputs = anchors * (classes + 5) - - layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out - for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args - m_str = m - m = eval(m) if isinstance(m, str) else m # eval strings - for j, a in enumerate(args): - try: - args[j] = eval(a) if isinstance(a, str) else a # eval strings - except NameError: - pass - - n = max(round(n * gd), 1) if n > 1 else n # depth gain - if m in [ - nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv, - BottleneckCSP, C3, C3x]: - c1, c2 = ch[f], args[0] - c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 - - args = [c1, c2, *args[1:]] - if m in [BottleneckCSP, C3, C3x]: - args.insert(2, n) - n = 1 - elif m is nn.BatchNorm2d: - args = [ch[f]] - elif m is Concat: - c2 = sum(ch[-1 if x == -1 else x + 1] for x in f) - elif m is Detect: - args.append([ch[x + 1] for x in f]) - if isinstance(args[1], int): # number of anchors - args[1] = [list(range(args[1] * 2))] * len(f) - args.append(imgsz) - else: - c2 = ch[f] - - tf_m = eval('TF' + m_str.replace('nn.', '')) - m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \ - else tf_m(*args, w=model.model[i]) # module - - torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module - t = str(m)[8:-2].replace('__main__.', '') # module type - np = sum(x.numel() for x in torch_m_.parameters()) # number params - m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params - LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print - save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist - layers.append(m_) - ch.append(c2) - return keras.Sequential(layers), sorted(save) - - -class TFModel: - # TF YOLOv5 model - def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes - super().__init__() - if isinstance(cfg, dict): - self.yaml = cfg # model dict - else: # is *.yaml - import yaml # for torch hub - self.yaml_file = Path(cfg).name - with open(cfg) as f: - self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict - - # Define model - if nc and nc != self.yaml['nc']: - LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}") - self.yaml['nc'] = nc # override yaml value - self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz) - - def predict(self, - inputs, - tf_nms=False, - agnostic_nms=False, - topk_per_class=100, - topk_all=100, - iou_thres=0.45, - conf_thres=0.25): - y = [] # outputs - x = inputs - for m in self.model.layers: - if m.f != -1: # if not from previous layer - x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers - - x = m(x) # run - y.append(x if m.i in self.savelist else None) # save output - - # Add TensorFlow NMS - if tf_nms: - boxes = self._xywh2xyxy(x[0][..., :4]) - probs = x[0][:, :, 4:5] - classes = x[0][:, :, 5:] - scores = probs * classes - if agnostic_nms: - nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres) - else: - boxes = tf.expand_dims(boxes, 2) - nms = tf.image.combined_non_max_suppression(boxes, - scores, - topk_per_class, - topk_all, - iou_thres, - conf_thres, - clip_boxes=False) - return nms, x[1] - return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...] - # x = x[0][0] # [x(1,6300,85), ...] to x(6300,85) - # xywh = x[..., :4] # x(6300,4) boxes - # conf = x[..., 4:5] # x(6300,1) confidences - # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes - # return tf.concat([conf, cls, xywh], 1) - - @staticmethod - def _xywh2xyxy(xywh): - # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right - x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1) - return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1) - - -class AgnosticNMS(keras.layers.Layer): - # TF Agnostic NMS - def call(self, input, topk_all, iou_thres, conf_thres): - # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450 - return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), - input, - fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32), - name='agnostic_nms') - - @staticmethod - def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS - boxes, classes, scores = x - class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32) - scores_inp = tf.reduce_max(scores, -1) - selected_inds = tf.image.non_max_suppression(boxes, - scores_inp, - max_output_size=topk_all, - iou_threshold=iou_thres, - score_threshold=conf_thres) - selected_boxes = tf.gather(boxes, selected_inds) - padded_boxes = tf.pad(selected_boxes, - paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]], - mode="CONSTANT", - constant_values=0.0) - selected_scores = tf.gather(scores_inp, selected_inds) - padded_scores = tf.pad(selected_scores, - paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], - mode="CONSTANT", - constant_values=-1.0) - selected_classes = tf.gather(class_inds, selected_inds) - padded_classes = tf.pad(selected_classes, - paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], - mode="CONSTANT", - constant_values=-1.0) - valid_detections = tf.shape(selected_inds)[0] - return padded_boxes, padded_scores, padded_classes, valid_detections - - -def activations(act=nn.SiLU): - # Returns TF activation from input PyTorch activation - if isinstance(act, nn.LeakyReLU): - return lambda x: keras.activations.relu(x, alpha=0.1) - elif isinstance(act, nn.Hardswish): - return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667 - elif isinstance(act, (nn.SiLU, SiLU)): - return lambda x: keras.activations.swish(x) - else: - raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}') - - -def representative_dataset_gen(dataset, ncalib=100): - # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays - for n, (path, img, im0s, vid_cap, string) in enumerate(dataset): - im = np.transpose(img, [1, 2, 0]) - im = np.expand_dims(im, axis=0).astype(np.float32) - im /= 255 - yield [im] - if n >= ncalib: - break - - -def run( - weights=ROOT / 'yolov5s.pt', # weights path - imgsz=(640, 640), # inference size h,w - batch_size=1, # batch size - dynamic=False, # dynamic batch size -): - # PyTorch model - im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image - model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False) - _ = model(im) # inference - model.info() - - # TensorFlow model - im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image - tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) - _ = tf_model.predict(im) # inference - - # Keras model - im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size) - keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im)) - keras_model.summary() - - LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.') - - -def parse_opt(): - parser = argparse.ArgumentParser() - parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path') - parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') - parser.add_argument('--batch-size', type=int, default=1, help='batch size') - parser.add_argument('--dynamic', action='store_true', help='dynamic batch size') - opt = parser.parse_args() - opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand - print_args(vars(opt)) - return opt - - -def main(opt): - run(**vars(opt)) - - -if __name__ == "__main__": - opt = parse_opt() - main(opt) diff --git a/yolov5-6.2/models/yolo.py b/yolov5-6.2/models/yolo.py deleted file mode 100644 index df420972..00000000 --- a/yolov5-6.2/models/yolo.py +++ /dev/null @@ -1,360 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -YOLO-specific modules - -Usage: - $ python path/to/models/yolo.py --cfg yolov5s.yaml -""" - -import argparse -import contextlib -import os -import platform -import sys -from copy import deepcopy -from pathlib import Path - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[1] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -if platform.system() != 'Windows': - ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative - -from models.common import * -from models.experimental import * -from utils.autoanchor import check_anchor_order -from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args -from utils.plots import feature_visualization -from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device, - time_sync) - -try: - import thop # for FLOPs computation -except ImportError: - thop = None - - -class Detect(nn.Module): - stride = None # strides computed during build - onnx_dynamic = False # ONNX export parameter - export = False # export mode - - def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer - super().__init__() - self.nc = nc # number of classes - self.no = nc + 5 # number of outputs per anchor - self.nl = len(anchors) # number of detection layers - self.na = len(anchors[0]) // 2 # number of anchors - self.grid = [torch.zeros(1)] * self.nl # init grid - self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid - self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) - self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv - self.inplace = inplace # use inplace ops (e.g. slice assignment) - - def forward(self, x): - z = [] # inference output - for i in range(self.nl): - x[i] = self.m[i](x[i]) # conv - bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) - x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() - - if not self.training: # inference - if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: - self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) - - y = x[i].sigmoid() - if self.inplace: - y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i] # xy - y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh - else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 - xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0 - xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy - wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh - y = torch.cat((xy, wh, conf), 4) - z.append(y.view(bs, -1, self.no)) - - return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x) - - def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')): - d = self.anchors[i].device - t = self.anchors[i].dtype - shape = 1, self.na, ny, nx, 2 # grid shape - y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t) - if torch_1_10: # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility - yv, xv = torch.meshgrid(y, x, indexing='ij') - else: - yv, xv = torch.meshgrid(y, x) - grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5 - anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape) - return grid, anchor_grid - - -class BaseModel(nn.Module): - # YOLOv5 base model - def forward(self, x, profile=False, visualize=False): - return self._forward_once(x, profile, visualize) # single-scale inference, train - - def _forward_once(self, x, profile=False, visualize=False): - y, dt = [], [] # outputs - for m in self.model: - if m.f != -1: # if not from previous layer - x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers - if profile: - self._profile_one_layer(m, x, dt) - x = m(x) # run - y.append(x if m.i in self.save else None) # save output - if visualize: - feature_visualization(x, m.type, m.i, save_dir=visualize) - return x - - def _profile_one_layer(self, m, x, dt): - c = m == self.model[-1] # is final layer, copy input as inplace fix - o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs - t = time_sync() - for _ in range(10): - m(x.copy() if c else x) - dt.append((time_sync() - t) * 100) - if m == self.model[0]: - LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module") - LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') - if c: - LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") - - def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers - LOGGER.info('Fusing layers... ') - for m in self.model.modules(): - if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'): - m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv - delattr(m, 'bn') # remove batchnorm - m.forward = m.forward_fuse # update forward - self.info() - return self - - def info(self, verbose=False, img_size=640): # print model information - model_info(self, verbose, img_size) - - def _apply(self, fn): - # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers - self = super()._apply(fn) - m = self.model[-1] # Detect() - if isinstance(m, Detect): - m.stride = fn(m.stride) - m.grid = list(map(fn, m.grid)) - if isinstance(m.anchor_grid, list): - m.anchor_grid = list(map(fn, m.anchor_grid)) - return self - - -class DetectionModel(BaseModel): - # YOLOv5 detection model - def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes - super().__init__() - if isinstance(cfg, dict): - self.yaml = cfg # model dict - else: # is *.yaml - import yaml # for torch hub - self.yaml_file = Path(cfg).name - with open(cfg, encoding='ascii', errors='ignore') as f: - self.yaml = yaml.safe_load(f) # model dict - - # Define model - ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels - if nc and nc != self.yaml['nc']: - LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") - self.yaml['nc'] = nc # override yaml value - if anchors: - LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') - self.yaml['anchors'] = round(anchors) # override yaml value - self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist - self.names = [str(i) for i in range(self.yaml['nc'])] # default names - self.inplace = self.yaml.get('inplace', True) - - # Build strides, anchors - m = self.model[-1] # Detect() - if isinstance(m, Detect): - s = 256 # 2x min stride - m.inplace = self.inplace - m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward - check_anchor_order(m) # must be in pixel-space (not grid-space) - m.anchors /= m.stride.view(-1, 1, 1) - self.stride = m.stride - self._initialize_biases() # only run once - - # Init weights, biases - initialize_weights(self) - self.info() - LOGGER.info('') - - def forward(self, x, augment=False, profile=False, visualize=False): - if augment: - return self._forward_augment(x) # augmented inference, None - return self._forward_once(x, profile, visualize) # single-scale inference, train - - def _forward_augment(self, x): - img_size = x.shape[-2:] # height, width - s = [1, 0.83, 0.67] # scales - f = [None, 3, None] # flips (2-ud, 3-lr) - y = [] # outputs - for si, fi in zip(s, f): - xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) - yi = self._forward_once(xi)[0] # forward - # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save - yi = self._descale_pred(yi, fi, si, img_size) - y.append(yi) - y = self._clip_augmented(y) # clip augmented tails - return torch.cat(y, 1), None # augmented inference, train - - def _descale_pred(self, p, flips, scale, img_size): - # de-scale predictions following augmented inference (inverse operation) - if self.inplace: - p[..., :4] /= scale # de-scale - if flips == 2: - p[..., 1] = img_size[0] - p[..., 1] # de-flip ud - elif flips == 3: - p[..., 0] = img_size[1] - p[..., 0] # de-flip lr - else: - x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale - if flips == 2: - y = img_size[0] - y # de-flip ud - elif flips == 3: - x = img_size[1] - x # de-flip lr - p = torch.cat((x, y, wh, p[..., 4:]), -1) - return p - - def _clip_augmented(self, y): - # Clip YOLOv5 augmented inference tails - nl = self.model[-1].nl # number of detection layers (P3-P5) - g = sum(4 ** x for x in range(nl)) # grid points - e = 1 # exclude layer count - i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices - y[0] = y[0][:, :-i] # large - i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices - y[-1] = y[-1][:, i:] # small - return y - - def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency - # https://arxiv.org/abs/1708.02002 section 3.3 - # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. - m = self.model[-1] # Detect() module - for mi, s in zip(m.m, m.stride): # from - b = mi.bias.view(m.na, -1).detach() # conv.bias(255) to (3,85) - b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) - b[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls - mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) - - -Model = DetectionModel # retain YOLOv5 'Model' class for backwards compatibility - - -class ClassificationModel(BaseModel): - # YOLOv5 classification model - def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index - super().__init__() - self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg) - - def _from_detection_model(self, model, nc=1000, cutoff=10): - # Create a YOLOv5 classification model from a YOLOv5 detection model - if isinstance(model, DetectMultiBackend): - model = model.model # unwrap DetectMultiBackend - model.model = model.model[:cutoff] # backbone - m = model.model[-1] # last layer - ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module - c = Classify(ch, nc) # Classify() - c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type - model.model[-1] = c # replace - self.model = model.model - self.stride = model.stride - self.save = [] - self.nc = nc - - def _from_yaml(self, cfg): - # Create a YOLOv5 classification model from a *.yaml file - self.model = None - - -def parse_model(d, ch): # model_dict, input_channels(3) - LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") - anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] - na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors - no = na * (nc + 5) # number of outputs = anchors * (classes + 5) - - layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out - for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args - m = eval(m) if isinstance(m, str) else m # eval strings - for j, a in enumerate(args): - with contextlib.suppress(NameError): - args[j] = eval(a) if isinstance(a, str) else a # eval strings - - n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain - if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, - BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x): - c1, c2 = ch[f], args[0] - if c2 != no: # if not output - c2 = make_divisible(c2 * gw, 8) - - args = [c1, c2, *args[1:]] - if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x]: - args.insert(2, n) # number of repeats - n = 1 - elif m is nn.BatchNorm2d: - args = [ch[f]] - elif m is Concat: - c2 = sum(ch[x] for x in f) - elif m is Detect: - args.append([ch[x] for x in f]) - if isinstance(args[1], int): # number of anchors - args[1] = [list(range(args[1] * 2))] * len(f) - elif m is Contract: - c2 = ch[f] * args[0] ** 2 - elif m is Expand: - c2 = ch[f] // args[0] ** 2 - else: - c2 = ch[f] - - m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module - t = str(m)[8:-2].replace('__main__.', '') # module type - np = sum(x.numel() for x in m_.parameters()) # number params - m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params - LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print - save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist - layers.append(m_) - if i == 0: - ch = [] - ch.append(c2) - return nn.Sequential(*layers), sorted(save) - - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') - parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs') - parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') - parser.add_argument('--profile', action='store_true', help='profile model speed') - parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer') - parser.add_argument('--test', action='store_true', help='test all yolo*.yaml') - opt = parser.parse_args() - opt.cfg = check_yaml(opt.cfg) # check YAML - print_args(vars(opt)) - device = select_device(opt.device) - - # Create model - im = torch.rand(opt.batch_size, 3, 640, 640).to(device) - model = Model(opt.cfg).to(device) - - # Options - if opt.line_profile: # profile layer by layer - model(im, profile=True) - - elif opt.profile: # profile forward-backward - results = profile(input=im, ops=[model], n=3) - - elif opt.test: # test all models - for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'): - try: - _ = Model(cfg) - except Exception as e: - print(f'Error in {cfg}: {e}') - - else: # report fused model summary - model.fuse() diff --git a/yolov5-6.2/models/yolov5l.yaml b/yolov5-6.2/models/yolov5l.yaml deleted file mode 100644 index ce8a5de4..00000000 --- a/yolov5-6.2/models/yolov5l.yaml +++ /dev/null @@ -1,48 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.0 # model depth multiple -width_multiple: 1.0 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 9 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 13 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 17 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 14], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 20 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 10], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [1024, False]], # 23 (P5/32-large) - - [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/models/yolov5m.yaml b/yolov5-6.2/models/yolov5m.yaml deleted file mode 100644 index ad13ab37..00000000 --- a/yolov5-6.2/models/yolov5m.yaml +++ /dev/null @@ -1,48 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 0.67 # model depth multiple -width_multiple: 0.75 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 9 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 13 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 17 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 14], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 20 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 10], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [1024, False]], # 23 (P5/32-large) - - [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/models/yolov5n.yaml b/yolov5-6.2/models/yolov5n.yaml deleted file mode 100644 index 8a28a40d..00000000 --- a/yolov5-6.2/models/yolov5n.yaml +++ /dev/null @@ -1,48 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 0.33 # model depth multiple -width_multiple: 0.25 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 9 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 13 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 17 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 14], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 20 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 10], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [1024, False]], # 23 (P5/32-large) - - [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/models/yolov5s.yaml b/yolov5-6.2/models/yolov5s.yaml deleted file mode 100644 index f35beabb..00000000 --- a/yolov5-6.2/models/yolov5s.yaml +++ /dev/null @@ -1,48 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 0.33 # model depth multiple -width_multiple: 0.50 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 9 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 13 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 17 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 14], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 20 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 10], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [1024, False]], # 23 (P5/32-large) - - [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/models/yolov5x.yaml b/yolov5-6.2/models/yolov5x.yaml deleted file mode 100644 index f617a027..00000000 --- a/yolov5-6.2/models/yolov5x.yaml +++ /dev/null @@ -1,48 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license - -# Parameters -nc: 80 # number of classes -depth_multiple: 1.33 # model depth multiple -width_multiple: 1.25 # layer channel multiple -anchors: - - [10,13, 16,30, 33,23] # P3/8 - - [30,61, 62,45, 59,119] # P4/16 - - [116,90, 156,198, 373,326] # P5/32 - -# YOLOv5 v6.0 backbone -backbone: - # [from, number, module, args] - [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 - [-1, 3, C3, [128]], - [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 - [-1, 6, C3, [256]], - [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 - [-1, 9, C3, [512]], - [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 - [-1, 3, C3, [1024]], - [-1, 1, SPPF, [1024, 5]], # 9 - ] - -# YOLOv5 v6.0 head -head: - [[-1, 1, Conv, [512, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 6], 1, Concat, [1]], # cat backbone P4 - [-1, 3, C3, [512, False]], # 13 - - [-1, 1, Conv, [256, 1, 1]], - [-1, 1, nn.Upsample, [None, 2, 'nearest']], - [[-1, 4], 1, Concat, [1]], # cat backbone P3 - [-1, 3, C3, [256, False]], # 17 (P3/8-small) - - [-1, 1, Conv, [256, 3, 2]], - [[-1, 14], 1, Concat, [1]], # cat head P4 - [-1, 3, C3, [512, False]], # 20 (P4/16-medium) - - [-1, 1, Conv, [512, 3, 2]], - [[-1, 10], 1, Concat, [1]], # cat head P5 - [-1, 3, C3, [1024, False]], # 23 (P5/32-large) - - [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) - ] diff --git a/yolov5-6.2/requirements.txt b/yolov5-6.2/requirements.txt deleted file mode 100644 index 10620566..00000000 --- a/yolov5-6.2/requirements.txt +++ /dev/null @@ -1,43 +0,0 @@ -# YOLOv5 requirements -# Usage: pip install -r requirements.txt - -# Base ---------------------------------------- -matplotlib>=3.2.2 -numpy>=1.18.5 -opencv-python>=4.1.1 -Pillow>=7.1.2 -PyYAML>=5.3.1 -requests>=2.23.0 -scipy>=1.4.1 -torch>=1.7.0 -torchvision>=0.8.1 -tqdm>=4.64.0 -protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012 - -# Logging ------------------------------------- -tensorboard>=2.4.1 -# wandb -# clearml - -# Plotting ------------------------------------ -pandas>=1.1.4 -seaborn>=0.11.0 - -# Export -------------------------------------- -# coremltools>=5.2 # CoreML export -# onnx>=1.9.0 # ONNX export -# onnx-simplifier>=0.4.1 # ONNX simplifier -# nvidia-pyindex # TensorRT export -# nvidia-tensorrt # TensorRT export -# scikit-learn==0.19.2 # CoreML quantization -# tensorflow>=2.4.1 # TFLite export (or tensorflow-cpu, tensorflow-aarch64) -# tensorflowjs>=3.9.0 # TF.js export -# openvino-dev # OpenVINO export - -# Extras -------------------------------------- -ipython # interactive notebook -psutil # system utilization -thop>=0.1.1 # FLOPs computation -# albumentations>=1.0.3 -# pycocotools>=2.0 # COCO mAP -# roboflow diff --git a/yolov5-6.2/setup.cfg b/yolov5-6.2/setup.cfg deleted file mode 100644 index 020a7574..00000000 --- a/yolov5-6.2/setup.cfg +++ /dev/null @@ -1,59 +0,0 @@ -# Project-wide configuration file, can be used for package metadata and other toll configurations -# Example usage: global configuration for PEP8 (via flake8) setting or default pytest arguments -# Local usage: pip install pre-commit, pre-commit run --all-files - -[metadata] -license_file = LICENSE -description_file = README.md - - -[tool:pytest] -norecursedirs = - .git - dist - build -addopts = - --doctest-modules - --durations=25 - --color=yes - - -[flake8] -max-line-length = 120 -exclude = .tox,*.egg,build,temp -select = E,W,F -doctests = True -verbose = 2 -# https://pep8.readthedocs.io/en/latest/intro.html#error-codes -format = pylint -# see: https://www.flake8rules.com/ -ignore = - E731 # Do not assign a lambda expression, use a def - F405 # name may be undefined, or defined from star imports: module - E402 # module level import not at top of file - F401 # module imported but unused - W504 # line break after binary operator - E127 # continuation line over-indented for visual indent - W504 # line break after binary operator - E231 # missing whitespace after ‘,’, ‘;’, or ‘:’ - E501 # line too long - F403 # ‘from module import *’ used; unable to detect undefined names - - -[isort] -# https://pycqa.github.io/isort/docs/configuration/options.html -line_length = 120 -# see: https://pycqa.github.io/isort/docs/configuration/multi_line_output_modes.html -multi_line_output = 0 - - -[yapf] -based_on_style = pep8 -spaces_before_comment = 2 -COLUMN_LIMIT = 120 -COALESCE_BRACKETS = True -SPACES_AROUND_POWER_OPERATOR = True -SPACE_BETWEEN_ENDING_COMMA_AND_CLOSING_BRACKET = False -SPLIT_BEFORE_CLOSING_BRACKET = False -SPLIT_BEFORE_FIRST_ARGUMENT = False -# EACH_DICT_ENTRY_ON_SEPARATE_LINE = False diff --git a/yolov5-6.2/test.py b/yolov5-6.2/test.py deleted file mode 100644 index d0be671a..00000000 --- a/yolov5-6.2/test.py +++ /dev/null @@ -1,300 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Run inference on images, videos, directories, streams, etc. - -Usage - sources: - $ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam - img.jpg # image - vid.mp4 # video - path/ # directory - path/*.jpg # glob - 'https://youtu.be/Zgi9g1ksQHc' # YouTube - 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream - -Usage - formats: - $ python path/to/detect.py --weights yolov5s.pt # PyTorch - yolov5s.torchscript # TorchScript - yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn - yolov5s.xml # OpenVINO - yolov5s.engine # TensorRT - yolov5s.mlmodel # CoreML (macOS-only) - yolov5s_saved_model # TensorFlow SavedModel - yolov5s.pb # TensorFlow GraphDef - yolov5s.tflite # TensorFlow Lite - yolov5s_edgetpu.tflite # TensorFlow Edge TPU -""" - -import argparse -import os -import platform -import sys -from pathlib import Path - -import torch -import torch.backends.cudnn as cudnn - -import json -import socket - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[0] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative - -from models.common import DetectMultiBackend -from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams -from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, - increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh) -from utils.plots import Annotator, colors, save_one_box -from utils.torch_utils import select_device, smart_inference_mode, time_sync - -UDP_IP = '192.168.43.58' # change to desired IP address -UDP_PORT = 1900 # change to desired port number -sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) -sock.bind((UDP_IP, UDP_PORT)) -sock.listen(2) -clientsocket, addr = sock.accept() - -test = 0 -x_pos = 0.0 -y_pos = 0.0 - -@smart_inference_mode() -def run( - weights=ROOT / 'yolov5s.pt', # model.pt path(s) - source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam - data=ROOT / 'data/coco128.yaml', # dataset.yaml path - imgsz=(640, 640), # inference size (height, width) - conf_thres=0.25, # confidence threshold - iou_thres=0.45, # NMS IOU threshold - max_det=1000, # maximum detections per image - device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu - view_img=False, # show results - save_txt=False, # save results to *.txt - save_conf=False, # save confidences in --save-txt labels - save_crop=False, # save cropped prediction boxes - nosave=False, # do not save images/videos - classes=None, # filter by class: --class 0, or --class 0 2 3 - agnostic_nms=False, # class-agnostic NMS - augment=False, # augmented inference - visualize=False, # visualize features - update=False, # update all models - project=ROOT / 'runs/detect', # save results to project/name - name='exp', # save results to project/name - exist_ok=False, # existing project/name ok, do not increment - line_thickness=3, # bounding box thickness (pixels) - hide_labels=False, # hide labels - hide_conf=False, # hide confidences - half=False, # use FP16 half-precision inference - dnn=False, # use OpenCV DNN for ONNX inference -): - source = str(source) - save_img = not nosave and not source.endswith('.txt') # save inference images - is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) - is_url = source.lower().startswith(('rtsp://'))#, 'rtmp://', 'http://', 'https://')) - webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file) - if is_url and is_file: - source = check_file(source) # download - - # Directories - save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run - (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir - - # Load model - device = select_device(device) - model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) - stride, names, pt = model.stride, model.names, model.pt - imgsz = check_img_size(imgsz, s=stride) # check image size - - # Dataloader - if webcam: - view_img = check_imshow() - cudnn.benchmark = True # set True to speed up constant image size inference - dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) - bs = len(dataset) # batch_size - else: - dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) - bs = 1 # batch_size - vid_path, vid_writer = [None] * bs, [None] * bs - - # Run inference - model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup - seen, windows, dt = 0, [], [0.0, 0.0, 0.0] - for path, im, im0s, vid_cap, s in dataset: - t1 = time_sync() - im = torch.from_numpy(im).to(device) - im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 - im /= 255 # 0 - 255 to 0.0 - 1.0 - if len(im.shape) == 3: - im = im[None] # expand for batch dim - t2 = time_sync() - dt[0] += t2 - t1 - - # Inference - visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False - pred = model(im, augment=augment, visualize=visualize) - t3 = time_sync() - dt[1] += t3 - t2 - - # NMS - pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) - dt[2] += time_sync() - t3 - - # Second-stage classifier (optional) - # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) - - # Process predictions - for i, det in enumerate(pred): # per image - seen += 1 - if webcam: # batch_size >= 1 - p, im0, frame = path[i], im0s[i].copy(), dataset.count - s += f'{i}: ' - else: - p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) - - p = Path(p) # to Path - save_path = str(save_dir / p.name) # im.jpg - - img_location = os.path.abspath(p) - - txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt - s += '%gx%g ' % im.shape[2:] # print string - gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh - imc = im0.copy() if save_crop else im0 # for save_crop - annotator = Annotator(im0, line_width=line_thickness, example=str(names)) - if len(det): - # Rescale boxes from img_size to im0 size - det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() - - # Print results - for c in det[:, -1].unique(): - n = (det[:, -1] == c).sum() # detections per class - s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string - - # Write results - for *xyxy, conf, cls in reversed(det): - if save_txt: # Write to file - xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh - line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format - with open(f'{txt_path}.txt', 'a') as f: - f.write(('%g ' * len(line)).rstrip() % line + '\n') - - if save_img or save_crop or view_img: # Add bbox to image - c = int(cls) # integer class - label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') - annotator.box_label(xyxy, label, color=colors(c, True)) - - if save_crop: - save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) - - # Stream results - im0 = annotator.result() - if view_img: - if platform.system() == 'Linux' and p not in windows: - windows.append(p) - cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) - cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) - cv2.imshow(str(p), im0) - cv2.waitKey(1) # 1 millisecond - - # Save results (image with detections) - if save_img: - if dataset.mode == 'image': - cv2.imwrite(save_path, im0) - else: # 'video' or 'stream' - if vid_path[i] != save_path: # new video - vid_path[i] = save_path - if isinstance(vid_writer[i], cv2.VideoWriter): - vid_writer[i].release() # release previous video writer - if vid_cap: # video - fps = vid_cap.get(cv2.CAP_PROP_FPS) - w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) - h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) - else: # stream - fps, w, h = 30, im0.shape[1], im0.shape[0] - save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos - vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) - vid_writer[i].write(im0) - - # Print time (inference-only) - LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)') - - #Encode targets as JSON string and send via UDP socket - targets = [] - for *xyxy, conf, cls in reversed(det): - xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh - targets.append({'class': names[int(cls)], 'conf': float(conf), 'bbox': [float(val) for val in xywh]}) - json_str = json.dumps({'location': img_location, 'targets': targets, 'x_pos':x_pos, 'y_pos':y_pos}) - - clientsocket.send(json_str.encode('utf-8')) # change DEST_IP and DEST_PORT to desired values - print(json_str) - client() - - # Print results - t = tuple(x / seen * 1E3 for x in dt) # speeds per image - LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) - if save_txt or save_img: - s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' - LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") - if update: - strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) - -def client(): - global test - global x_pos - global y_pos - if test == 0: - msg = clientsocket.recv(4096) - msg = msg.decode('utf-8') - recvmsg = json.loads(msg) - print(recvmsg) - x_pos = recvmsg['x_pos'] - y_pos = recvmsg['y_pos'] - if (x_pos != 0.0 and y_pos != 0.0): - test = 1 - -def parse_opt(): - parser = argparse.ArgumentParser() - parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)') - parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam') - parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') - parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') - parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') - parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') - parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') - parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') - parser.add_argument('--view-img', action='store_true', help='show results') - parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') - parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') - parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') - parser.add_argument('--nosave', action='store_true', help='do not save images/videos') - parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') - parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') - parser.add_argument('--augment', action='store_true', help='augmented inference') - parser.add_argument('--visualize', action='store_true', help='visualize features') - parser.add_argument('--update', action='store_true', help='update all models') - parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') - parser.add_argument('--name', default='exp', help='save results to project/name') - parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') - - parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') - parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') - parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') - - parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') - parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') - opt = parser.parse_args() - opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand - print_args(vars(opt)) - return opt - - -def main(opt): - check_requirements(exclude=('tensorboard', 'thop')) - run(**vars(opt)) - - -if __name__ == "__main__": - opt = parse_opt() - main(opt) diff --git a/yolov5-6.2/test/test.py b/yolov5-6.2/test/test.py deleted file mode 100644 index 5edda545..00000000 --- a/yolov5-6.2/test/test.py +++ /dev/null @@ -1,12 +0,0 @@ -import cv2 -url = "rtsp://192.168.144.108:8000/165506" -cap = cv2.VideoCapture(url, cv2.CAP_FFMPEG) -cap.set(cv2.CAP_PROP_FFMPEG_PARAM,'-strict -2') -ret, frame = cap.read() -while ret: - ret, frame = cap.read() - cv2.imshow("frame",frame) - if cv2.waitKey(1) & 0xFF == ord('q'): - break -cv2.destroyAllWindows() -cap.release() \ No newline at end of file diff --git a/yolov5-6.2/train.py b/yolov5-6.2/train.py deleted file mode 100644 index bbb26cde..00000000 --- a/yolov5-6.2/train.py +++ /dev/null @@ -1,632 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Train a YOLOv5 model on a custom dataset. - -Models and datasets download automatically from the latest YOLOv5 release. -Models: https://github.com/ultralytics/yolov5/tree/master/models -Datasets: https://github.com/ultralytics/yolov5/tree/master/data -Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data - -Usage: - $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (RECOMMENDED) - $ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch -""" - -import argparse -import math -import os -import random -import sys -import time -from copy import deepcopy -from datetime import datetime -from pathlib import Path - -import numpy as np -import torch -import torch.distributed as dist -import torch.nn as nn -import yaml -from torch.optim import lr_scheduler -from tqdm import tqdm - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[0] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative - -import val # for end-of-epoch mAP -from models.experimental import attempt_load -from models.yolo import Model -from utils.autoanchor import check_anchors -from utils.autobatch import check_train_batch_size -from utils.callbacks import Callbacks -from utils.dataloaders import create_dataloader -from utils.downloads import attempt_download, is_url -from utils.general import (LOGGER, check_amp, check_dataset, check_file, check_git_status, check_img_size, - check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path, - init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, - one_cycle, print_args, print_mutation, strip_optimizer, yaml_save) -from utils.loggers import Loggers -from utils.loggers.wandb.wandb_utils import check_wandb_resume -from utils.loss import ComputeLoss -from utils.metrics import fitness -from utils.plots import plot_evolve, plot_labels -from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer, - smart_resume, torch_distributed_zero_first) - -LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html -RANK = int(os.getenv('RANK', -1)) -WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) - - -def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary - save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ - Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ - opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze - callbacks.run('on_pretrain_routine_start') - - # Directories - w = save_dir / 'weights' # weights dir - (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir - last, best = w / 'last.pt', w / 'best.pt' - - # Hyperparameters - if isinstance(hyp, str): - with open(hyp, errors='ignore') as f: - hyp = yaml.safe_load(f) # load hyps dict - LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) - opt.hyp = hyp.copy() # for saving hyps to checkpoints - - # Save run settings - if not evolve: - yaml_save(save_dir / 'hyp.yaml', hyp) - yaml_save(save_dir / 'opt.yaml', vars(opt)) - - # Loggers - data_dict = None - if RANK in {-1, 0}: - loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance - if loggers.clearml: - data_dict = loggers.clearml.data_dict # None if no ClearML dataset or filled in by ClearML - if loggers.wandb: - data_dict = loggers.wandb.data_dict - if resume: - weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size - - # Register actions - for k in methods(loggers): - callbacks.register_action(k, callback=getattr(loggers, k)) - - # Config - plots = not evolve and not opt.noplots # create plots - cuda = device.type != 'cpu' - init_seeds(opt.seed + 1 + RANK, deterministic=True) - with torch_distributed_zero_first(LOCAL_RANK): - data_dict = data_dict or check_dataset(data) # check if None - train_path, val_path = data_dict['train'], data_dict['val'] - nc = 1 if single_cls else int(data_dict['nc']) # number of classes - names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names - assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check - is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset - - # Model - check_suffix(weights, '.pt') # check weights - pretrained = weights.endswith('.pt') - if pretrained: - with torch_distributed_zero_first(LOCAL_RANK): - weights = attempt_download(weights) # download if not found locally - ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak - model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create - exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys - csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 - csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect - model.load_state_dict(csd, strict=False) # load - LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report - else: - model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create - amp = check_amp(model) # check AMP - - # Freeze - freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze - for k, v in model.named_parameters(): - v.requires_grad = True # train all layers - # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results) - if any(x in k for x in freeze): - LOGGER.info(f'freezing {k}') - v.requires_grad = False - - # Image size - gs = max(int(model.stride.max()), 32) # grid size (max stride) - imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple - - # Batch size - if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size - batch_size = check_train_batch_size(model, imgsz, amp) - loggers.on_params_update({"batch_size": batch_size}) - - # Optimizer - nbs = 64 # nominal batch size - accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing - hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay - optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay']) - - # Scheduler - if opt.cos_lr: - lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] - else: - lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear - scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) - - # EMA - ema = ModelEMA(model) if RANK in {-1, 0} else None - - # Resume - best_fitness, start_epoch = 0.0, 0 - if pretrained: - if resume: - best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) - del ckpt, csd - - # DP mode - if cuda and RANK == -1 and torch.cuda.device_count() > 1: - LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' - 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') - model = torch.nn.DataParallel(model) - - # SyncBatchNorm - if opt.sync_bn and cuda and RANK != -1: - model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) - LOGGER.info('Using SyncBatchNorm()') - - # Trainloader - train_loader, dataset = create_dataloader(train_path, - imgsz, - batch_size // WORLD_SIZE, - gs, - single_cls, - hyp=hyp, - augment=True, - cache=None if opt.cache == 'val' else opt.cache, - rect=opt.rect, - rank=LOCAL_RANK, - workers=workers, - image_weights=opt.image_weights, - quad=opt.quad, - prefix=colorstr('train: '), - shuffle=True) - labels = np.concatenate(dataset.labels, 0) - mlc = int(labels[:, 0].max()) # max label class - assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' - - # Process 0 - if RANK in {-1, 0}: - val_loader = create_dataloader(val_path, - imgsz, - batch_size // WORLD_SIZE * 2, - gs, - single_cls, - hyp=hyp, - cache=None if noval else opt.cache, - rect=True, - rank=-1, - workers=workers * 2, - pad=0.5, - prefix=colorstr('val: '))[0] - - if not resume: - if plots: - plot_labels(labels, names, save_dir) - - # Anchors - if not opt.noautoanchor: - check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) - model.half().float() # pre-reduce anchor precision - - callbacks.run('on_pretrain_routine_end') - - # DDP mode - if cuda and RANK != -1: - model = smart_DDP(model) - - # Model attributes - nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) - hyp['box'] *= 3 / nl # scale to layers - hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers - hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers - hyp['label_smoothing'] = opt.label_smoothing - model.nc = nc # attach number of classes to model - model.hyp = hyp # attach hyperparameters to model - model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights - model.names = names - - # Start training - t0 = time.time() - nb = len(train_loader) # number of batches - nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) - # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training - last_opt_step = -1 - maps = np.zeros(nc) # mAP per class - results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) - scheduler.last_epoch = start_epoch - 1 # do not move - scaler = torch.cuda.amp.GradScaler(enabled=amp) - stopper, stop = EarlyStopping(patience=opt.patience), False - compute_loss = ComputeLoss(model) # init loss class - callbacks.run('on_train_start') - LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' - f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' - f"Logging results to {colorstr('bold', save_dir)}\n" - f'Starting training for {epochs} epochs...') - for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ - callbacks.run('on_train_epoch_start') - model.train() - - # Update image weights (optional, single-GPU only) - if opt.image_weights: - cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights - iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights - dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx - - # Update mosaic border (optional) - # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) - # dataset.mosaic_border = [b - imgsz, -b] # height, width borders - - mloss = torch.zeros(3, device=device) # mean losses - if RANK != -1: - train_loader.sampler.set_epoch(epoch) - pbar = enumerate(train_loader) - LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size')) - if RANK in {-1, 0}: - pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar - optimizer.zero_grad() - for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- - callbacks.run('on_train_batch_start') - ni = i + nb * epoch # number integrated batches (since train start) - imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 - - # Warmup - if ni <= nw: - xi = [0, nw] # x interp - # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) - accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) - for j, x in enumerate(optimizer.param_groups): - # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 - x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)]) - if 'momentum' in x: - x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) - - # Multi-scale - if opt.multi_scale: - sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size - sf = sz / max(imgs.shape[2:]) # scale factor - if sf != 1: - ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) - imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) - - # Forward - with torch.cuda.amp.autocast(amp): - pred = model(imgs) # forward - loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size - if RANK != -1: - loss *= WORLD_SIZE # gradient averaged between devices in DDP mode - if opt.quad: - loss *= 4. - - # Backward - scaler.scale(loss).backward() - - # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html - if ni - last_opt_step >= accumulate: - scaler.unscale_(optimizer) # unscale gradients - torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients - scaler.step(optimizer) # optimizer.step - scaler.update() - optimizer.zero_grad() - if ema: - ema.update(model) - last_opt_step = ni - - # Log - if RANK in {-1, 0}: - mloss = (mloss * i + loss_items) / (i + 1) # update mean losses - mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) - pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % - (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) - callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots) - if callbacks.stop_training: - return - # end batch ------------------------------------------------------------------------------------------------ - - # Scheduler - lr = [x['lr'] for x in optimizer.param_groups] # for loggers - scheduler.step() - - if RANK in {-1, 0}: - # mAP - callbacks.run('on_train_epoch_end', epoch=epoch) - ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) - final_epoch = (epoch + 1 == epochs) or stopper.possible_stop - if not noval or final_epoch: # Calculate mAP - results, maps, _ = val.run(data_dict, - batch_size=batch_size // WORLD_SIZE * 2, - imgsz=imgsz, - half=amp, - model=ema.ema, - single_cls=single_cls, - dataloader=val_loader, - save_dir=save_dir, - plots=False, - callbacks=callbacks, - compute_loss=compute_loss) - - # Update best mAP - fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] - stop = stopper(epoch=epoch, fitness=fi) # early stop check - if fi > best_fitness: - best_fitness = fi - log_vals = list(mloss) + list(results) + lr - callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) - - # Save model - if (not nosave) or (final_epoch and not evolve): # if save - ckpt = { - 'epoch': epoch, - 'best_fitness': best_fitness, - 'model': deepcopy(de_parallel(model)).half(), - 'ema': deepcopy(ema.ema).half(), - 'updates': ema.updates, - 'optimizer': optimizer.state_dict(), - 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None, - 'opt': vars(opt), - 'date': datetime.now().isoformat()} - - # Save last, best and delete - torch.save(ckpt, last) - if best_fitness == fi: - torch.save(ckpt, best) - if opt.save_period > 0 and epoch % opt.save_period == 0: - torch.save(ckpt, w / f'epoch{epoch}.pt') - del ckpt - callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) - - # EarlyStopping - if RANK != -1: # if DDP training - broadcast_list = [stop if RANK == 0 else None] - dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks - if RANK != 0: - stop = broadcast_list[0] - if stop: - break # must break all DDP ranks - - # end epoch ---------------------------------------------------------------------------------------------------- - # end training ----------------------------------------------------------------------------------------------------- - if RANK in {-1, 0}: - LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') - for f in last, best: - if f.exists(): - strip_optimizer(f) # strip optimizers - if f is best: - LOGGER.info(f'\nValidating {f}...') - results, _, _ = val.run( - data_dict, - batch_size=batch_size // WORLD_SIZE * 2, - imgsz=imgsz, - model=attempt_load(f, device).half(), - iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65 - single_cls=single_cls, - dataloader=val_loader, - save_dir=save_dir, - save_json=is_coco, - verbose=True, - plots=plots, - callbacks=callbacks, - compute_loss=compute_loss) # val best model with plots - if is_coco: - callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) - - callbacks.run('on_train_end', last, best, plots, epoch, results) - - torch.cuda.empty_cache() - return results - - -def parse_opt(known=False): - parser = argparse.ArgumentParser() - parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path') - parser.add_argument('--cfg', type=str, default='', help='model.yaml path') - parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') - parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') - parser.add_argument('--epochs', type=int, default=300) - parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') - parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') - parser.add_argument('--rect', action='store_true', help='rectangular training') - parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') - parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') - parser.add_argument('--noval', action='store_true', help='only validate final epoch') - parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') - parser.add_argument('--noplots', action='store_true', help='save no plot files') - parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') - parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') - parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') - parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') - parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') - parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') - parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') - parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') - parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') - parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') - parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') - parser.add_argument('--name', default='exp', help='save to project/name') - parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') - parser.add_argument('--quad', action='store_true', help='quad dataloader') - parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') - parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') - parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') - parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') - parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') - parser.add_argument('--seed', type=int, default=0, help='Global training seed') - parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') - - # Weights & Biases arguments - parser.add_argument('--entity', default=None, help='W&B: Entity') - parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option') - parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval') - parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use') - - return parser.parse_known_args()[0] if known else parser.parse_args() - - -def main(opt, callbacks=Callbacks()): - # Checks - if RANK in {-1, 0}: - print_args(vars(opt)) - check_git_status() - check_requirements() - - # Resume - if opt.resume and not (check_wandb_resume(opt) or opt.evolve): # resume from specified or most recent last.pt - last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) - opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml - opt_data = opt.data # original dataset - if opt_yaml.is_file(): - with open(opt_yaml, errors='ignore') as f: - d = yaml.safe_load(f) - else: - d = torch.load(last, map_location='cpu')['opt'] - opt = argparse.Namespace(**d) # replace - opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate - if is_url(opt_data): - opt.data = check_file(opt_data) # avoid HUB resume auth timeout - else: - opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ - check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks - assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' - if opt.evolve: - if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve - opt.project = str(ROOT / 'runs/evolve') - opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume - if opt.name == 'cfg': - opt.name = Path(opt.cfg).stem # use model.yaml as name - opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) - - # DDP mode - device = select_device(opt.device, batch_size=opt.batch_size) - if LOCAL_RANK != -1: - msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' - assert not opt.image_weights, f'--image-weights {msg}' - assert not opt.evolve, f'--evolve {msg}' - assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size' - assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' - assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' - torch.cuda.set_device(LOCAL_RANK) - device = torch.device('cuda', LOCAL_RANK) - dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo") - - # Train - if not opt.evolve: - train(opt.hyp, opt, device, callbacks) - - # Evolve hyperparameters (optional) - else: - # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) - meta = { - 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) - 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) - 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 - 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay - 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) - 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum - 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr - 'box': (1, 0.02, 0.2), # box loss gain - 'cls': (1, 0.2, 4.0), # cls loss gain - 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight - 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) - 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight - 'iou_t': (0, 0.1, 0.7), # IoU training threshold - 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold - 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) - 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) - 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) - 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) - 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) - 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) - 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) - 'scale': (1, 0.0, 0.9), # image scale (+/- gain) - 'shear': (1, 0.0, 10.0), # image shear (+/- deg) - 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 - 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) - 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) - 'mosaic': (1, 0.0, 1.0), # image mixup (probability) - 'mixup': (1, 0.0, 1.0), # image mixup (probability) - 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability) - - with open(opt.hyp, errors='ignore') as f: - hyp = yaml.safe_load(f) # load hyps dict - if 'anchors' not in hyp: # anchors commented in hyp.yaml - hyp['anchors'] = 3 - if opt.noautoanchor: - del hyp['anchors'], meta['anchors'] - opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch - # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices - evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' - if opt.bucket: - os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists - - for _ in range(opt.evolve): # generations to evolve - if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate - # Select parent(s) - parent = 'single' # parent selection method: 'single' or 'weighted' - x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) - n = min(5, len(x)) # number of previous results to consider - x = x[np.argsort(-fitness(x))][:n] # top n mutations - w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) - if parent == 'single' or len(x) == 1: - # x = x[random.randint(0, n - 1)] # random selection - x = x[random.choices(range(n), weights=w)[0]] # weighted selection - elif parent == 'weighted': - x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination - - # Mutate - mp, s = 0.8, 0.2 # mutation probability, sigma - npr = np.random - npr.seed(int(time.time())) - g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 - ng = len(meta) - v = np.ones(ng) - while all(v == 1): # mutate until a change occurs (prevent duplicates) - v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) - for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) - hyp[k] = float(x[i + 7] * v[i]) # mutate - - # Constrain to limits - for k, v in meta.items(): - hyp[k] = max(hyp[k], v[1]) # lower limit - hyp[k] = min(hyp[k], v[2]) # upper limit - hyp[k] = round(hyp[k], 5) # significant digits - - # Train mutation - results = train(hyp.copy(), opt, device, callbacks) - callbacks = Callbacks() - # Write mutation results - print_mutation(results, hyp.copy(), save_dir, opt.bucket) - - # Plot results - plot_evolve(evolve_csv) - LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' - f"Results saved to {colorstr('bold', save_dir)}\n" - f'Usage example: $ python train.py --hyp {evolve_yaml}') - - -def run(**kwargs): - # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') - opt = parse_opt(True) - for k, v in kwargs.items(): - setattr(opt, k, v) - main(opt) - return opt - - -if __name__ == "__main__": - opt = parse_opt() - main(opt) diff --git a/yolov5-6.2/tutorial.ipynb b/yolov5-6.2/tutorial.ipynb deleted file mode 100644 index 61641bab..00000000 --- a/yolov5-6.2/tutorial.ipynb +++ /dev/null @@ -1,1141 +0,0 @@ -{ - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "name": "YOLOv5 Tutorial", - "provenance": [], - "collapsed_sections": [], - "machine_shape": "hm", - "toc_visible": true, - "include_colab_link": true - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "accelerator": "GPU", - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "c31d2039ccf74c22b67841f4877d1186": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d4bba1727c714d94ad58a72bffa07c4c", - "IPY_MODEL_9aeff9f1780b45f892422fdc96e56913", - "IPY_MODEL_bf55a7c71d074d3fa88b10b997820825" - ], - "layout": "IPY_MODEL_d8b66044e2fb4f5b916696834d880c81" - } - }, - "d4bba1727c714d94ad58a72bffa07c4c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_102e1deda239436fa72751c58202fa0f", - "placeholder": "", - "style": "IPY_MODEL_4fd4431ced6c42368e18424912b877e4", - "value": "100%" - } - }, - "9aeff9f1780b45f892422fdc96e56913": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cdd709c4f40941bea1b2053523c9fac8", - "max": 818322941, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_a1ef2d8de2b741c78ca5d938e2ddbcdf", - "value": 818322941 - } - }, - "bf55a7c71d074d3fa88b10b997820825": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0dbce99bb6184238842cbec0587d564a", - "placeholder": "", - "style": "IPY_MODEL_91ff5f93f2a24c5790ab29e347965946", - "value": " 780M/780M [01:10<00:00, 10.5MB/s]" - } - }, - "d8b66044e2fb4f5b916696834d880c81": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "102e1deda239436fa72751c58202fa0f": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4fd4431ced6c42368e18424912b877e4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "cdd709c4f40941bea1b2053523c9fac8": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a1ef2d8de2b741c78ca5d938e2ddbcdf": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0dbce99bb6184238842cbec0587d564a": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "91ff5f93f2a24c5790ab29e347965946": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - } - } - } - }, - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "view-in-github", - "colab_type": "text" - }, - "source": [ - "<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "t6MPjfT5NrKQ" - }, - "source": [ - "<a align=\"left\" href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n", - "<img width=\"1024\", src=\"https://user-images.githubusercontent.com/26833433/125273437-35b3fc00-e30d-11eb-9079-46f313325424.png\"></a>\n", - "\n", - "This is the **official YOLOv5 🚀 notebook** by **Ultralytics**, and is freely available for redistribution under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/). \n", - "For more information please visit https://github.com/ultralytics/yolov5 and https://ultralytics.com. Thank you!" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7mGmQbAO5pQb" - }, - "source": [ - "# Setup\n", - "\n", - "Clone repo, install dependencies and check PyTorch and GPU." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "wbvMlHd_QwMG", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "185d0979-edcd-4860-e6fb-b8a27dbf5096" - }, - "source": [ - "!git clone https://github.com/ultralytics/yolov5 # clone\n", - "%cd yolov5\n", - "%pip install -qr requirements.txt # install\n", - "\n", - "import torch\n", - "import utils\n", - "display = utils.notebook_init() # checks" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "YOLOv5 🚀 v6.1-370-g20f1b7e Python-3.7.13 torch-1.12.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Setup complete ✅ (8 CPUs, 51.0 GB RAM, 37.4/166.8 GB disk)\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "4JnkELT0cIJg" - }, - "source": [ - "# 1. Inference\n", - "\n", - "`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n", - "\n", - "```shell\n", - "python detect.py --source 0 # webcam\n", - " img.jpg # image \n", - " vid.mp4 # video\n", - " path/ # directory\n", - " 'path/*.jpg' # glob\n", - " 'https://youtu.be/Zgi9g1ksQHc' # YouTube\n", - " 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n", - "```" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "zR9ZbuQCH7FX", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "4b13989f-32a4-4ef0-b403-06ff3aac255c" - }, - "source": [ - "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n", - "#display.Image(filename='runs/detect/exp/zidane.jpg', width=600)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n", - "YOLOv5 🚀 v6.1-370-g20f1b7e Python-3.7.13 torch-1.12.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", - "\n", - "Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt to yolov5s.pt...\n", - "100% 14.1M/14.1M [00:00<00:00, 53.9MB/s]\n", - "\n", - "Fusing layers... \n", - "YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n", - "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.016s)\n", - "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.021s)\n", - "Speed: 0.6ms pre-process, 18.6ms inference, 25.0ms NMS per image at shape (1, 3, 640, 640)\n", - "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hkAzDWJ7cWTr" - }, - "source": [ - " \n", - "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0eq1SMWl6Sfn" - }, - "source": [ - "# 2. Validate\n", - "Validate a model's accuracy on [COCO](https://cocodataset.org/#home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag. Note that `pycocotools` metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "eyTZYGgRjnMc" - }, - "source": [ - "## COCO val\n", - "Download [COCO val 2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L14) dataset (1GB - 5000 images), and test model accuracy." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "WQPtK1QYVaD_", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 49, - "referenced_widgets": [ - "c31d2039ccf74c22b67841f4877d1186", - "d4bba1727c714d94ad58a72bffa07c4c", - "9aeff9f1780b45f892422fdc96e56913", - "bf55a7c71d074d3fa88b10b997820825", - "d8b66044e2fb4f5b916696834d880c81", - "102e1deda239436fa72751c58202fa0f", - "4fd4431ced6c42368e18424912b877e4", - "cdd709c4f40941bea1b2053523c9fac8", - "a1ef2d8de2b741c78ca5d938e2ddbcdf", - "0dbce99bb6184238842cbec0587d564a", - "91ff5f93f2a24c5790ab29e347965946" - ] - }, - "outputId": "a9004b06-37a6-41ed-a1f2-ac956f3963b3" - }, - "source": [ - "# Download COCO val\n", - "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n", - "!unzip -q tmp.zip -d ../datasets && rm tmp.zip" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - " 0%| | 0.00/780M [00:00<?, ?B/s]" - ], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "c31d2039ccf74c22b67841f4877d1186" - } - }, - "metadata": {} - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "X58w8JLpMnjH", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "c0f29758-4ec8-4def-893d-0efd6ed5b7f4" - }, - "source": [ - "# Run YOLOv5x on COCO val\n", - "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n", - "YOLOv5 🚀 v6.1-370-g20f1b7e Python-3.7.13 torch-1.12.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", - "\n", - "Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt to yolov5x.pt...\n", - "100% 166M/166M [00:35<00:00, 4.97MB/s]\n", - "\n", - "Fusing layers... \n", - "YOLOv5x summary: 444 layers, 86705005 parameters, 0 gradients\n", - "Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n", - "100% 755k/755k [00:00<00:00, 49.4MB/s]\n", - "\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00, 10716.86it/s]\n", - "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n", - " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:08<00:00, 2.28it/s]\n", - " all 5000 36335 0.743 0.625 0.683 0.504\n", - "Speed: 0.1ms pre-process, 4.6ms inference, 1.2ms NMS per image at shape (32, 3, 640, 640)\n", - "\n", - "Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n", - "loading annotations into memory...\n", - "Done (t=0.41s)\n", - "creating index...\n", - "index created!\n", - "Loading and preparing results...\n", - "DONE (t=5.64s)\n", - "creating index...\n", - "index created!\n", - "Running per image evaluation...\n", - "Evaluate annotation type *bbox*\n", - "DONE (t=72.86s).\n", - "Accumulating evaluation results...\n", - "DONE (t=14.20s).\n", - " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.506\n", - " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n", - " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.549\n", - " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.340\n", - " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.558\n", - " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.651\n", - " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.382\n", - " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.631\n", - " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.684\n", - " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.528\n", - " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.737\n", - " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833\n", - "Results saved to \u001b[1mruns/val/exp\u001b[0m\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rc_KbFk0juX2" - }, - "source": [ - "## COCO test\n", - "Download [COCO test2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L15) dataset (7GB - 40,000 images), to test model accuracy on test-dev set (**20,000 images, no labels**). Results are saved to a `*.json` file which should be **zipped** and submitted to the evaluation server at https://competitions.codalab.org/competitions/20794." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "V0AJnSeCIHyJ" - }, - "source": [ - "# Download COCO test-dev2017\n", - "!bash data/scripts/get_coco.sh --test" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "29GJXAP_lPrt" - }, - "source": [ - "# Run YOLOv5x on COCO test\n", - "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half --task test" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZY2VXXXu74w5" - }, - "source": [ - "# 3. Train\n", - "\n", - "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png\"/></a></p>\n", - "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n", - "<br><br>\n", - "\n", - "Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n", - "\n", - "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n", - "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n", - "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n", - "- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n", - "<br><br>\n", - "\n", - "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n", - "\n", - "## Train on Custom Data with Roboflow 🌟 NEW\n", - "\n", - "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n", - "\n", - "- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n", - "- Custom Training Notebook: [](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n", - "<br>\n", - "\n", - "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/6152a275ad4b4ac20cd2e21a_roboflow-annotate.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "bOy5KI2ncnWd" - }, - "source": [ - "# Tensorboard (optional)\n", - "%load_ext tensorboard\n", - "%tensorboard --logdir runs/train" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# ClearML (optional)\n", - "%pip install -q clearml\n", - "!clearml-init" - ], - "metadata": { - "id": "DQhI6vvaRWjR" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "2fLAV42oNb7M" - }, - "source": [ - "# Weights & Biases (optional)\n", - "%pip install -q wandb\n", - "import wandb\n", - "wandb.login()" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "1NcFxRcFdJ_O", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "bce1b4bd-1a14-4c07-aebd-6c11e91ad24b" - }, - "source": [ - "# Train YOLOv5s on COCO128 for 3 epochs\n", - "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n", - "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n", - "YOLOv5 🚀 v6.1-370-g20f1b7e Python-3.7.13 torch-1.12.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", - "\n", - "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n", - "\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases\n", - "\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 runs in ClearML\n", - "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n", - "\n", - "Dataset not found ⚠️, missing paths ['/content/datasets/coco128/images/train2017']\n", - "Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n", - "100% 6.66M/6.66M [00:00<00:00, 75.2MB/s]\n", - "Dataset download success ✅ (0.7s), saved to \u001b[1m/content/datasets\u001b[0m\n", - "\n", - " from n params module arguments \n", - " 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n", - " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n", - " 2 -1 1 18816 models.common.C3 [64, 64, 1] \n", - " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n", - " 4 -1 2 115712 models.common.C3 [128, 128, 2] \n", - " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n", - " 6 -1 3 625152 models.common.C3 [256, 256, 3] \n", - " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n", - " 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n", - " 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n", - " 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n", - " 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", - " 12 [-1, 6] 1 0 models.common.Concat [1] \n", - " 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n", - " 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n", - " 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", - " 16 [-1, 4] 1 0 models.common.Concat [1] \n", - " 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n", - " 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n", - " 19 [-1, 14] 1 0 models.common.Concat [1] \n", - " 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n", - " 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n", - " 22 [-1, 10] 1 0 models.common.Concat [1] \n", - " 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n", - " 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n", - "Model summary: 270 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs\n", - "\n", - "Transferred 349/349 items from yolov5s.pt\n", - "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", - "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n", - "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(always_apply=False, p=0.01, blur_limit=(3, 7)), MedianBlur(always_apply=False, p=0.01, blur_limit=(3, 7)), ToGray(always_apply=False, p=0.01), CLAHE(always_apply=False, p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<00:00, 7926.40it/s]\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n", - "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 975.81it/s]\n", - "\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n", - "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 258.62it/s]\n", - "Plotting labels to runs/train/exp/labels.jpg... \n", - "\n", - "\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n", - "Image sizes 640 train, 640 val\n", - "Using 8 dataloader workers\n", - "Logging results to \u001b[1mruns/train/exp\u001b[0m\n", - "Starting training for 3 epochs...\n", - "\n", - " Epoch gpu_mem box obj cls labels img_size\n", - " 0/2 3.76G 0.04529 0.06712 0.01835 323 640: 100% 8/8 [00:05<00:00, 1.59it/s]\n", - " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.05it/s]\n", - " all 128 929 0.806 0.593 0.718 0.472\n", - "\n", - " Epoch gpu_mem box obj cls labels img_size\n", - " 1/2 4.79G 0.04244 0.06423 0.01611 236 640: 100% 8/8 [00:00<00:00, 8.11it/s]\n", - " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.20it/s]\n", - " all 128 929 0.811 0.615 0.74 0.493\n", - "\n", - " Epoch gpu_mem box obj cls labels img_size\n", - " 2/2 4.79G 0.04695 0.06875 0.0173 189 640: 100% 8/8 [00:00<00:00, 9.12it/s]\n", - " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.24it/s]\n", - " all 128 929 0.784 0.634 0.747 0.502\n", - "\n", - "3 epochs completed in 0.003 hours.\n", - "Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n", - "Optimizer stripped from runs/train/exp/weights/best.pt, 14.9MB\n", - "\n", - "Validating runs/train/exp/weights/best.pt...\n", - "Fusing layers... \n", - "Model summary: 213 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs\n", - " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.20it/s]\n", - " all 128 929 0.781 0.637 0.747 0.502\n", - " person 128 254 0.872 0.693 0.81 0.534\n", - " bicycle 128 6 1 0.407 0.68 0.425\n", - " car 128 46 0.743 0.413 0.581 0.247\n", - " motorcycle 128 5 1 0.988 0.995 0.692\n", - " airplane 128 6 0.965 1 0.995 0.717\n", - " bus 128 7 0.706 0.714 0.814 0.697\n", - " train 128 3 1 0.582 0.806 0.477\n", - " truck 128 12 0.602 0.417 0.495 0.271\n", - " boat 128 6 0.961 0.333 0.464 0.224\n", - " traffic light 128 14 0.517 0.155 0.364 0.216\n", - " stop sign 128 2 0.782 1 0.995 0.821\n", - " bench 128 9 0.829 0.539 0.701 0.288\n", - " bird 128 16 0.924 1 0.995 0.655\n", - " cat 128 4 0.891 1 0.995 0.809\n", - " dog 128 9 1 0.659 0.883 0.604\n", - " horse 128 2 0.808 1 0.995 0.672\n", - " elephant 128 17 0.973 0.882 0.936 0.733\n", - " bear 128 1 0.692 1 0.995 0.995\n", - " zebra 128 4 0.872 1 0.995 0.922\n", - " giraffe 128 9 0.865 0.889 0.975 0.736\n", - " backpack 128 6 1 0.547 0.787 0.372\n", - " umbrella 128 18 0.823 0.667 0.889 0.504\n", - " handbag 128 19 0.516 0.105 0.304 0.153\n", - " tie 128 7 0.696 0.714 0.741 0.482\n", - " suitcase 128 4 0.716 1 0.995 0.553\n", - " frisbee 128 5 0.715 0.8 0.8 0.71\n", - " skis 128 1 0.694 1 0.995 0.398\n", - " snowboard 128 7 0.893 0.714 0.855 0.569\n", - " sports ball 128 6 0.659 0.667 0.602 0.307\n", - " kite 128 10 0.683 0.434 0.611 0.242\n", - " baseball bat 128 4 0.838 0.5 0.55 0.146\n", - " baseball glove 128 7 0.572 0.429 0.463 0.294\n", - " skateboard 128 5 0.697 0.6 0.702 0.476\n", - " tennis racket 128 7 0.62 0.429 0.544 0.29\n", - " bottle 128 18 0.591 0.402 0.572 0.295\n", - " wine glass 128 16 0.747 0.921 0.913 0.529\n", - " cup 128 36 0.824 0.639 0.826 0.535\n", - " fork 128 6 1 0.319 0.518 0.353\n", - " knife 128 16 0.768 0.62 0.654 0.374\n", - " spoon 128 22 0.824 0.427 0.65 0.382\n", - " bowl 128 28 0.8 0.643 0.726 0.525\n", - " banana 128 1 0.878 1 0.995 0.208\n", - " sandwich 128 2 1 0 0.62 0.546\n", - " orange 128 4 1 0.896 0.995 0.691\n", - " broccoli 128 11 0.586 0.364 0.481 0.349\n", - " carrot 128 24 0.702 0.589 0.722 0.475\n", - " hot dog 128 2 0.524 1 0.828 0.795\n", - " pizza 128 5 0.811 0.865 0.962 0.695\n", - " donut 128 14 0.653 1 0.964 0.853\n", - " cake 128 4 0.852 1 0.995 0.822\n", - " chair 128 35 0.536 0.571 0.593 0.31\n", - " couch 128 6 1 0.63 0.75 0.518\n", - " potted plant 128 14 0.775 0.738 0.839 0.478\n", - " bed 128 3 1 0 0.72 0.423\n", - " dining table 128 13 0.817 0.348 0.592 0.381\n", - " toilet 128 2 0.782 1 0.995 0.895\n", - " tv 128 2 0.711 1 0.995 0.821\n", - " laptop 128 3 1 0 0.789 0.42\n", - " mouse 128 2 1 0 0.0798 0.0399\n", - " remote 128 8 1 0.611 0.63 0.549\n", - " cell phone 128 8 0.685 0.375 0.428 0.245\n", - " microwave 128 3 0.803 1 0.995 0.767\n", - " oven 128 5 0.42 0.4 0.444 0.306\n", - " sink 128 6 0.288 0.167 0.34 0.247\n", - " refrigerator 128 5 0.632 0.8 0.805 0.572\n", - " book 128 29 0.494 0.207 0.332 0.161\n", - " clock 128 9 0.791 0.889 0.93 0.75\n", - " vase 128 2 0.355 1 0.995 0.895\n", - " scissors 128 1 1 0 0.332 0.0663\n", - " teddy bear 128 21 0.839 0.571 0.767 0.487\n", - " toothbrush 128 5 0.829 0.974 0.962 0.644\n", - "Results saved to \u001b[1mruns/train/exp\u001b[0m\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "15glLzbQx5u0" - }, - "source": [ - "# 4. Visualize" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## ClearML Logging and Automation 🌟 NEW\n", - "\n", - "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n", - "\n", - "- `pip install clearml`\n", - "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n", - "\n", - "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n", - "\n", - "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for details!\n", - "\n", - "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n", - "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>" - ], - "metadata": { - "id": "Lay2WsTjNJzP" - } - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DLI1JmHU7B0l" - }, - "source": [ - "## Weights & Biases Logging\n", - "\n", - "[Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_notebook) (W&B) is integrated with YOLOv5 for real-time visualization and cloud logging of training runs. This allows for better run comparison and introspection, as well improved visibility and collaboration for teams. To enable W&B `pip install wandb`, and then train normally (you will be guided through setup on first use). \n", - "\n", - "During training you will see live updates at [https://wandb.ai/home](https://wandb.ai/home?utm_campaign=repo_yolo_notebook), and you can create and share detailed [Reports](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY) of your results. For more information see the [YOLOv5 Weights & Biases Tutorial](https://github.com/ultralytics/yolov5/issues/1289). \n", - "\n", - "<a href=\"https://wandb.ai/glenn-jocher/yolov5_tutorial\">\n", - "<img alt=\"Weights & Biases dashboard\" src=\"https://user-images.githubusercontent.com/26833433/182482859-288a9622-4661-48db-99de-650d1dead5c6.jpg\" width=\"1280\"/></a>" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-WPvRbS5Swl6" - }, - "source": [ - "## Local Logging\n", - "\n", - "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n", - "\n", - "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n", - "\n", - "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Zelyeqbyt3GD" - }, - "source": [ - "# Environments\n", - "\n", - "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n", - "\n", - "- **Google Colab and Kaggle** notebooks with free GPU: <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n", - "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n", - "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n", - "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "6Qu7Iesl0p54" - }, - "source": [ - "# Status\n", - "\n", - "\n", - "\n", - "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "IEijrePND_2I" - }, - "source": [ - "# Appendix\n", - "\n", - "Additional content below for PyTorch Hub, CI, reproducing results, profiling speeds, VOC training, classification training and TensorRT example." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "GMusP4OAxFu6" - }, - "source": [ - "import torch\n", - "\n", - "# PyTorch Hub Model\n", - "model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom\n", - "\n", - "# Images\n", - "img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list\n", - "\n", - "# Inference\n", - "results = model(img)\n", - "\n", - "# Results\n", - "results.print() # or .show(), .save(), .crop(), .pandas(), etc." - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "FGH0ZjkGjejy" - }, - "source": [ - "# YOLOv5 CI\n", - "%%shell\n", - "rm -rf runs # remove runs/\n", - "m=yolov5n # official weights\n", - "b=runs/train/exp/weights/best # best.pt checkpoint\n", - "python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device 0 # train\n", - "for d in 0 cpu; do # devices\n", - " for w in $m $b; do # weights\n", - " python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val\n", - " python detect.py --imgsz 64 --weights $w.pt --device $d # detect\n", - " done\n", - "done\n", - "python hubconf.py --model $m # hub\n", - "python models/tf.py --weights $m.pt # build TF model\n", - "python models/yolo.py --cfg $m.yaml # build PyTorch model\n", - "python export.py --weights $m.pt --img 64 --include torchscript # export" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "mcKoSIK2WSzj" - }, - "source": [ - "# Reproduce\n", - "for x in (f'yolov5{x}' for x in 'nsmlx'):\n", - " !python val.py --weights {x}.pt --data coco.yaml --img 640 --task speed # speed\n", - " !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.001 --iou 0.65 # mAP" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "gogI-kwi3Tye" - }, - "source": [ - "# Profile\n", - "from utils.torch_utils import profile\n", - "\n", - "m1 = lambda x: x * torch.sigmoid(x)\n", - "m2 = torch.nn.SiLU()\n", - "results = profile(input=torch.randn(16, 3, 640, 640), ops=[m1, m2], n=100)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "BSgFCAcMbk1R" - }, - "source": [ - "# VOC\n", - "for b, m in zip([64, 64, 64, 32, 16], [f'yolov5{x}' for x in 'nsmlx']): # batch, model\n", - " !python train.py --batch {b} --weights {m}.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.VOC.yaml --project VOC --name {m} --cache" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# Classification\n", - "for m in [*(f'yolov5{x}.pt' for x in 'nsmlx'), 'resnet50.pt', 'efficientnet_b0.pt']:\n", - " for d in 'mnist', 'fashion-mnist', 'cifar10', 'cifar100', 'imagenette160', 'imagenette320', 'imagenette', 'imagewoof160', 'imagewoof320', 'imagewoof':\n", - " !python classify/train.py --model {m} --data {d} --epochs 10 --project YOLOv5-cls --name {m}-{d}" - ], - "metadata": { - "id": "UWGH7H6yakVl" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "VTRwsvA9u7ln" - }, - "source": [ - "# TensorRT \n", - "!pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # install\n", - "!python export.py --weights yolov5s.pt --include engine --imgsz 640 --device 0 # export\n", - "!python detect.py --weights yolov5s.engine --imgsz 640 --device 0 # inference" - ], - "execution_count": null, - "outputs": [] - } - ] -} \ No newline at end of file diff --git a/yolov5-6.2/utils/__init__.py b/yolov5-6.2/utils/__init__.py deleted file mode 100644 index da53a4d2..00000000 --- a/yolov5-6.2/utils/__init__.py +++ /dev/null @@ -1,36 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -utils/initialization -""" - - -def notebook_init(verbose=True): - # Check system software and hardware - print('Checking setup...') - - import os - import shutil - - from utils.general import check_requirements, emojis, is_colab - from utils.torch_utils import select_device # imports - - check_requirements(('psutil', 'IPython')) - import psutil - from IPython import display # to display images and clear console output - - if is_colab(): - shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory - - # System info - if verbose: - gb = 1 << 30 # bytes to GiB (1024 ** 3) - ram = psutil.virtual_memory().total - total, used, free = shutil.disk_usage("/") - display.clear_output() - s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)' - else: - s = '' - - select_device(newline=False) - print(emojis(f'Setup complete ✅ {s}')) - return display diff --git a/yolov5-6.2/utils/activations.py b/yolov5-6.2/utils/activations.py deleted file mode 100644 index 084ce8c4..00000000 --- a/yolov5-6.2/utils/activations.py +++ /dev/null @@ -1,103 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Activation functions -""" - -import torch -import torch.nn as nn -import torch.nn.functional as F - - -class SiLU(nn.Module): - # SiLU activation https://arxiv.org/pdf/1606.08415.pdf - @staticmethod - def forward(x): - return x * torch.sigmoid(x) - - -class Hardswish(nn.Module): - # Hard-SiLU activation - @staticmethod - def forward(x): - # return x * F.hardsigmoid(x) # for TorchScript and CoreML - return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX - - -class Mish(nn.Module): - # Mish activation https://github.com/digantamisra98/Mish - @staticmethod - def forward(x): - return x * F.softplus(x).tanh() - - -class MemoryEfficientMish(nn.Module): - # Mish activation memory-efficient - class F(torch.autograd.Function): - - @staticmethod - def forward(ctx, x): - ctx.save_for_backward(x) - return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) - - @staticmethod - def backward(ctx, grad_output): - x = ctx.saved_tensors[0] - sx = torch.sigmoid(x) - fx = F.softplus(x).tanh() - return grad_output * (fx + x * sx * (1 - fx * fx)) - - def forward(self, x): - return self.F.apply(x) - - -class FReLU(nn.Module): - # FReLU activation https://arxiv.org/abs/2007.11824 - def __init__(self, c1, k=3): # ch_in, kernel - super().__init__() - self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) - self.bn = nn.BatchNorm2d(c1) - - def forward(self, x): - return torch.max(x, self.bn(self.conv(x))) - - -class AconC(nn.Module): - r""" ACON activation (activate or not) - AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter - according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>. - """ - - def __init__(self, c1): - super().__init__() - self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) - self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) - self.beta = nn.Parameter(torch.ones(1, c1, 1, 1)) - - def forward(self, x): - dpx = (self.p1 - self.p2) * x - return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x - - -class MetaAconC(nn.Module): - r""" ACON activation (activate or not) - MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network - according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>. - """ - - def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r - super().__init__() - c2 = max(r, c1 // r) - self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) - self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) - self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True) - self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True) - # self.bn1 = nn.BatchNorm2d(c2) - # self.bn2 = nn.BatchNorm2d(c1) - - def forward(self, x): - y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True) - # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891 - # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable - beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed - dpx = (self.p1 - self.p2) * x - return dpx * torch.sigmoid(beta * dpx) + self.p2 * x diff --git a/yolov5-6.2/utils/augmentations.py b/yolov5-6.2/utils/augmentations.py deleted file mode 100644 index 498776a6..00000000 --- a/yolov5-6.2/utils/augmentations.py +++ /dev/null @@ -1,348 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Image augmentation functions -""" - -import math -import random - -import cv2 -import numpy as np -import torchvision.transforms as T -import torchvision.transforms.functional as TF - -from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box -from utils.metrics import bbox_ioa - -IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean -IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation - - -class Albumentations: - # YOLOv5 Albumentations class (optional, only used if package is installed) - def __init__(self): - self.transform = None - prefix = colorstr('albumentations: ') - try: - import albumentations as A - check_version(A.__version__, '1.0.3', hard=True) # version requirement - - T = [ - A.Blur(p=0.01), - A.MedianBlur(p=0.01), - A.ToGray(p=0.01), - A.CLAHE(p=0.01), - A.RandomBrightnessContrast(p=0.0), - A.RandomGamma(p=0.0), - A.ImageCompression(quality_lower=75, p=0.0)] # transforms - self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'])) - - LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) - except ImportError: # package not installed, skip - pass - except Exception as e: - LOGGER.info(f'{prefix}{e}') - - def __call__(self, im, labels, p=1.0): - if self.transform and random.random() < p: - new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed - im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])]) - return im, labels - - -def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False): - # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std - return TF.normalize(x, mean, std, inplace=inplace) - - -def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD): - # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean - for i in range(3): - x[:, i] = x[:, i] * std[i] + mean[i] - return x - - -def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5): - # HSV color-space augmentation - if hgain or sgain or vgain: - r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains - hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) - dtype = im.dtype # uint8 - - x = np.arange(0, 256, dtype=r.dtype) - lut_hue = ((x * r[0]) % 180).astype(dtype) - lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) - lut_val = np.clip(x * r[2], 0, 255).astype(dtype) - - im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) - cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed - - -def hist_equalize(im, clahe=True, bgr=False): - # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255 - yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) - if clahe: - c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) - yuv[:, :, 0] = c.apply(yuv[:, :, 0]) - else: - yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram - return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB - - -def replicate(im, labels): - # Replicate labels - h, w = im.shape[:2] - boxes = labels[:, 1:].astype(int) - x1, y1, x2, y2 = boxes.T - s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) - for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices - x1b, y1b, x2b, y2b = boxes[i] - bh, bw = y2b - y1b, x2b - x1b - yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y - x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] - im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax] - labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) - - return im, labels - - -def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): - # Resize and pad image while meeting stride-multiple constraints - shape = im.shape[:2] # current shape [height, width] - if isinstance(new_shape, int): - new_shape = (new_shape, new_shape) - - # Scale ratio (new / old) - r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) - if not scaleup: # only scale down, do not scale up (for better val mAP) - r = min(r, 1.0) - - # Compute padding - ratio = r, r # width, height ratios - new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) - dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding - if auto: # minimum rectangle - dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding - elif scaleFill: # stretch - dw, dh = 0.0, 0.0 - new_unpad = (new_shape[1], new_shape[0]) - ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios - - dw /= 2 # divide padding into 2 sides - dh /= 2 - - if shape[::-1] != new_unpad: # resize - im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) - top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) - left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) - im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border - return (im, ratio, (dw, dh)) - - -def random_perspective(im, - targets=(), - segments=(), - degrees=10, - translate=.1, - scale=.1, - shear=10, - perspective=0.0, - border=(0, 0)): - # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10)) - # targets = [cls, xyxy] - - height = im.shape[0] + border[0] * 2 # shape(h,w,c) - width = im.shape[1] + border[1] * 2 - - # Center - C = np.eye(3) - C[0, 2] = -im.shape[1] / 2 # x translation (pixels) - C[1, 2] = -im.shape[0] / 2 # y translation (pixels) - - # Perspective - P = np.eye(3) - P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) - P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) - - # Rotation and Scale - R = np.eye(3) - a = random.uniform(-degrees, degrees) - # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations - s = random.uniform(1 - scale, 1 + scale) - # s = 2 ** random.uniform(-scale, scale) - R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) - - # Shear - S = np.eye(3) - S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) - S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) - - # Translation - T = np.eye(3) - T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) - T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) - - # Combined rotation matrix - M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT - if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed - if perspective: - im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114)) - else: # affine - im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) - - # Visualize - # import matplotlib.pyplot as plt - # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() - # ax[0].imshow(im[:, :, ::-1]) # base - # ax[1].imshow(im2[:, :, ::-1]) # warped - - # Transform label coordinates - n = len(targets) - if n: - use_segments = any(x.any() for x in segments) - new = np.zeros((n, 4)) - if use_segments: # warp segments - segments = resample_segments(segments) # upsample - for i, segment in enumerate(segments): - xy = np.ones((len(segment), 3)) - xy[:, :2] = segment - xy = xy @ M.T # transform - xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine - - # clip - new[i] = segment2box(xy, width, height) - - else: # warp boxes - xy = np.ones((n * 4, 3)) - xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 - xy = xy @ M.T # transform - xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine - - # create new boxes - x = xy[:, [0, 2, 4, 6]] - y = xy[:, [1, 3, 5, 7]] - new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T - - # clip - new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) - new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) - - # filter candidates - i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) - targets = targets[i] - targets[:, 1:5] = new[i] - - return im, targets - - -def copy_paste(im, labels, segments, p=0.5): - # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) - n = len(segments) - if p and n: - h, w, c = im.shape # height, width, channels - im_new = np.zeros(im.shape, np.uint8) - for j in random.sample(range(n), k=round(p * n)): - l, s = labels[j], segments[j] - box = w - l[3], l[2], w - l[1], l[4] - ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area - if (ioa < 0.30).all(): # allow 30% obscuration of existing labels - labels = np.concatenate((labels, [[l[0], *box]]), 0) - segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) - cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) - - result = cv2.bitwise_and(src1=im, src2=im_new) - result = cv2.flip(result, 1) # augment segments (flip left-right) - i = result > 0 # pixels to replace - # i[:, :] = result.max(2).reshape(h, w, 1) # act over ch - im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug - - return im, labels, segments - - -def cutout(im, labels, p=0.5): - # Applies image cutout augmentation https://arxiv.org/abs/1708.04552 - if random.random() < p: - h, w = im.shape[:2] - scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction - for s in scales: - mask_h = random.randint(1, int(h * s)) # create random masks - mask_w = random.randint(1, int(w * s)) - - # box - xmin = max(0, random.randint(0, w) - mask_w // 2) - ymin = max(0, random.randint(0, h) - mask_h // 2) - xmax = min(w, xmin + mask_w) - ymax = min(h, ymin + mask_h) - - # apply random color mask - im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] - - # return unobscured labels - if len(labels) and s > 0.03: - box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) - ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area - labels = labels[ioa < 0.60] # remove >60% obscured labels - - return labels - - -def mixup(im, labels, im2, labels2): - # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf - r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 - im = (im * r + im2 * (1 - r)).astype(np.uint8) - labels = np.concatenate((labels, labels2), 0) - return im, labels - - -def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) - # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio - w1, h1 = box1[2] - box1[0], box1[3] - box1[1] - w2, h2 = box2[2] - box2[0], box2[3] - box2[1] - ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio - return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates - - -def classify_albumentations(augment=True, - size=224, - scale=(0.08, 1.0), - hflip=0.5, - vflip=0.0, - jitter=0.4, - mean=IMAGENET_MEAN, - std=IMAGENET_STD, - auto_aug=False): - # YOLOv5 classification Albumentations (optional, only used if package is installed) - prefix = colorstr('albumentations: ') - try: - import albumentations as A - from albumentations.pytorch import ToTensorV2 - check_version(A.__version__, '1.0.3', hard=True) # version requirement - if augment: # Resize and crop - T = [A.RandomResizedCrop(height=size, width=size, scale=scale)] - if auto_aug: - # TODO: implement AugMix, AutoAug & RandAug in albumentation - LOGGER.info(f'{prefix}auto augmentations are currently not supported') - else: - if hflip > 0: - T += [A.HorizontalFlip(p=hflip)] - if vflip > 0: - T += [A.VerticalFlip(p=vflip)] - if jitter > 0: - color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue - T += [A.ColorJitter(*color_jitter, 0)] - else: # Use fixed crop for eval set (reproducibility) - T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] - T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor - LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) - return A.Compose(T) - - except ImportError: # package not installed, skip - pass - except Exception as e: - LOGGER.info(f'{prefix}{e}') - - -def classify_transforms(size=224): - # Transforms to apply if albumentations not installed - return T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) - diff --git a/yolov5-6.2/utils/autoanchor.py b/yolov5-6.2/utils/autoanchor.py deleted file mode 100644 index f2222203..00000000 --- a/yolov5-6.2/utils/autoanchor.py +++ /dev/null @@ -1,170 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -AutoAnchor utils -""" - -import random - -import numpy as np -import torch -import yaml -from tqdm import tqdm - -from utils.general import LOGGER, colorstr - -PREFIX = colorstr('AutoAnchor: ') - - -def check_anchor_order(m): - # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary - a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer - da = a[-1] - a[0] # delta a - ds = m.stride[-1] - m.stride[0] # delta s - if da and (da.sign() != ds.sign()): # same order - LOGGER.info(f'{PREFIX}Reversing anchor order') - m.anchors[:] = m.anchors.flip(0) - - -def check_anchors(dataset, model, thr=4.0, imgsz=640): - # Check anchor fit to data, recompute if necessary - m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() - shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) - scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale - wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh - - def metric(k): # compute metric - r = wh[:, None] / k[None] - x = torch.min(r, 1 / r).min(2)[0] # ratio metric - best = x.max(1)[0] # best_x - aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold - bpr = (best > 1 / thr).float().mean() # best possible recall - return bpr, aat - - stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides - anchors = m.anchors.clone() * stride # current anchors - bpr, aat = metric(anchors.cpu().view(-1, 2)) - s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). ' - if bpr > 0.98: # threshold to recompute - LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅') - else: - LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...') - na = m.anchors.numel() // 2 # number of anchors - try: - anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) - except Exception as e: - LOGGER.info(f'{PREFIX}ERROR: {e}') - new_bpr = metric(anchors)[0] - if new_bpr > bpr: # replace anchors - anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors) - m.anchors[:] = anchors.clone().view_as(m.anchors) - check_anchor_order(m) # must be in pixel-space (not grid-space) - m.anchors /= stride - s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)' - else: - s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)' - LOGGER.info(s) - - -def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): - """ Creates kmeans-evolved anchors from training dataset - - Arguments: - dataset: path to data.yaml, or a loaded dataset - n: number of anchors - img_size: image size used for training - thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 - gen: generations to evolve anchors using genetic algorithm - verbose: print all results - - Return: - k: kmeans evolved anchors - - Usage: - from utils.autoanchor import *; _ = kmean_anchors() - """ - from scipy.cluster.vq import kmeans - - npr = np.random - thr = 1 / thr - - def metric(k, wh): # compute metrics - r = wh[:, None] / k[None] - x = torch.min(r, 1 / r).min(2)[0] # ratio metric - # x = wh_iou(wh, torch.tensor(k)) # iou metric - return x, x.max(1)[0] # x, best_x - - def anchor_fitness(k): # mutation fitness - _, best = metric(torch.tensor(k, dtype=torch.float32), wh) - return (best * (best > thr).float()).mean() # fitness - - def print_results(k, verbose=True): - k = k[np.argsort(k.prod(1))] # sort small to large - x, best = metric(k, wh0) - bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr - s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \ - f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \ - f'past_thr={x[x > thr].mean():.3f}-mean: ' - for x in k: - s += '%i,%i, ' % (round(x[0]), round(x[1])) - if verbose: - LOGGER.info(s[:-2]) - return k - - if isinstance(dataset, str): # *.yaml file - with open(dataset, errors='ignore') as f: - data_dict = yaml.safe_load(f) # model dict - from utils.dataloaders import LoadImagesAndLabels - dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) - - # Get label wh - shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) - wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh - - # Filter - i = (wh0 < 3.0).any(1).sum() - if i: - LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found: {i} of {len(wh0)} labels are < 3 pixels in size') - wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels - # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 - - # Kmeans init - try: - LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...') - assert n <= len(wh) # apply overdetermined constraint - s = wh.std(0) # sigmas for whitening - k = kmeans(wh / s, n, iter=30)[0] * s # points - assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar - except Exception: - LOGGER.warning(f'{PREFIX}WARNING: switching strategies from kmeans to random init') - k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init - wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0)) - k = print_results(k, verbose=False) - - # Plot - # k, d = [None] * 20, [None] * 20 - # for i in tqdm(range(1, 21)): - # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance - # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) - # ax = ax.ravel() - # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') - # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh - # ax[0].hist(wh[wh[:, 0]<100, 0],400) - # ax[1].hist(wh[wh[:, 1]<100, 1],400) - # fig.savefig('wh.png', dpi=200) - - # Evolve - f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma - pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar - for _ in pbar: - v = np.ones(sh) - while (v == 1).all(): # mutate until a change occurs (prevent duplicates) - v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) - kg = (k.copy() * v).clip(min=2.0) - fg = anchor_fitness(kg) - if fg > f: - f, k = fg, kg.copy() - pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' - if verbose: - print_results(k, verbose) - - return print_results(k) diff --git a/yolov5-6.2/utils/autobatch.py b/yolov5-6.2/utils/autobatch.py deleted file mode 100644 index c231d24c..00000000 --- a/yolov5-6.2/utils/autobatch.py +++ /dev/null @@ -1,66 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Auto-batch utils -""" - -from copy import deepcopy - -import numpy as np -import torch - -from utils.general import LOGGER, colorstr -from utils.torch_utils import profile - - -def check_train_batch_size(model, imgsz=640, amp=True): - # Check YOLOv5 training batch size - with torch.cuda.amp.autocast(amp): - return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size - - -def autobatch(model, imgsz=640, fraction=0.9, batch_size=16): - # Automatically estimate best batch size to use `fraction` of available CUDA memory - # Usage: - # import torch - # from utils.autobatch import autobatch - # model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False) - # print(autobatch(model)) - - # Check device - prefix = colorstr('AutoBatch: ') - LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}') - device = next(model.parameters()).device # get model device - if device.type == 'cpu': - LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}') - return batch_size - - # Inspect CUDA memory - gb = 1 << 30 # bytes to GiB (1024 ** 3) - d = str(device).upper() # 'CUDA:0' - properties = torch.cuda.get_device_properties(device) # device properties - t = properties.total_memory / gb # GiB total - r = torch.cuda.memory_reserved(device) / gb # GiB reserved - a = torch.cuda.memory_allocated(device) / gb # GiB allocated - f = t - (r + a) # GiB free - LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free') - - # Profile batch sizes - batch_sizes = [1, 2, 4, 8, 16] - try: - img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes] - results = profile(img, model, n=3, device=device) - except Exception as e: - LOGGER.warning(f'{prefix}{e}') - - # Fit a solution - y = [x[2] for x in results if x] # memory [2] - p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit - b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) - if None in results: # some sizes failed - i = results.index(None) # first fail index - if b >= batch_sizes[i]: # y intercept above failure point - b = batch_sizes[max(i - 1, 0)] # select prior safe point - - fraction = np.polyval(p, b) / t # actual fraction predicted - LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅') - return b diff --git a/yolov5-6.2/utils/aws/__init__.py b/yolov5-6.2/utils/aws/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/yolov5-6.2/utils/aws/mime.sh b/yolov5-6.2/utils/aws/mime.sh deleted file mode 100644 index c319a83c..00000000 --- a/yolov5-6.2/utils/aws/mime.sh +++ /dev/null @@ -1,26 +0,0 @@ -# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/ -# This script will run on every instance restart, not only on first start -# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA --- - -Content-Type: multipart/mixed; boundary="//" -MIME-Version: 1.0 - ---// -Content-Type: text/cloud-config; charset="us-ascii" -MIME-Version: 1.0 -Content-Transfer-Encoding: 7bit -Content-Disposition: attachment; filename="cloud-config.txt" - -#cloud-config -cloud_final_modules: -- [scripts-user, always] - ---// -Content-Type: text/x-shellscript; charset="us-ascii" -MIME-Version: 1.0 -Content-Transfer-Encoding: 7bit -Content-Disposition: attachment; filename="userdata.txt" - -#!/bin/bash -# --- paste contents of userdata.sh here --- ---// diff --git a/yolov5-6.2/utils/aws/resume.py b/yolov5-6.2/utils/aws/resume.py deleted file mode 100644 index b21731c9..00000000 --- a/yolov5-6.2/utils/aws/resume.py +++ /dev/null @@ -1,40 +0,0 @@ -# Resume all interrupted trainings in yolov5/ dir including DDP trainings -# Usage: $ python utils/aws/resume.py - -import os -import sys -from pathlib import Path - -import torch -import yaml - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[2] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH - -port = 0 # --master_port -path = Path('').resolve() -for last in path.rglob('*/**/last.pt'): - ckpt = torch.load(last) - if ckpt['optimizer'] is None: - continue - - # Load opt.yaml - with open(last.parent.parent / 'opt.yaml', errors='ignore') as f: - opt = yaml.safe_load(f) - - # Get device count - d = opt['device'].split(',') # devices - nd = len(d) # number of devices - ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel - - if ddp: # multi-GPU - port += 1 - cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}' - else: # single-GPU - cmd = f'python train.py --resume {last}' - - cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread - print(cmd) - os.system(cmd) diff --git a/yolov5-6.2/utils/aws/userdata.sh b/yolov5-6.2/utils/aws/userdata.sh deleted file mode 100644 index 5fc1332a..00000000 --- a/yolov5-6.2/utils/aws/userdata.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html -# This script will run only once on first instance start (for a re-start script see mime.sh) -# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir -# Use >300 GB SSD - -cd home/ubuntu -if [ ! -d yolov5 ]; then - echo "Running first-time script." # install dependencies, download COCO, pull Docker - git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5 - cd yolov5 - bash data/scripts/get_coco.sh && echo "COCO done." & - sudo docker pull ultralytics/yolov5:latest && echo "Docker done." & - python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." & - wait && echo "All tasks done." # finish background tasks -else - echo "Running re-start script." # resume interrupted runs - i=0 - list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour' - while IFS= read -r id; do - ((i++)) - echo "restarting container $i: $id" - sudo docker start $id - # sudo docker exec -it $id python train.py --resume # single-GPU - sudo docker exec -d $id python utils/aws/resume.py # multi-scenario - done <<<"$list" -fi diff --git a/yolov5-6.2/utils/benchmarks.py b/yolov5-6.2/utils/benchmarks.py deleted file mode 100644 index d412653c..00000000 --- a/yolov5-6.2/utils/benchmarks.py +++ /dev/null @@ -1,157 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Run YOLOv5 benchmarks on all supported export formats - -Format | `export.py --include` | Model ---- | --- | --- -PyTorch | - | yolov5s.pt -TorchScript | `torchscript` | yolov5s.torchscript -ONNX | `onnx` | yolov5s.onnx -OpenVINO | `openvino` | yolov5s_openvino_model/ -TensorRT | `engine` | yolov5s.engine -CoreML | `coreml` | yolov5s.mlmodel -TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ -TensorFlow GraphDef | `pb` | yolov5s.pb -TensorFlow Lite | `tflite` | yolov5s.tflite -TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite -TensorFlow.js | `tfjs` | yolov5s_web_model/ - -Requirements: - $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU - $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU - $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT - -Usage: - $ python utils/benchmarks.py --weights yolov5s.pt --img 640 -""" - -import argparse -import platform -import sys -import time -from pathlib import Path - -import pandas as pd - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[1] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -# ROOT = ROOT.relative_to(Path.cwd()) # relative - -import export -import val -from utils import notebook_init -from utils.general import LOGGER, check_yaml, file_size, print_args -from utils.torch_utils import select_device - - -def run( - weights=ROOT / 'yolov5s.pt', # weights path - imgsz=640, # inference size (pixels) - batch_size=1, # batch size - data=ROOT / 'data/coco128.yaml', # dataset.yaml path - device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu - half=False, # use FP16 half-precision inference - test=False, # test exports only - pt_only=False, # test PyTorch only - hard_fail=False, # throw error on benchmark failure -): - y, t = [], time.time() - device = select_device(device) - for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU) - try: - assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported - assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML - if 'cpu' in device.type: - assert cpu, 'inference not supported on CPU' - if 'cuda' in device.type: - assert gpu, 'inference not supported on GPU' - - # Export - if f == '-': - w = weights # PyTorch format - else: - w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others - assert suffix in str(w), 'export failed' - - # Validate - result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half) - metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls)) - speeds = result[2] # times (preprocess, inference, postprocess) - y.append([name, round(file_size(w), 1), round(metrics[3], 4), round(speeds[1], 2)]) # MB, mAP, t_inference - except Exception as e: - if hard_fail: - assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}' - LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}') - y.append([name, None, None, None]) # mAP, t_inference - if pt_only and i == 0: - break # break after PyTorch - - # Print results - LOGGER.info('\n') - parse_opt() - notebook_init() # print system info - c = ['Format', 'Size (MB)', 'mAP@0.5:0.95', 'Inference time (ms)'] if map else ['Format', 'Export', '', ''] - py = pd.DataFrame(y, columns=c) - LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') - LOGGER.info(str(py if map else py.iloc[:, :2])) - return py - - -def test( - weights=ROOT / 'yolov5s.pt', # weights path - imgsz=640, # inference size (pixels) - batch_size=1, # batch size - data=ROOT / 'data/coco128.yaml', # dataset.yaml path - device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu - half=False, # use FP16 half-precision inference - test=False, # test exports only - pt_only=False, # test PyTorch only - hard_fail=False, # throw error on benchmark failure -): - y, t = [], time.time() - device = select_device(device) - for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable) - try: - w = weights if f == '-' else \ - export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights - assert suffix in str(w), 'export failed' - y.append([name, True]) - except Exception: - y.append([name, False]) # mAP, t_inference - - # Print results - LOGGER.info('\n') - parse_opt() - notebook_init() # print system info - py = pd.DataFrame(y, columns=['Format', 'Export']) - LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)') - LOGGER.info(str(py)) - return py - - -def parse_opt(): - parser = argparse.ArgumentParser() - parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path') - parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') - parser.add_argument('--batch-size', type=int, default=1, help='batch size') - parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') - parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') - parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') - parser.add_argument('--test', action='store_true', help='test exports only') - parser.add_argument('--pt-only', action='store_true', help='test PyTorch only') - parser.add_argument('--hard-fail', action='store_true', help='throw error on benchmark failure') - opt = parser.parse_args() - opt.data = check_yaml(opt.data) # check YAML - print_args(vars(opt)) - return opt - - -def main(opt): - test(**vars(opt)) if opt.test else run(**vars(opt)) - - -if __name__ == "__main__": - opt = parse_opt() - main(opt) diff --git a/yolov5-6.2/utils/callbacks.py b/yolov5-6.2/utils/callbacks.py deleted file mode 100644 index 2b32df0b..00000000 --- a/yolov5-6.2/utils/callbacks.py +++ /dev/null @@ -1,71 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Callback utils -""" - - -class Callbacks: - """" - Handles all registered callbacks for YOLOv5 Hooks - """ - - def __init__(self): - # Define the available callbacks - self._callbacks = { - 'on_pretrain_routine_start': [], - 'on_pretrain_routine_end': [], - 'on_train_start': [], - 'on_train_epoch_start': [], - 'on_train_batch_start': [], - 'optimizer_step': [], - 'on_before_zero_grad': [], - 'on_train_batch_end': [], - 'on_train_epoch_end': [], - 'on_val_start': [], - 'on_val_batch_start': [], - 'on_val_image_end': [], - 'on_val_batch_end': [], - 'on_val_end': [], - 'on_fit_epoch_end': [], # fit = train + val - 'on_model_save': [], - 'on_train_end': [], - 'on_params_update': [], - 'teardown': [],} - self.stop_training = False # set True to interrupt training - - def register_action(self, hook, name='', callback=None): - """ - Register a new action to a callback hook - - Args: - hook: The callback hook name to register the action to - name: The name of the action for later reference - callback: The callback to fire - """ - assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}" - assert callable(callback), f"callback '{callback}' is not callable" - self._callbacks[hook].append({'name': name, 'callback': callback}) - - def get_registered_actions(self, hook=None): - """" - Returns all the registered actions by callback hook - - Args: - hook: The name of the hook to check, defaults to all - """ - return self._callbacks[hook] if hook else self._callbacks - - def run(self, hook, *args, **kwargs): - """ - Loop through the registered actions and fire all callbacks - - Args: - hook: The name of the hook to check, defaults to all - args: Arguments to receive from YOLOv5 - kwargs: Keyword Arguments to receive from YOLOv5 - """ - - assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}" - - for logger in self._callbacks[hook]: - logger['callback'](*args, **kwargs) diff --git a/yolov5-6.2/utils/dataloaders.py b/yolov5-6.2/utils/dataloaders.py deleted file mode 100644 index 2c04040b..00000000 --- a/yolov5-6.2/utils/dataloaders.py +++ /dev/null @@ -1,1156 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Dataloaders and dataset utils -""" - -import contextlib -import glob -import hashlib -import json -import math -import os -import random -import shutil -import time -from itertools import repeat -from multiprocessing.pool import Pool, ThreadPool -from pathlib import Path -from threading import Thread -from urllib.parse import urlparse -from zipfile import ZipFile - -import numpy as np -import torch -import torch.nn.functional as F -import torchvision -import yaml -from PIL import ExifTags, Image, ImageOps -from torch.utils.data import DataLoader, Dataset, dataloader, distributed -from tqdm import tqdm - -from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste, - letterbox, mixup, random_perspective) -from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, check_dataset, check_requirements, check_yaml, clean_str, - cv2, is_colab, is_kaggle, segments2boxes, xyn2xy, xywh2xyxy, xywhn2xyxy, xyxy2xywhn) -from utils.torch_utils import torch_distributed_zero_first - -# Parameters -HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' -IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp' # include image suffixes -VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes -BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}' # tqdm bar format -LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html - -# Get orientation exif tag -for orientation in ExifTags.TAGS.keys(): - if ExifTags.TAGS[orientation] == 'Orientation': - break - - -def get_hash(paths): - # Returns a single hash value of a list of paths (files or dirs) - size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes - h = hashlib.md5(str(size).encode()) # hash sizes - h.update(''.join(paths).encode()) # hash paths - return h.hexdigest() # return hash - - -def exif_size(img): - # Returns exif-corrected PIL size - s = img.size # (width, height) - with contextlib.suppress(Exception): - rotation = dict(img._getexif().items())[orientation] - if rotation in [6, 8]: # rotation 270 or 90 - s = (s[1], s[0]) - return s - - -def exif_transpose(image): - """ - Transpose a PIL image accordingly if it has an EXIF Orientation tag. - Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose() - - :param image: The image to transpose. - :return: An image. - """ - exif = image.getexif() - orientation = exif.get(0x0112, 1) # default 1 - if orientation > 1: - method = { - 2: Image.FLIP_LEFT_RIGHT, - 3: Image.ROTATE_180, - 4: Image.FLIP_TOP_BOTTOM, - 5: Image.TRANSPOSE, - 6: Image.ROTATE_270, - 7: Image.TRANSVERSE, - 8: Image.ROTATE_90,}.get(orientation) - if method is not None: - image = image.transpose(method) - del exif[0x0112] - image.info["exif"] = exif.tobytes() - return image - - -def seed_worker(worker_id): - # Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader - worker_seed = torch.initial_seed() % 2 ** 32 - np.random.seed(worker_seed) - random.seed(worker_seed) - - -def create_dataloader(path, - imgsz, - batch_size, - stride, - single_cls=False, - hyp=None, - augment=False, - cache=False, - pad=0.0, - rect=False, - rank=-1, - workers=8, - image_weights=False, - quad=False, - prefix='', - shuffle=False): - if rect and shuffle: - LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False') - shuffle = False - with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP - dataset = LoadImagesAndLabels( - path, - imgsz, - batch_size, - augment=augment, # augmentation - hyp=hyp, # hyperparameters - rect=rect, # rectangular batches - cache_images=cache, - single_cls=single_cls, - stride=int(stride), - pad=pad, - image_weights=image_weights, - prefix=prefix) - - batch_size = min(batch_size, len(dataset)) - nd = torch.cuda.device_count() # number of CUDA devices - nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers - sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) - loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates - generator = torch.Generator() - generator.manual_seed(0) - return loader(dataset, - batch_size=batch_size, - shuffle=shuffle and sampler is None, - num_workers=nw, - sampler=sampler, - pin_memory=True, - collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn, - worker_init_fn=seed_worker, - generator=generator), dataset - - -class InfiniteDataLoader(dataloader.DataLoader): - """ Dataloader that reuses workers - - Uses same syntax as vanilla DataLoader - """ - - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) - self.iterator = super().__iter__() - - def __len__(self): - return len(self.batch_sampler.sampler) - - def __iter__(self): - for _ in range(len(self)): - yield next(self.iterator) - - -class _RepeatSampler: - """ Sampler that repeats forever - - Args: - sampler (Sampler) - """ - - def __init__(self, sampler): - self.sampler = sampler - - def __iter__(self): - while True: - yield from iter(self.sampler) - - -class LoadImages: - # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4` - def __init__(self, path, img_size=640, stride=32, auto=True): - files = [] - for p in sorted(path) if isinstance(path, (list, tuple)) else [path]: - p = str(Path(p).resolve()) - if '*' in p: - files.extend(sorted(glob.glob(p, recursive=True))) # glob - elif os.path.isdir(p): - files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir - elif os.path.isfile(p): - files.append(p) # files - else: - raise FileNotFoundError(f'{p} does not exist') - - images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS] - videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS] - ni, nv = len(images), len(videos) - - self.img_size = img_size - self.stride = stride - self.files = images + videos - self.nf = ni + nv # number of files - self.video_flag = [False] * ni + [True] * nv - self.mode = 'image' - self.auto = auto - if any(videos): - self.new_video(videos[0]) # new video - else: - self.cap = None - assert self.nf > 0, f'No images or videos found in {p}. ' \ - f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}' - - def __iter__(self): - self.count = 0 - return self - - def __next__(self): - if self.count == self.nf: - raise StopIteration - path = self.files[self.count] - - if self.video_flag[self.count]: - # Read video - self.mode = 'video' - ret_val, img0 = self.cap.read() - while not ret_val: - self.count += 1 - self.cap.release() - if self.count == self.nf: # last video - raise StopIteration - path = self.files[self.count] - self.new_video(path) - ret_val, img0 = self.cap.read() - - self.frame += 1 - s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ' - - else: - # Read image - self.count += 1 - img0 = cv2.imread(path) # BGR - assert img0 is not None, f'Image Not Found {path}' - s = f'image {self.count}/{self.nf} {path}: ' - - # Padded resize - img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0] - - # Convert - img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB - img = np.ascontiguousarray(img) - - return path, img, img0, self.cap, s - - def new_video(self, path): - self.frame = 0 - self.cap = cv2.VideoCapture(path) - self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) - - def __len__(self): - return self.nf # number of files - - -class LoadWebcam: # for inference - # YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0` - def __init__(self, pipe='0', img_size=640, stride=32): - self.img_size = img_size - self.stride = stride - self.pipe = eval(pipe) if pipe.isnumeric() else pipe - self.cap = cv2.VideoCapture(self.pipe) # video capture object - self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size - - def __iter__(self): - self.count = -1 - return self - - def __next__(self): - self.count += 1 - if cv2.waitKey(1) == ord('q'): # q to quit - self.cap.release() - cv2.destroyAllWindows() - raise StopIteration - - # Read frame - ret_val, img0 = self.cap.read() - img0 = cv2.flip(img0, 1) # flip left-right - - # Print - assert ret_val, f'Camera Error {self.pipe}' - img_path = 'webcam.jpg' - s = f'webcam {self.count}: ' - - # Padded resize - img = letterbox(img0, self.img_size, stride=self.stride)[0] - - # Convert - img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB - img = np.ascontiguousarray(img) - - return img_path, img, img0, None, s - - def __len__(self): - return 0 - - -class LoadStreams: - # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams` - def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True): - self.mode = 'stream' - self.img_size = img_size - self.stride = stride - - if os.path.isfile(sources): - with open(sources) as f: - sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())] - else: - sources = [sources] - - n = len(sources) - self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n - self.sources = [clean_str(x) for x in sources] # clean source names for later - self.auto = auto - for i, s in enumerate(sources): # index, source - # Start thread to read frames from video stream - st = f'{i + 1}/{n}: {s}... ' - if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video - check_requirements(('pafy', 'youtube_dl==2020.12.2')) - import pafy - s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL - s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam - if s == 0: - assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.' - assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.' - cap = cv2.VideoCapture(s) - assert cap.isOpened(), f'{st}Failed to open {s}' - w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) - h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) - fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan - self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback - self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback - - _, self.imgs[i] = cap.read() # guarantee first frame - self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True) - LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)") - self.threads[i].start() - LOGGER.info('') # newline - - # check for common shapes - s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs]) - self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal - if not self.rect: - LOGGER.warning('WARNING: Stream shapes differ. For optimal performance supply similarly-shaped streams.') - - def update(self, i, cap, stream): - # Read stream `i` frames in daemon thread - n, f, read = 0, self.frames[i], 1 # frame number, frame array, inference every 'read' frame - while cap.isOpened() and n < f: - n += 1 - # _, self.imgs[index] = cap.read() - cap.grab() - if n % read == 0: - success, im = cap.retrieve() - if success: - self.imgs[i] = im - else: - LOGGER.warning('WARNING: Video stream unresponsive, please check your IP camera connection.') - self.imgs[i] = np.zeros_like(self.imgs[i]) - cap.open(stream) # re-open stream if signal was lost - time.sleep(0.0) # wait time - - def __iter__(self): - self.count = -1 - return self - - def __next__(self): - self.count += 1 - if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit - cv2.destroyAllWindows() - raise StopIteration - - # Letterbox - img0 = self.imgs.copy() - img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0] - - # Stack - img = np.stack(img, 0) - - # Convert - img = img[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW - img = np.ascontiguousarray(img) - - return self.sources, img, img0, None, '' - - def __len__(self): - return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years - - -def img2label_paths(img_paths): - # Define label paths as a function of image paths - sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings - return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths] - - -class LoadImagesAndLabels(Dataset): - # YOLOv5 train_loader/val_loader, loads images and labels for training and validation - cache_version = 0.6 # dataset labels *.cache version - rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4] - - def __init__(self, - path, - img_size=640, - batch_size=16, - augment=False, - hyp=None, - rect=False, - image_weights=False, - cache_images=False, - single_cls=False, - stride=32, - pad=0.0, - prefix=''): - self.img_size = img_size - self.augment = augment - self.hyp = hyp - self.image_weights = image_weights - self.rect = False if image_weights else rect - self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) - self.mosaic_border = [-img_size // 2, -img_size // 2] - self.stride = stride - self.path = path - self.albumentations = Albumentations() if augment else None - - try: - f = [] # image files - for p in path if isinstance(path, list) else [path]: - p = Path(p) # os-agnostic - if p.is_dir(): # dir - f += glob.glob(str(p / '**' / '*.*'), recursive=True) - # f = list(p.rglob('*.*')) # pathlib - elif p.is_file(): # file - with open(p) as t: - t = t.read().strip().splitlines() - parent = str(p.parent) + os.sep - f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path - # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) - else: - raise FileNotFoundError(f'{prefix}{p} does not exist') - self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS) - # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib - assert self.im_files, f'{prefix}No images found' - except Exception as e: - raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}') - - # Check cache - self.label_files = img2label_paths(self.im_files) # labels - cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') - try: - cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict - assert cache['version'] == self.cache_version # matches current version - assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash - except Exception: - cache, exists = self.cache_labels(cache_path, prefix), False # run cache ops - - # Display cache - nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total - if exists and LOCAL_RANK in {-1, 0}: - d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt" - tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results - if cache['msgs']: - LOGGER.info('\n'.join(cache['msgs'])) # display warnings - assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}' - - # Read cache - [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items - labels, shapes, self.segments = zip(*cache.values()) - self.labels = list(labels) - self.shapes = np.array(shapes) - self.im_files = list(cache.keys()) # update - self.label_files = img2label_paths(cache.keys()) # update - n = len(shapes) # number of images - bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index - nb = bi[-1] + 1 # number of batches - self.batch = bi # batch index of image - self.n = n - self.indices = range(n) - - # Update labels - include_class = [] # filter labels to include only these classes (optional) - include_class_array = np.array(include_class).reshape(1, -1) - for i, (label, segment) in enumerate(zip(self.labels, self.segments)): - if include_class: - j = (label[:, 0:1] == include_class_array).any(1) - self.labels[i] = label[j] - if segment: - self.segments[i] = segment[j] - if single_cls: # single-class training, merge all classes into 0 - self.labels[i][:, 0] = 0 - if segment: - self.segments[i][:, 0] = 0 - - # Rectangular Training - if self.rect: - # Sort by aspect ratio - s = self.shapes # wh - ar = s[:, 1] / s[:, 0] # aspect ratio - irect = ar.argsort() - self.im_files = [self.im_files[i] for i in irect] - self.label_files = [self.label_files[i] for i in irect] - self.labels = [self.labels[i] for i in irect] - self.shapes = s[irect] # wh - ar = ar[irect] - - # Set training image shapes - shapes = [[1, 1]] * nb - for i in range(nb): - ari = ar[bi == i] - mini, maxi = ari.min(), ari.max() - if maxi < 1: - shapes[i] = [maxi, 1] - elif mini > 1: - shapes[i] = [1, 1 / mini] - - self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride - - # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources) - self.ims = [None] * n - self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files] - if cache_images: - gb = 0 # Gigabytes of cached images - self.im_hw0, self.im_hw = [None] * n, [None] * n - fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image - results = ThreadPool(NUM_THREADS).imap(fcn, range(n)) - pbar = tqdm(enumerate(results), total=n, bar_format=BAR_FORMAT, disable=LOCAL_RANK > 0) - for i, x in pbar: - if cache_images == 'disk': - gb += self.npy_files[i].stat().st_size - else: # 'ram' - self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) - gb += self.ims[i].nbytes - pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})' - pbar.close() - - def cache_labels(self, path=Path('./labels.cache'), prefix=''): - # Cache dataset labels, check images and read shapes - x = {} # dict - nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages - desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..." - with Pool(NUM_THREADS) as pool: - pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))), - desc=desc, - total=len(self.im_files), - bar_format=BAR_FORMAT) - for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar: - nm += nm_f - nf += nf_f - ne += ne_f - nc += nc_f - if im_file: - x[im_file] = [lb, shape, segments] - if msg: - msgs.append(msg) - pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt" - - pbar.close() - if msgs: - LOGGER.info('\n'.join(msgs)) - if nf == 0: - LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}') - x['hash'] = get_hash(self.label_files + self.im_files) - x['results'] = nf, nm, ne, nc, len(self.im_files) - x['msgs'] = msgs # warnings - x['version'] = self.cache_version # cache version - try: - np.save(path, x) # save cache for next time - path.with_suffix('.cache.npy').rename(path) # remove .npy suffix - LOGGER.info(f'{prefix}New cache created: {path}') - except Exception as e: - LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # not writeable - return x - - def __len__(self): - return len(self.im_files) - - # def __iter__(self): - # self.count = -1 - # print('ran dataset iter') - # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) - # return self - - def __getitem__(self, index): - index = self.indices[index] # linear, shuffled, or image_weights - - hyp = self.hyp - mosaic = self.mosaic and random.random() < hyp['mosaic'] - if mosaic: - # Load mosaic - img, labels = self.load_mosaic(index) - shapes = None - - # MixUp augmentation - if random.random() < hyp['mixup']: - img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1))) - - else: - # Load image - img, (h0, w0), (h, w) = self.load_image(index) - - # Letterbox - shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape - img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) - shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling - - labels = self.labels[index].copy() - if labels.size: # normalized xywh to pixel xyxy format - labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) - - if self.augment: - img, labels = random_perspective(img, - labels, - degrees=hyp['degrees'], - translate=hyp['translate'], - scale=hyp['scale'], - shear=hyp['shear'], - perspective=hyp['perspective']) - - nl = len(labels) # number of labels - if nl: - labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3) - - if self.augment: - # Albumentations - img, labels = self.albumentations(img, labels) - nl = len(labels) # update after albumentations - - # HSV color-space - augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) - - # Flip up-down - if random.random() < hyp['flipud']: - img = np.flipud(img) - if nl: - labels[:, 2] = 1 - labels[:, 2] - - # Flip left-right - if random.random() < hyp['fliplr']: - img = np.fliplr(img) - if nl: - labels[:, 1] = 1 - labels[:, 1] - - # Cutouts - # labels = cutout(img, labels, p=0.5) - # nl = len(labels) # update after cutout - - labels_out = torch.zeros((nl, 6)) - if nl: - labels_out[:, 1:] = torch.from_numpy(labels) - - # Convert - img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB - img = np.ascontiguousarray(img) - - return torch.from_numpy(img), labels_out, self.im_files[index], shapes - - def load_image(self, i): - # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw) - im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i], - if im is None: # not cached in RAM - if fn.exists(): # load npy - im = np.load(fn) - else: # read image - im = cv2.imread(f) # BGR - assert im is not None, f'Image Not Found {f}' - h0, w0 = im.shape[:2] # orig hw - r = self.img_size / max(h0, w0) # ratio - if r != 1: # if sizes are not equal - interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA - im = cv2.resize(im, (int(w0 * r), int(h0 * r)), interpolation=interp) - return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized - return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized - - def cache_images_to_disk(self, i): - # Saves an image as an *.npy file for faster loading - f = self.npy_files[i] - if not f.exists(): - np.save(f.as_posix(), cv2.imread(self.im_files[i])) - - def load_mosaic(self, index): - # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic - labels4, segments4 = [], [] - s = self.img_size - yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y - indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices - random.shuffle(indices) - for i, index in enumerate(indices): - # Load image - img, _, (h, w) = self.load_image(index) - - # place img in img4 - if i == 0: # top left - img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles - x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) - x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) - elif i == 1: # top right - x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc - x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h - elif i == 2: # bottom left - x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) - x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) - elif i == 3: # bottom right - x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) - x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) - - img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] - padw = x1a - x1b - padh = y1a - y1b - - # Labels - labels, segments = self.labels[index].copy(), self.segments[index].copy() - if labels.size: - labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format - segments = [xyn2xy(x, w, h, padw, padh) for x in segments] - labels4.append(labels) - segments4.extend(segments) - - # Concat/clip labels - labels4 = np.concatenate(labels4, 0) - for x in (labels4[:, 1:], *segments4): - np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() - # img4, labels4 = replicate(img4, labels4) # replicate - - # Augment - img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste']) - img4, labels4 = random_perspective(img4, - labels4, - segments4, - degrees=self.hyp['degrees'], - translate=self.hyp['translate'], - scale=self.hyp['scale'], - shear=self.hyp['shear'], - perspective=self.hyp['perspective'], - border=self.mosaic_border) # border to remove - - return img4, labels4 - - def load_mosaic9(self, index): - # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic - labels9, segments9 = [], [] - s = self.img_size - indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices - random.shuffle(indices) - hp, wp = -1, -1 # height, width previous - for i, index in enumerate(indices): - # Load image - img, _, (h, w) = self.load_image(index) - - # place img in img9 - if i == 0: # center - img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles - h0, w0 = h, w - c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates - elif i == 1: # top - c = s, s - h, s + w, s - elif i == 2: # top right - c = s + wp, s - h, s + wp + w, s - elif i == 3: # right - c = s + w0, s, s + w0 + w, s + h - elif i == 4: # bottom right - c = s + w0, s + hp, s + w0 + w, s + hp + h - elif i == 5: # bottom - c = s + w0 - w, s + h0, s + w0, s + h0 + h - elif i == 6: # bottom left - c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h - elif i == 7: # left - c = s - w, s + h0 - h, s, s + h0 - elif i == 8: # top left - c = s - w, s + h0 - hp - h, s, s + h0 - hp - - padx, pady = c[:2] - x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords - - # Labels - labels, segments = self.labels[index].copy(), self.segments[index].copy() - if labels.size: - labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format - segments = [xyn2xy(x, w, h, padx, pady) for x in segments] - labels9.append(labels) - segments9.extend(segments) - - # Image - img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax] - hp, wp = h, w # height, width previous - - # Offset - yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y - img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s] - - # Concat/clip labels - labels9 = np.concatenate(labels9, 0) - labels9[:, [1, 3]] -= xc - labels9[:, [2, 4]] -= yc - c = np.array([xc, yc]) # centers - segments9 = [x - c for x in segments9] - - for x in (labels9[:, 1:], *segments9): - np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() - # img9, labels9 = replicate(img9, labels9) # replicate - - # Augment - img9, labels9 = random_perspective(img9, - labels9, - segments9, - degrees=self.hyp['degrees'], - translate=self.hyp['translate'], - scale=self.hyp['scale'], - shear=self.hyp['shear'], - perspective=self.hyp['perspective'], - border=self.mosaic_border) # border to remove - - return img9, labels9 - - @staticmethod - def collate_fn(batch): - im, label, path, shapes = zip(*batch) # transposed - for i, lb in enumerate(label): - lb[:, 0] = i # add target image index for build_targets() - return torch.stack(im, 0), torch.cat(label, 0), path, shapes - - @staticmethod - def collate_fn4(batch): - img, label, path, shapes = zip(*batch) # transposed - n = len(shapes) // 4 - im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] - - ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]]) - wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]]) - s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale - for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW - i *= 4 - if random.random() < 0.5: - im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear', - align_corners=False)[0].type(img[i].type()) - lb = label[i] - else: - im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2) - lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s - im4.append(im) - label4.append(lb) - - for i, lb in enumerate(label4): - lb[:, 0] = i # add target image index for build_targets() - - return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4 - - -# Ancillary functions -------------------------------------------------------------------------------------------------- -def flatten_recursive(path=DATASETS_DIR / 'coco128'): - # Flatten a recursive directory by bringing all files to top level - new_path = Path(f'{str(path)}_flat') - if os.path.exists(new_path): - shutil.rmtree(new_path) # delete output folder - os.makedirs(new_path) # make new output folder - for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)): - shutil.copyfile(file, new_path / Path(file).name) - - -def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders import *; extract_boxes() - # Convert detection dataset into classification dataset, with one directory per class - path = Path(path) # images dir - shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None # remove existing - files = list(path.rglob('*.*')) - n = len(files) # number of files - for im_file in tqdm(files, total=n): - if im_file.suffix[1:] in IMG_FORMATS: - # image - im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB - h, w = im.shape[:2] - - # labels - lb_file = Path(img2label_paths([str(im_file)])[0]) - if Path(lb_file).exists(): - with open(lb_file) as f: - lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels - - for j, x in enumerate(lb): - c = int(x[0]) # class - f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename - if not f.parent.is_dir(): - f.parent.mkdir(parents=True) - - b = x[1:] * [w, h, w, h] # box - # b[2:] = b[2:].max() # rectangle to square - b[2:] = b[2:] * 1.2 + 3 # pad - b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) - - b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image - b[[1, 3]] = np.clip(b[[1, 3]], 0, h) - assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' - - -def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False): - """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files - Usage: from utils.dataloaders import *; autosplit() - Arguments - path: Path to images directory - weights: Train, val, test weights (list, tuple) - annotated_only: Only use images with an annotated txt file - """ - path = Path(path) # images dir - files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only - n = len(files) # number of files - random.seed(0) # for reproducibility - indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split - - txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files - [(path.parent / x).unlink(missing_ok=True) for x in txt] # remove existing - - print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only) - for i, img in tqdm(zip(indices, files), total=n): - if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label - with open(path.parent / txt[i], 'a') as f: - f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') # add image to txt file - - -def verify_image_label(args): - # Verify one image-label pair - im_file, lb_file, prefix = args - nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments - try: - # verify images - im = Image.open(im_file) - im.verify() # PIL verify - shape = exif_size(im) # image size - assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' - assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' - if im.format.lower() in ('jpg', 'jpeg'): - with open(im_file, 'rb') as f: - f.seek(-2, 2) - if f.read() != b'\xff\xd9': # corrupt JPEG - ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100) - msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved' - - # verify labels - if os.path.isfile(lb_file): - nf = 1 # label found - with open(lb_file) as f: - lb = [x.split() for x in f.read().strip().splitlines() if len(x)] - if any(len(x) > 6 for x in lb): # is segment - classes = np.array([x[0] for x in lb], dtype=np.float32) - segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) - lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) - lb = np.array(lb, dtype=np.float32) - nl = len(lb) - if nl: - assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected' - assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}' - assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}' - _, i = np.unique(lb, axis=0, return_index=True) - if len(i) < nl: # duplicate row check - lb = lb[i] # remove duplicates - if segments: - segments = segments[i] - msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed' - else: - ne = 1 # label empty - lb = np.zeros((0, 5), dtype=np.float32) - else: - nm = 1 # label missing - lb = np.zeros((0, 5), dtype=np.float32) - return im_file, lb, shape, segments, nm, nf, ne, nc, msg - except Exception as e: - nc = 1 - msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}' - return [None, None, None, None, nm, nf, ne, nc, msg] - - -class HUBDatasetStats(): - """ Return dataset statistics dictionary with images and instances counts per split per class - To run in parent directory: export PYTHONPATH="$PWD/yolov5" - Usage1: from utils.dataloaders import *; HUBDatasetStats('coco128.yaml', autodownload=True) - Usage2: from utils.dataloaders import *; HUBDatasetStats('path/to/coco128_with_yaml.zip') - Arguments - path: Path to data.yaml or data.zip (with data.yaml inside data.zip) - autodownload: Attempt to download dataset if not found locally - """ - - def __init__(self, path='coco128.yaml', autodownload=False): - # Initialize class - zipped, data_dir, yaml_path = self._unzip(Path(path)) - try: - with open(check_yaml(yaml_path), errors='ignore') as f: - data = yaml.safe_load(f) # data dict - if zipped: - data['path'] = data_dir - except Exception as e: - raise Exception("error/HUB/dataset_stats/yaml_load") from e - - check_dataset(data, autodownload) # download dataset if missing - self.hub_dir = Path(data['path'] + '-hub') - self.im_dir = self.hub_dir / 'images' - self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images - self.stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary - self.data = data - - @staticmethod - def _find_yaml(dir): - # Return data.yaml file - files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive - assert files, f'No *.yaml file found in {dir}' - if len(files) > 1: - files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name - assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed' - assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}' - return files[0] - - def _unzip(self, path): - # Unzip data.zip - if not str(path).endswith('.zip'): # path is data.yaml - return False, None, path - assert Path(path).is_file(), f'Error unzipping {path}, file not found' - ZipFile(path).extractall(path=path.parent) # unzip - dir = path.with_suffix('') # dataset directory == zip name - assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/' - return True, str(dir), self._find_yaml(dir) # zipped, data_dir, yaml_path - - def _hub_ops(self, f, max_dim=1920): - # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing - f_new = self.im_dir / Path(f).name # dataset-hub image filename - try: # use PIL - im = Image.open(f) - r = max_dim / max(im.height, im.width) # ratio - if r < 1.0: # image too large - im = im.resize((int(im.width * r), int(im.height * r))) - im.save(f_new, 'JPEG', quality=50, optimize=True) # save - except Exception as e: # use OpenCV - print(f'WARNING: HUB ops PIL failure {f}: {e}') - im = cv2.imread(f) - im_height, im_width = im.shape[:2] - r = max_dim / max(im_height, im_width) # ratio - if r < 1.0: # image too large - im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA) - cv2.imwrite(str(f_new), im) - - def get_json(self, save=False, verbose=False): - # Return dataset JSON for Ultralytics HUB - def _round(labels): - # Update labels to integer class and 6 decimal place floats - return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels] - - for split in 'train', 'val', 'test': - if self.data.get(split) is None: - self.stats[split] = None # i.e. no test set - continue - dataset = LoadImagesAndLabels(self.data[split]) # load dataset - x = np.array([ - np.bincount(label[:, 0].astype(int), minlength=self.data['nc']) - for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics')]) # shape(128x80) - self.stats[split] = { - 'instance_stats': { - 'total': int(x.sum()), - 'per_class': x.sum(0).tolist()}, - 'image_stats': { - 'total': dataset.n, - 'unlabelled': int(np.all(x == 0, 1).sum()), - 'per_class': (x > 0).sum(0).tolist()}, - 'labels': [{ - str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]} - - # Save, print and return - if save: - stats_path = self.hub_dir / 'stats.json' - print(f'Saving {stats_path.resolve()}...') - with open(stats_path, 'w') as f: - json.dump(self.stats, f) # save stats.json - if verbose: - print(json.dumps(self.stats, indent=2, sort_keys=False)) - return self.stats - - def process_images(self): - # Compress images for Ultralytics HUB - for split in 'train', 'val', 'test': - if self.data.get(split) is None: - continue - dataset = LoadImagesAndLabels(self.data[split]) # load dataset - desc = f'{split} images' - for _ in tqdm(ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files), total=dataset.n, desc=desc): - pass - print(f'Done. All images saved to {self.im_dir}') - return self.im_dir - - -# Classification dataloaders ------------------------------------------------------------------------------------------- -class ClassificationDataset(torchvision.datasets.ImageFolder): - """ - YOLOv5 Classification Dataset. - Arguments - root: Dataset path - transform: torchvision transforms, used by default - album_transform: Albumentations transforms, used if installed - """ - - def __init__(self, root, augment, imgsz, cache=False): - super().__init__(root=root) - self.torch_transforms = classify_transforms(imgsz) - self.album_transforms = classify_albumentations(augment, imgsz) if augment else None - self.cache_ram = cache is True or cache == 'ram' - self.cache_disk = cache == 'disk' - self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im - - def __getitem__(self, i): - f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image - if self.album_transforms: - if self.cache_ram and im is None: - im = self.samples[i][3] = cv2.imread(f) - elif self.cache_disk: - if not fn.exists(): # load npy - np.save(fn.as_posix(), cv2.imread(f)) - im = np.load(fn) - else: # read image - im = cv2.imread(f) # BGR - sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))["image"] - else: - sample = self.torch_transforms(self.loader(f)) - return sample, j - - -def create_classification_dataloader(path, - imgsz=224, - batch_size=16, - augment=True, - cache=False, - rank=-1, - workers=8, - shuffle=True): - # Returns Dataloader object to be used with YOLOv5 Classifier - with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP - dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache) - batch_size = min(batch_size, len(dataset)) - nd = torch.cuda.device_count() - nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) - sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) - generator = torch.Generator() - generator.manual_seed(0) - return InfiniteDataLoader(dataset, - batch_size=batch_size, - shuffle=shuffle and sampler is None, - num_workers=nw, - sampler=sampler, - pin_memory=True, - worker_init_fn=seed_worker, - generator=generator) # or DataLoader(persistent_workers=True) diff --git a/yolov5-6.2/utils/docker/Dockerfile b/yolov5-6.2/utils/docker/Dockerfile deleted file mode 100644 index 2280f209..00000000 --- a/yolov5-6.2/utils/docker/Dockerfile +++ /dev/null @@ -1,68 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5 -# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference - -# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch -FROM nvcr.io/nvidia/pytorch:22.07-py3 -RUN rm -rf /opt/pytorch # remove 1.2GB dir - -# Downloads to user config dir -ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ - -# Install linux packages -RUN apt update && apt install --no-install-recommends -y zip htop screen libgl1-mesa-glx - -# Install pip packages -COPY requirements.txt . -RUN python -m pip install --upgrade pip wheel -RUN pip uninstall -y Pillow torchtext # torch torchvision -RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook Pillow>=9.1.0 \ - 'opencv-python<4.6.0.66' \ - --extra-index-url https://download.pytorch.org/whl/cu113 - -# Create working directory -RUN mkdir -p /usr/src/app -WORKDIR /usr/src/app - -# Copy contents -# COPY . /usr/src/app (issues as not a .git directory) -RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app - -# Set environment variables -ENV OMP_NUM_THREADS=8 - - -# Usage Examples ------------------------------------------------------------------------------------------------------- - -# Build and Push -# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t - -# Pull and Run -# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t - -# Pull and Run with local directory access -# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t - -# Kill all -# sudo docker kill $(sudo docker ps -q) - -# Kill all image-based -# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest) - -# Bash into running container -# sudo docker exec -it 5a9b5863d93d bash - -# Bash into stopped container -# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash - -# Clean up -# docker system prune -a --volumes - -# Update Ubuntu drivers -# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/ - -# DDP test -# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3 - -# GCP VM from Image -# docker.io/ultralytics/yolov5:latest diff --git a/yolov5-6.2/utils/docker/Dockerfile-arm64 b/yolov5-6.2/utils/docker/Dockerfile-arm64 deleted file mode 100644 index fe92c8d5..00000000 --- a/yolov5-6.2/utils/docker/Dockerfile-arm64 +++ /dev/null @@ -1,42 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Builds ultralytics/yolov5:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/yolov5 -# Image is aarch64-compatible for Apple M1 and other ARM architectures i.e. Jetson Nano and Raspberry Pi - -# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu -FROM arm64v8/ubuntu:20.04 - -# Downloads to user config dir -ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ - -# Install linux packages -RUN apt update -RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt install -y tzdata -RUN apt install --no-install-recommends -y python3-pip git zip curl htop gcc \ - libgl1-mesa-glx libglib2.0-0 libpython3.8-dev -# RUN alias python=python3 - -# Install pip packages -COPY requirements.txt . -RUN python3 -m pip install --upgrade pip wheel -RUN pip install --no-cache -r requirements.txt gsutil notebook \ - tensorflow-aarch64 - # tensorflowjs \ - # onnx onnx-simplifier onnxruntime \ - # coremltools openvino-dev \ - -# Create working directory -RUN mkdir -p /usr/src/app -WORKDIR /usr/src/app - -# Copy contents -# COPY . /usr/src/app (issues as not a .git directory) -RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app - - -# Usage Examples ------------------------------------------------------------------------------------------------------- - -# Build and Push -# t=ultralytics/yolov5:latest-M1 && sudo docker build --platform linux/arm64 -f utils/docker/Dockerfile-arm64 -t $t . && sudo docker push $t - -# Pull and Run -# t=ultralytics/yolov5:latest-M1 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t diff --git a/yolov5-6.2/utils/docker/Dockerfile-cpu b/yolov5-6.2/utils/docker/Dockerfile-cpu deleted file mode 100644 index d61dfeff..00000000 --- a/yolov5-6.2/utils/docker/Dockerfile-cpu +++ /dev/null @@ -1,39 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -# Builds ultralytics/yolov5:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/yolov5 -# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments - -# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu -FROM ubuntu:20.04 - -# Downloads to user config dir -ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ - -# Install linux packages -RUN apt update -RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt install -y tzdata -RUN apt install --no-install-recommends -y python3-pip git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3.8-dev -# RUN alias python=python3 - -# Install pip packages -COPY requirements.txt . -RUN python3 -m pip install --upgrade pip wheel -RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \ - coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu tensorflowjs \ - --extra-index-url https://download.pytorch.org/whl/cpu - -# Create working directory -RUN mkdir -p /usr/src/app -WORKDIR /usr/src/app - -# Copy contents -# COPY . /usr/src/app (issues as not a .git directory) -RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app - - -# Usage Examples ------------------------------------------------------------------------------------------------------- - -# Build and Push -# t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t - -# Pull and Run -# t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t diff --git a/yolov5-6.2/utils/downloads.py b/yolov5-6.2/utils/downloads.py deleted file mode 100644 index 9d4780ad..00000000 --- a/yolov5-6.2/utils/downloads.py +++ /dev/null @@ -1,180 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Download utils -""" - -import logging -import os -import platform -import subprocess -import time -import urllib -from pathlib import Path -from zipfile import ZipFile - -import requests -import torch - - -def is_url(url, check_online=True): - # Check if online file exists - try: - url = str(url) - result = urllib.parse.urlparse(url) - assert all([result.scheme, result.netloc, result.path]) # check if is url - return (urllib.request.urlopen(url).getcode() == 200) if check_online else True # check if exists online - except (AssertionError, urllib.request.HTTPError): - return False - - -def gsutil_getsize(url=''): - # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du - s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8') - return eval(s.split(' ')[0]) if len(s) else 0 # bytes - - -def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''): - # Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes - from utils.general import LOGGER - - file = Path(file) - assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}" - try: # url1 - LOGGER.info(f'Downloading {url} to {file}...') - torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO) - assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check - except Exception as e: # url2 - file.unlink(missing_ok=True) # remove partial downloads - LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...') - os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail - finally: - if not file.exists() or file.stat().st_size < min_bytes: # check - file.unlink(missing_ok=True) # remove partial downloads - LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}") - LOGGER.info('') - - -def attempt_download(file, repo='ultralytics/yolov5', release='v6.1'): - # Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.1', etc. - from utils.general import LOGGER - - def github_assets(repository, version='latest'): - # Return GitHub repo tag (i.e. 'v6.1') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...]) - if version != 'latest': - version = f'tags/{version}' # i.e. tags/v6.1 - response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api - return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets - - file = Path(str(file).strip().replace("'", '')) - if not file.exists(): - # URL specified - name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc. - if str(file).startswith(('http:/', 'https:/')): # download - url = str(file).replace(':/', '://') # Pathlib turns :// -> :/ - file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth... - if Path(file).is_file(): - LOGGER.info(f'Found {url} locally at {file}') # file already exists - else: - safe_download(file=file, url=url, min_bytes=1E5) - return file - - # GitHub assets - assets = [ - 'yolov5n.pt', 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov5n6.pt', 'yolov5s6.pt', - 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt'] - try: - tag, assets = github_assets(repo, release) - except Exception: - try: - tag, assets = github_assets(repo) # latest release - except Exception: - try: - tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1] - except Exception: - tag = release - - file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required) - if name in assets: - url3 = 'https://drive.google.com/drive/folders/1EFQTEUeXWSFww0luse2jB9M1QNZQGwNl' # backup gdrive mirror - safe_download( - file, - url=f'https://github.com/{repo}/releases/download/{tag}/{name}', - url2=f'https://storage.googleapis.com/{repo}/{tag}/{name}', # backup url (optional) - min_bytes=1E5, - error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}') - - return str(file) - - -def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'): - # Downloads a file from Google Drive. from yolov5.utils.downloads import *; gdrive_download() - t = time.time() - file = Path(file) - cookie = Path('cookie') # gdrive cookie - print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='') - file.unlink(missing_ok=True) # remove existing file - cookie.unlink(missing_ok=True) # remove existing cookie - - # Attempt file download - out = "NUL" if platform.system() == "Windows" else "/dev/null" - os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}') - if os.path.exists('cookie'): # large file - s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}' - else: # small file - s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"' - r = os.system(s) # execute, capture return - cookie.unlink(missing_ok=True) # remove existing cookie - - # Error check - if r != 0: - file.unlink(missing_ok=True) # remove partial - print('Download error ') # raise Exception('Download error') - return r - - # Unzip if archive - if file.suffix == '.zip': - print('unzipping... ', end='') - ZipFile(file).extractall(path=file.parent) # unzip - file.unlink() # remove zip - - print(f'Done ({time.time() - t:.1f}s)') - return r - - -def get_token(cookie="./cookie"): - with open(cookie) as f: - for line in f: - if "download" in line: - return line.split()[-1] - return "" - - -# Google utils: https://cloud.google.com/storage/docs/reference/libraries ---------------------------------------------- -# -# -# def upload_blob(bucket_name, source_file_name, destination_blob_name): -# # Uploads a file to a bucket -# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python -# -# storage_client = storage.Client() -# bucket = storage_client.get_bucket(bucket_name) -# blob = bucket.blob(destination_blob_name) -# -# blob.upload_from_filename(source_file_name) -# -# print('File {} uploaded to {}.'.format( -# source_file_name, -# destination_blob_name)) -# -# -# def download_blob(bucket_name, source_blob_name, destination_file_name): -# # Uploads a blob from a bucket -# storage_client = storage.Client() -# bucket = storage_client.get_bucket(bucket_name) -# blob = bucket.blob(source_blob_name) -# -# blob.download_to_filename(destination_file_name) -# -# print('Blob {} downloaded to {}.'.format( -# source_blob_name, -# destination_file_name)) diff --git a/yolov5-6.2/utils/flask_rest_api/README.md b/yolov5-6.2/utils/flask_rest_api/README.md deleted file mode 100644 index a726acbd..00000000 --- a/yolov5-6.2/utils/flask_rest_api/README.md +++ /dev/null @@ -1,73 +0,0 @@ -# Flask REST API - -[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are -commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API -created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/). - -## Requirements - -[Flask](https://palletsprojects.com/p/flask/) is required. Install with: - -```shell -$ pip install Flask -``` - -## Run - -After Flask installation run: - -```shell -$ python3 restapi.py --port 5000 -``` - -Then use [curl](https://curl.se/) to perform a request: - -```shell -$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s' -``` - -The model inference results are returned as a JSON response: - -```json -[ - { - "class": 0, - "confidence": 0.8900438547, - "height": 0.9318675399, - "name": "person", - "width": 0.3264600933, - "xcenter": 0.7438579798, - "ycenter": 0.5207948685 - }, - { - "class": 0, - "confidence": 0.8440024257, - "height": 0.7155083418, - "name": "person", - "width": 0.6546785235, - "xcenter": 0.427829951, - "ycenter": 0.6334488392 - }, - { - "class": 27, - "confidence": 0.3771208823, - "height": 0.3902671337, - "name": "tie", - "width": 0.0696444362, - "xcenter": 0.3675483763, - "ycenter": 0.7991207838 - }, - { - "class": 27, - "confidence": 0.3527112305, - "height": 0.1540903747, - "name": "tie", - "width": 0.0336618312, - "xcenter": 0.7814827561, - "ycenter": 0.5065554976 - } -] -``` - -An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given -in `example_request.py` diff --git a/yolov5-6.2/utils/flask_rest_api/example_request.py b/yolov5-6.2/utils/flask_rest_api/example_request.py deleted file mode 100644 index 773ad893..00000000 --- a/yolov5-6.2/utils/flask_rest_api/example_request.py +++ /dev/null @@ -1,19 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Perform test request -""" - -import pprint - -import requests - -DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s" -IMAGE = "zidane.jpg" - -# Read image -with open(IMAGE, "rb") as f: - image_data = f.read() - -response = requests.post(DETECTION_URL, files={"image": image_data}).json() - -pprint.pprint(response) diff --git a/yolov5-6.2/utils/flask_rest_api/restapi.py b/yolov5-6.2/utils/flask_rest_api/restapi.py deleted file mode 100644 index 8482435c..00000000 --- a/yolov5-6.2/utils/flask_rest_api/restapi.py +++ /dev/null @@ -1,48 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Run a Flask REST API exposing one or more YOLOv5s models -""" - -import argparse -import io - -import torch -from flask import Flask, request -from PIL import Image - -app = Flask(__name__) -models = {} - -DETECTION_URL = "/v1/object-detection/<model>" - - -@app.route(DETECTION_URL, methods=["POST"]) -def predict(model): - if request.method != "POST": - return - - if request.files.get("image"): - # Method 1 - # with request.files["image"] as f: - # im = Image.open(io.BytesIO(f.read())) - - # Method 2 - im_file = request.files["image"] - im_bytes = im_file.read() - im = Image.open(io.BytesIO(im_bytes)) - - if model in models: - results = models[model](im, size=640) # reduce size=320 for faster inference - return results.pandas().xyxy[0].to_json(orient="records") - - -if __name__ == "__main__": - parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model") - parser.add_argument("--port", default=5000, type=int, help="port number") - parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s') - opt = parser.parse_args() - - for m in opt.model: - models[m] = torch.hub.load("ultralytics/yolov5", m, force_reload=True, skip_validation=True) - - app.run(host="0.0.0.0", port=opt.port) # debug=True causes Restarting with stat diff --git a/yolov5-6.2/utils/general.py b/yolov5-6.2/utils/general.py deleted file mode 100644 index 1c525c45..00000000 --- a/yolov5-6.2/utils/general.py +++ /dev/null @@ -1,1050 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -General utils -""" - -import contextlib -import glob -import inspect -import logging -import math -import os -import platform -import random -import re -import shutil -import signal -import sys -import threading -import time -import urllib -from datetime import datetime -from itertools import repeat -from multiprocessing.pool import ThreadPool -from pathlib import Path -from subprocess import check_output -from typing import Optional -from zipfile import ZipFile - -import cv2 -import numpy as np -import pandas as pd -import pkg_resources as pkg -import torch -import torchvision -import yaml - -from utils.downloads import gsutil_getsize -from utils.metrics import box_iou, fitness - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[1] # YOLOv5 root directory -RANK = int(os.getenv('RANK', -1)) - -# Settings -DATASETS_DIR = ROOT.parent / 'datasets' # YOLOv5 datasets directory -NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads -AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode -VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode -FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf - -torch.set_printoptions(linewidth=320, precision=5, profile='long') -np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 -pd.options.display.max_columns = 10 -cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) -os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads -os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS) # OpenMP (PyTorch and SciPy) - - -def is_ascii(s=''): - # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7) - s = str(s) # convert list, tuple, None, etc. to str - return len(s.encode().decode('ascii', 'ignore')) == len(s) - - -def is_chinese(s='人工智能'): - # Is string composed of any Chinese characters? - return bool(re.search('[\u4e00-\u9fff]', str(s))) - - -def is_colab(): - # Is environment a Google Colab instance? - return 'COLAB_GPU' in os.environ - - -def is_kaggle(): - # Is environment a Kaggle Notebook? - return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' - - -def is_docker() -> bool: - """Check if the process runs inside a docker container.""" - if Path("/.dockerenv").exists(): - return True - try: # check if docker is in control groups - with open("/proc/self/cgroup") as file: - return any("docker" in line for line in file) - except OSError: - return False - - -def is_writeable(dir, test=False): - # Return True if directory has write permissions, test opening a file with write permissions if test=True - if not test: - return os.access(dir, os.W_OK) # possible issues on Windows - file = Path(dir) / 'tmp.txt' - try: - with open(file, 'w'): # open file with write permissions - pass - file.unlink() # remove file - return True - except OSError: - return False - - -def set_logging(name=None, verbose=VERBOSE): - # Sets level and returns logger - if is_kaggle() or is_colab(): - for h in logging.root.handlers: - logging.root.removeHandler(h) # remove all handlers associated with the root logger object - rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings - level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR - log = logging.getLogger(name) - log.setLevel(level) - handler = logging.StreamHandler() - handler.setFormatter(logging.Formatter("%(message)s")) - handler.setLevel(level) - log.addHandler(handler) - - -set_logging() # run before defining LOGGER -LOGGER = logging.getLogger("yolov5") # define globally (used in train.py, val.py, detect.py, etc.) -if platform.system() == 'Windows': - for fn in LOGGER.info, LOGGER.warning: - setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging - - -def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'): - # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required. - env = os.getenv(env_var) - if env: - path = Path(env) # use environment variable - else: - cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs - path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir - path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable - path.mkdir(exist_ok=True) # make if required - return path - - -CONFIG_DIR = user_config_dir() # Ultralytics settings dir - - -class Profile(contextlib.ContextDecorator): - # Usage: @Profile() decorator or 'with Profile():' context manager - def __enter__(self): - self.start = time.time() - - def __exit__(self, type, value, traceback): - print(f'Profile results: {time.time() - self.start:.5f}s') - - -class Timeout(contextlib.ContextDecorator): - # Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager - def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True): - self.seconds = int(seconds) - self.timeout_message = timeout_msg - self.suppress = bool(suppress_timeout_errors) - - def _timeout_handler(self, signum, frame): - raise TimeoutError(self.timeout_message) - - def __enter__(self): - if platform.system() != 'Windows': # not supported on Windows - signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM - signal.alarm(self.seconds) # start countdown for SIGALRM to be raised - - def __exit__(self, exc_type, exc_val, exc_tb): - if platform.system() != 'Windows': - signal.alarm(0) # Cancel SIGALRM if it's scheduled - if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError - return True - - -class WorkingDirectory(contextlib.ContextDecorator): - # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager - def __init__(self, new_dir): - self.dir = new_dir # new dir - self.cwd = Path.cwd().resolve() # current dir - - def __enter__(self): - os.chdir(self.dir) - - def __exit__(self, exc_type, exc_val, exc_tb): - os.chdir(self.cwd) - - -def try_except(func): - # try-except function. Usage: @try_except decorator - def handler(*args, **kwargs): - try: - func(*args, **kwargs) - except Exception as e: - print(e) - - return handler - - -def threaded(func): - # Multi-threads a target function and returns thread. Usage: @threaded decorator - def wrapper(*args, **kwargs): - thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) - thread.start() - return thread - - return wrapper - - -def methods(instance): - # Get class/instance methods - return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")] - - -def print_args(args: Optional[dict] = None, show_file=True, show_fcn=False): - # Print function arguments (optional args dict) - x = inspect.currentframe().f_back # previous frame - file, _, fcn, _, _ = inspect.getframeinfo(x) - if args is None: # get args automatically - args, _, _, frm = inspect.getargvalues(x) - args = {k: v for k, v in frm.items() if k in args} - try: - file = Path(file).resolve().relative_to(ROOT).with_suffix('') - except ValueError: - file = Path(file).stem - s = (f'{file}: ' if show_file else '') + (f'{fcn}: ' if show_fcn else '') - LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items())) - - -def init_seeds(seed=0, deterministic=False): - # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html - # cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible - import torch.backends.cudnn as cudnn - - if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213 - torch.use_deterministic_algorithms(True) - os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' - os.environ['PYTHONHASHSEED'] = str(seed) - - random.seed(seed) - np.random.seed(seed) - torch.manual_seed(seed) - cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False) - torch.cuda.manual_seed(seed) - torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe - - -def intersect_dicts(da, db, exclude=()): - # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values - return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} - - -def get_latest_run(search_dir='.'): - # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) - last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) - return max(last_list, key=os.path.getctime) if last_list else '' - - -def emojis(str=''): - # Return platform-dependent emoji-safe version of string - return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str - - -def file_age(path=__file__): - # Return days since last file update - dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta - return dt.days # + dt.seconds / 86400 # fractional days - - -def file_date(path=__file__): - # Return human-readable file modification date, i.e. '2021-3-26' - t = datetime.fromtimestamp(Path(path).stat().st_mtime) - return f'{t.year}-{t.month}-{t.day}' - - -def file_size(path): - # Return file/dir size (MB) - mb = 1 << 20 # bytes to MiB (1024 ** 2) - path = Path(path) - if path.is_file(): - return path.stat().st_size / mb - elif path.is_dir(): - return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb - else: - return 0.0 - - -def check_online(): - # Check internet connectivity - import socket - try: - socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility - return True - except OSError: - return False - - -def git_describe(path=ROOT): # path must be a directory - # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe - try: - assert (Path(path) / '.git').is_dir() - return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1] - except Exception: - return '' - - -@try_except -@WorkingDirectory(ROOT) -def check_git_status(repo='ultralytics/yolov5'): - # YOLOv5 status check, recommend 'git pull' if code is out of date - url = f'https://github.com/{repo}' - msg = f', for updates see {url}' - s = colorstr('github: ') # string - assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg - assert check_online(), s + 'skipping check (offline)' + msg - - splits = re.split(pattern=r'\s', string=check_output('git remote -v', shell=True).decode()) - matches = [repo in s for s in splits] - if any(matches): - remote = splits[matches.index(True) - 1] - else: - remote = 'ultralytics' - check_output(f'git remote add {remote} {url}', shell=True) - check_output(f'git fetch {remote}', shell=True, timeout=5) # git fetch - branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out - n = int(check_output(f'git rev-list {branch}..{remote}/master --count', shell=True)) # commits behind - if n > 0: - pull = 'git pull' if remote == 'origin' else f'git pull {remote} master' - s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `{pull}` or `git clone {url}` to update." - else: - s += f'up to date with {url} ✅' - LOGGER.info(s) - - -def check_python(minimum='3.7.0'): - # Check current python version vs. required python version - check_version(platform.python_version(), minimum, name='Python ', hard=True) - - -def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False): - # Check version vs. required version - current, minimum = (pkg.parse_version(x) for x in (current, minimum)) - result = (current == minimum) if pinned else (current >= minimum) # bool - s = f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed' # string - if hard: - assert result, s # assert min requirements met - if verbose and not result: - LOGGER.warning(s) - return result - - -@try_except -def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=()): - # Check installed dependencies meet YOLOv5 requirements (pass *.txt file or list of packages) - prefix = colorstr('red', 'bold', 'requirements:') - check_python() # check python version - if isinstance(requirements, (str, Path)): # requirements.txt file - file = Path(requirements) - assert file.exists(), f"{prefix} {file.resolve()} not found, check failed." - with file.open() as f: - requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude] - else: # list or tuple of packages - requirements = [x for x in requirements if x not in exclude] - - n = 0 # number of packages updates - for i, r in enumerate(requirements): - try: - pkg.require(r) - except Exception: # DistributionNotFound or VersionConflict if requirements not met - s = f"{prefix} {r} not found and is required by YOLOv5" - if install and AUTOINSTALL: # check environment variable - LOGGER.info(f"{s}, attempting auto-update...") - try: - assert check_online(), f"'pip install {r}' skipped (offline)" - LOGGER.info(check_output(f'pip install "{r}" {cmds[i] if cmds else ""}', shell=True).decode()) - n += 1 - except Exception as e: - LOGGER.warning(f'{prefix} {e}') - else: - LOGGER.info(f'{s}. Please install and rerun your command.') - - if n: # if packages updated - source = file.resolve() if 'file' in locals() else requirements - s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \ - f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" - LOGGER.info(s) - - -def check_img_size(imgsz, s=32, floor=0): - # Verify image size is a multiple of stride s in each dimension - if isinstance(imgsz, int): # integer i.e. img_size=640 - new_size = max(make_divisible(imgsz, int(s)), floor) - else: # list i.e. img_size=[640, 480] - imgsz = list(imgsz) # convert to list if tuple - new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz] - if new_size != imgsz: - LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}') - return new_size - - -def check_imshow(): - # Check if environment supports image displays - try: - assert not is_docker(), 'cv2.imshow() is disabled in Docker environments' - assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments' - cv2.imshow('test', np.zeros((1, 1, 3))) - cv2.waitKey(1) - cv2.destroyAllWindows() - cv2.waitKey(1) - return True - except Exception as e: - LOGGER.warning(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}') - return False - - -def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''): - # Check file(s) for acceptable suffix - if file and suffix: - if isinstance(suffix, str): - suffix = [suffix] - for f in file if isinstance(file, (list, tuple)) else [file]: - s = Path(f).suffix.lower() # file suffix - if len(s): - assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}" - - -def check_yaml(file, suffix=('.yaml', '.yml')): - # Search/download YAML file (if necessary) and return path, checking suffix - return check_file(file, suffix) - - -def check_file(file, suffix=''): - # Search/download file (if necessary) and return path - check_suffix(file, suffix) # optional - file = str(file) # convert to str() - if Path(file).is_file() or not file: # exists - return file - elif file.startswith(('http:/', 'https:/')): # download - url = file # warning: Pathlib turns :// -> :/ - file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth - if Path(file).is_file(): - LOGGER.info(f'Found {url} locally at {file}') # file already exists - else: - LOGGER.info(f'Downloading {url} to {file}...') - torch.hub.download_url_to_file(url, file) - assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check - return file - elif file.startswith('clearml://'): # ClearML Dataset ID - assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'." - return file - else: # search - files = [] - for d in 'data', 'models', 'utils': # search directories - files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file - assert len(files), f'File not found: {file}' # assert file was found - assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique - return files[0] # return file - - -def check_font(font=FONT, progress=False): - # Download font to CONFIG_DIR if necessary - font = Path(font) - file = CONFIG_DIR / font.name - if not font.exists() and not file.exists(): - url = "https://ultralytics.com/assets/" + font.name - LOGGER.info(f'Downloading {url} to {file}...') - torch.hub.download_url_to_file(url, str(file), progress=progress) - - -def check_dataset(data, autodownload=True): - # Download, check and/or unzip dataset if not found locally - - # Download (optional) - extract_dir = '' - if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip - download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1) - data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml')) - extract_dir, autodownload = data.parent, False - - # Read yaml (optional) - if isinstance(data, (str, Path)): - with open(data, errors='ignore') as f: - data = yaml.safe_load(f) # dictionary - - # Checks - for k in 'train', 'val', 'nc': - assert k in data, f"data.yaml '{k}:' field missing ❌" - if 'names' not in data: - LOGGER.warning("data.yaml 'names:' field missing ⚠️, assigning default names 'class0', 'class1', etc.") - data['names'] = [f'class{i}' for i in range(data['nc'])] # default names - - # Resolve paths - path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.' - if not path.is_absolute(): - path = (ROOT / path).resolve() - for k in 'train', 'val', 'test': - if data.get(k): # prepend path - data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]] - - # Parse yaml - train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) - if val: - val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path - if not all(x.exists() for x in val): - LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()]) - if not s or not autodownload: - raise Exception('Dataset not found ❌') - t = time.time() - root = path.parent if 'path' in data else '..' # unzip directory i.e. '../' - if s.startswith('http') and s.endswith('.zip'): # URL - f = Path(s).name # filename - LOGGER.info(f'Downloading {s} to {f}...') - torch.hub.download_url_to_file(s, f) - Path(root).mkdir(parents=True, exist_ok=True) # create root - ZipFile(f).extractall(path=root) # unzip - Path(f).unlink() # remove zip - r = None # success - elif s.startswith('bash '): # bash script - LOGGER.info(f'Running {s} ...') - r = os.system(s) - else: # python script - r = exec(s, {'yaml': data}) # return None - dt = f'({round(time.time() - t, 1)}s)' - s = f"success ✅ {dt}, saved to {colorstr('bold', root)}" if r in (0, None) else f"failure {dt} ❌" - LOGGER.info(f"Dataset download {s}") - check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts - return data # dictionary - - -def check_amp(model): - # Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation - from models.common import AutoShape, DetectMultiBackend - - def amp_allclose(model, im): - # All close FP32 vs AMP results - m = AutoShape(model, verbose=False) # model - a = m(im).xywhn[0] # FP32 inference - m.amp = True - b = m(im).xywhn[0] # AMP inference - return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance - - prefix = colorstr('AMP: ') - device = next(model.parameters()).device # get model device - if device.type == 'cpu': - return False # AMP disabled on CPU - f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check - im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3)) - try: - assert amp_allclose(model, im) or amp_allclose(DetectMultiBackend('yolov5n.pt', device), im) - LOGGER.info(f'{prefix}checks passed ✅') - return True - except Exception: - help_url = 'https://github.com/ultralytics/yolov5/issues/7908' - LOGGER.warning(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}') - return False - - -def yaml_load(file='data.yaml'): - # Single-line safe yaml loading - with open(file, errors='ignore') as f: - return yaml.safe_load(f) - - -def yaml_save(file='data.yaml', data={}): - # Single-line safe yaml saving - with open(file, 'w') as f: - yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False) - - -def url2file(url): - # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt - url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/ - return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth - - -def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3): - # Multi-threaded file download and unzip function, used in data.yaml for autodownload - def download_one(url, dir): - # Download 1 file - success = True - f = dir / Path(url).name # filename - if Path(url).is_file(): # exists in current path - Path(url).rename(f) # move to dir - elif not f.exists(): - LOGGER.info(f'Downloading {url} to {f}...') - for i in range(retry + 1): - if curl: - s = 'sS' if threads > 1 else '' # silent - r = os.system(f'curl -{s}L "{url}" -o "{f}" --retry 9 -C -') # curl download with retry, continue - success = r == 0 - else: - torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download - success = f.is_file() - if success: - break - elif i < retry: - LOGGER.warning(f'Download failure, retrying {i + 1}/{retry} {url}...') - else: - LOGGER.warning(f'Failed to download {url}...') - - if unzip and success and f.suffix in ('.zip', '.tar', '.gz'): - LOGGER.info(f'Unzipping {f}...') - if f.suffix == '.zip': - ZipFile(f).extractall(path=dir) # unzip - elif f.suffix == '.tar': - os.system(f'tar xf {f} --directory {f.parent}') # unzip - elif f.suffix == '.gz': - os.system(f'tar xfz {f} --directory {f.parent}') # unzip - if delete: - f.unlink() # remove zip - - dir = Path(dir) - dir.mkdir(parents=True, exist_ok=True) # make directory - if threads > 1: - pool = ThreadPool(threads) - pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded - pool.close() - pool.join() - else: - for u in [url] if isinstance(url, (str, Path)) else url: - download_one(u, dir) - - -def make_divisible(x, divisor): - # Returns nearest x divisible by divisor - if isinstance(divisor, torch.Tensor): - divisor = int(divisor.max()) # to int - return math.ceil(x / divisor) * divisor - - -def clean_str(s): - # Cleans a string by replacing special characters with underscore _ - return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) - - -def one_cycle(y1=0.0, y2=1.0, steps=100): - # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf - return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 - - -def colorstr(*input): - # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') - *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string - colors = { - 'black': '\033[30m', # basic colors - 'red': '\033[31m', - 'green': '\033[32m', - 'yellow': '\033[33m', - 'blue': '\033[34m', - 'magenta': '\033[35m', - 'cyan': '\033[36m', - 'white': '\033[37m', - 'bright_black': '\033[90m', # bright colors - 'bright_red': '\033[91m', - 'bright_green': '\033[92m', - 'bright_yellow': '\033[93m', - 'bright_blue': '\033[94m', - 'bright_magenta': '\033[95m', - 'bright_cyan': '\033[96m', - 'bright_white': '\033[97m', - 'end': '\033[0m', # misc - 'bold': '\033[1m', - 'underline': '\033[4m'} - return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] - - -def labels_to_class_weights(labels, nc=80): - # Get class weights (inverse frequency) from training labels - if labels[0] is None: # no labels loaded - return torch.Tensor() - - labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO - classes = labels[:, 0].astype(int) # labels = [class xywh] - weights = np.bincount(classes, minlength=nc) # occurrences per class - - # Prepend gridpoint count (for uCE training) - # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image - # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start - - weights[weights == 0] = 1 # replace empty bins with 1 - weights = 1 / weights # number of targets per class - weights /= weights.sum() # normalize - return torch.from_numpy(weights).float() - - -def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): - # Produces image weights based on class_weights and image contents - # Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample - class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels]) - return (class_weights.reshape(1, nc) * class_counts).sum(1) - - -def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) - # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ - # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') - # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') - # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco - # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet - return [ - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, - 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, - 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] - - -def xyxy2xywh(x): - # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right - y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) - y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center - y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center - y[:, 2] = x[:, 2] - x[:, 0] # width - y[:, 3] = x[:, 3] - x[:, 1] # height - return y - - -def xywh2xyxy(x): - # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right - y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) - y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x - y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y - y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x - y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y - return y - - -def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): - # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right - y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) - y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x - y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y - y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x - y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y - return y - - -def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): - # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right - if clip: - clip_coords(x, (h - eps, w - eps)) # warning: inplace clip - y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) - y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center - y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center - y[:, 2] = (x[:, 2] - x[:, 0]) / w # width - y[:, 3] = (x[:, 3] - x[:, 1]) / h # height - return y - - -def xyn2xy(x, w=640, h=640, padw=0, padh=0): - # Convert normalized segments into pixel segments, shape (n,2) - y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) - y[:, 0] = w * x[:, 0] + padw # top left x - y[:, 1] = h * x[:, 1] + padh # top left y - return y - - -def segment2box(segment, width=640, height=640): - # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) - x, y = segment.T # segment xy - inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) - x, y, = x[inside], y[inside] - return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy - - -def segments2boxes(segments): - # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) - boxes = [] - for s in segments: - x, y = s.T # segment xy - boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy - return xyxy2xywh(np.array(boxes)) # cls, xywh - - -def resample_segments(segments, n=1000): - # Up-sample an (n,2) segment - for i, s in enumerate(segments): - s = np.concatenate((s, s[0:1, :]), axis=0) - x = np.linspace(0, len(s) - 1, n) - xp = np.arange(len(s)) - segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy - return segments - - -def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): - # Rescale coords (xyxy) from img1_shape to img0_shape - if ratio_pad is None: # calculate from img0_shape - gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new - pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding - else: - gain = ratio_pad[0][0] - pad = ratio_pad[1] - - coords[:, [0, 2]] -= pad[0] # x padding - coords[:, [1, 3]] -= pad[1] # y padding - coords[:, :4] /= gain - clip_coords(coords, img0_shape) - return coords - - -def clip_coords(boxes, shape): - # Clip bounding xyxy bounding boxes to image shape (height, width) - if isinstance(boxes, torch.Tensor): # faster individually - boxes[:, 0].clamp_(0, shape[1]) # x1 - boxes[:, 1].clamp_(0, shape[0]) # y1 - boxes[:, 2].clamp_(0, shape[1]) # x2 - boxes[:, 3].clamp_(0, shape[0]) # y2 - else: # np.array (faster grouped) - boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2 - boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 - - -def non_max_suppression(prediction, - conf_thres=0.25, - iou_thres=0.45, - classes=None, - agnostic=False, - multi_label=False, - labels=(), - max_det=300): - """Non-Maximum Suppression (NMS) on inference results to reject overlapping bounding boxes - - Returns: - list of detections, on (n,6) tensor per image [xyxy, conf, cls] - """ - - bs = prediction.shape[0] # batch size - nc = prediction.shape[2] - 5 # number of classes - xc = prediction[..., 4] > conf_thres # candidates - - # Checks - assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' - assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' - - # Settings - # min_wh = 2 # (pixels) minimum box width and height - max_wh = 7680 # (pixels) maximum box width and height - max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() - time_limit = 0.3 + 0.03 * bs # seconds to quit after - redundant = True # require redundant detections - multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) - merge = False # use merge-NMS - - t = time.time() - output = [torch.zeros((0, 6), device=prediction.device)] * bs - for xi, x in enumerate(prediction): # image index, image inference - # Apply constraints - # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height - x = x[xc[xi]] # confidence - - # Cat apriori labels if autolabelling - if labels and len(labels[xi]): - lb = labels[xi] - v = torch.zeros((len(lb), nc + 5), device=x.device) - v[:, :4] = lb[:, 1:5] # box - v[:, 4] = 1.0 # conf - v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls - x = torch.cat((x, v), 0) - - # If none remain process next image - if not x.shape[0]: - continue - - # Compute conf - x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf - - # Box (center x, center y, width, height) to (x1, y1, x2, y2) - box = xywh2xyxy(x[:, :4]) - - # Detections matrix nx6 (xyxy, conf, cls) - if multi_label: - i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T - x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) - else: # best class only - conf, j = x[:, 5:].max(1, keepdim=True) - x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] - - # Filter by class - if classes is not None: - x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] - - # Apply finite constraint - # if not torch.isfinite(x).all(): - # x = x[torch.isfinite(x).all(1)] - - # Check shape - n = x.shape[0] # number of boxes - if not n: # no boxes - continue - elif n > max_nms: # excess boxes - x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence - - # Batched NMS - c = x[:, 5:6] * (0 if agnostic else max_wh) # classes - boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores - i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS - if i.shape[0] > max_det: # limit detections - i = i[:max_det] - if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) - # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) - iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix - weights = iou * scores[None] # box weights - x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes - if redundant: - i = i[iou.sum(1) > 1] # require redundancy - - output[xi] = x[i] - if (time.time() - t) > time_limit: - LOGGER.warning(f'WARNING: NMS time limit {time_limit:.3f}s exceeded') - break # time limit exceeded - - return output - - -def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer() - # Strip optimizer from 'f' to finalize training, optionally save as 's' - x = torch.load(f, map_location=torch.device('cpu')) - if x.get('ema'): - x['model'] = x['ema'] # replace model with ema - for k in 'optimizer', 'best_fitness', 'wandb_id', 'ema', 'updates': # keys - x[k] = None - x['epoch'] = -1 - x['model'].half() # to FP16 - for p in x['model'].parameters(): - p.requires_grad = False - torch.save(x, s or f) - mb = os.path.getsize(s or f) / 1E6 # filesize - LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB") - - -def print_mutation(results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')): - evolve_csv = save_dir / 'evolve.csv' - evolve_yaml = save_dir / 'hyp_evolve.yaml' - keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', - 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps] - keys = tuple(x.strip() for x in keys) - vals = results + tuple(hyp.values()) - n = len(keys) - - # Download (optional) - if bucket: - url = f'gs://{bucket}/evolve.csv' - if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0): - os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local - - # Log to evolve.csv - s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header - with open(evolve_csv, 'a') as f: - f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n') - - # Save yaml - with open(evolve_yaml, 'w') as f: - data = pd.read_csv(evolve_csv) - data = data.rename(columns=lambda x: x.strip()) # strip keys - i = np.argmax(fitness(data.values[:, :4])) # - generations = len(data) - f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' + - f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + - '\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n') - yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False) - - # Print to screen - LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix + - ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}' - for x in vals) + '\n\n') - - if bucket: - os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload - - -def apply_classifier(x, model, img, im0): - # Apply a second stage classifier to YOLO outputs - # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval() - im0 = [im0] if isinstance(im0, np.ndarray) else im0 - for i, d in enumerate(x): # per image - if d is not None and len(d): - d = d.clone() - - # Reshape and pad cutouts - b = xyxy2xywh(d[:, :4]) # boxes - b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square - b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad - d[:, :4] = xywh2xyxy(b).long() - - # Rescale boxes from img_size to im0 size - scale_coords(img.shape[2:], d[:, :4], im0[i].shape) - - # Classes - pred_cls1 = d[:, 5].long() - ims = [] - for a in d: - cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] - im = cv2.resize(cutout, (224, 224)) # BGR - - im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 - im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 - im /= 255 # 0 - 255 to 0.0 - 1.0 - ims.append(im) - - pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction - x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections - - return x - - -def increment_path(path, exist_ok=False, sep='', mkdir=False): - # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc. - path = Path(path) # os-agnostic - if path.exists() and not exist_ok: - path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '') - - # Method 1 - for n in range(2, 9999): - p = f'{path}{sep}{n}{suffix}' # increment path - if not os.path.exists(p): # - break - path = Path(p) - - # Method 2 (deprecated) - # dirs = glob.glob(f"{path}{sep}*") # similar paths - # matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs] - # i = [int(m.groups()[0]) for m in matches if m] # indices - # n = max(i) + 1 if i else 2 # increment number - # path = Path(f"{path}{sep}{n}{suffix}") # increment path - - if mkdir: - path.mkdir(parents=True, exist_ok=True) # make directory - - return path - - -# OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------ -imshow_ = cv2.imshow # copy to avoid recursion errors - - -def imread(path, flags=cv2.IMREAD_COLOR): - return cv2.imdecode(np.fromfile(path, np.uint8), flags) - - -def imwrite(path, im): - try: - cv2.imencode(Path(path).suffix, im)[1].tofile(path) - return True - except Exception: - return False - - -def imshow(path, im): - imshow_(path.encode('unicode_escape').decode(), im) - - -cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine - -# Variables ------------------------------------------------------------------------------------------------------------ -NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns # terminal window size for tqdm diff --git a/yolov5-6.2/utils/google_app_engine/Dockerfile b/yolov5-6.2/utils/google_app_engine/Dockerfile deleted file mode 100644 index 0155618f..00000000 --- a/yolov5-6.2/utils/google_app_engine/Dockerfile +++ /dev/null @@ -1,25 +0,0 @@ -FROM gcr.io/google-appengine/python - -# Create a virtualenv for dependencies. This isolates these packages from -# system-level packages. -# Use -p python3 or -p python3.7 to select python version. Default is version 2. -RUN virtualenv /env -p python3 - -# Setting these environment variables are the same as running -# source /env/bin/activate. -ENV VIRTUAL_ENV /env -ENV PATH /env/bin:$PATH - -RUN apt-get update && apt-get install -y python-opencv - -# Copy the application's requirements.txt and run pip to install all -# dependencies into the virtualenv. -ADD requirements.txt /app/requirements.txt -RUN pip install -r /app/requirements.txt - -# Add the application source code. -ADD . /app - -# Run a WSGI server to serve the application. gunicorn must be declared as -# a dependency in requirements.txt. -CMD gunicorn -b :$PORT main:app diff --git a/yolov5-6.2/utils/google_app_engine/additional_requirements.txt b/yolov5-6.2/utils/google_app_engine/additional_requirements.txt deleted file mode 100644 index 42d7ffc0..00000000 --- a/yolov5-6.2/utils/google_app_engine/additional_requirements.txt +++ /dev/null @@ -1,4 +0,0 @@ -# add these requirements in your app on top of the existing ones -pip==21.1 -Flask==1.0.2 -gunicorn==19.9.0 diff --git a/yolov5-6.2/utils/google_app_engine/app.yaml b/yolov5-6.2/utils/google_app_engine/app.yaml deleted file mode 100644 index 5056b7c1..00000000 --- a/yolov5-6.2/utils/google_app_engine/app.yaml +++ /dev/null @@ -1,14 +0,0 @@ -runtime: custom -env: flex - -service: yolov5app - -liveness_check: - initial_delay_sec: 600 - -manual_scaling: - instances: 1 -resources: - cpu: 1 - memory_gb: 4 - disk_size_gb: 20 diff --git a/yolov5-6.2/utils/loggers/__init__.py b/yolov5-6.2/utils/loggers/__init__.py deleted file mode 100644 index 8ec846f8..00000000 --- a/yolov5-6.2/utils/loggers/__init__.py +++ /dev/null @@ -1,308 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Logging utils -""" - -import os -import warnings -from pathlib import Path - -import pkg_resources as pkg -import torch -from torch.utils.tensorboard import SummaryWriter - -from utils.general import colorstr, cv2 -from utils.loggers.clearml.clearml_utils import ClearmlLogger -from utils.loggers.wandb.wandb_utils import WandbLogger -from utils.plots import plot_images, plot_results -from utils.torch_utils import de_parallel - -LOGGERS = ('csv', 'tb', 'wandb', 'clearml') # *.csv, TensorBoard, Weights & Biases, ClearML -RANK = int(os.getenv('RANK', -1)) - -try: - import wandb - - assert hasattr(wandb, '__version__') # verify package import not local dir - if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}: - try: - wandb_login_success = wandb.login(timeout=30) - except wandb.errors.UsageError: # known non-TTY terminal issue - wandb_login_success = False - if not wandb_login_success: - wandb = None -except (ImportError, AssertionError): - wandb = None - -try: - import clearml - - assert hasattr(clearml, '__version__') # verify package import not local dir -except (ImportError, AssertionError): - clearml = None - - -class Loggers(): - # YOLOv5 Loggers class - def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS): - self.save_dir = save_dir - self.weights = weights - self.opt = opt - self.hyp = hyp - self.logger = logger # for printing results to console - self.include = include - self.keys = [ - 'train/box_loss', - 'train/obj_loss', - 'train/cls_loss', # train loss - 'metrics/precision', - 'metrics/recall', - 'metrics/mAP_0.5', - 'metrics/mAP_0.5:0.95', # metrics - 'val/box_loss', - 'val/obj_loss', - 'val/cls_loss', # val loss - 'x/lr0', - 'x/lr1', - 'x/lr2'] # params - self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95'] - for k in LOGGERS: - setattr(self, k, None) # init empty logger dictionary - self.csv = True # always log to csv - - # Messages - if not wandb: - prefix = colorstr('Weights & Biases: ') - s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases" - self.logger.info(s) - if not clearml: - prefix = colorstr('ClearML: ') - s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML" - self.logger.info(s) - - # TensorBoard - s = self.save_dir - if 'tb' in self.include and not self.opt.evolve: - prefix = colorstr('TensorBoard: ') - self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/") - self.tb = SummaryWriter(str(s)) - - # W&B - if wandb and 'wandb' in self.include: - wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://') - run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None - self.opt.hyp = self.hyp # add hyperparameters - self.wandb = WandbLogger(self.opt, run_id) - # temp warn. because nested artifacts not supported after 0.12.10 - if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'): - s = "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected." - self.logger.warning(s) - else: - self.wandb = None - - # ClearML - if clearml and 'clearml' in self.include: - self.clearml = ClearmlLogger(self.opt, self.hyp) - else: - self.clearml = None - - def on_train_start(self): - # Callback runs on train start - pass - - def on_pretrain_routine_end(self): - # Callback runs on pre-train routine end - paths = self.save_dir.glob('*labels*.jpg') # training labels - if self.wandb: - self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]}) - if self.clearml: - pass # ClearML saves these images automatically using hooks - - def on_train_batch_end(self, ni, model, imgs, targets, paths, plots): - # Callback runs on train batch end - # ni: number integrated batches (since train start) - if plots: - if ni == 0 and not self.opt.sync_bn and self.tb: - log_tensorboard_graph(self.tb, model, imgsz=list(imgs.shape[2:4])) - if ni < 3: - f = self.save_dir / f'train_batch{ni}.jpg' # filename - plot_images(imgs, targets, paths, f) - if (self.wandb or self.clearml) and ni == 10: - files = sorted(self.save_dir.glob('train*.jpg')) - if self.wandb: - self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]}) - if self.clearml: - self.clearml.log_debug_samples(files, title='Mosaics') - - def on_train_epoch_end(self, epoch): - # Callback runs on train epoch end - if self.wandb: - self.wandb.current_epoch = epoch + 1 - - def on_val_image_end(self, pred, predn, path, names, im): - # Callback runs on val image end - if self.wandb: - self.wandb.val_one_image(pred, predn, path, names, im) - if self.clearml: - self.clearml.log_image_with_boxes(path, pred, names, im) - - def on_val_end(self): - # Callback runs on val end - if self.wandb or self.clearml: - files = sorted(self.save_dir.glob('val*.jpg')) - if self.wandb: - self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]}) - if self.clearml: - self.clearml.log_debug_samples(files, title='Validation') - - def on_fit_epoch_end(self, vals, epoch, best_fitness, fi): - # Callback runs at the end of each fit (train+val) epoch - x = dict(zip(self.keys, vals)) - if self.csv: - file = self.save_dir / 'results.csv' - n = len(x) + 1 # number of cols - s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header - with open(file, 'a') as f: - f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n') - - if self.tb: - for k, v in x.items(): - self.tb.add_scalar(k, v, epoch) - elif self.clearml: # log to ClearML if TensorBoard not used - for k, v in x.items(): - title, series = k.split('/') - self.clearml.task.get_logger().report_scalar(title, series, v, epoch) - - if self.wandb: - if best_fitness == fi: - best_results = [epoch] + vals[3:7] - for i, name in enumerate(self.best_keys): - self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary - self.wandb.log(x) - self.wandb.end_epoch(best_result=best_fitness == fi) - - if self.clearml: - self.clearml.current_epoch_logged_images = set() # reset epoch image limit - self.clearml.current_epoch += 1 - - def on_model_save(self, last, epoch, final_epoch, best_fitness, fi): - # Callback runs on model save event - if self.wandb: - if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1: - self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi) - - if self.clearml: - if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1: - self.clearml.task.update_output_model(model_path=str(last), - model_name='Latest Model', - auto_delete_file=False) - - def on_train_end(self, last, best, plots, epoch, results): - # Callback runs on training end - if plots: - plot_results(file=self.save_dir / 'results.csv') # save results.png - files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] - files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter - self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}") - - if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles - for f in files: - self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC') - - if self.wandb: - self.wandb.log(dict(zip(self.keys[3:10], results))) - self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]}) - # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model - if not self.opt.evolve: - wandb.log_artifact(str(best if best.exists() else last), - type='model', - name=f'run_{self.wandb.wandb_run.id}_model', - aliases=['latest', 'best', 'stripped']) - self.wandb.finish_run() - - if self.clearml: - # Save the best model here - if not self.opt.evolve: - self.clearml.task.update_output_model(model_path=str(best if best.exists() else last), - name='Best Model') - - def on_params_update(self, params): - # Update hyperparams or configs of the experiment - # params: A dict containing {param: value} pairs - if self.wandb: - self.wandb.wandb_run.config.update(params, allow_val_change=True) - - -class GenericLogger: - """ - YOLOv5 General purpose logger for non-task specific logging - Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...) - Arguments - opt: Run arguments - console_logger: Console logger - include: loggers to include - """ - - def __init__(self, opt, console_logger, include=('tb', 'wandb')): - # init default loggers - self.save_dir = opt.save_dir - self.include = include - self.console_logger = console_logger - if 'tb' in self.include: - prefix = colorstr('TensorBoard: ') - self.console_logger.info( - f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/") - self.tb = SummaryWriter(str(self.save_dir)) - - if wandb and 'wandb' in self.include: - self.wandb = wandb.init(project="YOLOv5-Classifier" if opt.project == "runs/train" else opt.project, - name=None if opt.name == "exp" else opt.name, - config=opt) - else: - self.wandb = None - - def log_metrics(self, metrics_dict, epoch): - # Log metrics dictionary to all loggers - if self.tb: - for k, v in metrics_dict.items(): - self.tb.add_scalar(k, v, epoch) - - if self.wandb: - self.wandb.log(metrics_dict, step=epoch) - - def log_images(self, files, name='Images', epoch=0): - # Log images to all loggers - files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path - files = [f for f in files if f.exists()] # filter by exists - - if self.tb: - for f in files: - self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC') - - if self.wandb: - self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch) - - def log_graph(self, model, imgsz=(640, 640)): - # Log model graph to all loggers - if self.tb: - log_tensorboard_graph(self.tb, model, imgsz) - - def log_model(self, model_path, epoch=0, metadata={}): - # Log model to all loggers - if self.wandb: - art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata) - art.add_file(str(model_path)) - wandb.log_artifact(art) - - -def log_tensorboard_graph(tb, model, imgsz=(640, 640)): - # Log model graph to TensorBoard - try: - p = next(model.parameters()) # for device, type - imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand - im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image - with warnings.catch_warnings(): - warnings.simplefilter('ignore') # suppress jit trace warning - tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), []) - except Exception: - print('WARNING: TensorBoard graph visualization failure') diff --git a/yolov5-6.2/utils/loggers/clearml/README.md b/yolov5-6.2/utils/loggers/clearml/README.md deleted file mode 100644 index 64eef6be..00000000 --- a/yolov5-6.2/utils/loggers/clearml/README.md +++ /dev/null @@ -1,222 +0,0 @@ -# ClearML Integration - -<img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_dark.png#gh-light-mode-only" alt="Clear|ML"><img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_light.png#gh-dark-mode-only" alt="Clear|ML"> - -## About ClearML - -[ClearML](https://cutt.ly/yolov5-tutorial-clearml) is an [open-source](https://github.com/allegroai/clearml) toolbox designed to save you time ⏱️. - -🔨 Track every YOLOv5 training run in the <b>experiment manager</b> - -🔧 Version and easily access your custom training data with the integrated ClearML <b>Data Versioning Tool</b> - -🔦 <b>Remotely train and monitor</b> your YOLOv5 training runs using ClearML Agent - -🔬 Get the very best mAP using ClearML <b>Hyperparameter Optimization</b> - -🔭 Turn your newly trained <b>YOLOv5 model into an API</b> with just a few commands using ClearML Serving - -<br /> -And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline! -<br /> -<br /> - - - - -<br /> -<br /> - -## 🦾 Setting Things Up - -To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one: - -Either sign up for free to the [ClearML Hosted Service](https://cutt.ly/yolov5-tutorial-clearml) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go! - -1. Install the `clearml` python package: - - ```bash - pip install clearml - ``` - -1. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions: - - ```bash - clearml-init - ``` - -That's it! You're done 😎 - -<br /> - -## 🚀 Training YOLOv5 With ClearML - -To enable ClearML experiment tracking, simply install the ClearML pip package. - -```bash -pip install clearml -``` - -This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager. If you want to change the `project_name` or `task_name`, head over to our custom logger, where you can change it: `utils/loggers/clearml/clearml_utils.py` - -```bash -python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache -``` - -This will capture: -- Source code + uncommitted changes -- Installed packages -- (Hyper)parameters -- Model files (use `--save-period n` to save a checkpoint every n epochs) -- Console output -- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...) -- General info such as machine details, runtime, creation date etc. -- All produced plots such as label correlogram and confusion matrix -- Images with bounding boxes per epoch -- Mosaic per epoch -- Validation images per epoch -- ... - -That's a lot right? 🤯 -Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them! - -There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works! - -<br /> - -## 🔗 Dataset Version Management - -Versioning your data separately from your code is generally a good idea and makes it easy to aqcuire the latest version too. This repository supports supplying a dataset version ID and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment! - - - -### Prepare Your Dataset - -The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure: - -``` -.. -|_ yolov5 -|_ datasets - |_ coco128 - |_ images - |_ labels - |_ LICENSE - |_ README.txt -``` -But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure. - -Next, ⚠️**copy the corresponding yaml file to the root of the dataset folder**⚠️. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls. - -Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`. - -``` -.. -|_ yolov5 -|_ datasets - |_ coco128 - |_ images - |_ labels - |_ coco128.yaml # <---- HERE! - |_ LICENSE - |_ README.txt -``` - -### Upload Your Dataset - -To get this dataset into ClearML as a versionned dataset, go to the dataset root folder and run the following command: -```bash -cd coco128 -clearml-data sync --project YOLOv5 --name coco128 --folder . -``` - -The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other: -```bash -# Optionally add --parent <parent_dataset_id> if you want to base -# this version on another dataset version, so no duplicate files are uploaded! -clearml-data create --name coco128 --project YOLOv5 -clearml-data add --files . -clearml-data close -``` - -### Run Training Using A ClearML Dataset - -Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 🚀 models! - -```bash -python train.py --img 640 --batch 16 --epochs 3 --data clearml://<your_dataset_id> --weights yolov5s.pt --cache -``` - -<br /> - -## 👀 Hyperparameter Optimization - -Now that we have our experiments and data versioned, it's time to take a look at what we can build on top! - -Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does! - -To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters. - -You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead. - -```bash -# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch -pip install optuna -python utils/loggers/clearml/hpo.py -``` - - - -## 🤯 Remote Execution (advanced) - -Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access to a very powerful GPU machine on-site or you have some budget to use cloud GPUs. -This is where the ClearML Agent comes into play. Check out what the agent can do here: - -- [YouTube video](https://youtu.be/MX3BrXnaULs) -- [Documentation](https://clear.ml/docs/latest/docs/clearml_agent) - -In short: every experiment tracked by the experiment manager contains enough information to reproduce it on a different machine (installed packages, uncommitted changes etc.). So a ClearML agent does just that: it listens to a queue for incoming tasks and when it finds one, it recreates the environment and runs it while still reporting scalars, plots etc. to the experiment manager. - -You can turn any machine (a cloud VM, a local GPU machine, your own laptop ... ) into a ClearML agent by simply running: -```bash -clearml-agent daemon --queue <queues_to_listen_to> [--docker] -``` - -### Cloning, Editing And Enqueuing - -With our agent running, we can give it some work. Remember from the HPO section that we can clone a task and edit the hyperparameters? We can do that from the interface too! - -🪄 Clone the experiment by right clicking it - -🎯 Edit the hyperparameters to what you wish them to be - -⏳ Enqueue the task to any of the queues by right clicking it - - - -### Executing A Task Remotely - -Now you can clone a task like we explained above, or simply mark your current script by adding `task.execute_remotely()` and on execution it will be put into a queue, for the agent to start working on! - -To run the YOLOv5 training script remotely, all you have to do is add this line to the training.py script after the clearml logger has been instatiated: -```python -# ... -# Loggers -data_dict = None -if RANK in {-1, 0}: - loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance - if loggers.clearml: - loggers.clearml.task.execute_remotely(queue='my_queue') # <------ ADD THIS LINE - # Data_dict is either None is user did not choose for ClearML dataset or is filled in by ClearML - data_dict = loggers.clearml.data_dict -# ... -``` -When running the training script after this change, python will run the script up until that line, after which it will package the code and send it to the queue instead! - -### Autoscaling workers - -ClearML comes with autoscalers too! This tool will automatically spin up new remote machines in the cloud of your choice (AWS, GCP, Azure) and turn them into ClearML agents for you whenever there are experiments detected in the queue. Once the tasks are processed, the autoscaler will automatically shut down the remote machines and you stop paying! - -Check out the autoscalers getting started video below. - -[](https://youtu.be/j4XVMAaUt3E) diff --git a/yolov5-6.2/utils/loggers/clearml/__init__.py b/yolov5-6.2/utils/loggers/clearml/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/yolov5-6.2/utils/loggers/clearml/clearml_utils.py b/yolov5-6.2/utils/loggers/clearml/clearml_utils.py deleted file mode 100644 index 52320c09..00000000 --- a/yolov5-6.2/utils/loggers/clearml/clearml_utils.py +++ /dev/null @@ -1,156 +0,0 @@ -"""Main Logger class for ClearML experiment tracking.""" -import glob -import re -from pathlib import Path - -import numpy as np -import yaml - -from utils.plots import Annotator, colors - -try: - import clearml - from clearml import Dataset, Task - assert hasattr(clearml, '__version__') # verify package import not local dir -except (ImportError, AssertionError): - clearml = None - - -def construct_dataset(clearml_info_string): - """Load in a clearml dataset and fill the internal data_dict with its contents. - """ - dataset_id = clearml_info_string.replace('clearml://', '') - dataset = Dataset.get(dataset_id=dataset_id) - dataset_root_path = Path(dataset.get_local_copy()) - - # We'll search for the yaml file definition in the dataset - yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml"))) - if len(yaml_filenames) > 1: - raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains ' - 'the dataset definition this way.') - elif len(yaml_filenames) == 0: - raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file ' - 'inside the dataset root path.') - with open(yaml_filenames[0]) as f: - dataset_definition = yaml.safe_load(f) - - assert set(dataset_definition.keys()).issuperset( - {'train', 'test', 'val', 'nc', 'names'} - ), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')" - - data_dict = dict() - data_dict['train'] = str( - (dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None - data_dict['test'] = str( - (dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None - data_dict['val'] = str( - (dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None - data_dict['nc'] = dataset_definition['nc'] - data_dict['names'] = dataset_definition['names'] - - return data_dict - - -class ClearmlLogger: - """Log training runs, datasets, models, and predictions to ClearML. - - This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default, - this information includes hyperparameters, system configuration and metrics, model metrics, code information and - basic data metrics and analyses. - - By providing additional command line arguments to train.py, datasets, - models and predictions can also be logged. - """ - - def __init__(self, opt, hyp): - """ - - Initialize ClearML Task, this object will capture the experiment - - Upload dataset version to ClearML Data if opt.upload_dataset is True - - arguments: - opt (namespace) -- Commandline arguments for this run - hyp (dict) -- Hyperparameters for this run - - """ - self.current_epoch = 0 - # Keep tracked of amount of logged images to enforce a limit - self.current_epoch_logged_images = set() - # Maximum number of images to log to clearML per epoch - self.max_imgs_to_log_per_epoch = 16 - # Get the interval of epochs when bounding box images should be logged - self.bbox_interval = opt.bbox_interval - self.clearml = clearml - self.task = None - self.data_dict = None - if self.clearml: - self.task = Task.init( - project_name='YOLOv5', - task_name='training', - tags=['YOLOv5'], - output_uri=True, - auto_connect_frameworks={'pytorch': False} - # We disconnect pytorch auto-detection, because we added manual model save points in the code - ) - # ClearML's hooks will already grab all general parameters - # Only the hyperparameters coming from the yaml config file - # will have to be added manually! - self.task.connect(hyp, name='Hyperparameters') - - # Get ClearML Dataset Version if requested - if opt.data.startswith('clearml://'): - # data_dict should have the following keys: - # names, nc (number of classes), test, train, val (all three relative paths to ../datasets) - self.data_dict = construct_dataset(opt.data) - # Set data to data_dict because wandb will crash without this information and opt is the best way - # to give it to them - opt.data = self.data_dict - - def log_debug_samples(self, files, title='Debug Samples'): - """ - Log files (images) as debug samples in the ClearML task. - - arguments: - files (List(PosixPath)) a list of file paths in PosixPath format - title (str) A title that groups together images with the same values - """ - for f in files: - if f.exists(): - it = re.search(r'_batch(\d+)', f.name) - iteration = int(it.groups()[0]) if it else 0 - self.task.get_logger().report_image(title=title, - series=f.name.replace(it.group(), ''), - local_path=str(f), - iteration=iteration) - - def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25): - """ - Draw the bounding boxes on a single image and report the result as a ClearML debug sample. - - arguments: - image_path (PosixPath) the path the original image file - boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class] - class_names (dict): dict containing mapping of class int to class name - image (Tensor): A torch tensor containing the actual image data - """ - if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0: - # Log every bbox_interval times and deduplicate for any intermittend extra eval runs - if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images: - im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2)) - annotator = Annotator(im=im, pil=True) - for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])): - color = colors(i) - - class_name = class_names[int(class_nr)] - confidence = round(float(conf) * 100, 2) - label = f"{class_name}: {confidence}%" - - if confidence > conf_threshold: - annotator.rectangle(box.cpu().numpy(), outline=color) - annotator.box_label(box.cpu().numpy(), label=label, color=color) - - annotated_image = annotator.result() - self.task.get_logger().report_image(title='Bounding Boxes', - series=image_path.name, - iteration=self.current_epoch, - image=annotated_image) - self.current_epoch_logged_images.add(image_path) diff --git a/yolov5-6.2/utils/loggers/clearml/hpo.py b/yolov5-6.2/utils/loggers/clearml/hpo.py deleted file mode 100644 index 96c2c544..00000000 --- a/yolov5-6.2/utils/loggers/clearml/hpo.py +++ /dev/null @@ -1,84 +0,0 @@ -from clearml import Task -# Connecting ClearML with the current process, -# from here on everything is logged automatically -from clearml.automation import HyperParameterOptimizer, UniformParameterRange -from clearml.automation.optuna import OptimizerOptuna - -task = Task.init(project_name='Hyper-Parameter Optimization', - task_name='YOLOv5', - task_type=Task.TaskTypes.optimizer, - reuse_last_task_id=False) - -# Example use case: -optimizer = HyperParameterOptimizer( - # This is the experiment we want to optimize - base_task_id='<your_template_task_id>', - # here we define the hyper-parameters to optimize - # Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter> - # For Example, here we see in the base experiment a section Named: "General" - # under it a parameter named "batch_size", this becomes "General/batch_size" - # If you have `argparse` for example, then arguments will appear under the "Args" section, - # and you should instead pass "Args/batch_size" - hyper_parameters=[ - UniformParameterRange('Hyperparameters/lr0', min_value=1e-5, max_value=1e-1), - UniformParameterRange('Hyperparameters/lrf', min_value=0.01, max_value=1.0), - UniformParameterRange('Hyperparameters/momentum', min_value=0.6, max_value=0.98), - UniformParameterRange('Hyperparameters/weight_decay', min_value=0.0, max_value=0.001), - UniformParameterRange('Hyperparameters/warmup_epochs', min_value=0.0, max_value=5.0), - UniformParameterRange('Hyperparameters/warmup_momentum', min_value=0.0, max_value=0.95), - UniformParameterRange('Hyperparameters/warmup_bias_lr', min_value=0.0, max_value=0.2), - UniformParameterRange('Hyperparameters/box', min_value=0.02, max_value=0.2), - UniformParameterRange('Hyperparameters/cls', min_value=0.2, max_value=4.0), - UniformParameterRange('Hyperparameters/cls_pw', min_value=0.5, max_value=2.0), - UniformParameterRange('Hyperparameters/obj', min_value=0.2, max_value=4.0), - UniformParameterRange('Hyperparameters/obj_pw', min_value=0.5, max_value=2.0), - UniformParameterRange('Hyperparameters/iou_t', min_value=0.1, max_value=0.7), - UniformParameterRange('Hyperparameters/anchor_t', min_value=2.0, max_value=8.0), - UniformParameterRange('Hyperparameters/fl_gamma', min_value=0.0, max_value=4.0), - UniformParameterRange('Hyperparameters/hsv_h', min_value=0.0, max_value=0.1), - UniformParameterRange('Hyperparameters/hsv_s', min_value=0.0, max_value=0.9), - UniformParameterRange('Hyperparameters/hsv_v', min_value=0.0, max_value=0.9), - UniformParameterRange('Hyperparameters/degrees', min_value=0.0, max_value=45.0), - UniformParameterRange('Hyperparameters/translate', min_value=0.0, max_value=0.9), - UniformParameterRange('Hyperparameters/scale', min_value=0.0, max_value=0.9), - UniformParameterRange('Hyperparameters/shear', min_value=0.0, max_value=10.0), - UniformParameterRange('Hyperparameters/perspective', min_value=0.0, max_value=0.001), - UniformParameterRange('Hyperparameters/flipud', min_value=0.0, max_value=1.0), - UniformParameterRange('Hyperparameters/fliplr', min_value=0.0, max_value=1.0), - UniformParameterRange('Hyperparameters/mosaic', min_value=0.0, max_value=1.0), - UniformParameterRange('Hyperparameters/mixup', min_value=0.0, max_value=1.0), - UniformParameterRange('Hyperparameters/copy_paste', min_value=0.0, max_value=1.0)], - # this is the objective metric we want to maximize/minimize - objective_metric_title='metrics', - objective_metric_series='mAP_0.5', - # now we decide if we want to maximize it or minimize it (accuracy we maximize) - objective_metric_sign='max', - # let us limit the number of concurrent experiments, - # this in turn will make sure we do dont bombard the scheduler with experiments. - # if we have an auto-scaler connected, this, by proxy, will limit the number of machine - max_number_of_concurrent_tasks=1, - # this is the optimizer class (actually doing the optimization) - # Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band) - optimizer_class=OptimizerOptuna, - # If specified only the top K performing Tasks will be kept, the others will be automatically archived - save_top_k_tasks_only=5, # 5, - compute_time_limit=None, - total_max_jobs=20, - min_iteration_per_job=None, - max_iteration_per_job=None, -) - -# report every 10 seconds, this is way too often, but we are testing here -optimizer.set_report_period(10) -# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent -# an_optimizer.start_locally(job_complete_callback=job_complete_callback) -# set the time limit for the optimization process (2 hours) -optimizer.set_time_limit(in_minutes=120.0) -# Start the optimization process in the local environment -optimizer.start_locally() -# wait until process is done (notice we are controlling the optimization process in the background) -optimizer.wait() -# make sure background optimization stopped -optimizer.stop() - -print('We are done, good bye') diff --git a/yolov5-6.2/utils/loggers/wandb/README.md b/yolov5-6.2/utils/loggers/wandb/README.md deleted file mode 100644 index d78324b4..00000000 --- a/yolov5-6.2/utils/loggers/wandb/README.md +++ /dev/null @@ -1,162 +0,0 @@ -📚 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 🚀. UPDATED 29 September 2021. - -- [About Weights & Biases](#about-weights-&-biases) -- [First-Time Setup](#first-time-setup) -- [Viewing runs](#viewing-runs) -- [Disabling wandb](#disabling-wandb) -- [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage) -- [Reports: Share your work with the world!](#reports) - -## About Weights & Biases - -Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models — architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions. - -Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows: - -- [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time -- [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically -- [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization -- [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators -- [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently -- [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models - -## First-Time Setup - -<details open> - <summary> Toggle Details </summary> -When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device. - -W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as: - -```shell -$ python train.py --project ... --name ... -``` - -YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> -<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png"> - -</details> - -## Viewing Runs - -<details open> - <summary> Toggle Details </summary> -Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged: - -- Training & Validation losses -- Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95 -- Learning Rate over time -- A bounding box debugging panel, showing the training progress over time -- GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage** -- System: Disk I/0, CPU utilization, RAM memory usage -- Your trained model as W&B Artifact -- Environment: OS and Python types, Git repository and state, **training command** - -<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p> -</details> - -## Disabling wandb - -- training after running `wandb disabled` inside that directory creates no wandb run -  - -- To enable wandb again, run `wandb online` -  - -## Advanced Usage - -You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started. - -<details open> - <h3> 1: Train and Log Evaluation simultaneousy </h3> - This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b> - Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets, - so no images will be uploaded from your system more than once. - <details open> - <summary> <b>Usage</b> </summary> - <b>Code</b> <code> $ python train.py --upload_data val</code> - - - -</details> - -<h3>2. Visualize and Version Datasets</h3> - Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact. - <details> - <summary> <b>Usage</b> </summary> - <b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code> - - - -</details> - -<h3> 3: Train using dataset artifact </h3> - When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that - can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b> - <details> - <summary> <b>Usage</b> </summary> - <b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code> - - - -</details> - -<h3> 4: Save model checkpoints as artifacts </h3> - To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval. - You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged - -<details> - <summary> <b>Usage</b> </summary> - <b>Code</b> <code> $ python train.py --save_period 1 </code> - - - -</details> - -</details> - -<h3> 5: Resume runs from checkpoint artifacts. </h3> -Any run can be resumed using artifacts if the <code>--resume</code> argument starts with <code>wandb-artifact://</code> prefix followed by the run path, i.e, <code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system. - -<details> - <summary> <b>Usage</b> </summary> - <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code> - - - -</details> - -<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3> - <b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b> - The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or - train from <code>_wandb.yaml</code> file and set <code>--save_period</code> - -<details> - <summary> <b>Usage</b> </summary> - <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code> - - - -</details> - -</details> - -<h3> Reports </h3> -W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)). - -<img width="900" alt="Weights & Biases Reports" src="https://user-images.githubusercontent.com/26833433/135394029-a17eaf86-c6c1-4b1d-bb80-b90e83aaffa7.png"> - -## Environments - -YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled): - -- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> -- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) -- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart) -- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> - -## Status - - - -If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit. diff --git a/yolov5-6.2/utils/loggers/wandb/__init__.py b/yolov5-6.2/utils/loggers/wandb/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/yolov5-6.2/utils/loggers/wandb/log_dataset.py b/yolov5-6.2/utils/loggers/wandb/log_dataset.py deleted file mode 100644 index 06e81fb6..00000000 --- a/yolov5-6.2/utils/loggers/wandb/log_dataset.py +++ /dev/null @@ -1,27 +0,0 @@ -import argparse - -from wandb_utils import WandbLogger - -from utils.general import LOGGER - -WANDB_ARTIFACT_PREFIX = 'wandb-artifact://' - - -def create_dataset_artifact(opt): - logger = WandbLogger(opt, None, job_type='Dataset Creation') # TODO: return value unused - if not logger.wandb: - LOGGER.info("install wandb using `pip install wandb` to log the dataset") - - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path') - parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') - parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project') - parser.add_argument('--entity', default=None, help='W&B entity') - parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run') - - opt = parser.parse_args() - opt.resume = False # Explicitly disallow resume check for dataset upload job - - create_dataset_artifact(opt) diff --git a/yolov5-6.2/utils/loggers/wandb/sweep.py b/yolov5-6.2/utils/loggers/wandb/sweep.py deleted file mode 100644 index d49ea6f2..00000000 --- a/yolov5-6.2/utils/loggers/wandb/sweep.py +++ /dev/null @@ -1,41 +0,0 @@ -import sys -from pathlib import Path - -import wandb - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[3] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH - -from train import parse_opt, train -from utils.callbacks import Callbacks -from utils.general import increment_path -from utils.torch_utils import select_device - - -def sweep(): - wandb.init() - # Get hyp dict from sweep agent. Copy because train() modifies parameters which confused wandb. - hyp_dict = vars(wandb.config).get("_items").copy() - - # Workaround: get necessary opt args - opt = parse_opt(known=True) - opt.batch_size = hyp_dict.get("batch_size") - opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) - opt.epochs = hyp_dict.get("epochs") - opt.nosave = True - opt.data = hyp_dict.get("data") - opt.weights = str(opt.weights) - opt.cfg = str(opt.cfg) - opt.data = str(opt.data) - opt.hyp = str(opt.hyp) - opt.project = str(opt.project) - device = select_device(opt.device, batch_size=opt.batch_size) - - # train - train(hyp_dict, opt, device, callbacks=Callbacks()) - - -if __name__ == "__main__": - sweep() diff --git a/yolov5-6.2/utils/loggers/wandb/sweep.yaml b/yolov5-6.2/utils/loggers/wandb/sweep.yaml deleted file mode 100644 index 688b1ea0..00000000 --- a/yolov5-6.2/utils/loggers/wandb/sweep.yaml +++ /dev/null @@ -1,143 +0,0 @@ -# Hyperparameters for training -# To set range- -# Provide min and max values as: -# parameter: -# -# min: scalar -# max: scalar -# OR -# -# Set a specific list of search space- -# parameter: -# values: [scalar1, scalar2, scalar3...] -# -# You can use grid, bayesian and hyperopt search strategy -# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration - -program: utils/loggers/wandb/sweep.py -method: random -metric: - name: metrics/mAP_0.5 - goal: maximize - -parameters: - # hyperparameters: set either min, max range or values list - data: - value: "data/coco128.yaml" - batch_size: - values: [64] - epochs: - values: [10] - - lr0: - distribution: uniform - min: 1e-5 - max: 1e-1 - lrf: - distribution: uniform - min: 0.01 - max: 1.0 - momentum: - distribution: uniform - min: 0.6 - max: 0.98 - weight_decay: - distribution: uniform - min: 0.0 - max: 0.001 - warmup_epochs: - distribution: uniform - min: 0.0 - max: 5.0 - warmup_momentum: - distribution: uniform - min: 0.0 - max: 0.95 - warmup_bias_lr: - distribution: uniform - min: 0.0 - max: 0.2 - box: - distribution: uniform - min: 0.02 - max: 0.2 - cls: - distribution: uniform - min: 0.2 - max: 4.0 - cls_pw: - distribution: uniform - min: 0.5 - max: 2.0 - obj: - distribution: uniform - min: 0.2 - max: 4.0 - obj_pw: - distribution: uniform - min: 0.5 - max: 2.0 - iou_t: - distribution: uniform - min: 0.1 - max: 0.7 - anchor_t: - distribution: uniform - min: 2.0 - max: 8.0 - fl_gamma: - distribution: uniform - min: 0.0 - max: 4.0 - hsv_h: - distribution: uniform - min: 0.0 - max: 0.1 - hsv_s: - distribution: uniform - min: 0.0 - max: 0.9 - hsv_v: - distribution: uniform - min: 0.0 - max: 0.9 - degrees: - distribution: uniform - min: 0.0 - max: 45.0 - translate: - distribution: uniform - min: 0.0 - max: 0.9 - scale: - distribution: uniform - min: 0.0 - max: 0.9 - shear: - distribution: uniform - min: 0.0 - max: 10.0 - perspective: - distribution: uniform - min: 0.0 - max: 0.001 - flipud: - distribution: uniform - min: 0.0 - max: 1.0 - fliplr: - distribution: uniform - min: 0.0 - max: 1.0 - mosaic: - distribution: uniform - min: 0.0 - max: 1.0 - mixup: - distribution: uniform - min: 0.0 - max: 1.0 - copy_paste: - distribution: uniform - min: 0.0 - max: 1.0 diff --git a/yolov5-6.2/utils/loggers/wandb/wandb_utils.py b/yolov5-6.2/utils/loggers/wandb/wandb_utils.py deleted file mode 100644 index e850d2ac..00000000 --- a/yolov5-6.2/utils/loggers/wandb/wandb_utils.py +++ /dev/null @@ -1,584 +0,0 @@ -"""Utilities and tools for tracking runs with Weights & Biases.""" - -import logging -import os -import sys -from contextlib import contextmanager -from pathlib import Path -from typing import Dict - -import yaml -from tqdm import tqdm - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[3] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH - -from utils.dataloaders import LoadImagesAndLabels, img2label_paths -from utils.general import LOGGER, check_dataset, check_file - -try: - import wandb - - assert hasattr(wandb, '__version__') # verify package import not local dir -except (ImportError, AssertionError): - wandb = None - -RANK = int(os.getenv('RANK', -1)) -WANDB_ARTIFACT_PREFIX = 'wandb-artifact://' - - -def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX): - return from_string[len(prefix):] - - -def check_wandb_config_file(data_config_file): - wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path - if Path(wandb_config).is_file(): - return wandb_config - return data_config_file - - -def check_wandb_dataset(data_file): - is_trainset_wandb_artifact = False - is_valset_wandb_artifact = False - if isinstance(data_file, dict): - # In that case another dataset manager has already processed it and we don't have to - return data_file - if check_file(data_file) and data_file.endswith('.yaml'): - with open(data_file, errors='ignore') as f: - data_dict = yaml.safe_load(f) - is_trainset_wandb_artifact = isinstance(data_dict['train'], - str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX) - is_valset_wandb_artifact = isinstance(data_dict['val'], - str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX) - if is_trainset_wandb_artifact or is_valset_wandb_artifact: - return data_dict - else: - return check_dataset(data_file) - - -def get_run_info(run_path): - run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX)) - run_id = run_path.stem - project = run_path.parent.stem - entity = run_path.parent.parent.stem - model_artifact_name = 'run_' + run_id + '_model' - return entity, project, run_id, model_artifact_name - - -def check_wandb_resume(opt): - process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None - if isinstance(opt.resume, str): - if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): - if RANK not in [-1, 0]: # For resuming DDP runs - entity, project, run_id, model_artifact_name = get_run_info(opt.resume) - api = wandb.Api() - artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest') - modeldir = artifact.download() - opt.weights = str(Path(modeldir) / "last.pt") - return True - return None - - -def process_wandb_config_ddp_mode(opt): - with open(check_file(opt.data), errors='ignore') as f: - data_dict = yaml.safe_load(f) # data dict - train_dir, val_dir = None, None - if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX): - api = wandb.Api() - train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias) - train_dir = train_artifact.download() - train_path = Path(train_dir) / 'data/images/' - data_dict['train'] = str(train_path) - - if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX): - api = wandb.Api() - val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias) - val_dir = val_artifact.download() - val_path = Path(val_dir) / 'data/images/' - data_dict['val'] = str(val_path) - if train_dir or val_dir: - ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml') - with open(ddp_data_path, 'w') as f: - yaml.safe_dump(data_dict, f) - opt.data = ddp_data_path - - -class WandbLogger(): - """Log training runs, datasets, models, and predictions to Weights & Biases. - - This logger sends information to W&B at wandb.ai. By default, this information - includes hyperparameters, system configuration and metrics, model metrics, - and basic data metrics and analyses. - - By providing additional command line arguments to train.py, datasets, - models and predictions can also be logged. - - For more on how this logger is used, see the Weights & Biases documentation: - https://docs.wandb.com/guides/integrations/yolov5 - """ - - def __init__(self, opt, run_id=None, job_type='Training'): - """ - - Initialize WandbLogger instance - - Upload dataset if opt.upload_dataset is True - - Setup training processes if job_type is 'Training' - - arguments: - opt (namespace) -- Commandline arguments for this run - run_id (str) -- Run ID of W&B run to be resumed - job_type (str) -- To set the job_type for this run - - """ - # Pre-training routine -- - self.job_type = job_type - self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run - self.val_artifact, self.train_artifact = None, None - self.train_artifact_path, self.val_artifact_path = None, None - self.result_artifact = None - self.val_table, self.result_table = None, None - self.bbox_media_panel_images = [] - self.val_table_path_map = None - self.max_imgs_to_log = 16 - self.wandb_artifact_data_dict = None - self.data_dict = None - # It's more elegant to stick to 1 wandb.init call, - # but useful config data is overwritten in the WandbLogger's wandb.init call - if isinstance(opt.resume, str): # checks resume from artifact - if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): - entity, project, run_id, model_artifact_name = get_run_info(opt.resume) - model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name - assert wandb, 'install wandb to resume wandb runs' - # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config - self.wandb_run = wandb.init(id=run_id, - project=project, - entity=entity, - resume='allow', - allow_val_change=True) - opt.resume = model_artifact_name - elif self.wandb: - self.wandb_run = wandb.init(config=opt, - resume="allow", - project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem, - entity=opt.entity, - name=opt.name if opt.name != 'exp' else None, - job_type=job_type, - id=run_id, - allow_val_change=True) if not wandb.run else wandb.run - if self.wandb_run: - if self.job_type == 'Training': - if opt.upload_dataset: - if not opt.resume: - self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt) - - if isinstance(opt.data, dict): - # This means another dataset manager has already processed the dataset info (e.g. ClearML) - # and they will have stored the already processed dict in opt.data - self.data_dict = opt.data - elif opt.resume: - # resume from artifact - if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX): - self.data_dict = dict(self.wandb_run.config.data_dict) - else: # local resume - self.data_dict = check_wandb_dataset(opt.data) - else: - self.data_dict = check_wandb_dataset(opt.data) - self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict - - # write data_dict to config. useful for resuming from artifacts. Do this only when not resuming. - self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict}, allow_val_change=True) - self.setup_training(opt) - - if self.job_type == 'Dataset Creation': - self.wandb_run.config.update({"upload_dataset": True}) - self.data_dict = self.check_and_upload_dataset(opt) - - def check_and_upload_dataset(self, opt): - """ - Check if the dataset format is compatible and upload it as W&B artifact - - arguments: - opt (namespace)-- Commandline arguments for current run - - returns: - Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links. - """ - assert wandb, 'Install wandb to upload dataset' - config_path = self.log_dataset_artifact(opt.data, opt.single_cls, - 'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem) - with open(config_path, errors='ignore') as f: - wandb_data_dict = yaml.safe_load(f) - return wandb_data_dict - - def setup_training(self, opt): - """ - Setup the necessary processes for training YOLO models: - - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX - - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded - - Setup log_dict, initialize bbox_interval - - arguments: - opt (namespace) -- commandline arguments for this run - - """ - self.log_dict, self.current_epoch = {}, 0 - self.bbox_interval = opt.bbox_interval - if isinstance(opt.resume, str): - modeldir, _ = self.download_model_artifact(opt) - if modeldir: - self.weights = Path(modeldir) / "last.pt" - config = self.wandb_run.config - opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str( - self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs,\ - config.hyp, config.imgsz - data_dict = self.data_dict - if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download - self.train_artifact_path, self.train_artifact = self.download_dataset_artifact( - data_dict.get('train'), opt.artifact_alias) - self.val_artifact_path, self.val_artifact = self.download_dataset_artifact( - data_dict.get('val'), opt.artifact_alias) - - if self.train_artifact_path is not None: - train_path = Path(self.train_artifact_path) / 'data/images/' - data_dict['train'] = str(train_path) - if self.val_artifact_path is not None: - val_path = Path(self.val_artifact_path) / 'data/images/' - data_dict['val'] = str(val_path) - - if self.val_artifact is not None: - self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") - columns = ["epoch", "id", "ground truth", "prediction"] - columns.extend(self.data_dict['names']) - self.result_table = wandb.Table(columns) - self.val_table = self.val_artifact.get("val") - if self.val_table_path_map is None: - self.map_val_table_path() - if opt.bbox_interval == -1: - self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1 - if opt.evolve or opt.noplots: - self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval - train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None - # Update the the data_dict to point to local artifacts dir - if train_from_artifact: - self.data_dict = data_dict - - def download_dataset_artifact(self, path, alias): - """ - download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX - - arguments: - path -- path of the dataset to be used for training - alias (str)-- alias of the artifact to be download/used for training - - returns: - (str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset - is found otherwise returns (None, None) - """ - if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX): - artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias) - dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/")) - assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'" - datadir = dataset_artifact.download() - return datadir, dataset_artifact - return None, None - - def download_model_artifact(self, opt): - """ - download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX - - arguments: - opt (namespace) -- Commandline arguments for this run - """ - if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): - model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest") - assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist' - modeldir = model_artifact.download() - # epochs_trained = model_artifact.metadata.get('epochs_trained') - total_epochs = model_artifact.metadata.get('total_epochs') - is_finished = total_epochs is None - assert not is_finished, 'training is finished, can only resume incomplete runs.' - return modeldir, model_artifact - return None, None - - def log_model(self, path, opt, epoch, fitness_score, best_model=False): - """ - Log the model checkpoint as W&B artifact - - arguments: - path (Path) -- Path of directory containing the checkpoints - opt (namespace) -- Command line arguments for this run - epoch (int) -- Current epoch number - fitness_score (float) -- fitness score for current epoch - best_model (boolean) -- Boolean representing if the current checkpoint is the best yet. - """ - model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', - type='model', - metadata={ - 'original_url': str(path), - 'epochs_trained': epoch + 1, - 'save period': opt.save_period, - 'project': opt.project, - 'total_epochs': opt.epochs, - 'fitness_score': fitness_score}) - model_artifact.add_file(str(path / 'last.pt'), name='last.pt') - wandb.log_artifact(model_artifact, - aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else '']) - LOGGER.info(f"Saving model artifact on epoch {epoch + 1}") - - def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False): - """ - Log the dataset as W&B artifact and return the new data file with W&B links - - arguments: - data_file (str) -- the .yaml file with information about the dataset like - path, classes etc. - single_class (boolean) -- train multi-class data as single-class - project (str) -- project name. Used to construct the artifact path - overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new - file with _wandb postfix. Eg -> data_wandb.yaml - - returns: - the new .yaml file with artifact links. it can be used to start training directly from artifacts - """ - upload_dataset = self.wandb_run.config.upload_dataset - log_val_only = isinstance(upload_dataset, str) and upload_dataset == 'val' - self.data_dict = check_dataset(data_file) # parse and check - data = dict(self.data_dict) - nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names']) - names = {k: v for k, v in enumerate(names)} # to index dictionary - - # log train set - if not log_val_only: - self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(data['train'], rect=True, batch_size=1), - names, - name='train') if data.get('train') else None - if data.get('train'): - data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train') - - self.val_artifact = self.create_dataset_table( - LoadImagesAndLabels(data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None - if data.get('val'): - data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val') - - path = Path(data_file) - # create a _wandb.yaml file with artifacts links if both train and test set are logged - if not log_val_only: - path = (path.stem if overwrite_config else path.stem + '_wandb') + '.yaml' # updated data.yaml path - path = ROOT / 'data' / path - data.pop('download', None) - data.pop('path', None) - with open(path, 'w') as f: - yaml.safe_dump(data, f) - LOGGER.info(f"Created dataset config file {path}") - - if self.job_type == 'Training': # builds correct artifact pipeline graph - if not log_val_only: - self.wandb_run.log_artifact( - self.train_artifact) # calling use_artifact downloads the dataset. NOT NEEDED! - self.wandb_run.use_artifact(self.val_artifact) - self.val_artifact.wait() - self.val_table = self.val_artifact.get('val') - self.map_val_table_path() - else: - self.wandb_run.log_artifact(self.train_artifact) - self.wandb_run.log_artifact(self.val_artifact) - return path - - def map_val_table_path(self): - """ - Map the validation dataset Table like name of file -> it's id in the W&B Table. - Useful for - referencing artifacts for evaluation. - """ - self.val_table_path_map = {} - LOGGER.info("Mapping dataset") - for i, data in enumerate(tqdm(self.val_table.data)): - self.val_table_path_map[data[3]] = data[0] - - def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[int, str], name: str = 'dataset'): - """ - Create and return W&B artifact containing W&B Table of the dataset. - - arguments: - dataset -- instance of LoadImagesAndLabels class used to iterate over the data to build Table - class_to_id -- hash map that maps class ids to labels - name -- name of the artifact - - returns: - dataset artifact to be logged or used - """ - # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging - artifact = wandb.Artifact(name=name, type="dataset") - img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None - img_files = tqdm(dataset.im_files) if not img_files else img_files - for img_file in img_files: - if Path(img_file).is_dir(): - artifact.add_dir(img_file, name='data/images') - labels_path = 'labels'.join(dataset.path.rsplit('images', 1)) - artifact.add_dir(labels_path, name='data/labels') - else: - artifact.add_file(img_file, name='data/images/' + Path(img_file).name) - label_file = Path(img2label_paths([img_file])[0]) - artifact.add_file(str(label_file), name='data/labels/' + - label_file.name) if label_file.exists() else None - table = wandb.Table(columns=["id", "train_image", "Classes", "name"]) - class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()]) - for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)): - box_data, img_classes = [], {} - for cls, *xywh in labels[:, 1:].tolist(): - cls = int(cls) - box_data.append({ - "position": { - "middle": [xywh[0], xywh[1]], - "width": xywh[2], - "height": xywh[3]}, - "class_id": cls, - "box_caption": "%s" % (class_to_id[cls])}) - img_classes[cls] = class_to_id[cls] - boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space - table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()), - Path(paths).name) - artifact.add(table, name) - return artifact - - def log_training_progress(self, predn, path, names): - """ - Build evaluation Table. Uses reference from validation dataset table. - - arguments: - predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class] - path (str): local path of the current evaluation image - names (dict(int, str)): hash map that maps class ids to labels - """ - class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()]) - box_data = [] - avg_conf_per_class = [0] * len(self.data_dict['names']) - pred_class_count = {} - for *xyxy, conf, cls in predn.tolist(): - if conf >= 0.25: - cls = int(cls) - box_data.append({ - "position": { - "minX": xyxy[0], - "minY": xyxy[1], - "maxX": xyxy[2], - "maxY": xyxy[3]}, - "class_id": cls, - "box_caption": f"{names[cls]} {conf:.3f}", - "scores": { - "class_score": conf}, - "domain": "pixel"}) - avg_conf_per_class[cls] += conf - - if cls in pred_class_count: - pred_class_count[cls] += 1 - else: - pred_class_count[cls] = 1 - - for pred_class in pred_class_count.keys(): - avg_conf_per_class[pred_class] = avg_conf_per_class[pred_class] / pred_class_count[pred_class] - - boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space - id = self.val_table_path_map[Path(path).name] - self.result_table.add_data(self.current_epoch, id, self.val_table.data[id][1], - wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set), - *avg_conf_per_class) - - def val_one_image(self, pred, predn, path, names, im): - """ - Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel - - arguments: - pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class] - predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class] - path (str): local path of the current evaluation image - """ - if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact - self.log_training_progress(predn, path, names) - - if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0: - if self.current_epoch % self.bbox_interval == 0: - box_data = [{ - "position": { - "minX": xyxy[0], - "minY": xyxy[1], - "maxX": xyxy[2], - "maxY": xyxy[3]}, - "class_id": int(cls), - "box_caption": f"{names[int(cls)]} {conf:.3f}", - "scores": { - "class_score": conf}, - "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] - boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space - self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name)) - - def log(self, log_dict): - """ - save the metrics to the logging dictionary - - arguments: - log_dict (Dict) -- metrics/media to be logged in current step - """ - if self.wandb_run: - for key, value in log_dict.items(): - self.log_dict[key] = value - - def end_epoch(self, best_result=False): - """ - commit the log_dict, model artifacts and Tables to W&B and flush the log_dict. - - arguments: - best_result (boolean): Boolean representing if the result of this evaluation is best or not - """ - if self.wandb_run: - with all_logging_disabled(): - if self.bbox_media_panel_images: - self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images - try: - wandb.log(self.log_dict) - except BaseException as e: - LOGGER.info( - f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}" - ) - self.wandb_run.finish() - self.wandb_run = None - - self.log_dict = {} - self.bbox_media_panel_images = [] - if self.result_artifact: - self.result_artifact.add(self.result_table, 'result') - wandb.log_artifact(self.result_artifact, - aliases=[ - 'latest', 'last', 'epoch ' + str(self.current_epoch), - ('best' if best_result else '')]) - - wandb.log({"evaluation": self.result_table}) - columns = ["epoch", "id", "ground truth", "prediction"] - columns.extend(self.data_dict['names']) - self.result_table = wandb.Table(columns) - self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") - - def finish_run(self): - """ - Log metrics if any and finish the current W&B run - """ - if self.wandb_run: - if self.log_dict: - with all_logging_disabled(): - wandb.log(self.log_dict) - wandb.run.finish() - - -@contextmanager -def all_logging_disabled(highest_level=logging.CRITICAL): - """ source - https://gist.github.com/simon-weber/7853144 - A context manager that will prevent any logging messages triggered during the body from being processed. - :param highest_level: the maximum logging level in use. - This would only need to be changed if a custom level greater than CRITICAL is defined. - """ - previous_level = logging.root.manager.disable - logging.disable(highest_level) - try: - yield - finally: - logging.disable(previous_level) diff --git a/yolov5-6.2/utils/loss.py b/yolov5-6.2/utils/loss.py deleted file mode 100644 index 9b9c3d9f..00000000 --- a/yolov5-6.2/utils/loss.py +++ /dev/null @@ -1,234 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Loss functions -""" - -import torch -import torch.nn as nn - -from utils.metrics import bbox_iou -from utils.torch_utils import de_parallel - - -def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 - # return positive, negative label smoothing BCE targets - return 1.0 - 0.5 * eps, 0.5 * eps - - -class BCEBlurWithLogitsLoss(nn.Module): - # BCEwithLogitLoss() with reduced missing label effects. - def __init__(self, alpha=0.05): - super().__init__() - self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() - self.alpha = alpha - - def forward(self, pred, true): - loss = self.loss_fcn(pred, true) - pred = torch.sigmoid(pred) # prob from logits - dx = pred - true # reduce only missing label effects - # dx = (pred - true).abs() # reduce missing label and false label effects - alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) - loss *= alpha_factor - return loss.mean() - - -class FocalLoss(nn.Module): - # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) - def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): - super().__init__() - self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() - self.gamma = gamma - self.alpha = alpha - self.reduction = loss_fcn.reduction - self.loss_fcn.reduction = 'none' # required to apply FL to each element - - def forward(self, pred, true): - loss = self.loss_fcn(pred, true) - # p_t = torch.exp(-loss) - # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability - - # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py - pred_prob = torch.sigmoid(pred) # prob from logits - p_t = true * pred_prob + (1 - true) * (1 - pred_prob) - alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) - modulating_factor = (1.0 - p_t) ** self.gamma - loss *= alpha_factor * modulating_factor - - if self.reduction == 'mean': - return loss.mean() - elif self.reduction == 'sum': - return loss.sum() - else: # 'none' - return loss - - -class QFocalLoss(nn.Module): - # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) - def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): - super().__init__() - self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() - self.gamma = gamma - self.alpha = alpha - self.reduction = loss_fcn.reduction - self.loss_fcn.reduction = 'none' # required to apply FL to each element - - def forward(self, pred, true): - loss = self.loss_fcn(pred, true) - - pred_prob = torch.sigmoid(pred) # prob from logits - alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) - modulating_factor = torch.abs(true - pred_prob) ** self.gamma - loss *= alpha_factor * modulating_factor - - if self.reduction == 'mean': - return loss.mean() - elif self.reduction == 'sum': - return loss.sum() - else: # 'none' - return loss - - -class ComputeLoss: - sort_obj_iou = False - - # Compute losses - def __init__(self, model, autobalance=False): - device = next(model.parameters()).device # get model device - h = model.hyp # hyperparameters - - # Define criteria - BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) - BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) - - # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 - self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets - - # Focal loss - g = h['fl_gamma'] # focal loss gamma - if g > 0: - BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) - - m = de_parallel(model).model[-1] # Detect() module - self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 - self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index - self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance - self.na = m.na # number of anchors - self.nc = m.nc # number of classes - self.nl = m.nl # number of layers - self.anchors = m.anchors - self.device = device - - def __call__(self, p, targets): # predictions, targets - lcls = torch.zeros(1, device=self.device) # class loss - lbox = torch.zeros(1, device=self.device) # box loss - lobj = torch.zeros(1, device=self.device) # object loss - tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets - - # Losses - for i, pi in enumerate(p): # layer index, layer predictions - b, a, gj, gi = indices[i] # image, anchor, gridy, gridx - tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj - - n = b.shape[0] # number of targets - if n: - # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0 - pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions - - # Regression - pxy = pxy.sigmoid() * 2 - 0.5 - pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] - pbox = torch.cat((pxy, pwh), 1) # predicted box - iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target) - lbox += (1.0 - iou).mean() # iou loss - - # Objectness - iou = iou.detach().clamp(0).type(tobj.dtype) - if self.sort_obj_iou: - j = iou.argsort() - b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j] - if self.gr < 1: - iou = (1.0 - self.gr) + self.gr * iou - tobj[b, a, gj, gi] = iou # iou ratio - - # Classification - if self.nc > 1: # cls loss (only if multiple classes) - t = torch.full_like(pcls, self.cn, device=self.device) # targets - t[range(n), tcls[i]] = self.cp - lcls += self.BCEcls(pcls, t) # BCE - - # Append targets to text file - # with open('targets.txt', 'a') as file: - # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] - - obji = self.BCEobj(pi[..., 4], tobj) - lobj += obji * self.balance[i] # obj loss - if self.autobalance: - self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() - - if self.autobalance: - self.balance = [x / self.balance[self.ssi] for x in self.balance] - lbox *= self.hyp['box'] - lobj *= self.hyp['obj'] - lcls *= self.hyp['cls'] - bs = tobj.shape[0] # batch size - - return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach() - - def build_targets(self, p, targets): - # Build targets for compute_loss(), input targets(image,class,x,y,w,h) - na, nt = self.na, targets.shape[0] # number of anchors, targets - tcls, tbox, indices, anch = [], [], [], [] - gain = torch.ones(7, device=self.device) # normalized to gridspace gain - ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) - targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices - - g = 0.5 # bias - off = torch.tensor( - [ - [0, 0], - [1, 0], - [0, 1], - [-1, 0], - [0, -1], # j,k,l,m - # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm - ], - device=self.device).float() * g # offsets - - for i in range(self.nl): - anchors, shape = self.anchors[i], p[i].shape - gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain - - # Match targets to anchors - t = targets * gain # shape(3,n,7) - if nt: - # Matches - r = t[..., 4:6] / anchors[:, None] # wh ratio - j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare - # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) - t = t[j] # filter - - # Offsets - gxy = t[:, 2:4] # grid xy - gxi = gain[[2, 3]] - gxy # inverse - j, k = ((gxy % 1 < g) & (gxy > 1)).T - l, m = ((gxi % 1 < g) & (gxi > 1)).T - j = torch.stack((torch.ones_like(j), j, k, l, m)) - t = t.repeat((5, 1, 1))[j] - offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] - else: - t = targets[0] - offsets = 0 - - # Define - bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors - a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class - gij = (gxy - offsets).long() - gi, gj = gij.T # grid indices - - # Append - indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid - tbox.append(torch.cat((gxy - gij, gwh), 1)) # box - anch.append(anchors[a]) # anchors - tcls.append(c) # class - - return tcls, tbox, indices, anch diff --git a/yolov5-6.2/utils/metrics.py b/yolov5-6.2/utils/metrics.py deleted file mode 100644 index 08880cd3..00000000 --- a/yolov5-6.2/utils/metrics.py +++ /dev/null @@ -1,364 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Model validation metrics -""" - -import math -import warnings -from pathlib import Path - -import matplotlib.pyplot as plt -import numpy as np -import torch - - -def fitness(x): - # Model fitness as a weighted combination of metrics - w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] - return (x[:, :4] * w).sum(1) - - -def smooth(y, f=0.05): - # Box filter of fraction f - nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd) - p = np.ones(nf // 2) # ones padding - yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded - return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed - - -def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16): - """ Compute the average precision, given the recall and precision curves. - Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. - # Arguments - tp: True positives (nparray, nx1 or nx10). - conf: Objectness value from 0-1 (nparray). - pred_cls: Predicted object classes (nparray). - target_cls: True object classes (nparray). - plot: Plot precision-recall curve at mAP@0.5 - save_dir: Plot save directory - # Returns - The average precision as computed in py-faster-rcnn. - """ - - # Sort by objectness - i = np.argsort(-conf) - tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] - - # Find unique classes - unique_classes, nt = np.unique(target_cls, return_counts=True) - nc = unique_classes.shape[0] # number of classes, number of detections - - # Create Precision-Recall curve and compute AP for each class - px, py = np.linspace(0, 1, 1000), [] # for plotting - ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) - for ci, c in enumerate(unique_classes): - i = pred_cls == c - n_l = nt[ci] # number of labels - n_p = i.sum() # number of predictions - if n_p == 0 or n_l == 0: - continue - - # Accumulate FPs and TPs - fpc = (1 - tp[i]).cumsum(0) - tpc = tp[i].cumsum(0) - - # Recall - recall = tpc / (n_l + eps) # recall curve - r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases - - # Precision - precision = tpc / (tpc + fpc) # precision curve - p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score - - # AP from recall-precision curve - for j in range(tp.shape[1]): - ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) - if plot and j == 0: - py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 - - # Compute F1 (harmonic mean of precision and recall) - f1 = 2 * p * r / (p + r + eps) - names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data - names = dict(enumerate(names)) # to dict - if plot: - plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names) - plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1') - plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision') - plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall') - - i = smooth(f1.mean(0), 0.1).argmax() # max F1 index - p, r, f1 = p[:, i], r[:, i], f1[:, i] - tp = (r * nt).round() # true positives - fp = (tp / (p + eps) - tp).round() # false positives - return tp, fp, p, r, f1, ap, unique_classes.astype(int) - - -def compute_ap(recall, precision): - """ Compute the average precision, given the recall and precision curves - # Arguments - recall: The recall curve (list) - precision: The precision curve (list) - # Returns - Average precision, precision curve, recall curve - """ - - # Append sentinel values to beginning and end - mrec = np.concatenate(([0.0], recall, [1.0])) - mpre = np.concatenate(([1.0], precision, [0.0])) - - # Compute the precision envelope - mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) - - # Integrate area under curve - method = 'interp' # methods: 'continuous', 'interp' - if method == 'interp': - x = np.linspace(0, 1, 101) # 101-point interp (COCO) - ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate - else: # 'continuous' - i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes - ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve - - return ap, mpre, mrec - - -class ConfusionMatrix: - # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix - def __init__(self, nc, conf=0.25, iou_thres=0.45): - self.matrix = np.zeros((nc + 1, nc + 1)) - self.nc = nc # number of classes - self.conf = conf - self.iou_thres = iou_thres - - def process_batch(self, detections, labels): - """ - Return intersection-over-union (Jaccard index) of boxes. - Both sets of boxes are expected to be in (x1, y1, x2, y2) format. - Arguments: - detections (Array[N, 6]), x1, y1, x2, y2, conf, class - labels (Array[M, 5]), class, x1, y1, x2, y2 - Returns: - None, updates confusion matrix accordingly - """ - if detections is None: - gt_classes = labels.int() - for i, gc in enumerate(gt_classes): - self.matrix[self.nc, gc] += 1 # background FN - return - - detections = detections[detections[:, 4] > self.conf] - gt_classes = labels[:, 0].int() - detection_classes = detections[:, 5].int() - iou = box_iou(labels[:, 1:], detections[:, :4]) - - x = torch.where(iou > self.iou_thres) - if x[0].shape[0]: - matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() - if x[0].shape[0] > 1: - matches = matches[matches[:, 2].argsort()[::-1]] - matches = matches[np.unique(matches[:, 1], return_index=True)[1]] - matches = matches[matches[:, 2].argsort()[::-1]] - matches = matches[np.unique(matches[:, 0], return_index=True)[1]] - else: - matches = np.zeros((0, 3)) - - n = matches.shape[0] > 0 - m0, m1, _ = matches.transpose().astype(int) - for i, gc in enumerate(gt_classes): - j = m0 == i - if n and sum(j) == 1: - self.matrix[detection_classes[m1[j]], gc] += 1 # correct - else: - self.matrix[self.nc, gc] += 1 # background FP - - if n: - for i, dc in enumerate(detection_classes): - if not any(m1 == i): - self.matrix[dc, self.nc] += 1 # background FN - - def matrix(self): - return self.matrix - - def tp_fp(self): - tp = self.matrix.diagonal() # true positives - fp = self.matrix.sum(1) - tp # false positives - # fn = self.matrix.sum(0) - tp # false negatives (missed detections) - return tp[:-1], fp[:-1] # remove background class - - def plot(self, normalize=True, save_dir='', names=()): - try: - import seaborn as sn - - array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns - array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) - - fig = plt.figure(figsize=(12, 9), tight_layout=True) - nc, nn = self.nc, len(names) # number of classes, names - sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size - labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels - with warnings.catch_warnings(): - warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered - sn.heatmap(array, - annot=nc < 30, - annot_kws={ - "size": 8}, - cmap='Blues', - fmt='.2f', - square=True, - vmin=0.0, - xticklabels=names + ['background FP'] if labels else "auto", - yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1)) - fig.axes[0].set_xlabel('True') - fig.axes[0].set_ylabel('Predicted') - plt.title('Confusion Matrix') - fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) - plt.close() - except Exception as e: - print(f'WARNING: ConfusionMatrix plot failure: {e}') - - def print(self): - for i in range(self.nc + 1): - print(' '.join(map(str, self.matrix[i]))) - - -def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): - # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4) - - # Get the coordinates of bounding boxes - if xywh: # transform from xywh to xyxy - (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, 1), box2.chunk(4, 1) - w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 - b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ - b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ - else: # x1, y1, x2, y2 = box1 - b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, 1) - b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, 1) - w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 - w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 - - # Intersection area - inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ - (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) - - # Union Area - union = w1 * h1 + w2 * h2 - inter + eps - - # IoU - iou = inter / union - if CIoU or DIoU or GIoU: - cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width - ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height - if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 - c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared - rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 - if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 - v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2) - with torch.no_grad(): - alpha = v / (v - iou + (1 + eps)) - return iou - (rho2 / c2 + v * alpha) # CIoU - return iou - rho2 / c2 # DIoU - c_area = cw * ch + eps # convex area - return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf - return iou # IoU - - -def box_area(box): - # box = xyxy(4,n) - return (box[2] - box[0]) * (box[3] - box[1]) - - -def box_iou(box1, box2, eps=1e-7): - # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py - """ - Return intersection-over-union (Jaccard index) of boxes. - Both sets of boxes are expected to be in (x1, y1, x2, y2) format. - Arguments: - box1 (Tensor[N, 4]) - box2 (Tensor[M, 4]) - Returns: - iou (Tensor[N, M]): the NxM matrix containing the pairwise - IoU values for every element in boxes1 and boxes2 - """ - - # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) - (a1, a2), (b1, b2) = box1[:, None].chunk(2, 2), box2.chunk(2, 1) - inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2) - - # IoU = inter / (area1 + area2 - inter) - return inter / (box_area(box1.T)[:, None] + box_area(box2.T) - inter + eps) - - -def bbox_ioa(box1, box2, eps=1e-7): - """ Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2 - box1: np.array of shape(4) - box2: np.array of shape(nx4) - returns: np.array of shape(n) - """ - - # Get the coordinates of bounding boxes - b1_x1, b1_y1, b1_x2, b1_y2 = box1 - b2_x1, b2_y1, b2_x2, b2_y2 = box2.T - - # Intersection area - inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ - (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) - - # box2 area - box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps - - # Intersection over box2 area - return inter_area / box2_area - - -def wh_iou(wh1, wh2, eps=1e-7): - # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 - wh1 = wh1[:, None] # [N,1,2] - wh2 = wh2[None] # [1,M,2] - inter = torch.min(wh1, wh2).prod(2) # [N,M] - return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter) - - -# Plots ---------------------------------------------------------------------------------------------------------------- - - -def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()): - # Precision-recall curve - fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) - py = np.stack(py, axis=1) - - if 0 < len(names) < 21: # display per-class legend if < 21 classes - for i, y in enumerate(py.T): - ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision) - else: - ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) - - ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) - ax.set_xlabel('Recall') - ax.set_ylabel('Precision') - ax.set_xlim(0, 1) - ax.set_ylim(0, 1) - plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") - plt.title('Precision-Recall Curve') - fig.savefig(save_dir, dpi=250) - plt.close() - - -def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'): - # Metric-confidence curve - fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) - - if 0 < len(names) < 21: # display per-class legend if < 21 classes - for i, y in enumerate(py): - ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric) - else: - ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric) - - y = smooth(py.mean(0), 0.05) - ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') - ax.set_xlabel(xlabel) - ax.set_ylabel(ylabel) - ax.set_xlim(0, 1) - ax.set_ylim(0, 1) - plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") - plt.title(f'{ylabel}-Confidence Curve') - fig.savefig(save_dir, dpi=250) - plt.close() diff --git a/yolov5-6.2/utils/plots.py b/yolov5-6.2/utils/plots.py deleted file mode 100644 index 5df27a34..00000000 --- a/yolov5-6.2/utils/plots.py +++ /dev/null @@ -1,522 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Plotting utils -""" - -import math -import os -from copy import copy -from pathlib import Path -from urllib.error import URLError - -import cv2 -import matplotlib -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -import seaborn as sn -import torch -from PIL import Image, ImageDraw, ImageFont - -from utils.general import (CONFIG_DIR, FONT, LOGGER, Timeout, check_font, check_requirements, clip_coords, - increment_path, is_ascii, threaded, try_except, xywh2xyxy, xyxy2xywh) -from utils.metrics import fitness - -# Settings -RANK = int(os.getenv('RANK', -1)) -matplotlib.rc('font', **{'size': 11}) -matplotlib.use('Agg') # for writing to files only - - -class Colors: - # Ultralytics color palette https://ultralytics.com/ - def __init__(self): - # hex = matplotlib.colors.TABLEAU_COLORS.values() - hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', - '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') - self.palette = [self.hex2rgb(f'#{c}') for c in hexs] - self.n = len(self.palette) - - def __call__(self, i, bgr=False): - c = self.palette[int(i) % self.n] - return (c[2], c[1], c[0]) if bgr else c - - @staticmethod - def hex2rgb(h): # rgb order (PIL) - return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) - - -colors = Colors() # create instance for 'from utils.plots import colors' - - -def check_pil_font(font=FONT, size=10): - # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary - font = Path(font) - font = font if font.exists() else (CONFIG_DIR / font.name) - try: - return ImageFont.truetype(str(font) if font.exists() else font.name, size) - except Exception: # download if missing - try: - check_font(font) - return ImageFont.truetype(str(font), size) - except TypeError: - check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374 - except URLError: # not online - return ImageFont.load_default() - - -class Annotator: - # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations - def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): - assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' - non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic - self.pil = pil or non_ascii - if self.pil: # use PIL - self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) - self.draw = ImageDraw.Draw(self.im) - self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font, - size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)) - else: # use cv2 - self.im = im - self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width - - def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): - # Add one xyxy box to image with label - if self.pil or not is_ascii(label): - self.draw.rectangle(box, width=self.lw, outline=color) # box - if label: - w, h = self.font.getsize(label) # text width, height - outside = box[1] - h >= 0 # label fits outside box - self.draw.rectangle( - (box[0], box[1] - h if outside else box[1], box[0] + w + 1, - box[1] + 1 if outside else box[1] + h + 1), - fill=color, - ) - # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0 - self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font) - else: # cv2 - p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) - center = (int((box[0]+box[2])/2),int((box[1]+box[3])/2)) - cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) - if label: - tf = max(self.lw - 1, 1) # font thickness - w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height - outside = p1[1] - h >= 3 - p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 - cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled - cv2.putText(self.im, - label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), - 0, - self.lw / 3, - txt_color, - thickness=tf, - lineType=cv2.LINE_AA) - cv2.putText(self.im, "("+str(center[0])+","+str(center[1])+")", (p1[0]+5, p1[1] -50 if outside else p1[1] + h + 2), 2, self.lw / 3, txt_color, - thickness=tf, lineType=cv2.LINE_AA) - - def rectangle(self, xy, fill=None, outline=None, width=1): - # Add rectangle to image (PIL-only) - self.draw.rectangle(xy, fill, outline, width) - - def text(self, xy, text, txt_color=(255, 255, 255)): - # Add text to image (PIL-only) - w, h = self.font.getsize(text) # text width, height - self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font) - - def result(self): - # Return annotated image as array - return np.asarray(self.im) - - -def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')): - """ - x: Features to be visualized - module_type: Module type - stage: Module stage within model - n: Maximum number of feature maps to plot - save_dir: Directory to save results - """ - if 'Detect' not in module_type: - batch, channels, height, width = x.shape # batch, channels, height, width - if height > 1 and width > 1: - f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename - - blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels - n = min(n, channels) # number of plots - fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols - ax = ax.ravel() - plt.subplots_adjust(wspace=0.05, hspace=0.05) - for i in range(n): - ax[i].imshow(blocks[i].squeeze()) # cmap='gray' - ax[i].axis('off') - - LOGGER.info(f'Saving {f}... ({n}/{channels})') - plt.title('Features') - plt.savefig(f, dpi=300, bbox_inches='tight') - plt.close() - np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save - - -def hist2d(x, y, n=100): - # 2d histogram used in labels.png and evolve.png - xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) - hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) - xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) - yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) - return np.log(hist[xidx, yidx]) - - -def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): - from scipy.signal import butter, filtfilt - - # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy - def butter_lowpass(cutoff, fs, order): - nyq = 0.5 * fs - normal_cutoff = cutoff / nyq - return butter(order, normal_cutoff, btype='low', analog=False) - - b, a = butter_lowpass(cutoff, fs, order=order) - return filtfilt(b, a, data) # forward-backward filter - - -def output_to_target(output): - # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] - targets = [] - for i, o in enumerate(output): - for *box, conf, cls in o.cpu().numpy(): - targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf]) - return np.array(targets) - - -@threaded -def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16): - # Plot image grid with labels - if isinstance(images, torch.Tensor): - images = images.cpu().float().numpy() - if isinstance(targets, torch.Tensor): - targets = targets.cpu().numpy() - if np.max(images[0]) <= 1: - images *= 255 # de-normalise (optional) - bs, _, h, w = images.shape # batch size, _, height, width - bs = min(bs, max_subplots) # limit plot images - ns = np.ceil(bs ** 0.5) # number of subplots (square) - - # Build Image - mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init - for i, im in enumerate(images): - if i == max_subplots: # if last batch has fewer images than we expect - break - x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin - im = im.transpose(1, 2, 0) - mosaic[y:y + h, x:x + w, :] = im - - # Resize (optional) - scale = max_size / ns / max(h, w) - if scale < 1: - h = math.ceil(scale * h) - w = math.ceil(scale * w) - mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) - - # Annotate - fs = int((h + w) * ns * 0.01) # font size - annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) - for i in range(i + 1): - x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin - annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders - if paths: - annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames - if len(targets) > 0: - ti = targets[targets[:, 0] == i] # image targets - boxes = xywh2xyxy(ti[:, 2:6]).T - classes = ti[:, 1].astype('int') - labels = ti.shape[1] == 6 # labels if no conf column - conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred) - - if boxes.shape[1]: - if boxes.max() <= 1.01: # if normalized with tolerance 0.01 - boxes[[0, 2]] *= w # scale to pixels - boxes[[1, 3]] *= h - elif scale < 1: # absolute coords need scale if image scales - boxes *= scale - boxes[[0, 2]] += x - boxes[[1, 3]] += y - for j, box in enumerate(boxes.T.tolist()): - cls = classes[j] - color = colors(cls) - cls = names[cls] if names else cls - if labels or conf[j] > 0.25: # 0.25 conf thresh - label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}' - annotator.box_label(box, label, color=color) - annotator.im.save(fname) # save - - -def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): - # Plot LR simulating training for full epochs - optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals - y = [] - for _ in range(epochs): - scheduler.step() - y.append(optimizer.param_groups[0]['lr']) - plt.plot(y, '.-', label='LR') - plt.xlabel('epoch') - plt.ylabel('LR') - plt.grid() - plt.xlim(0, epochs) - plt.ylim(0) - plt.savefig(Path(save_dir) / 'LR.png', dpi=200) - plt.close() - - -def plot_val_txt(): # from utils.plots import *; plot_val() - # Plot val.txt histograms - x = np.loadtxt('val.txt', dtype=np.float32) - box = xyxy2xywh(x[:, :4]) - cx, cy = box[:, 0], box[:, 1] - - fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) - ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) - ax.set_aspect('equal') - plt.savefig('hist2d.png', dpi=300) - - fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) - ax[0].hist(cx, bins=600) - ax[1].hist(cy, bins=600) - plt.savefig('hist1d.png', dpi=200) - - -def plot_targets_txt(): # from utils.plots import *; plot_targets_txt() - # Plot targets.txt histograms - x = np.loadtxt('targets.txt', dtype=np.float32).T - s = ['x targets', 'y targets', 'width targets', 'height targets'] - fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) - ax = ax.ravel() - for i in range(4): - ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}') - ax[i].legend() - ax[i].set_title(s[i]) - plt.savefig('targets.jpg', dpi=200) - - -def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study() - # Plot file=study.txt generated by val.py (or plot all study*.txt in dir) - save_dir = Path(file).parent if file else Path(dir) - plot2 = False # plot additional results - if plot2: - ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel() - - fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) - # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]: - for f in sorted(save_dir.glob('study*.txt')): - y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T - x = np.arange(y.shape[1]) if x is None else np.array(x) - if plot2: - s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)'] - for i in range(7): - ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) - ax[i].set_title(s[i]) - - j = y[3].argmax() + 1 - ax2.plot(y[5, 1:j], - y[3, 1:j] * 1E2, - '.-', - linewidth=2, - markersize=8, - label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO')) - - ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], - 'k.-', - linewidth=2, - markersize=8, - alpha=.25, - label='EfficientDet') - - ax2.grid(alpha=0.2) - ax2.set_yticks(np.arange(20, 60, 5)) - ax2.set_xlim(0, 57) - ax2.set_ylim(25, 55) - ax2.set_xlabel('GPU Speed (ms/img)') - ax2.set_ylabel('COCO AP val') - ax2.legend(loc='lower right') - f = save_dir / 'study.png' - print(f'Saving {f}...') - plt.savefig(f, dpi=300) - - -@try_except # known issue https://github.com/ultralytics/yolov5/issues/5395 -@Timeout(30) # known issue https://github.com/ultralytics/yolov5/issues/5611 -def plot_labels(labels, names=(), save_dir=Path('')): - # plot dataset labels - LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") - c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes - nc = int(c.max() + 1) # number of classes - x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) - - # seaborn correlogram - sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) - plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) - plt.close() - - # matplotlib labels - matplotlib.use('svg') # faster - ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() - y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) - try: # color histogram bars by class - [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195 - except Exception: - pass - ax[0].set_ylabel('instances') - if 0 < len(names) < 30: - ax[0].set_xticks(range(len(names))) - ax[0].set_xticklabels(names, rotation=90, fontsize=10) - else: - ax[0].set_xlabel('classes') - sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) - sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) - - # rectangles - labels[:, 1:3] = 0.5 # center - labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 - img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) - for cls, *box in labels[:1000]: - ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot - ax[1].imshow(img) - ax[1].axis('off') - - for a in [0, 1, 2, 3]: - for s in ['top', 'right', 'left', 'bottom']: - ax[a].spines[s].set_visible(False) - - plt.savefig(save_dir / 'labels.jpg', dpi=200) - matplotlib.use('Agg') - plt.close() - - -def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path('images.jpg')): - # Show classification image grid with labels (optional) and predictions (optional) - from utils.augmentations import denormalize - - names = names or [f'class{i}' for i in range(1000)] - blocks = torch.chunk(denormalize(im.clone()).cpu().float(), len(im), - dim=0) # select batch index 0, block by channels - n = min(len(blocks), nmax) # number of plots - m = min(8, round(n ** 0.5)) # 8 x 8 default - fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols - ax = ax.ravel() if m > 1 else [ax] - # plt.subplots_adjust(wspace=0.05, hspace=0.05) - for i in range(n): - ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0)) - ax[i].axis('off') - if labels is not None: - s = names[labels[i]] + (f'—{names[pred[i]]}' if pred is not None else '') - ax[i].set_title(s, fontsize=8, verticalalignment='top') - plt.savefig(f, dpi=300, bbox_inches='tight') - plt.close() - if verbose: - LOGGER.info(f"Saving {f}") - if labels is not None: - LOGGER.info('True: ' + ' '.join(f'{names[i]:3s}' for i in labels[:nmax])) - if pred is not None: - LOGGER.info('Predicted:' + ' '.join(f'{names[i]:3s}' for i in pred[:nmax])) - return f - - -def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve() - # Plot evolve.csv hyp evolution results - evolve_csv = Path(evolve_csv) - data = pd.read_csv(evolve_csv) - keys = [x.strip() for x in data.columns] - x = data.values - f = fitness(x) - j = np.argmax(f) # max fitness index - plt.figure(figsize=(10, 12), tight_layout=True) - matplotlib.rc('font', **{'size': 8}) - print(f'Best results from row {j} of {evolve_csv}:') - for i, k in enumerate(keys[7:]): - v = x[:, 7 + i] - mu = v[j] # best single result - plt.subplot(6, 5, i + 1) - plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none') - plt.plot(mu, f.max(), 'k+', markersize=15) - plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters - if i % 5 != 0: - plt.yticks([]) - print(f'{k:>15}: {mu:.3g}') - f = evolve_csv.with_suffix('.png') # filename - plt.savefig(f, dpi=200) - plt.close() - print(f'Saved {f}') - - -def plot_results(file='path/to/results.csv', dir=''): - # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv') - save_dir = Path(file).parent if file else Path(dir) - fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) - ax = ax.ravel() - files = list(save_dir.glob('results*.csv')) - assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' - for f in files: - try: - data = pd.read_csv(f) - s = [x.strip() for x in data.columns] - x = data.values[:, 0] - for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]): - y = data.values[:, j].astype('float') - # y[y == 0] = np.nan # don't show zero values - ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) - ax[i].set_title(s[j], fontsize=12) - # if j in [8, 9, 10]: # share train and val loss y axes - # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) - except Exception as e: - LOGGER.info(f'Warning: Plotting error for {f}: {e}') - ax[1].legend() - fig.savefig(save_dir / 'results.png', dpi=200) - plt.close() - - -def profile_idetection(start=0, stop=0, labels=(), save_dir=''): - # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection() - ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() - s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS'] - files = list(Path(save_dir).glob('frames*.txt')) - for fi, f in enumerate(files): - try: - results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows - n = results.shape[1] # number of rows - x = np.arange(start, min(stop, n) if stop else n) - results = results[:, x] - t = (results[0] - results[0].min()) # set t0=0s - results[0] = x - for i, a in enumerate(ax): - if i < len(results): - label = labels[fi] if len(labels) else f.stem.replace('frames_', '') - a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5) - a.set_title(s[i]) - a.set_xlabel('time (s)') - # if fi == len(files) - 1: - # a.set_ylim(bottom=0) - for side in ['top', 'right']: - a.spines[side].set_visible(False) - else: - a.remove() - except Exception as e: - print(f'Warning: Plotting error for {f}; {e}') - ax[1].legend() - plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) - - -def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True): - # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop - xyxy = torch.tensor(xyxy).view(-1, 4) - b = xyxy2xywh(xyxy) # boxes - if square: - b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square - b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad - xyxy = xywh2xyxy(b).long() - clip_coords(xyxy, im.shape) - crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] - if save: - file.parent.mkdir(parents=True, exist_ok=True) # make directory - f = str(increment_path(file).with_suffix('.jpg')) - # cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue - Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB - return crop diff --git a/yolov5-6.2/utils/torch_utils.py b/yolov5-6.2/utils/torch_utils.py deleted file mode 100644 index 354a802a..00000000 --- a/yolov5-6.2/utils/torch_utils.py +++ /dev/null @@ -1,454 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -PyTorch utils -""" - -import math -import os -import platform -import subprocess -import time -import warnings -from contextlib import contextmanager -from copy import deepcopy -from pathlib import Path - -import torch -import torch.distributed as dist -import torch.nn as nn -import torch.nn.functional as F -from torch.nn.parallel import DistributedDataParallel as DDP - -from utils.general import LOGGER, check_version, colorstr, file_date, git_describe - -LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html -RANK = int(os.getenv('RANK', -1)) -WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) - -try: - import thop # for FLOPs computation -except ImportError: - thop = None - -# Suppress PyTorch warnings -warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling') - - -def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')): - # Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator - def decorate(fn): - return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn) - - return decorate - - -def smartCrossEntropyLoss(label_smoothing=0.0): - # Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0 - if check_version(torch.__version__, '1.10.0'): - return nn.CrossEntropyLoss(label_smoothing=label_smoothing) # loss function - else: - if label_smoothing > 0: - LOGGER.warning(f'WARNING: label smoothing {label_smoothing} requires torch>=1.10.0') - return nn.CrossEntropyLoss() # loss function - - -def smart_DDP(model): - # Model DDP creation with checks - assert not check_version(torch.__version__, '1.12.0', pinned=True), \ - 'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \ - 'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395' - if check_version(torch.__version__, '1.11.0'): - return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True) - else: - return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) - - -def reshape_classifier_output(model, n=1000): - # Update a TorchVision classification model to class count 'n' if required - from models.common import Classify - name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module - if isinstance(m, Classify): # YOLOv5 Classify() head - if m.linear.out_features != n: - m.linear = nn.Linear(m.linear.in_features, n) - elif isinstance(m, nn.Linear): # ResNet, EfficientNet - if m.out_features != n: - setattr(model, name, nn.Linear(m.in_features, n)) - elif isinstance(m, nn.Sequential): - types = [type(x) for x in m] - if nn.Linear in types: - i = types.index(nn.Linear) # nn.Linear index - if m[i].out_features != n: - m[i] = nn.Linear(m[i].in_features, n) - elif nn.Conv2d in types: - i = types.index(nn.Conv2d) # nn.Conv2d index - if m[i].out_channels != n: - m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias) - - -@contextmanager -def torch_distributed_zero_first(local_rank: int): - # Decorator to make all processes in distributed training wait for each local_master to do something - if local_rank not in [-1, 0]: - dist.barrier(device_ids=[local_rank]) - yield - if local_rank == 0: - dist.barrier(device_ids=[0]) - - -def device_count(): - # Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows - assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows' - try: - cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows - return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]) - except Exception: - return 0 - - -def select_device(device='', batch_size=0, newline=True): - # device = None or 'cpu' or 0 or '0' or '0,1,2,3' - s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} ' - device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0' - cpu = device == 'cpu' - mps = device == 'mps' # Apple Metal Performance Shaders (MPS) - if cpu or mps: - os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False - elif device: # non-cpu device requested - os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available() - assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \ - f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)" - - if not (cpu or mps) and torch.cuda.is_available(): # prefer GPU if available - devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7 - n = len(devices) # device count - if n > 1 and batch_size > 0: # check batch_size is divisible by device_count - assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' - space = ' ' * (len(s) + 1) - for i, d in enumerate(devices): - p = torch.cuda.get_device_properties(i) - s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB - arg = 'cuda:0' - elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available - s += 'MPS\n' - arg = 'mps' - else: # revert to CPU - s += 'CPU\n' - arg = 'cpu' - - if not newline: - s = s.rstrip() - LOGGER.info(s) - return torch.device(arg) - - -def time_sync(): - # PyTorch-accurate time - if torch.cuda.is_available(): - torch.cuda.synchronize() - return time.time() - - -def profile(input, ops, n=10, device=None): - """ YOLOv5 speed/memory/FLOPs profiler - Usage: - input = torch.randn(16, 3, 640, 640) - m1 = lambda x: x * torch.sigmoid(x) - m2 = nn.SiLU() - profile(input, [m1, m2], n=100) # profile over 100 iterations - """ - results = [] - if not isinstance(device, torch.device): - device = select_device(device) - print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" - f"{'input':>24s}{'output':>24s}") - - for x in input if isinstance(input, list) else [input]: - x = x.to(device) - x.requires_grad = True - for m in ops if isinstance(ops, list) else [ops]: - m = m.to(device) if hasattr(m, 'to') else m # device - m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m - tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward - try: - flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs - except Exception: - flops = 0 - - try: - for _ in range(n): - t[0] = time_sync() - y = m(x) - t[1] = time_sync() - try: - _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward() - t[2] = time_sync() - except Exception: # no backward method - # print(e) # for debug - t[2] = float('nan') - tf += (t[1] - t[0]) * 1000 / n # ms per op forward - tb += (t[2] - t[1]) * 1000 / n # ms per op backward - mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB) - s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes - p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters - print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') - results.append([p, flops, mem, tf, tb, s_in, s_out]) - except Exception as e: - print(e) - results.append(None) - torch.cuda.empty_cache() - return results - - -def is_parallel(model): - # Returns True if model is of type DP or DDP - return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) - - -def de_parallel(model): - # De-parallelize a model: returns single-GPU model if model is of type DP or DDP - return model.module if is_parallel(model) else model - - -def initialize_weights(model): - for m in model.modules(): - t = type(m) - if t is nn.Conv2d: - pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') - elif t is nn.BatchNorm2d: - m.eps = 1e-3 - m.momentum = 0.03 - elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: - m.inplace = True - - -def find_modules(model, mclass=nn.Conv2d): - # Finds layer indices matching module class 'mclass' - return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] - - -def sparsity(model): - # Return global model sparsity - a, b = 0, 0 - for p in model.parameters(): - a += p.numel() - b += (p == 0).sum() - return b / a - - -def prune(model, amount=0.3): - # Prune model to requested global sparsity - import torch.nn.utils.prune as prune - for name, m in model.named_modules(): - if isinstance(m, nn.Conv2d): - prune.l1_unstructured(m, name='weight', amount=amount) # prune - prune.remove(m, 'weight') # make permanent - LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity') - - -def fuse_conv_and_bn(conv, bn): - # Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ - fusedconv = nn.Conv2d(conv.in_channels, - conv.out_channels, - kernel_size=conv.kernel_size, - stride=conv.stride, - padding=conv.padding, - groups=conv.groups, - bias=True).requires_grad_(False).to(conv.weight.device) - - # Prepare filters - w_conv = conv.weight.clone().view(conv.out_channels, -1) - w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) - fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) - - # Prepare spatial bias - b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias - b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) - fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) - - return fusedconv - - -def model_info(model, verbose=False, imgsz=640): - # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] - n_p = sum(x.numel() for x in model.parameters()) # number parameters - n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients - if verbose: - print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}") - for i, (name, p) in enumerate(model.named_parameters()): - name = name.replace('module_list.', '') - print('%5g %40s %9s %12g %20s %10.3g %10.3g' % - (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) - - try: # FLOPs - p = next(model.parameters()) - stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride - im = torch.zeros((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format - flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs - imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float - fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs' # 640x640 GFLOPs - except Exception: - fs = '' - - name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model' - LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") - - -def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) - # Scales img(bs,3,y,x) by ratio constrained to gs-multiple - if ratio == 1.0: - return img - h, w = img.shape[2:] - s = (int(h * ratio), int(w * ratio)) # new size - img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize - if not same_shape: # pad/crop img - h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) - return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean - - -def copy_attr(a, b, include=(), exclude=()): - # Copy attributes from b to a, options to only include [...] and to exclude [...] - for k, v in b.__dict__.items(): - if (len(include) and k not in include) or k.startswith('_') or k in exclude: - continue - else: - setattr(a, k, v) - - -def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): - # YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay - g = [], [], [] # optimizer parameter groups - bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() - for v in model.modules(): - if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay) - g[2].append(v.bias) - if isinstance(v, bn): # weight (no decay) - g[1].append(v.weight) - elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) - g[0].append(v.weight) - - if name == 'Adam': - optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum - elif name == 'AdamW': - optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) - elif name == 'RMSProp': - optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) - elif name == 'SGD': - optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) - else: - raise NotImplementedError(f'Optimizer {name} not implemented.') - - optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay - optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) - LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups " - f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias") - return optimizer - - -def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs): - # YOLOv5 torch.hub.load() wrapper with smart error/issue handling - if check_version(torch.__version__, '1.9.1'): - kwargs['skip_validation'] = True # validation causes GitHub API rate limit errors - if check_version(torch.__version__, '1.12.0'): - kwargs['trust_repo'] = True # argument required starting in torch 0.12 - try: - return torch.hub.load(repo, model, **kwargs) - except Exception: - return torch.hub.load(repo, model, force_reload=True, **kwargs) - - -def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True): - # Resume training from a partially trained checkpoint - best_fitness = 0.0 - start_epoch = ckpt['epoch'] + 1 - if ckpt['optimizer'] is not None: - optimizer.load_state_dict(ckpt['optimizer']) # optimizer - best_fitness = ckpt['best_fitness'] - if ema and ckpt.get('ema'): - ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA - ema.updates = ckpt['updates'] - if resume: - assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \ - f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'" - LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs') - if epochs < start_epoch: - LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.") - epochs += ckpt['epoch'] # finetune additional epochs - return best_fitness, start_epoch, epochs - - -class EarlyStopping: - # YOLOv5 simple early stopper - def __init__(self, patience=30): - self.best_fitness = 0.0 # i.e. mAP - self.best_epoch = 0 - self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop - self.possible_stop = False # possible stop may occur next epoch - - def __call__(self, epoch, fitness): - if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training - self.best_epoch = epoch - self.best_fitness = fitness - delta = epoch - self.best_epoch # epochs without improvement - self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch - stop = delta >= self.patience # stop training if patience exceeded - if stop: - LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. ' - f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n' - f'To update EarlyStopping(patience={self.patience}) pass a new patience value, ' - f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.') - return stop - - -class ModelEMA: - """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models - Keeps a moving average of everything in the model state_dict (parameters and buffers) - For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage - """ - - def __init__(self, model, decay=0.9999, tau=2000, updates=0): - # Create EMA - self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA - # if next(model.parameters()).device.type != 'cpu': - # self.ema.half() # FP16 EMA - self.updates = updates # number of EMA updates - self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs) - for p in self.ema.parameters(): - p.requires_grad_(False) - - @smart_inference_mode() - def update(self, model): - # Update EMA parameters - self.updates += 1 - d = self.decay(self.updates) - - msd = de_parallel(model).state_dict() # model state_dict - for k, v in self.ema.state_dict().items(): - if v.dtype.is_floating_point: - v *= d - v += (1 - d) * msd[k].detach() - - def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): - # Update EMA attributes - copy_attr(self.ema, model, include, exclude) - - -import time -import torch - -if torch.cuda.is_available(): - torch.backends.cudnn.benchmark = True - -_EPOCHS = {} - -def time_synchronized(): - global _EPOCHS - if not torch.cuda.is_available(): - return time.time() - else: - if torch.cuda.current_device() not in _EPOCHS: - _EPOCHS[torch.cuda.current_device()] = 0 - n = time.time() - if n - _EPOCHS[torch.cuda.current_device()] > 600: - torch.cuda.empty_cache() - _EPOCHS[torch.cuda.current_device()] = n - return torch.cuda.Event(enable_timing=True) diff --git a/yolov5-6.2/val.py b/yolov5-6.2/val.py deleted file mode 100644 index 13049623..00000000 --- a/yolov5-6.2/val.py +++ /dev/null @@ -1,396 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Validate a trained YOLOv5 model accuracy on a custom dataset - -Usage: - $ python path/to/val.py --weights yolov5s.pt --data coco128.yaml --img 640 - -Usage - formats: - $ python path/to/val.py --weights yolov5s.pt # PyTorch - yolov5s.torchscript # TorchScript - yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn - yolov5s.xml # OpenVINO - yolov5s.engine # TensorRT - yolov5s.mlmodel # CoreML (macOS-only) - yolov5s_saved_model # TensorFlow SavedModel - yolov5s.pb # TensorFlow GraphDef - yolov5s.tflite # TensorFlow Lite - yolov5s_edgetpu.tflite # TensorFlow Edge TPU -""" - -import argparse -import json -import os -import sys -from pathlib import Path - -import numpy as np -import torch -from tqdm import tqdm - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[0] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative - -from models.common import DetectMultiBackend -from utils.callbacks import Callbacks -from utils.dataloaders import create_dataloader -from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_yaml, - coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args, - scale_coords, xywh2xyxy, xyxy2xywh) -from utils.metrics import ConfusionMatrix, ap_per_class, box_iou -from utils.plots import output_to_target, plot_images, plot_val_study -from utils.torch_utils import select_device, smart_inference_mode, time_sync - - -def save_one_txt(predn, save_conf, shape, file): - # Save one txt result - gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh - for *xyxy, conf, cls in predn.tolist(): - xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh - line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format - with open(file, 'a') as f: - f.write(('%g ' * len(line)).rstrip() % line + '\n') - - -def save_one_json(predn, jdict, path, class_map): - # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} - image_id = int(path.stem) if path.stem.isnumeric() else path.stem - box = xyxy2xywh(predn[:, :4]) # xywh - box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner - for p, b in zip(predn.tolist(), box.tolist()): - jdict.append({ - 'image_id': image_id, - 'category_id': class_map[int(p[5])], - 'bbox': [round(x, 3) for x in b], - 'score': round(p[4], 5)}) - - -def process_batch(detections, labels, iouv): - """ - Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format. - Arguments: - detections (Array[N, 6]), x1, y1, x2, y2, conf, class - labels (Array[M, 5]), class, x1, y1, x2, y2 - Returns: - correct (Array[N, 10]), for 10 IoU levels - """ - correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) - iou = box_iou(labels[:, 1:], detections[:, :4]) - correct_class = labels[:, 0:1] == detections[:, 5] - for i in range(len(iouv)): - x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match - if x[0].shape[0]: - matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou] - if x[0].shape[0] > 1: - matches = matches[matches[:, 2].argsort()[::-1]] - matches = matches[np.unique(matches[:, 1], return_index=True)[1]] - # matches = matches[matches[:, 2].argsort()[::-1]] - matches = matches[np.unique(matches[:, 0], return_index=True)[1]] - correct[matches[:, 1].astype(int), i] = True - return torch.tensor(correct, dtype=torch.bool, device=iouv.device) - - -@smart_inference_mode() -def run( - data, - weights=None, # model.pt path(s) - batch_size=32, # batch size - imgsz=640, # inference size (pixels) - conf_thres=0.001, # confidence threshold - iou_thres=0.6, # NMS IoU threshold - task='val', # train, val, test, speed or study - device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu - workers=8, # max dataloader workers (per RANK in DDP mode) - single_cls=False, # treat as single-class dataset - augment=False, # augmented inference - verbose=False, # verbose output - save_txt=False, # save results to *.txt - save_hybrid=False, # save label+prediction hybrid results to *.txt - save_conf=False, # save confidences in --save-txt labels - save_json=False, # save a COCO-JSON results file - project=ROOT / 'runs/val', # save to project/name - name='exp', # save to project/name - exist_ok=False, # existing project/name ok, do not increment - half=True, # use FP16 half-precision inference - dnn=False, # use OpenCV DNN for ONNX inference - model=None, - dataloader=None, - save_dir=Path(''), - plots=True, - callbacks=Callbacks(), - compute_loss=None, -): - # Initialize/load model and set device - training = model is not None - if training: # called by train.py - device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model - half &= device.type != 'cpu' # half precision only supported on CUDA - model.half() if half else model.float() - else: # called directly - device = select_device(device, batch_size=batch_size) - - # Directories - save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run - (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir - - # Load model - model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) - stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine - imgsz = check_img_size(imgsz, s=stride) # check image size - half = model.fp16 # FP16 supported on limited backends with CUDA - if engine: - batch_size = model.batch_size - else: - device = model.device - if not (pt or jit): - batch_size = 1 # export.py models default to batch-size 1 - LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') - - # Data - data = check_dataset(data) # check - - # Configure - model.eval() - cuda = device.type != 'cpu' - is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset - nc = 1 if single_cls else int(data['nc']) # number of classes - iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95 - niou = iouv.numel() - - # Dataloader - if not training: - if pt and not single_cls: # check --weights are trained on --data - ncm = model.model.nc - assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \ - f'classes). Pass correct combination of --weights and --data that are trained together.' - model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup - pad = 0.0 if task in ('speed', 'benchmark') else 0.5 - rect = False if task == 'benchmark' else pt # square inference for benchmarks - task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images - dataloader = create_dataloader(data[task], - imgsz, - batch_size, - stride, - single_cls, - pad=pad, - rect=rect, - workers=workers, - prefix=colorstr(f'{task}: '))[0] - - seen = 0 - confusion_matrix = ConfusionMatrix(nc=nc) - names = dict(enumerate(model.names if hasattr(model, 'names') else model.module.names)) - class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) - s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') - dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 - loss = torch.zeros(3, device=device) - jdict, stats, ap, ap_class = [], [], [], [] - callbacks.run('on_val_start') - pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar - for batch_i, (im, targets, paths, shapes) in enumerate(pbar): - callbacks.run('on_val_batch_start') - t1 = time_sync() - if cuda: - im = im.to(device, non_blocking=True) - targets = targets.to(device) - im = im.half() if half else im.float() # uint8 to fp16/32 - im /= 255 # 0 - 255 to 0.0 - 1.0 - nb, _, height, width = im.shape # batch size, channels, height, width - t2 = time_sync() - dt[0] += t2 - t1 - - # Inference - out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs - dt[1] += time_sync() - t2 - - # Loss - if compute_loss: - loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls - - # NMS - targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels - lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling - t3 = time_sync() - out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) - dt[2] += time_sync() - t3 - - # Metrics - for si, pred in enumerate(out): - labels = targets[targets[:, 0] == si, 1:] - nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions - path, shape = Path(paths[si]), shapes[si][0] - correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init - seen += 1 - - if npr == 0: - if nl: - stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0])) - if plots: - confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) - continue - - # Predictions - if single_cls: - pred[:, 5] = 0 - predn = pred.clone() - scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred - - # Evaluate - if nl: - tbox = xywh2xyxy(labels[:, 1:5]) # target boxes - scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels - labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels - correct = process_batch(predn, labelsn, iouv) - if plots: - confusion_matrix.process_batch(predn, labelsn) - stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls) - - # Save/log - if save_txt: - save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') - if save_json: - save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary - callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) - - # Plot images - if plots and batch_i < 3: - plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels - plot_images(im, output_to_target(out), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred - - callbacks.run('on_val_batch_end') - - # Compute metrics - stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy - if len(stats) and stats[0].any(): - tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) - ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95 - mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() - nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class - - # Print results - pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format - LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) - if nt.sum() == 0: - LOGGER.warning(f'WARNING: no labels found in {task} set, can not compute metrics without labels ⚠️') - - # Print results per class - if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): - for i, c in enumerate(ap_class): - LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) - - # Print speeds - t = tuple(x / seen * 1E3 for x in dt) # speeds per image - if not training: - shape = (batch_size, 3, imgsz, imgsz) - LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) - - # Plots - if plots: - confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) - callbacks.run('on_val_end') - - # Save JSON - if save_json and len(jdict): - w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights - anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json - pred_json = str(save_dir / f"{w}_predictions.json") # predictions json - LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...') - with open(pred_json, 'w') as f: - json.dump(jdict, f) - - try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb - check_requirements(['pycocotools']) - from pycocotools.coco import COCO - from pycocotools.cocoeval import COCOeval - - anno = COCO(anno_json) # init annotations api - pred = anno.loadRes(pred_json) # init predictions api - eval = COCOeval(anno, pred, 'bbox') - if is_coco: - eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate - eval.evaluate() - eval.accumulate() - eval.summarize() - map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) - except Exception as e: - LOGGER.info(f'pycocotools unable to run: {e}') - - # Return results - model.float() # for training - if not training: - s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' - LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") - maps = np.zeros(nc) + map - for i, c in enumerate(ap_class): - maps[c] = ap[i] - return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t - - -def parse_opt(): - parser = argparse.ArgumentParser() - parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') - parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') - parser.add_argument('--batch-size', type=int, default=32, help='batch size') - parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') - parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') - parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') - parser.add_argument('--task', default='val', help='train, val, test, speed or study') - parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') - parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') - parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') - parser.add_argument('--augment', action='store_true', help='augmented inference') - parser.add_argument('--verbose', action='store_true', help='report mAP by class') - parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') - parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') - parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') - parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') - parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name') - parser.add_argument('--name', default='exp', help='save to project/name') - parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') - parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') - parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') - opt = parser.parse_args() - opt.data = check_yaml(opt.data) # check YAML - opt.save_json |= opt.data.endswith('coco.yaml') - opt.save_txt |= opt.save_hybrid - print_args(vars(opt)) - return opt - - -def main(opt): - check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) - - if opt.task in ('train', 'val', 'test'): # run normally - if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466 - LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} > 0.001 produces invalid results ⚠️') - run(**vars(opt)) - - else: - weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] - opt.half = True # FP16 for fastest results - if opt.task == 'speed': # speed benchmarks - # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... - opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False - for opt.weights in weights: - run(**vars(opt), plots=False) - - elif opt.task == 'study': # speed vs mAP benchmarks - # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... - for opt.weights in weights: - f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to - x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis - for opt.imgsz in x: # img-size - LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...') - r, _, t = run(**vars(opt), plots=False) - y.append(r + t) # results and times - np.savetxt(f, y, fmt='%10.4g') # save - os.system('zip -r study.zip study_*.txt') - plot_val_study(x=x) # plot - - -if __name__ == "__main__": - opt = parse_opt() - main(opt)