From 6625b62c3cc2a5b7f75c059549b5b9235f51e0cf Mon Sep 17 00:00:00 2001
From: kun <1819123358@qq.com>
Date: Thu, 8 Jun 2023 13:11:42 +0800
Subject: [PATCH] yolov5

---
 yolov5-6.2/.dockerignore                      |  222 ----
 yolov5-6.2/.gitattributes                     |    2 -
 yolov5-6.2/.github/CODE_OF_CONDUCT.md         |  128 --
 .../.github/ISSUE_TEMPLATE/bug-report.yml     |   85 --
 yolov5-6.2/.github/ISSUE_TEMPLATE/config.yml  |    8 -
 .../ISSUE_TEMPLATE/feature-request.yml        |   50 -
 .../.github/ISSUE_TEMPLATE/question.yml       |   33 -
 yolov5-6.2/.github/PULL_REQUEST_TEMPLATE.md   |    9 -
 yolov5-6.2/.github/README_cn.md               |  353 -----
 yolov5-6.2/.github/SECURITY.md                |    7 -
 yolov5-6.2/.github/dependabot.yml             |   23 -
 yolov5-6.2/.github/workflows/ci-testing.yml   |  135 --
 .../.github/workflows/codeql-analysis.yml     |   54 -
 yolov5-6.2/.github/workflows/docker.yml       |   54 -
 yolov5-6.2/.github/workflows/greetings.yml    |   63 -
 yolov5-6.2/.github/workflows/rebase.yml       |   21 -
 yolov5-6.2/.github/workflows/stale.yml        |   40 -
 yolov5-6.2/.gitignore                         |  256 ----
 yolov5-6.2/.pre-commit-config.yaml            |   64 -
 yolov5-6.2/CONTRIBUTING.md                    |   98 --
 yolov5-6.2/LICENSE                            |  674 ----------
 yolov5-6.2/README.md                          |  363 ------
 yolov5-6.2/classify/predict.py                |  109 --
 yolov5-6.2/classify/train.py                  |  325 -----
 yolov5-6.2/classify/val.py                    |  158 ---
 yolov5-6.2/data/Argoverse.yaml                |   67 -
 yolov5-6.2/data/GlobalWheat2020.yaml          |   54 -
 yolov5-6.2/data/ImageNet.yaml                 |  156 ---
 yolov5-6.2/data/Objects365.yaml               |  114 --
 yolov5-6.2/data/SKU-110K.yaml                 |   53 -
 yolov5-6.2/data/VOC.yaml                      |   81 --
 yolov5-6.2/data/VisDrone.yaml                 |   61 -
 yolov5-6.2/data/ball.yaml                     |    5 -
 yolov5-6.2/data/coco.yaml                     |   45 -
 yolov5-6.2/data/coco128.yaml                  |   30 -
 yolov5-6.2/data/hyps/hyp.Objects365.yaml      |   34 -
 yolov5-6.2/data/hyps/hyp.VOC.yaml             |   40 -
 yolov5-6.2/data/hyps/hyp.scratch-high.yaml    |   34 -
 yolov5-6.2/data/hyps/hyp.scratch-low.yaml     |   34 -
 yolov5-6.2/data/hyps/hyp.scratch-med.yaml     |   34 -
 yolov5-6.2/data/images/bus.jpg                |  Bin 487438 -> 0 bytes
 yolov5-6.2/data/images/zidane.jpg             |  Bin 168949 -> 0 bytes
 yolov5-6.2/data/scripts/download_weights.sh   |   21 -
 yolov5-6.2/data/scripts/get_coco.sh           |   56 -
 yolov5-6.2/data/scripts/get_coco128.sh        |   17 -
 yolov5-6.2/data/scripts/get_imagenet.sh       |   51 -
 yolov5-6.2/data/xView.yaml                    |  102 --
 yolov5-6.2/detect.py                          |  260 ----
 yolov5-6.2/export.py                          |  616 ---------
 yolov5-6.2/hubconf.py                         |  160 ---
 yolov5-6.2/ip.py                              |   21 -
 yolov5-6.2/models/__init__.py                 |    0
 yolov5-6.2/models/common.py                   |  771 -----------
 yolov5-6.2/models/experimental.py             |  107 --
 yolov5-6.2/models/hub/anchors.yaml            |   59 -
 yolov5-6.2/models/hub/yolov3-spp.yaml         |   51 -
 yolov5-6.2/models/hub/yolov3-tiny.yaml        |   41 -
 yolov5-6.2/models/hub/yolov3.yaml             |   51 -
 yolov5-6.2/models/hub/yolov5-bifpn.yaml       |   48 -
 yolov5-6.2/models/hub/yolov5-fpn.yaml         |   42 -
 yolov5-6.2/models/hub/yolov5-p2.yaml          |   54 -
 yolov5-6.2/models/hub/yolov5-p34.yaml         |   41 -
 yolov5-6.2/models/hub/yolov5-p6.yaml          |   56 -
 yolov5-6.2/models/hub/yolov5-p7.yaml          |   67 -
 yolov5-6.2/models/hub/yolov5-panet.yaml       |   48 -
 yolov5-6.2/models/hub/yolov5l6.yaml           |   60 -
 yolov5-6.2/models/hub/yolov5m6.yaml           |   60 -
 yolov5-6.2/models/hub/yolov5n6.yaml           |   60 -
 yolov5-6.2/models/hub/yolov5s-ghost.yaml      |   48 -
 .../models/hub/yolov5s-transformer.yaml       |   48 -
 yolov5-6.2/models/hub/yolov5s6.yaml           |   60 -
 yolov5-6.2/models/hub/yolov5x6.yaml           |   60 -
 yolov5-6.2/models/tf.py                       |  574 --------
 yolov5-6.2/models/yolo.py                     |  360 -----
 yolov5-6.2/models/yolov5l.yaml                |   48 -
 yolov5-6.2/models/yolov5m.yaml                |   48 -
 yolov5-6.2/models/yolov5n.yaml                |   48 -
 yolov5-6.2/models/yolov5s.yaml                |   48 -
 yolov5-6.2/models/yolov5x.yaml                |   48 -
 yolov5-6.2/requirements.txt                   |   43 -
 yolov5-6.2/setup.cfg                          |   59 -
 yolov5-6.2/test.py                            |  300 -----
 yolov5-6.2/test/test.py                       |   12 -
 yolov5-6.2/train.py                           |  632 ---------
 yolov5-6.2/tutorial.ipynb                     | 1141 ----------------
 yolov5-6.2/utils/__init__.py                  |   36 -
 yolov5-6.2/utils/activations.py               |  103 --
 yolov5-6.2/utils/augmentations.py             |  348 -----
 yolov5-6.2/utils/autoanchor.py                |  170 ---
 yolov5-6.2/utils/autobatch.py                 |   66 -
 yolov5-6.2/utils/aws/__init__.py              |    0
 yolov5-6.2/utils/aws/mime.sh                  |   26 -
 yolov5-6.2/utils/aws/resume.py                |   40 -
 yolov5-6.2/utils/aws/userdata.sh              |   27 -
 yolov5-6.2/utils/benchmarks.py                |  157 ---
 yolov5-6.2/utils/callbacks.py                 |   71 -
 yolov5-6.2/utils/dataloaders.py               | 1156 -----------------
 yolov5-6.2/utils/docker/Dockerfile            |   68 -
 yolov5-6.2/utils/docker/Dockerfile-arm64      |   42 -
 yolov5-6.2/utils/docker/Dockerfile-cpu        |   39 -
 yolov5-6.2/utils/downloads.py                 |  180 ---
 yolov5-6.2/utils/flask_rest_api/README.md     |   73 --
 .../utils/flask_rest_api/example_request.py   |   19 -
 yolov5-6.2/utils/flask_rest_api/restapi.py    |   48 -
 yolov5-6.2/utils/general.py                   | 1050 ---------------
 yolov5-6.2/utils/google_app_engine/Dockerfile |   25 -
 .../additional_requirements.txt               |    4 -
 yolov5-6.2/utils/google_app_engine/app.yaml   |   14 -
 yolov5-6.2/utils/loggers/__init__.py          |  308 -----
 yolov5-6.2/utils/loggers/clearml/README.md    |  222 ----
 yolov5-6.2/utils/loggers/clearml/__init__.py  |    0
 .../utils/loggers/clearml/clearml_utils.py    |  156 ---
 yolov5-6.2/utils/loggers/clearml/hpo.py       |   84 --
 yolov5-6.2/utils/loggers/wandb/README.md      |  162 ---
 yolov5-6.2/utils/loggers/wandb/__init__.py    |    0
 yolov5-6.2/utils/loggers/wandb/log_dataset.py |   27 -
 yolov5-6.2/utils/loggers/wandb/sweep.py       |   41 -
 yolov5-6.2/utils/loggers/wandb/sweep.yaml     |  143 --
 yolov5-6.2/utils/loggers/wandb/wandb_utils.py |  584 ---------
 yolov5-6.2/utils/loss.py                      |  234 ----
 yolov5-6.2/utils/metrics.py                   |  364 ------
 yolov5-6.2/utils/plots.py                     |  522 --------
 yolov5-6.2/utils/torch_utils.py               |  454 -------
 yolov5-6.2/val.py                             |  396 ------
 124 files changed, 18132 deletions(-)
 delete mode 100644 yolov5-6.2/.dockerignore
 delete mode 100644 yolov5-6.2/.gitattributes
 delete mode 100644 yolov5-6.2/.github/CODE_OF_CONDUCT.md
 delete mode 100644 yolov5-6.2/.github/ISSUE_TEMPLATE/bug-report.yml
 delete mode 100644 yolov5-6.2/.github/ISSUE_TEMPLATE/config.yml
 delete mode 100644 yolov5-6.2/.github/ISSUE_TEMPLATE/feature-request.yml
 delete mode 100644 yolov5-6.2/.github/ISSUE_TEMPLATE/question.yml
 delete mode 100644 yolov5-6.2/.github/PULL_REQUEST_TEMPLATE.md
 delete mode 100644 yolov5-6.2/.github/README_cn.md
 delete mode 100644 yolov5-6.2/.github/SECURITY.md
 delete mode 100644 yolov5-6.2/.github/dependabot.yml
 delete mode 100644 yolov5-6.2/.github/workflows/ci-testing.yml
 delete mode 100644 yolov5-6.2/.github/workflows/codeql-analysis.yml
 delete mode 100644 yolov5-6.2/.github/workflows/docker.yml
 delete mode 100644 yolov5-6.2/.github/workflows/greetings.yml
 delete mode 100644 yolov5-6.2/.github/workflows/rebase.yml
 delete mode 100644 yolov5-6.2/.github/workflows/stale.yml
 delete mode 100644 yolov5-6.2/.gitignore
 delete mode 100644 yolov5-6.2/.pre-commit-config.yaml
 delete mode 100644 yolov5-6.2/CONTRIBUTING.md
 delete mode 100644 yolov5-6.2/LICENSE
 delete mode 100644 yolov5-6.2/README.md
 delete mode 100644 yolov5-6.2/classify/predict.py
 delete mode 100644 yolov5-6.2/classify/train.py
 delete mode 100644 yolov5-6.2/classify/val.py
 delete mode 100644 yolov5-6.2/data/Argoverse.yaml
 delete mode 100644 yolov5-6.2/data/GlobalWheat2020.yaml
 delete mode 100644 yolov5-6.2/data/ImageNet.yaml
 delete mode 100644 yolov5-6.2/data/Objects365.yaml
 delete mode 100644 yolov5-6.2/data/SKU-110K.yaml
 delete mode 100644 yolov5-6.2/data/VOC.yaml
 delete mode 100644 yolov5-6.2/data/VisDrone.yaml
 delete mode 100644 yolov5-6.2/data/ball.yaml
 delete mode 100644 yolov5-6.2/data/coco.yaml
 delete mode 100644 yolov5-6.2/data/coco128.yaml
 delete mode 100644 yolov5-6.2/data/hyps/hyp.Objects365.yaml
 delete mode 100644 yolov5-6.2/data/hyps/hyp.VOC.yaml
 delete mode 100644 yolov5-6.2/data/hyps/hyp.scratch-high.yaml
 delete mode 100644 yolov5-6.2/data/hyps/hyp.scratch-low.yaml
 delete mode 100644 yolov5-6.2/data/hyps/hyp.scratch-med.yaml
 delete mode 100644 yolov5-6.2/data/images/bus.jpg
 delete mode 100644 yolov5-6.2/data/images/zidane.jpg
 delete mode 100644 yolov5-6.2/data/scripts/download_weights.sh
 delete mode 100644 yolov5-6.2/data/scripts/get_coco.sh
 delete mode 100644 yolov5-6.2/data/scripts/get_coco128.sh
 delete mode 100644 yolov5-6.2/data/scripts/get_imagenet.sh
 delete mode 100644 yolov5-6.2/data/xView.yaml
 delete mode 100644 yolov5-6.2/detect.py
 delete mode 100644 yolov5-6.2/export.py
 delete mode 100644 yolov5-6.2/hubconf.py
 delete mode 100644 yolov5-6.2/ip.py
 delete mode 100644 yolov5-6.2/models/__init__.py
 delete mode 100644 yolov5-6.2/models/common.py
 delete mode 100644 yolov5-6.2/models/experimental.py
 delete mode 100644 yolov5-6.2/models/hub/anchors.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov3-spp.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov3-tiny.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov3.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5-bifpn.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5-fpn.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5-p2.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5-p34.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5-p6.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5-p7.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5-panet.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5l6.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5m6.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5n6.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5s-ghost.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5s-transformer.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5s6.yaml
 delete mode 100644 yolov5-6.2/models/hub/yolov5x6.yaml
 delete mode 100644 yolov5-6.2/models/tf.py
 delete mode 100644 yolov5-6.2/models/yolo.py
 delete mode 100644 yolov5-6.2/models/yolov5l.yaml
 delete mode 100644 yolov5-6.2/models/yolov5m.yaml
 delete mode 100644 yolov5-6.2/models/yolov5n.yaml
 delete mode 100644 yolov5-6.2/models/yolov5s.yaml
 delete mode 100644 yolov5-6.2/models/yolov5x.yaml
 delete mode 100644 yolov5-6.2/requirements.txt
 delete mode 100644 yolov5-6.2/setup.cfg
 delete mode 100644 yolov5-6.2/test.py
 delete mode 100644 yolov5-6.2/test/test.py
 delete mode 100644 yolov5-6.2/train.py
 delete mode 100644 yolov5-6.2/tutorial.ipynb
 delete mode 100644 yolov5-6.2/utils/__init__.py
 delete mode 100644 yolov5-6.2/utils/activations.py
 delete mode 100644 yolov5-6.2/utils/augmentations.py
 delete mode 100644 yolov5-6.2/utils/autoanchor.py
 delete mode 100644 yolov5-6.2/utils/autobatch.py
 delete mode 100644 yolov5-6.2/utils/aws/__init__.py
 delete mode 100644 yolov5-6.2/utils/aws/mime.sh
 delete mode 100644 yolov5-6.2/utils/aws/resume.py
 delete mode 100644 yolov5-6.2/utils/aws/userdata.sh
 delete mode 100644 yolov5-6.2/utils/benchmarks.py
 delete mode 100644 yolov5-6.2/utils/callbacks.py
 delete mode 100644 yolov5-6.2/utils/dataloaders.py
 delete mode 100644 yolov5-6.2/utils/docker/Dockerfile
 delete mode 100644 yolov5-6.2/utils/docker/Dockerfile-arm64
 delete mode 100644 yolov5-6.2/utils/docker/Dockerfile-cpu
 delete mode 100644 yolov5-6.2/utils/downloads.py
 delete mode 100644 yolov5-6.2/utils/flask_rest_api/README.md
 delete mode 100644 yolov5-6.2/utils/flask_rest_api/example_request.py
 delete mode 100644 yolov5-6.2/utils/flask_rest_api/restapi.py
 delete mode 100644 yolov5-6.2/utils/general.py
 delete mode 100644 yolov5-6.2/utils/google_app_engine/Dockerfile
 delete mode 100644 yolov5-6.2/utils/google_app_engine/additional_requirements.txt
 delete mode 100644 yolov5-6.2/utils/google_app_engine/app.yaml
 delete mode 100644 yolov5-6.2/utils/loggers/__init__.py
 delete mode 100644 yolov5-6.2/utils/loggers/clearml/README.md
 delete mode 100644 yolov5-6.2/utils/loggers/clearml/__init__.py
 delete mode 100644 yolov5-6.2/utils/loggers/clearml/clearml_utils.py
 delete mode 100644 yolov5-6.2/utils/loggers/clearml/hpo.py
 delete mode 100644 yolov5-6.2/utils/loggers/wandb/README.md
 delete mode 100644 yolov5-6.2/utils/loggers/wandb/__init__.py
 delete mode 100644 yolov5-6.2/utils/loggers/wandb/log_dataset.py
 delete mode 100644 yolov5-6.2/utils/loggers/wandb/sweep.py
 delete mode 100644 yolov5-6.2/utils/loggers/wandb/sweep.yaml
 delete mode 100644 yolov5-6.2/utils/loggers/wandb/wandb_utils.py
 delete mode 100644 yolov5-6.2/utils/loss.py
 delete mode 100644 yolov5-6.2/utils/metrics.py
 delete mode 100644 yolov5-6.2/utils/plots.py
 delete mode 100644 yolov5-6.2/utils/torch_utils.py
 delete mode 100644 yolov5-6.2/val.py

diff --git a/yolov5-6.2/.dockerignore b/yolov5-6.2/.dockerignore
deleted file mode 100644
index 3b669254..00000000
--- a/yolov5-6.2/.dockerignore
+++ /dev/null
@@ -1,222 +0,0 @@
-# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
-.git
-.cache
-.idea
-runs
-output
-coco
-storage.googleapis.com
-
-data/samples/*
-**/results*.csv
-*.jpg
-
-# Neural Network weights -----------------------------------------------------------------------------------------------
-**/*.pt
-**/*.pth
-**/*.onnx
-**/*.engine
-**/*.mlmodel
-**/*.torchscript
-**/*.torchscript.pt
-**/*.tflite
-**/*.h5
-**/*.pb
-*_saved_model/
-*_web_model/
-*_openvino_model/
-
-# Below Copied From .gitignore -----------------------------------------------------------------------------------------
-# Below Copied From .gitignore -----------------------------------------------------------------------------------------
-
-
-# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
-# Byte-compiled / optimized / DLL files
-__pycache__/
-*.py[cod]
-*$py.class
-
-# C extensions
-*.so
-
-# Distribution / packaging
-.Python
-env/
-build/
-develop-eggs/
-dist/
-downloads/
-eggs/
-.eggs/
-lib/
-lib64/
-parts/
-sdist/
-var/
-wheels/
-*.egg-info/
-wandb/
-.installed.cfg
-*.egg
-
-# PyInstaller
-#  Usually these files are written by a python script from a template
-#  before PyInstaller builds the exe, so as to inject date/other infos into it.
-*.manifest
-*.spec
-
-# Installer logs
-pip-log.txt
-pip-delete-this-directory.txt
-
-# Unit test / coverage reports
-htmlcov/
-.tox/
-.coverage
-.coverage.*
-.cache
-nosetests.xml
-coverage.xml
-*.cover
-.hypothesis/
-
-# Translations
-*.mo
-*.pot
-
-# Django stuff:
-*.log
-local_settings.py
-
-# Flask stuff:
-instance/
-.webassets-cache
-
-# Scrapy stuff:
-.scrapy
-
-# Sphinx documentation
-docs/_build/
-
-# PyBuilder
-target/
-
-# Jupyter Notebook
-.ipynb_checkpoints
-
-# pyenv
-.python-version
-
-# celery beat schedule file
-celerybeat-schedule
-
-# SageMath parsed files
-*.sage.py
-
-# dotenv
-.env
-
-# virtualenv
-.venv*
-venv*/
-ENV*/
-
-# Spyder project settings
-.spyderproject
-.spyproject
-
-# Rope project settings
-.ropeproject
-
-# mkdocs documentation
-/site
-
-# mypy
-.mypy_cache/
-
-
-# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
-
-# General
-.DS_Store
-.AppleDouble
-.LSOverride
-
-# Icon must end with two \r
-Icon
-Icon?
-
-# Thumbnails
-._*
-
-# Files that might appear in the root of a volume
-.DocumentRevisions-V100
-.fseventsd
-.Spotlight-V100
-.TemporaryItems
-.Trashes
-.VolumeIcon.icns
-.com.apple.timemachine.donotpresent
-
-# Directories potentially created on remote AFP share
-.AppleDB
-.AppleDesktop
-Network Trash Folder
-Temporary Items
-.apdisk
-
-
-# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
-# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
-# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
-
-# User-specific stuff:
-.idea/*
-.idea/**/workspace.xml
-.idea/**/tasks.xml
-.idea/dictionaries
-.html  # Bokeh Plots
-.pg  # TensorFlow Frozen Graphs
-.avi # videos
-
-# Sensitive or high-churn files:
-.idea/**/dataSources/
-.idea/**/dataSources.ids
-.idea/**/dataSources.local.xml
-.idea/**/sqlDataSources.xml
-.idea/**/dynamic.xml
-.idea/**/uiDesigner.xml
-
-# Gradle:
-.idea/**/gradle.xml
-.idea/**/libraries
-
-# CMake
-cmake-build-debug/
-cmake-build-release/
-
-# Mongo Explorer plugin:
-.idea/**/mongoSettings.xml
-
-## File-based project format:
-*.iws
-
-## Plugin-specific files:
-
-# IntelliJ
-out/
-
-# mpeltonen/sbt-idea plugin
-.idea_modules/
-
-# JIRA plugin
-atlassian-ide-plugin.xml
-
-# Cursive Clojure plugin
-.idea/replstate.xml
-
-# Crashlytics plugin (for Android Studio and IntelliJ)
-com_crashlytics_export_strings.xml
-crashlytics.properties
-crashlytics-build.properties
-fabric.properties
diff --git a/yolov5-6.2/.gitattributes b/yolov5-6.2/.gitattributes
deleted file mode 100644
index dad4239e..00000000
--- a/yolov5-6.2/.gitattributes
+++ /dev/null
@@ -1,2 +0,0 @@
-# this drop notebooks from GitHub language stats
-*.ipynb linguist-vendored
diff --git a/yolov5-6.2/.github/CODE_OF_CONDUCT.md b/yolov5-6.2/.github/CODE_OF_CONDUCT.md
deleted file mode 100644
index 27e59e9a..00000000
--- a/yolov5-6.2/.github/CODE_OF_CONDUCT.md
+++ /dev/null
@@ -1,128 +0,0 @@
-# YOLOv5 🚀 Contributor Covenant Code of Conduct
-
-## Our Pledge
-
-We as members, contributors, and leaders pledge to make participation in our
-community a harassment-free experience for everyone, regardless of age, body
-size, visible or invisible disability, ethnicity, sex characteristics, gender
-identity and expression, level of experience, education, socio-economic status,
-nationality, personal appearance, race, religion, or sexual identity
-and orientation.
-
-We pledge to act and interact in ways that contribute to an open, welcoming,
-diverse, inclusive, and healthy community.
-
-## Our Standards
-
-Examples of behavior that contributes to a positive environment for our
-community include:
-
-- Demonstrating empathy and kindness toward other people
-- Being respectful of differing opinions, viewpoints, and experiences
-- Giving and gracefully accepting constructive feedback
-- Accepting responsibility and apologizing to those affected by our mistakes,
-  and learning from the experience
-- Focusing on what is best not just for us as individuals, but for the
-  overall community
-
-Examples of unacceptable behavior include:
-
-- The use of sexualized language or imagery, and sexual attention or
-  advances of any kind
-- Trolling, insulting or derogatory comments, and personal or political attacks
-- Public or private harassment
-- Publishing others' private information, such as a physical or email
-  address, without their explicit permission
-- Other conduct which could reasonably be considered inappropriate in a
-  professional setting
-
-## Enforcement Responsibilities
-
-Community leaders are responsible for clarifying and enforcing our standards of
-acceptable behavior and will take appropriate and fair corrective action in
-response to any behavior that they deem inappropriate, threatening, offensive,
-or harmful.
-
-Community leaders have the right and responsibility to remove, edit, or reject
-comments, commits, code, wiki edits, issues, and other contributions that are
-not aligned to this Code of Conduct, and will communicate reasons for moderation
-decisions when appropriate.
-
-## Scope
-
-This Code of Conduct applies within all community spaces, and also applies when
-an individual is officially representing the community in public spaces.
-Examples of representing our community include using an official e-mail address,
-posting via an official social media account, or acting as an appointed
-representative at an online or offline event.
-
-## Enforcement
-
-Instances of abusive, harassing, or otherwise unacceptable behavior may be
-reported to the community leaders responsible for enforcement at
-hello@ultralytics.com.
-All complaints will be reviewed and investigated promptly and fairly.
-
-All community leaders are obligated to respect the privacy and security of the
-reporter of any incident.
-
-## Enforcement Guidelines
-
-Community leaders will follow these Community Impact Guidelines in determining
-the consequences for any action they deem in violation of this Code of Conduct:
-
-### 1. Correction
-
-**Community Impact**: Use of inappropriate language or other behavior deemed
-unprofessional or unwelcome in the community.
-
-**Consequence**: A private, written warning from community leaders, providing
-clarity around the nature of the violation and an explanation of why the
-behavior was inappropriate. A public apology may be requested.
-
-### 2. Warning
-
-**Community Impact**: A violation through a single incident or series
-of actions.
-
-**Consequence**: A warning with consequences for continued behavior. No
-interaction with the people involved, including unsolicited interaction with
-those enforcing the Code of Conduct, for a specified period of time. This
-includes avoiding interactions in community spaces as well as external channels
-like social media. Violating these terms may lead to a temporary or
-permanent ban.
-
-### 3. Temporary Ban
-
-**Community Impact**: A serious violation of community standards, including
-sustained inappropriate behavior.
-
-**Consequence**: A temporary ban from any sort of interaction or public
-communication with the community for a specified period of time. No public or
-private interaction with the people involved, including unsolicited interaction
-with those enforcing the Code of Conduct, is allowed during this period.
-Violating these terms may lead to a permanent ban.
-
-### 4. Permanent Ban
-
-**Community Impact**: Demonstrating a pattern of violation of community
-standards, including sustained inappropriate behavior,  harassment of an
-individual, or aggression toward or disparagement of classes of individuals.
-
-**Consequence**: A permanent ban from any sort of public interaction within
-the community.
-
-## Attribution
-
-This Code of Conduct is adapted from the [Contributor Covenant][homepage],
-version 2.0, available at
-https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
-
-Community Impact Guidelines were inspired by [Mozilla's code of conduct
-enforcement ladder](https://github.com/mozilla/diversity).
-
-For answers to common questions about this code of conduct, see the FAQ at
-https://www.contributor-covenant.org/faq. Translations are available at
-https://www.contributor-covenant.org/translations.
-
-[homepage]: https://www.contributor-covenant.org
diff --git a/yolov5-6.2/.github/ISSUE_TEMPLATE/bug-report.yml b/yolov5-6.2/.github/ISSUE_TEMPLATE/bug-report.yml
deleted file mode 100644
index fcb64138..00000000
--- a/yolov5-6.2/.github/ISSUE_TEMPLATE/bug-report.yml
+++ /dev/null
@@ -1,85 +0,0 @@
-name: 🐛 Bug Report
-# title: " "
-description: Problems with YOLOv5
-labels: [bug, triage]
-body:
-  - type: markdown
-    attributes:
-      value: |
-        Thank you for submitting a YOLOv5 🐛 Bug Report!
-
-  - type: checkboxes
-    attributes:
-      label: Search before asking
-      description: >
-        Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists.
-      options:
-        - label: >
-            I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report.
-          required: true
-
-  - type: dropdown
-    attributes:
-      label: YOLOv5 Component
-      description: |
-        Please select the part of YOLOv5 where you found the bug.
-      multiple: true
-      options:
-        - "Training"
-        - "Validation"
-        - "Detection"
-        - "Export"
-        - "PyTorch Hub"
-        - "Multi-GPU"
-        - "Evolution"
-        - "Integrations"
-        - "Other"
-    validations:
-      required: false
-
-  - type: textarea
-    attributes:
-      label: Bug
-      description: Provide console output with error messages and/or screenshots of the bug.
-      placeholder: |
-        💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
-    validations:
-      required: true
-
-  - type: textarea
-    attributes:
-      label: Environment
-      description: Please specify the software and hardware you used to produce the bug.
-      placeholder: |
-        - YOLO: YOLOv5 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)
-        - OS: Ubuntu 20.04
-        - Python: 3.9.0
-    validations:
-      required: false
-
-  - type: textarea
-    attributes:
-      label: Minimal Reproducible Example
-      description: >
-        When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem.
-        This is referred to by community members as creating a [minimal reproducible example](https://stackoverflow.com/help/minimal-reproducible-example).
-      placeholder: |
-        ```
-        # Code to reproduce your issue here
-        ```
-    validations:
-      required: false
-
-  - type: textarea
-    attributes:
-      label: Additional
-      description: Anything else you would like to share?
-
-  - type: checkboxes
-    attributes:
-      label: Are you willing to submit a PR?
-      description: >
-        (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
-        See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started.
-      options:
-        - label: Yes I'd like to help by submitting a PR!
diff --git a/yolov5-6.2/.github/ISSUE_TEMPLATE/config.yml b/yolov5-6.2/.github/ISSUE_TEMPLATE/config.yml
deleted file mode 100644
index 4db7cefb..00000000
--- a/yolov5-6.2/.github/ISSUE_TEMPLATE/config.yml
+++ /dev/null
@@ -1,8 +0,0 @@
-blank_issues_enabled: true
-contact_links:
-  - name: 💬 Forum
-    url: https://community.ultralytics.com/
-    about: Ask on Ultralytics Community Forum
-  - name: Stack Overflow
-    url: https://stackoverflow.com/search?q=YOLOv5
-    about: Ask on Stack Overflow with 'YOLOv5' tag
diff --git a/yolov5-6.2/.github/ISSUE_TEMPLATE/feature-request.yml b/yolov5-6.2/.github/ISSUE_TEMPLATE/feature-request.yml
deleted file mode 100644
index 68ef9851..00000000
--- a/yolov5-6.2/.github/ISSUE_TEMPLATE/feature-request.yml
+++ /dev/null
@@ -1,50 +0,0 @@
-name: 🚀 Feature Request
-description: Suggest a YOLOv5 idea
-# title: " "
-labels: [enhancement]
-body:
-  - type: markdown
-    attributes:
-      value: |
-        Thank you for submitting a YOLOv5 🚀 Feature Request!
-
-  - type: checkboxes
-    attributes:
-      label: Search before asking
-      description: >
-        Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists.
-      options:
-        - label: >
-            I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests.
-          required: true
-
-  - type: textarea
-    attributes:
-      label: Description
-      description: A short description of your feature.
-      placeholder: |
-        What new feature would you like to see in YOLOv5?
-    validations:
-      required: true
-
-  - type: textarea
-    attributes:
-      label: Use case
-      description: |
-        Describe the use case of your feature request. It will help us understand and prioritize the feature request.
-      placeholder: |
-        How would this feature be used, and who would use it?
-
-  - type: textarea
-    attributes:
-      label: Additional
-      description: Anything else you would like to share?
-
-  - type: checkboxes
-    attributes:
-      label: Are you willing to submit a PR?
-      description: >
-        (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
-        See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started.
-      options:
-        - label: Yes I'd like to help by submitting a PR!
diff --git a/yolov5-6.2/.github/ISSUE_TEMPLATE/question.yml b/yolov5-6.2/.github/ISSUE_TEMPLATE/question.yml
deleted file mode 100644
index 8e0993c6..00000000
--- a/yolov5-6.2/.github/ISSUE_TEMPLATE/question.yml
+++ /dev/null
@@ -1,33 +0,0 @@
-name: ❓ Question
-description: Ask a YOLOv5 question
-# title: " "
-labels: [question]
-body:
-  - type: markdown
-    attributes:
-      value: |
-        Thank you for asking a YOLOv5 ❓ Question!
-
-  - type: checkboxes
-    attributes:
-      label: Search before asking
-      description: >
-        Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists.
-      options:
-        - label: >
-            I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions.
-          required: true
-
-  - type: textarea
-    attributes:
-      label: Question
-      description: What is your question?
-      placeholder: |
-        💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
-    validations:
-      required: true
-
-  - type: textarea
-    attributes:
-      label: Additional
-      description: Anything else you would like to share?
diff --git a/yolov5-6.2/.github/PULL_REQUEST_TEMPLATE.md b/yolov5-6.2/.github/PULL_REQUEST_TEMPLATE.md
deleted file mode 100644
index f25b017a..00000000
--- a/yolov5-6.2/.github/PULL_REQUEST_TEMPLATE.md
+++ /dev/null
@@ -1,9 +0,0 @@
-<!--
-Thank you for submitting a YOLOv5 🚀 Pull Request! We want to make contributing to YOLOv5 as easy and transparent as possible. A few tips to get you started:
-
-- Search existing YOLOv5 [PRs](https://github.com/ultralytics/yolov5/pull) to see if a similar PR already exists.
-- Link this PR to a YOLOv5 [issue](https://github.com/ultralytics/yolov5/issues) to help us understand what bug fix or feature is being implemented.
-- Provide before and after profiling/inference/training results to help us quantify the improvement your PR provides (if applicable).
-
-Please see our ✅ [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) for more details.
--->
diff --git a/yolov5-6.2/.github/README_cn.md b/yolov5-6.2/.github/README_cn.md
deleted file mode 100644
index 86b502df..00000000
--- a/yolov5-6.2/.github/README_cn.md
+++ /dev/null
@@ -1,353 +0,0 @@
-<div align="center">
-<p>
-   <a align="left" href="https://ultralytics.com/yolov5" target="_blank">
-   <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
-</p>
-<br>
-
-[English](../README.md) | 简体中文
-<div>
-   <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
-   <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
-   <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
-   <br>
-   <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
-   <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
-   <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
-</div>
-
-<br>
-<p>
-YOLOv5🚀是一个在COCO数据集上预训练的物体检测架构和模型系列,它代表了<a href="https://ultralytics.com">Ultralytics</a>对未来视觉AI方法的公开研究,其中包含了在数千小时的研究和开发中所获得的经验和最佳实践。
-</p>
-
-<div align="center">
-  <a href="https://github.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a>
-</div>
-
-<!--
-<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
-<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
--->
-
-</div>
-
-## <div align="center">文件</div>
-
-请参阅[YOLOv5 Docs](https://docs.ultralytics.com),了解有关训练、测试和部署的完整文件。
-
-## <div align="center">快速开始案例</div>
-
-<details open>
-<summary>安装</summary>
-
-在[**Python>=3.7.0**](https://www.python.org/) 的环境中克隆版本仓并安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt),包括[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/)。
-```bash
-git clone https://github.com/ultralytics/yolov5  # 克隆
-cd yolov5
-pip install -r requirements.txt  # 安装
-```
-
-</details>
-
-<details open>
-<summary>推理</summary>
-
-YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 推理. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从最新YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases)下载。
-
-```python
-import torch
-
-# 模型
-model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5n - yolov5x6, custom
-
-# 图像
-img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list
-
-# 推理
-results = model(img)
-
-# 结果
-results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
-```
-
-</details>
-
-<details>
-<summary>用 detect.py 进行推理</summary>
-
-`detect.py` 在各种数据源上运行推理, 其会从最新的 YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中自动下载 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 并将检测结果保存到 `runs/detect` 目录。
-
-```bash
-python detect.py --source 0  # 网络摄像头
-                          img.jpg  # 图像
-                          vid.mp4  # 视频
-                          path/  # 文件夹
-                          'path/*.jpg'  # glob
-                          'https://youtu.be/Zgi9g1ksQHc'  # YouTube
-                          'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP 流
-```
-
-</details>
-
-<details>
-<summary>训练</summary>
-
-以下指令再现了 YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
-数据集结果. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data) 自动从最新的YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中下载。YOLOv5n/s/m/l/x的训练时间在V100 GPU上是 1/2/4/6/8天(多GPU倍速). 尽可能使用最大的 `--batch-size`, 或通过 `--batch-size -1` 来实现 YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092). 批量大小显示为 V100-16GB。
-
-```bash
-python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
-                                       yolov5s                                64
-                                       yolov5m                                40
-                                       yolov5l                                24
-                                       yolov5x                                16
-```
-
-<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
-
-</details>
-
-<details open>
-<summary>教程</summary>
-
-- [训练自定义数据](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 推荐
-- [获得最佳训练效果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️ 推荐
-- [使用 Weights & Biases 记录实验](https://github.com/ultralytics/yolov5/issues/1289)  🌟 新
-- [Roboflow:数据集、标签和主动学习](https://github.com/ultralytics/yolov5/issues/4975)  🌟 新
-- [多GPU训练](https://github.com/ultralytics/yolov5/issues/475)
-- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)  ⭐ 新
-- [TFLite, ONNX, CoreML, TensorRT 导出](https://github.com/ultralytics/yolov5/issues/251) 🚀
-- [测试时数据增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303)
-- [模型集成](https://github.com/ultralytics/yolov5/issues/318)
-- [模型剪枝/稀疏性](https://github.com/ultralytics/yolov5/issues/304)
-- [超参数进化](https://github.com/ultralytics/yolov5/issues/607)
-- [带有冻结层的迁移学习](https://github.com/ultralytics/yolov5/issues/1314) ⭐ 新
-- [架构概要](https://github.com/ultralytics/yolov5/issues/6998) ⭐ 新
-
-</details>
-
-## <div align="center">环境</div>
-
-使用经过我们验证的环境,几秒钟就可以开始。点击下面的每个图标了解详情。
-
-<div align="center">
-    <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
-        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
-    </a>
-    <a href="https://www.kaggle.com/ultralytics/yolov5">
-        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
-    </a>
-    <a href="https://hub.docker.com/r/ultralytics/yolov5">
-        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
-    </a>
-    <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
-        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
-    </a>
-    <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
-        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
-    </a>
-</div>
-
-## <div align="center">如何与第三方集成</div>
-
-<div align="center">
-  <a href="https://bit.ly/yolov5-deci-platform">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-deci.png" width="10%" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
-  <a href="https://cutt.ly/yolov5-readme-clearml">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
-  <a href="https://roboflow.com/?ref=ultralytics">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
-  <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb.png" width="10%" /></a>
-</div>
-
-|Deci ⭐ NEW|ClearML ⭐ NEW|Roboflow|Weights & Biases
-|:-:|:-:|:-:|:-:|
-|Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)
-
-
-## <div align="center">为什么选择 YOLOv5</div>
-
-<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
-<details>
-  <summary>YOLOv5-P5 640 图像 (点击扩展)</summary>
-
-<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
-</details>
-<details>
-  <summary>图片注释 (点击扩展)</summary>
-
-- **COCO AP val** 表示 mAP@0.5:0.95 在5000张图像的[COCO val2017](http://cocodataset.org)数据集上,在256到1536的不同推理大小上测量的指标。
-- **GPU Speed** 衡量的是在 [COCO val2017](http://cocodataset.org) 数据集上使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例在批量大小为32时每张图像的平均推理时间。
-- **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) ,批量大小设置为 8。
-- 复现 mAP 方法: `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
-
-</details>
-
-### 预训练检查点
-
-| Model                                                                                                | size<br><sup>(pixels) | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
-|------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|------------------------------|-------------------------------|--------------------------------|--------------------|------------------------|
-| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt)                   | 640                   | 28.0                    | 45.7               | **45**                       | **6.3**                       | **0.6**                        | **1.9**            | **4.5**                |
-| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt)                   | 640                   | 37.4                    | 56.8               | 98                           | 6.4                           | 0.9                            | 7.2                | 16.5                   |
-| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt)                   | 640                   | 45.4                    | 64.1               | 224                          | 8.2                           | 1.7                            | 21.2               | 49.0                   |
-| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l.pt)                   | 640                   | 49.0                    | 67.3               | 430                          | 10.1                          | 2.7                            | 46.5               | 109.1                  |
-| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt)                   | 640                   | 50.7                    | 68.9               | 766                          | 12.1                          | 4.8                            | 86.7               | 205.7                  |
-|                                                                                                      |                       |                         |                    |                              |                               |                                |                    |                        |
-| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n6.pt)                 | 1280                  | 36.0                    | 54.4               | 153                          | 8.1                           | 2.1                            | 3.2                | 4.6                    |
-| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s6.pt)                 | 1280                  | 44.8                    | 63.7               | 385                          | 8.2                           | 3.6                            | 12.6               | 16.8                   |
-| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m6.pt)                 | 1280                  | 51.3                    | 69.3               | 887                          | 11.1                          | 6.8                            | 35.7               | 50.0                   |
-| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l6.pt)                 | 1280                  | 53.7                    | 71.3               | 1784                         | 15.8                          | 10.5                           | 76.8               | 111.4                  |
-| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x6.pt)<br>+ [TTA][TTA] | 1280<br>1536          | 55.0<br>**55.8**        | 72.7<br>**72.7**   | 3136<br>-                    | 26.2<br>-                     | 19.4<br>-                      | 140.7<br>-         | 209.8<br>-             |
-
-<details>
-  <summary>表格注释 (点击扩展)</summary>
-
-- 所有检查点都以默认设置训练到300个时期. Nano和Small模型用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, 其他模型使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
-- **mAP<sup>val</sup>** 值是 [COCO val2017](http://cocodataset.org) 数据集上的单模型单尺度的值。
-<br>复现方法: `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
-- 使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) 实例对COCO val图像的平均速度。不包括NMS时间(~1 ms/img)
-<br>复现方法: `python val.py --data coco.yaml --img 640 --task speed --batch 1`
-- **TTA** [测试时数据增强](https://github.com/ultralytics/yolov5/issues/303) 包括反射和比例增强.
-<br>复现方法: `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
-
-</details>
-
-
-## <div align="center">Classification ⭐ NEW</div>
-
-YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation, prediction and export! We've made training classifier models super simple. Click below to get started.
-
-<details>
-  <summary>Classification Checkpoints (click to expand)</summary>
-
-<br>
-
-We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
-
-| Model                                                                                              | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
-|----------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----------------------------------------------|--------------------------------|-------------------------------------|--------------------|------------------------|
-| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt)         | 224                   | 64.6             | 85.4             | 7:59                                         | **3.3**                        | **0.5**                             | **2.5**            | **0.5**                |
-| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt)         | 224                   | 71.5             | 90.2             | 8:09                                         | 6.6                            | 0.6                                 | 5.4                | 1.4                    |
-| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt)         | 224                   | 75.9             | 92.9             | 10:06                                        | 15.5                           | 0.9                                 | 12.9               | 3.9                    |
-| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt)         | 224                   | 78.0             | 94.0             | 11:56                                        | 26.9                           | 1.4                                 | 26.5               | 8.5                    |
-| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt)         | 224                   | **79.0**         | **94.4**         | 15:04                                        | 54.3                           | 1.8                                 | 48.1               | 15.9                   |
-|                                                                                                    |
-| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt)               | 224                   | 70.3             | 89.5             | **6:47**                                     | 11.2                           | 0.5                                 | 11.7               | 3.7                    |
-| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt)               | 224                   | 73.9             | 91.8             | 8:33                                         | 20.6                           | 0.9                                 | 21.8               | 7.4                    |
-| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt)               | 224                   | 76.8             | 93.4             | 11:10                                        | 23.4                           | 1.0                                 | 25.6               | 8.5                    |
-| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt)             | 224                   | 78.5             | 94.3             | 17:10                                        | 42.1                           | 1.9                                 | 44.5               | 15.9                   |
-|                                                                                                    |
-| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224                   | 75.1             | 92.4             | 13:03                                        | 12.5                           | 1.3                                 | 5.3                | 1.0                    |
-| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224                   | 76.4             | 93.2             | 17:04                                        | 14.9                           | 1.6                                 | 7.8                | 1.5                    |
-| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224                   | 76.6             | 93.4             | 17:10                                        | 15.9                           | 1.6                                 | 9.1                | 1.7                    |
-| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224                   | 77.7             | 94.0             | 19:19                                        | 18.9                           | 1.9                                 | 12.2               | 2.4                    |
-
-<details>
-  <summary>Table Notes (click to expand)</summary>
-
-- All checkpoints are trained to 90 epochs with SGD optimizer with lr0=0.001 at image size 224 and all default settings. Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2.
-- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
-- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
-- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
-</details>
-</details>
-
-<details>
-  <summary>Classification Usage Examples (click to expand)</summary>
-
-### Train
-YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
-
-```bash
-# Single-GPU
-python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
-
-# Multi-GPU DDP
-python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
-```
-
-### Val
-Validate accuracy on a pretrained model. To validate YOLOv5s-cls accuracy on ImageNet.
-```bash
-bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
-python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet --img 224
-```
-
-### Predict
-Run a classification prediction on an image.
-```bash
-python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
-```
-```python
-model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt')  # load from PyTorch Hub
-```
-
-### Export
-Export a group of trained YOLOv5-cls, ResNet and EfficientNet models to ONNX and TensorRT.
-```bash
-python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
-```
-</details>
-
-
-## <div align="center">贡献</div>
-
-我们重视您的意见! 我们希望给大家提供尽可能的简单和透明的方式对 YOLOv5 做出贡献。开始之前请先点击并查看我们的 [贡献指南](CONTRIBUTING.md),填写[YOLOv5调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 来向我们发送您的经验反馈。真诚感谢我们所有的贡献者!
-
-<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
-<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a>
-
-## <div align="center">联系</div>
-
-关于YOLOv5的漏洞和功能问题,请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)。商业咨询或技术支持服务请访问[https://ultralytics.com/contact](https://ultralytics.com/contact)。
-
-<br>
-<div align="center">
-  <a href="https://github.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="3%" alt="" /></a>
-</div>
-
-[assets]: https://github.com/ultralytics/yolov5/releases
-[tta]: https://github.com/ultralytics/yolov5/issues/303
diff --git a/yolov5-6.2/.github/SECURITY.md b/yolov5-6.2/.github/SECURITY.md
deleted file mode 100644
index aa3e8409..00000000
--- a/yolov5-6.2/.github/SECURITY.md
+++ /dev/null
@@ -1,7 +0,0 @@
-# Security Policy
-
-We aim to make YOLOv5 🚀 as secure as possible! If you find potential vulnerabilities or have any concerns please let us know so we can investigate and take corrective action if needed.
-
-### Reporting a Vulnerability
-
-To report vulnerabilities please email us at hello@ultralytics.com or visit https://ultralytics.com/contact. Thank you!
diff --git a/yolov5-6.2/.github/dependabot.yml b/yolov5-6.2/.github/dependabot.yml
deleted file mode 100644
index c1b3d5d5..00000000
--- a/yolov5-6.2/.github/dependabot.yml
+++ /dev/null
@@ -1,23 +0,0 @@
-version: 2
-updates:
-  - package-ecosystem: pip
-    directory: "/"
-    schedule:
-      interval: weekly
-      time: "04:00"
-    open-pull-requests-limit: 10
-    reviewers:
-      - glenn-jocher
-    labels:
-      - dependencies
-
-  - package-ecosystem: github-actions
-    directory: "/"
-    schedule:
-      interval: weekly
-      time: "04:00"
-    open-pull-requests-limit: 5
-    reviewers:
-      - glenn-jocher
-    labels:
-      - dependencies
diff --git a/yolov5-6.2/.github/workflows/ci-testing.yml b/yolov5-6.2/.github/workflows/ci-testing.yml
deleted file mode 100644
index aa797c44..00000000
--- a/yolov5-6.2/.github/workflows/ci-testing.yml
+++ /dev/null
@@ -1,135 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# YOLOv5 Continuous Integration (CI) GitHub Actions tests
-
-name: YOLOv5 CI
-
-on:
-  push:
-    branches: [ master ]
-  pull_request:
-    branches: [ master ]
-  schedule:
-    - cron: '0 0 * * *'  # runs at 00:00 UTC every day
-
-jobs:
-  Benchmarks:
-    runs-on: ${{ matrix.os }}
-    strategy:
-      matrix:
-        os: [ ubuntu-latest ]
-        python-version: [ '3.9' ]  # requires python<=3.9
-        model: [ yolov5n ]
-    steps:
-      - uses: actions/checkout@v3
-      - uses: actions/setup-python@v4
-        with:
-          python-version: ${{ matrix.python-version }}
-      #- name: Cache pip
-      #  uses: actions/cache@v3
-      #  with:
-      #    path: ~/.cache/pip
-      #    key: ${{ runner.os }}-Benchmarks-${{ hashFiles('requirements.txt') }}
-      #    restore-keys: ${{ runner.os }}-Benchmarks-
-      - name: Install requirements
-        run: |
-          python -m pip install --upgrade pip wheel
-          pip install -r requirements.txt coremltools openvino-dev tensorflow-cpu --extra-index-url https://download.pytorch.org/whl/cpu
-          python --version
-          pip --version
-          pip list
-      - name: Run benchmarks
-        run: |
-          python utils/benchmarks.py --weights ${{ matrix.model }}.pt --img 320 --hard-fail
-
-  Tests:
-    timeout-minutes: 60
-    runs-on: ${{ matrix.os }}
-    strategy:
-      fail-fast: false
-      matrix:
-        os: [ ubuntu-latest, macos-latest, windows-latest ]
-        python-version: [ '3.10' ]
-        model: [ yolov5n ]
-        include:
-          - os: ubuntu-latest
-            python-version: '3.7'  # '3.6.8' min
-            model: yolov5n
-          - os: ubuntu-latest
-            python-version: '3.8'
-            model: yolov5n
-          - os: ubuntu-latest
-            python-version: '3.9'
-            model: yolov5n
-          - os: ubuntu-latest
-            python-version: '3.8'  # torch 1.7.0 requires python >=3.6, <=3.8
-            model: yolov5n
-            torch: '1.7.0'  # min torch version CI https://pypi.org/project/torchvision/
-    steps:
-      - uses: actions/checkout@v3
-      - uses: actions/setup-python@v4
-        with:
-          python-version: ${{ matrix.python-version }}
-      - name: Get cache dir
-        # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
-        id: pip-cache
-        run: echo "::set-output name=dir::$(pip cache dir)"
-      - name: Cache pip
-        uses: actions/cache@v3
-        with:
-          path: ${{ steps.pip-cache.outputs.dir }}
-          key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
-          restore-keys: ${{ runner.os }}-${{ matrix.python-version }}-pip-
-      - name: Install requirements
-        run: |
-          python -m pip install --upgrade pip wheel
-          if [ "${{ matrix.torch }}" == "1.7.0" ]; then
-              pip install -r requirements.txt torch==1.7.0 torchvision==0.8.1 --extra-index-url https://download.pytorch.org/whl/cpu
-          else
-              pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu
-          fi
-        shell: bash  # for Windows compatibility
-      - name: Check environment
-        run: |
-          python -c "import utils; utils.notebook_init()"
-          echo "RUNNER_OS is ${{ runner.os }}"
-          echo "GITHUB_EVENT_NAME is ${{ github.event_name }}"
-          echo "GITHUB_WORKFLOW is ${{ github.workflow }}"
-          echo "GITHUB_ACTOR is ${{ github.actor }}"
-          echo "GITHUB_REPOSITORY is ${{ github.repository }}"
-          echo "GITHUB_REPOSITORY_OWNER is ${{ github.repository_owner }}"
-          python --version
-          pip --version
-          pip list
-      - name: Test detection
-        shell: bash  # for Windows compatibility
-        run: |
-          # export PYTHONPATH="$PWD"  # to run '$ python *.py' files in subdirectories
-          m=${{ matrix.model }}  # official weights
-          b=runs/train/exp/weights/best  # best.pt checkpoint
-          python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu  # train
-          for d in cpu; do  # devices
-            for w in $m $b; do  # weights
-              python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d  # val
-              python detect.py --imgsz 64 --weights $w.pt --device $d  # detect
-            done
-          done
-          python hubconf.py --model $m  # hub
-          # python models/tf.py --weights $m.pt  # build TF model
-          python models/yolo.py --cfg $m.yaml  # build PyTorch model
-          python export.py --weights $m.pt --img 64 --include torchscript  # export
-          python - <<EOF
-          import torch
-          for path in '$m', '$b':
-              model = torch.hub.load('.', 'custom', path=path, source='local')
-              print(model('data/images/bus.jpg'))
-          EOF
-      - name: Test classification
-        shell: bash  # for Windows compatibility
-        run: |
-          m=${{ matrix.model }}-cls.pt  # official weights
-          b=runs/train-cls/exp/weights/best.pt  # best.pt checkpoint
-          python classify/train.py --imgsz 32 --model $m --data mnist2560 --epochs 1  # train
-          python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist2560  # val
-          python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist2560/test/7/60.png  # predict
-          python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg  # predict
-          python export.py --weights $b --img 64 --imgsz 224 --include torchscript  # export
diff --git a/yolov5-6.2/.github/workflows/codeql-analysis.yml b/yolov5-6.2/.github/workflows/codeql-analysis.yml
deleted file mode 100644
index b6f75109..00000000
--- a/yolov5-6.2/.github/workflows/codeql-analysis.yml
+++ /dev/null
@@ -1,54 +0,0 @@
-# This action runs GitHub's industry-leading static analysis engine, CodeQL, against a repository's source code to find security vulnerabilities.
-# https://github.com/github/codeql-action
-
-name: "CodeQL"
-
-on:
-  schedule:
-    - cron: '0 0 1 * *'  # Runs at 00:00 UTC on the 1st of every month
-
-jobs:
-  analyze:
-    name: Analyze
-    runs-on: ubuntu-latest
-
-    strategy:
-      fail-fast: false
-      matrix:
-        language: ['python']
-        # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
-        # Learn more:
-        # https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
-
-    steps:
-      - name: Checkout repository
-        uses: actions/checkout@v3
-
-      # Initializes the CodeQL tools for scanning.
-      - name: Initialize CodeQL
-        uses: github/codeql-action/init@v2
-        with:
-          languages: ${{ matrix.language }}
-          # If you wish to specify custom queries, you can do so here or in a config file.
-          # By default, queries listed here will override any specified in a config file.
-          # Prefix the list here with "+" to use these queries and those in the config file.
-          # queries: ./path/to/local/query, your-org/your-repo/queries@main
-
-      # Autobuild attempts to build any compiled languages  (C/C++, C#, or Java).
-      # If this step fails, then you should remove it and run the build manually (see below)
-      - name: Autobuild
-        uses: github/codeql-action/autobuild@v2
-
-      # ℹ️ Command-line programs to run using the OS shell.
-      # 📚 https://git.io/JvXDl
-
-      # ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
-      #    and modify them (or add more) to build your code if your project
-      #    uses a compiled language
-
-      #- run: |
-      #   make bootstrap
-      #   make release
-
-      - name: Perform CodeQL Analysis
-        uses: github/codeql-action/analyze@v2
diff --git a/yolov5-6.2/.github/workflows/docker.yml b/yolov5-6.2/.github/workflows/docker.yml
deleted file mode 100644
index c89d0ada..00000000
--- a/yolov5-6.2/.github/workflows/docker.yml
+++ /dev/null
@@ -1,54 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Builds ultralytics/yolov5:latest images on DockerHub https://hub.docker.com/r/ultralytics/yolov5
-
-name: Publish Docker Images
-
-on:
-  push:
-    branches: [ master ]
-
-jobs:
-  docker:
-    if: github.repository == 'ultralytics/yolov5'
-    name: Push Docker image to Docker Hub
-    runs-on: ubuntu-latest
-    steps:
-      - name: Checkout repo
-        uses: actions/checkout@v3
-
-      - name: Set up QEMU
-        uses: docker/setup-qemu-action@v2
-
-      - name: Set up Docker Buildx
-        uses: docker/setup-buildx-action@v2
-
-      - name: Login to Docker Hub
-        uses: docker/login-action@v2
-        with:
-          username: ${{ secrets.DOCKERHUB_USERNAME }}
-          password: ${{ secrets.DOCKERHUB_TOKEN }}
-
-      - name: Build and push arm64 image
-        uses: docker/build-push-action@v3
-        with:
-          context: .
-          platforms: linux/arm64
-          file: utils/docker/Dockerfile-arm64
-          push: true
-          tags: ultralytics/yolov5:latest-arm64
-
-      - name: Build and push CPU image
-        uses: docker/build-push-action@v3
-        with:
-          context: .
-          file: utils/docker/Dockerfile-cpu
-          push: true
-          tags: ultralytics/yolov5:latest-cpu
-
-      - name: Build and push GPU image
-        uses: docker/build-push-action@v3
-        with:
-          context: .
-          file: utils/docker/Dockerfile
-          push: true
-          tags: ultralytics/yolov5:latest
diff --git a/yolov5-6.2/.github/workflows/greetings.yml b/yolov5-6.2/.github/workflows/greetings.yml
deleted file mode 100644
index d5dad7a2..00000000
--- a/yolov5-6.2/.github/workflows/greetings.yml
+++ /dev/null
@@ -1,63 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-name: Greetings
-
-on:
-  pull_request_target:
-    types: [opened]
-  issues:
-    types: [opened]
-
-jobs:
-  greeting:
-    runs-on: ubuntu-latest
-    steps:
-      - uses: actions/first-interaction@v1
-        with:
-          repo-token: ${{ secrets.GITHUB_TOKEN }}
-          pr-message: |
-            👋 Hello @${{ github.actor }}, thank you for submitting a YOLOv5 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
-            - ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an automatic [GitHub Actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) merge may be attempted by writing /rebase in a new comment, or by running the following code, replacing 'feature' with the name of your local branch:
-            ```bash
-            git remote add upstream https://github.com/ultralytics/yolov5.git
-            git fetch upstream
-            # git checkout feature  # <--- replace 'feature' with local branch name
-            git merge upstream/master
-            git push -u origin -f
-            ```
-            - ✅ Verify all Continuous Integration (CI) **checks are passing**.
-            - ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_  -Bruce Lee
-
-          issue-message: |
-            👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ [Tutorials](https://github.com/ultralytics/yolov5/wiki#tutorials) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) all the way to advanced concepts like [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607).
-
-            If this is a 🐛 Bug Report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.
-
-            If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online [W&B logging](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data#visualize) if available.
-
-            For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com.
-
-            ## Requirements
-
-            [**Python>=3.7.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). To get started:
-            ```bash
-            git clone https://github.com/ultralytics/yolov5  # clone
-            cd yolov5
-            pip install -r requirements.txt  # install
-            ```
-
-            ## Environments
-
-            YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
-
-            - **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
-            - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
-            - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
-            - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
-
-
-            ## Status
-
-            <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
-
-            If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
diff --git a/yolov5-6.2/.github/workflows/rebase.yml b/yolov5-6.2/.github/workflows/rebase.yml
deleted file mode 100644
index a4dc9e50..00000000
--- a/yolov5-6.2/.github/workflows/rebase.yml
+++ /dev/null
@@ -1,21 +0,0 @@
-# https://github.com/marketplace/actions/automatic-rebase
-
-name: Automatic Rebase
-on:
-  issue_comment:
-    types: [created]
-jobs:
-  rebase:
-    name: Rebase
-    if: github.event.issue.pull_request != '' && contains(github.event.comment.body, '/rebase')
-    runs-on: ubuntu-latest
-    steps:
-      - name: Checkout the latest code
-        uses: actions/checkout@v3
-        with:
-          token: ${{ secrets.ACTIONS_TOKEN }}
-          fetch-depth: 0 # otherwise, you will fail to push refs to dest repo
-      - name: Automatic Rebase
-        uses: cirrus-actions/rebase@1.7
-        env:
-          GITHUB_TOKEN: ${{ secrets.ACTIONS_TOKEN }}
diff --git a/yolov5-6.2/.github/workflows/stale.yml b/yolov5-6.2/.github/workflows/stale.yml
deleted file mode 100644
index 03d99790..00000000
--- a/yolov5-6.2/.github/workflows/stale.yml
+++ /dev/null
@@ -1,40 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-name: Close stale issues
-on:
-  schedule:
-    - cron: '0 0 * * *'  # Runs at 00:00 UTC every day
-
-jobs:
-  stale:
-    runs-on: ubuntu-latest
-    steps:
-      - uses: actions/stale@v5
-        with:
-          repo-token: ${{ secrets.GITHUB_TOKEN }}
-          stale-issue-message: |
-            👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.
-
-            Access additional [YOLOv5](https://ultralytics.com/yolov5) 🚀 resources:
-            - **Wiki** – https://github.com/ultralytics/yolov5/wiki
-            - **Tutorials** – https://github.com/ultralytics/yolov5#tutorials
-            - **Docs** – https://docs.ultralytics.com
-
-            Access additional [Ultralytics](https://ultralytics.com) ⚡ resources:
-            - **Ultralytics HUB** – https://ultralytics.com/hub
-            - **Vision API** – https://ultralytics.com/yolov5
-            - **About Us** – https://ultralytics.com/about
-            - **Join Our Team** – https://ultralytics.com/work
-            - **Contact Us** – https://ultralytics.com/contact
-
-            Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed!
-
-            Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!
-
-          stale-pr-message: 'This pull request has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv5 🚀 and Vision AI ⭐.'
-          days-before-issue-stale: 30
-          days-before-issue-close: 10
-          days-before-pr-stale: 90
-          days-before-pr-close: 30
-          exempt-issue-labels: 'documentation,tutorial,TODO'
-          operations-per-run: 300  # The maximum number of operations per run, used to control rate limiting.
diff --git a/yolov5-6.2/.gitignore b/yolov5-6.2/.gitignore
deleted file mode 100644
index 69a00843..00000000
--- a/yolov5-6.2/.gitignore
+++ /dev/null
@@ -1,256 +0,0 @@
-# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
-*.jpg
-*.jpeg
-*.png
-*.bmp
-*.tif
-*.tiff
-*.heic
-*.JPG
-*.JPEG
-*.PNG
-*.BMP
-*.TIF
-*.TIFF
-*.HEIC
-*.mp4
-*.mov
-*.MOV
-*.avi
-*.data
-*.json
-*.cfg
-!setup.cfg
-!cfg/yolov3*.cfg
-
-storage.googleapis.com
-runs/*
-data/*
-data/images/*
-!data/*.yaml
-!data/hyps
-!data/scripts
-!data/images
-!data/images/zidane.jpg
-!data/images/bus.jpg
-!data/*.sh
-
-results*.csv
-
-# Datasets -------------------------------------------------------------------------------------------------------------
-coco/
-coco128/
-VOC/
-
-# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
-*.m~
-*.mat
-!targets*.mat
-
-# Neural Network weights -----------------------------------------------------------------------------------------------
-*.weights
-*.pt
-*.pb
-*.onnx
-*.engine
-*.mlmodel
-*.torchscript
-*.tflite
-*.h5
-*_saved_model/
-*_web_model/
-*_openvino_model/
-darknet53.conv.74
-yolov3-tiny.conv.15
-
-# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
-# Byte-compiled / optimized / DLL files
-__pycache__/
-*.py[cod]
-*$py.class
-
-# C extensions
-*.so
-
-# Distribution / packaging
-.Python
-env/
-build/
-develop-eggs/
-dist/
-downloads/
-eggs/
-.eggs/
-lib/
-lib64/
-parts/
-sdist/
-var/
-wheels/
-*.egg-info/
-/wandb/
-.installed.cfg
-*.egg
-
-
-# PyInstaller
-#  Usually these files are written by a python script from a template
-#  before PyInstaller builds the exe, so as to inject date/other infos into it.
-*.manifest
-*.spec
-
-# Installer logs
-pip-log.txt
-pip-delete-this-directory.txt
-
-# Unit test / coverage reports
-htmlcov/
-.tox/
-.coverage
-.coverage.*
-.cache
-nosetests.xml
-coverage.xml
-*.cover
-.hypothesis/
-
-# Translations
-*.mo
-*.pot
-
-# Django stuff:
-*.log
-local_settings.py
-
-# Flask stuff:
-instance/
-.webassets-cache
-
-# Scrapy stuff:
-.scrapy
-
-# Sphinx documentation
-docs/_build/
-
-# PyBuilder
-target/
-
-# Jupyter Notebook
-.ipynb_checkpoints
-
-# pyenv
-.python-version
-
-# celery beat schedule file
-celerybeat-schedule
-
-# SageMath parsed files
-*.sage.py
-
-# dotenv
-.env
-
-# virtualenv
-.venv*
-venv*/
-ENV*/
-
-# Spyder project settings
-.spyderproject
-.spyproject
-
-# Rope project settings
-.ropeproject
-
-# mkdocs documentation
-/site
-
-# mypy
-.mypy_cache/
-
-
-# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
-
-# General
-.DS_Store
-.AppleDouble
-.LSOverride
-
-# Icon must end with two \r
-Icon
-Icon?
-
-# Thumbnails
-._*
-
-# Files that might appear in the root of a volume
-.DocumentRevisions-V100
-.fseventsd
-.Spotlight-V100
-.TemporaryItems
-.Trashes
-.VolumeIcon.icns
-.com.apple.timemachine.donotpresent
-
-# Directories potentially created on remote AFP share
-.AppleDB
-.AppleDesktop
-Network Trash Folder
-Temporary Items
-.apdisk
-
-
-# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
-# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
-# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
-
-# User-specific stuff:
-.idea/*
-.idea/**/workspace.xml
-.idea/**/tasks.xml
-.idea/dictionaries
-.html  # Bokeh Plots
-.pg  # TensorFlow Frozen Graphs
-.avi # videos
-
-# Sensitive or high-churn files:
-.idea/**/dataSources/
-.idea/**/dataSources.ids
-.idea/**/dataSources.local.xml
-.idea/**/sqlDataSources.xml
-.idea/**/dynamic.xml
-.idea/**/uiDesigner.xml
-
-# Gradle:
-.idea/**/gradle.xml
-.idea/**/libraries
-
-# CMake
-cmake-build-debug/
-cmake-build-release/
-
-# Mongo Explorer plugin:
-.idea/**/mongoSettings.xml
-
-## File-based project format:
-*.iws
-
-## Plugin-specific files:
-
-# IntelliJ
-out/
-
-# mpeltonen/sbt-idea plugin
-.idea_modules/
-
-# JIRA plugin
-atlassian-ide-plugin.xml
-
-# Cursive Clojure plugin
-.idea/replstate.xml
-
-# Crashlytics plugin (for Android Studio and IntelliJ)
-com_crashlytics_export_strings.xml
-crashlytics.properties
-crashlytics-build.properties
-fabric.properties
diff --git a/yolov5-6.2/.pre-commit-config.yaml b/yolov5-6.2/.pre-commit-config.yaml
deleted file mode 100644
index 43aca019..00000000
--- a/yolov5-6.2/.pre-commit-config.yaml
+++ /dev/null
@@ -1,64 +0,0 @@
-# Define hooks for code formations
-# Will be applied on any updated commit files if a user has installed and linked commit hook
-
-default_language_version:
-  python: python3.8
-
-# Define bot property if installed via https://github.com/marketplace/pre-commit-ci
-ci:
-  autofix_prs: true
-  autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
-  autoupdate_schedule: monthly
-  # submodules: true
-
-repos:
-  - repo: https://github.com/pre-commit/pre-commit-hooks
-    rev: v4.3.0
-    hooks:
-      # - id: end-of-file-fixer
-      - id: trailing-whitespace
-      - id: check-case-conflict
-      - id: check-yaml
-      - id: check-toml
-      - id: pretty-format-json
-      - id: check-docstring-first
-
-  - repo: https://github.com/asottile/pyupgrade
-    rev: v2.37.3
-    hooks:
-      - id: pyupgrade
-        name: Upgrade code
-        args: [ --py37-plus ]
-
-  - repo: https://github.com/PyCQA/isort
-    rev: 5.10.1
-    hooks:
-      - id: isort
-        name: Sort imports
-
-  - repo: https://github.com/pre-commit/mirrors-yapf
-    rev: v0.32.0
-    hooks:
-      - id: yapf
-        name: YAPF formatting
-
-  - repo: https://github.com/executablebooks/mdformat
-    rev: 0.7.14
-    hooks:
-      - id: mdformat
-        name: MD formatting
-        additional_dependencies:
-          - mdformat-gfm
-          - mdformat-black
-        exclude: "README.md|README_cn.md"
-
-  - repo: https://github.com/asottile/yesqa
-    rev: v1.3.0
-    hooks:
-      - id: yesqa
-
-  - repo: https://github.com/PyCQA/flake8
-    rev: 5.0.2
-    hooks:
-      - id: flake8
-        name: PEP8
diff --git a/yolov5-6.2/CONTRIBUTING.md b/yolov5-6.2/CONTRIBUTING.md
deleted file mode 100644
index 13b9b73b..00000000
--- a/yolov5-6.2/CONTRIBUTING.md
+++ /dev/null
@@ -1,98 +0,0 @@
-## Contributing to YOLOv5 🚀
-
-We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
-
-- Reporting a bug
-- Discussing the current state of the code
-- Submitting a fix
-- Proposing a new feature
-- Becoming a maintainer
-
-YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
-helping push the frontiers of what's possible in AI 😃!
-
-## Submitting a Pull Request (PR) 🛠️
-
-Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
-
-### 1. Select File to Update
-
-Select `requirements.txt` to update by clicking on it in GitHub.
-
-<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
-
-### 2. Click 'Edit this file'
-
-Button is in top-right corner.
-
-<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
-
-### 3. Make Changes
-
-Change `matplotlib` version from `3.2.2` to `3.3`.
-
-<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
-
-### 4. Preview Changes and Submit PR
-
-Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
-for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
-changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
-
-<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
-
-### PR recommendations
-
-To allow your work to be integrated as seamlessly as possible, we advise you to:
-
-- ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an
-  automatic [GitHub Actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) merge may
-  be attempted by writing /rebase in a new comment, or by running the following code, replacing 'feature' with the name
-  of your local branch:
-
-```bash
-git remote add upstream https://github.com/ultralytics/yolov5.git
-git fetch upstream
-# git checkout feature  # <--- replace 'feature' with local branch name
-git merge upstream/master
-git push -u origin -f
-```
-
-- ✅ Verify all Continuous Integration (CI) **checks are passing**.
-- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
-  but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_  — Bruce Lee
-
-## Submitting a Bug Report 🐛
-
-If you spot a problem with YOLOv5 please submit a Bug Report!
-
-For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
-short guidelines below to help users provide what we need in order to get started.
-
-When asking a question, people will be better able to provide help if you provide **code** that they can easily
-understand and use to **reproduce** the problem. This is referred to by community members as creating
-a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
-the problem should be:
-
-- ✅ **Minimal** – Use as little code as possible that still produces the same problem
-- ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
-- ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
-
-In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
-should be:
-
-- ✅ **Current** – Verify that your code is up-to-date with current
-  GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
-  copy to ensure your problem has not already been resolved by previous commits.
-- ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
-  repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
-
-If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛
-**Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
-a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
-understand and diagnose your problem.
-
-## License
-
-By contributing, you agree that your contributions will be licensed under
-the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
diff --git a/yolov5-6.2/LICENSE b/yolov5-6.2/LICENSE
deleted file mode 100644
index 92b370f0..00000000
--- a/yolov5-6.2/LICENSE
+++ /dev/null
@@ -1,674 +0,0 @@
-GNU GENERAL PUBLIC LICENSE
-                       Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
-                            Preamble
-
-  The GNU General Public License is a free, copyleft license for
-software and other kinds of works.
-
-  The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works.  By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program--to make sure it remains free
-software for all its users.  We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors.  You can apply it to
-your programs, too.
-
-  When we speak of free software, we are referring to freedom, not
-price.  Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
-  To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights.  Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
-  For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received.  You must make sure that they, too, receive
-or can get the source code.  And you must show them these terms so they
-know their rights.
-
-  Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
-  For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software.  For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
-  Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so.  This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software.  The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable.  Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products.  If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
-  Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary.  To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
-  The precise terms and conditions for copying, distribution and
-modification follow.
-
-                       TERMS AND CONDITIONS
-
-  0. Definitions.
-
-  "This License" refers to version 3 of the GNU General Public License.
-
-  "Copyright" also means copyright-like laws that apply to other kinds of
-works, such as semiconductor masks.
-
-  "The Program" refers to any copyrightable work licensed under this
-License.  Each licensee is addressed as "you".  "Licensees" and
-"recipients" may be individuals or organizations.
-
-  To "modify" a work means to copy from or adapt all or part of the work
-in a fashion requiring copyright permission, other than the making of an
-exact copy.  The resulting work is called a "modified version" of the
-earlier work or a work "based on" the earlier work.
-
-  A "covered work" means either the unmodified Program or a work based
-on the Program.
-
-  To "propagate" a work means to do anything with it that, without
-permission, would make you directly or secondarily liable for
-infringement under applicable copyright law, except executing it on a
-computer or modifying a private copy.  Propagation includes copying,
-distribution (with or without modification), making available to the
-public, and in some countries other activities as well.
-
-  To "convey" a work means any kind of propagation that enables other
-parties to make or receive copies.  Mere interaction with a user through
-a computer network, with no transfer of a copy, is not conveying.
-
-  An interactive user interface displays "Appropriate Legal Notices"
-to the extent that it includes a convenient and prominently visible
-feature that (1) displays an appropriate copyright notice, and (2)
-tells the user that there is no warranty for the work (except to the
-extent that warranties are provided), that licensees may convey the
-work under this License, and how to view a copy of this License.  If
-the interface presents a list of user commands or options, such as a
-menu, a prominent item in the list meets this criterion.
-
-  1. Source Code.
-
-  The "source code" for a work means the preferred form of the work
-for making modifications to it.  "Object code" means any non-source
-form of a work.
-
-  A "Standard Interface" means an interface that either is an official
-standard defined by a recognized standards body, or, in the case of
-interfaces specified for a particular programming language, one that
-is widely used among developers working in that language.
-
-  The "System Libraries" of an executable work include anything, other
-than the work as a whole, that (a) is included in the normal form of
-packaging a Major Component, but which is not part of that Major
-Component, and (b) serves only to enable use of the work with that
-Major Component, or to implement a Standard Interface for which an
-implementation is available to the public in source code form.  A
-"Major Component", in this context, means a major essential component
-(kernel, window system, and so on) of the specific operating system
-(if any) on which the executable work runs, or a compiler used to
-produce the work, or an object code interpreter used to run it.
-
-  The "Corresponding Source" for a work in object code form means all
-the source code needed to generate, install, and (for an executable
-work) run the object code and to modify the work, including scripts to
-control those activities.  However, it does not include the work's
-System Libraries, or general-purpose tools or generally available free
-programs which are used unmodified in performing those activities but
-which are not part of the work.  For example, Corresponding Source
-includes interface definition files associated with source files for
-the work, and the source code for shared libraries and dynamically
-linked subprograms that the work is specifically designed to require,
-such as by intimate data communication or control flow between those
-subprograms and other parts of the work.
-
-  The Corresponding Source need not include anything that users
-can regenerate automatically from other parts of the Corresponding
-Source.
-
-  The Corresponding Source for a work in source code form is that
-same work.
-
-  2. Basic Permissions.
-
-  All rights granted under this License are granted for the term of
-copyright on the Program, and are irrevocable provided the stated
-conditions are met.  This License explicitly affirms your unlimited
-permission to run the unmodified Program.  The output from running a
-covered work is covered by this License only if the output, given its
-content, constitutes a covered work.  This License acknowledges your
-rights of fair use or other equivalent, as provided by copyright law.
-
-  You may make, run and propagate covered works that you do not
-convey, without conditions so long as your license otherwise remains
-in force.  You may convey covered works to others for the sole purpose
-of having them make modifications exclusively for you, or provide you
-with facilities for running those works, provided that you comply with
-the terms of this License in conveying all material for which you do
-not control copyright.  Those thus making or running the covered works
-for you must do so exclusively on your behalf, under your direction
-and control, on terms that prohibit them from making any copies of
-your copyrighted material outside their relationship with you.
-
-  Conveying under any other circumstances is permitted solely under
-the conditions stated below.  Sublicensing is not allowed; section 10
-makes it unnecessary.
-
-  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
-  No covered work shall be deemed part of an effective technological
-measure under any applicable law fulfilling obligations under article
-11 of the WIPO copyright treaty adopted on 20 December 1996, or
-similar laws prohibiting or restricting circumvention of such
-measures.
-
-  When you convey a covered work, you waive any legal power to forbid
-circumvention of technological measures to the extent such circumvention
-is effected by exercising rights under this License with respect to
-the covered work, and you disclaim any intention to limit operation or
-modification of the work as a means of enforcing, against the work's
-users, your or third parties' legal rights to forbid circumvention of
-technological measures.
-
-  4. Conveying Verbatim Copies.
-
-  You may convey verbatim copies of the Program's source code as you
-receive it, in any medium, provided that you conspicuously and
-appropriately publish on each copy an appropriate copyright notice;
-keep intact all notices stating that this License and any
-non-permissive terms added in accord with section 7 apply to the code;
-keep intact all notices of the absence of any warranty; and give all
-recipients a copy of this License along with the Program.
-
-  You may charge any price or no price for each copy that you convey,
-and you may offer support or warranty protection for a fee.
-
-  5. Conveying Modified Source Versions.
-
-  You may convey a work based on the Program, or the modifications to
-produce it from the Program, in the form of source code under the
-terms of section 4, provided that you also meet all of these conditions:
-
-    a) The work must carry prominent notices stating that you modified
-    it, and giving a relevant date.
-
-    b) The work must carry prominent notices stating that it is
-    released under this License and any conditions added under section
-    7.  This requirement modifies the requirement in section 4 to
-    "keep intact all notices".
-
-    c) You must license the entire work, as a whole, under this
-    License to anyone who comes into possession of a copy.  This
-    License will therefore apply, along with any applicable section 7
-    additional terms, to the whole of the work, and all its parts,
-    regardless of how they are packaged.  This License gives no
-    permission to license the work in any other way, but it does not
-    invalidate such permission if you have separately received it.
-
-    d) If the work has interactive user interfaces, each must display
-    Appropriate Legal Notices; however, if the Program has interactive
-    interfaces that do not display Appropriate Legal Notices, your
-    work need not make them do so.
-
-  A compilation of a covered work with other separate and independent
-works, which are not by their nature extensions of the covered work,
-and which are not combined with it such as to form a larger program,
-in or on a volume of a storage or distribution medium, is called an
-"aggregate" if the compilation and its resulting copyright are not
-used to limit the access or legal rights of the compilation's users
-beyond what the individual works permit.  Inclusion of a covered work
-in an aggregate does not cause this License to apply to the other
-parts of the aggregate.
-
-  6. Conveying Non-Source Forms.
-
-  You may convey a covered work in object code form under the terms
-of sections 4 and 5, provided that you also convey the
-machine-readable Corresponding Source under the terms of this License,
-in one of these ways:
-
-    a) Convey the object code in, or embodied in, a physical product
-    (including a physical distribution medium), accompanied by the
-    Corresponding Source fixed on a durable physical medium
-    customarily used for software interchange.
-
-    b) Convey the object code in, or embodied in, a physical product
-    (including a physical distribution medium), accompanied by a
-    written offer, valid for at least three years and valid for as
-    long as you offer spare parts or customer support for that product
-    model, to give anyone who possesses the object code either (1) a
-    copy of the Corresponding Source for all the software in the
-    product that is covered by this License, on a durable physical
-    medium customarily used for software interchange, for a price no
-    more than your reasonable cost of physically performing this
-    conveying of source, or (2) access to copy the
-    Corresponding Source from a network server at no charge.
-
-    c) Convey individual copies of the object code with a copy of the
-    written offer to provide the Corresponding Source.  This
-    alternative is allowed only occasionally and noncommercially, and
-    only if you received the object code with such an offer, in accord
-    with subsection 6b.
-
-    d) Convey the object code by offering access from a designated
-    place (gratis or for a charge), and offer equivalent access to the
-    Corresponding Source in the same way through the same place at no
-    further charge.  You need not require recipients to copy the
-    Corresponding Source along with the object code.  If the place to
-    copy the object code is a network server, the Corresponding Source
-    may be on a different server (operated by you or a third party)
-    that supports equivalent copying facilities, provided you maintain
-    clear directions next to the object code saying where to find the
-    Corresponding Source.  Regardless of what server hosts the
-    Corresponding Source, you remain obligated to ensure that it is
-    available for as long as needed to satisfy these requirements.
-
-    e) Convey the object code using peer-to-peer transmission, provided
-    you inform other peers where the object code and Corresponding
-    Source of the work are being offered to the general public at no
-    charge under subsection 6d.
-
-  A separable portion of the object code, whose source code is excluded
-from the Corresponding Source as a System Library, need not be
-included in conveying the object code work.
-
-  A "User Product" is either (1) a "consumer product", which means any
-tangible personal property which is normally used for personal, family,
-or household purposes, or (2) anything designed or sold for incorporation
-into a dwelling.  In determining whether a product is a consumer product,
-doubtful cases shall be resolved in favor of coverage.  For a particular
-product received by a particular user, "normally used" refers to a
-typical or common use of that class of product, regardless of the status
-of the particular user or of the way in which the particular user
-actually uses, or expects or is expected to use, the product.  A product
-is a consumer product regardless of whether the product has substantial
-commercial, industrial or non-consumer uses, unless such uses represent
-the only significant mode of use of the product.
-
-  "Installation Information" for a User Product means any methods,
-procedures, authorization keys, or other information required to install
-and execute modified versions of a covered work in that User Product from
-a modified version of its Corresponding Source.  The information must
-suffice to ensure that the continued functioning of the modified object
-code is in no case prevented or interfered with solely because
-modification has been made.
-
-  If you convey an object code work under this section in, or with, or
-specifically for use in, a User Product, and the conveying occurs as
-part of a transaction in which the right of possession and use of the
-User Product is transferred to the recipient in perpetuity or for a
-fixed term (regardless of how the transaction is characterized), the
-Corresponding Source conveyed under this section must be accompanied
-by the Installation Information.  But this requirement does not apply
-if neither you nor any third party retains the ability to install
-modified object code on the User Product (for example, the work has
-been installed in ROM).
-
-  The requirement to provide Installation Information does not include a
-requirement to continue to provide support service, warranty, or updates
-for a work that has been modified or installed by the recipient, or for
-the User Product in which it has been modified or installed.  Access to a
-network may be denied when the modification itself materially and
-adversely affects the operation of the network or violates the rules and
-protocols for communication across the network.
-
-  Corresponding Source conveyed, and Installation Information provided,
-in accord with this section must be in a format that is publicly
-documented (and with an implementation available to the public in
-source code form), and must require no special password or key for
-unpacking, reading or copying.
-
-  7. Additional Terms.
-
-  "Additional permissions" are terms that supplement the terms of this
-License by making exceptions from one or more of its conditions.
-Additional permissions that are applicable to the entire Program shall
-be treated as though they were included in this License, to the extent
-that they are valid under applicable law.  If additional permissions
-apply only to part of the Program, that part may be used separately
-under those permissions, but the entire Program remains governed by
-this License without regard to the additional permissions.
-
-  When you convey a copy of a covered work, you may at your option
-remove any additional permissions from that copy, or from any part of
-it.  (Additional permissions may be written to require their own
-removal in certain cases when you modify the work.)  You may place
-additional permissions on material, added by you to a covered work,
-for which you have or can give appropriate copyright permission.
-
-  Notwithstanding any other provision of this License, for material you
-add to a covered work, you may (if authorized by the copyright holders of
-that material) supplement the terms of this License with terms:
-
-    a) Disclaiming warranty or limiting liability differently from the
-    terms of sections 15 and 16 of this License; or
-
-    b) Requiring preservation of specified reasonable legal notices or
-    author attributions in that material or in the Appropriate Legal
-    Notices displayed by works containing it; or
-
-    c) Prohibiting misrepresentation of the origin of that material, or
-    requiring that modified versions of such material be marked in
-    reasonable ways as different from the original version; or
-
-    d) Limiting the use for publicity purposes of names of licensors or
-    authors of the material; or
-
-    e) Declining to grant rights under trademark law for use of some
-    trade names, trademarks, or service marks; or
-
-    f) Requiring indemnification of licensors and authors of that
-    material by anyone who conveys the material (or modified versions of
-    it) with contractual assumptions of liability to the recipient, for
-    any liability that these contractual assumptions directly impose on
-    those licensors and authors.
-
-  All other non-permissive additional terms are considered "further
-restrictions" within the meaning of section 10.  If the Program as you
-received it, or any part of it, contains a notice stating that it is
-governed by this License along with a term that is a further
-restriction, you may remove that term.  If a license document contains
-a further restriction but permits relicensing or conveying under this
-License, you may add to a covered work material governed by the terms
-of that license document, provided that the further restriction does
-not survive such relicensing or conveying.
-
-  If you add terms to a covered work in accord with this section, you
-must place, in the relevant source files, a statement of the
-additional terms that apply to those files, or a notice indicating
-where to find the applicable terms.
-
-  Additional terms, permissive or non-permissive, may be stated in the
-form of a separately written license, or stated as exceptions;
-the above requirements apply either way.
-
-  8. Termination.
-
-  You may not propagate or modify a covered work except as expressly
-provided under this License.  Any attempt otherwise to propagate or
-modify it is void, and will automatically terminate your rights under
-this License (including any patent licenses granted under the third
-paragraph of section 11).
-
-  However, if you cease all violation of this License, then your
-license from a particular copyright holder is reinstated (a)
-provisionally, unless and until the copyright holder explicitly and
-finally terminates your license, and (b) permanently, if the copyright
-holder fails to notify you of the violation by some reasonable means
-prior to 60 days after the cessation.
-
-  Moreover, your license from a particular copyright holder is
-reinstated permanently if the copyright holder notifies you of the
-violation by some reasonable means, this is the first time you have
-received notice of violation of this License (for any work) from that
-copyright holder, and you cure the violation prior to 30 days after
-your receipt of the notice.
-
-  Termination of your rights under this section does not terminate the
-licenses of parties who have received copies or rights from you under
-this License.  If your rights have been terminated and not permanently
-reinstated, you do not qualify to receive new licenses for the same
-material under section 10.
-
-  9. Acceptance Not Required for Having Copies.
-
-  You are not required to accept this License in order to receive or
-run a copy of the Program.  Ancillary propagation of a covered work
-occurring solely as a consequence of using peer-to-peer transmission
-to receive a copy likewise does not require acceptance.  However,
-nothing other than this License grants you permission to propagate or
-modify any covered work.  These actions infringe copyright if you do
-not accept this License.  Therefore, by modifying or propagating a
-covered work, you indicate your acceptance of this License to do so.
-
-  10. Automatic Licensing of Downstream Recipients.
-
-  Each time you convey a covered work, the recipient automatically
-receives a license from the original licensors, to run, modify and
-propagate that work, subject to this License.  You are not responsible
-for enforcing compliance by third parties with this License.
-
-  An "entity transaction" is a transaction transferring control of an
-organization, or substantially all assets of one, or subdividing an
-organization, or merging organizations.  If propagation of a covered
-work results from an entity transaction, each party to that
-transaction who receives a copy of the work also receives whatever
-licenses to the work the party's predecessor in interest had or could
-give under the previous paragraph, plus a right to possession of the
-Corresponding Source of the work from the predecessor in interest, if
-the predecessor has it or can get it with reasonable efforts.
-
-  You may not impose any further restrictions on the exercise of the
-rights granted or affirmed under this License.  For example, you may
-not impose a license fee, royalty, or other charge for exercise of
-rights granted under this License, and you may not initiate litigation
-(including a cross-claim or counterclaim in a lawsuit) alleging that
-any patent claim is infringed by making, using, selling, offering for
-sale, or importing the Program or any portion of it.
-
-  11. Patents.
-
-  A "contributor" is a copyright holder who authorizes use under this
-License of the Program or a work on which the Program is based.  The
-work thus licensed is called the contributor's "contributor version".
-
-  A contributor's "essential patent claims" are all patent claims
-owned or controlled by the contributor, whether already acquired or
-hereafter acquired, that would be infringed by some manner, permitted
-by this License, of making, using, or selling its contributor version,
-but do not include claims that would be infringed only as a
-consequence of further modification of the contributor version.  For
-purposes of this definition, "control" includes the right to grant
-patent sublicenses in a manner consistent with the requirements of
-this License.
-
-  Each contributor grants you a non-exclusive, worldwide, royalty-free
-patent license under the contributor's essential patent claims, to
-make, use, sell, offer for sale, import and otherwise run, modify and
-propagate the contents of its contributor version.
-
-  In the following three paragraphs, a "patent license" is any express
-agreement or commitment, however denominated, not to enforce a patent
-(such as an express permission to practice a patent or covenant not to
-sue for patent infringement).  To "grant" such a patent license to a
-party means to make such an agreement or commitment not to enforce a
-patent against the party.
-
-  If you convey a covered work, knowingly relying on a patent license,
-and the Corresponding Source of the work is not available for anyone
-to copy, free of charge and under the terms of this License, through a
-publicly available network server or other readily accessible means,
-then you must either (1) cause the Corresponding Source to be so
-available, or (2) arrange to deprive yourself of the benefit of the
-patent license for this particular work, or (3) arrange, in a manner
-consistent with the requirements of this License, to extend the patent
-license to downstream recipients.  "Knowingly relying" means you have
-actual knowledge that, but for the patent license, your conveying the
-covered work in a country, or your recipient's use of the covered work
-in a country, would infringe one or more identifiable patents in that
-country that you have reason to believe are valid.
-
-  If, pursuant to or in connection with a single transaction or
-arrangement, you convey, or propagate by procuring conveyance of, a
-covered work, and grant a patent license to some of the parties
-receiving the covered work authorizing them to use, propagate, modify
-or convey a specific copy of the covered work, then the patent license
-you grant is automatically extended to all recipients of the covered
-work and works based on it.
-
-  A patent license is "discriminatory" if it does not include within
-the scope of its coverage, prohibits the exercise of, or is
-conditioned on the non-exercise of one or more of the rights that are
-specifically granted under this License.  You may not convey a covered
-work if you are a party to an arrangement with a third party that is
-in the business of distributing software, under which you make payment
-to the third party based on the extent of your activity of conveying
-the work, and under which the third party grants, to any of the
-parties who would receive the covered work from you, a discriminatory
-patent license (a) in connection with copies of the covered work
-conveyed by you (or copies made from those copies), or (b) primarily
-for and in connection with specific products or compilations that
-contain the covered work, unless you entered into that arrangement,
-or that patent license was granted, prior to 28 March 2007.
-
-  Nothing in this License shall be construed as excluding or limiting
-any implied license or other defenses to infringement that may
-otherwise be available to you under applicable patent law.
-
-  12. No Surrender of Others' Freedom.
-
-  If conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License.  If you cannot convey a
-covered work so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you may
-not convey it at all.  For example, if you agree to terms that obligate you
-to collect a royalty for further conveying from those to whom you convey
-the Program, the only way you could satisfy both those terms and this
-License would be to refrain entirely from conveying the Program.
-
-  13. Use with the GNU Affero General Public License.
-
-  Notwithstanding any other provision of this License, you have
-permission to link or combine any covered work with a work licensed
-under version 3 of the GNU Affero General Public License into a single
-combined work, and to convey the resulting work.  The terms of this
-License will continue to apply to the part which is the covered work,
-but the special requirements of the GNU Affero General Public License,
-section 13, concerning interaction through a network will apply to the
-combination as such.
-
-  14. Revised Versions of this License.
-
-  The Free Software Foundation may publish revised and/or new versions of
-the GNU General Public License from time to time.  Such new versions will
-be similar in spirit to the present version, but may differ in detail to
-address new problems or concerns.
-
-  Each version is given a distinguishing version number.  If the
-Program specifies that a certain numbered version of the GNU General
-Public License "or any later version" applies to it, you have the
-option of following the terms and conditions either of that numbered
-version or of any later version published by the Free Software
-Foundation.  If the Program does not specify a version number of the
-GNU General Public License, you may choose any version ever published
-by the Free Software Foundation.
-
-  If the Program specifies that a proxy can decide which future
-versions of the GNU General Public License can be used, that proxy's
-public statement of acceptance of a version permanently authorizes you
-to choose that version for the Program.
-
-  Later license versions may give you additional or different
-permissions.  However, no additional obligations are imposed on any
-author or copyright holder as a result of your choosing to follow a
-later version.
-
-  15. Disclaimer of Warranty.
-
-  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
-HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
-OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
-THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
-IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
-ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
-  16. Limitation of Liability.
-
-  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
-THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
-GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
-USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
-DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
-PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
-EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGES.
-
-  17. Interpretation of Sections 15 and 16.
-
-  If the disclaimer of warranty and limitation of liability provided
-above cannot be given local legal effect according to their terms,
-reviewing courts shall apply local law that most closely approximates
-an absolute waiver of all civil liability in connection with the
-Program, unless a warranty or assumption of liability accompanies a
-copy of the Program in return for a fee.
-
-                     END OF TERMS AND CONDITIONS
-
-            How to Apply These Terms to Your New Programs
-
-  If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these terms.
-
-  To do so, attach the following notices to the program.  It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
-    <one line to give the program's name and a brief idea of what it does.>
-    Copyright (C) <year>  <name of author>
-
-    This program is free software: you can redistribute it and/or modify
-    it under the terms of the GNU General Public License as published by
-    the Free Software Foundation, either version 3 of the License, or
-    (at your option) any later version.
-
-    This program is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-    GNU General Public License for more details.
-
-    You should have received a copy of the GNU General Public License
-    along with this program.  If not, see <http://www.gnu.org/licenses/>.
-
-Also add information on how to contact you by electronic and paper mail.
-
-  If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
-    <program>  Copyright (C) <year>  <name of author>
-    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
-    This is free software, and you are welcome to redistribute it
-    under certain conditions; type `show c' for details.
-
-The hypothetical commands `show w' and `show c' should show the appropriate
-parts of the General Public License.  Of course, your program's commands
-might be different; for a GUI interface, you would use an "about box".
-
-  You should also get your employer (if you work as a programmer) or school,
-if any, to sign a "copyright disclaimer" for the program, if necessary.
-For more information on this, and how to apply and follow the GNU GPL, see
-<http://www.gnu.org/licenses/>.
-
-  The GNU General Public License does not permit incorporating your program
-into proprietary programs.  If your program is a subroutine library, you
-may consider it more useful to permit linking proprietary applications with
-the library.  If this is what you want to do, use the GNU Lesser General
-Public License instead of this License.  But first, please read
-<http://www.gnu.org/philosophy/why-not-lgpl.html>.
diff --git a/yolov5-6.2/README.md b/yolov5-6.2/README.md
deleted file mode 100644
index b368d1d6..00000000
--- a/yolov5-6.2/README.md
+++ /dev/null
@@ -1,363 +0,0 @@
-<div align="center">
-<p>
-   <a align="left" href="https://ultralytics.com/yolov5" target="_blank">
-   <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
-</p>
-
-English | [简体中文](.github/README_cn.md)
-<br>
-<div>
-   <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
-   <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
-   <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
-   <br>
-   <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
-   <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
-   <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
-</div>
-
-<br>
-<p>
-YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
- open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
-</p>
-
-<div align="center">
-  <a href="https://github.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
-  <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a>
-</div>
-
-<!--
-<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
-<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
--->
-
-</div>
-
-## <div align="center">Documentation</div>
-
-See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
-
-## <div align="center">Quick Start Examples</div>
-
-<details open>
-<summary>Install</summary>
-
-Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
-[**Python>=3.7.0**](https://www.python.org/) environment, including
-[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
-
-```bash
-git clone https://github.com/ultralytics/yolov5  # clone
-cd yolov5
-pip install -r requirements.txt  # install
-```
-
-</details>
-
-<details open>
-<summary>Inference</summary>
-
-YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
-YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
-
-```python
-import torch
-
-# Model
-model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5n - yolov5x6, custom
-
-# Images
-img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list
-
-# Inference
-results = model(img)
-
-# Results
-results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
-```
-
-</details>
-
-<details>
-<summary>Inference with detect.py</summary>
-
-`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
-the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
-
-```bash
-python detect.py --source 0  # webcam
-                          img.jpg  # image
-                          vid.mp4  # video
-                          path/  # directory
-                          'path/*.jpg'  # glob
-                          'https://youtu.be/Zgi9g1ksQHc'  # YouTube
-                          'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
-```
-
-</details>
-
-<details>
-<summary>Training</summary>
-
-The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
-results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
-and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
-YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
-1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
-largest `--batch-size` possible, or pass `--batch-size -1` for
-YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
-
-```bash
-python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
-                                       yolov5s                                64
-                                       yolov5m                                40
-                                       yolov5l                                24
-                                       yolov5x                                16
-```
-
-<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
-
-</details>
-
-<details open>
-<summary>Tutorials</summary>
-
-- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED
-- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️
-  RECOMMENDED
-- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
-- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW
-- [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
-- [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
-- [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
-- [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
-- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
-- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)
-- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW
-- [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)
-- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)  🌟 NEW
-- [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW
-- [Deci Platform](https://github.com/ultralytics/yolov5/wiki/Deci-Platform) 🌟 NEW
-
-</details>
-
-## <div align="center">Environments</div>
-
-Get started in seconds with our verified environments. Click each icon below for details.
-
-<div align="center">
-  <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
-  <a href="https://www.kaggle.com/ultralytics/yolov5">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
-  <a href="https://hub.docker.com/r/ultralytics/yolov5">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
-  <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
-  <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
-</div>
-
-## <div align="center">Integrations</div>
-
-<div align="center">
-  <a href="https://bit.ly/yolov5-deci-platform">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-deci.png" width="10%" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
-  <a href="https://cutt.ly/yolov5-readme-clearml">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
-  <a href="https://roboflow.com/?ref=ultralytics">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
-  <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
-    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb.png" width="10%" /></a>
-</div>
-
-|Deci ⭐ NEW|ClearML ⭐ NEW|Roboflow|Weights & Biases
-|:-:|:-:|:-:|:-:|
-|Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)
-
-
-## <div align="center">Why YOLOv5</div>
-
-<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
-<details>
-  <summary>YOLOv5-P5 640 Figure (click to expand)</summary>
-
-<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
-</details>
-<details>
-  <summary>Figure Notes (click to expand)</summary>
-
-- **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
-- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
-- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
-- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
-
-</details>
-
-### Pretrained Checkpoints
-
-| Model                                                                                                | size<br><sup>(pixels) | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
-|------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|------------------------------|-------------------------------|--------------------------------|--------------------|------------------------|
-| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt)                   | 640                   | 28.0                    | 45.7               | **45**                       | **6.3**                       | **0.6**                        | **1.9**            | **4.5**                |
-| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt)                   | 640                   | 37.4                    | 56.8               | 98                           | 6.4                           | 0.9                            | 7.2                | 16.5                   |
-| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt)                   | 640                   | 45.4                    | 64.1               | 224                          | 8.2                           | 1.7                            | 21.2               | 49.0                   |
-| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l.pt)                   | 640                   | 49.0                    | 67.3               | 430                          | 10.1                          | 2.7                            | 46.5               | 109.1                  |
-| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt)                   | 640                   | 50.7                    | 68.9               | 766                          | 12.1                          | 4.8                            | 86.7               | 205.7                  |
-|                                                                                                      |                       |                         |                    |                              |                               |                                |                    |                        |
-| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n6.pt)                 | 1280                  | 36.0                    | 54.4               | 153                          | 8.1                           | 2.1                            | 3.2                | 4.6                    |
-| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s6.pt)                 | 1280                  | 44.8                    | 63.7               | 385                          | 8.2                           | 3.6                            | 12.6               | 16.8                   |
-| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m6.pt)                 | 1280                  | 51.3                    | 69.3               | 887                          | 11.1                          | 6.8                            | 35.7               | 50.0                   |
-| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l6.pt)                 | 1280                  | 53.7                    | 71.3               | 1784                         | 15.8                          | 10.5                           | 76.8               | 111.4                  |
-| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x6.pt)<br>+ [TTA][TTA] | 1280<br>1536          | 55.0<br>**55.8**        | 72.7<br>**72.7**   | 3136<br>-                    | 26.2<br>-                     | 19.4<br>-                      | 140.7<br>-         | 209.8<br>-             |
-
-<details>
-  <summary>Table Notes (click to expand)</summary>
-
-- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
-- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
-- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
-- **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
-
-</details>
-
-## <div align="center">Classification ⭐ NEW</div>
-
-YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation, prediction and export! We've made training classifier models super simple. Click below to get started.
-
-<details>
-  <summary>Classification Checkpoints (click to expand)</summary>
-
-<br>
-
-We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
-
-| Model                                                                                              | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
-|----------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----------------------------------------------|--------------------------------|-------------------------------------|--------------------|------------------------|
-| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt)         | 224                   | 64.6             | 85.4             | 7:59                                         | **3.3**                        | **0.5**                             | **2.5**            | **0.5**                |
-| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt)         | 224                   | 71.5             | 90.2             | 8:09                                         | 6.6                            | 0.6                                 | 5.4                | 1.4                    |
-| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt)         | 224                   | 75.9             | 92.9             | 10:06                                        | 15.5                           | 0.9                                 | 12.9               | 3.9                    |
-| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt)         | 224                   | 78.0             | 94.0             | 11:56                                        | 26.9                           | 1.4                                 | 26.5               | 8.5                    |
-| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt)         | 224                   | **79.0**         | **94.4**         | 15:04                                        | 54.3                           | 1.8                                 | 48.1               | 15.9                   |
-|                                                                                                    |
-| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt)               | 224                   | 70.3             | 89.5             | **6:47**                                     | 11.2                           | 0.5                                 | 11.7               | 3.7                    |
-| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt)               | 224                   | 73.9             | 91.8             | 8:33                                         | 20.6                           | 0.9                                 | 21.8               | 7.4                    |
-| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt)               | 224                   | 76.8             | 93.4             | 11:10                                        | 23.4                           | 1.0                                 | 25.6               | 8.5                    |
-| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt)             | 224                   | 78.5             | 94.3             | 17:10                                        | 42.1                           | 1.9                                 | 44.5               | 15.9                   |
-|                                                                                                    |
-| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224                   | 75.1             | 92.4             | 13:03                                        | 12.5                           | 1.3                                 | 5.3                | 1.0                    |
-| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224                   | 76.4             | 93.2             | 17:04                                        | 14.9                           | 1.6                                 | 7.8                | 1.5                    |
-| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224                   | 76.6             | 93.4             | 17:10                                        | 15.9                           | 1.6                                 | 9.1                | 1.7                    |
-| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224                   | 77.7             | 94.0             | 19:19                                        | 18.9                           | 1.9                                 | 12.2               | 2.4                    |
-
-<details>
-  <summary>Table Notes (click to expand)</summary>
-
-- All checkpoints are trained to 90 epochs with SGD optimizer with lr0=0.001 at image size 224 and all default settings. Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2.
-- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
-- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
-- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
-</details>
-</details>
-
-<details>
-  <summary>Classification Usage Examples (click to expand)</summary>
-
-### Train
-YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
-
-```bash
-# Single-GPU
-python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
-
-# Multi-GPU DDP
-python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
-```
-
-### Val
-Validate accuracy on a pretrained model. To validate YOLOv5s-cls accuracy on ImageNet.
-```bash
-bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
-python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet --img 224
-```
-
-### Predict
-Run a classification prediction on an image.
-```bash
-python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
-```
-```python
-model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt')  # load from PyTorch Hub
-```
-
-### Export
-Export a group of trained YOLOv5-cls, ResNet and EfficientNet models to ONNX and TensorRT.
-```bash
-python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
-```
-</details>
-
-
-## <div align="center">Contribute</div>
-
-We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
-
-<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
-<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a>
-
-## <div align="center">Contact</div>
-
-For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or
-professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).
-
-<br>
-<div align="center">
-  <a href="https://github.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="3%" alt="" /></a>
-  <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
-  <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
-    <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="3%" alt="" /></a>
-</div>
-
-[assets]: https://github.com/ultralytics/yolov5/releases
-[tta]: https://github.com/ultralytics/yolov5/issues/303
diff --git a/yolov5-6.2/classify/predict.py b/yolov5-6.2/classify/predict.py
deleted file mode 100644
index 419830d4..00000000
--- a/yolov5-6.2/classify/predict.py
+++ /dev/null
@@ -1,109 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Run classification inference on images
-
-Usage:
-    $ python classify/predict.py --weights yolov5s-cls.pt --source im.jpg
-"""
-
-import argparse
-import os
-import sys
-from pathlib import Path
-
-import cv2
-import torch.nn.functional as F
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[1]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
-
-from classify.train import imshow_cls
-from models.common import DetectMultiBackend
-from utils.augmentations import classify_transforms
-from utils.general import LOGGER, check_requirements, colorstr, increment_path, print_args
-from utils.torch_utils import select_device, smart_inference_mode, time_sync
-
-
-@smart_inference_mode()
-def run(
-        weights=ROOT / 'yolov5s-cls.pt',  # model.pt path(s)
-        source=ROOT / 'data/images/bus.jpg',  # file/dir/URL/glob, 0 for webcam
-        imgsz=224,  # inference size
-        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
-        half=False,  # use FP16 half-precision inference
-        dnn=False,  # use OpenCV DNN for ONNX inference
-        show=True,
-        project=ROOT / 'runs/predict-cls',  # save to project/name
-        name='exp',  # save to project/name
-        exist_ok=False,  # existing project/name ok, do not increment
-):
-    file = str(source)
-    seen, dt = 1, [0.0, 0.0, 0.0]
-    device = select_device(device)
-
-    # Directories
-    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
-    save_dir.mkdir(parents=True, exist_ok=True)  # make dir
-
-    # Transforms
-    transforms = classify_transforms(imgsz)
-
-    # Load model
-    model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
-    model.warmup(imgsz=(1, 3, imgsz, imgsz))  # warmup
-
-    # Image
-    t1 = time_sync()
-    im = cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB)
-    im = transforms(im).unsqueeze(0).to(device)
-    im = im.half() if model.fp16 else im.float()
-    t2 = time_sync()
-    dt[0] += t2 - t1
-
-    # Inference
-    results = model(im)
-    t3 = time_sync()
-    dt[1] += t3 - t2
-
-    p = F.softmax(results, dim=1)  # probabilities
-    i = p.argsort(1, descending=True)[:, :5].squeeze()  # top 5 indices
-    dt[2] += time_sync() - t3
-    LOGGER.info(f"image 1/1 {file}: {imgsz}x{imgsz} {', '.join(f'{model.names[j]} {p[0, j]:.2f}' for j in i)}")
-
-    # Print results
-    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
-    shape = (1, 3, imgsz, imgsz)
-    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
-    if show:
-        imshow_cls(im, f=save_dir / Path(file).name, verbose=True)
-    LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
-    return p
-
-
-def parse_opt():
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
-    parser.add_argument('--source', type=str, default=ROOT / 'data/images/bus.jpg', help='file')
-    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)')
-    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
-    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
-    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
-    parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save to project/name')
-    parser.add_argument('--name', default='exp', help='save to project/name')
-    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
-    opt = parser.parse_args()
-    print_args(vars(opt))
-    return opt
-
-
-def main(opt):
-    check_requirements(exclude=('tensorboard', 'thop'))
-    run(**vars(opt))
-
-
-if __name__ == "__main__":
-    opt = parse_opt()
-    main(opt)
diff --git a/yolov5-6.2/classify/train.py b/yolov5-6.2/classify/train.py
deleted file mode 100644
index f2b46556..00000000
--- a/yolov5-6.2/classify/train.py
+++ /dev/null
@@ -1,325 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Train a YOLOv5 classifier model on a classification dataset
-Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/custom/dataset'
-
-Usage:
-    $ python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 128
-    $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
-"""
-
-import argparse
-import os
-import subprocess
-import sys
-import time
-from copy import deepcopy
-from datetime import datetime
-from pathlib import Path
-
-import torch
-import torch.distributed as dist
-import torch.hub as hub
-import torch.optim.lr_scheduler as lr_scheduler
-import torchvision
-from torch.cuda import amp
-from tqdm import tqdm
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[1]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
-
-from classify import val as validate
-from models.experimental import attempt_load
-from models.yolo import ClassificationModel, DetectionModel
-from utils.dataloaders import create_classification_dataloader
-from utils.general import (DATASETS_DIR, LOGGER, WorkingDirectory, check_git_status, check_requirements, colorstr,
-                           download, increment_path, init_seeds, print_args, yaml_save)
-from utils.loggers import GenericLogger
-from utils.plots import imshow_cls
-from utils.torch_utils import (ModelEMA, model_info, reshape_classifier_output, select_device, smart_DDP,
-                               smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first)
-
-LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
-RANK = int(os.getenv('RANK', -1))
-WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
-
-
-def train(opt, device):
-    init_seeds(opt.seed + 1 + RANK, deterministic=True)
-    save_dir, data, bs, epochs, nw, imgsz, pretrained = \
-        opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \
-        opt.imgsz, str(opt.pretrained).lower() == 'true'
-    cuda = device.type != 'cpu'
-
-    # Directories
-    wdir = save_dir / 'weights'
-    wdir.mkdir(parents=True, exist_ok=True)  # make dir
-    last, best = wdir / 'last.pt', wdir / 'best.pt'
-
-    # Save run settings
-    yaml_save(save_dir / 'opt.yaml', vars(opt))
-
-    # Logger
-    logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
-
-    # Download Dataset
-    with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
-        data_dir = data if data.is_dir() else (DATASETS_DIR / data)
-        if not data_dir.is_dir():
-            LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
-            t = time.time()
-            if str(data) == 'imagenet':
-                subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
-            else:
-                url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip'
-                download(url, dir=data_dir.parent)
-            s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
-            LOGGER.info(s)
-
-    # Dataloaders
-    nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()])  # number of classes
-    trainloader = create_classification_dataloader(path=data_dir / 'train',
-                                                   imgsz=imgsz,
-                                                   batch_size=bs // WORLD_SIZE,
-                                                   augment=True,
-                                                   cache=opt.cache,
-                                                   rank=LOCAL_RANK,
-                                                   workers=nw)
-
-    test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val'  # data/test or data/val
-    if RANK in {-1, 0}:
-        testloader = create_classification_dataloader(path=test_dir,
-                                                      imgsz=imgsz,
-                                                      batch_size=bs // WORLD_SIZE * 2,
-                                                      augment=False,
-                                                      cache=opt.cache,
-                                                      rank=-1,
-                                                      workers=nw)
-
-    # Model
-    with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
-        if Path(opt.model).is_file() or opt.model.endswith('.pt'):
-            model = attempt_load(opt.model, device='cpu', fuse=False)
-        elif opt.model in torchvision.models.__dict__:  # TorchVision models i.e. resnet50, efficientnet_b0
-            model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None)
-        else:
-            m = hub.list('ultralytics/yolov5')  # + hub.list('pytorch/vision')  # models
-            raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m))
-        if isinstance(model, DetectionModel):
-            LOGGER.warning("WARNING: pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
-            model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10)  # convert to classification model
-        reshape_classifier_output(model, nc)  # update class count
-    for p in model.parameters():
-        p.requires_grad = True  # for training
-    for m in model.modules():
-        if not pretrained and hasattr(m, 'reset_parameters'):
-            m.reset_parameters()
-        if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
-            m.p = opt.dropout  # set dropout
-    model = model.to(device)
-    names = trainloader.dataset.classes  # class names
-    model.names = names  # attach class names
-
-    # Info
-    if RANK in {-1, 0}:
-        model_info(model)
-        if opt.verbose:
-            LOGGER.info(model)
-        images, labels = next(iter(trainloader))
-        file = imshow_cls(images[:25], labels[:25], names=names, f=save_dir / 'train_images.jpg')
-        logger.log_images(file, name='Train Examples')
-        logger.log_graph(model, imgsz)  # log model
-
-    # Optimizer
-    optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=5e-5)
-
-    # Scheduler
-    lrf = 0.01  # final lr (fraction of lr0)
-    # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf  # cosine
-    lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf  # linear
-    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
-    # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
-    #                                    final_div_factor=1 / 25 / lrf)
-
-    # EMA
-    ema = ModelEMA(model) if RANK in {-1, 0} else None
-
-    # DDP mode
-    if cuda and RANK != -1:
-        model = smart_DDP(model)
-
-    # Train
-    t0 = time.time()
-    criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing)  # loss function
-    best_fitness = 0.0
-    scaler = amp.GradScaler(enabled=cuda)
-    val = test_dir.stem  # 'val' or 'test'
-    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n'
-                f'Using {nw * WORLD_SIZE} dataloader workers\n'
-                f"Logging results to {colorstr('bold', save_dir)}\n"
-                f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
-                f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}")
-    for epoch in range(epochs):  # loop over the dataset multiple times
-        tloss, vloss, fitness = 0.0, 0.0, 0.0  # train loss, val loss, fitness
-        model.train()
-        if RANK != -1:
-            trainloader.sampler.set_epoch(epoch)
-        pbar = enumerate(trainloader)
-        if RANK in {-1, 0}:
-            pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
-        for i, (images, labels) in pbar:  # progress bar
-            images, labels = images.to(device, non_blocking=True), labels.to(device)
-
-            # Forward
-            with amp.autocast(enabled=cuda):  # stability issues when enabled
-                loss = criterion(model(images), labels)
-
-            # Backward
-            scaler.scale(loss).backward()
-
-            # Optimize
-            scaler.unscale_(optimizer)  # unscale gradients
-            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
-            scaler.step(optimizer)
-            scaler.update()
-            optimizer.zero_grad()
-            if ema:
-                ema.update(model)
-
-            if RANK in {-1, 0}:
-                # Print
-                tloss = (tloss * i + loss.item()) / (i + 1)  # update mean losses
-                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
-                pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
-
-                # Test
-                if i == len(pbar) - 1:  # last batch
-                    top1, top5, vloss = validate.run(model=ema.ema,
-                                                     dataloader=testloader,
-                                                     criterion=criterion,
-                                                     pbar=pbar)  # test accuracy, loss
-                    fitness = top1  # define fitness as top1 accuracy
-
-        # Scheduler
-        scheduler.step()
-
-        # Log metrics
-        if RANK in {-1, 0}:
-            # Best fitness
-            if fitness > best_fitness:
-                best_fitness = fitness
-
-            # Log
-            metrics = {
-                "train/loss": tloss,
-                f"{val}/loss": vloss,
-                "metrics/accuracy_top1": top1,
-                "metrics/accuracy_top5": top5,
-                "lr/0": optimizer.param_groups[0]['lr']}  # learning rate
-            logger.log_metrics(metrics, epoch)
-
-            # Save model
-            final_epoch = epoch + 1 == epochs
-            if (not opt.nosave) or final_epoch:
-                ckpt = {
-                    'epoch': epoch,
-                    'best_fitness': best_fitness,
-                    'model': deepcopy(ema.ema).half(),  # deepcopy(de_parallel(model)).half(),
-                    'ema': None,  # deepcopy(ema.ema).half(),
-                    'updates': ema.updates,
-                    'optimizer': None,  # optimizer.state_dict(),
-                    'opt': vars(opt),
-                    'date': datetime.now().isoformat()}
-
-                # Save last, best and delete
-                torch.save(ckpt, last)
-                if best_fitness == fitness:
-                    torch.save(ckpt, best)
-                del ckpt
-
-    # Train complete
-    if RANK in {-1, 0} and final_epoch:
-        LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
-                    f"\nResults saved to {colorstr('bold', save_dir)}"
-                    f"\nPredict:         python classify/predict.py --weights {best} --source im.jpg"
-                    f"\nValidate:        python classify/val.py --weights {best} --data {data_dir}"
-                    f"\nExport:          python export.py --weights {best} --include onnx"
-                    f"\nPyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
-                    f"\nVisualize:       https://netron.app\n")
-
-        # Plot examples
-        images, labels = (x[:25] for x in next(iter(testloader)))  # first 25 images and labels
-        pred = torch.max(ema.ema((images.half() if cuda else images.float()).to(device)), 1)[1]
-        file = imshow_cls(images, labels, pred, names, verbose=False, f=save_dir / 'test_images.jpg')
-
-        # Log results
-        meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
-        logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch)
-        logger.log_model(best, epochs, metadata=meta)
-
-
-def parse_opt(known=False):
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path')
-    parser.add_argument('--data', type=str, default='mnist', help='cifar10, cifar100, mnist, imagenet, etc.')
-    parser.add_argument('--epochs', type=int, default=10)
-    parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs')
-    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=128, help='train, val image size (pixels)')
-    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
-    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
-    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
-    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
-    parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name')
-    parser.add_argument('--name', default='exp', help='save to project/name')
-    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
-    parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False')
-    parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer')
-    parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate')
-    parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon')
-    parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head')
-    parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)')
-    parser.add_argument('--verbose', action='store_true', help='Verbose mode')
-    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
-    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
-    return parser.parse_known_args()[0] if known else parser.parse_args()
-
-
-def main(opt):
-    # Checks
-    if RANK in {-1, 0}:
-        print_args(vars(opt))
-        check_git_status()
-        check_requirements()
-
-    # DDP mode
-    device = select_device(opt.device, batch_size=opt.batch_size)
-    if LOCAL_RANK != -1:
-        assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size'
-        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
-        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
-        torch.cuda.set_device(LOCAL_RANK)
-        device = torch.device('cuda', LOCAL_RANK)
-        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
-
-    # Parameters
-    opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)  # increment run
-
-    # Train
-    train(opt, device)
-
-
-def run(**kwargs):
-    # Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
-    opt = parse_opt(True)
-    for k, v in kwargs.items():
-        setattr(opt, k, v)
-    main(opt)
-    return opt
-
-
-if __name__ == "__main__":
-    opt = parse_opt()
-    main(opt)
diff --git a/yolov5-6.2/classify/val.py b/yolov5-6.2/classify/val.py
deleted file mode 100644
index 0930ba8c..00000000
--- a/yolov5-6.2/classify/val.py
+++ /dev/null
@@ -1,158 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Validate a classification model on a dataset
-
-Usage:
-    $ python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet
-"""
-
-import argparse
-import os
-import sys
-from pathlib import Path
-
-import torch
-from tqdm import tqdm
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[1]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
-
-from models.common import DetectMultiBackend
-from utils.dataloaders import create_classification_dataloader
-from utils.general import LOGGER, check_img_size, check_requirements, colorstr, increment_path, print_args
-from utils.torch_utils import select_device, smart_inference_mode, time_sync
-
-
-@smart_inference_mode()
-def run(
-    data=ROOT / '../datasets/mnist',  # dataset dir
-    weights=ROOT / 'yolov5s-cls.pt',  # model.pt path(s)
-    batch_size=128,  # batch size
-    imgsz=224,  # inference size (pixels)
-    device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
-    workers=8,  # max dataloader workers (per RANK in DDP mode)
-    verbose=False,  # verbose output
-    project=ROOT / 'runs/val-cls',  # save to project/name
-    name='exp',  # save to project/name
-    exist_ok=False,  # existing project/name ok, do not increment
-    half=True,  # use FP16 half-precision inference
-    dnn=False,  # use OpenCV DNN for ONNX inference
-    model=None,
-    dataloader=None,
-    criterion=None,
-    pbar=None,
-):
-    # Initialize/load model and set device
-    training = model is not None
-    if training:  # called by train.py
-        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
-        half &= device.type != 'cpu'  # half precision only supported on CUDA
-        model.half() if half else model.float()
-    else:  # called directly
-        device = select_device(device, batch_size=batch_size)
-
-        # Directories
-        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
-        save_dir.mkdir(parents=True, exist_ok=True)  # make dir
-
-        # Load model
-        model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
-        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
-        imgsz = check_img_size(imgsz, s=stride)  # check image size
-        half = model.fp16  # FP16 supported on limited backends with CUDA
-        if engine:
-            batch_size = model.batch_size
-        else:
-            device = model.device
-            if not (pt or jit):
-                batch_size = 1  # export.py models default to batch-size 1
-                LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
-
-        # Dataloader
-        data = Path(data)
-        test_dir = data / 'test' if (data / 'test').exists() else data / 'val'  # data/test or data/val
-        dataloader = create_classification_dataloader(path=test_dir,
-                                                      imgsz=imgsz,
-                                                      batch_size=batch_size,
-                                                      augment=False,
-                                                      rank=-1,
-                                                      workers=workers)
-
-    model.eval()
-    pred, targets, loss, dt = [], [], 0, [0.0, 0.0, 0.0]
-    n = len(dataloader)  # number of batches
-    action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
-    desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
-    bar = tqdm(dataloader, desc, n, not training, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}', position=0)
-    with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
-        for images, labels in bar:
-            t1 = time_sync()
-            images, labels = images.to(device, non_blocking=True), labels.to(device)
-            t2 = time_sync()
-            dt[0] += t2 - t1
-
-            y = model(images)
-            t3 = time_sync()
-            dt[1] += t3 - t2
-
-            pred.append(y.argsort(1, descending=True)[:, :5])
-            targets.append(labels)
-            if criterion:
-                loss += criterion(y, labels)
-            dt[2] += time_sync() - t3
-
-    loss /= n
-    pred, targets = torch.cat(pred), torch.cat(targets)
-    correct = (targets[:, None] == pred).float()
-    acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1)  # (top1, top5) accuracy
-    top1, top5 = acc.mean(0).tolist()
-
-    if pbar:
-        pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
-    if verbose:  # all classes
-        LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
-        LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
-        for i, c in enumerate(model.names):
-            aci = acc[targets == i]
-            top1i, top5i = aci.mean(0).tolist()
-            LOGGER.info(f"{c:>24}{aci.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
-
-        # Print results
-        t = tuple(x / len(dataloader.dataset.samples) * 1E3 for x in dt)  # speeds per image
-        shape = (1, 3, imgsz, imgsz)
-        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
-        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
-
-    return top1, top5, loss
-
-
-def parse_opt():
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
-    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
-    parser.add_argument('--batch-size', type=int, default=128, help='batch size')
-    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
-    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
-    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
-    parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
-    parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
-    parser.add_argument('--name', default='exp', help='save to project/name')
-    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
-    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
-    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
-    opt = parser.parse_args()
-    print_args(vars(opt))
-    return opt
-
-
-def main(opt):
-    check_requirements(exclude=('tensorboard', 'thop'))
-    run(**vars(opt))
-
-
-if __name__ == "__main__":
-    opt = parse_opt()
-    main(opt)
diff --git a/yolov5-6.2/data/Argoverse.yaml b/yolov5-6.2/data/Argoverse.yaml
deleted file mode 100644
index 9d21296e..00000000
--- a/yolov5-6.2/data/Argoverse.yaml
+++ /dev/null
@@ -1,67 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
-# Example usage: python train.py --data Argoverse.yaml
-# parent
-# ├── yolov5
-# └── datasets
-#     └── Argoverse  ← downloads here (31.3 GB)
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/Argoverse  # dataset root dir
-train: Argoverse-1.1/images/train/  # train images (relative to 'path') 39384 images
-val: Argoverse-1.1/images/val/  # val images (relative to 'path') 15062 images
-test: Argoverse-1.1/images/test/  # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
-
-# Classes
-nc: 8  # number of classes
-names: ['person',  'bicycle',  'car',  'motorcycle',  'bus',  'truck',  'traffic_light',  'stop_sign']  # class names
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
-  import json
-
-  from tqdm import tqdm
-  from utils.general import download, Path
-
-
-  def argoverse2yolo(set):
-      labels = {}
-      a = json.load(open(set, "rb"))
-      for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
-          img_id = annot['image_id']
-          img_name = a['images'][img_id]['name']
-          img_label_name = f'{img_name[:-3]}txt'
-
-          cls = annot['category_id']  # instance class id
-          x_center, y_center, width, height = annot['bbox']
-          x_center = (x_center + width / 2) / 1920.0  # offset and scale
-          y_center = (y_center + height / 2) / 1200.0  # offset and scale
-          width /= 1920.0  # scale
-          height /= 1200.0  # scale
-
-          img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
-          if not img_dir.exists():
-              img_dir.mkdir(parents=True, exist_ok=True)
-
-          k = str(img_dir / img_label_name)
-          if k not in labels:
-              labels[k] = []
-          labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
-
-      for k in labels:
-          with open(k, "w") as f:
-              f.writelines(labels[k])
-
-
-  # Download
-  dir = Path('../datasets/Argoverse')  # dataset root dir
-  urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
-  download(urls, dir=dir, delete=False)
-
-  # Convert
-  annotations_dir = 'Argoverse-HD/annotations/'
-  (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images')  # rename 'tracking' to 'images'
-  for d in "train.json", "val.json":
-      argoverse2yolo(dir / annotations_dir / d)  # convert VisDrone annotations to YOLO labels
diff --git a/yolov5-6.2/data/GlobalWheat2020.yaml b/yolov5-6.2/data/GlobalWheat2020.yaml
deleted file mode 100644
index 4c43693f..00000000
--- a/yolov5-6.2/data/GlobalWheat2020.yaml
+++ /dev/null
@@ -1,54 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
-# Example usage: python train.py --data GlobalWheat2020.yaml
-# parent
-# ├── yolov5
-# └── datasets
-#     └── GlobalWheat2020  ← downloads here (7.0 GB)
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/GlobalWheat2020  # dataset root dir
-train: # train images (relative to 'path') 3422 images
-  - images/arvalis_1
-  - images/arvalis_2
-  - images/arvalis_3
-  - images/ethz_1
-  - images/rres_1
-  - images/inrae_1
-  - images/usask_1
-val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
-  - images/ethz_1
-test: # test images (optional) 1276 images
-  - images/utokyo_1
-  - images/utokyo_2
-  - images/nau_1
-  - images/uq_1
-
-# Classes
-nc: 1  # number of classes
-names: ['wheat_head']  # class names
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
-  from utils.general import download, Path
-
-
-  # Download
-  dir = Path(yaml['path'])  # dataset root dir
-  urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
-          'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
-  download(urls, dir=dir)
-
-  # Make Directories
-  for p in 'annotations', 'images', 'labels':
-      (dir / p).mkdir(parents=True, exist_ok=True)
-
-  # Move
-  for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
-           'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
-      (dir / p).rename(dir / 'images' / p)  # move to /images
-      f = (dir / p).with_suffix('.json')  # json file
-      if f.exists():
-          f.rename((dir / 'annotations' / p).with_suffix('.json'))  # move to /annotations
diff --git a/yolov5-6.2/data/ImageNet.yaml b/yolov5-6.2/data/ImageNet.yaml
deleted file mode 100644
index 9f89b426..00000000
--- a/yolov5-6.2/data/ImageNet.yaml
+++ /dev/null
@@ -1,156 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
-# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
-# Example usage: python classify/train.py --data imagenet
-# parent
-# ├── yolov5
-# └── datasets
-#     └── imagenet  ← downloads here (144 GB)
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/imagenet  # dataset root dir
-train: train  # train images (relative to 'path') 1281167 images
-val: val  # val images (relative to 'path') 50000 images
-test:  # test images (optional)
-
-# Classes
-nc: 1000  # number of classes
-names: ['tench', 'goldfish', 'great white shark', 'tiger shark', 'hammerhead shark', 'electric ray', 'stingray', 'cock',
-        'hen', 'ostrich', 'brambling', 'goldfinch', 'house finch', 'junco', 'indigo bunting', 'American robin',
-        'bulbul', 'jay', 'magpie', 'chickadee', 'American dipper', 'kite', 'bald eagle', 'vulture', 'great grey owl',
-        'fire salamander', 'smooth newt', 'newt', 'spotted salamander', 'axolotl', 'American bullfrog', 'tree frog',
-        'tailed frog', 'loggerhead sea turtle', 'leatherback sea turtle', 'mud turtle', 'terrapin', 'box turtle',
-        'banded gecko', 'green iguana', 'Carolina anole', 'desert grassland whiptail lizard', 'agama',
-        'frilled-necked lizard', 'alligator lizard', 'Gila monster', 'European green lizard', 'chameleon',
-        'Komodo dragon', 'Nile crocodile', 'American alligator', 'triceratops', 'worm snake', 'ring-necked snake',
-        'eastern hog-nosed snake', 'smooth green snake', 'kingsnake', 'garter snake', 'water snake', 'vine snake',
-        'night snake', 'boa constrictor', 'African rock python', 'Indian cobra', 'green mamba', 'sea snake',
-        'Saharan horned viper', 'eastern diamondback rattlesnake', 'sidewinder', 'trilobite', 'harvestman', 'scorpion',
-        'yellow garden spider', 'barn spider', 'European garden spider', 'southern black widow', 'tarantula',
-        'wolf spider', 'tick', 'centipede', 'black grouse', 'ptarmigan', 'ruffed grouse', 'prairie grouse', 'peacock',
-        'quail', 'partridge', 'grey parrot', 'macaw', 'sulphur-crested cockatoo', 'lorikeet', 'coucal', 'bee eater',
-        'hornbill', 'hummingbird', 'jacamar', 'toucan', 'duck', 'red-breasted merganser', 'goose', 'black swan',
-        'tusker', 'echidna', 'platypus', 'wallaby', 'koala', 'wombat', 'jellyfish', 'sea anemone', 'brain coral',
-        'flatworm', 'nematode', 'conch', 'snail', 'slug', 'sea slug', 'chiton', 'chambered nautilus', 'Dungeness crab',
-        'rock crab', 'fiddler crab', 'red king crab', 'American lobster', 'spiny lobster', 'crayfish', 'hermit crab',
-        'isopod', 'white stork', 'black stork', 'spoonbill', 'flamingo', 'little blue heron', 'great egret', 'bittern',
-        'crane (bird)', 'limpkin', 'common gallinule', 'American coot', 'bustard', 'ruddy turnstone', 'dunlin',
-        'common redshank', 'dowitcher', 'oystercatcher', 'pelican', 'king penguin', 'albatross', 'grey whale',
-        'killer whale', 'dugong', 'sea lion', 'Chihuahua', 'Japanese Chin', 'Maltese', 'Pekingese', 'Shih Tzu',
-        'King Charles Spaniel', 'Papillon', 'toy terrier', 'Rhodesian Ridgeback', 'Afghan Hound', 'Basset Hound',
-        'Beagle', 'Bloodhound', 'Bluetick Coonhound', 'Black and Tan Coonhound', 'Treeing Walker Coonhound',
-        'English foxhound', 'Redbone Coonhound', 'borzoi', 'Irish Wolfhound', 'Italian Greyhound', 'Whippet',
-        'Ibizan Hound', 'Norwegian Elkhound', 'Otterhound', 'Saluki', 'Scottish Deerhound', 'Weimaraner',
-        'Staffordshire Bull Terrier', 'American Staffordshire Terrier', 'Bedlington Terrier', 'Border Terrier',
-        'Kerry Blue Terrier', 'Irish Terrier', 'Norfolk Terrier', 'Norwich Terrier', 'Yorkshire Terrier',
-        'Wire Fox Terrier', 'Lakeland Terrier', 'Sealyham Terrier', 'Airedale Terrier', 'Cairn Terrier',
-        'Australian Terrier', 'Dandie Dinmont Terrier', 'Boston Terrier', 'Miniature Schnauzer', 'Giant Schnauzer',
-        'Standard Schnauzer', 'Scottish Terrier', 'Tibetan Terrier', 'Australian Silky Terrier',
-        'Soft-coated Wheaten Terrier', 'West Highland White Terrier', 'Lhasa Apso', 'Flat-Coated Retriever',
-        'Curly-coated Retriever', 'Golden Retriever', 'Labrador Retriever', 'Chesapeake Bay Retriever',
-        'German Shorthaired Pointer', 'Vizsla', 'English Setter', 'Irish Setter', 'Gordon Setter', 'Brittany',
-        'Clumber Spaniel', 'English Springer Spaniel', 'Welsh Springer Spaniel', 'Cocker Spaniels', 'Sussex Spaniel',
-        'Irish Water Spaniel', 'Kuvasz', 'Schipperke', 'Groenendael', 'Malinois', 'Briard', 'Australian Kelpie',
-        'Komondor', 'Old English Sheepdog', 'Shetland Sheepdog', 'collie', 'Border Collie', 'Bouvier des Flandres',
-        'Rottweiler', 'German Shepherd Dog', 'Dobermann', 'Miniature Pinscher', 'Greater Swiss Mountain Dog',
-        'Bernese Mountain Dog', 'Appenzeller Sennenhund', 'Entlebucher Sennenhund', 'Boxer', 'Bullmastiff',
-        'Tibetan Mastiff', 'French Bulldog', 'Great Dane', 'St. Bernard', 'husky', 'Alaskan Malamute', 'Siberian Husky',
-        'Dalmatian', 'Affenpinscher', 'Basenji', 'pug', 'Leonberger', 'Newfoundland', 'Pyrenean Mountain Dog',
-        'Samoyed', 'Pomeranian', 'Chow Chow', 'Keeshond', 'Griffon Bruxellois', 'Pembroke Welsh Corgi',
-        'Cardigan Welsh Corgi', 'Toy Poodle', 'Miniature Poodle', 'Standard Poodle', 'Mexican hairless dog',
-        'grey wolf', 'Alaskan tundra wolf', 'red wolf', 'coyote', 'dingo', 'dhole', 'African wild dog', 'hyena',
-        'red fox', 'kit fox', 'Arctic fox', 'grey fox', 'tabby cat', 'tiger cat', 'Persian cat', 'Siamese cat',
-        'Egyptian Mau', 'cougar', 'lynx', 'leopard', 'snow leopard', 'jaguar', 'lion', 'tiger', 'cheetah', 'brown bear',
-        'American black bear', 'polar bear', 'sloth bear', 'mongoose', 'meerkat', 'tiger beetle', 'ladybug',
-        'ground beetle', 'longhorn beetle', 'leaf beetle', 'dung beetle', 'rhinoceros beetle', 'weevil', 'fly', 'bee',
-        'ant', 'grasshopper', 'cricket', 'stick insect', 'cockroach', 'mantis', 'cicada', 'leafhopper', 'lacewing',
-        'dragonfly', 'damselfly', 'red admiral', 'ringlet', 'monarch butterfly', 'small white', 'sulphur butterfly',
-        'gossamer-winged butterfly', 'starfish', 'sea urchin', 'sea cucumber', 'cottontail rabbit', 'hare',
-        'Angora rabbit', 'hamster', 'porcupine', 'fox squirrel', 'marmot', 'beaver', 'guinea pig', 'common sorrel',
-        'zebra', 'pig', 'wild boar', 'warthog', 'hippopotamus', 'ox', 'water buffalo', 'bison', 'ram', 'bighorn sheep',
-        'Alpine ibex', 'hartebeest', 'impala', 'gazelle', 'dromedary', 'llama', 'weasel', 'mink', 'European polecat',
-        'black-footed ferret', 'otter', 'skunk', 'badger', 'armadillo', 'three-toed sloth', 'orangutan', 'gorilla',
-        'chimpanzee', 'gibbon', 'siamang', 'guenon', 'patas monkey', 'baboon', 'macaque', 'langur',
-        'black-and-white colobus', 'proboscis monkey', 'marmoset', 'white-headed capuchin', 'howler monkey', 'titi',
-        "Geoffroy's spider monkey", 'common squirrel monkey', 'ring-tailed lemur', 'indri', 'Asian elephant',
-        'African bush elephant', 'red panda', 'giant panda', 'snoek', 'eel', 'coho salmon', 'rock beauty', 'clownfish',
-        'sturgeon', 'garfish', 'lionfish', 'pufferfish', 'abacus', 'abaya', 'academic gown', 'accordion',
-        'acoustic guitar', 'aircraft carrier', 'airliner', 'airship', 'altar', 'ambulance', 'amphibious vehicle',
-        'analog clock', 'apiary', 'apron', 'waste container', 'assault rifle', 'backpack', 'bakery', 'balance beam',
-        'balloon', 'ballpoint pen', 'Band-Aid', 'banjo', 'baluster', 'barbell', 'barber chair', 'barbershop', 'barn',
-        'barometer', 'barrel', 'wheelbarrow', 'baseball', 'basketball', 'bassinet', 'bassoon', 'swimming cap',
-        'bath towel', 'bathtub', 'station wagon', 'lighthouse', 'beaker', 'military cap', 'beer bottle', 'beer glass',
-        'bell-cot', 'bib', 'tandem bicycle', 'bikini', 'ring binder', 'binoculars', 'birdhouse', 'boathouse',
-        'bobsleigh', 'bolo tie', 'poke bonnet', 'bookcase', 'bookstore', 'bottle cap', 'bow', 'bow tie', 'brass', 'bra',
-        'breakwater', 'breastplate', 'broom', 'bucket', 'buckle', 'bulletproof vest', 'high-speed train',
-        'butcher shop', 'taxicab', 'cauldron', 'candle', 'cannon', 'canoe', 'can opener', 'cardigan', 'car mirror',
-        'carousel', 'tool kit', 'carton', 'car wheel', 'automated teller machine', 'cassette', 'cassette player',
-        'castle', 'catamaran', 'CD player', 'cello', 'mobile phone', 'chain', 'chain-link fence', 'chain mail',
-        'chainsaw', 'chest', 'chiffonier', 'chime', 'china cabinet', 'Christmas stocking', 'church', 'movie theater',
-        'cleaver', 'cliff dwelling', 'cloak', 'clogs', 'cocktail shaker', 'coffee mug', 'coffeemaker', 'coil',
-        'combination lock', 'computer keyboard', 'confectionery store', 'container ship', 'convertible', 'corkscrew',
-        'cornet', 'cowboy boot', 'cowboy hat', 'cradle', 'crane (machine)', 'crash helmet', 'crate', 'infant bed',
-        'Crock Pot', 'croquet ball', 'crutch', 'cuirass', 'dam', 'desk', 'desktop computer', 'rotary dial telephone',
-        'diaper', 'digital clock', 'digital watch', 'dining table', 'dishcloth', 'dishwasher', 'disc brake', 'dock',
-        'dog sled', 'dome', 'doormat', 'drilling rig', 'drum', 'drumstick', 'dumbbell', 'Dutch oven', 'electric fan',
-        'electric guitar', 'electric locomotive', 'entertainment center', 'envelope', 'espresso machine', 'face powder',
-        'feather boa', 'filing cabinet', 'fireboat', 'fire engine', 'fire screen sheet', 'flagpole', 'flute',
-        'folding chair', 'football helmet', 'forklift', 'fountain', 'fountain pen', 'four-poster bed', 'freight car',
-        'French horn', 'frying pan', 'fur coat', 'garbage truck', 'gas mask', 'gas pump', 'goblet', 'go-kart',
-        'golf ball', 'golf cart', 'gondola', 'gong', 'gown', 'grand piano', 'greenhouse', 'grille', 'grocery store',
-        'guillotine', 'barrette', 'hair spray', 'half-track', 'hammer', 'hamper', 'hair dryer', 'hand-held computer',
-        'handkerchief', 'hard disk drive', 'harmonica', 'harp', 'harvester', 'hatchet', 'holster', 'home theater',
-        'honeycomb', 'hook', 'hoop skirt', 'horizontal bar', 'horse-drawn vehicle', 'hourglass', 'iPod', 'clothes iron',
-        "jack-o'-lantern", 'jeans', 'jeep', 'T-shirt', 'jigsaw puzzle', 'pulled rickshaw', 'joystick', 'kimono',
-        'knee pad', 'knot', 'lab coat', 'ladle', 'lampshade', 'laptop computer', 'lawn mower', 'lens cap',
-        'paper knife', 'library', 'lifeboat', 'lighter', 'limousine', 'ocean liner', 'lipstick', 'slip-on shoe',
-        'lotion', 'speaker', 'loupe', 'sawmill', 'magnetic compass', 'mail bag', 'mailbox', 'tights', 'tank suit',
-        'manhole cover', 'maraca', 'marimba', 'mask', 'match', 'maypole', 'maze', 'measuring cup', 'medicine chest',
-        'megalith', 'microphone', 'microwave oven', 'military uniform', 'milk can', 'minibus', 'miniskirt', 'minivan',
-        'missile', 'mitten', 'mixing bowl', 'mobile home', 'Model T', 'modem', 'monastery', 'monitor', 'moped',
-        'mortar', 'square academic cap', 'mosque', 'mosquito net', 'scooter', 'mountain bike', 'tent', 'computer mouse',
-        'mousetrap', 'moving van', 'muzzle', 'nail', 'neck brace', 'necklace', 'nipple', 'notebook computer', 'obelisk',
-        'oboe', 'ocarina', 'odometer', 'oil filter', 'organ', 'oscilloscope', 'overskirt', 'bullock cart',
-        'oxygen mask', 'packet', 'paddle', 'paddle wheel', 'padlock', 'paintbrush', 'pajamas', 'palace', 'pan flute',
-        'paper towel', 'parachute', 'parallel bars', 'park bench', 'parking meter', 'passenger car', 'patio',
-        'payphone', 'pedestal', 'pencil case', 'pencil sharpener', 'perfume', 'Petri dish', 'photocopier', 'plectrum',
-        'Pickelhaube', 'picket fence', 'pickup truck', 'pier', 'piggy bank', 'pill bottle', 'pillow', 'ping-pong ball',
-        'pinwheel', 'pirate ship', 'pitcher', 'hand plane', 'planetarium', 'plastic bag', 'plate rack', 'plow',
-        'plunger', 'Polaroid camera', 'pole', 'police van', 'poncho', 'billiard table', 'soda bottle', 'pot',
-        "potter's wheel", 'power drill', 'prayer rug', 'printer', 'prison', 'projectile', 'projector', 'hockey puck',
-        'punching bag', 'purse', 'quill', 'quilt', 'race car', 'racket', 'radiator', 'radio', 'radio telescope',
-        'rain barrel', 'recreational vehicle', 'reel', 'reflex camera', 'refrigerator', 'remote control', 'restaurant',
-        'revolver', 'rifle', 'rocking chair', 'rotisserie', 'eraser', 'rugby ball', 'ruler', 'running shoe', 'safe',
-        'safety pin', 'salt shaker', 'sandal', 'sarong', 'saxophone', 'scabbard', 'weighing scale', 'school bus',
-        'schooner', 'scoreboard', 'CRT screen', 'screw', 'screwdriver', 'seat belt', 'sewing machine', 'shield',
-        'shoe store', 'shoji', 'shopping basket', 'shopping cart', 'shovel', 'shower cap', 'shower curtain', 'ski',
-        'ski mask', 'sleeping bag', 'slide rule', 'sliding door', 'slot machine', 'snorkel', 'snowmobile', 'snowplow',
-        'soap dispenser', 'soccer ball', 'sock', 'solar thermal collector', 'sombrero', 'soup bowl', 'space bar',
-        'space heater', 'space shuttle', 'spatula', 'motorboat', 'spider web', 'spindle', 'sports car', 'spotlight',
-        'stage', 'steam locomotive', 'through arch bridge', 'steel drum', 'stethoscope', 'scarf', 'stone wall',
-        'stopwatch', 'stove', 'strainer', 'tram', 'stretcher', 'couch', 'stupa', 'submarine', 'suit', 'sundial',
-        'sunglass', 'sunglasses', 'sunscreen', 'suspension bridge', 'mop', 'sweatshirt', 'swimsuit', 'swing', 'switch',
-        'syringe', 'table lamp', 'tank', 'tape player', 'teapot', 'teddy bear', 'television', 'tennis ball',
-        'thatched roof', 'front curtain', 'thimble', 'threshing machine', 'throne', 'tile roof', 'toaster',
-        'tobacco shop', 'toilet seat', 'torch', 'totem pole', 'tow truck', 'toy store', 'tractor', 'semi-trailer truck',
-        'tray', 'trench coat', 'tricycle', 'trimaran', 'tripod', 'triumphal arch', 'trolleybus', 'trombone', 'tub',
-        'turnstile', 'typewriter keyboard', 'umbrella', 'unicycle', 'upright piano', 'vacuum cleaner', 'vase', 'vault',
-        'velvet', 'vending machine', 'vestment', 'viaduct', 'violin', 'volleyball', 'waffle iron', 'wall clock',
-        'wallet', 'wardrobe', 'military aircraft', 'sink', 'washing machine', 'water bottle', 'water jug',
-        'water tower', 'whiskey jug', 'whistle', 'wig', 'window screen', 'window shade', 'Windsor tie', 'wine bottle',
-        'wing', 'wok', 'wooden spoon', 'wool', 'split-rail fence', 'shipwreck', 'yawl', 'yurt', 'website', 'comic book',
-        'crossword', 'traffic sign', 'traffic light', 'dust jacket', 'menu', 'plate', 'guacamole', 'consomme',
-        'hot pot', 'trifle', 'ice cream', 'ice pop', 'baguette', 'bagel', 'pretzel', 'cheeseburger', 'hot dog',
-        'mashed potato', 'cabbage', 'broccoli', 'cauliflower', 'zucchini', 'spaghetti squash', 'acorn squash',
-        'butternut squash', 'cucumber', 'artichoke', 'bell pepper', 'cardoon', 'mushroom', 'Granny Smith', 'strawberry',
-        'orange', 'lemon', 'fig', 'pineapple', 'banana', 'jackfruit', 'custard apple', 'pomegranate', 'hay',
-        'carbonara', 'chocolate syrup', 'dough', 'meatloaf', 'pizza', 'pot pie', 'burrito', 'red wine', 'espresso',
-        'cup', 'eggnog', 'alp', 'bubble', 'cliff', 'coral reef', 'geyser', 'lakeshore', 'promontory', 'shoal',
-        'seashore', 'valley', 'volcano', 'baseball player', 'bridegroom', 'scuba diver', 'rapeseed', 'daisy',
-        "yellow lady's slipper", 'corn', 'acorn', 'rose hip', 'horse chestnut seed', 'coral fungus', 'agaric',
-        'gyromitra', 'stinkhorn mushroom', 'earth star', 'hen-of-the-woods', 'bolete', 'ear',
-        'toilet paper']  # class names
-
-# Download script/URL (optional)
-download: data/scripts/get_imagenet.sh
diff --git a/yolov5-6.2/data/Objects365.yaml b/yolov5-6.2/data/Objects365.yaml
deleted file mode 100644
index 4cc94753..00000000
--- a/yolov5-6.2/data/Objects365.yaml
+++ /dev/null
@@ -1,114 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Objects365 dataset https://www.objects365.org/ by Megvii
-# Example usage: python train.py --data Objects365.yaml
-# parent
-# ├── yolov5
-# └── datasets
-#     └── Objects365  ← downloads here (712 GB = 367G data + 345G zips)
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/Objects365  # dataset root dir
-train: images/train  # train images (relative to 'path') 1742289 images
-val: images/val # val images (relative to 'path') 80000 images
-test:  # test images (optional)
-
-# Classes
-nc: 365  # number of classes
-names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
-        'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
-        'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
-        'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
-        'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
-        'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
-        'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
-        'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
-        'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
-        'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
-        'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
-        'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
-        'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
-        'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
-        'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
-        'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
-        'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
-        'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
-        'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
-        'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
-        'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
-        'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
-        'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
-        'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
-        'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
-        'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
-        'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
-        'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
-        'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
-        'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
-        'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
-        'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
-        'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
-        'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
-        'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
-        'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
-        'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
-        'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
-        'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
-        'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
-        'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis']
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
-  from tqdm import tqdm
-
-  from utils.general import Path, check_requirements, download, np, xyxy2xywhn
-
-  check_requirements(('pycocotools>=2.0',))
-  from pycocotools.coco import COCO
-
-  # Make Directories
-  dir = Path(yaml['path'])  # dataset root dir
-  for p in 'images', 'labels':
-      (dir / p).mkdir(parents=True, exist_ok=True)
-      for q in 'train', 'val':
-          (dir / p / q).mkdir(parents=True, exist_ok=True)
-
-  # Train, Val Splits
-  for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
-      print(f"Processing {split} in {patches} patches ...")
-      images, labels = dir / 'images' / split, dir / 'labels' / split
-
-      # Download
-      url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
-      if split == 'train':
-          download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False)  # annotations json
-          download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
-      elif split == 'val':
-          download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False)  # annotations json
-          download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
-          download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
-
-      # Move
-      for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
-          f.rename(images / f.name)  # move to /images/{split}
-
-      # Labels
-      coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
-      names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
-      for cid, cat in enumerate(names):
-          catIds = coco.getCatIds(catNms=[cat])
-          imgIds = coco.getImgIds(catIds=catIds)
-          for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
-              width, height = im["width"], im["height"]
-              path = Path(im["file_name"])  # image filename
-              try:
-                  with open(labels / path.with_suffix('.txt').name, 'a') as file:
-                      annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
-                      for a in coco.loadAnns(annIds):
-                          x, y, w, h = a['bbox']  # bounding box in xywh (xy top-left corner)
-                          xyxy = np.array([x, y, x + w, y + h])[None]  # pixels(1,4)
-                          x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0]  # normalized and clipped
-                          file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
-              except Exception as e:
-                  print(e)
diff --git a/yolov5-6.2/data/SKU-110K.yaml b/yolov5-6.2/data/SKU-110K.yaml
deleted file mode 100644
index 2acf34d1..00000000
--- a/yolov5-6.2/data/SKU-110K.yaml
+++ /dev/null
@@ -1,53 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
-# Example usage: python train.py --data SKU-110K.yaml
-# parent
-# ├── yolov5
-# └── datasets
-#     └── SKU-110K  ← downloads here (13.6 GB)
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/SKU-110K  # dataset root dir
-train: train.txt  # train images (relative to 'path')  8219 images
-val: val.txt  # val images (relative to 'path')  588 images
-test: test.txt  # test images (optional)  2936 images
-
-# Classes
-nc: 1  # number of classes
-names: ['object']  # class names
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
-  import shutil
-  from tqdm import tqdm
-  from utils.general import np, pd, Path, download, xyxy2xywh
-
-
-  # Download
-  dir = Path(yaml['path'])  # dataset root dir
-  parent = Path(dir.parent)  # download dir
-  urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
-  download(urls, dir=parent, delete=False)
-
-  # Rename directories
-  if dir.exists():
-      shutil.rmtree(dir)
-  (parent / 'SKU110K_fixed').rename(dir)  # rename dir
-  (dir / 'labels').mkdir(parents=True, exist_ok=True)  # create labels dir
-
-  # Convert labels
-  names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height'  # column names
-  for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
-      x = pd.read_csv(dir / 'annotations' / d, names=names).values  # annotations
-      images, unique_images = x[:, 0], np.unique(x[:, 0])
-      with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
-          f.writelines(f'./images/{s}\n' for s in unique_images)
-      for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
-          cls = 0  # single-class dataset
-          with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
-              for r in x[images == im]:
-                  w, h = r[6], r[7]  # image width, height
-                  xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0]  # instance
-                  f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n")  # write label
diff --git a/yolov5-6.2/data/VOC.yaml b/yolov5-6.2/data/VOC.yaml
deleted file mode 100644
index 636ddc42..00000000
--- a/yolov5-6.2/data/VOC.yaml
+++ /dev/null
@@ -1,81 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
-# Example usage: python train.py --data VOC.yaml
-# parent
-# ├── yolov5
-# └── datasets
-#     └── VOC  ← downloads here (2.8 GB)
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/VOC
-train: # train images (relative to 'path')  16551 images
-  - images/train2012
-  - images/train2007
-  - images/val2012
-  - images/val2007
-val: # val images (relative to 'path')  4952 images
-  - images/test2007
-test: # test images (optional)
-  - images/test2007
-
-# Classes
-nc: 20  # number of classes
-names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
-        'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']  # class names
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
-  import xml.etree.ElementTree as ET
-
-  from tqdm import tqdm
-  from utils.general import download, Path
-
-
-  def convert_label(path, lb_path, year, image_id):
-      def convert_box(size, box):
-          dw, dh = 1. / size[0], 1. / size[1]
-          x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
-          return x * dw, y * dh, w * dw, h * dh
-
-      in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
-      out_file = open(lb_path, 'w')
-      tree = ET.parse(in_file)
-      root = tree.getroot()
-      size = root.find('size')
-      w = int(size.find('width').text)
-      h = int(size.find('height').text)
-
-      for obj in root.iter('object'):
-          cls = obj.find('name').text
-          if cls in yaml['names'] and not int(obj.find('difficult').text) == 1:
-              xmlbox = obj.find('bndbox')
-              bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
-              cls_id = yaml['names'].index(cls)  # class id
-              out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
-
-
-  # Download
-  dir = Path(yaml['path'])  # dataset root dir
-  url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
-  urls = [f'{url}VOCtrainval_06-Nov-2007.zip',  # 446MB, 5012 images
-          f'{url}VOCtest_06-Nov-2007.zip',  # 438MB, 4953 images
-          f'{url}VOCtrainval_11-May-2012.zip']  # 1.95GB, 17126 images
-  download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
-
-  # Convert
-  path = dir / 'images/VOCdevkit'
-  for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
-      imgs_path = dir / 'images' / f'{image_set}{year}'
-      lbs_path = dir / 'labels' / f'{image_set}{year}'
-      imgs_path.mkdir(exist_ok=True, parents=True)
-      lbs_path.mkdir(exist_ok=True, parents=True)
-
-      with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
-          image_ids = f.read().strip().split()
-      for id in tqdm(image_ids, desc=f'{image_set}{year}'):
-          f = path / f'VOC{year}/JPEGImages/{id}.jpg'  # old img path
-          lb_path = (lbs_path / f.name).with_suffix('.txt')  # new label path
-          f.rename(imgs_path / f.name)  # move image
-          convert_label(path, lb_path, year, id)  # convert labels to YOLO format
diff --git a/yolov5-6.2/data/VisDrone.yaml b/yolov5-6.2/data/VisDrone.yaml
deleted file mode 100644
index 10337b46..00000000
--- a/yolov5-6.2/data/VisDrone.yaml
+++ /dev/null
@@ -1,61 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
-# Example usage: python train.py --data VisDrone.yaml
-# parent
-# ├── yolov5
-# └── datasets
-#     └── VisDrone  ← downloads here (2.3 GB)
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/VisDrone  # dataset root dir
-train: VisDrone2019-DET-train/images  # train images (relative to 'path')  6471 images
-val: VisDrone2019-DET-val/images  # val images (relative to 'path')  548 images
-test: VisDrone2019-DET-test-dev/images  # test images (optional)  1610 images
-
-# Classes
-nc: 10  # number of classes
-names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
-  from utils.general import download, os, Path
-
-  def visdrone2yolo(dir):
-      from PIL import Image
-      from tqdm import tqdm
-
-      def convert_box(size, box):
-          # Convert VisDrone box to YOLO xywh box
-          dw = 1. / size[0]
-          dh = 1. / size[1]
-          return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
-
-      (dir / 'labels').mkdir(parents=True, exist_ok=True)  # make labels directory
-      pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
-      for f in pbar:
-          img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
-          lines = []
-          with open(f, 'r') as file:  # read annotation.txt
-              for row in [x.split(',') for x in file.read().strip().splitlines()]:
-                  if row[4] == '0':  # VisDrone 'ignored regions' class 0
-                      continue
-                  cls = int(row[5]) - 1
-                  box = convert_box(img_size, tuple(map(int, row[:4])))
-                  lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
-                  with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
-                      fl.writelines(lines)  # write label.txt
-
-
-  # Download
-  dir = Path(yaml['path'])  # dataset root dir
-  urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
-          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
-          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
-          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
-  download(urls, dir=dir, curl=True, threads=4)
-
-  # Convert
-  for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
-      visdrone2yolo(dir / d)  # convert VisDrone annotations to YOLO labels
diff --git a/yolov5-6.2/data/ball.yaml b/yolov5-6.2/data/ball.yaml
deleted file mode 100644
index 6a0b7feb..00000000
--- a/yolov5-6.2/data/ball.yaml
+++ /dev/null
@@ -1,5 +0,0 @@
-train: ./data/ball/train/images
-val: ./data/ball/valid/images
-
-nc: 2
-names: ['Cricketball','Football']
\ No newline at end of file
diff --git a/yolov5-6.2/data/coco.yaml b/yolov5-6.2/data/coco.yaml
deleted file mode 100644
index 0c0c4ada..00000000
--- a/yolov5-6.2/data/coco.yaml
+++ /dev/null
@@ -1,45 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# COCO 2017 dataset http://cocodataset.org by Microsoft
-# Example usage: python train.py --data coco.yaml
-# parent
-# ├── yolov5
-# └── datasets
-#     └── coco  ← downloads here (20.1 GB)
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/coco  # dataset root dir
-train: train2017.txt  # train images (relative to 'path') 118287 images
-val: val2017.txt  # val images (relative to 'path') 5000 images
-test: test-dev2017.txt  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
-
-# Classes
-nc: 80  # number of classes
-names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
-        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
-        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
-        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
-        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
-        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
-        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
-        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
-        'hair drier', 'toothbrush']  # class names
-
-
-# Download script/URL (optional)
-download: |
-  from utils.general import download, Path
-
-
-  # Download labels
-  segments = False  # segment or box labels
-  dir = Path(yaml['path'])  # dataset root dir
-  url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
-  urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')]  # labels
-  download(urls, dir=dir.parent)
-
-  # Download data
-  urls = ['http://images.cocodataset.org/zips/train2017.zip',  # 19G, 118k images
-          'http://images.cocodataset.org/zips/val2017.zip',  # 1G, 5k images
-          'http://images.cocodataset.org/zips/test2017.zip']  # 7G, 41k images (optional)
-  download(urls, dir=dir / 'images', threads=3)
diff --git a/yolov5-6.2/data/coco128.yaml b/yolov5-6.2/data/coco128.yaml
deleted file mode 100644
index 2517d207..00000000
--- a/yolov5-6.2/data/coco128.yaml
+++ /dev/null
@@ -1,30 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
-# Example usage: python train.py --data coco128.yaml
-# parent
-# ├── yolov5
-# └── datasets
-#     └── coco128  ← downloads here (7 MB)
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/coco128  # dataset root dir
-train: images/train2017  # train images (relative to 'path') 128 images
-val: images/train2017  # val images (relative to 'path') 128 images
-test:  # test images (optional)
-
-# Classes
-nc: 80  # number of classes
-names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
-        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
-        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
-        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
-        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
-        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
-        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
-        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
-        'hair drier', 'toothbrush']  # class names
-
-
-# Download script/URL (optional)
-download: https://ultralytics.com/assets/coco128.zip
diff --git a/yolov5-6.2/data/hyps/hyp.Objects365.yaml b/yolov5-6.2/data/hyps/hyp.Objects365.yaml
deleted file mode 100644
index 74971740..00000000
--- a/yolov5-6.2/data/hyps/hyp.Objects365.yaml
+++ /dev/null
@@ -1,34 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Hyperparameters for Objects365 training
-# python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
-# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
-
-lr0: 0.00258
-lrf: 0.17
-momentum: 0.779
-weight_decay: 0.00058
-warmup_epochs: 1.33
-warmup_momentum: 0.86
-warmup_bias_lr: 0.0711
-box: 0.0539
-cls: 0.299
-cls_pw: 0.825
-obj: 0.632
-obj_pw: 1.0
-iou_t: 0.2
-anchor_t: 3.44
-anchors: 3.2
-fl_gamma: 0.0
-hsv_h: 0.0188
-hsv_s: 0.704
-hsv_v: 0.36
-degrees: 0.0
-translate: 0.0902
-scale: 0.491
-shear: 0.0
-perspective: 0.0
-flipud: 0.0
-fliplr: 0.5
-mosaic: 1.0
-mixup: 0.0
-copy_paste: 0.0
diff --git a/yolov5-6.2/data/hyps/hyp.VOC.yaml b/yolov5-6.2/data/hyps/hyp.VOC.yaml
deleted file mode 100644
index 0aa4e7d9..00000000
--- a/yolov5-6.2/data/hyps/hyp.VOC.yaml
+++ /dev/null
@@ -1,40 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Hyperparameters for VOC training
-# python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
-# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
-
-# YOLOv5 Hyperparameter Evolution Results
-# Best generation: 467
-# Last generation: 996
-#    metrics/precision,       metrics/recall,      metrics/mAP_0.5, metrics/mAP_0.5:0.95,         val/box_loss,         val/obj_loss,         val/cls_loss
-#              0.87729,              0.85125,              0.91286,              0.72664,            0.0076739,            0.0042529,            0.0013865
-
-lr0: 0.00334
-lrf: 0.15135
-momentum: 0.74832
-weight_decay: 0.00025
-warmup_epochs: 3.3835
-warmup_momentum: 0.59462
-warmup_bias_lr: 0.18657
-box: 0.02
-cls: 0.21638
-cls_pw: 0.5
-obj: 0.51728
-obj_pw: 0.67198
-iou_t: 0.2
-anchor_t: 3.3744
-fl_gamma: 0.0
-hsv_h: 0.01041
-hsv_s: 0.54703
-hsv_v: 0.27739
-degrees: 0.0
-translate: 0.04591
-scale: 0.75544
-shear: 0.0
-perspective: 0.0
-flipud: 0.0
-fliplr: 0.5
-mosaic: 0.85834
-mixup: 0.04266
-copy_paste: 0.0
-anchors: 3.412
diff --git a/yolov5-6.2/data/hyps/hyp.scratch-high.yaml b/yolov5-6.2/data/hyps/hyp.scratch-high.yaml
deleted file mode 100644
index 123cc840..00000000
--- a/yolov5-6.2/data/hyps/hyp.scratch-high.yaml
+++ /dev/null
@@ -1,34 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Hyperparameters for high-augmentation COCO training from scratch
-# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
-# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
-
-lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
-lrf: 0.1  # final OneCycleLR learning rate (lr0 * lrf)
-momentum: 0.937  # SGD momentum/Adam beta1
-weight_decay: 0.0005  # optimizer weight decay 5e-4
-warmup_epochs: 3.0  # warmup epochs (fractions ok)
-warmup_momentum: 0.8  # warmup initial momentum
-warmup_bias_lr: 0.1  # warmup initial bias lr
-box: 0.05  # box loss gain
-cls: 0.3  # cls loss gain
-cls_pw: 1.0  # cls BCELoss positive_weight
-obj: 0.7  # obj loss gain (scale with pixels)
-obj_pw: 1.0  # obj BCELoss positive_weight
-iou_t: 0.20  # IoU training threshold
-anchor_t: 4.0  # anchor-multiple threshold
-# anchors: 3  # anchors per output layer (0 to ignore)
-fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
-hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
-hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
-hsv_v: 0.4  # image HSV-Value augmentation (fraction)
-degrees: 0.0  # image rotation (+/- deg)
-translate: 0.1  # image translation (+/- fraction)
-scale: 0.9  # image scale (+/- gain)
-shear: 0.0  # image shear (+/- deg)
-perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
-flipud: 0.0  # image flip up-down (probability)
-fliplr: 0.5  # image flip left-right (probability)
-mosaic: 1.0  # image mosaic (probability)
-mixup: 0.1  # image mixup (probability)
-copy_paste: 0.1  # segment copy-paste (probability)
diff --git a/yolov5-6.2/data/hyps/hyp.scratch-low.yaml b/yolov5-6.2/data/hyps/hyp.scratch-low.yaml
deleted file mode 100644
index b9ef1d55..00000000
--- a/yolov5-6.2/data/hyps/hyp.scratch-low.yaml
+++ /dev/null
@@ -1,34 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Hyperparameters for low-augmentation COCO training from scratch
-# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
-# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
-
-lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
-lrf: 0.01  # final OneCycleLR learning rate (lr0 * lrf)
-momentum: 0.937  # SGD momentum/Adam beta1
-weight_decay: 0.0005  # optimizer weight decay 5e-4
-warmup_epochs: 3.0  # warmup epochs (fractions ok)
-warmup_momentum: 0.8  # warmup initial momentum
-warmup_bias_lr: 0.1  # warmup initial bias lr
-box: 0.05  # box loss gain
-cls: 0.5  # cls loss gain
-cls_pw: 1.0  # cls BCELoss positive_weight
-obj: 1.0  # obj loss gain (scale with pixels)
-obj_pw: 1.0  # obj BCELoss positive_weight
-iou_t: 0.20  # IoU training threshold
-anchor_t: 4.0  # anchor-multiple threshold
-# anchors: 3  # anchors per output layer (0 to ignore)
-fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
-hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
-hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
-hsv_v: 0.4  # image HSV-Value augmentation (fraction)
-degrees: 0.0  # image rotation (+/- deg)
-translate: 0.1  # image translation (+/- fraction)
-scale: 0.5  # image scale (+/- gain)
-shear: 0.0  # image shear (+/- deg)
-perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
-flipud: 0.0  # image flip up-down (probability)
-fliplr: 0.5  # image flip left-right (probability)
-mosaic: 1.0  # image mosaic (probability)
-mixup: 0.0  # image mixup (probability)
-copy_paste: 0.0  # segment copy-paste (probability)
diff --git a/yolov5-6.2/data/hyps/hyp.scratch-med.yaml b/yolov5-6.2/data/hyps/hyp.scratch-med.yaml
deleted file mode 100644
index d6867d75..00000000
--- a/yolov5-6.2/data/hyps/hyp.scratch-med.yaml
+++ /dev/null
@@ -1,34 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Hyperparameters for medium-augmentation COCO training from scratch
-# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
-# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
-
-lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
-lrf: 0.1  # final OneCycleLR learning rate (lr0 * lrf)
-momentum: 0.937  # SGD momentum/Adam beta1
-weight_decay: 0.0005  # optimizer weight decay 5e-4
-warmup_epochs: 3.0  # warmup epochs (fractions ok)
-warmup_momentum: 0.8  # warmup initial momentum
-warmup_bias_lr: 0.1  # warmup initial bias lr
-box: 0.05  # box loss gain
-cls: 0.3  # cls loss gain
-cls_pw: 1.0  # cls BCELoss positive_weight
-obj: 0.7  # obj loss gain (scale with pixels)
-obj_pw: 1.0  # obj BCELoss positive_weight
-iou_t: 0.20  # IoU training threshold
-anchor_t: 4.0  # anchor-multiple threshold
-# anchors: 3  # anchors per output layer (0 to ignore)
-fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
-hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
-hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
-hsv_v: 0.4  # image HSV-Value augmentation (fraction)
-degrees: 0.0  # image rotation (+/- deg)
-translate: 0.1  # image translation (+/- fraction)
-scale: 0.9  # image scale (+/- gain)
-shear: 0.0  # image shear (+/- deg)
-perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
-flipud: 0.0  # image flip up-down (probability)
-fliplr: 0.5  # image flip left-right (probability)
-mosaic: 1.0  # image mosaic (probability)
-mixup: 0.1  # image mixup (probability)
-copy_paste: 0.0  # segment copy-paste (probability)
diff --git a/yolov5-6.2/data/images/bus.jpg b/yolov5-6.2/data/images/bus.jpg
deleted file mode 100644
index b43e311165c785f000eb7493ff8fb662d06a3f83..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 487438
zcmeFYbyODL*Ec*DA)V4KCDNT2AR-_jqKI^Ncc+4McY{cYlr%_p2}pN$ch@`USHHjY
ztovT;S?_xPdw=KR%zS3gKKtywPs~1NhP&~*c>q&NTv8l>Kmgzc_yg`15Z%O_j12%l
zMh2h<000p{g<t?MAbJ4iR0!rTj11yT2sQu<o+025fDi%jzc2t4LWuw33JBdlJfH*!
z+pn?+AYVO%{TIdoaXaK00Qb8r3;+@R7yB9i!N8<H%^!>)1o8qRR#s;EfbnZ1OACDp
zrMLGaQ2TpLexKRcnc0{*0f3#AjgOy|gP)a+f(<-!^K)<j0J&G<9}QvTy;A;SHGj%~
zwe^4e55@$5Z~(a18jh8noh=;pkLECX;c$PkQv~EU4+I7lh=c(59s;$2366yMD?d6C
z_Afm-67Da~j70dSF3^XONdMLwiTt;0ek9H>I_N2wvPif4y5P7$TpJnjO9wb!b`Bsi
z@?ZSvkIrnYte;^1cn_BT6YL)h$NL%opSr--$@s1ReNO-~Vg8}tW7z+|@c&@YvzZV6
zgU<d-Pf)i9hnXC|bO3t`0(K_nFH8es0#MX_y7$R_Yomf0{(own|A_{`gjs_PTMs~X
z9|J&38UT5<3;>j%++XQl<@??Vd0>j10{8);zj_CSu`JjxAYeZx0Bc3MzYk_)P$STH
zFwEd3CuqTayBYxitPbdvKRlpje{mTo`47Dm<o<&p;K;adV{in(c7xX3W6+DRivZeR
zp2q<CUkm`4e=!8W`r{YaLjdP59T~v?gDC)j@DBzh6aC@`ZG<BL$p3@>=uaPlBLk>@
z(Lo*HXaSl(JP<E{_74Vief*c78KC=1zxNBEV`XM+Ysbneiv<I?fKH47bOCP|7jQUn
z0}22mfDdT|3V}|*8;}Dy0V_Zq(1Lt~wFaC3HoySj1F!ZWA0XDiS3nC;13W-_Afyx4
z8Tbfr0j7WsPysYUh9MLXV?Y*g10sP4AQ8d`>j*>x&%g#S0XBdw$Q(o);tsq5Im`h=
zpa8N0V+1gOifV#2<N{(amk<faS3nt11tb6tzyjh9!w)<G4O9d<Gyp{yOqfTIa6k|E
z03?H2qQf}Bh=AqEfGVI3<UxaZ3_}hH1MGo#AQ*TDj6>96_y87w1gHgu0Am0N!VJRz
zNd)hE0#NX`4S5YC4ak7{c>oE37-$bOj23v`9Iysn1JVFL%o`YSKp5Z!`Po2zKL|BU
z6l4kT1wMmbNCw`+JcXeHEJ4jEKpi=O9DoXD3vvnA0<l0G;0U<D=)ur{cDw`c(tutz
z1B4(p5L}2Z@E*J?55z#2A^M=?x4=4BXDQGKu)|CPW1u%BL9L$y+K_HgmL1RqnSp79
zlmSAZmW+^5km3#g;($8<8Il3=4gls5C(u3)AOMmISpdsa0zZI5pd2^>dO*AULEnA_
zGC;3>0y2RKz~X+^|CL~V^$ZaHIsYaDFsOfe%P=_I!NEU3KzwIlrfq2Z&OzJEUSHYH
z*j(RMSKCbgoxYW&t`R2WAvmw8%rzYoVhbd8gChYE3!n5c6AQ24Z-KuioqKpcy8bf>
z-`$-|0&x08cXv-H0ALjM?rxb8fVc^ROypn&^@If6pV@fWL^wFOxS04jIK`MaIoQRS
zp7B0sW#Z!$ea<T;Ci0Axn-2i2`B+&&>wYKDCYUMkaYhLMW+xz)0?AllzMq|b%_iXa
zULSBy{ykg$AI}^L9c^7x3O##mGYVa8bA20a3T|_A3Ii7Q`{xdT0s0IaivY|k@BpHF
zDd1dza1I`S(G~CMaDV8Cm>|0M@^4Q+_(caXA{{vA{8JW@71ZNbS?T+-Xn%QLfFAut
zm%pcD{iVMK=aYZw1b^vD0O>C}3MgL-^y9t!`?}2Ti-U;{%=dcS&)MJ^^WGzRVE+BI
z2Y$r`ARSrt7acil95jRt#P@UheYrp0d-VI7)fE7$Spl>|us%|}Kj(kvd5{Y(+ZO;H
z8s9A-;~Cl6S@E;5SlBXa>sjjPGwWKKvp8v6v9K|-vH(zFCo9nF`gRmL`i909f|PqT
z4U`nddV-XSTr#XOR-*bw#xGoK^xwL?lGk-H)#cNp6c(a@I`KQ1Tbb+IX;V0vn_1ZM
zI|)+$63!3edol|p#V-~+Q$b24nb#DemNxnnT+E!ztdwAB8$APlx#!~llm)K@DgRN@
z(b19Fk%QUN#*l@LkB^Uqm7Rs1oeAV%vURqw({^IAu%-GV;W;=WY>ch!j4drF?j>sL
zSlZhOQi3)AR>|Dzuh{?5_CJhPMwWJ#wnmo!3;W;OzZ`a7$ckUoMqk@b|2dciDev9R
z#LB_M$|nCOAYukXhu@4cmU_kp&i^ape@L^mk+-xo6QukdXHio8t(O13^zRD6R{7s*
zV*%aD@{eEd;ok-lqWEw6uLu6?f&Y5ozaIFn2mb4U|NnX5-w;pV0*oLW!2k}p+X0-w
zt)Aa;4+RG^E5Q3qQU>lmE(HK#5{L=_OH3m{0>-*901OF?Fz|qlgO!_ug9JthK)jDZ
zSUFhPNMLyW^8)&Z>9;JJU$QXK-j+vFJh&RsMwth^gcarQ7GXFgMMX7V%gKsMz7+el
zQ3gY;4embOS8i@$XCo)^j6z9Sg#uv#jMNdps2mTV(AKrJ5_$dl<-N>5=U?*w9!^Jp
zMasYs)4i;2q8Kk4PfQu!goh&oo48(o+5TsMtOv%D;H_&g>+4$C*nwg9eSA*kXlHeg
z{XvXl11bgL<a=!R8-KgUI=^x2FCKY0QIH3W-vJ6;BW+Ly<Q&9|I{!g8{15z3y&wyK
z^4!?g%1qmt;x)LT_WyOV({}>x002=-D`y*HLnAwi-#a>z7P`!g6kvn$0KmP^f7g5T
z=9e!act8H7dCviWV8h+rUCqBVsRjTj21_DW|4XCe1s6=<x}>w(O4~;Jm%RH`4vc{T
z037Cki!5buUGnpOtz&Dz!T#$$1oauXD4e~!JE8^Gb5Q_r6MlDh_4)4ZCIeg|O#?uq
z#a$zSg$TzBOAia71Yocruvn10*82r31RnA${Z<^j{%7@!gp2|*l!MDS2rMiN94tKi
zedmU_-)|<uVZmcRViS4r@QpSCr8N%whlq4Us%OPbxN-yg)EqiCUP#Dz_ymMRG_;TD
zp3rl0ar5x<@ryne6PI`)DfL$Voq{50uCAWGfuWJHiLITzgQJtPi}yz#UqAnVz{sfR
znAo`Zgv8GonOWI6Uvj^el$MoOR901gZ*FOAYwzgn>K+^#9vK}QpO{=&Tv}dPU0dJS
zJUBc$J~=%*zqq`&3j)CYHVZudw(S3~3*7F4z`()5!Xez-1%YwAHyjHN{t?>)Y>_tz
z+SU&#**_rSJc~##ZbG8sklV-Au^B+dqvl+oIk-3Nmu3HVhI#$Jvh1&6|JpSLh=Qa2
zKEZ&0urM%SQ^A4>4m1Hw@DJdBr3e2cgkK5qJ|X>0cc7485@2B9z(1r1@DKjp`@aTv
zGvGD>$K51=3JY#2V8LR6TTVAP`&kQR)8Q3ubM3sHf~F(dHL6v}Y8|*gG-ncUJ7ld#
zYk6cI(K^1J^FFy$%r#!?32|^}>QK3r{}HoddzQ!`T0Y2lTt-~5z+JV(JqQ)Oy?9%B
zoTq5@K#x1FM2{?r{)I3rZi7mezT;|Boubi9Wnd&_FSk^b@7_<v5C+QSZF5z@uE|Je
zborBzNvg1n2WwMYg1yu4*=0=GnGvU-Rc(ZRk=>-vf8EC5b`9ye7Ld;+RKVL$i%u0L
zGFFFGA!Iip;*_HaoNIxb!cyQPdDPCzN=|rVs-XHfk^@tHi7ffyT&nRQE%EjkuhYRm
zH2d1RQ-0C8#4%l3Z)G`N{}wFg<Fw0Fg=p<*Mb6O~ZF?~_783OKT$6z)n_yXlv;s9Y
z=}PnR;iTe@lnONuEw<|o4Kx)oQU0m^%I~oO4XAr6v)q(u8mr>DfRJeWG|=SNU{ahe
z@m-vHUumAK3K`)jM|}z!M%-^~Po(ule}dX@tGtp$V@ux7{aHIhg8AcUsz+K#o&7}`
zC*|;0t=*~NhCE+evtcd10#@>Rj<5uUl6F@(6<9f!?F7_hkh3DWQM(Mml6)2~g76n7
zxQ*FKoZ5-=dUl<HZ7y8LMytMG7W<|wr@L*&8w)LEQ=Ooqu4d?R^KDjq{Q}VJj+_1L
z8kBhRmWz<!)CUq=U8ekQ4wqRe#|V3t{vUou`D*qUcZ}A2Y2wlid~0oJtw;7UvruX2
zgCZ4TPx3*itf&&D!!(%?;zpuTU3{^Ba;OWL^KDG@w=qW^r5ICUIgKV__{Y3wg($5m
zjebf)S<eylw`IE4OsON%ZV(MB$Q&^OtV3I}oQqnOXiVt}7ieCxw@<|tD=Lr|Sc)Rx
zGjJg3Wc@rNcFhwAqK>G*Y@xP?$-<ua;pyb<$lF11o!4WxwQA1J8NapyOK=AWZaIu@
zXQrA_Tf!1R?Jvg!)nH`CH+)&D$J#Pmm@huZWH9ord&Z(YAJq69{`d%spW%I@J4gSP
zvP0?gv}8g&@XC68G<i1{D=w9fS16`)KZF!3Ke0OE%eBOCS+9c(_IBM&iG)Rj#1lzf
zg>Zr5DfaIl${=lW!<?GlM7R0&!r133BNj{QCDMqoKfB{eBu^cTmSIUOGz8GgS1~nY
za<89%52$zgvD0)MI7?0bO0vz4-+kqzBHc=f@MW+=X3DVM2`R%*U)pk}N3_=6ILkN7
zE~xyv8@|$ezAm+=;^K3pW!VCGTD-)F@YEgI_+hd#6Sd|CaW7)9*Io^A#beC6GW3^7
z38^i0)ya$YXC@S?bZuu<ylB-lY=n<?8~Lf)NUg(^?UW(hn6uLVb6GK6La<HD)bPeF
zm?l=vVu|w(2qdac$Z8S}fC}ds561gKrwn3g!<nrjRTJcMEqsa-*SG6wj1p%GV$uRB
zgJeghKg;MJbz&<}(Uq7zoy)RzDd_DB_qRKQpOVJ0evwx`l4+Ic<>TpReOe^#?)j!_
zXmyZf)ime{x(ab-=z<b#M2!{t_?fLn8#=Z0`M1jS9z_P%rqnvmMd1g{6_>hF-}<cz
z&A)jwQ(Y}c{6NyUR*ZFuYW_~&mTeM;IZ2bbjm_`{7O5+y;)??uF1Rm^368KLx{+Jr
z^9N^geyXN#v!_*@!*DL$236UidF7pfVv)4dwItu#ZTJf63|kz3cIZ3rx9>W0Atv$}
z`pNm>MZL(+gho!*gpb4NiS^mY5(w4f^ECHfE1djXNY#`Rpqk~>M44JY9T18Th))#r
zQF_TNUt{xdjiuWE+O&oY_h&h;PyJUE=X_l6uXO$O_@Sm9WnungPn>+hf}q5FKC+Vr
zvKSgFvmy_DC^{n^n%l9Z<`G(&jk#vHNe`6s<=go)+aqSh$IG7jL`Picd9NfSx<{I8
zAu^+AE%9z?>Uv$)iP;TFL?}EA8d2I{@xWLY!mn2qM%{8GQXlzY$rE8rMG#0k$67{x
z@m&ACKwR=zlqor~#_X<f!L}KT$Iq_SejLl3e%k4sAEV}&kE2?|Mb3(xV*75}HFu=*
z*7rz<An6dqU|lPE6jU3&e!-23db$XEbttt@y0TO?mC=(*SU$4y300=d6BPpb!>!y4
zzs3IXmifI_P0XACt_HN}4VTy`zAL7keE-r|=9hsoMH7$h*YVV6wU_PstXMqtFpy13
zBuwuBB&Kn{43)CRdUUI=Ty)CA**4sLEtOI?p$B@O1&K~KyILLb)(Lo#+nhToSg9h~
zv^P^Bx5NH?u@i%0!~q}udbF0cPqB6a54ZFORhVAI>ynl^2*>YD3g04a9Wd2C%r*Kx
zTY8g|DM~-n=59eGFlGeHP9?gcrpiX|;1--7@7qYCxH1#At$m<y)Qs))RX{qvfO}7x
zH^Oj4Z{94VK$rgOlq92VuvcEPx8_7;kOwL8lR-2XBuX~PdS!jX%8!t6Wn}$?Ivlr8
zWU?j~cfew5(!$owtHCMdfwCQO>PJ25QxbgPbdB)c7EQZ6o+sI%mYQf}FLtb2wKG&_
zBWr|1Sg<CV_NCwOuNLI0j63s&nAb{X%x**>#f5)saR@I>_9Uu?(?d@vQXcj+?#FhT
zYeBJIWPw*Qov)yX8Ls<W`MMXoRo`$IA;o*fPwF;fPl)82YV3F`NV<;uN-T7d8`UnU
zs7!T9aC=W^0PzwY_Cm3<{>dHSWpdl2iOE7cY`4y->aNMyOD*lZ&?|1Xh9-C#D91yv
zraSem6Ydyy<MpD6T%^5jk?S4MLgxOmUeYz^$TY_(aqR7wPeT|B?Vxt79Id}He+x3Y
zL>yJ^2ZXYaq5UF@QO+V@U5HG^RpP)Q$<07!Kq-#NrW?}vuF^GrJT-$p0ZO8{@wm0&
zoCdwpG`$zY_gZFA2Ay=kU!Ex~@OT5=x_ok2dGm)uNK<kpEK@R;ChB?5Ez%uuC3#N%
z#u8)PN%7@DGU_M6zBu=r5NEpZWY13~{aDPO^os=?mWI~9U7X+z=MJy9H!Sqi*FVTA
zpqn9MSvXi^auKCXT5uPO6$~8|!Jig~>c8T#y=m^4tTZH&>As12tBsSf%BKEY*S;gy
zo@9PLwDGuz<=hXWZEs?A+o+y%2&%fjJ2(@|+wZTN!g=^3Jz9c7d0Pn=%4ky|@h03_
z9V)q`>F;9ZXsDoxwbA?>4L4@_iNylq%t{ALeao%{$+BZnc23H$OAV(pE-R+RWJYG%
zf`gyktVJYsdBlsu`tEc2tz`P^>SJnbw$Nm9k->Vh^R$+VCp0+|<tSV?%eMwH!<oq|
zSu%B=6K^`K2h)e3GW#fErMImILNU4PXFofI2UQm0#fA2P$=VNHypv=Uh*#tJ<F{0j
z*0~+&ZUV!PYbxl}JWaZcaq^o&QKj)-VbmiX=cTgyKC)5B9!nqciDf}zG4@Njk>x)x
z%~9T*W%jxQME3Rjf`lg~@vD6=a{L&3VwF~Oy66ZYUXc%+;l>>Idut_}m#UbyY0a64
z9w4$r&px$yYdl5S{qB@>+T31CT!fE7W5aR2KPb^R)u3UJqJH+nk61;vGH=o!GG+TN
z^Os|B%Ck;_tLFT>w(!@e(1j|zU~liLU18R<#mZ28G^jw!;FpSu!qxp=YphnrSCsgp
zw;MZ`Ypt?7GGu!#9&CPBRByZxLN~efsSGgo3Z|_NSPA6-dJlznT2IgW#-uAF%*#?>
z^s7e}g1ZeMo*t1AYvuxBdofRW-RxnZ%dWHy3k5u?RbH3G7lo;<zF}wYW2RZ3Qe%pc
zU<G51C1dq$3E`NoQwCAD5wO);$;Pz9RGMLCgipYdl`pQ;GC=90vUk(W!yNgR_?0Hw
zxGXf*zB!pL6!}~$&Kr!@@_CeO+VnHV9;&tXqQ?H{`QEonDQR9*OBJs7J}r(RMu_1+
zy7kO@i^x7TL&uE8T;Vxe6N$AnVwh!Y0ON~nEe}h&WG`3mHka9eMI|VgE?R6DRw$0Z
z%$uiHeUduWjXe*eJ_KGYEh+}v2Ze=TO0P<rTILvsTd-3eF%C7vC(WRs1%7pC7ndXs
zW$13yvJUT%9F>hzXy`mUA`wR}gb`{hG{=`cw-e2GlRxP9Z;vxaFLnOXo0A!?I<2mu
zE`B<l7a7$?*@fxwrV=fso2{|&c+W=&;rxU7r_K6DqYJ9MOp70A-ghdcmA`nmqSS|I
zON$!P=WeU$MwmP6RN7vVC{`b1yoe>7VD<9_d~^{tef~he11e)Fo~|05sKZh^fxKPW
zATsisw7pwk>RRfYIa0}#RhFslaHf~Pu52KK)z?*7%|FFp(qoU}AY7!VU_paD=R^Pg
z@Mg!fV@<`Rw7cC@Wmf;^`99K{;RB1$XZ)I;qWR|tS8s0n>PgR|_B|IqIwtyE)9@R%
zF626W&;$De6Vse%?Vwq!?NU!ds`NVHAiFvbX(RmFWx6SA?x}Hnp53~2#GYo`+_psS
z#%0b<@4jiXw|Mc;?s1C4!3j>qhXrNY>dM4z#(~~?S?)=t>G!*>352&I<@i_31D48K
zI<?yu)h85**Zu9tbIL#Jiv`yl4_6&Dsl%ch4Q$$8WhsuNU`!}su(K1OlA&pBX4a~{
z5+9W8eZ?gnfx{}-YEMGcJZw)F6zw*jrWSTk)QOAxT`->Kht8}?gfaIHmELs@0pS{X
zcLTIs(AaaKx)y=tWd!-T1XQU;Pb>2x(%8x41pxuy(go3#XPe88|6rlH+*2Bc_n&sm
zPL`+!8!#G-?*Lpe>#L_umaU1xmqIzZ3p)mM7N6;9Lj?*%WkQ;(E~3k{8=DZ|mU4?~
z<`d|7#}y;b<<n;HtX7?rb)J03bg(ID$Sa<2s3hM>S!9@-eApp`w=bR<drMR!jmGds
z+Gu8WXPYX9jHk*Tvy3`?3ey5LDN+Ic{dN1uwb(+6u6*_ANjz?vTzS=tgw^pTT1Nyz
zxMg3aV61Qs%`bCEh30m5K=3VF`3GzPQ@bH7EZleaXV2%E*{(HX?9veYK6063DEqa#
z*k^6H8@{tCZNhn9G`S41=^1xD&~#M|BDVdqICSQ6Hhi?@B$r3`)?T4<<GOIBze{@N
zwb=aQecuqPQ^$wmhWg0a&-N{h639QTL6@~o1?$ZYdb5iVS_JV3$$uo8V&AIFdr9*o
zPFrY4T1Ta(mS5&B6@il?M%eb*5{7?;LWk_wvAeW_G~te(o-93*G&LHTLySOe@p}Tj
z`LX4kAOho46}>oa>?TwfJ1K*AG&cDc@EtuHeXgO-MT1qE>>rbpT?8#>I~GVBBNTh|
zx3i;UXbUD!FU)?R)IHmhN^5D*llkamGaSmZ<SK>Z)7kg5IV#ol;n+z16Ye>PQClPR
z#;Kv;d!s%`2i%gNaC2=-N8E=o(Eu8(??$H|9O>XAYTF5SWufSE{jQ7cRR<`-NYuny
zm4n+ADHl+Ym`(s)6gG9XZfh$~{%xS7iHBoohwF=1EHa^C@@h^#mD<X7DNwJuCp4d@
zpH2mTNUcvTUrWO+*Qw_lX3CaR7|`|+Uy95{_QdM3k=#mlXDB)7-G1B_7rQ}UBb1;O
zfz!Fd6phK-NmC6Q$~OEiE!bv5#j#c0qA8usq%Y|3y=pvV<3{q0Z2F!WrcdTXzrSKo
z&~AfVLr86a2aO3Hn^!`0xdd?#>DG#+g_X-`|B_~d2K@nE%zV)~O-#Y<m-Iy;3|FV0
z-@@D~f6BnU;30wOrvM)AB##}PEF#73EtVBnW1?P`mxMb*`?15Fj<+;__7&+Gx?jN?
z)f3lZCpmKx<4lo+5z<R7TRtPO-$>ledh-lF;>3-nK(fn|?QCvGvCt^ivzR6|&)Si+
zJZ57*)B4BGq0Z8qV!-08*QsOY^JH3p5P>nPoAA&s%SzROV8-~f_yGO4(3fyBRImdm
zxhUUANEU16&gl$4GG1$6;bS28TA5?dz1g44YTrN#yWvK3)F<Tur%@Zl;D}_bqnsV{
zMOiX+6*rQ7%a8fl)zzN(%7Uk#1};X=x-1cGv=W~z8lyZ9p~_u&P2%+cqtzN$UoJ>;
zYi-5AqbX)U%GxrkKS_w;T<C0peA_Zh*-goG=54F(dFt)b>y+(T*Plm5XO<+w--Ao@
zP2O6EC~#ZG)Acc&WGtQDyggmJNuVjI2zAacsui`R9^!buVZxcl6s?8bVVmJ>2t-7A
z!MjmiIXitnJX&n<aT8uxUzT<keOsw)K+9dJAKqd_3Ht*ZNrg`>n@S&L#1GkH_q=+s
z09GE1IpeRf_CxYFxOOUh7I$PK2w<qfMUXA!91(PgEqEWPrsG~P6!E-D5igH6X}FHL
z=@>l{a;O=<l$MlvwRSpDJDl_;p&<VnViKf-&GJNLNg<8ha%y!~NLJ?R6)&mjcG8nr
zqgT5bVPDoR6x%c~>OwuI!aDe0hchNRzIS8%;Rm<4_I6ZhABlq0J1X#sN`{HZW-6vm
zuv9Z~4c|8KP&20g)29=bkL)=l^MOTHM1<_q?-TBTEx9(E9_uoUn9ljj;V~Z@+o`~d
zGh$Msj?~3Py5V*tG~dRvB9im+1K6fpjKOU;(WL^N{+3Y%6`v$Y$FFLlrl>}SPnEhj
z=$A-k9A@d9R|m7N81o~UpVC`d2V0*jHs0dh#NGjhvOcp^mN?VrCLMCayB13U<sov9
zJikz?z2Jc3!S^tWcqZ8y$o>V18r^iR^Bs={c9IKM<;f*Uybp~`RhqcRPx4BMCKk-w
zUQMh*59EpSphcOg{p<qa(>Px{*Srvdr$42MrEf~vMRQ(I^{u{m94qrFMl|r2&W+f*
zNXf*5pu(%~Ayd77F)U-l7M1g}YGMeiEj&Hax^2JI?XYFh!an&mmdpOS6-`!b#J-0u
ze3>#<>x0A=6ZA%dhG2Cv+@Llga<TSK&T)Xm3OYe>atB!H3Z2~e@N(z(ufAf8c23Va
zyTKUW`#49+rRkMcD%@Ph(~$}{lJ@d|Ho?(8+r))2!lZe=uC1-Tz4SfJvW>IJ&bQ~w
zKD>{!T;o0p8(DgL;@T5(Ho%*X9&X|l(@z^$s^*^{68b*tF|;Y}C#3qM2L~>+>*1aJ
z<cDt&Zu>?f>({p*z78aDtI?JgSPTkhw_YV{kQzD<+0R)pY!eQvr|=BWARdA~&s$((
zD$Z5SY9C}_sVFI3&NGL5K%hN7=1!zyQ{REcAD+TRTaY8GYIX<wxDEjOv6qSE7q=HR
z!VCnN@_-AYwfDM<_xWj2ga={!=k|-?;JDXT;!meK8q~&$Z^!r@Qs(E#w=~EHV$x*3
zHAD(HG3&WTMi4{{J4f<G??9ih3<Vz55sh}dN_#V8*TYA7v;0ONKos5}MDl{<!DLp=
z!y&HzfFSD<A!5Fs>8;+T)9X<FgHU-P7pyr__ZxSHvi)~uHk*?))yp!48|xGEZfA(K
zx?6+QQJFno)Ormw)FfO+8x!8yKKzIPUm-a)XYVKkGh~klHD5qs=p^HgY9oRw>u(a>
z!V^$YW!QS36iSL!<U5Ts!b=2ZC)-uuzHdNTRy>&fmXlJ6XLx&|EPKec_mJ29*^8sF
zaNR?$Bg1BAy{L}FsizXx?y6n_hGv<lV-<pZncstd=qgOU-?y@I+Ec5F+2y$OL}F07
zaA_B4D8Kns0gFC!Ubxx(T6?mi+$Ms9*v_tzF@tc8urPE$Vv_s#HJfHT*GjKIT7|5+
zjPyFm1a)VdS2qeBbRK!kK7>n|%HRCm&QR!y+%DH`A7Y3vHUl=_yl03;yyb8qfrEDc
zf_m;%4!?q4>|{uCsN8cp36kUMHm9|nhuV(r`=T1&FGOit5T%%Hs{$Y$vO@%d3}eXQ
zz2V5A58O@LgpGr)LLQ%b9^hpdbH)y~noD(|;Mm_>t{H3ChVpLhscNg71}++1Sf0My
zpDp+_t0wlPv6DI^z&uG2R;Q3V(i?h^c&WGu^VK*4fso83t(E8^?o|6cV(|{ZHyJd#
zyctq|9=ko??W6bflbM`U@MUsx;H7IvG275*^>H*xFPEbTZ%xG>BaZ&ma=h%Filyvl
zH{Hu&1<&;e?*QQi6_|-n-vUYCFJz_q53{!)2*to@T&CUqyg~VC*FZbp9WSqg)X&Ge
zv!M}Xwpr|+@>J*!km?x3!_+Z+twYD|UZYbZt+cbm4n@VS+UsMupu$(L%)Ppyclhb<
zt9vtLPOr*W&^e>Z_(`|mjW0>z@T1aRr4JfUcrcNZ*SOXyZE|FYtO>49{2U0syN<*+
zDnpj;fH9??0?_W=8i%M`7X^PqY@jySc1Kl0N9AYaDF>&ac86%hj#MLV_t71&nVFJ2
z^}XGy?G?vlis7oH1x++sBkIx1E@>IDkMzk)sWBc*d!flA??RMFr_pO23RsvZCJ(Sh
znV)hJNVV7#Tk;PX>EfX~qQ`U?#~M?;ESyUELABMm`rTc5*$%lHxn)0phJOlQoWx$R
zu4eSy*mZp(XFEZ3I~Rt{$uE{T*?KB8rbQ-S<Y+Q3hSfFSh8g3fA*wL{af%0Bg(Qx$
zSX|W!khmyZ9Pud@z!TRJGOuoGx9-n!aSBZ7GkL;g+i%Z6JVx``)R1uLMo;3R>h|4g
z{bLy!Guoq1_L!ZKnf~3I&<eOi402|dz_XeHE}{O_srPLNz3mL~QL;mZF--Q53V}!+
zig{G_)aqUbt<Bjkl9&Zcmo+5ATt-&&j`%ykZfUZt?WQtv4EqTjV7+NN!|4g*_IQ-D
ztt@f#_Q?`*9;LsY%vZMVFChV)TUEC5MGb~iC>si-4_jHy!r#L;nmVXOMENNoc&DBC
z<-pX37K#M<?n70SQ^{l(p$4mmd<A31WL166J9|pEj|baM0~oE6OVBzVdjVazmjRzW
zdKyqNeim$7D(oI)!1AC_Je{{|HrIc%F`Sxtq^8htMZNwqO4#Rwy=EX<#3r7^``S9$
zajWF3n{aT>9^Kr)9iaIklLHD(Nh-cr%O0<FvBNBeuRu+$GZiU2Q|KG$e<p}9S|2qm
zY!DWpVrQKs%_3j~Bst5yyAT(yE$APt?N{7)3~&>+8l9{wZEf6Ppe!>_t%5Z6FK7r+
zrl?q)P>g*QB(nWjPpCHk68mWl1{~zAl(Y&j)C*BK3^&78-yTWWC?xy@2pg>4*d=?B
zIEnf&JV(%3kb$5}a@}ZgbWLD^lo{66-m2v+)htJ7>J%IxJItK%7TSuPa6D=*V^8L%
z0`QDuF6075c47@^>+tYHow$AG$re+Tw!Uo4wkr=2iTES(lDA#om@0{I)xMCrZnX_f
z$c^BsZ*2~*yF?!`Pbm0|W+RF_pJoyxLv+OL9CDjx@4SS<!@*6-KFtp4=pm1;K3?e}
z%T)X_o`ET3u=L3cOKm15N^OfrC9$E4C|^qOpt|%9a7SLpWL+Aph!My`UV9PV2Gyql
z)=1V;>8&k+=q|51RtY%!z0q$UODLAAdM#V3e!SrAC=$#|%w+T<#J>Za1*-!OEz895
zA+)cTh6uE580cTrx4TX8PR^uJBpK`bh28=5#jjj!$_o!ZbapJXy|XR$s&2BZNwX+#
z{@Rzc>RoI?ulo7pq<Q`K{S=Y4=wngpNHKOj07k~_XRYZbtEeMxzwukAqL)To3>a7@
zWU5*P1<QDG2hnm*$xI8%`_~w(FE5#+kZMNE7j44}2`;be8i;xlySXdM10SV)eUDzJ
z`l(0}rHx=xZZP9w(^i%tL%77?ylAngRUHN;g+fC63vpE>pV;yk-pk;krrG^2BsH>B
z2Z`J*>4pBuQnhczzT^S*#KUGqTK!4(`lf;-!4VygULSN}OCGWVj&|1!5*=NJj)m$^
zBb>##k?N4-8X;q(&iyJ!S2uL|#;A<XLSb1tTS9*%$-ZLPFg_@kFL<N2m>cm-6Wwnx
z75}_$UNb-iK0oo@VQ1x&$U=wC%!h}awd~bfUhvL$fIlZOLrr>a51Eu(W+*_)5!$#`
zVD<eD@DnaSHhscO%DjWWVk&(s9UpJTOJ1wVhAu9mh#<Jt%UDl-E~{2*YMSAiv!H6D
zH2Wj>D3^e(PhaBgwN&e};>+_?pXbpdp++lQ6uag8#6=G{d4$x0J^GO7k#DY36Z$Pp
zHuA4&m}-z1gXJQHjK&Wk(ESO`mBgbE%jf4|y6MDd0&S}TdURNY$2W%^!SwOFOe<RT
zO&JAqU;s(L`9!@|dZDX)eH_=cj$o?KiT6mTFPKL2G_GekdAJ4lm1lFLHa$AStOE0S
z+|$tJ1-xdc)Q^&`N&(hP)=5a?vO!&3(=0T$|JiNZL3RZE;Y&$Mr9piwS!)U^c<Xj_
zhUVQ{S|@|cMbjRFaunkX|BL<U$(K<b!C#9%gbPid!IE|r$?St~niva@#fJA{6+-ao
z-3oRGLPev4tYI5G_?NPbzV-=F@eO<|=Sw4K*bbnr(_YBiA(KHT{^-e8HbGlj5vWg*
zZ`1M+F-Z84ssTD%pS334wE-BNncX(t0i@+9{)LuhlJ=51hKBX!flSZnB!0lCZ>+ZO
za%tG8{+LgDt7)WkuG%t(Ro+v;A~*P``Vfa8)>z|-e#j8*i&it-A*lUQkp_dH5bk>7
zgAB(k6=SxI0gv_PKB7`J^4dWw@ypBJH97UB!!4`0l+~ZM`}h{9T&WIN+Q|3CW&Owq
zi=&jz6_-%Xbt`Q#!=8`kb450rLB97Zy?>F8ykwbHQ!i^7;PJ$>iQm&G40V0!N8NsQ
zMHGct_2_ZW9e{2wQsYV(uA$7K2MOcU%_V5}%&T!nCw7RR+Zc_zwR(Lh4QC)e)!Fl&
z<iiwGn{xH2X3MG0+*4oE=UopFrQ)miilbqVXHJR?(y(<D+gKXj20EJy`QJWf@zf6s
zCBq)fDLHWb2z|-<<(0~wNPztgo<7Yh1yXK<hzn?`>H@26XiiH(t?Xwf9wqKX=3=Z`
zU-hmW6C$(Nq35}w%8x_wUh2UhS!5JR-OhnK;%g#fC*!w|rq&bfN7g1LXAdWqVtaPj
z1Q0G#hgmtOP&55j)xwG4#`@A8-oo7W3*(sU4V7cSZ>hxe^)WHWqKS8`@;;%O$seRQ
zjDtk)Tr<qJ9Oxf^En0UTDT(`Tcv$)6+`FA;mW;pb7QcMxC--t)MZmHHyc5Gp{D4Tm
z_{=#`!-6IL#^;&EgY2qH^}Z2()fB<zWNZ&(9{Mj-B)eUEqYchb={o=}>YOD{NqLh9
zEyu5nR1(61;m4)AhX%Fm=%$$A%3n@fq^qgpTU(U%_uPMx7BtD#VxofJUv9j{ShCid
zD7Cpk{}>{(8vWKJ)Jg?4OzPwtiG)vibh2krLW?G2-f2v~7Z(P;lLks#kZcvvU<_QB
zF3FT)`m$6|L_fT;A41~ZuJ-W4PyAMn4WeMYD7whmQ&*(h-fxiv7j39cRKl$syYy#)
z;OntT3^BHwjHXlm<I}YO=;I>sqx7a#Y0!WYwYJb2D)bIs*ibjQsYQ(Tu#Z>yZeok>
zu1()!uK3%Ek_z~rh^`US4pY9Md4_X*#Di|bissHt%x@D`&3Plsovrk}y`yxzO=~;x
zG&l&ib6l(y?!hFI_7RKjUdM`(2g@*d8`%?e(YDR8(aPc=cPX6kDH&H(lV=aA{4j{y
zYV0gBpyp7!WjBFEw1+L<Tbz;>&3$f*4DIRIrL*Vqp#H8Ov7Z5gA}_<5>kJhR9yehS
zsE8WwyNVz9w0|MUtvJ-F3kemHlV+6b*cGuS?SHv`Kp?5`&UCOWZc=j}eUf0hIfPJq
zebg;1eIspOriO{7Ij!>Xha#w>D^8*tn+fKGx|EX6;VKnriR3B=ha_WUC(pz8ZEwWU
zJT+YGn^mcQk|C;jP!QcJdFqC}_arat4@rG^p0X&5F}3c(9QCEm*8V2lDS)Fjy>zAd
z>#mxf7I#xSN1w!Tjrn2^%D8?_iFxPyl-Vl6q8{kW)`iW*bSSjCZc4z;(Qv@30xzGg
zYB(gN@9@bYBgqnPyC?EOtz=%-SB_Tk?RjSKad7euvRHlyop@{1F(&L|bxZv{aQEFX
zBj4O%$~f$U2F{Pn{dp@D`3JJW8Vof9*GxiR2r@rd*P=t*Fp{=3KimOjEFH3N8)*cb
zuC7<d9FrUPNc@d(RqQh@lnjje$ra<u?>opwj?b=f))YfoKD=$=YTci0DwwD%%`cH4
zo0WS*q0mwktL9_XV%16fp6eoM-)-}IPNVSobEtr>c}~+!Ax*<bM#$@;q%)=kf*Hn4
z?PUWY6+1!;giW<4v4fWxZN2Ne1&2^n1%B(+_F%lqm$N_b03+dtGfs1@Dn%cT6(aVO
zk$7I7ZV>ni=C115w7ER)mdxDu>%bs6*A%Ht+TPb-8i-wqF??gQvZ6~7h+SnvY}GDm
zcs0VZBe5V1zb=e^&9^{~(Nf71^`a<cQ#RI7ngf+XXmy$+@|BBDZC>-~q<U&@X7ASy
zrnLl`Vyt#$71~f81r3OL_A^)(0z!HTzN`Esl#i|2G^!JOmqwv(TWlTL2jQQ-3KUMc
zPL>YbQeRuw`Yn(Uan_Wz6mEvNq7Ap<&1$m06+m2;h-II1v|>a8!VxIH)glyB1S}An
zKZ7uIkyzEfeTKI<wu-jqhjRAK3bG<g%CH(Xg&?<In0p}Oh6bM*PF-;aOrn}gGFUqD
z8C~~3dPPVBsh#;ma@~?zS<A36<FO^fLYBZWg;l0L(O-_6p&94xEB1H~6VSivmMqF`
z(!*iUTH<4{HJ!Td_g*A%H(JumVmRE$l~~08==OL~;3`NUL62ypH`-Q-;RA`B?hk72
z72dZsd?fo%32>XP_4XzFWdqC}f1vCu$eHXgfwrN$<;lxoXt5Kl4c2il+|nvdKou(w
z)Qk_boE^I}!*>10KhV0jxauaV_TxF3wvUeDC5}eWZ^n92nLDDei?=;!Zl|?wrs(QJ
z0wN+AX4AzpJrL|yJ)A?j*5B1cmYSPqfve5Uj`(Z&{ked(1B2p46jLPH^0Lrgy?8D9
zVlQgBxmFRV9_$5j&%w?QMPXcf>X0DuIHRCQB{;FC8IewEc11bmVYufE@<WC5gXKzG
zbX)|HbW7p>`x^wIA|%zXWr@9(lTTM`!`d4Vp%SKx8*b_-BDUIs)32JJh(zEv-z;m@
z8h$U;Jt|D*QYnefkmIiC@Jm}}&4Fj+uvvBVkiaTblNN4AN#G8dn~I3U!G(`paBi9j
zX|)haSZqk&!`f81)ZF%4(2JdQ)=rWc)OrGE&atZa(Hyy&`Y4oN@#t(}2ICeRBS0lI
z&s8{j^!udbx0b3Ze8Shx>YwIeUI<n3tsSejG+?plMoE7=sK{~)F#a+zr934<HC>iw
z5X*;0z!b+;9rE1#L#(wAG@PNkk3(rd>WSJ}6~dF~i<LJM8f$w+J5lomENyo{X==d2
z9wz*uB~)TT2Y0GRAoi4yRfLKfkR<ayydYm<X{K8|@82J5btGdLNozhjk70^yK6@~C
z#mqwAt~2<w3BH{je}x^BPeXp*zEYE@9DF%KUOMNMe!gXzGifTlv_m%AH?qLiPm@(U
zKQ+^3N&C{AT9Z$oSYoD&VhriPvgxSlO4beUydiH(=-o%6nAy~d;?}G|B_<l<Or0jb
zINFiU*Th!TBy2_Dy{0{zM~OocL!CFO5Da(mwf;MxvM-%G;Q+sd=v#5*;_h6>cj<|i
z_z@euZ}xud>~v8-><MRaMN#+BJmRij4_Fr60rNR&aJ$=vk>eX4cn9`3&AD*UCtR5Z
zv?ReCeVH+9bgb49nz*+Em5H@!1ofn*vWBR|CaLVPo2*$rJ;V$%0(vhnb~__<kz$w0
zrLJ`4N9L5l@a~fnJ#N5GX34qfBGUU9+1}GS@s8by7#e8)3yvoJt*Ijk4Nb+*>EC@6
z53P+ZpYQOgeixiukoBG)^0b%>Ov4&9G(N#Va1#HSA^8MZ!TrtL3bSq#g!{d>@w5c<
z#8v93E}f887s;~qg<@A4N;Vj%Oe!wgeYZR45ll^42vS}`M-f**>8dF4juEayh?rI!
z-k=QWp5|saO750T<hfP4eQ~<Z8C9G|`oq_jsMF=xjI~b~>cPcW$sTc}`ym)zI7PQ<
zB_Q}?N^?-`RDwir=*ZG5<~23tXBRr;Tj(Qa8y91KZqlaaguY)YLfk07SEiWjKKX7C
zhF1JC7?ZCZ-x`*;i_~<&Lf?EPI^6SeWTgQUW?D@dhKJQ&cP}`#WwH($F<C39xGMH;
zSMq|R>6XSRO1=*C9Ja}1h6;Crz3u*c=ZeZC<w5S!*Xy&Yn1tcsIggDgVt5%eJFlNf
zx*2Ep5EK014zKL#IFN1<e8IOjc2cx?wshc%aZV{zU^0l<3jX)+_KufiFo&ATvp{d&
zi-aV==9TFM-;lxE#V;BL$UBA>8N4W6@u@D>TeA)2G&l|9KW|kRSL^ceb1$#<5vM!$
zJ?E(%bRGdE!?fYN?wi@8>NSY-H{cgEJAF268d+ptiw^F9cDxlm#ftsxuvk59@?PsN
z-yjEN$!XvD2zs5<8k2&QZV9hphje1xz|R7PXJv`|FG)lnxul(>NVpvLNE-_;SUU|~
zg^P!LPH$c#FkR#rs=>%|d986;7si9MJMiZ4Mz*Pca!)?hGDzr=Ym&5Sl0<dFe58Yo
zUW}9&wbYyU3V_AM2ZX80x32RI=*FX%=Rs<zYofJd%(fO|D7d{@;~#YWOKPz>D*}ZB
zc6E`O^t%^JgpF7bw#XRI6KLv^V}FX-eld9{%UOuWt6hP{d4`<~P=>tr)p3c@$Y)sh
z3_#j{{Iq1hFysKEg@2liak!Rap;u|kA?~2=OW;8Q8AAy7(`vS<W~=>g&NS`2kV562
z1T%2~mSmC?qbY-;>=2{drK1HVv8>T@m>$%{NtBOA1uI8d(bVbE?Mp^Z<EVLB7H^Yn
z19$7ulxfyNp`=+I&{6OqM#ea>Gf}Y2)<x9i3ga9>!aecu(a$AFV<*>k?mqs!W>BrT
z9m~YhVnJ%rgKA?ZY!)1qiVxO$Iw*`Xjtpf3CEcD5`4QQp?KU!s-*4hQpx6AB-^;%b
zvRE+NnI=hZSk&@A$UbPXA(&Ecu{Vo)9)UzDEWlo3KHX%UxZPcH;@>JB6i09A(a}5D
zIF_Nn@n%(0uugVk3EWM+1Fmr}#A**3f}vDP=2RX027ZN`3JwmpEJH8fZWbHo(YNL(
z4hBn_(+lZDq_)5Q!3)c^-E{}RKhlK1W*DgFx*bVF;|lY;MDQ=G<6kyOG+*)a-_}Zc
zJ8|l2{HQqT>gCI}Mut<$Py3o&=PTfX;Nm8@mhIqd-XhELAg%S5zG^r<>0RK_OK<h>
zU<{8}>4=ZSbwx!r{X_3v*W2oEBF(Wyiu-%l*rlgW_x-ku7c7J3Fpj@yjk(F*0f?D#
zZ#Bipa<F@H)u%e3u{LbJu1;CXNp{wqxI-w1p|Z3bNWOk$A<ly2&&y|T>~_ms(#o`p
zBTb-r>cT|{mtp(;r_DFvLi9?Fw@BwP3o}yAhLt5(?3xnri!*9fz62VBHc?bvk2?b!
z^{citHE6@E&3yFbLLv@3k$DzUG3HG#63@>-qmFM<sBS(B;hbAGT1~eg1Qwi__8JVV
z#yUjU!CJbxWydT#<*!jRL0#kFBc7E+^iOC!tUTw~_g*4zlSN(EETgU7Z)f6BDytsk
zB$knyQ?B%F+)${*N5YHC75maTx?xSVdkCkYBmj90@5y3~fiSP#qsWr`m@tQ?m(;ws
zr-(&0XHN7axsp3ij!B0yI?mAcG{Q_jlqs@^uakUxq_gEBvNmVc0pYl)&C-v&!gFUT
z(~bCNgE6UYqXW1_4&}*J73J#7$eiHuktrx>?Lx&?$~qZo-qbW=M_^~P68{uxh2}9e
zRU?>|WJ?}JrR#!Ctg9O{UCTYx{<Nvxbji9}|0TytlB|2m>9t}nSsQ=1X#ysF0I!8_
zz17WE1K3ly1NIl`zE=eMtzY=6pYmydU%<Mv5Qtl^9ADo7F>bwAO5)%+DLwsu#2&>o
zn#%u$;7ZPAUnnO`Wv!)XR?Im=yv(q*p*S@I=MKQy<*Z&z6iCmJVN;G7dr~crsi&i~
zmJ7f(71co<lFF(Qs$kyrx`|v78+$0WF%(!lQE;ODmhv(w=0`}ixF~(@B-@8%?`vL|
z`i*lRBy}<&-lGfzvTcNQ(;ag%g)sX3IKDx(Cx<ago)}w7E14wdX@2LUD@#7Xu*3F+
z>P1@99=4ZboN+qFJ)(C5H{1jI!x}%S)SB480F3*bFJ;r6;tO5LW4{ZC*V(ko@ce+&
zP8?mJUYgLy;yEhR6-%AuqYX3|Z*XE;$Fc4wC}0w@tej+=RTg>t)FmPka*FWfv}hSB
zHInx8&Gg3cj<ocL$VpqlQq=dQO_X8T`&q&VyQb+r8CBF%FCsq-XTV+>a`hXZ@i?6B
z5%D#XW)Q-mPY|w_@7TK3>rcPw%zwZ`8EL&MxaFltFP+D|SmyXj-pl#x+76cFdq0M8
zmv=$Lyy5u%J@~rCeZo``mkQy&Zfr-6J92Zpq`oeN3}SMfYjW!b2-Gp*=DfRXO?jBo
zM809dbZW3$uY661EOCxhB<Q<{I-dy<uL4Wxf*5CC%gYp&>Em-M2(Aj#<8CkIn!j>I
zA<6BUv{Jn${v>!?&Nb!pJi<y=%BRT*mubQ_ZE-O(62;pjvvBpzHS~~gv20bGo`1Tl
z)-)X%sU0pJxEjq)G5gs??@5#`rtI|5i-qqMZ)1n2OSQ=-lUE{LDBeSpMHn<YSoSo#
zoVGj>aW4j!4JmH<aHa57<(0Hymp9UKTy~0<-Wk4o{Vs6npwMJhz^2+?E3Ga<BbLp9
zFW1cGR+X3cmQu1GclDO0G<8e9ER?ZSyq|XV{e@`_Lhuo|ur|;;Ops%?-E<e+3aTwL
zC6;kr)buahDVxJ^Qfc12y}aDi^O~I{NVlbq?0NJ~?A;09;|+DfcYJ-HgK;Oi;=9?h
zr^_T3DqAqlnG{=gp3Qb!lDi3wajwR^%Sn4#Ra#dW60cueFYOwO?789pcnFG7e@lD^
zG`()n0XNomd@V^tKdJK}esl6dI<7G25FlHCd&Sq$y_R^Z0u|gZu;d)ammcPvkvJ1&
zt0AC$6C5szUJJe=Dw3PMW<7{WMxz*H@%lpT9^=z}l&q^Oxsj~pP_!OcT;Q(b$uin^
zaIEi$l5rKZFWe4((!4L>IFErdIZMTSV$Od-i;7`I8NPNv?&DgJ)|N(Y?2Z30>*rFC
zf4gjjcuQJeL*I;@I*;@)_Rdn^;QDnB<Gy>UWxU<&Ga=a`l}p`)h8@Ez6*scOhYS6!
zf-VFZO{&g&;yDmf2ZC~%lxGKF;pwC}p$w_2o1xn*WQSWS+{a_b5@$`?2d9i5@{L~=
z%oMD^dA!2E7*p_Ib`u!eK~E~E(6vByv?|T^_{2*7MzaIICGDK)@s999jO@9J2GRW%
zX9hN~hvTTiSc5^%kX|1!PJW8>aGhbt6W+7QqQP*-#FC}`7V&`gBd#>`v_L<%ITNc<
z$w1o6b*Za!Pi`^QZ(zY`2!Y4LRk-RlH0=E?ic=1Twz<)As!U4DbKBjoV1;PTedSlI
z=PvdR`@4Be$+gi}@+j;_<0Z~!64h{HD`y{s=QGp3`L!C=4;UX1%l^!w&lFqaT^XR&
z=`EvYy0*qQJC(C;S{Es*azi?x?{DMA+SEj?RW#32;e{t^zGR5z+c?Z<I4q*A5b;hr
z`&6`&v!c6YrS@_*Jl8V?d?_BLc#~95x&D)`)N4pyJzcUSMs#1GgD&{?`B=!N3R(F=
zl5ffAPIg%gyOf&vK=DbtI58>shIA4m;Ff!6s%u!N-!@d(9ZOtT&d2$hA-mx`Bhx8P
zJnHFzgBMHw3V`#_ef0L&tQ(niTcp=1eikFga9eNaXzcP@))b?a<&_>7BqzW8#EkAj
zULgFsL7`l3&6=7;3vo|<HDh1SHEDvmmdPUs(9!nYA*6n{O}IE6Y(4DrW=D-Du%5ta
zPkf+|OSO|Sc6NlIdvq{wTfEVjz%3tFq)Wi5DArkl5@Rl4Z>VD+u~tuPp+kQ#(wR6Z
zWGGx#xRyF>2siUb(HY`WfeoIESZ}8Esq}>k;=X?<Rvc{lI&qrX$a>-}_jnI#Mm7B6
z<GFLcjW^q&VMY!=&0;Bt;Z7DS7UTv?i;w#k)R@XwX1>Roy86Hp=%et@CqFzSol9J;
z5UynG-D-lLHm0z^7C(#+JJUl^8`&s{9+>10Nuy}vm7w|@NBCyz^`yEw{pu>-xD^j1
zBCUwBa-sUY$1>*9(S`<>-KcM|JBo{V%BkxI{$&nKVdTWVJ`QIc`CxB!*(F7Dg7QwP
z-PE+c!u2;C>QnC<8k3y5HWH7h@&`s-sr<({FABMOHdK+Jr?5gT<hS1&N9^9`uDP$g
z>2tT9tP^-Wq$A_7LZhP;#r)$AaDr8;<SwS<#118Z$(j9Lmr+wqud3AT&d+D3&W^+T
zko_CNB)6Gjk|?SImXE&D@JawIDPNKC$RqthyNVD8HevcZ;CnE~`B>8Qvw?>Ma2d=_
zf(M-)<t{cVnfio+uS8W7N7r6el~lf=DwFL&-7(LKzB+usVEMcva6KrEEnbF5>eE8~
zIa>R?yQxSbfmy^OSg)-2q<*|#i6BOdk4kj?Dw&X$uJWJWu&I?Bnc5kB<tVNkaZ}Y1
z9pA)$<hLraD)c}QCstF3l|u<%ZiC3@`b=df`pK7RFQEx+VpA^+OYoB*iDJ>P*3qbo
zimoF%n)U}6B%?7?FLa5m9M%Yd(PQhF^`e=s&nB;PgafFO2Cv!XQP8+og&(S$;B#M0
ze<?uSz|`%UqRf21Mv{(ju$p%s*35tVad6WU{X~#V)j3PS)%C3ITlCjp`T!c^3}#vP
zZj5rJ(Sk%-jJZ5ksxAit!mD`84HcPBwI#)Y&Wesy=smmqWT~x0J1y3Dl*~ht8OYT#
zc-5aLIqcjW+gAxKpz7%}#y?oo8=dE=(Pb0hZ2lhr13~=0CI@r72dSxG@xGHgHHu26
zMmdi^c0@nMr>S3Z1x0sb;*B~sHjI*F<Y7X#M<A0H#>dw+6_<(i$sSYU9X=c1Gz22z
zF!{%D#a31I;!JyHy{cSGN$EJWa8$~ryj{;su{P4e9b1M21RA5Mcxuw-Lvc34As7c3
zamV$n8-EdLI(k~f_AhT7t|3*1UhUio!=3;qi7TwOo5R*9(s*`duz9l6E$y?&Bys#r
zGz{1$)T#Vy(1vS<sFy7N07HhR4y;|=e^btGG^_hi@LSw7BV-uZf<Gb+ZfKWU_M4`U
z>=3cZ5g}ALi|e<CLF@NxSX}s<QlDaIORB?y{(h5j4anoOLm`52ao8cN_WGr^i#W6K
zRA$Oavm|l6a&8EE2L*UJ`qzCMw{-4fTGq2i3*rX0@pZAc@y3m9tmO)@)okIqQcoFI
z8NvE3c|N7^C*dBi0_gS{W%idWU@My|`DcKj&jQNqO>cq@2oa19mGxbe`WCZ0E|GB!
z+beRhFf5q$UKoBNy*ESfu9}juju8C(#re;!Nv}?yGj>NKs|#Ak;XjQ(;FaIAj-ld&
z@lK93n;9p#id&?YNfvI=LdB#L8%9V<u=#nnC$CY(U`_irT6kl|a(I8?kBGGo4r!|w
zm~Er9i&(UZX&sdzh+2zj<BMQYGYhit4Sz>z;N1^Vv2l3<6(kQXL<Mo*1YqEU(<E1y
zYX1PU55k+<n~hT1#A$kj(isx^#CbEuPBxLZhAV;hf%;;-+Hl0mI=lLuT=dhukH;G?
zf<Lt{hcr7~Q$V)S{9S7~UDokjwx4t`Pu;h?KpUQ;D&OqpsA`|IhNbYMRGUQjt>Nu|
z!^sd(E@jg$WYdW&mc{HS@bo<7jzJj6uh>@j0pn{|O-dgWEY{-UCMx#v?~*hp3hc_m
zc{urkf-%Kuc)!LzA^3mcX{FcYRX_++C?m{#;Z!s%1{tx=+*Wlm=(YRAcSA6<(O=U~
z>+U}-yc_#U{6F!PuKxfG>lRvrt~|twRAxeYDO`sK7&t0A)Y_-Ss3BHpF*s6LlpGQD
z8O?iti@pnd67ipftu>F0{sFbR*PN)lyR)^93y(Hn1njRG+g!9`k_j&3Xl41U$Mp}`
z58+j&b$^5YG4Te4h}6Srs9d(MWJv%6JU6PBED6aWE>VI0A=12wWfbo0&c%&`TR-di
z?0!am-o7Bxd`a*>Q@FR0UhZ3qWR7mTBc5=xDC{=^7d?46AoE|A-X8d!acAHs@LYOi
z!gh5pGfXYpayA1gRF@!woH*;+zkmM#XkXZK#@3z^)#KMBw7k;hh|6(zrG2g`h(ov-
z?Jfn%#?O<Mifj(Rn*1*DFTt;hUKCkxwVw!UmijSp&|lkGzNZ@ubbsvgaWEshG(ZlX
zwfZj%Q^Q9K^?ALW&y&q-)m8nqG<e>-;(ripwykNZT}wT-;OQK#xF+7&+MxY#E8hGs
za(}X|HJKoa_H$(%FubXe5F>G9C{U~R$s}W_HR3vMtETAQE^7-}v`ubEN;%UmW^}q3
z!6I9H83O#k5b>sRE7-h6;=NZ;v=*}XGf&WGgyh_5;^N$e+BSKLszjj=K;&Ro+*7TG
zqZLjoMtt@o>osPo%37m=_=)h(Lh+5Q#m(-iuIRV-QKGr9YgsJjbO&jgJ(1jdf39qC
zfn05$hV|_yLuS)qx`Dn`w^-be7=7{Op(OPAiwykTPj99C3!}@g+ej~baiN#N+Zm2S
zDED*)N`OWQBOUT9o$)@Sr)f6>NtWuzRdP@7beWCJYDXAiQFb}(yq|jX@L7#7;lf&Z
zo^C%4TBGKgSMGextzI?$H2YZ=Nw~momP3!c4{g~Q4ZvZ?TIcj_HYxPww9}87e|GE@
z?ieIdCL7LBc9vtXKHRo5#@^@aSA)Pex?<?QF1N`aDjUdTg}@+v)_gGZ7{(8Ju09L+
zdg|U&;rVtXqYS=beTv)?7bSjR0<!_T1M~K%)Ljn_tv0l1`Nvk!v}wuItz=t?b|}n|
z6iF37fzhzQj&MlI=ZuQM@SAGdKC?cfq{neJsVM9%9GPO<mT+NK9N>;h{L9ew74$cW
zeh>K5K(s@l$7y{ugXB9zXb*fOU?FBb&m8ox5%6w}@x#NnT9wC$A-mHrWYh^sB6!OA
zKmeNp5}_Cmo8$~Sahlz<;?>M*(rIjTZ+EUotfsGNVs7PW7U5-kR7oT%LyhGMGXUMm
zIme}X=YYI@{i&<z`d5m?ejbCvm*Y~3<|z!q#pjg*O6UUlNYe#5V(hr;5D+*Cd`aSq
zpEb3~<hTokIYAVqM{*MZ@Oq4A2ZNl0!s~Y$P2J@7*Rr*=5=5xcEMie`8MniPW<+3w
z76hI>H(*zbio&VI$FFmn2bfNsOGjh&BTVsh-Y3_*J>vfWiW<G8%)S<q#ycpWM~!s*
z8)cEEcFe6GnJ{IRSuoqk&PLkqJQt#PJIC73!!Hl`()L-J-s4znwvOX&c3QuZ(3qPi
z&G`zy-+Yd9#e7?*_`k#d0PuwPhe3inn`^|;CTI~#;4~$zQb?E}z%k*15!)pEz*mPI
zaOvL?ydB{?D_d<c`r6{w#_nYdtom|k;z;C<L>r7@!$wrAwlj=<;qdfn;w#3b3Yu@P
z$omX7XUSGPy7fO&e{4N)d<##2UM|+&Tf2K(i@jFp`4e5tV|$B2Tgr`=M`*)t9EN?o
ze8&~<{{RL)H253hr|rX~{7dlWr#;obhdvu>5wcFnWi0Z~s31gW=8;AvMBNg~%0VN3
z8BRZ+JAaBA<QFpCEdK!7CP?E(mhGo$V{bEZ4aiighFqd!1Ojozcb*yXg@(6p4xRDN
zDDU)nukG(Ikwhslg4RzmX(N_xfg58H7%jQ6$9mzZ!m*`BFmCNBE3VRR`h5GJSB1=_
zChEyqH*@;Y{hIZE40yBS55*4~X!eU~cd4(2<Z&!%9pQv&nNc_dwpK=EIV5fb17B!1
z;7P|g<39EH75@MPb+q_zto%#y=B@DG#5eakPK^vPS=-$CD*BDR!lEtAo=Plgkh-#n
z!m0BKaq^yjpbxX8hzb%0G0!#l_Y>v*!xrhT%koFnVXMY*QiHl8jDk;dih-sj3oz;`
z>~?d6V;d`wFm|3t)K+E3%3E;TkJ7$wa7TKaUgtY|HqgwyHwy3{+FCCYOYo~(xA0V}
zZ>z~;a+Y$kG=U{Bz8h*w0~~uwhy9^m?R?1jiBEBw@z0I7aOvI-y}Y`8k-=qkDPnjV
zVSio+9<|+;E?V^E*{{r1W$w$+`0wLShxMy}_#qaVp!lx(;yp`6@CS#lCzpJY$X>~9
zrSjzoEWTz}3h2@@NPhRqa6gwMy+_tX+;R=DS;SK~BYLES<RABjLE^uvzuN-z>EG~5
z9aBM-)(K_seu-d<BPs(d!qPDwTaC<4Iv=6wU&=3qA@KE|kK)sONCdV<A2Q|uyZpcr
z$crPig+dZ=04LhNvf%}?KbJVJPIc+6mEXwwv*Evmejt2Y{{VyoO!0%w;lB-O9u&IM
zwAHh^mfr5-2#vII&m@te$seB~0R(a@Y(RHmje4Jlehymrf8uwIEj%+E_O^N*o}D$M
zwwKqDT}{3gE*eHGuFdltO7fu~WmhE8@Ymz7fP8nVcx9*7?c&rl-4bg(P8-PIPZsxg
za@zTE0XoJo<|h$gm0+A7UZ(F`@svI=*T3NxwY8ec^{m$7;z`IcD%&Z_Dh3V?d!D>|
z*P}0a+UF$<LrTkQe!t{=52JiI@Q;r4PZ4}t_=?m20ApyP_G{P~-W$b4W}VVqrJ-o<
z<#?fZm*#f^XxY=S{iAF?*Q5Lp)x#vsd*E0tjELdGHk)-kLoQpAJkMPF^IR>L#GeWH
zFX8r^;BOX31^4_c$uB3??m#%Rv9f97(xm&_R$1@Km=F#l3J*b^v*KOcn$N*Mfc_<b
zw09Oy;{6tB3o^Fr9Z3o(E8l27#C6ScR;1LFZ`bsH<aTBgRjGT<_Wd-m`OV>XGiaLA
z%&RAvV;Nz_GV@3E&Q3VbIIp7r0A@XQ<3rYbHR0_eQq?ret#`zKVuduzhqaB-;ZrA`
zBVpzusBN*3L1W0k$ocEQ`i$2;6!AUF4>6j;6*w6L&pM3bj9`#K9S^mAMf);%Bg6hA
z@a4CS{8Onxq}q6ESTo0QHP6{gT--*f97a%~(LP=7Rf}!la@em&F2qWWMN$gwcUL|K
zEyK#CXu-F$>u#s?Z~Fl0ve|yl-Zay+k^P?>x`&G=mgzPbW7~6lLq@VAD?8&GijcTD
z1mIWJ{{Rs!_01FZR`3>&;ajMM{4;nG-YcC(Hkf>qS}>8Lgv1$vT;Oe73j8+xj(=*6
zbK&QKzAWoDR@2}3Ueiat)Z=#CkUTe%T*V=T&WO=8LS&iMyB=~$uh*SF<JZGqi@yoH
zBM*Z0Fv7!H@U5Kow`gr{Vv-Sox+!o<xrpp_+^>(6n((tXD8h4oZ|AxDjuJPiA5?tB
z@Kg3`y73q7bKwR3rmyArnRTdmV_mzR=H!bVI^5gc>G4Bv1%y&=@*QV=@w>V+9KP%>
zJ#+pEiJ^EK;b(-uYJU%WKGUqUeLqY1i{dEl?5vhJ<AT;bE-@TRiT5J~7%ChN;9!Ga
zO86tg^F#Ylct=sRJH*}*)(9hzH)=XyBcLN7cl584KVwaD^?zqi+K<J0DHfME9yamh
zh;Ad!$ATAxG>WVXV_@JmagJ;G?=sFS<7m{KX<tY#i7$VmS}hkt^om$oblOl|{Qm$K
zc6*n>*d($40D?t)Dbw8G{{X@p;Iuj8{dD?%N3Zc?+P_Zj!zY~(&oenA)N@~$x;}$p
zrhmaNJ{tH-PnPFSw}(jZ6}mOMFPaD2w89Xyir|MQ4sntR!3P9>nO?|N?&2>=ANkkA
z=QKU}HP&<e4}S`hk1t{?RLq7}Vu4R@rFoCXZE{@;;V!4E`AK$y;?)dt?!XTw82q4<
zfyfv<*QG|~GJ02t{?ivD{uCy(lCurd+JILX8FSM-SCfaN)kylCS4|!t`#gB3z`iW;
z+_ySCoL2Yd(TR13$|W<-a~x!VMmvH0{+;pcZT*iL?aA|y{!A<3FWBnU?7kyktg6X4
z)7jjx;!Vtevfy9<2Lo}(w|~0)ZzDd6j@ihbHRGSW-~DR(=zFQe^Q*`AsFq8h@RpEr
zLEu&iTXJ$$bN=F=>0J!*s;`ztas2Bf+LCe@ek1<?uT4#v@+1G!{XNm)Lefs)zsjmT
z5AhriUwY~8H22e<IOG^{vx0JP%eZnn@I_&G2S?Kq_fI;+i(w7L&^K2SI8u?jV3N=B
zsq)6qI%c{z)efhu&!{27NXKFf4Wsx+8007b``7YLCZ4UI&@|>(n|e<a3-Zr#g<PI9
z$<958HPzY1nsvHcD`jF_1JjO4Kh)Pdb89`$wP_{@@*`;#yAb3j>NAg}Xia<P>L*Ns
zBO<5GD-3K?)li)0C$0eKImSkO_C-mybrv@h3v(o^%W|v!&ushFipUx{G5yBR;-;y6
zsu|$J51ixhsqKQsW@2-_Ul{BP)^ga*ZZ$^8;#SVzB|i)RDe?mviII*6T3F6vjeR3u
z{RCB&3S%nV_9C$~XtNw*QUl=g{&}mCK@0?OjGiz^=BTdSsxi=tx&-se9$aiu$35!f
zElipy%5Pw}SmL{O50Vl@Mj0KmfI$3BMPqR{+oYM1OEBjgXY>7P?fh{{%Gtpk=(beP
z%Dm&PZ-$@ml4Vp&lH|83_QhpnVY?iTM;$tI`c^I8otOy{g<;vw-hDD_sB+O-8PI2r
zohzNxW|hfOS9W*=anil4ZMkl6VcXRlJ;sf#J;Tc+1>xgwmO~H62EJtdzN4Q{{{Vtg
ze$p_qmHz;WcYY2=L6Jci^f<xxudUspV9wUD7Y7BDlsNUuVAst50Jq?P{{X=$e`z_T
zGPph$m;odCm~0GfC!A;8*Vp)I?`HI(`%C`-Ns;04OKS%&Rr#a%&9nPmv&czdlgF=9
z+P7@{L#x=cG&eHEo}~$2rf^hNUA#$fT6a(Za#OEBPjAMw(l(Qo1p0I9U(st$hvU<P
zQ+&s3WARtTumrZ2=w8HBg0~8?51|eYf0xpUuC!ke+sSmgRgI10YSO#eN8}e6Bj!~3
zNC5H2TH@D8yxd4AtBhkfIQ)fm`fi;Kj8{8k^MBEwa6BA$=l=lJTzJZH_HuSStlEt~
ztIAgBdHZe_&@ssQmy&th8#%|}^shj;@UE2BFul#)p_za!9n@w$pp5Y$1x_>VTq%lG
zvr#bIOo{l6@CRY(gV@)oU0mt=k{o0x3KRe_v;o)JyllS<8jbTG6T>-uEL5hdE7;^@
z@Ep=3Ew0BSI5xL?z#T`*NFDlOxwG)zT_06%5m?z9JMwbZky{w9x#aD+gAxL9)G#?6
zM-|*$*;(D@NMcoN<Y0eZwdp?z^p8HvP>v>dVJhtf&HyX?IXU+}_0v}XqOTTxMEF*U
zccj{8hk!q8-`hXoY*1Nv2jYgm4W+&Sw7R>GQ$jleHCV1+Z?4%C_Rj+!W_S<&3p4v%
z_%cO<;%A5aKjPR-hzkg=G-<+c4jvY}hDPg*#~3FAfnGu3&xalu)+C-U5n07|l^a>t
z<{ildbLrnXuay2Ncy7zXUL~7I)4z3Yw@48S7TS0u0^PC5=DdpVlwI37@leNL5~~`w
zU)OW{4*in9Xc+$hYM+AIU&gB~F5|=TYI9w{Y-g4^T^iDMfsdIV%2mqlPK~sUz#M_~
zpNur?OK*eTCxQ`!Hkoo6k0<UL{KNkMf<@UpKd~Q&9z&h_rnbW;Bm<~PfnTV;FMZz)
zb@UiH)2;x|O!;kIHXc6FIW^Gzdn>QcMx5U5CVp;sPg9xgW3_|lP*~)*Knbr>jk3G5
z!RTw}{{R4n`|Lc2j#HF8a!yWur_#QHbPAhd;Cpwkh{VMEicRdz>sZ8_Hhu2(T2y)N
zCbyds#>`NwjIIZ$ITYPCZH^Ut9M#1G&vw8+IqB|e&YtH~QfPjeWd)tblW75jza-l`
zL!5uIr*BVc?d+Q2=L;;-2Rwsu40A92^&ghw@y&A)tH&>!3HgEGpL*QU?`~tdBIg8j
z2iT0)jf-7P;Ccm-)CcdD-V30ohJs>^>GvdDf8+If#_}CHXwKPTbVXb=WQ>8>uHjj5
zt9gE6<hbMk#%pdSm|>eCvZVeekzPHux;Ii<i>dh<j-qutSrSQI6-W#+HjH%Z(y=uN
zrbR0(WpF>8cKYDcjy$N+U8|fh4d33mV30*1TX@VN@CL?hy??q%1MmX6)HT)WXU*8X
zt;cM(+H0X0jzAY3fm2>tDr}XRafc@v=DlibOQ@_RwYdU9qmA*Y;P(utf(Jv2<7Kha
zZcv0dWe14eNk2f?{&ncrR+5pODf_JRnC+d|j_OMNeZ^BtON6<&Ert%uAOp5Q1b$+=
z3)?$wIX-D#HeT|h0gk!cxfRb_YjCykirkBXBxn6o1{p>jeXvezt`zx|(VLZxxKV<I
zEu4QYwXBDM$6Dg8b-_FnHP{fmVTl0o^7QN8x9n~vkSc{NO70wXq0@-@u5^Fd$$zKZ
z!a(_<kPLPEq*lvYqQ;^!e&9U)1yr-(vau=(GM)(Jj+H&E%`KD?$UbI?I)Az=f^?E*
z%1*|0)N^jibp2`vK&j>_>DIR7h%sTesOl-kBxDQsdsa@GW9K+MXHPQEr^pB0x)1I0
zMIo(=b@PCc#~JJ1wdA!gacZh~N13vHe7&F#`|6u<8$li;QJnrAd8VLk7MYsbY!_|0
zz+#7u!#~fT*1DTp{{R(OS_@4#QJy<;Fk><oj~<02-lTpNj+ZAGE4LM`V{x3udUdTS
z#&FgS#x)-{l2<V$k+1b;O;btJ?zSS!zBro7Wo+$Ivs*AZz&*MSmE35W+?H*=);F}d
zOsh`YH4`LY01{2@Zz%()Ad~M{Hg3%|?9yWmH<XzE>?#-k075NSfKs5a7$-c}yMxZL
zbl1gyT~9X=fuk?8_a21*01|v>r^n^V9+7nuKgv?>O*VD_@&q?=yg9+o`s{YD^TU2R
zGF#kgI_wQ?6JkWli40=_N=q%fO9t$WjjjPw4S5COi8N?jDE;HUea9RT(z)c*w96}p
zxYOW{-boJTcn6Z?;~6apLVp_ij29c#rvCtW1pPGs05i?0lT&NmXW5bJ+HRrY=hQ52
zA-NI8WC<LI<dMi9DLkG9dGEv>Dm_---pb8U<5o*~WDS>%!>h6$G6=`8=Du9lrq!-(
z-bJ{OjlVQ^2^8qTMmB>Yd5RBxk}3D^SUx1a@m{TMXD*ql>RueW@`NIN7WznI3$(c3
zZ+e%IwmHG$u;2k-Nkfh>bu^l5)qj!aJc_JeG+ocBJYiusi9W++bLHOzypB;Ekq7xu
zNxU|ABM1B`d|TjO3N4JQr&z6{Z6R9Onk*LJaKA5JdRNDu8~BUyhvDtSL&d%@gT#7S
zkr)0Zx?90>&Ucr)(<GTV1Q1QA9CLtp>b!URNotxk>^6&Gb*@|9sybX~f-AOwyJKTp
znG)gg$IOv;<O=oPV}z><!b#l0;VVJvjBgEC>$;8ZrFpMiOXk>4ZG<-}5fwHm4Z0>x
z<ep0v$4qmY`E%l*hA%aJZs%3;ABFV$$WWDvcw%U#Mq|hNL@bkia>v)GuVB<aXrG1F
zI-Q`=btKXx)MtFheQ!Ond7Bw5w*od?oPY)^w6@nYzYyzF>4}SpV*T@doq;R6l|JK>
zj@(y;h@HL@vYamOBz!@wd<pm;@p8u3Le%t&h^&KR;>TNx&su@W9Z{}Pt`rsoZ8HuJ
zAaP!M<Dd8>pTkXR(rdqmlF6seW7@yidcD@3v8g!$G~Ga7>7~cf21YmskI{Ww;r^W0
z-)yyW6!JDhyAVSVGnF8(PMEH~I~gX@&9%mIR|Ld)`twT-o7SfN*)&aD6*((d{$YMF
zf59z3Xg>;G$*AahkM^uhhVr~mrMnpzXZMY$=(1f~M!osAKrzz3F!5*X=lex?ZrW`_
z{t)YpSuKz&>K+u-S6ht+c#K1BviVz#{Pw^v_le@avURl7G~#Y8U4ry|#iAsCyqVy4
z^sYO{>EN5F(^B#Fi)nUXQ!kk%ymyZ3N`~^JjboHQ-Q;o&eI5^tYeVBno=t3)65B)g
znb$mjf8om`;lCMcm)a%l=V-9j*5gZ+#(rfnT}2GCbqlx?&wSTw;SUo0F|@Tdx~GSA
z3yB!<HLdi!Lv$uK20yM?VAu8`;}6-#;UA9lD~mRJ$TZbmmln4(!>QU14&B!Jg54PK
zdMtZE>0h2+F#iC8O8(B8^2j^~r|A~AClW^51;(S{iHJDM$rY@Z7EZv91KR=HBbxdQ
zCmP}8tyMJpqtBj6Rx90iKM5o8zOQwzN2hpWP&U?4NV$t%p5J;iH~>UZ6^bSaIV|J!
zuVe8Ch?l{7V&8a<O)m08c5@|-(w*laL0BhP<ZO(Sv@q@4HT7r3U-%>c0L6<7nXbMb
z_@7;#DAch{XHK-%VHp|uUrLtNeoqCS2Rvl=uYkNo`yl*%@Ns)x8$r>$LnK8;-wf+8
z3x+(gFK4JFoPm#0s$@CHIqP3Vh0o|zx3a7E{{X=}df8;-cQ_qNUi={O*Md>4E)_K`
zGDZa^1r}>F^KJnAp{<)CfIOoH{u5j^$HLD9+^}65X(LFBd148{+Kzs7Q_0#+GClag
zt}6ck$KM$K6B~;Uh+1XuhGBN*U2jFYg57`s5$BkrwvljqmIs`1T#ldPZ7Wo~{{V!7
zd&ksmWpEX=HiRb7bHXYjgX&i-J?q|~ijq&6T^>bTzMP%bkI?scZG1zbTHQ6=hfuke
zD~Kh3y2U1tFe}qx9WjEwg1pbeHhwCy*Y12p;tM-VEw>?I2<B-Bb!ef>0le(sxXP%`
z2N^Z9seDY*H0wxh{3!Z}xRHcqH8B#vJLAo7-e=I@4!qZ;X{W`ywt)A#lr}RXBRMH|
z2bxzsHWCTr(379kl}b`q*f986QF3v!ZCLq};tz}UOB=}M@eHs<Zv^2Zl*Ey^cU8z>
z2F7kMIQypovJHFYgW#)6uYh{j?ICBWTCni`x1?zBHN<NqFFv9q7eV8ZBn9Jv*ULsz
z^R{>(5yWdR;Jrn@$$fEcIf?m>XI3$|7|7kw^MFC(sh<j4+NH(5lc-)=+1}4@adT%4
z!~K$ZZIAAyc!^{(AS4GMwm9eobx#JWxXLePzJ1ZtPa5G)RHdcQ+fVo*Jocx;e-!4i
zhsw20Pfvyr`79$4yQtjcxgRn6#GTp6CpG;BXp?TUxnOzfJ&w~~&;J1Y5ruBF<oKDU
zHM$sPZ94E=@53uGo+Y*sb_gRbU%6~xV!wN|8QI~TP>zEfcOcjEw}@)ly<eC9l8?~1
zfBnuc`rN*{ozx(LRfl|m&*M-@t`8}e;u4rY!^r%q4>Nbyxvaa{;|S!Rek<b~QSW;)
zo}+W8yrqLGoQ!rnewFgy?L#acAox|{p9$(n&mG>8sYFV)-;u1QEz0sSfzKGPPw~#F
ziK4XLVQEJV{pSAY_pi<m+W!FKSBHKbd>!%C--xwH#mo3_SBl=;%^XrqHO;HR6fuby
z7I_`80_2{6SHF>9rCSjQ#a~tVoS3SrFlzk{)ArrB(JjB=mzu7eAreDvpy&}oCMHrO
zS#1Kg=?gP3C+`!x-oKfz0BAz<L-AIrGe+-ibEn#qBLG!i-r`e^G6BFR)UUOE*Z$f6
z03E&`c$4-+)Vw3`+RMZmv^Vf*sdn*cSFma7u)H!qm2-0nLp9It_N*4hNedoE0VDA*
z;pfCXb|^JZ4_LF!qw3cQB$gA$Zgx&#@<htb8#sNK{xG;408117Wkz1(f7e6#*F3^|
zTJgH*{__Occ!BhtPfpcspHP(C+QkY=P`jfU8I@d?Srd){BLl86U51&Y_^ZJ>rjhW^
z;r6+GrCV4}Jh!c4jcmD3vaRgJ3WYI7tX3f^_FcH#3Fj|$s|^cCzPIq*!|A$@pKmfr
zEM!I&B6ou<VUbzGaliy*bmqPP07miJ>YB#2@k7OSHdoq~w{NIk9aW^f)W)4C@*B(+
z(3t+yEU_lkX>w4mB8-AT)|b2QpEHBNZ%$8J9~gXM)@*g{RzI_g3wsG+idYAj7FLE?
zB=U0(S)N5gHw^3!Nf_<=A^St>+GFTG8Srhq(WaxN__qH3O90Acg3nUWQgbV+oCIs7
zDZB2OK2gpq<sTFLFYxX6hxALWLihV7`deFDi)-1f(p@W4jhUodcS!L*n|8_%l3qU|
zO~D9P+mCbcCx(0}XYmhS@#n>9Z==7|=3Nfj7-3&BTRlG2C%AQ1kVH&jf~<rv^KiRH
zO9x(8YD>)Z^86c6oM+VeJN9<?IpTkc_IFxz2>NE1s|#CmsXFeCKeNviw+Nsgnm~m@
zsTeHa6T?^6`WJw_A9?Zr0K>lyyhWkOp!jo4)kdFbqg*ndv`q!ReECY25<9~S%EXey
zHr70lFu!Wgg_i#SvG;{MG4R8}dQ0hkD$)Ekrt2D~h|7U@ajI&UahWYtC@865iy9Rm
z?r8?$^5wka_HOYPiF`@%yWvgminR&#8>@@$Uig`SExX8)HFjVIb00yB1>tZwJv64;
zZEg6TeiI1{Je4-R<!koW{t5d5@F!02<evh5Blts9h7{88wEqAR#2^u--ICj0V`4h8
z9Bc#zQ;Y-Jy<_&N_&K3ydSAoei@pg{XD)%M=u%zj_V+T_eXlS97RR<KV<nR^C>tD{
z@JnaGejWI#UkQH6KM{Oes=@Yyr)hVW;tOM!XyjYin6H>r7ue+B;2d#Zpg*)Oo1&c`
z!nzK>9Cp%b`p%VTsW4ecbh4gAPBN^>$`7VSdBu2``Q1wUf51OMz(K1?9p{3gzVT=6
zz3}_u?v;Gcp?|`@)KWPA0C%_jJ5sY`AbDlU{n*J5@{xcrPJT%Jlss~pFYGz{U28i0
zZEL4#-YocsG*?4uBsiSO@~&Uyewo2J7#_bse#ScI_UDZ}KjB&BQGMa>3tZSc23Bq9
zs(>6RIoqCj1A*yZ6#Nm<@8A9i&HG1bJ|~^$x?7)!Qq4Z*1?IMvR%iJfXLHBM+*I-o
z;lca@SanO<QJc|9nqHjJcl*CH^vG9oN=bBQ-@Y~Yo8i9({{X=@J{Ne4#wc{fx^IV;
z?+citb#~PB?2J6SFsmCoVaW&y?O&(&pf&XJFGh0SnFsW*&tHw+7|``U**D?mhII%r
zX9l(K_sWe4Of*`ioKqO=4{nCPKqb7L9lGwx{6=fz^Jf<YDDTZL(DrDjt0eN|=-4^#
z4SfFq`%~RVW&1yC6Fv?uEx2r8lEeUaao5z>&~Q#0jsf=KypQAjT0O_YE6WXLXM#Dd
zt=2b;9m_CgXwLz-;PnJolR`fFI-{ZSckE^?SH=2)u}~N65)~|0dv1|3#48X1!5nds
z#%t~$7y$Y@u7BmcKl&K2oIhtD1ls7@?e~am^+dlC+j%BEs2v-2T(;e<*+2z8hQ5;V
za)G5p%06Rr2>$@b>**Y>bICq*Y2FR753UVlg&*F<bT@FU=m6uMF<FMuLC4Mc{{Z!=
z*_kGP|I_^(({)6G-|hPB{%y>XJT~wy2;GdHM-0dKn4Bo->s<wv^}VgYiKO#dRUr|1
z3_$_hoODz2{(M)_{{RiV8}N_BzXhX-G_5*M5!-3<U22-F279YZ4TYmguHsvhGegE&
z-YHpI?}DKLZ!YnN!%v9c3R^_D@!p$baUJ}V*~52dKHbk2TV@?XsoFQ7C+3Xg9<}_0
z@${<7Nodn*$L{oMrgK~GE%jvCJ3E+FLgz84EKcI5xF7+~x2<%RQU3sEsf_>$xRQF7
zX6i}mN&f)r4l9xH%<<|zBGz?Fm}QR8Ngb`Q2qZt~!Gx?zvH4m@V7MQ`bIo*`oced!
zm>a0jsn5*Y4;-Et59e4^XH;Ukn#puym&*W>K_dY49e<w{uWF}rO)6lbH$9G2*CFA_
zP4JTTX?OXEGO9rlf%jLA{m;F1*7rVQva4^(u*cM5v7W-^SJ2X4L`tV0yF!2Okyeu2
zh<wH9+}1?50z2KUjlM!>p5Rkpb}AV+1&{{8^{hfsX3Xy_IAT6tGDT`6YTIPV2h+AQ
z*0EnwTQ8mB^A{i=Z+hvVDJyJt7(GAF6;VblX>u#IQxcWxdQ{p}ThxZ*1Fz#$uT|rN
zZb2Eyt$i#HE1KU658ftCNA5FG;z4N94qF5R?_4GBl#-wA1#BE~&l#@n@UlQAhz<$d
zGupiF36k#CSAkhpGmI0Q_u{>*cfxT{TC*Lt85%CRP#AqiKh7)WANVLmsIdP4f=2$)
zYaT)m4zdsX>2f*x*VH$65Kkg3VEllRd)Ld~@KKAEPxvH9?GF)c#k2zCo)66=YB=`A
zeSd||{uU|Uw7>M0c-&cksLR!UX#OkgwM)BV>nKLr#FE7489o01&MT>dT#%xNjc~jI
z4lsRwm5FaPw6Yl11ahH|%so$joxjd%SG$23t!^z!FdxH{*Xldh^pk_!{AQ*3wK~f!
zQY)k~IuI8m?IFk1;O8HOb~-)Gb4hlHL1edJcJw=jI{t>dm+hK(BHlG@xX$+IpmjZe
zrFFgo)NL+xTl+gan4z<9j@&ejxNbi|j{SRAE;b9;$@v~mb0-`u+U#juL}G>#GQ`Uk
z21ZET&;J0bwY5zxMa$fyZY)nAVD#ucsympzTUB7c>mnU-fKN_3=DC}#UTa-m<vho2
zuIP7s%fZKPgZWpJlPzSAnBZwXdY>a<h26O;y|KrkALq4u*TA_L>AIwhLECVObHUG+
z4^K~8@Vk51WdPjqxNv%}zE5iUm*8X;lW3Zz6nwWy_>U+MYt+S3wKmVusa3l^miT`H
z-b*YXZ3!9Aq38P7#-FrQOK;<Zw?XoosY7wc41{*{uev@R+lY0Cwqf$g86<u^e_HsD
z_K^%eBRs0VDZG;h)Txb6^4*W{ub9Lu-5xI%NBxriX#S2r;E^`-C+tO_ODij@>iX$S
z9PLr4NTGiWSL|2AYj|%j?jAwA$&4HxLEd(dLE!OUjsF1fNKF3#!wu+atPb68!~=tz
z5A7*`r{!O=9}3@W_vG~vr~ZU%Jf?(nk3;OTs;*cnQvT}vkI(-Aj~){6_kzAZU1&ZT
zwiecMM-|7EpluB*Ze?HgLFwt!wNqFa+l=6Y&%Jh^wB%xMj~CaZ$i79jtb2rI*O-Ah
zE6B!sisE$3+c}{S!*d*x5^%Wyf&S^iug){nqll=YtdnQx_y*l5x7iX|M}g-9$sH>~
z-A|lKp1o>y(dJBC1Ph*{k&u5%V2#p7UYR-lYv(FdUC%}e#=J00_!#+HJdU;3Xqt3!
z{L?n#d!K5<vRTkZ@&!5X_5M}UTEcd-zZ*^f>s}rvuS0luIvAccO@MS9esyvwS^ofc
zj04d3sy1J_Eb0pvQ@8wT?VcID#_o9b?OZIhyP9_xm#-LJO;eK)pkbW#01i!A^2C9G
z$r;5~ynXJGAlfiF?lIc5r7JRJ9S=cp1O*si6wVJL?&RjYR%kT#SCocW`T1Aho-<zA
zbenCOLc|jZ8TTv4UwZNNi6oEgZllcGo_&9<dpOx7(m8PbPcznyu)#-oz!)qUlNda5
z2*r4J#jlDwFT$S={{X^e;&i#5($3-t<&p(iB@1;Rfj|VN;2DD+bAjCPUqN`P*2-ND
z=Go3k!8pbS)1ONG%>Mv_f_TP1g`cxGi2QLKyq97--4O&xS2>$fh5!L_2Ui5=wR_nG
z2-m3!Pph%bkF4pz$sa&?Z}yA$5#o`HFB4nYv+!foBa+vX+jNVt{{Y`r@6h~1@K=YU
zuxqR2x|2{>@&%Km>SK=^n<20O$Q^6>n)rSDOL$vfQxA!BnRJVlByH3h-ZFk|ge%1(
zBM^G+WA9&F{6F}MY2bP8o5J^3dMjTAE@4>aid9Zm{cLif#(3I6>&<<>W56yq_EKs2
zpF4-*NWYDJ$M5Ea;{N~$>T<@`_vo+2R$RuzKFkJx0&Aht^wDvpTFVm&6vVuzAQAM<
zeoJ^i_MY)gm`}DgkFVQ>7>4TJOF2m#b2Ym<bDn>5kEMIYllwvVTT+EDB=F9wq+IRD
zlS{j{x`3SaQr7c-<EFkN7s8p1JNt@D$^QVE?@`Y1(^lrO_oTM6!SXmiUcKtOET9Ge
z9Gv67<zF*s{{SAmJ93fQ+4#yUXFu}KT8Zs2NATu!QTT}n_pe@u#eOxG!aYU}Hp^MI
zlNg^&xmlEtsxz-YTJWl2F%WjCO|O$Z8hDCw+DPi8n9q3(0Fc5ty}t8CD$LO_UAg&&
zMo+zP4e=AhF<g1N?XBjW<;GOA#$0YJ81k9pk4)D=r+B-<y4w%zJzCn~-;o(`j^4o=
z2C#<un#nsFmxW+#xFBuLM@ohpq=Ee6cu~0Xi~-LzR_|64FOeuzf4VcDTy?0gVPCR6
ztYkAuwlGExJjM!n`ewUf8<<K~HnhiUeJ0q<2J;wp{{VVJy!SoLbWt={7+?VeW7t<M
zeQ_Hdv2dXD_7wYRSVy~dG1CUO_C^j*spxHN&7)hxG0O>Ck?FUQ{HvI{w`+OJqY@aA
z&u%#tw6{*W9ifw!%N(9hPg>{huMCm|9S%)q(Mn3?Th%fmGd4lU#YY5LhBGk8jWT|s
zCgz^t1O-kQ=jbbL&INrwBaO~?1}E2H7_NDHr%WfI;{GqvZLf53a(+gQmA(D{07{hU
zYkA>kiUPi9ggS@haNk4Px}9z<))QGyfTs)f1pfd!r>8^Y{{W+o6(TA)-~us<?Zeg3
za*ee(`@J7qe+a{<d8Xk7ypotC9%5u}A%e-hGT!T68KUUgELTZ<+9KLIF6MnEd34#q
zI62>EBx-r;trICdL9ey$;8*a=!3Ynw)Z-oSn6H^*vsaM1xlDiv9mRVptmE*=;c-pf
zjXo>*hi4~~;SF+I?V*2htH*C}-!^cfSk}@)M?APcje9?ab-h<vv`O__Xsz#KUoGs?
zSmBONgh-Olux}?L%ioWB`Q})Kmx>}W^Y)0!^~h$8vN7qEV_ob}$1)wvS3N?W2>dF(
zxmrH+)fu`FmWx9F0EqRE6vKQq8REau?W5klRnng=*E|s-hJ@#@GH^5RUQyv|KN9Jd
z5$IM}zOtI`H&l6%k@-9hPQb(xNB|D}SFc!I>RLo!@g=x;7>p4cvTpwXduagvAk|y#
zZ|w68S5ngLFRvz&IG*Ihzi23U{{UK^T)!`GpFZ^IX3$Rc6GY1b-po8pZSb>Rg3j{q
zQn=IgX%5KWOf$8@N)PV@W(6!$AcMPfWOG?I9u$X0d%N9VUbxmY##qIoUEEIQ7aO;S
zgtUCKa6UjW!OwWCt|QTPDD@2*_f*o(7%+->?-jvdMpFJcT|mc0oL5z=YPzS2?Q{L7
zrAsV1bdOTAdt-5qku>OMjx6v)qb?6Sal!WKW|SwSW%uZC)WOa>qEX_VM#|gI(#t^&
z?5dH4UBM6lIBap;el_PG7?Z_*Gw_G}A>InJv6|Qv^90tATr`9*03>e8r0wAEE9+2c
zo+9|K;rClzN5Xo%x@;kkKAbIet77}O#J18Kl~BFf9zAQgweghtq|l3v8faycD7Mo)
zDKix~&y^!2ybKe7!~!_Ybi#Ea?u?~ME$VzCx>tiVPZH1JUlP8fqP)RM*x56|@(e7D
zu)E1_6druFM&SK3;##llk^3)vVevaf;A<T>QomOs=Kf7FEag^Vg?aC^`7POx_g~3l
zz~jAsn)u_v1L7<Sy3d4K?GuQaQX-H@yfOuI9NSoQAmIDgop?jxj)~!m?Jn~`w0#C!
z)}Aq@p^$ln26woToJKZ`sRep~a!xDT!)A3U#_(-6d9|=q+t~cA_`UxC1eEa_cyaar
z003(GsZSxyQR%mk>K3n@k|r188?_%V9!<d~jxtStfB4V#3HaUc;(sFPwCzeh8c8oB
zy3r(3aB&)3EzPXQ1Z0b)#})lEc<aC)7CcdKx*vk|8N4|Y#7f>k0h$S;ZaLUPESV(Z
zI0K$YuUznV!%LqJm5WW))us@g=5poT+Xg~hmOnlLC$Do}{sW3JaE+V4uk~|+wo^sx
zvp<jz5Bwhep!^N3HJmX);m0tSS#{ZMe$HW1xd}bGP6!*h!D0tq0TuO6!r$0N^WwCx
zed3Rbx?;xc8d$tBZ4A@KPeu~R-dh4V<^npNPBHyD_+Q~qh$7T~;V{%}G|BIZv}0^(
zaL9)s>~HjTLRYQ{KDn<r@yEeGhB}{vrqFy{;AsBNZ=X?uTYomv>MOZdX_6_5D@W9a
z0&=8u1Xrr~ixDWd7s~v<;M~GFeFXJaK5G4vz5@Iq{h0LqM#sR~mZ^JrtfjcrX4Pel
zo<_Ibu%vNC6iN5nI~Sh$BEJ6c{<i|#&LD9zlfhGw#(4ZI^QPzacfX45CHNoXFA{iK
zXyuRXI##yhSg=^wk2TVHMbw+N<i?(Arg$ZKS7+k+KWI;a-W1e)Z{e$rAIJJGksqIY
zEdyz{%Nk>GSe5QlM;X9X37>uid?sm@&k;9PQoNsY=x~^dP=_MXc0TO5)}b*N_TiXg
zAoe}$ox0TRA%UJ*6@0#1C$>1RoO~za?~OXfg>kHS!{JAYd^jxE&6Hl-MRZJ9$dOXU
zS*F@S=wl8$pgdQb+y2yl2t0DJ#o^6=Pm<~1{yoLaWzN%r3{Fx&eTvtB@_NvI@;yaf
zoR_-Jui|#Od#>qM4Hq(7@_`9bRYAzl7&y-+znV|kPWikS`$=ftF7WNWhN-NLerrn|
zF}_KNxtNGj=I&)^tnK58Lp+Xm959U}nUzoUC#d-2Mr}^+-%wq<;dWNWcPT^2_xAq)
z8vb*B5qxR!2f-f}T6o&fMXKphY7<^b6zWRc$Y;*<4xF$6DJ`9u#?i%orQzK-A8MbM
z>U>`kJ!5|}`YZ82fG>2#)jltLVbsrw{9Lv-enSLh({zXpynw-^TDfm1Fh9Mza@RK*
z`JG}B!yocj@RAKJJSPPD+#XbEYi|dZBsq-vQ57KL=D{0!VCOaZWAQKk3RUBu7TV9H
z{5bH9zl9>YjpCN(9YRS9EAZ>~FCbd{%1AB_@Oe@VetLKk&Kuk5Z0CU<+0r=FZv<~s
zfz;<adVMSQEIqkeS|6L^p?N1AY+-no?(k|-TUlC3EHb2VeUbvw7u-o=3a0EQIBXA7
zitBte;eQrhMLarPvKU|`OuuQ48;BJ_B#noA4C6aaLBPj6dY_Jd9&27CNzR?9Hkl->
zzi5s)!ij>ZP$b$F$nS#NN#u(1hWI;iZEJ6FsH8VCSvFvFW`*Je<%u{W1atn^df7gQ
z#={L&R+O4B{3D_G)5ZQUhSycq;4#^uyJ+<V`*qd5y`eIh3c}uM#-t1vkO0I0q?-57
z0)EgM-mRb+HGc$Yx}J~VOW*iN?(T^f7pj+fkekYbdygz#k>vfE18zm~$>3K7{iET(
zg*H0hgmrjEu^zpoNN;W}VmT6k-(=I{x!Q{)4CF~W9FSLO%C{aBr6!xITi9Pq1XoKG
zyCF@)%F_9643fXjQJ0}q2u9*CI@f(GNjvn|^kBV|eeS2#{{XeW#f^94et|T<5w*BR
zwXMrOx2L`A)`<j`SNCvSM-+D!rJ~uJcU9cmmmY?b_G<9nvt#kM;kCu(vGVP7`?Prj
zZwWV&*;BJ}4!jcI?$^PId*Y86YZqQD@q(MHyQ{x4Tjh!vB6*X707Z%bpeO|+QMVk8
z#FO@y!7qni8`b=8pxj?ir)n0-<_o(!Mlu$}Qk7Ye3b=B1$Q!DW$E{zp<c{Y)9@vVm
zNn7<k-|$z9ekjBHIs9Yr%sL&t?v&mizIg8LXH<zHcy5&%HC1CNT(J?7x!`XZ<MnID
zy0?qp!`~0}UlQBf+UoLa_H8A-w9Ro6$hv*$Bh6%qn2<8xAOPeH;1l^9<F5?peh~16
zv!UpIHP?I-rE2zb>G5f>#M-=CjMBjDZGO)Aof1SwQRL2&lk&tjum`n+_ObZc;x7+)
z1I4~1o5Nb83Ex`O?XB*<$*fo^+uT^dbvqYnR?#GqM)Kth=XaK}#~$`6;o~WLT2Gbl
zf5`i6Elxy}KR|zBW`^7L<M@?fBoMIEv^^qtWmE!HTir_arcKA4pSw&b$4vb^hv6m3
zxBmcwH2%?g?d`#m3+a9&n2<;JJj<Jyz{=#d_iUCp3J+x&tUuW+_Kfg{z#oo2DEQs`
zO6Z!uhdedo?K;y<veo8;`$7hrO1Zdc(pA&U?Fu7Y5Ysv=Ss-VnWqb(nm&3pKaxcdJ
z00-$hwS-!ouAAeT&Y2y=0%)MUxtdF2Ay?nA;dClO<F{)3Yl-sOp4xRHz1z}P^Gn|Q
zp8o)e_c#jibd+zcq<*^mR<qTuJ_CF$(1Zt8yPIF|L^CoN?br8LHuF5YT#y3!WbFi#
z+a|umxGJ(0iN5b053gUwzH0IOHu{HyJ{Ci3GDwnmi^By<usKwLr389|vxCsr(R19~
z!!cHffPF{uugkIA%_O_Y{zuf%cUl^OFb>nn8Rouy{i(0o!{BAb$`w``g{p>gfEbA|
zN$p<Y7NU&%4=3Kfe*LSi5-)-hO(|tm)oi3C2?PPWdK`Um#d1-m`PI(0&zrwvh^^n^
zR;4e<Wlb=%6msJYG7Mz9b<TQzRrhC$f;Fw8jtRVobM>!}{{UoEl7ANJH&Yfb{hhSu
z&0;@%nHiK1{B#9B!;m=o<HnK%x6|@@7qQ@eHSfDUj%nRa%<J~~cuz`%o=sf1V7q}I
zbdg!!Y<<r^jdUJS|J44BJ|*}MRrn9^6GFN8Q!C!-`ZeXWb`}V!47M70A`6R2;jxJx
zOEBP@fV-7Q-+%#X@qJUp{y5US9@-Cpd?Ovsu|BhJcV^CrAX}YEIbx4wS3hY*hTZ(>
zAIxan!Wg=)!YkSSCHQ~h&&3ZB=^6~0Vz-O*gqu{+F72-&vb(o{qT9<A%#kcEv0gKl
zKWAAT2obt&$*;`69DGpmzM&kRAMuBZt*i}<v+CN$pQK)_+LZUum$H&8nH86ECA@4l
z&Zcr4`Nwe#e}Hn8imgT!lvgs|`@3!D_@A^wrInt&f2$u&Ykv&9dEk2|)OCF&Y%L7!
z7nyIdt<}lg7cny`0!~yDj1i8)yz=@vwXIUe!-nJc7anAiBXnUF-<Lf`OA7ms;jf7_
z%{Sns--3J~ZuLz!!|?f+vg-mA`z@r1FC(@{Hlp1{AU;uI(J7GvCeedm73$jdi{kHz
zdd{t&*xK0J+gn=NkFkeKcagVEEU`r)Ee_yg4;JUx%1B}eucpc~PpnF$B^IR(^zZ)w
z4tf+Z4r<a`kj13^k~R^>iWlzrV`#_Wj%wwCT^Zd`r3F_YZVU(>#2TaLEsDME>lBO-
z7XvvYfsQL)3&Ue_Sd4}k$gg2S`W-jY#LGSP$Ii0GSp2(XjHwv+Mj86zx{DcZc1Ih)
z3ji`>Y>%h}3g;c*mE)A41wp|BrD$6SuDrOVRv@<ELB`XL^@ONCgvxym+%>Vt!5uS|
ztGPf%*HP`99-j5ctatWy>kKdEK6<w}2l3{*%W`Cd3zbsX!S6(AobF`z5nMf)j3IEq
z;fEk`*Xd5u*{zvkm=lru)?^w^o|2i`BNOK&#>|AD_z426+uvIO^1BAkK4F^d!_oJX
zGpRi+j*jYR&AY4M3=@-Fbgp5tDnf!f5#G12E`nQ_<|^HIIT;wPV(INJqVi;hRmi|G
zGN1f(;PYOFE*#M@!|u_{-3isi$~O*xduKSWn}6V=@U74M5>NJrW&~%$<d0mes7LF?
zeNlaFW%gaM%O$(6aAt|e>H!~)abG_E-pi)k{{X=;{xn!f(cHr|rKC~?A(X6_PzF}|
zgUB`Yei%Dv6z|$!`b#`cEO)@m)<61EKZwl*&)e84FbZ2chaR6!_1fxJ6F-pvI0W?X
z$La^IeNW<Fh38f9TkC!ru}LK|PO7Lm1~*LO{gMd;emvLA@8OMq{t{^XH>z97XK*(L
zj&)>o{oj}aD}Y8<1RQb*JqXYAl?+rWE1!_!C^aL*ZPrVzUUZG}h;t+3sbY5H@c#ho
z*Q)$EjTchAxm<|S)<_WZk{N+!KZ=1*@W;csCh$JB;_Iu0MAN2d21nj8V{sVc?=Ttf
zO!#+mzV}cp%-awI+<SA+vClsIR#}YiMs_}bKZ}kIrTZOg7i&9L9G@~Trv&=eey<jf
zcc@4~K*mBGp&8)wyXt$I(1!-vz%yX9u@Xo*>)RFbLGjhyr;T-Jbut(xp>(Mr7&}&0
zRaVDr4z=ZEbmb>DkCEVdytAmEk@R_r^GpUnM6mA3$KJ=f^slY|0A}lzmqOK=6VmQ6
zhU5NOgZlf|$W|JuyRli|DpkLTumO4uoM%4WGhc4}0q}mQqG-2~T-r}&FD@c6$#9IT
zF6i^UTNohp7~_iW#z}Ho=jqgGv+Mr=0Pby8L;wIIKD}|%C$Q^Z2>#O&L;nB?*pF^Z
zSC=Kp{{XJ5w;x|>`?KNN$sVP56~+=s<3B4LF~=Nw`t`5R{{Y%T>K6E+aT<e|?<Wqu
zxgdehu&<k_x}G-|%`77INA!3900fC)59~*zoD>bN>+OOuz|<Xc_>r3ZiuhG2d#ylc
zk0}TKK5Oy|{s~e_e#0IZXTU9}YfZ=fgk~Sozgd0~+%iw76W7X2eK#80E{&W|t;yqT
z9XR%i{EvwL0BK!j_Rsc;)u9p*50!2Tjs`rH!Q-jTP_ep-?jJ5vu0Y{jZvJ%-?K5);
z{h{@vIQy{MFXaLp)*gW=HiA|Arx-Q)hY-j8qNl6;&(X5k{_ZQu9sE<qtgyoq#yA;*
zM~@$XJAX>jjwUxH&D4Ye(rA)J&($_J>s-aO$Zk`21ozG>O>bl~gplJW88z|sVPn}&
z=Tf&4P4dYdyyJj;xtbRr@EH`0{{X<Nde>050JX$75aS$_^9Mfw9zo&0?L=SsS1TE`
zc#Kb$a(|Utw<@k4E-}XhgO9?zn$WvCVFhgt=F?Jw=5ZC3(lH0_?h4<CY#Q1LG->8-
zI6QxoTx3&=sM-t1^Aw|CJ`X@odX~^Z0_?O#h@vK07>tsDo->2_R|J)w=8{Klx00f;
zJa?)x+~pYL1J^ZLM!OIrH04Pj^3g;804yKYnCQ$ECK10QCNjuz?hfJl*3|bQqtX0L
zJddM9#~B7N*zd<`;ABB8!s8&7UAY}_3F}=JqdQ({!rD;D<q%hl^x$NJSVk3&F|m^@
za=@@(=U$#RT+JNNR?y*mQ)dkJQ^4hRu^Bzj{{X7L9e?1lx~GLSPuPE4@Mf*6+C{DS
zlKVqVCr)Pq>g8=UI4&+8G|o!L6mHCT00ZBO{gl_@m`xi;3pySN1CPvC;2-=J7s48+
zi+(EnIMZxmEduG+5X#J(;#ZpDHBIMmE5Tw84@_~!e#3#)@wD6N?|s^yMt5(k%Kdcv
z&*q2wKJLOJ9p$(PtQ?m+fNyQyy}<sJv8VW=`%Jo#bQ`;kGB~;|q|!iuvB@kVDx~MT
z1L<E}pN5M+i0-soD|>mq&v4euEHj8hlr5G4zzVohPEX1^*8!>cN5e8mBxz<+@-#|h
zj5KACkW?^HxNt~2xdR~Mn*NH0YZ+-cpNm%E+Kc#AKd-!@;eXm&<7b2!UejF~v`PRF
z>TxB^VONeCKPq5x(3uauYu@}n`+odSu+#_IbX!-pWW=%CTuy|r=*lJ%fsgLw{cGl{
zZ-#nSyLzx_Z)-6M%%&*_Q@11*8DI~-Yt8Rt(ClZD8=0lCb&#Vxt0Jc0afKulIl;jl
zb6U9J>geKgO9PluR)oJF^FLN}5BMn-k`$j7X_vM*d=D)|=tt2Uk@VU4*Rp6IwlD1I
ze|R;kZxBbK-E?;)?B>rO-4V#Z9yfaTuf(k{OZ$9&Tso8&I0Tl54t`VoN*PZb2_5@Y
zW?TIojM7CXnHv(jMmk`tVB?_~!Q-`KJeGvCvC)Ojaj<r-wCaCMo(%o3JXPX*P(B@e
zPfPn4hS!QqsPCg0`LQ6KU58$Umb*Kji#{~gVi#BUI(*j=?R2=ejKopVgDa>;*^o!3
z52b%CFnn6^WtOOQD=l*4O}O68z8Cv3V#g<XugNDl#^pG#sD23k&|en(L*wle!gqR<
z8kL5pcNL+T;aIM7Bl7-bxk%e+$N{51=hx?RZV;u)=gOVF^XM}EE{vwBMYH-^U)#UL
zdVGq$F!27Jsk^bsvU#oC_a^|%0nfH8=#PV+v}cF@Hs2+dm!w~5ZETNx%`}m+H<H2~
zh{=ZBuP7&Sfr|W-@LriOi2R0oSrRFMeUFr9T<r%Rc;xb>x{Mx``XBo<cvDR96NZ7q
zO9hSWZdm-y=3T)dC$S>|ax3$U(<Gq^QmINdX#EQZjhvcNXWr6DFl<G1*+28uL;nCp
zKdnOAmZ@!pF+n*00H$)7+v~PLkNkSDwB2Sag^|PW3foD~wLbd(0RI5H!6atBUKIPI
z)st2`iF{HMNrf(!NEde-mv#;h@gZT4dd#%eR{COW<VktpD+VX<2Q|ywTnKciWryWr
z-9h!vX)LdjL%wxMM_-viJo+BLTDf82VL_wNzSVMv5=219)1`E}Rm1&(V<+az_5T2J
zxES>dSW!$(Dja{yCnSI0Es^?HTVZn~kfhK|jyXGIOlKn;lp`ONc(|yfj+$hb>W0CD
zqbIM>)^)TJM{e>1fXG4j6|+9+ZO@r+k^cZp+%Wdwg*6(8)d~_oKBN5q06NDE{o<-h
z>c-HuNNhw3cvzKBzR}Hmy>V-CV=F>q$OPes3Nz2sj+ON^7ZFV=`D_>faxys_^{)}v
zwDSe7^(O@F+x6*>TKXPjq>eP1;+`r*OM5$uQRTE(3zl9EA1Z65wZCG(DfIkD*0OcI
zEZk|=5XZx+?p@tCA>2AsZ5JqvqXdD)deWktEO5@FQaa?lLd6DDf_n6*HTi9hkLSz=
z7HCLe!OxhZuh5*<3rvDWj#kDA2B_<IAMqo&P<~K10D5IeBm8TcST!eOSmK&J0^-iz
zRAnD891+^NnY61g%Or%iY$+o=_3hH7vA+!hJD<Lw{wLn2cM@Q)Zkg>|Q^F+mHdvQq
zBT}?&Hre$ZILMMjrT2sLE(Ul#e_FOYW#TPs!;xtk>y1{%NWaux#+NDcE*l<tzS48p
ziicU2Xf%7QWrIf92d7T7mhiILMq2>_jCbfitq`R+zGyoQ)lFVV&(NT63+eD^x*e>x
zmQVr}V!F5uj=5$tK2N4orykW(;e26lc$$xayiY!faKsy%eM;3eOF5VhTkpXvWPk_C
zIO~p0b+AQmATp=kD~_EgXjOMKfMdU<dQ>rW<JSJVoRulldf1=CUlD#GX;MhuDbX~m
z_?fmFy(3aK@)jLf+TX_x!aWjaIj=?6{wnxZPX}LXUNZY`nFKbn%M6pi(?&Nb5s`In
zjT$lgtc@qo@+-*nSZ*zB0J3IM?(z;u<(Qs5ss1F>Us~|&x^|@!GP01ta~WX3f*GSI
zNcJR*_OEvbnn^UL6N0`DEojc);oroM59{`@CWqonYuH(qEG@!IA(vrdj=+|{^k5r3
z>*+m8&hlLr=I2h;JjfNqA|?O@1auN9Bsjs{o}Dl{*XMj62EH5WwvbzRlSj0_du;i0
z&u<ixkK!M^+OnJ;awQFs*0i+0g){h77GH<nCDpVS5*Zv>UP-p#lauE|dY92T?Yk=2
z02ADO4IJAJw4KrB)WJ&kiS^Eb;p@#~#UI;R^0b0D<U?(4k*c`dsw8O;d8M}W!>@dT
zYEKn>Irv}VZF1X8)lx|s#S-L+id{5Pvyl-3WM>#TAch#~Fh*;@d^6+Scf;DO8jp;F
z>Q@kn6YW<PKsMGYSTvek@)ieZIX0m|&jUPln%BnP4*j-!uMER3u^G2Q<4&I5S*?ga
zG-lr7SZ-UMR4hb*a7Js>jv|E8QE8krrBzE~(C>Z>c){(i$A$b?E@g^HJh3c@`y>Rk
zd6Ui=ImjS_4>jX<U$fjgUw~xrcZvQV=$h4)#k1SWA+n6fA!XVCol7?TxI4^hL-U^X
z>bfuO8Sp<;vYSiscCMNXlemaMuG>wd%4JY^Lv*nRa5)T&eL=-~O@@)7Po_bp=n}2q
zf)HbWJ*H(wIbL_MBd!V0r%ox<!>6oR)mg=R$K_G|jeldw^hq@RFl(Ac^E!xG^^2>Y
zBVgE2LL|Wq0o)oRgU)O7tK*ma6Sm_~iM%uLFIwB-O)h^n)ZC!EkX>97*J30xTD+07
z1q=fntfv_x75xPKRkqhOLmbd)_j;X-jEE8l#P8-DhY~61n{rEI7|waGA@SG4odO%{
zJ6k(ge4?N%aA8yv(`t-yk4nZlg?u}`IcjNED!R2zPvtAe{{XT70LRY-YA>g*m1U@y
zmnX`*lFH&n136oJ*yDucb{8xG$30DXUx<83`#}6N(i2DcgQsi$9@E%#xzh=@Rbqbq
z)Dg*Q2mQ3~)K~SGz6;fK8+(|nUPnQl(9ek@Ax>}-P|7-TI#-Ho{utABC|M%VtnDvd
zw;6QtErD(AlEorsh0k1)nEvoRE7ijBwMS^yifj7$eg~UVhv}vJw`2Ka@PCi2Z;|dT
zM7pSziAn8m@f!R2cx6ob0)Ca#S$t5|?X?*qyLc__n+gTq`3^m$NW%XB-#~iT@0Y~?
z0NBU&U-*p#x}U^f4`}JBvc5&`lMT(p(Sh>$H?}`wxJFhZmLx87o^xL@>R<3jzXod-
z(Q97?bvf-BK!3AaY7lBDT#xx{ZL1_VTyz01F_F_5&(Yzy%L}S^kK%Y3yo$4T(Vv-3
z@l!#TMX{E~JDD3e7L4vlQ_c$~{{ULI<+kt_h?gE9vyJ@N_JzE+AP@*39l#8O)4prg
zz9oObIsX7^Z-<gC<Zq_k%?!UOlHTXT^D?j*5j@{$ws{HXV%(@FzB>G)<Np8#e17m1
zglX{~!Tv0Y*oS4DM7oWxGxGyBn<dO^kM_!w+o7+b!spPcl7!R0-gz_0?4LYI{7w5m
z*=oAl>(c5sp{?9BQO&knXwh?oNPtj@f(Fzh*OOg0!~XyQXnr5@EH?fqj@}Izv&}U2
z$t-hu{!_+0rhs{ov+h&8IM~sK<nlak!#@yy(z084dgo00TrK;>YndA2A~*s|c^tA8
z=tB{MkVb2=(LN?m8XJETYB8*s!lZVN0~I`+qeuxI{_hp*e`rlRNjn_$vYJu5r@KDY
zwDEV0{6Q4o416W3Y4^IJFx~0;wcY3TV@nJxE?F-VA7#`nT%)rt&ps{QSa04&Grj`r
zuxdI+x#Da8014Pyj}*fli_aabR+jT>dW6v}{k5{8W}4pZqJh|47m@}O;kHPqzd7i>
zBf0TZl3QsyE#9F5uJ*XZYM36X<Pna%fn9fn{vv8$418H{b)?_i_;XOVlgzbp$hncm
z8I>dwN66rkq@FR_wWo-uC1h0SR9mCid_dn1{v!Cx;rHzE;H%6303F+SGJR$%jV{LC
z{{T(8f#ijyn%>_0D#3cOT}K@8!L~**qej8_E9_qbd_AxHLj8jD-`Vp@(L5XCd)w>l
z`LyfOKeaXQ?Hh~pb8%~BrLDS2Vm^5xlIH621+`b-CI)NZy+=pWt~E*ZO{UiRH@><T
z*3!!j%3faGE!$lzkVvFY6oLGf7!ipZ1BJ)hpR>2e4}!k|JQt<-li}>wx);SAGVbo~
z^HJ1cHx^p_7grB)CYPvPKqZ(!cmCqyNW<ICqFu5fk~uzOJ;F{D62qq_%%9HkcYl7r
zjrx5S2NM@k^LEnTk$d0|jz4HyAKORaH|(u1#lx!U5O}KK>l!|e4aSwD>N-ppS1oB}
zHS^DLEGy;9Ylbnxs;}iltf=YzPRFh^vK5{oA5u1C0r(pJN`GJtJ5|@eZ_fyPQ`RPo
zTx&PpD)9uGd>GkfB#SoGkSWA&=I%vIjn0vIoga_tNNTr|=4mhr{D&TZbg#;MM2u--
zY12#W-RZl#zvO+N49V1^Cf{H3JLqp=Y4=KY=Qt#Pg?X3l7va1A02%xw8b*x1Y>%kg
zIT;+RWy!`>hJK&}>MNkK*L?ZHTrR*k1oX{$&+RX(Nn!Ao-b+PeA=Rx&2_wcx*)B+E
z&h9$#_}9QfvT{C+!KRtU{>)w();vGseOvoR#M%$+=+n#$j2Zmw?fF@bR1WwafMcJd
zJ|Gr|>A;-syNsy(MSREmE_m0)9wYI-uVb#r(!iQ}NgM8GP2y0bBRYm4401`&y?r_3
zd3^Jxss0<d+aE?1>Ox-a&N{90-JPYxj2!dSnye)~z#ok=;!l~e)3@hY=0?x|0A9MB
z(Zs1-|JD7~{iiiUdHXvzhkhk^j%^3V8moDF71WNG5MNzAxOKfqwD{IZVuCpgml4}d
zm^L;Gg$BMY*8U6lw))#n@eZwPsA)Euv|fGP{mgOP-rfwsDVO_DGkvDs=HNEOmomnL
z#xR6|>pl_q39o!Dv%m3Q#A{h*(zS@L^uG>h`n{TJ_WBL9kVf~rE$y9cEvA^Fo2Xhq
zvIPPb9J76gYvT_9!}~DB;eQZEY2j;)QpFnDz*tEVLem95=(fZe{Dwv==f?7RFM*w^
zEBJQ4Y3wAZVPnj$zaN+5q5Dl0Yd!V;t^G6e+r)k&@Ylni3u=BO)$T4Xt#sw{ZdO?f
zdGcf|Fzoqbc_opRA&(di!)OMZ@XtcjVDRmxv*I*EtlS5CrG<;ak~tg1OhWG*1riW9
z1pr}s`L~Q^kH-En(|#F7$#0`*jTQc(6DVbp@l;C`M3C8Nk%XtXa~pLP^wz84Zye~~
z4Pfz&wug4wc4Cg+Xrn$;?qY}wjQMH^#^>A9jFL0;bF?X0?)5znY42)s`m5<DQ?t^w
z*$i;VuRA8zJG_=qzjPiqFgWjyJJyP75M5iSwh|)5<P#$8+&xBl!Ov1TtJC;<UhrP0
zbD;RKBu!8Ea!g;ibPSs@$Cd%Y;GX2=vsL7`65BMYfT%bkv!^vEsYTryUA>Nm)<q1e
z2*x@dwYhIGN8k=?gt2#)?WU17kP36b?Oj#0?;~uJ@WpQmcQc!3PS*^u2^Rs0$ldMM
zx(g}3(7V*}o-2{Gh8g!6l%Fq!&rWM@+kA0=xKJ4MtsD+sYnvBN7jaYkIQ(lq!rZ72
zHzc<n!jooHg4>P@W~%9HEO~}k$z~_mdT~k-w5&Jqwr%T;YyFcm$UrgR?yh5M&1V$W
zq~W<Le-ZVq4R$q`No#0aM$E&KJ62-{x6zi?Su#;oK^=fOu8d34#9`K#MntWDX)DWR
zb2Lmpggb5EdJ~V*yjS+@xqV0e3A6Ed%lG_?0&+8uFCgUcUe9W`6Q4FylA|WPXZFlr
zKmG~j@svrAmrl2k1OCm#NBURP_-h+x@P1PN0McZ5+*khPFIfKo=}7!>{h2LdgTRv+
z&`ah^KUD-}r6A`%%U>Y=*q2c+$K3|jIG4?q31yYQ%Vb26p>jz$3NSr}I#=6&v$dKJ
z0FZ!_=DMlR`)&NqetG`Y_n&M1tYXsMQdY}Mj4<o4x;qhr>5TgRRr^)~Pufaer{`Fh
z-ZnfM`%1a6{h0-rc8uyejE+j+7E^G?ub~J5uNC-F6T^9^JfAdX00Q;ro-xO#y?yiI
zPYC=me}no)o2qN9sBI#W1&Cq%z?;qn4?x76jycY2<Q*@;dIyIllK%k1dXj2(vcN==
zM#>pjV1Pg*jx*aIj}__57ko70e3ukKEG+#C5p!u^H)k&q2OM+!tKmNpWxQ3aW4-;z
z@0^*MzT`>R=~fMp321Te!LN#SnEc-pYLkvX((VYr=N@Z*d}Es5g<ritk@?>U{B=DS
z>TmcP##f#gyEfOXC9snuDC(oBBeQeP59eRApRxzUty@R<f2#O?c;nS{S??og;E~CU
zBgCbGAK=dpF@PJMroRs5iDZKa+esjj2fy{N(qGt%TE4aLMzL=%&k|}tCVz!Y5$75H
z9Ov=+*JgKzUeBE$sO9x<?z8n5!}4iU_@d@*5oSwq7sw|eq#66lSRO~A>yEtF=0EKR
zIg{f4uF6T<sJOuA_(33kJXh%_g6F!2Q83|rx#KJxVSy+K;EsO1EAvC+-rx9KnwmJ^
z>Q3Nw<8Rlke77Uz)bRMr{nalte@{Q~Om^A(4)`$_<py0*@!XfxCS#w@zf-;xOTOy)
z5B%_6{{ZdR<=6ZZkz%*~h<+bDAYw~9i5nT^n(ksxJm=QGPCgJYd%Z;W@>BBNUAP#f
zB+s<VrT)zec1OWqwDs=K+D}+ajv%&Q{DP++uUe_$yO6qis<z>bW7FFeFYPgH9mnk>
zs!J&#I!3%><|zzd{$7;2TsGc7Sk5w|jAPorCE_ZPc#4+(XZfF_WzqK|=#HA&W?7>M
zI*<-MD@t)WB}Pc=&{j+l6=f%&tuHmPgU)N?>PqrGm~3cR!yuOk=O50xcwRW;!}11y
zD&YLanCwQ|n&>p*h^iZ|Mt%KjgA$IaM{{Fjk0;t35w%V}gjU>fn2Q|p%D4xx3I%f(
zdepN{ZOZM+x8;iHq0~{Xglsy6=eOMz<w`G`Q&)3+vvF@6Y;&=2O;VK>IgEszfq(sU
zOMH>8&@<^&<jkiVvAd7J)yH!?o|hzcr%Xv%aNBvusjf14fk_DYf<8IH1Rk6k-@AEj
z^p;d@<6@3IfUX&Z-MsQ65MphtG1sRx?P8i%IH<d(*@Lae4YaK!P$>C_`n}Pfc<O{#
z;}`rDBI@Hp@$Z44wsw@=nD&X-k_ybSWVz>J1SbZ+X*Fjm6+>fi92)#E{{Vu*-Rcl{
z@4#`bwD%Uzrd&IuJ4g;403<UhKPfoIdYby42Uo@<`!mhX<9Zf9AI__9u6T!3+NffZ
z;_h)XVFunp=h*g8IVYj77}c#B`%X(h#w8ECX~;Rj8SBSit$QQto*$kl?XRM1b&qyF
z(HlnUT#|D5$J3Gku5v94Nxw#x&ge@XeqSW3eL*0eYxkT!Aw}!C@Kqyof%sjbL8p91
zh8Wcge`nk<VA(%<Fa{65Cbe!S@ZMxsYl~;x`7x6s9!_$s2_He4>3lt+oh#xLI>asv
z3#ZQzXFP^?M#cv?Aa$-wTJYwgEu_3ntptUbfWsg$Bmxgycdfm@HAg4aBPqeC*&NmP
zfczEW2o~yFiy0f8qIi6V1Re-=+J8#&-xhdG=p~m$yp}a{zxNj=c(OU^CU6EiSJB@H
zJ_vZr<2Q`7{{RB`E&%e~INu?f2x5X2KRnVk#L%ynnHd3#bHF^;ar;&N$~yl5?CB1Y
z`p=0py?OOe>QhdCI9o}#a7L9LNaa=lkntV37&tfwvX)~?HB}__XEVV~!O6!%^SSQz
zSSE@+NiFXpoH{X*5|5Afl;hW&4z=wcvfh-}9~?Xyq6Y~kvVq<`+eSAL*RBWv_s3fD
z?NT)tmJtDrthxHFeX;u`S-k!{_(ihc%JaNae9}wHZwqg5paM9++s=FBb>_W1#$UOT
z@_&;)dRTa@Oj_MP)cvdY84cu`Ec%SbOPQ8g7?KMy0PIB_&p@g^mG&Qk?i$ltx6ySk
z^h?b~-tl9%o8)JdO$?0~Q_q+YSnWLEA46Vc`yyGUo#Cs!dUe5BgmE#)1}AArACBM1
zSI{0G(csm558+LI?2omth%O!FJhKBk3}>j|b<KW5n?*u|n?F{;FM7wTcxzEavUFv@
zXD1lsbQP+fXq=~(+lzCaF@f}~drLUuf8Ah)W+V?nPftqfY%Ji8LIB&lt_^%7np&RZ
z6K0j#vuL);dhTF<4AfS(v62gnaa#+uW3`8<!xOuwU*}q<1P$21;<+l~98KW`a<#N9
z@#RJU9DCJ-zMkJ~DW1KLt!P1No?hf*$UlWWVS-6Fzg%NJwd7T*o7C&3jikGn+q5dj
zJ8_ZgQ(50)+2WdEzm^-h;<27M-3kv}j<qCF<yhcwIX=~uC9Z`@Xm)n#1hW@l4%FSA
zoj#SzU))+LR1!@ZHb~pG*YOS-wydQ`yEe`WgApHID~;6}Gdo+3RY(DTwd&S-CXPtQ
z-e(D~#cMuex4ySYF_I^Rqb$7%$`Uz0?AM!<eQO#<u$K^$j#Dh4p&<Oj>E9LIc)l2>
zjW>Smf)sJoH*ER?&3+a9Rrrr5g}-R;9>d{nbXi<m>$eLs!Eo`)tf5o~5xSn3;ei;(
z<Mtdkm&+G;MeMG4nZ7MiT+%;aBGuaR?n`tTApFGeI{VZ0XfNKvRgoAI83T?#&#iuF
zct7@x*XEeR@fzKHRbb#|Iqn6sqbSI9nmF>!(*emIhbF#+&_8H@f--D|#(xudLS_Up
zd}@}z_smV^^w01fI@hm>$gxzOkh=0b`Wc-WYUN|<jW*`(Y+z8>`9?;6O6u+P0#laj
z&o$vzUlDX!6K{sRZJ=vW#)XV`h}IK@1LX=O*h?Om2Q}%p7y90l9CB;^AGz|RUBYcT
zRJ)HJgswn6@J)Q~D-SgN=(KuJsTTd&T<Cm9dQOLOgR4ikj@hd^cB2xYww&zPxg2MY
zO5^W!-w4ZY1oyIA?jcIe6Q?-`1mLbm)~~OTeoN_c#da~rl<Manfz5K;Lr2Vd6iy6c
zUI1ZP8pY3-r_AUwcHn+IXXq=Ek6c?=gf|D27$9~0jccZ?w`&wYZZf)z`Y8FE`C_)G
zMeanZBfGSXMU+ZEffRm1scNiN$-vJb<o*<~+yca>O!oJxn$^URM1e;c`Gz`z4Rq3n
zyo~2pOBniX^FE&xg!0+`b$Kr4LxG$gm6K-_g2p)`Q|0411A+DQ>5A62XxwhwmFPdl
zwZusyDrvI4?5wfG>T*aUo@s-_cDmk~Zu*o_OKy%?QdC(NAx}7PM?Xr_mKdgk%k<7Y
zkLz7NpJ=B+SQDb|{Z|#{RmIt8b<?8maJPDO-k+q$d!U(MK{!W_866`aj2y+27J75A
z@lJx%SI{JDh<?vIM}xoY=@hGuawN1i&Tw(}v(vqGlUpQyANx8f&zrpC*{~`&%N^=_
zrhhUkDp{3UZuI2QPYVfYBy)PN#t(>T9QKht%gZcoi4;=BBDrP8@AQZgNcQ$3cI5Om
zm7si6gIkF&^{HTCZn3P1<jn-gRR#bUmNp~12|zt~uG>tuX1!VG0g9^u+XMdq*IqBF
zSz1_Xch@$@4<x@#a0oeH<z9t6^1PS4?sLxpPoe4Br;CKPGwM1ejQ4Ql29SADs;i8L
zAsxsbpnyhlc&{!xrkScrma2&IDI`Z5sAM4X!w_+v!>xI~sBS;BV$>Ld^5qNQ2EiZR
z7&!LLZ+~y<V!&J7M3<2%1PPKk!jaPgWs~&9Z}sozL@XP(y3GxF?_{u&Tl*+wvW8DD
z_r+z7NXf(Q;NTD9?bz}wR(}fkJZX1#o&;E;)*`oWCc@T8$`;#|4Fesqq?~2JQTW#j
zt6AE3$TT{vlEVwK$YF$-Biw*({o08m#(68V2fbgg(qYr=WU<j?wz#=g$xDb*45<eV
z=i37&;CSXD0IewI6z^_tyvnWyTb#xH@5W6QNFMg#R_bPjBhsb5mKY*q9%ML4JhlO{
z2J~_`Do0AzZ8O5<CK~3CX${1(GqjLwN!tggk`olU_2iy2TKYQc65B0~so~$X+%pN0
zqP(`aWqf_#HG~q7dE~}h9CO8bEV{SDHS=_xQDL*bjXG)(ye}DHfWf9kU=L>pn(vM+
zJ--8);hc9qJNTFI6ZU5K#bF$NF4C=a61+y5v=;iB8CxL=J<2V{;tmEU&N>?TC&s_<
zOTU3)DK5SrPj{frB#9J~=~|7&lxSEkRV?*Hy|XGY^A%(sjn5yh`d@(jAtbF8f<<<_
zR!=mvR}2)A2G&px(0XV2*3{kzw$n7z29X?lNd%-r%VJL%BcbDt_1%Zh>(TdNHoj*q
zTm?D&NgvG*#E<wUU&Y@JUA51IHQ6u!0CvogYBo|qIV*yH;$fq;)xOifBgs!v4<P($
zt$Y*s>EQiZ<57dcseWv~c|5vwkZU&Jpd{~yY<Gn6G6Vqbz!}AVTH5~rhP*|k%WVdY
zESAYMpD{a^kTNh+7(ME>{{X}7Q^kf)_)AvbS6!_WE&MTD<v#WnM?oSS@(67E*U{m4
z;=FXKl$Z6`^Xp_Z<*If+kX?Vrn)+%GS$MBfj>2%EOflLmjnV;t7s;JcTn?Ww8R=gA
z;Xe*|hvF`hr{Q0P{AJ=@LSMSgp)%PvKJv$O-b^E&nVEqc=D(-gui2}>dVEppdWVB;
zwKD(`eVjSCiA#(CBDgLWj<^7RwaV+?2EG{H{fJrke^~HjmKkQa@V(F2nadBkBpFy{
z+IdpZupErw;=P5&j#gCTZ|l(<pV+bcPUqzR0PJ`B7XH>cXUAU!{8;h-0D=#O^eq!u
zTbty*)NFj`g<zEfM-9C5GZ8DJZDKf5c_0e@i9|=sEV5&9$=o^j{A=JH7f1b|v@a0o
z-VyL`k92Pp9Y{#WOz|C&vAb=oFzYl85J4JbKki&Jx&_BI)Y|^ge;qsx;!Q)rzCQRx
ztW26rK5X}T4b&Qix+XW|EXLkuV4pEXR&VZxua)9YZ<y3oWoxBvKK`fB<uHaCKF%Fa
zx0cuh-y3dHe;V;W+Fe;b6k9kX?A5JX9RC2%Ik@11$*(Z*XYIrLK6s+-^jp1lEdx_P
z3s`G$&8FO_ZNz@&?IL{bQrN*b8R=ag$1fCkZ^R!AtW!zUpuCRzQ@1fZGNVR9MJs|C
zSdP4Q{OjW?<yE0SdMCdM>HDm!`ypz>QSr8~BF3;|PhH5SRs%B(eA2Nb5C$=T2T@;K
z_{rV14J0p5wkAOI1XssDvMq()o8ygfCs7{zKmvo1F(}SDkU1O^*Raiff8xe?^&K3r
z`C9b{=bGw*NgVb5Jr2(8iiY$Y);XSB@PAMKy=Yy{8IL2ltX<#d{EDLk|JME0zxW+=
z{{XYuUxwP|r><&VJ4+2x;J&E@_LusdwaB<;jvJ?rSq!nMlgmjR;|L*=HdWfcGydCu
z7(N;3UM<jkJ8OS#d{N>J+GX9GuN9@+T-vIOiK4Oui*Oqe%oKqcba%r!71VyzAGB|S
z{5}1Wnl6zQjGh(KG_7Y<7UJS1vb+~IvuRfU0BN2kjvI-mk+w{*NxfW$d^twPz5SMS
zPmkIyzsK(i*}-U@B=H2=uCcD_JFb^dNbSthOy6jl6|u2`Le|n-8Aka-u?qY@@itFZ
zijuF0e6fdZoz?Zz&gbkDD@r;^_x`^R>!*qQA+XVWBjL?QSDG_C*N`z6ZxNVJCBrIt
ziiN=qwB{p&ljWe!E7m?1Yl)$2k?R*Ndp*Xh1;ke?V=Qs4q!=n=yJrms#bO#&kz0Eo
zmkbwff5QDI;OEEh9e7(?_<Q3WQ^huyo^_V4`gWEy$SnjwlW_&JDoN!#Bru}`ChW5&
zKqa;R0BWxU>OTq{d@1maZm%_c7Dy-5w5ihG*jOl$E^XyEQX;~(vu$NFh|4Pi09HGP
zuaCu2#M+YkM`FaqE>*egelxsnTfi!HEh1Ph^vk&I;MDF!FwJvgDzwIF64-eY`IDC0
zFcG*14-%3MM{Dpy;wyY5pW`65jA-%gnZc9y-a|1@v;@XB1_U3QaK?7xzH0IJ{1i{Y
zx>kXw{5trBHjm+-9-TrhQ(A8c3w>4z9`;z4J4yb~uNA?#6Wf{Ph)U`mq}dv<kv_Tj
zP5VRq3GioxyeoU*Zy&|tE9ow6H2(k*=?>>n)imXnS)_swuxafadnEZ{k_3f`Z=Wo|
ziQ%h8cpN0=)znqiw*32c(B`L)sFIDk`sw|3JV#HvNp7APm5M|_mA0L!o|$Z5XX{-Q
zQL;0Xa5nz6?w&32r;Pp)d_cFl_#LGkTf)9E)vj&su5YYvAkuAML%-~DTgvc+oxxxv
zc-<8gs{Zpa*LCru{uG~rb)OITTjEXbhv2Jgk#zPkHN3(*ksM0P4aT6d#>{1B9$N)F
z&k93f8-oqT6jf<asH~E@d#CAc$7JzvZ_E1Ve8p#~H;_S*OJh8Aty@QAk8=&hv%5aE
z_eQg;cwbzw()@9$=+=;3cy?QO<(9`$jz_qS<03UDF_~4^#?h?1WOOVxpSs>t`%Y<}
z3;Z?Wn0!0o-3s%=m+@Jx!!oFAD~~m@c7ofKE)FGJu6|ZgfnLT@#58ej#wn(fdiB3!
zmNhQaQr`W#A3oc>XrvY67&TYz(OSrxLFA5}^;#W9$IUhka~GOZf0kWC?anuCCpgc1
zVyV1aqzcQOrz0GWE8XjJqWhz))FemKWgu?jgWMjO{41K7$goJ<<c=8s0QIW#&*s=N
zNyY|$D&=k`I~iDk&lK@dy_r;1m4Pomv)gkq8=Gj_GuJrwuNVEW?tK3M_$QynS#WZ6
zb>MZ%+$K6^y+%2aRo#JQ7$AEZ@h{rWcOS4v#w$;~ohfj0jPANj1L?(mUx$j>wLeM!
z0O=AuJ}7s=%ho^oQa>(#XP5r~iV_(C`|RXrrhLK=r?q}se$iKx+<w}AB93Ff%05~T
z_CCcC9X;6N*P8t=_zyBK!`o88oX4O0>Dc`<{HyZc<2Y;2+h4^>gLq4@suXlqw6<Oc
z;(z^h`#uLpKSq9iU0oyecf_9tei&YSFuapl&~2^_j24kVlJ8}NvVhE-{HF(kr#1Pp
z@gu>$67W}xpwm1fWVUhKX_Ct~EX9wWpl)|1v9~)$PAm3DU$B<z;hwDs7!PoWFn^6g
z5!a|V$EAKld~1Sn<G;4d_=+7dVJVEBWOx2mIC`JEmCv2x>wQ9PZg|bSp{(@8Q`O<*
zdTl?3dF@{oYXwJ$H545_*FH1vD}I&sjfh3C(*gmIVb3@@+J8UG-o7-|20TN2!~y=7
zIripOAFX?wF8%5JkIZ;Qd(|JO>LRXC5s(P$o~@prTKxe1idkXs?zpdwji`;FcmDuK
zLO&dnpKAC7;6fN2?dk8{zW)7+_|bKCA24h67{Ke~FHgh0ds(c%a?$!81zuJ^P5vLT
zT~Mhx1~S9G0rVOA*XG~HyS@Ja7;mnWfKBX~A639S^yy!vJ`_}r`cW9#3Uwb(&c87J
zI7<Hj@VE6Xy#}K&=e7qJ{0F^!m9#v*FkkHHd7sq3{1dt-v;By^9fs*HpCsx%1lJO{
z2iybAewutAkR+Gn@_eN4{@s3Kf5AUyF@D6~46VCIqXp-#7Fht#;a{Zx00`zEXw(#S
z@{|7nL#^;}vq#xwcX(QD_Fs|mf5&Y`(@*%-twVEhBDKZBY(pAL9(<%2`IjTtgIvv(
z=9}jTOtzBC*dI3BpUZlZJuy)J(RUXx{CK~(NQ){;t+_`lwE+HAkE7l$$gWyF<<3J9
zj03^_JuC3+_1h6q{{VVln?Fv$J3>B-@;x9V%m@~fumh|u9Ke1AqkfeTHi?9q;KR4C
z+9Hx3J<BfN)}dk~jCrModxOZ&rCYST)GX0j(&@mA469`1SItgmu#G!dt|SBOo?Xyy
z`Q+&255VX2tq5&qjj&T`Je>Bdk@kI45?@)tE_<|VpKqHP{c6>Xq){K-NpWrf=^W3u
z{`qpt`d6J+t<I>m)ZB@JT`X(MFh9uGRccg9GQ%J*@)gJ1>IONyw!RL_)J+QK{`yV7
z%C{oAifPv2BS{&5i6p_}*@yM6cFiwyte#X@e8d>XYNRGYz=Ag(N8v+UAdk#=ri_2N
zzyAP5mZ(x)KH^0%&lqu@80<fjVAGD|rgt}2DF=q&oVGU=Q}ra*J9bt{M&`f(06TG7
z7jr`{feo~OISzz@$N)A;<I=gEURZIx*r6-{#dqQ-s`NRb1!iSy1|^uxTjwLE@Z!G@
zKj5+VcaiwZz!F+p%W)gn-0yf>V<`RE<dOj&*A@G9sai~-rICU8K11|8iu_;y0D`l4
zW5qro)%+!@XnK6tmfCimIk|Wjd5AGhxl!{Far_|T9M{_LD@z=?pGJ7O>VCnvpNkOd
zw@_qEE?_Ow%!E1|pYKH3s&{vqMeLvHD`_jQ7(csl?emO}&b>Rru$i>vk{zUc!PN7{
zNWmSr^{zh3)9sVVW>h+{+NmKsd-m<pzjBQ=(Vqz1w`V(J97gLFaa~(nV3i2VDzF@o
z12d={58WBAS4i;>g0+d-&qdd5E+#@%;q&8Z5wbxHgrh0QAdGdcg4axg!~XymAhEZA
z+C?stGx=ct>5rI$a2+=ehmQTb<M^lGuY`3wDdxByZb_A+ythdd<dfIrZaW@$_pZp%
zzLL<%)wZnKlE+=NWx2IjnPVbFU<e_HA(xB-I}pH%<Gg!u;*D~~H@mcJnWJFa)aA&*
z!j=Vz#&`#wYnZV3D7FeO{4sXcfb?5i%bP{W{{W^zj70r<*Dc~R@pHkpOwX&!dKm4A
zbr>z@OpeO%ENp%9*)^>k6n&y_+`_ISnl?PAT6v<??RP@)ozfHLfsDvHXQp`T{{Yvo
zw0~o5cIt18e+_hb*%s2*T)37npddz;-hITMali+P_=$XF;tg7M(6xwdw>(BuEx35W
zWMT4{*_da)UMuW>*%HN{;|GC82O6BskaPb4EawgRezou7)AmmNpX7XwI;(h^N)PQT
z{pkLczi00%)8WL*yGQz5xCG!Fs2~dV-3i{u;O2uC@7}Je?4?HGm${RYPalWjUo-q3
za|gpzY@Lg8&C~&o7ySMe^p1(B{iosYgRM?NUF%YeAG&<GCOtd!&umxZS?xdecD&L0
z#$Mk#Hm$XNRtwiEVvqts2Pi<#PBJrH#+R$lGkMd(>N{*;;N$W&PRmKt+F7L`7-Wz*
z<2`Glw$d%(D;!6L<a6s^16pv}$GJ`qdz#bg_R&QfNidIgapnTQ&yUu%ES;`bC`0?9
z2l*PwXm2BpLcbZtIqQnfdmCRr&$x*Tb=;$Ceq#o_>Z<2$I*jyKjIqRHMn2u@OIcZ4
zWVMH;N-^?WOBu&TZR7G_f1PyJ*E0zfaU8qyOJi@{9>kB*yo&lWwhXrnrBh%WgI8h6
zQ}4$;#X$ElAk6m6IQz)KhJ8C4d{@?Z`HsMUya?y(j8-sjn&_$QXxUFM_L>(Q4B&nh
zm3WM@nTQ8#5`LMjyLB^MB=D~ELUPIT41wH_O6M>47>kab#d<TS+)>LFt<OKZ(`UZa
zAb@VTc9W(#9OQd_EBKlHuRbUEgGT+czAb7#7u6R{XYp>Q5W2MpuONZe21jD7vSLWs
z5WwMvJ6HCD@ox6|*Wo{m@4Pv1Z1p&_4N2{;1DO1|MYH*DynW5BgS)p{{y%jO*&E{C
zo24bxdU({9RS&)!sP0}&^<r)cG=!2#ZOl$d$tJ&N@UnE{Dz$2DWWQg~{Qm%tsm^qx
zN|dbIzsT^<4*t}C7c|K>z1@bZ5@ABzTLqESa^Ex$5Do9J<I=t7N&U4oTMdU%@ax2*
zqFdhi{RkxDXyQ31w&V3R^QVaZ6WwTcvS`}gmG&!`FpRGo!zepL5`41CTWQE6JXZ^<
z_&q#3r&?<=&v6Z{)4HHPzg^48+(6u;9XoztSM2VN8m7@-*P;1Luvv^Xgzx=%pQYX&
z{keW0T*f8W7V5@Ks0nds^5h(U93E<nA6$C$uXFGp?Pc)(dCcAn@e=9ss0`xL<?UE?
zIbg3D$n?Rl!<BP+a&5G|LelMyNK)Ha;Af{FKz(>Lmo~bEw$#+L_9XIIaUfqpI`TU4
z(y^<MP<n<Ni1D=L%T_uc($|H5ZZ8{ZFu(Q}jN#WIPrVKD+h4Ez3vd#Q^!xe8di1$}
zYD;})2v3Q;C8gX+A1gkeJ;jq8_xVhKj&eEc^snWXFCF-cPoM4ZYExO<L;|hEEMa^O
zfrNNc0QCpnzR~@aJ|lcd@sGqr(RJ-b^=n13p5%!_5>`E+Fen$0%sD(@^U2M8#&N=Q
zBL`EJSo(~sise?aqOO}iaWwDS7S~AAptJFAh}UlfYL7j=!x<a_fYJv>Qs=%1&nCWu
z_$Tqp!k-sK>-bjM{{T)pd5dwpNSryFa<0J~hm5JoZKu#z=Q8+G-^FdQATvg><dCi-
z4b-n-aCpy3`lI$|@bvx=)I38tm0n4cPGNz7qzR4(C!shU>+|fxFQpi{Q&v9n3y74o
zmgngGyn6DgLdM?jxn(U2^Vq8fUO(QgZA9KZqMO*Igah}m9CSU@w-v|fT9w4dFUbUC
zWAv`OQ@du<pCpah7#_Ga^D@z-cO-83Tv`2uLldD2xW-0KPjG5mtu<}Om=kCu;B@?}
zKf?DSO)RX~a7X|+3^?nI`_|;}TQELMW+TDOOv(CZAEkJhx{XwKJsME=QHvx)hEv8l
zu9Hnz<I|Z}oVh3d`Nk@hv|vrlrv&E`C~SLVZ8f@)X3|KI1Ia%x9lh&@Rg*T1Y)1%L
zwD<WkJN{y*MHDMMgs49#7(FXW1oAD+IAu5>?jHH=RA;xGJFo%N{{VFV07{N>gtLX`
z)_jqLPbu7ip4k0yUTZdm9FW|~F|}BM!6c{y73%sh#;b)GEfcOjqwuarOONdl$q_qF
z;xK(MILEDN&f=AfCa&y!{i;~b(GCVxl$OVChmWONo)_B~0ALTwy#rFvC6XD^GI9Z7
z#|OSEkGM%z4ZsW@=Yd|NB^fKDlbxdtGRG^_e_G~kyvOlG!7vBe)t5XT802%;pXXZU
zd#Pps0)x~ZGyXL7v1@&BUz3xtt{0rIAIhS1(a{>Osc(JMd@GD#{IAOM>~cR!=xjAR
ztp>_-Xt_zi6Gn<QI2qyNKO=QLRMkk;9YN%eanhuj+6#7N@5kp{a-*%$qO6{c6!gs-
zM!c0ZOAS8PPjr>s%V8O_a>FT>Yi5X?b;AY+)4h6qz1FO%AWc^5Ysay}$8B(+<L@CW
z1ex^7Z+zE1prCCQ+Dvr>oO+y^+lq3mPBH<>;<<jch>Wz5<w~5lMtu6WjI`}>8qUW{
z)GQJ+mwD&0x@N{cSm#MC_j`#zKGo`86}^jB)BfFerQGSxfR>JN9EDkVKQs*@ZO0()
z=cWfr;%B@JBD7u%@}gk(Qb}+8bxl#cf*Ey7OK_W7c>pY#N92w-E*r1CdU#ysqWI%;
zj;;<ZXwOo()U^G7OVlj%Jz_uY3zRX%<?UZ7@*6u&=Hvo0+#bTc;@3=@Qqyg1w?i<G
zD$vg!Qz`%oLC@B{D2RBb%FYczwHc+DyE-+>$8^!DBy0^TnK6z()?^L=6{@}|@%D;8
zw5;_zn8Zn+F52QmL)STm=w8LndMHeK`hAWAJj2@4Ry@2;Uprnb^$kDacf;QiT<e;b
zi1fQiXZumM{mU>h?E~dkCj}V%!FGX@(DkfMH}-7PMUx){c$V)=j_fkr!@FuSC-4xb
zVFWe~=*h<bj<w?2H;n!%T=;KN)BH!LS<fxq*}lYx=zOJRXz@L-+7K`*GOY+0C!Q<a
zd;#&FP1Oa?fv9QIL3qen*3x)ym3~k-5tW~kK2Xr39!@LTrHI2-c2Zw?%_=owv^;lB
z_zm$kJJaGFXTzQx@j_3&DdoDeN#`)+Fie(AM%xs+fWV$`d9RagKW1Oq&%@p>@fVK#
zQ{Y`oO`BMAa<S>I+G5!{<TJ&!;SacDj&Y8duhh>5{9yQ4mS;t}@g1#=`3_Rf{hG$-
zfwzcmgl>9v2dzQz2T=$1Yw_jeQ^!A*px-HsGQTF?LC_P&Am_bwtTmP6E`+>H({bCT
zhrxfbc9-yvL%!B6eidp{>W;Q{M*4e+9!C2^ZZo0=3561O!6*C705$d}i!K?p4I(Bv
z0`(7G_3$t3F>3~s;(cb=NEw?=flfDY>nSB$EJi|sf)sJw*WErXnZL9&au3RH6Z0VA
zzDBgKHqUi@TAlUN5!Zo=&GK`|&-wf+^vo_HQV8UBtm6!S=M@)SjCDW%*Zmv#!>D*$
z_Pz1`zP}3oC1|(45YcpI2`$~tsaX80R<zcxZ)XYwS60^YgfLEqLo|V#m{vjGcxU51
z$HAemcn-@=wfK49t1C;(pAV(WDnPcEZynXO(g>1h{OMy4v^;E}zQ*~KwS0~L00jR4
z()5oW{3q3XPw_j$@pxZYu+jBBbHlpKlSM9}rQ1OOYej}xBV?29cN0%}G<Oj@B$px(
zO2nAt{y6+!@rUh;;=5g2P|&4=P4MpPEm}<k#clrp302Lwg{{rmW`wQ0EF_9lOu=*u
zEQiZor}-wP0+mYDFw%bHe3hO4d;b7ipRPg)B(2l#{=cmWtp5OPt34}JpToWq(<asD
zwHMbf7L5blYBrj!niex%&eAQkcI=K-t(X~DvK*<}qv-t?;~t6NPlq=@wGO3!J+xQW
zYip%7?VCZUYB%@GwCP%{t+Gz7<Qr)tg{BDc$2Q{etBicP@vFq18~BUxqe}R9;TMBe
z@hrCj)?W|kw-NsUqpWQltv$^4inf9X7CrMcmj$*fDF-+{C*iFl?Vk&ei9AW;9Rkx?
zu+;QR+q=Cee`skI$*0`N(nN_A!s6ih9&=B15=AWF#~YwkSku;ySB8Zp%^eIUJD%y_
z?~DE_`1AWgMdNQCd=&6`e+x<B`-=<fYsmaBt!TQYp(?3zs@D+QSj99$$!VeI<ny^8
zpV9A*Kd=Xa{Bhx(A6fW0sz1YziCW<iU0b`)ezD%!2fWF=g<fqULgGeug_SN=PblP+
zEBN)|2@~NT!ds6Q_&-+Dw9gXwmsFQlgI2cCW;a@0s%j?IJ1sZQneGzX8*YN!#&=-E
zn992SZ}GR|@5CK5L4(E`pNQj64QrYdI{vNV&kcRD$HbaHiENNPwdSK|gtMPcm7oc5
zzD^O@aO~rCeBN(bt$MtaV66H#quT9jze|6^3CBd^D}P^+^FP6l+mpv01Ncp>_+#N-
zxvv;>saE<)d`o$MtY7ND#>&$}<vU#3!7-g9@+FbLi9m@ruH)Y%KNGwK;6DZYYVi)G
z;fpT`O0PDX;F~M$S4dbdJecH%Pqw?3CAgM(WD`qpix_1{hn8kyu^*FsE8w5nr&Rr-
zJT<QP*2ddW@dm9J(sdsec#A;RuUhX*UDq=~ccx7QM%vyRYo}P<))6eKL@90_6_@sl
z;0K0&A8H;m@q%4{!aw3`Zy(!Q+jwilS{|QwrZwDpVn{UgyM}pY4}St?dtF8pNac<)
z&e<i8%;xxd7)pxmKCSm}e@A`)0ITxSO}~AfG2uUoZSV`?KZiUG@O`ytBeA@>n^^HS
zv81J@oj#X+^X!Uy_lxZlEz$_vQWmbV+a!xJEx-+5e|#YLkK>=(GvVF-q48r{(QfqX
zo83m!LA|%%JW^Rl2_sRwn&KE<z(p#sx0WOp^QO>HmtDU!&7pXYUhw=M3huP&HIK2p
z_Yz(RWW0tJ8S`ClE!4sUgZGXi!tcpA2QBIz2Dtb&;ZF$IXlvlx2^lXf<DXNGSG9Mx
zkwRQYEKvd(Q<-51z#|1<H-cJamQJkWUj&j$*L`h!+vc>}=6dTz=kh%FN7D4a4(W>y
zlWv5`kj%_wk<NMFD;9S-^<!E~D#<7%6-XT5k^He!>&d0qc%xC${5Lw@>9AeSmX{a<
z&4nC<lc3J@!OjMMO2oQ?(p!M@IaxU%9N>?j^smt=tLo0hC2N~f>LS`5!I-Jz8P8ta
z)@|0f<~Y|Ww4Sb{f&Tz}kyW(`zR6|gFU+9)-|qFuuO!qwRU~%lYpTZ9=;wEz_hMB!
zE4j(S<aZ<wdg^p}v_?{^WP0pcwv{}7UfA3}A0uO@r+V>!+VCrW!k-vgB{)qUCL`Bv
z!V~<f=HH0lx1a2T@M^;P=f<8rw7ZW>mN;*Yjc;?UeTGSnBNt7lMLJuSZ<T!3QpbUk
zaa#WXv?uKi@QcQOuusJ3wB1%%&b{IIB-58su)fnp%1a_T6l=?PP=-^S?#4RT*l<Q$
zUY2D}tl-kLx_@z=27QW+OeCV7w~zjmkB9yXv~hR}))I01phuv|CnNK(%WsJCMKA5E
z;#q+rF>?~I9P%Qy2S1iZEA;2!-TkJk@b=0rF6JAC`#gNZB1&@0yPzbI{VVd*#`jW5
z`)+u$%z%Vyh^0qR3fm&_?djhFzgWUXUjG20@ild_KVv*Z^0&j6wT0F<pHM$B8RKB@
z&#r6oYxae;I%kUKfhF@o+Kh}~mR4;3nXlBJ65d(b_!M8uERh&5W*dP!PC|}XoRUDn
zIsB{g6XU(+jdk&3QMuCOQ#I|1PjecxvX>-{<xdLO+6WlP6^0dF5=YK)bN>Kglut9Y
zF7~=!8|EzwDeKU2_;X(#YZf|z)vvG7H$wMU7}yIDiCfd_Ut;N7WB$)GVBkh@dK0(w
zuac(LC4&82!l9Pp<Zg`Zb_PS7k?Gs~E8XF{r$3ST&j-?1pUd?zJl{6oesTwYf7ZVI
z{fgvN(sgAml{c%EC%=$`>Ub6M4feZXd8(T$R`ac{B!zcg!x&^zKw!*(K36&2xaX*^
zvwvlF(=7i0wj$H5NoX}6DV7OI1cU$(vV+Gt%C|YMTOCo#4lMl-4-}-2(@zS>t9#CP
zi;u^pepq~ByM+8#)VqU!a7f4ZS%4?s+P_V_8GRka$w+rA7}R{rj{dnd`CIW?U_LGC
zO5Bg_3$u?=z5f8EeB9NQ&j*Yr`-t1RKdUd;0$sncXTw14yp0kvTc$~o$v=&Ll6)SR
zHO8Px{{WUqG4*=<!T$h)d|dARh`tv`oyI*45u4PkuD{a1M!phUyn2Q3UULE;#6SN4
zUb?W5(I01)&8##N?7t)B&yUy3AI6<(C;Os6GyebpUZ*vQ;h7;3MH-R@(!_O9{uM*x
z-PNrB02_6?Yk|3hp@1X(kb6{iGDGrg##fxF#(xU@BRx;+6+gu<%>6?Ql7t_UJt}RJ
zLZwbOe=$iE^6%UaBRMsNZF<QOFt${4f;m%;gX=^(ggY?*0C@Er{{WtA<);JFRT139
ze+af#Y>bQ!^&09;3kg;6*srL~WC<Zf3Z&<+`TA3xqhJFtBRn4U$H<oFQg=G2@2sbf
z?JR?nk}=;k(_1~9_Q=sF9Z%CW<}m;+LD9a&aEgh~^T<6bQp)7PFpoGH>D!Z8x@zUd
zRy`>$B}G`3h!`C`s#x!CzS3>yCPZL(a2S5IjSTF=o}!#2mF{;&z;J&-)~YnS7tW5-
zT|NcTUh)XjJaC|=L+ZGy&mzWfC6od=A1sPL@1TF3L~qT%h9aGFwoDv!$z$nU@7vnu
zH-~VK%mf~J=Yj=v)}v;Osn2s#S#9oN6FiWW2P@_y#78*$%EW);weSb+bZ(o*nq|eh
z>=4=EnH-UVc*g_Z^RKffxr!K?bexN5(D1_<Ve9m-j=yR9m6H0-e1Ijf`52HhkTM6Z
zKdpTq4Mx?Uqx}yzGMBo1U8wjYNbwbzyVkT=?vMgR>k(EQ@<fqgy7kU$=6!$RSAl*W
zc-O*u&Yug<4y~=*+FaXQznKwMIUsHs!Ca|cbDI4e_;juR00{N0x%=DjeS;eLU*dd<
zy03=kY+@e}K<(2iLzA9*W7fY(%W;(zRRt$w=J7aq$~rAiihpa52lz9=pR|pJnc!_d
z>>^(eU0q2Y{m~L`5l~0C{G*1*=sRM)j_=@Sg1lp=?D%8jy(d!hBMNP<j>(m_f>eNd
zZs2^G_Nag0p&E2Ce$qMx>?#8v4_(Cg;O$$OT|nvFlla%gUMleN!=Xv6s~zbGkSPI%
zasJkOoSawaam7mMuE_bhVdFR}pHEzV$KMt7*vh_}YbvSX;JQ`a$55}Z{+08G?NRV{
ze}&%+{5Pn0hzPZPTT;0#515Qn-ULNW;WD`{#eoN=0rahphMyI_Cuv$pmqypGtrjN{
zgpOe>e<&ZpD0Lr93g$m)-xzqa;$MX{y-UTn{{U@$Do0pb$ciR!v}_N&#uqr+3h`Z(
zF*mCizUC9cwFfkQVBBwu#z?lqVyrTegMpp=dh^f^PHXfB_BM&6__5&LNq4@wXC(D;
z1<5C#c_W(q{JUufj3mh;5f>eZC5IXB#~r<E^au7XasL1dm%<J*1XAD0&#AV#KhM2=
zCSf1lKSSbi3fS6j&-F*|$HNPWAK{_X;cVQCo!(A<U>FW@o<SnMlCrhbq4-(w?@&m#
z#SXK31HS%4`O=IPAaZfb1MF+%AA;I#<-dk4wP4$x=Z?It%p4!CbBg<GOtYW<6mNoO
z^9+bJ`^MSH1&zexJaj#Bd)MUI)PHd{&(-i>9DlBc&V{JPjWXOZW1Zf-bj5e#VY4cJ
zTx4VPuNBZ4?j|Bu+MsfH&N;5`#%L{-mvK8sRyil!pXXngVxxC+=;JGBcOPm007U>C
zuq2%QDI&g8DB~(l2d#3gda^{VpOyIo+NZO;fo?z<By-8GDayvw>S}k;NC4ctWY<%s
zNZVrL3Kmb-73Z*DTZKE1e_!ccv<^0+Mt_B|^cb%$w!5A1eNCIY){TB%)mFy#b_a0d
zZfiPgg%OhciXpg#V;DK$RxoR!Qg=Tt{AUlv3$KgbGx7I@?yaNK^iPP|CWANGQfMwx
z4NBs{Br{w?B4x*(Sr$cPF$T^;?LVRa0JUGm?}~p2{w4T&-{HT*>wg$%H}>~$tGrUr
zY;9UO6>a>ZZ5yjIp=Myf5)=`f;QF`Qe`ntV{5SEAy{ve4=1be%I$QhG2?cI0Y@l~X
z+vX9toy0!C!*)6f`BTB)7-zrNt+j6(d_VC`thZCzdDCc9jY`p8<^^cft((Pi`$kuY
zTjvZ3;Ai&U8F(txB@9YV*64Z}<~FW9(v}vMl+#wxU)_q?G~JqQJM~vSjs2(mJD}-5
z1pG;<*#}5&v~5Kuibvi`EE#>0F2cDCM>*%xzn*V}*B%1+Kk)AA>%%%tv^G}uT6Sz=
zB@yQ_uwbgpLT=7mXy+N`ziNMJ{{V_!4e?LxyW`dH8r;FCX#N=0{QE1bON&d3fAn%9
z43{W?v1D#RZ<rm&HT<&ZzZ!la=!~za2bw5TU`xwjW93SM3>f4u86@}juX8EDQ}(r^
zh0+&VEw)GH8Op6sk~oC<wcm5lbmX4L#!KUG5Ni5_#jcv-Q4EOzRgj(|XyYw}1O*2m
zg#eDV;Bc;ksrYp2n!+vZvq^C>O)+6BZ<<0IG3-8Lf-}YmJq2(70K&@B?<^k8V})Fd
z1xbE@U_U>HUrNE1W70ecrTA9w%SmQca@>FdZ@|d|yX5^V^a=^{E1w@Ka*B37b@4WV
z;q6NDX>2~uVlDF9-F(c6{ogUyErHyUPpx?K_;<>GFGgp!h-4LlR|)|f;dxQ`4uci+
zz3+x>%&yjqT%3X5Ae;_IU$1)dy>~^rw7zLDHYolc3t;p5SJBa^z7)>}v|lykk2Q+Y
z{7)P@g#L3fgP8*7JF)kaE^F;i*r!0&ZN4hOb*C&%0Ml+IoU>&8mSU^&gVp@doCCnm
zHS$HgGEc6@1bnf8{d2gIM?X$0^k?>8vy$h<w|7x86|(TG5d#BqRL>X;O5+SjIU|#f
zyw{JN&HY|T-!0`>xXAr%(X1rW{0VV;ZvncVJ9aA?XD-`t0*}Y}*P(nSv%b@H%a0Cf
zR?}KtYPxl{r)w)le5n!*$ufuOy?3rb>&_1bxxWWXsA_sj+F7WJY6Z#Uecp5USI}A=
zhuC#(6D&4cXlxD?<d#$OXPz_AcCX2^iE>j%>3AmGtb3+}Ria50VYnyjT6cGfZQ3Op
zi8<@&2{nhJ+*^oJH2cg6Ao0&?(Z02oYf~Z>`LlozTKJlh_q9ERvC#N>c;wR|mK^c}
zAI7`uClW?jADbLkllX1fV|6Eyfq~k+8&8@fh-93c<ezHsGdJ%xj{Gyw)7dLRWsmQl
zQ^4t*Ri80r`?*k96Zi^(IYxT$MM@b-$okie=5-dtj1`KKFu2EVw9A{rB6(8<asJTG
zKN^BdltuZ6p#18S%p8&``JI63G+85iqqi!^zuqKcJ%PxqS?^(vdF`4YHnU~iaBy*)
zt!a3AHInh$JfaRgiRoBVG-ex@VY|#N!Rg7xcYn*I%rEaVHsbEiM`Idp8TpDhVUz4|
zab6p#J@ZTURfa}I8%f*zK#)h*j+NbN_UzHR!5-Nd{H!>y!Ow`_81<h6{?UFt)AU_-
z`oehi+o+t{%OOr#TkZl-H$jp!UrEE6JH_)x4{c8)ACHY2Idwl}EhE1D`&+>C5g;KH
ze8ETqI6um-8(DtW=LBe-v%DU0jk)5#AvCYr7U#rTm96KE=AXou7Ru1u-V4bruAoxe
zn_{9YZgbv6$>S%1Urcyk_MGs*jyro@f5cjIM0T(Cgf`lYV<XZKSdVf6HR|HHUlmV8
zu5-sZp!B)-d>Lsu80Q@J&uY=0+T2-5CO7R;z!Tha*1loTe`%=o8Cu%jZ4+HSS&%Gp
zHlKFHe-D#3<p&+f0=;^};+Bo5Lh))^Hm|2MA==_3x`gF&Sz6tlh+p?|dB+1a;#SM+
zM@dBQr;3ENi@EDMSCbZrZ46ui8lRyfCbZO$0YXPSpKnU@D=!>)4^-5C#o^6<3E@ca
zt16hJcTKUnm2ftJA=)x>Ps@OKu9DMNjwwn?rFSk)<AM%4b6gcLGK=?-x^BlwY)sm;
z9kz#%j!yx05B&<eD@zr)xsF52BdAh49QCdPMARDOeXI^w_iRVqBof>n{{Sgm``1~g
z>hRmVmy!pOVpejIqdT_1P8C-qo;@lfN0&#q?peRU((FPgVYWa|{0oYUbf039c$4K=
z@^jPB)9qPqbenk;e69-sdW@6BIhor?mewvyBQF)DgQ?NzP{SNwY=SVZ(IM-|`LSH~
zwcy=1R`B!_YLG*B=knfkVfYS4K45To;~1{9M1@A5hv1?{PvXbh)Yh2Gcu!AKdGo^K
z+_}YYx_r%@@RgC_J~8-pV=dCyM)LihB?ytT`SC8`H)0vYkpe*jJ1gd&6?_o*fAE_`
z@n*T8<HNA)I&^lrr`Tg_Upgs{#SE6ru)gj1#E`h>jlAdYt#mENiK2m&?M#oUUTfxm
z+Qtxm4{OsX*nGPMKBWDoECbVmJvvvnfyY*alvJIYvCUeHWUkJ8_FwRKg*2^WQ1M5H
zbvW<E&5Th1ih!aQED0!j6UGXz2sQM7h~0m*v{+c<H_QJ3pqluX_7sNh4NJu^T(NI1
z+S_L73y=)blaO*pJaT^lj(*wKf=PL$NZ=B;iTDg0*LErU_BrFdk3@!5SkNC#eQCa6
z?mv}QMBNZzc%(7Op8o)s{{UXJFhBp$`a9xp$8QvV)*c*B1$ZaIdY^{W+r*b&5$+*-
zWFAu@zME+k^m&%vOE%*4L6}Ao7^Rin)6Z_dXHON$ty$@Dd_YLN8Kh}(M`_`|4%jWW
zlx?8QOK)}dnB%_v++kbGNg+m13EYfO{d?grjvw%a{3O&qA851QN2zOfvCDC&PvlOY
zWsWrw+p5S50w&CjkX8OrP8Su~YCjpZ?-2MR4N&WUX!wPr-@>+fiM0^PK9*zhq>5Q%
z3lWkA<|5;JBNWf^5976(R-w&Kl{-fMt>3P{*K2kCt<bzux8wbPT@TNQwY^^R;~k&C
zKMF+!ri_uK(q7tW&tVi|_Dq{`Vy`pY!!6vZZq)*$yHSvVkh@<UH7^$a$DRT4Tz?S!
z32~-tdbX{mTj}YbX|}IzEtU1g_L2)-O=6xax#JfeV=72iTs)B#-M_v4slR1^1?ztn
zwQq>NA@J+?-se)(Zza>=eR_Q^;!A5L5hdl-+Nzjr-J+64g#>EK8|7l)x95k0e`;Tg
zI_JbK8{)T*HLYvJ{spquUf05Q-aL*LvAHc_a~<}vrCdfJloyU?i$|6jOluP}yhV!9
zmb$pBRpxw&U9ZV}?0DFUmR3uD_yHfpo6n9v9Q-k&{?FbD*Yr<`lV4tGnvSKeY8rKp
zmwF4yv+cH8Lzlc%wntHH#@ZPl%nlZ1h0pCqoACbtz}6oN^nVq2iswP`t=^lfKAUN&
z>bjHZvs*r(ie|AoWBj^pmDGz7k{E=Za;$PrNy}IB>7;9)0b$p)C;gmnH9Nbze-UXq
zE&a1ex5l5^D;$ztYC3({x`Rx-i&DEWBf@^p(9FQIL{ut&N1w9i_CAvwvHsA$5!8G;
ztT?jKt*$&x;s(7s!g-Bt2A_Dkq;a&8UA*!~aJGvw2@36+b-@P{Q^Yybofpd(-$i@B
zUbg#_TAcW5i95gR`uULf=fr*w(|>2EJ{kOSZBtd(^y`T<TlMhm&Bmvs>GwCbC84#r
zYoH~WV)Ki`<SQ!e@_f*vWqH5DFM<9u&~*JP##$YPuaC4V>o_dd>RXGsV0)QvHtI6S
zOEuM;aNDfXEF)@pjCL^UI{kaV-VXR9;mvpUt@wfD_!c{>%Ny&xCtB3TpP*RHBSUU{
zySe4cK_sfPTe$hsZ{0~A$5pSQJ_}ra&EE}vAKrMk;l0(Lias6q>dRBrZgnjRNNy5I
zH8~o2C)90h%flg)F<^^wOpNM-A1!>HToqhoB(T~myZgFd)vey2<a9;Hqt|<WXVY4r
zg*0y!&8mDo)qF_}q<U&a1g2{lA-aKW8e5bx-nW+52Qme60Z9n?nPmA};=dDkGvY6T
zwCy_E$9g0>RJw#eXhjl-W6)&nXHa<=9dU~KH}-b;wBH##3jY8VJ}2oKzl8K#-|X16
zNW4d8EH!BF<R%rw4;W;zDZ#Y4k9h-)ssKDM?FZw_KN$FiFAiz?Wrd&oBJ*9?CH9<1
ziuT=P9!c`CwlIV?0A?JWq$vWuJ`=;^aM5(@yT{K)ysfX_wv6qgJIc{szt{E9`Qz;k
zWg=V36gCTP&T>5m6<wv0a$VcyKY**Z7Yi(^uAq!#p4H3V%);G_O}EP={{V;UUwH{#
z*yxk7ABZKA^F_F^wUL353abJ^Q;cOu<Pq48YxBFs-?HDq&k+1$(sf^ndSdv?{t`L1
z-a)Oi-dYz`Pzkh=zRXI58xNP2Jb(^!_WjGt4w7fNa_%GyPxo?p{DH1>#8wv1;@=4B
z3O;1MK42ZeQ~v<!;=Kr0l`UY}^f=~})ugU|J?P#7@V9`!;EMkM8GJY4t3<Z3NxW{W
z02x8{O>TQ=2nRgJ94Hj^7|njq{?!_iSbxDizAsqDJi9x84aA;G3`Vi3h;0e?a1>xJ
zF^((pGsRaHmcQ^vFN}{n1XsNA>M17xvv`v9C>iQW;8*F-?OlJ5*aPE2L_rPVa^UBT
zA1?<Z+r561!_{B*gk=8!ny3Dde4b|y_FJ#+f9XfzFYH<HYvEj<4LngMr{V28P?m2M
zYNO4#wTeejj;MhcuH*qg2LyA;$<2I{nswy=0Jns`0@5#T>~we5*c)hNAwoo`Rbyt}
z(ev{Sqyg9p{RjPu;E;SS@k}xj7C#v3>7JZ1jfnko_2Rw?@a603AMjEM9$lqVS-jeR
zi{%QVc6~4yeQWP1)RU=Kne305sdr|6fqv6EcaMG<{>z&8#NP;bmhVuTN``$zY1-6Q
z*H)|{Z{CgZ#Rb59iosjWAQQ@({Mq=0ZQ=-Z+k>yIjM{)iM>gJNx&!4YD!aV(!0D1e
zIL{g5^)L44ceVY6d|r_f8skR1CmfxH9h)QE^Iw(!02RDKZ+<ZNlR`_GE+NvSh$6fO
zFpBo^IZ+_uKuesS-49B~15)%`XNSd5OAgySyTQIF)4WGxWqGIC-$M*?`8bw1*@2C5
zf)-q#b^{r&1J!gigH(Gtbt_oqh31vwxOTUgM?0N|WRa-B<O930=Zf`jhIbMl4cW%|
z1l~=MPUFER8SX|a#OIpg)5cnr&Zh!S(niq}5H0(##H)h2B=Q00^c?*LQB6jq)KT%g
zH5f*%NWpgfO()Pb*3^W$Wusn3e5Tz4EbD+rc-hW6jPb{%eU1Ap!6YlJMJh69R3m8w
z5x_l9BLm*PPw_>Di#E5Sg*$a?zwD!K_N=On70U?7a}Yl_SlM?gsri|6jQwN#J$N5O
z)ULH{IvrnBMomIUU<r3V`+cfG`GnhCM!@5Ghah~yy75v@7e3aVld<|o;5nS?EbWX1
z;Pc#!X1^}}D&1q^HT;S>7uSprAe_x79QqIE`F&seHMhhqf8oxR;vW$B!s>lW?l)&5
z-qJ`IM=6O|qr$E?ZQMYVV>lSEhdg<$>Ng(~wXG{vvxZ45ujNs546h1H=5At4Y_jb+
z&QueQ#=I)nN!g{)@HnCz)K{tfV*dcaJ+7mZ_9*yeB4Z7rBYeF%mCtW_{T}#FC>o{e
zXRHAA{{U!L;GgWP`&VjT2R;P+2lzjE@b6jI8^_i&+UOTrE#-{fV_AltVRSCq&O2xF
z_sO%&U{x5Y$i;q^X<xPX!ta9meb0@)K3VJD0MZgD(tG`9OPTDTdE{8*6W&=Ht7yZy
z3as(~ScL?V1#5(al1-mkmp|N7PqH&UJ;$fqd}7xwlTeP{Xs%i}NeNDh2>F-*at~u%
z)`vaTnF((tu0iNybt6Aq^ImiDkM@=LQQ{AYx0l`p@vfP14yx%q2-k7M96V@Ltalz;
z9pjbb1adeztv2|F2B0m<!EJfwf%8QYwgx#R(>VI(zYWeX)m|c|nsYzQ{YwWm?BlOQ
zd!3EgM-nnRh8S!P2iM-VV~J<Xv9=2K$6Da@J%3DVDDE28=FiOM<dMK5*A2OUO73kE
z8=}o)c*Eu0iD5?L>YiDzmaeSrW6*?65f$u+(m?9u90AiA^{cxjT*gOH*0G4zZBF}P
zZFPf#<x0^p^!Z&`e!n$LFEt6BR^rO;AcPReBb7<+KX&B*0OPgiP7LjXI;&fwwF9qg
zRm4DLES(tsRn4ZOYa4#@Wsh%Z)#CpE(9{gqMP%adKV@{8hiKS2{{Y8Htc?zmCETlq
zB#z+zbm<|QIn2AhTnu{FX!9XLBn1yl9<_DnRYV1j?w^fxQnke0j_=QcJs=rbNLZ9%
zyXLt?wu07Fl2!~#^gTVQC}x&>7Pg##83;U9eWZ^94?Xu47#Z(fb)$P2#n??kTQ-7Q
zN!uILp!E5;>t7-M)VfR;vS`LP+4d`TWd(DUD5H-<m9M9D2~pZdfPzY7bDx-=0I!$7
zY5iYKNVK@_8)ekijfM6Kxasej_V{)m?H2NXq37lk_fhkQhxDHu!*2$o;p>C;cRV6E
z&N4yDxZBsz*UjIwhM}+N`VNnEqQqWU^=;CUh4$h(7?KB0M_<Ce&-i(H72k(!))^Iw
zt{4I`4&q26zE}A1nS3JG8OukguQ})#O1b<6euIHuzekTfj{yC<H4EKO<8Fg_sV|o!
z_<rQ`l^^S%=O0|x!usdMUk>V;9GWzc%?-=j`DzXw3vJpyVaVsySKVK?laKgbS`*+(
zsp089T#=vOTM`KzjP&c%^R6f2CyYO4jc3C*M_Bkzq=^;{$u))ctEbGM0C<)wmTdLG
z!64V@Sbj^TBjqPHqwb#__)o<CAMo~-Ev~66C(a}r5WeiLI0K>M@vM)D-ZAjjwczom
zX_p2`q?H&08>qlya!DOMx|;S~M^5+y;_W8d=fJ)mywfB`^6ntKzn4&66-t=pmKbIj
zIR|q-;m&i{#y%%_OT(HUg?`(m+K42EXw^t|VTU*%hHgRq4R=wEKWv|wlc^_3-1tIG
zt>besB|w0yE<M1{{{UOxJ*)0d*!JmQ__yISM$esba~Z(N!`s{|H>UvRz7n`BJW|04
zC1T~e4q17xvwvi1WnYYb6_F3!p5=%f91B~Fp4c_@7}fikdLIFet!#A|+jf6NzX{_h
z;X7+9L-Xw}SZ9{N&;I~kzUR>G6@CWzDk#V@CZRN&N%={VX^vYQjE<aluZ#W-T4Ujz
zzNXAf(nf_&ImQ7|lm365eRrYiQpxal!B*;@I+wYbuy~AINQ;BhJC7iaoh$NAAZj={
zwtlsjJJpZ%(7$hQXvN;z%_rv!ZRJDHxNU~K_g3+4n`Po@JR)qhDChe+&MqFxMzh1Q
zU7mVwQ0tAwPhv5iak*ir+MsCKFbK|Drb+rzORCRrGfibH1}ltqHThH>uXKGRk~Wu6
z@co^%YWI++MG8E}*nXIN8k!wPN^7q&Dd9Vpw2RmCs`r|_(|CT`YnBWo+m(JsGhED9
zT1s3<BDM0%<d%r-KU@#+t?E!j^P|=D*SEMHTDmbkaKM~?1lOV17crwQO8IU<_2gH}
z5NZ0H-X)Jwk61SLP(bM<7Z#S%MI#nc9Lnnx0-zNDHaR)x6`A7y0NR80UHDX{+u~Qm
zPX_3-Dz;*|)F6gq(>R7XozKt%Tyo0l)R*qleu<ql@sNal=8^T4+cAlk7|$lDLnAC@
z^T6xvUzXl6{{Vuwe!%__6Gvg<-9ufHAaVVTq-qkwCmH?S)bd+fAFlnm@0$4|#b5AW
zFNYQp?D$*o-&4P4!1HyzVhc1NkGvMbJxHE$!F3${>i2Mb1De+OD8HVcos24Hn02(T
z>96E}LoKH1TI?r6*43WI_#0{P#SfD>^5nyR3E0P;-D~Hc2!78W4(&B<FUMa8HD<81
z)^1GtbWoznY*`hVSrQRpGh+<fNyy}kf^+=d_{aVW&HG<!*T(1J=9S@(3qu(NKhP!B
zCPr2`VLjaOsqKu~<LWEqFNxpqQ!m@^<6hD61LDt!rHMb~oxIliYN;b1yE;|9i^svn
z6^9v9kVvoBxKDtq;i<|v*sHd-duVw$%=;G>zNaS@*KK}B^~L*0cz@!anfo?;L%H~i
ztR}B{b>R!mHpI*Yw2oKKIK{++mok8$%;$o44C23@PapovpS2gke}H};{i%Fo;LEFj
zhdwKo7<BItT57so{iLGsfoklr-OC~^$@yYC4qGbW8vy<&_@l(Sw}~|qsCd5Z^;^8|
z7dPzpw*cfHmV36EMH%cEWY_7p?C0UFJK{g=_x}J0h1Kn@ofLDF^KK(~B84NKE7Vnv
zINi4y9g3<ZOA<*LCceuF!nE*w)gvt=)AZ8E!sc8_R}(&3vG<qC{{SR&Gx)bhytp<u
zt-Z1rWY(D(_1_j(zf+p4uUu(51)h_89+!1>YpO#esQPd3QZSeUF|#Xtz~|)zaC6h2
zQ~06qf8jsu_n~Q8*NQcrU&NY@qkAR17FtKyG`l%SLgD8##dmcKc>zmA2`=3iAP+F`
z$L&cMgMK3Db~F4m@HVO8y$JoDT^q!97hWcg>e+ye#mx72Fv?jD9XyqUq>8P%hC%cr
zgy)Yw9bId_hn4ltODgWn;AHWi!{=6#{{T^&No4!~0NNJvz^m+ClVRr_7}iFru<9^9
z-h->!UPH!wi6WR_@%$u_$rbhI?FHfg0EK@Lyk!T(4}zW*hroUu*Yu4(?kyiop6**a
zdxwbm=GiY=M~XK22av2|jDxf98vO6^PlPl!)^BXDpo&Q?WMuQ2G!2;gVU#H!hd8d9
z7<Z(${7!66GA-ICMFx+1XW|(3N7~Ss+yb19`$;2_*Bs;Xue*O>dw(-i@mU0a$OgfN
zJ?@+N;C@y4v*Ey+PN-nCk-`WvBQm>2GOPhm#{l*?>tCjyuryMAtH#o8KfBU&m@+zi
z*E17?><7JJn!!2}{<@w8n$2l?KgplAUJ+<5G?LJP$ZX@e+sEl%%LR$k?{qzCMj%O|
zET~b~Hry`+bjDAoKhNfE2U0e=YTL%dI>dPPAoTaIrmkX{Q$>Ufq*@Y$8Og@jPyWqc
zl5q@IvQNzYgDZO2^nDKfCz2v%Y#s=7R@_c{k+lA`>5~5dXMKgGaRJz*;Te$o@WH>G
zc>e&0)EjX8lbnH!e!c5!RJd~n6!$8AgjeU-on>Utej09i4XwSbWX&47hE;5+3@}DV
z-6Z~%F}{IMl@!U5+c^Cg173Zj-At-iCjnRV;C_|VTgy3O%-fXqBQ@q?Y3r%cPN!qJ
zwsvqBE`FSk&aO1vb>qEq@w`4-pDYeZ`EtC2?TXm8okU=XWWmo4clvj1p7r6*DC~@u
z#g>&^oSt~=NgEx-M^8$61S^w+kHVxD@UxjY2iS^GK=(Q=1LeAtwm<{(&2xw{vqla;
zcLW}T<~=J<N1Y(NX=Gwht~nSW=RJCKsu0C1MKhobB$dy~K{(uT`d6m^0D}`3@iUOu
z6w2`1TgtIv_cJ#|L55;aU;rmQy4UeH@$t1UjeoVbk9=M5pHIE<3|=7dJ@ndi`W!Od
z$#E0S<wG=L&@-5%3Z^&vq%!l9U)i_C0@j`Z@lEWplrU(TlVyfD`y{;cUxi<?zJqh{
zqxMG9;{Bg4FMqV|{6Z|eM|GqsjdW>CX1`{)hT=GqWPr>fl0dB3EX<_|<Mkg7F%J(K
zwc%#;TJ7KTJ}Zi{_+p_N6Lwqu$KxiY<L`@J554~YghyZ0wLK>8&0{TNsoR(?p;<=g
z{K)R%TY<fPWG{lt%91P5bdTCY;s%=FO&z891BUscAmkoOv#H4F0*qJb{{Zdprg+!l
zf5MN1x(CH|xzzqFtLqDHv%E6uCrOc)>~{C_B#Q&jpC@UQZ`!ODV5=Z+#%~n-Hu#U>
zba^#x0f<+?COIO(91<Njp*i53k@#Z2UCZ%Qu~7ZwQfo)s<>Y>Cm}J<R68`{asO|lC
zKF#p=?JH@l`EBBRHndg*hhWpf&X{J2OlZ;>Hj=?YGq4A0l0dJ$z8UzDz9M`@)IJw{
zD%Gx+SJLcLSb6P3tZ8cC2$AB8=blL=8Hr#<kPXGrYw?G`A7|FQ6{zSpFy32S%XqVi
z=9)2Y8o-JEp!tNP!CjonVp6KRM1*jkdS3WGPYif(!#bCOJ|V&39~3s7eQT+Bw@%fs
z+fmh0?Y`M<q`ifLiR^9d(%<aYI+PQrxOY);xDAc-+2#hEW$dE)WbbaPPN&diSjyC(
zy{7M}{Q&q=_I~)Yqx>82zr@{MZ}>@kJ+J7p-C574+{cI2Lx-Bqd8RQaod|i5Okppy
z?T|Ohe5M~6c+*e#jimSh>6`6E!duU$T?K-90=a2QKK-QTG8inRA2SL`*blw_!5{Ea
zZ-AZ}{eqzIPsg8$wmu*6W~Z#`s3F$x;e9^J+BrPvZiVKd6xPN`Hmlmj6k9;exQ&A3
z{W0;M<3EAFWX}%8@KfTihZDya7dDsL{kE@b7+JLY`-xM@p3>uEr1nz7BX3ke<uD4U
zSm1t7n_{a_s~CGbrxx$gNp$)2(EF?|b$HpUpEmp})4WNeXm?WT5#2`Dw;yYs)rpcV
zI9xk<X&IG6q;92KX~sz$0&BX|d|3vU;sw%mUnc6<M9La1=;lVj0p2oI6;+Uu$_`jA
zdBs|_wbcA~<1YjF=im*NgK?(#xpj+ee#gZ#-PqXJU51J+IKebfd8Mx;^Ji<(y(5q`
zZxIKLuZPy&2k}m?u6R3Hj{fp%y&~p#by%#tvu~*BYvf;ATf+p6_KORtpmLWe<oU5H
zuNhJD7`)|DPOW=g^uK+-uS?qJM02WtZCJ|imaA~uA#GGMv{Jg}G*C8!#ut8i9;dB!
zLt4=z*==WVuPlRl#@R*+a5oijqyR_<+=0~BKjAGJ!oyFCLeQiak>_$r7$sy6$YlpD
zf)07-C!TA<yg%^=;&;T)jasLMBJgCoSBCWcHb!3%>Zvp`&or_k#FnryOvdZD`J9kf
zBn+;4rCytskA06xRf}m~bM0*zl3gNV%rYX6oc9iM`PPlP?$R{GW67H%>aG5I*CFA{
zI3m*Si?&@ORxGS}Ju{Jxq-MHHRx#<?dnC`9WMZN4zz}|b{<X@#ue|T3?um8ec|2`x
z5F>68e!I!de9ik?DTCnGh$V1US*&tTLyMS{j)%83^xf*+rnZ-I1bLMK1Z8*`9Xa=}
z0{x}*ZC}OT2=zS!PKY(-$+eO(DGG!|IyuWIY<#M5$K}?#aPHMr`=LLC`S129m(0HL
zDzPmR+gd6(BLsPpWB{Oj-Uf0(&j*8FSZgxf+Uojr7X%fO?L546Cu?K>0Iy#!e#o8^
z@gIh@zY-m0DFR(v*~0|0NQGR9q}r>s*ea-QOE*q<9X`bI$AkP?qKz-a8jYg;j@w(4
zPivTEig>=&6fzQmNS)N2at}f}5^LPWuij{I#%kwUTVjQX<BDgP{^#+oUL9NQ7g1R*
z2@v_Rb|7RZ{LNnTV(tg|{3~u~vz@y=Pyf;VCHP_R3rg{98a@0siQ**H1hUI-rQO>_
z95KYf9!c&Q-dG`4A)0dr&@sjcHR*ak>{;<AT<~}NCcY7p-u}v2=76e5T_bp>Xqg)8
zV#6R(G3Ou=wm3LBub;db@uT9Gi?l0Cn=KFfH^G{v(9^BFO>$$gOXUVRZ%j}<skxah
zme@#Oo)kzCND9F39_rfs_df@<eNRU5wzH>Q>6(qQX_{57-MzeemBh2O?R6E(+s7zb
z;faB@NcOr$8Df=#BmV#nLl;?8lxjQnwZF^q@;_l%nQ3N^gFkC;*>~dXzqB5a`#*eG
z@T{reYj|!ozY}KqOA8+nTEL%XhfiDBL3CMJ{L6<xaSQ@0l?ghE_|Nu$_{-uC+XF$o
z@mK8s0H<1LUIp-o{>{@g{aWrzrq}Ogo(m~%^t;HTx3_%~$~KG}nOAG?kPy2OoA)37
z3Kjb`U;f*_2rTb(>+ccRTj{#h!+7^kyVU|qb)v&=?=6M9Z+NY(rn*Re)FP4tENLQy
zA;v!~J|t-x2ZcOYq5L@T-+{HQ6H@Y|(=>TC+i9ZGQquGz-v0n+N2sgY?~OdQ{m9-6
z4C9P_UNbeIsdC}n-pc(G>ify<*)Kh~s>#)YlheP;^y+-C@hjm!?CEMeN${(|zA>}8
z(lre(@nO|8IBoSA^)C=u7*-1_)YD^vIH8VdCW;B}2yKyN$C?Q}&+Oa#IQXCTk@)-J
zYdu$9y|&Y=E%f_e4|swrNHp846$Hm`{g{^)=F(eRTbppcQaZ#O$nY7aUn%@E;|8^=
zcpt^qng!kVnWXsFPVnSUD4y3$zk<M9{jvyzpJ0Kfhf%hQ@<}eg($&nKNo)d)yZ->P
z{{WAFX?=UaUMbUl9r%uWEh5uXwX|(!#$7v3w~of&eZ{oWi`IE#nqo!4k|vDrX#_`e
zZ9X0))r|*UH8p)2+wlIiIH^j`$Lk-)uND6Q!9@Q6XPp+~;z!5-02+-#+rv`F;v4uE
zMZUOe5pg0~A+e73NiB7GUS(^KE(nm@<w#cC7C#{PpYT)1o-bkGO;13w@P@Ue>7g}k
zb3?ZRIo<B0)M2&MEa7`;>|~m2xo#}xP1f-Sl&Yv%GwVJI{i(ld%`Q(5{5tWjng0L@
z#og_je`afXUaXI&YI=3e$+VImv_{ffNp`b&ZZ8tlJSd<@R&U-n>lM7ZPs1Az8+=F9
zv>V3wnSW@WBJnM>7VwjCs@UnDU{sPtlgK-4lGsaczF5Rhzd2@c^Gk^*N~9Jd7E^q;
zy57pyS}m{U{EnE@QGCnr(BM7>=)MluJ_Yzs_HU2GdajYG>AD`BZ>e8+k~4VPt6DOj
zK1rHXWV=~ei%j3^)$q;Od7h)-8@~>GNdEwZdE-m#eKH94OC{)vX;om6Lq#J+60@%0
zS8!|?&UbJ!ex25TY9EQ($HA=@+UDOv@bASb#kQZRY4>uxpJNkS3!}bMaCbukw#HeR
zhWri8cs_XkFS7ABhqO<OdYUYn(%ZF+-cwIzZ>{0-<Cf=ibC<V@*t?^=f<$bhxe6=W
z%{YRl9=9rwGPa!?cj~X}eZKa0;S)=i)?crEw)_6$=Kla1XnNm(JXd|--xb)&4c&~J
zBq+-w6+d!CY=Y6a!B)pP=Ld@Oo2^Sm6S|oth#n7{6pE+YcHO_NevSM=@QgNI74Xd8
z5#@$BVEbN!YdxH=d$t+UVQjLvLQ3akj~Qk$oCS7KxcrfQ`#=0t(={C%P19^&RJqoy
zXTDUl0rvfw_DrDX3=|Y#K{*YKWE$w<-Z7z!e3M+W?9JY>x#1U+T3tp>t;92-;gwx;
z@5XBf#a6OIYo}ZYn3(S(ImaPf>|^u*^ZHfYN6enpqn;ITGP@*DNIk&}I3u_`)+ODw
zq}qH?h(ZLOAOvKl0AbT<7_YsRMay%UM(q4%*8C;l{Wtyy?eUw#Hr6poWo@eX+GwMn
zGX$2;Uzu&BPc*Sth(?82au{y=#G3s+{j%+CG>`Zu_r|>^K!G8K)4?wlyb&(dMTrzf
zh!?g101EuY@l3N?{{X=zeld|GyJWxd)IMH8QqSTWpfk7=ocbKs>BsGnC{Ne}<BWI1
zdXEL%77u}uupBntImc@KJBMV}WlhUpdawSFe5PXu^=6m%KlG#UJK%rq5#b+zlIwp7
z{9B=TqC5R_#QKHI5ZOf9nxmpbC5aVxvY3<ylN=nD&j%h?V!sZ4AO6{T55!yV5Zqem
z+M&O@y1nrf3#9#ybC%fcFhr3ZokUK9Kf>QPC)z#}_%_h~(YkCJRFha3_1_f4jcF@G
z<)0$e*KXWnf<f*^LEw>8e{W9<>j%WX579NNgw^ApN!M<p7qG=H#)3-@L#oE*)UYVU
zn_(HR&^gz)af<kp{EwM(T&L5Yw@1Vu19+GAGS~kA;REpok*loQEy-bNdj!Csw__&X
zDVXmdoxF9xHTgy2?-31C<A00v@KhKDp7mA?o8Hz3AzzK)7AukmL&vY_zwL`*W#SLn
zqs8&-dVPcHIxdGaw$j=`0BH6@v}8%TWH~vFknl%p{BiKVfUi6;X+MY&jF#Gz_fepb
zmX%uGW<k84?<fRg0CWS2GU^a`M(@@Bht6?zNqt^XOQEIk@>^St7Srs~2S&S@Pu>{D
zcsqw)nI69N^WKrI>iTA*d#l^KF^WQ}SZ)|HHhIXw`W*fh?7k10SJ7-5Cd)0<zT>NB
z>*{k}6@T{oO;+)>t21pQvj>F6*2>Bp{N7l=&N14)lPt2GMcnxA9gXW%`F^LN-uS0R
z)aTGd+G|?R8`>70IWpU0lx5>=E9YqF#jtr(n){#jR+CJ%)Vx7^;f+Oa3BQr%X?Dt7
zln0R@1&IV6MnNR?ug(iwk0$F(o+(-xP^uz~<&+Y{2EhZbBad!t?7!Kb((gvM)#s2y
zA(rK4jiPj#GrBy3x-xJTxL|O@7{INubeAGgKFWn%edFxE*<}&F7-;N(s7qE{oab{~
zN!OhA$E|*P`08;t#xD^&a2rx}J%5LPx6|^kyZ-=WyZhPx4e1Sh5hXi;F@_1WOD5bF
z_sOr%Ul!^RABz4X7+^oOB*`QYRSS*7zdbN(hDzM)`rPsOrT+l4AJFIQ=P@4+zhh;|
z{nG1hGJ1c+n(=e>!+urv-|e<6um1pGkB-)Nkw-Fr!VjrR71S^f5JruFJZ?q-l=TE;
zSLb)^?c*&r*TTQCwv9A%nXYa1uP<a0$r6RrE+WIqicuJ|FAhh`mgotuyZ-=f8>0UJ
zu*b(D<Sy?6YJ-!;cBTi{(z2)U$I$wG3;o44*(2CLXi2oI--x$<5!7s;xYPdt<KM}d
z14OW!XwXK8K>!6f<DdX>Ux*(Dd<*+N{4V{H{3hC8hirzWarWbJcMj#$nFZAAm7XR^
zU63eL1&+`^KiWUq9(!i^xqEGMH<Vgvm3H-VZKF5`(!V>uWsM6&@dxb9;ah!5+9_PE
z%&I0(`(N#o{KFvN^Iwlwt12}sCf$_(09hZRQinWg_vQZpBjBHdzaM@%cyGjBE7yDh
zYvRpkM$|k}qIi2rveo=Wd1Tr=+PWgf(!yiAmUNa`H+;+jCIA7lwffiap#Iq&1pTWm
zz6*R-_>HFc+rsjAX7gV&{{UpgXM8RqzFTCq1v8jXNVt`cnBX129=`_M#W#ljBKXw?
z0Z)s64+3$8@}!E<K*w*NBz<#VrL*eH{{XhU8;0H90=XN#Hfr%65BpiF;tKrhmN8n!
z`z!3NtMxU&MXTNQKEr)N-ri<c1g~-jdbe$TY||L!hbrTP(B$LjYnqDZ%(*fb*cc3h
zkL%pl<Tog-`_c1fBaZd?jN*Iom5!@Vy_K!!jw0$ji4Iwb!v!D=6W*^ilrktYLvJdg
zqWtioY>+Z{V?BNA4$62|2Dnzql^7q$jAFIoJJfDJe;>-Yq_sPs?v1z-6_08ujYl85
zcORi7Q_^cRLo-O=0twuqhu5I~b(Ddv;gvkXcahJa9@Nh=+}gdh)19aA$n^Z{dIoi5
zbdMl0`SIY4b_7;@zHG?T4hI7Y-Sg?iBE7xL0wo_Su0T`M9V^H@b>oc(!dg?!;ypqg
zHYMlJxtcgv<-t6=E<o?b26@GMl&Ev)jtNw;-#w;7MkO(}NzO7deQ{qRe%2a&v=eE1
zlLjUzJh0^9SOJ`4u0c8a8rjjmYOjI%#-($ncz4D2diC9shr6@UH|p0g7X+u74T4VV
zy9XHn92)sk;_vNm@IT|<gf!n2{5I5Yt~8T9)uFndO4O|*`$f2q&5v}}>N2F^*FP!i
zUq_K;6{**C9A4d-!HmU4#cFDJd%)k?7Eo$hb<)Q3pna?e+DSZaQ~Kh*d;O&Cwf_M4
zR&F$RXyk(WJ>_Hz(Pdm@{{Xe?Ub*n=<7dJxR?5#y(R^K`U0uZ*#PF@;Tf?CtfmR^o
z9tiAsu2bUFKW_M0t=vMQL=s!LVaopiuIrJ<Ij^k4LUF3Ok>^dP6Xs9bKH};AGwCqu
z4$?@z9mqKc3nSaG=zm)I+u|0fZKrA0-XE7uSR}f&DLjFtQg~3UvB3c0yI>x*>_4^*
z>~s83(XLUy)_6|Y!*Vhk%jA9|^sC<-t{Pblm?Z4e!hzqXQD36q?aM2!$HrEZN-24t
z9!0Ok;VA{2FbRx~r#@$vK{y_VIs7@S-;Z81v%S+}(JZXvw-N-Dy1sA~v(p^z>7Lc=
zKMtaf_g{|Pzjz+-WFB~pbAWNs;<?Y-z8gVo5Go-e0ye0~4<l!%x8Yqlc9nRhifyV~
z*FQD2sa1SuBfbI{kS^1~<v|0m#yI?OUt@m9=+~bYygqOVNG|2)t`^ecw>@*|UlD3D
zo1YiSY|Oa`7mf}~0y)9s0N|g>zd-*0V=F0bel+-I>4x^3Oud+>U~s0|Koy5)85vW^
z&*k(OjVU|!J|8fm<&L8z(Vx*D!UUZ>6JcifMULGak6)W$1Ft8iB=h}#h0;7p8vG&f
zu8}(BrjLA51CA2$_bxHdP)|JvO8JlBro7iW1+X}ZF$$fz$-@8uCyM$m(crfD1>t9S
z%e*e1XJrJHW}Z;su*d+f9Q8QwUzhO(K5Q(}`kq@WPB%G=9}(VN%5AO4PFUlBd-bo7
ze{3JyD@py7bS(p0)%02Qr`K*SZ4k$C9kejKF$q6<?5@Xf&H^Fe5^LyPHR76oIV9h-
zFa&y^Tvz2s{1y*I{?q-K^e+=c0?VTKme{z*-b<@_?T!y@7E}0QzB`7nRBL0Y(X6i-
zJ3r|j)@zBKIue~d(ernV{{Y~%e;M_yH8igVczeUzIEA+>$S*ZUKlkw2N9-}5pyIwb
z@vr<8{{Z&O@qNMB<6Dh3CIwm@HXC~=@J}FZib+7nAM3IYAlK*BwdQWzV|MJY^cXn<
z@D&Ba<<1lrJpkvgap_;u_%0F4=u6zAADX}CbK@`=+O_F()ti4iepWp@#lIK+B>YD*
zpB-zLy2>%$tEgRE-Xjuw$9Fuj=QzO%IrOeqO}@Xflr@x}WHR#0Y&?vdWMo7Xeqy;p
zb0WSt7-7Kd2VefZY1-Uez^qpcGoPD`u5vM7MNWh%=@nz9l_)K2bsy`H@Et}O_X6#l
z@JT=9{xzX)=&BHmu0C9J`VX(^SP;uR4(TTWhDisN&$;hbqI@C(Ku|tWjE;XE^^DfK
z9Y*|jNhdIt3;-BDxc>kO(2naX$;Yp$$NBo#I}OXMjpQ**5I_WR+w1t%zd2SwWFY|P
zPY0h<&T3jZVO@Qpm(S*1$iwck?ZH2o_wR$pYWnNouf<(c!5<5r!6!EQedWws<lI%D
zV9FLv%D{zWO^h3G!3P0=HSzt;o$c((x^hc81sN!%zGKiFE<1G3O8RHvSHpi0>K_la
zSarCP&ec5G#FsKh6736|g6uMP42)+dfz5Q+rwLL@dmotQc&<!T{hsHxd~DXOd_&=@
zEoSOAmiE@_5cgBfC&-LQM1>UXRop`sInM*HHR6^lWp}GWy2aF1k;wR#>T<$3RQ>rR
zD6YX&46zEw9N^ax;jf5#ori>Pycw(8i>n*!Q4A(gx?4tPNd%D=9J1i;QaH{51B%$t
z?2n8jyt6FuTi$N6hzuDA+7Ff-k&s(!bQ}ZR^`%1&sY8-)spjIV`+BNTKWlX_*-PRv
z@HdCNN#GlCdmYY~XDs#&Ad2D{%t0I~$iZ9@f(}Dt?+%suCF4sA_&i~)Sn3F2xr+AY
zIZ=ouB#GS}PBJnXNI2u(zoO3r{?y(E)h10h#qckOFX3g0V{;_7ZX)>+yyF@eizre=
zg9AJ<9M|)~<15K8yjid7Z-XV?qo`b*9m|<+Ws~JS)Nc7taf4qek>YF0RUuhg+a9hu
zjWm;kJc-#M)!Dc1^5Bn<G8hzL^y)tv{agKnH3;L2#+q1!2N3CQUq5+TNmW<yDo<YZ
z`8veUu1y2yA}G%X(HQ>#pVq%rKVdjAapM`7^@~f4vvnXzaKqb<e!c5V(f<ImT=5iN
z_N_F#f0_E{quEB<MAwP5KE?~`3XXDX>YYPR{>{|%o2b|w{vT8k^MSYQ<&H?kNjT$-
z0bev}ax8uiym-}1q*4^)<>V94divMX{xP|lE87cBH{0m&s*LgrtR<9=naIt4Q^a~<
zoAW<f%Vzo2j^o3#!*GiOAPi6Gj=%kC)6{g>QXWAVKb>%X8oRrVi(OkZK|sOp^flVt
z>M`6x(UX9A=jmUR*KJhL`b4fa(#@kSw0yW9%C(|%235cM*{4|rXs{S?7mRyUY)0k-
zv92oB+if#wt0P4&302Qw!Tf7l37M^O$DFrL+>BQ`T!ahgD%>|1v}Zo2kIJ~G6IDLv
zOBCgh8l5HBt}=N!u5K%!sk@--S}8KRd5U`U=CU+Q>oj|f(#Qr$+n>Z&J00+m=8{EL
zVD0l`t~-O)wDg8;(z5>mbaeVxAZL*+_5qB(bM-ae{{V!Ml%A&_@sm@wUxVH;lJv4d
zo*&fN*s&@UTR!ZLPftqzc>Wo9U%(zI*6jZP;SbfPw4VwLx@70i5yQ3e5J?+t$QjE4
zoMaPUynnQP^l*O8UlJr{KfCaruFd}dfUncuznj0=UR2TiU9NbCP%_CLli|zT)?LXf
zH<V+@UO^<NI2j(~b+6TYJEhHrs_)ewC&W(Di#^xlK9@e5`&Ia3NYZW|S#4r=j%hw;
z1?P~i;gibj!5OFgRPcAkeGB2;teW)jUd?$hot*+i<wwZBDk6jc2Eb<To=tpJ2Z{B_
zd~K=t(?z;A_mk=uSJBBJ{p1aCbu7#B%e^=<V+Sjqg1vLZzqL2Vt!~Awd|WimZXYMg
zT)=J0jyVqls+PdO`7z1JCci~kS=}hu`P#5fCx+SS9xU-U#SiQo$jV&YK#AnxPT=ej
zaK|_f&GQY|J?rc*fY%=fr}*vRdrymchLhnNOD$hb)9>ZhuEEkKiEe`2O%K_}?_en4
z-oZJE5*VeHH(xAo`4>$1wAydPq2v4g2IK7?WBVL%+Dwe8E8$VYIgI2CoE+qV)0+D;
z;$MU9yjP%G{9n*5b<2BXiuLZJzqPVDY>!~86vEm?a_mx1n8!26GfL;nQi=t0=QD(5
z1y@CF{QD7yhb$X!U(oso#y<zVXZt<s-w!`&kA<3_!`~Tb{yXs{?3x$$7n^yYSWRtk
zCZ9=~37uq(?Q!I)86BEE&IlhU`)|cM{{VshHK&WeXq{MThS$Khu?c)nHI$lnhV<*L
zKT<(+3>rP#ulBy3robk#yn@O`S9Oh|c;<F!zXv`Z-FW)*;#Yz^J@B@BPYG+0iS;{8
zPfoRtTkFf4b&_b_?c`Y!Vz9#T!jBk6Tr1~|zq9`Uv%kgPiXIN|?~hN7d{N=wh<eY&
zO;1eHuDmm>>4MhAMY@x1oR*0TrIa6Ikdo<YEXx&*<&t&^N5N(eDyoJ3?OnRHt)A8|
zF3c@CMhMmM=lm7N;BSa;AI26x3vR7EBcbavL#60b>aoWS%u^X8SnTAAIWH|^yShl-
z?8F5^%z`&*%OLt&OR|IESByM6@o!GhZ}fc~tzpxyY=5+M388}W_T_G7w)<4paN0C$
z7T1ZUiB+5wB^a?k0emd|k^Un5F|_el?K$C{2Ts*|dGPnfvDoUGM~JVZ({41$Z!KC|
zyUQrxmf{UfU~AbCB3Vd|Sjz&>76;fr1i#>?-wiw)@ZZB<3qNRmYew-twD$IzcCjv@
z9kNfS*vch`P8)PJxVXI3?9wRy-F*~K6i;&mipvy}1o({Wgz)vBHX5Gp@=tc2nsrHh
zmt=H%s;X6WN6_u!?*m=xx85i54UVKDww~pz;M49crMF_k%Mee7iJnH>RUHc<b_@}+
z9A|tkUx=0(1>cOOv5Lz@yuCv`i(JCTPPw~w2^jg7R#sS>1R?vNlg}O<`#tzuSn<w_
zb>pvveg>ahwfKAEX{_}No0)e;&{|u?Bo?}@oN4Ewy@}(w6Gtjrz+Iz2{#Y;d$BVoP
z;n{8M{wC`;w()7Ygu07a=~`Mvdp4b@X^SK>!0RNj&Z>%hyMh<Z18j~61SgY@!$ntK
z$yq4b-8~|<Yo`5At%fcNX(wgp`W;2p<bEB}?!M795&fp#KeHmZV9e~HK?*?`EIBwC
zI0rSkq-%D!`hJyeTj#Zt5(2EJc_VixgM-Hefzz#c{{X{?{wMr&oxB_HLiQ^UAKK|M
z>l!AVtjd8cqbVVWQ@n;TBreh1Tf+YUWfFrdO}}!w80)6^S0{*N_-CNsd_%sz)O<x0
zlm7r{-)ajSbKTzDTr`(5GC+xLBWc~52Dep+#>y2CC>7>lv2s{w%D(NjqVxINr&H9z
zW4W4zwLQAxMm{dLO#RpiBh($=)K|<uwtda+oA7e#?@yKCm(8#Nk=iyJuCQ>*RE|2}
z=N`56vd!jr!I=(9S}Nnyaj%kpYyE24{{Z0>x`m{xBu4v6RbYNh8-fAI?Vd^WuX_xa
zGXDS)JFWQ~m+Z-^Y7_iExz;>Ut^g=O*S>#fO)bpPCZBGm>f+wo(g$a`n`zvsET6lH
zBpcu6WZkr_dp?V4;0eW|cuvFn3H&<^%zBm7?AI{gA`~#(!26B5MI17yl5r%5dXU>#
z5I$%44WRg@+feaGiY#T8#$7oqV@#FAx9HN#`?6IT$_R@_%65SHW5@^5#9t5mH+N&<
zFB;xlXtp}^)~{pY8<`!Y(ykh3xLe4ru291=O|_saA^=N=T#!R{<``E}rR;f?sJ+uY
z55yiW)U-`qygtxeBf$i=4RWrR5ZOFWBRtYbM1D*~vmxBB7w(61jQvre{?MPXmY1Sg
z>Ao!Zd*b`;R^ABWyt%cywlGa_iWXTS&C;JO+!jozJ4oPH$KMhDHvC!m(9&o=3cI(m
z@n(^zMR3~X)y!9S8ia5_$#l}#m`pG|)rokbhA220aM3p-#iQ`Qg0;xkTF|^xV`pP{
z1ormh!<Q2XqLb!G{M3xBn^b|lcx+^FYG;a+HG=!}*x;#F68PEw((zv!AKTl<7dJYm
z!ksSD;S7Ieh7`Wk?k{B4ui%6<O!37lsTVfsChxX~idkDR2TjF?)mn$c{{RH|FUGoL
ze;cRMZtmre?B@Fa09p-keLb-j<l5=cBoQ)Vc%&1waQQM7!J9J&^8Ww}{B4WJFj`0O
z_gd4ub!Xx43QOWE=aPH7Ek(3zXgtNZv$wt<WoQhZVnhx2^Cd<BPs|7AFYPb!pTd6-
zyeX(_7yb@{%J<2&dz-tomg7*lie@Vc3q^8L%%=8hc>ehT!)*<p<{985m$H>L8+1!o
z`M2{wPK4E!o~QIr;m;Pq;O~ho7sT6b89ZUGO>N=Zsb<sz-d@^WB(HKc8_RpCypo8_
z9upszhFRiswbg#E{h@zkUlw?qO}_BQ!fjeV5%^{=vUrM1A*dPe7I1}9OL%SKh^$t`
zph;~G>5#CMT&#8SpZpWs;J55OH-WFrx^A!HZy4yaY3IbZ8m6~q*BU+C(i5jx++JBr
z{hMgAtmYY37m?++RF2`KbyPo~e+&K-=pP6?C*#|Hg`W_uRV|Ir*z~Clw!5brU9n#n
z^$6D12f&@Cw}p~j#ubYWHkild`G#3Wo+4F~vToMa_e;*pU+TuN#NXXtmY;`X^1s91
zu;!2B-xk<>K=`}jTdfPlo++9ed#x>eE2!H?bPLJEmzu1z-Ai#al79aAV=>4;I|7y4
z^{2sa_#`Zz5cox@_%p@&z2E#NFMAfJ9k-Of*zjC5Zzzh`;x@RtUGC;>vV|iYE&#XV
zAKDL4);tB{ABSEDzPHpYwI8z09oL<EEP55>POax##X3kMf_WLDR7rqfj1+DKYp3`(
z@yo=%AhbGWkK!FK{t`VD$tIDg>Ts&;nh52@t>;Wxp?E@#rZt&KW-+-cqYPix=+9Nm
zq_yA9_SfdR9XOh6?CEb$>&QQ34+3c432%H!@KeSbUX!e7Gh8kAhp%r|`$*MVE9Ph~
z9zhkeNA|Uv0C%jRq>*C)DF{!ee`ffr!rv0@Zu~HOMdLpUc&SCj!p&=WHSwNz`x5F4
zs$0sfhJ#|q9B}0pHd*6F#&LW*@x$QHhxNZ0-+XrQu9czQ-d;tn>T7Pc#>Qx&jun<q
zw_XCeg2}l^ju_M=Zn2Xaa6LOu{iu93H^GPaoA94acx9hYzrWC-(4&$>`#f{8kle)@
z$|6}V8*&LSn8=VMfosX3LcLi^6%yo&Z=!egeOF8OJoi_YUZ!7*d^hk<#2!Dsiu&H`
z!&fV*#cGzb!h`!pHH;*S6^pXE%8mn06;dZn#R@k4zct(bz+V@B5`0Lt@kRHFb&nP5
z6Er5v#8Fw;E~BKi^T?Cww$^b>V$>azbkd2*7WUzGv2sIjci#~8PmG=x)E~#65A`1j
zc-O+ZkkkIqBSfCo<l94jx37P5Zub8GWV;Wt=6L0hvMZHFo;~Rw>`VJY_@Ok5?Pubw
zO|97?T&0E0mZM~ir)qk0Lv0*ZPkz`%o;d~bM=>tY=5^f~GLHN;EJW+5S65A~?wb5R
zuf*BnC(C$C$o&BD{{V>oD*QX}>U=!Z$(zKNi#^@-#1`T0B72r;tu1BSC}s|2^5T%Q
z02Ppy2m$LgW$`7b@aCmwq}%@hV)##2OZyA!a^m6bF5`8QJB>XgjiPrfT(m07GAVp;
z!2WMq>%X<Gi~C8+{{Rv-%{#;zR;LBWov3N6{iCPq$qaB?M;xtS_SV6-PM3c@s>mdc
zMOVfZzf9A|kXggxFNz*0zO>UdiwkeCNo`{=p7vFOJ@+OLHaN_aMIKCN$OmgOoV)Sz
z8Kn$H3lk-Wk2U+PZLQaBG}_mCCU#Jt+Gob!wO_;CSHhk$pT>8(nAMKAs9r~S+XPZu
zUq!M;w~;bIQ3R2+PCoQ_EETKd-DfYQV&7?)Nx3(Zvvv;M#eQsOt~vDPze&C=d>GQc
zA=*!Wp!k`uZhTLw4Q(!^+|evCNVc-=LO@G_Zz`vjNE3)bM#lr;FN%K)d~5KQ#@6S=
zk8N>hd#MXMd#gE2k-Gur#z-oxo@_wKokjx<+m(R*XNLHuhANVz<h`V9n(FjSwNF*4
z{KRS2J~7w-0N{=v7VLaMa}zbEi1lmWkWDQ9V7Js&?&6r;#;&on{$WCdO3Ss`l15-Z
zc0MX6hkQHx19<w!;#K6=T7IA4=%CfErh+LYk{IJfnn!{#B4dC_L;+7hiu|D0biWYm
z-|$XvioPAtp`THkRMmWIYinn36U{41{vo>BvBwx^c4N^%B-ifm#Qy-<3&wx6zx)$l
z;?sNwyPHz+9<!j_Xx7?Y`oU(mx2+P$iKpDO-dn4481r@?F<25YU%g>7>^>hKPOc_O
zG3TkS$$N=>kCVq?r#vi_b#{;De<c3^vp2`T4|qr8<QIM~y|tPv-xKR{32mXfiWp&%
z+hR`W=46I8Sk&wcLXugSftvPT+neKmgZ00Oo(s~n+qi;S=-SM83gwuYZl2$W%795o
z;A0|?Jh6h@5nru;vbX#a_r`y*@9hoXFOF8;B+@=JU0F?aae1crPB`Sb@aDC3Y{m%n
zRhs@gl(z`-skn&?76LgfOibDR?)|GY582!HllUvB{1y1$qS$KM5012E7xvmru)%Yo
z-`g-qE?~Qo-dk&Xk2pjjX;}&|$=(Q4%fvn@Ver|NI(T|~@oQF^()w*}cUpY*Jd7S$
zDN=sZNBw`nKbKG2A-p>W?0@kCRFZ2qS#)s~tddNK-)g%l906aP679ma0~`$Vn*5B^
zto2PZ;Fp8nQMPE->Gey9W(*`*VS9!#vbg1e4U$Gw9Dq*-y>s@^@n((i?^f|=!Ec0D
zUM<oz3oAMFom0b}E4Z`1xzjK0C3vT_hW6YvSC&#D$0SlRq@Xhf&QPz+_x?EXCb8k2
z55bz2qj7bn=rK+$E$1MlB78{xUOwvQfS?Qk+}G*ZeAB@vAGGiIe_!T)bHzEe4oT6A
z*KfrhZ{fRvYol4QW!f$zar0*!7A22S?mG(l@Ajwtj{YNj8TjGh9|3q$B=JqxiY%|S
zJ6muQ&t!zgq{$S7pae;kB;od+;=V5Mq>8#-lA|_0*DGb6-);v%xSS7R$KzjK=pVGN
z#3ucx{vUir*YB=pxA5Y;D{RKrM1tDknPx~XB+Q7Vog^Xpl-j#<Uec7|UQ&-l{{SP$
z;fd0XTB>igkB@w3quBUr(#uKl2ZuFX6JD~s9%E`S&u)nmWVe=~S{ZW6R1kW6%1$tT
zn*E>bbSR|NZoD6<$9ojBiCKw_2$RTARAIN}amZy2Uuk~de-yke@tgL3wAXwgs#;#(
zX!`D*FP3B9aAT5XfNcoTNf=oqR&jzGX<i8qJ>NwApZq4i1lF}b68IARFCc}cjqRH(
zWLs>4sz5t~0l{KBXNueVQa;KqO4o1nKGosZGg14`nLlQ<v9|aH;eA3P>~8l+#N%!j
zNtb{JQgC|X8L!O`8BCJ=P}e{s{y(2RI1bO${yF~uJpPt`&eL7pe#d_gyje6C3U971
zU{{tg9CDZ)@X=x2wvbMDZR8vba(^uRMSBF_5jEC=Sn|4*+tf%4U>53_3^2zT$sH@I
z*K@z0=6tslxqAyE`V;+=wJ$Hgf3n0V=K?Pg=Nx~_ocQ{TSK8mUf?8_7u+PSuJL`Dv
zmQM)Yd1)$cQ7CwfP6zjq@XALafFi#)zh^%fX}TVh`zd&GbdjgLx7VasK!s2}tjIjU
zxH5)g!P~T-lpVw={SE!9HQg%D_D1-g+RX9WK-w3Vx@HKOlIGn&B;&4qYN^BBN7UsH
z_jJ?pJrnkrTWv4nG?tOa<XXa(YZ^p$C|0#d_9h6yP&mgy(!MtRh_w4X8}?%GmA!<s
z%e(CaHO#L&?Q6-3sCfx&0l)<CEA8LfS5RATjV{T3ENgWIn<!O{<HwW+<GBl9`i8HF
zzhnESv;CVqDVgmgREBliBFK%AbuiDEjB<0xJ8SV=={|f!SM#s^xcwgkC&^CzzsUKQ
z$J1*1PsYz4nMKa6Z*}o|;nGDFyb<oUF(s_Wc`U5RQxUEK`G_aEAAh;=RA0CKrNO$h
z8aj9e@g;!3{{U$7Keb~3q@qovGvJ({+N-o@c30t_7~i{mX7Tmh_QGi!;}3vA2`FX6
zT78Qj^?`Cp8-e2u`PbYxnzRS@-LsnVD~NpG0$rRKS&zx9LP7n{o52nAtg|Qkwf+bH
z0Hnm<4DRpdeU*4&nPZOQf(YIC9)C*c6HttR$;$K|xUMhzYs2?=@~`5F^UBEHS^T65
zYoxTd6M-e0tjNRfAr3nK0JD+$*XNaAbK14e%HCYJng%{XKD=hP)>w)R^YV|wisbD}
z#H_N6U?1g7YssRMa5x-v`hSgilYLIgb7@%bqLqpSL%4Sbs2!=dvLeF4j~#jUu5KMl
zGmsw)M;)q-#nkNKuN-`%9-pmTCS^9w+g(EPD`Dp@4&H;P9_PJ$WAT^a&w@N(<KGT=
z`^1`TH+Q;a)S|}fSfiD#npn1%Lg1ArzB<>{w^ul{`5PI=ab8v8`)DV!5UPSA{o;l_
z!8!V5cCTv*iEx$TbIOu&XMq05ejn1jJ@L!qzNKLta9&+_&r62lScjHnL7?fg0Kjp9
zB(gtGyyW+<1NdPSOZzlfq-Y{!@o$Y=_hV-*uiXvbE;+y-m3yb`(XHt>KO4R}NoR8u
zj~|Tm<07N06jku<n53`-kOQNyPrRgc1XtwO#BbVHSnyBm-{EQg6W`fgL9BR}#wzzE
zJpTYCj;}Sslu|;gI?AM$Qg)Gn&3>c9^s3@#QV`v!f9WU7<0?X&6z9>u)cR-OU&3z!
z>z*a}qjB~{X=L$f^NET%RG;j-84g5>;0^LKagJE$n)$0=@L$4BKjII>*d){;)9!9;
zG-<4?#luGgR|HMx8(3jwRgzCBOn_q~<nq}+A$T+6=B^I7{xj8Yr2g5|jr`^|VH~o3
zo)|Yga1~tQAUHxW1#sR4@h*d+>bl3;?jyAmm`EohcMivZIqE(AYxD{^HE2pxl=?5i
z-{g2TadfBfqtX5-_}<$4;;edCh4s7nEp+V$#>V0+q%wb|r_UjY?!>R<GO`e>gav+H
zGguxf_^bOsT=<!^Ull#I)E72v;%13fUnV25_cU*Y`^qvEap*V|;+mGVX?yXnQ@pT{
zPOmkrO6X4CmN@gzVhQML+I(>&Y2#R0GRJO<fA9YQEurdvTKZ}+<g{A8oxG1Gs#d!0
zadUY4#`*@SX%3yHy~(?FDJ`>?A>+Ypi4}Gbobe&!Bd-T@<Cl;1yPNA<Ul`lZq{li(
zBnd6Ko6IT+!pm;*C?Gc~$_ee7z|&ewjc-GYjl=C1jB&{$?D*UHjQi7mIO?~0j)SEA
zx>lFTyjA&!MOa-2Vbj#)``1E@9cV?zdzoFTQg_(-b5^srZxh^2Z+UAj=+yZ>XpUe5
zZet{JglqwiUOg-HqxM-Ed><8j6Mt^eIA0B28>wS;U?+H;b}<Kr#|o#AI3E81mYSej
z&lcX^Tzupwn5RE<kTP?hPQKOZ+D?n5Yg2em+fjubXVi4Kj?f3oEb+$Ua2dm+5OM2X
zg={LFG_U<w`HWUM(#1kHz0c~q;jM<PABSO%{dXAPwgrN^?p0mP17q8$99PpGJJ<9p
zKZcq{v85_WW-d>ZkR70Y@=iL1Il&{augQ;&9vFwizq9jrli}pI9t+gQr=!}%ccI)*
zZbDw_kXcHt7n$U^G0Z^RhiStB#e3)N1#jc;hkvltJ~a4c;%oD$Xv-Xy*4nX#_fKFh
z+BXsgfKCfXxPr3`HZzfse>cu>9N1Y|@2BFA(em6+?-rXL>0z#TYS2$DiqC3}!QXm^
z1G&eRP6y#%6o0`-?X<5P{>HvBj>6_SCeqf|R7D|`kJ#>Gb^{=FLc@yWelvKR;-A8Q
zhML#Jdkd=%5VnbGZf3ET)=M^&DNz1Y(azyO$tny)oMR(7uO|5C<3AbSd<*fNw~Tb?
z*H8Y(xJ$__FMiU{iDUVgTiince=OjTB*_5abgz@h^0y34D)D!;m*COs<`vYbN}F8|
z=S@+T>L}EMwEX=P<DNee(xbY&wk~$Mf-*7B=g)fm7SsL+`~dLon+)F)d_{Yv+enLW
z{{UgqlHnnaU8EW3ic7N)Z15!!<EAnz?Vk(&#ox2FosF-Etu&omTD4_MnGjsbZzR_4
zpowEhBZ%%nhw{piAj*|3w!e7C@qQMM#-H8(XUOH4TD0M4Bk)ZuFYaUWpn=_8N!_uw
z<JW#R<MFPm!rlz=H;kw9yfb4ip(<cBR%$L}I5+`gxAP>=PvIw=*Y$DmkM?{0l>9oj
zm!2B%CXIO{N{t?&s9GkWa>17(Lvc1)j?=?>U{~o+gtfgZNw$v1LWU~{f^Jc52)951
z#xRSF<oeggW<D&!n&qQKzgKVbJ?Q1Nrmrbm$o?SwQ~Nx8PVjGr>^x`V>kFR`X?mQV
zRlV+`Z*dG#zRmk$GNfV3#tShVU><li%U*alNYL!9wH<Qu^xEn{q_lLkXp(r>0K8^E
zcc|Pxb>orGHT@5N!BnBuv<rU&Twm$;I?smewQWyRfvr)e5KD0YjN04{yJJ<BSC%Om
zm39)G6dS)G{7c~<i(j=Kv*E1=z@8A)?|-wb=C`$q+Bqikgp984Bvn{d6vnC;$Rh;d
zm=Y`M_;ZQlilG|S?G*2QbXGoNG@*%&M^2k;`F=_K5o)S!>@F^{3vQBgo;`u@{{ZXe
zw=|tv(A<Qv)9mc`sa?w+;&{m1NY8Gy`jPPC{s_tYR`|7&>&BN_4};*5Lt^si-rb?V
z!ac2;w0^xVanqAucK93q2(j>M!!}ZC{{R#GU9D@k7O=dA+fI%hHr7T}Bz(kAb_ROl
zU~3$IA7wNnZhmh~f8c&64K5$dD?7>C)t}E4ej)KhkYF-Ihk&ZQF5Zf`=brfLD(;cs
z&k^{$P>NXWueD>#Mu`-%svq`Qw<=?|Omwg5C-#f|jz45CgP*cjjyy;3*TFUxTE?Ga
z65DGR#$7`G-Q>85OUHF|(n_th$oVnBz`)|a8N4^IUFcImCZDd&1-x&#!v~xb9OM)@
zPQKN7HyP8%Qk7Z|vQFCiFY`Ri*Cn17Y7>>)S3Hz_8Sz(!^t+9J#1;a|J5((GXD@@m
zA$$E!Kb?F2i{R*dF{8zK_LN4MVwF%LD*1#fugxK5EEo(B2hdj?<FAR@hO6QIW(%w1
zb7<(QVQX!!Hvpp&WCQaaKpxqyi^X3P;P5OK_FDd%7Nuh?syCF(rc&E5#47?B6-PXQ
z&pj(@_^OkfW873yjVAjYRo94oK@FA8xpLD>9kLnjWMW*R<SAw(=K!!#^&P9^-BRW=
zZ9JcJ6_JS}fDTFGzMX<khkp`$DW`a=?4;UWppmWo)<YAG!B`byt-#15f({7cygS7H
z6SvZQKd9<)$uLN5q<k<^I(5h&&%JhG9AkdxJgPY~j}M0*+ggLZUPXxQCp`pXpL1WR
zKe3coGiY8an$#2im#3-5dI;q>`T|XUUuklo)pd7u1gu!g1C=<B9G_xq^+Waxy=!j?
z_@3dEvo@({pIw&auuss}CTFb&bBdgw_Pk@|{%7m2gXFk>30*zI94suj+l&kzmGs}l
zxZttZY~cANnoTJsXDNYz@ggQkJBSDG3ixt=6l)h66~q?kRtV!}eY{{WJ$dKfkHWs#
z_>(jj-Y}0$Mg{FOTSa0UKYB&uZy|o^&#!v?zlv<IzchZWlgIa^j}Kl-8~sT|VYhTr
zGV$~WAEkEbAj2V=O{8)hEQ6=eH|t!cpXDX00H6$x2TJHtU8;P%dVUr8O-h{1`r2zl
ztFpLsLg->_fIe->{I`E9(MitIUItcU)frfRTp!Z7h;R1r$FHw$)oCXn9gVxEBE0If
z^)AOxCH1UtnWXZR{{Vd%dHU_g>sPJrZLVw^?9#_JT>ZvY>y9`z!@+rSmjFj80B0lD
z6|o)G?oJr?CmF0|PeA25XuQCHKT*@@D$H_}gAIUvYbq<WAZH^UhO8UNc9hON{<JE6
z!&G(}MaJkSk+{m^8T8F_6G&1oF#6T2Tc0ihRhJyrT)$_UBD;?{A1Mc|ZBn1QtVDHZ
zpL|)e(skd3zAw<V=aL&6{TA{GrHMSoSfq%nm0XR)1CTN^>tBz)9Q}~&wVxJ4q<lTq
zMeH&I4b0b8I6-eHD=IeQ9Nebh>Y;%L7&ZFk@uNyzW8lY(bSUm*fv@yyyFntZS~D_v
zd)KEcoQnLZ@Mplk9{6Kz$A|o5b#HYG2C|eZpo#Z#To-(<J1+!*xMIIj;1?)iDmcAw
z`X4W!HSM6KvGX5_e`9T0{{Z6lq40dVMGmQBCCAx|0Uf(qtn&F@WZ|(Jv_V&P?Wa8B
z72tmre_+3ep9buO&Y=dS;pdXZJEcO!a?GKOEB0n&l32m{kc@yq1cRFWCY!?l0JTTP
zAKDXCi{PJwt~KpLPSYWZ`sT!zx3{#A&W{|=a`DA(?IO$bn}umZYzlT{@E$Sv!|^{*
z@FaRS#H}{}09NqzwD$1DsM;jw`#xNcGR`@Qge)+kRc4Vkl@Y#0eYG6IvT3Gx_`EDR
zz1Ds?T>LEfs|3;6Th7<hm6Oem^K4;~H4gcZY{4L$Fvc^HU#*`4{w#Pi;a|hMUkCox
zUKP-MW$^Rjjmzn)2BSQ-_L>&DhBz%Rh45#YZC+&%Uo4QiI*8=?L~@yF{>@(qyk+sX
zP4T|5quF?J_52@UJ@wtrtf{AK5?jd;UoT0%xO7Izh?%Vl77WPy&^qq<Z^a)KpTVC1
zeidrp2=1nzP1Wx8lXqpRtXG!TmXTb-(&^fjmeh)Sd1M=>iI_@q=p>JzGa9qUzpJ(P
zY15<V^f;|5F?V`1?u}F7ckJ=-CtT4yN8x4hE#8|3pLKH$rm1yl43>#;=ZSRL=8JPk
z>2(~)Z=jLw<b~sSWsm~T=iUtXS+D$Y@O;|u?E7`7>HZ<m;h)4h>}xDnHkx*YXs*Lj
zk)eiZS(Z_<-6hJ-+tD$#*?wi0z_&jdEOal5?|Y)@8inqiXQkM|Wo+s+>sw2yAw;y(
z-r`qygl^(E!w`$L5N|u{>yL-p--Es$d^GVF#7zgpI;5IjscmuL>%BT#OO2Y{;zWY>
z)>kcPVtauhUn=TXv_p`05rO%<u#>>Jy44)&H)r_h`afMRd6-!=^;@3f{{RH!_;2vO
z+ep_w8MUpQs!8FkS3uD`MWMC*&x&jhiKUwU)_o?+O@>&V!I~)L+R?SDDoDj!a}PiG
zY5O(!Ewqgn!Tuc4p8Li=4}wi+#;GQidpk#}JcZ_kwFH$O8-3BV`{uSGxeQCon(;4$
zciQK`%`$%!SzFp^%cqO!G#x7WUQJwI$nn_QHKnzt`}uD%6GWF0BgX<eF$jgEU)2xU
zf5o>tFYNR2BSrDwg6(`Y;%^md_EBkj^*^>gtYf>2Pt@;LS=|=eTU%#0a9NY~W}RJH
zLnQCD<L6$LMa@^;o6}oA>-Dkp7*1JMQIoqot54QHXs_AV;tz_okJ)QkfqXUb2HMQ)
z8b^p_^XAfYcp7V_7LnOp?UPh%p>Y+MxQq9e&lGntNb2uja$Wd0_HOvK9*N?sPY<q@
zt9WKhtus=&uo{1tcL9-Zq98I$63C`PAI(V=N{nN{X&Lwb0Bc`_bLn0t)%<<o&lAV2
z{5sM#i*>rzBn<Z=3%dloNS<~w$t0U52@~7GtpcOQ91zQ11Mr{Xw~l;6;q7<D{{RE8
zbsZDM`U^~8)27p2<4KBZ2-#I)^R3n?R_+yfl5aQ6KPlR~8Ar-ylyNmN9@3+-isfEP
z`{~!Grk6d;J{d*2lGOHpg1TReJ`QUqPY-*o+uSh^sk>TO%Xb`MBatKi%@8VvSCToT
zI5|>)Z2%vjb=kZFs(5!opTk<rms*9Z-P&Af@{QkS5lRemMBo5pl}G?L&K(=7;E$2M
z4PE%3S-OfV#h6{q;hQn2!K2xEFk9RPk<IKj=*5=Z_r)obag;2B%-^?g^as~<T|>ma
z9@Fi-ts_lunRQJ{L2qXvGB|zmxkW@xgs_uiGcux+kzYN7sY<RP(~PdtewVt}*G&(g
z!Ojx*qV_%h{_ReyadM5f&4FVl9QW_rlh=`7IeyfdRrUV>!0YWw&f+_ZQLJfpt#cb=
z%XcO~T0Hr_SY66w+pz6!hXTE8Quu-3%?JA;@@-z;S+)5MoGUuXX0cp{bFqx7Sp&oo
z*Um_avxwYp9Q-f)MErHLljF6&f%MCPHoxILBG|#A+}p;DBr70uslg;6VwcH7%(pB_
zaI2Dp8ulA;nzGjS9wQ$Z$3vv}bTn^<T0Pf|JW+pcY|_OSRMjjl2D0B}Ntz2Kw6nDe
z`{bCmWs*Q0FjYtcKJW2M!M+mLegt@*Rq%GbKZ@=wZ5R7G^G}KkSQk=(iI&FZ-u75;
zCi5-AeV$k%b&w+!!vYWHG<xp4@yEp<@S$Sy7PH{J7sdKwBY0l!Up`CcD>Sl4cPN#E
zf#sdhLno9zMk?PeeH-yV$KMJ56Y4e={{R_Y?^d|i?6mt|DcoEw>)R<Qrdzba&6;$b
ze$4A;T*(y6jqFZ6b%n%JjHcyw_Fccs@qW7|p1n@T;x>`{KX~@;(?rm<Tg?`26Hv6d
z7g|24b#B)!Z)%qJi$0-mJPOwqw~2FWai=TH*5t=Ds<FrwvF*M&d@<9lqtonkI}6Al
zQ5<u}uHQzIqKqr5E}F`rfXGnH05}BouNU}}@l#0nb)m`db*F~z!{P0`vcQwYZ!9`?
zrKv>zd{)=9MQ?oa!4&d9*HS1FTS}{!VAYeN{?;D@EOcv2D?K*X$%YuwKjM?n8|761
zb0(}D@!f!9+yh;XjarNMbljJw$DN49sJ&1B)8al4{3iHa`&0Pm#JWGnUx=E=hdd87
zMjajzVJbGM_E{R{Nux+@UeeJZ5xvxr+(OEm*qJuQT>QoHWA<3^N9@h}UTM*MOt#ZL
zCHPZN(ypY@6Is&aSJW&nS&|!t33og&TwCo6X{lT05?g#xDo8;4XZF{<I;ZTru6#WB
znWX6YH;J_$5NVd$J@<vIKF@n-`fbz(GjVIACzW=Q2|UZVo@SksdfT9oA%D%yeh+{j
z1AaUBV_4C@xAl*Nns%vWVXEpnf_<w>n@vcJQX6eLR()LsyzXYUxANkK-ZReD0jv49
z4OX>EKGkU_eLCs$zubMjO4{3@^k?j!FM)q&-`X<EOZ!iV?kBudOM7n{+-Z7Mjg`bt
z<|T#V*a%_2X;vW{t;mMo%qUYQGS}|c!;jk@!S#O_cyHp6w(yPZwdJ(-_qw68y0tcB
zJdLDXUc(*5l(0lnM-nWv7=U;dMsRcZTc&FohO_aH$6vJ<!S5YOs7Yh1Uq#`c?31F}
zUBzo@5I0)vx^|#<#itu7l~`J$&et1?t;0&nJtyMV?OCIIN`HpBr;UCe+jyEC1$D0u
z>h~5}M0(xsf@Ycqn^Kcb(_yn_6UK=>iZN;MWLdUubgz=l@;aExtxtBXrI$}s@BJsK
z*Gi@1eb3N;jFWsD_}lQ>_rzZZwCyic{@MF2?Tysew~;N}hUL8Ev+*9CBU{a73rNjr
z1eWYNt9foo9yJxFrQuHlX`dLrIp1npC&Q`O=o4GtYE!0*Zuax9mbzx6YcgM76^G4e
zjGkdP3S(&SR~`-GZ`!}$d;ZMuXkWG6$njK==wE5l^mr_dy_TJ#CZz9S1<j?L_O}sB
zWdsR$u-{KB>DLabrPnTegT>mOx_%SsU$jS$eje$*4$!Qg?D%&2(mSJTr}<OcwEAwL
zWh-9WSz79ID%?dG5YGueYm`nFLmqT^az4$*cebhbzu&i}n?9vHbAIdJ^FH_SFT{uV
z=ito`;r;K!`L!!;f5=-Kd(mfkb*e!eUUV9*mDK0^J_zklgpv@^nfTrWh^4+&_(Q1v
z(9y$V@x$RRnXdSD+6B}a+S<=eAK9^3D!ghf&8vAbM9CR3TTaZ<l=Bs*Ss`KbmxO<5
zJ$uI9Eb#Bd{{Rqpo>|w#`p%`QUFe<{)FINmKW8it6n8fg#A6~GYl~^s=De{i_e0E*
zD}Hvb>ZibU{{V(Y_+jHek3Y0jaW8<hZEf_e7SiBNaWD3gHPlM6THJ?dmP=WPL1wqk
zBaAdn0m?5fCo6bc(}Wzke*XYp&6s;s(b8xi7`z|w%i#{M@djTBc#Fap*WMMlz3|K<
z%e`5mlHH<?-u+_z$d}KIs-$}%ws1?#ICl3>*eA!Decp+sU3^W{JS(YK>IeIJ=4&W|
znY>jcs#*zJ?&)6Q8^(KySw7a1C?#TmWG;S9{e-`0ZyRbaKCw25tWDwX9BcQmcw<P^
zB)st#hP8XoGE0ow$1GpkRt_V!^O;*V@w_`$XP#M*d(Xl<y-VV+i@ayzuZX@N*7Pq5
zmO6}=SL05C+rw5cUKYGa8sgbC7;OxZHN35QC%1^9c2wHPo(^iNxK9a9sM)D2Ykjoz
zTCMf9ncYs6{x9qL{<S?X#eNO=zu|uX+I&v<pRags`tHWk=Tf-5@YL6qSGtywrs@hy
zPj_gsX=X%<SiaWw@kU-xFu~=sgb)3tJ{Rk-_$98Qp8HeN^(mfcr?sB!AMDw08f!B8
z(n!(?AZ^g3Z84EvFxUl%KI?CyS^OICY<~wlIiUDEz&;(fy73X$@2)JPk3!V+tA=$^
zWo7oCI9^}1%ztQDSS*fZ0d}-xcA8Y*5xhtHFQ>t;3}{yRSiVsPk9`KAEtEG`a5{ab
z5XOr-A-59wkVy|aTW}*TenC~lQ^i6!rnSAAR$RR_=<mNv=$p0QrAkTd{eNH8kBj~Z
z{6P3+Z>?L~&n3P7r>kD1rqTm(s4c`3VJ^d=c-8K0);~IVm5ahBMTwb#TKfmbdQXBp
zLGbq8>*72Uzl9rF)5eQ<w^BmT+v*d4X2<78I;WF&qnT7ZSP0hJ-M5xF`P1MwkMT3a
zx;@^Xb~MN?VAPvU(66<Nn~0;2?2tNK3ulbMJl3p$LS<4Qg@`{hlaC$Ke`~#F{{Z5=
z9ufGRs6C7x8(A;o)dNcgi+K&4JMS&uP?A|q*_PFULoK>ZAh=Pv(ZB@5<r1DYSe!FX
z&s}Wap5K?3nm4Umd-OgK{fzu?;UC#+!d@rT{y%8?mYHwhZ-{;*mh)VAZlSfef?ZyD
z;*nsI(Z10Q%yUO9Q!KHtM#``Nxcz$g`QtkgH;AP8ajaiyJ|mvS*798qY;K~LQM(dH
zHLQ@|CB>9$=YZDHIxuDp`^htwG(T+r03Ucq;;)CbpNHD7fo*kbEo;I0&bt<!t6U|m
z-Tj@Kl^<t>ppJN5XZ_;cO#zJJK+1U^jK8&2lzK1hx$$>e@ZX5y@dlcF26YP=qLR;1
zvb=$<OpCT~_d;t>$W}Go8QM0w<N|+j$g(Ks*!3#B(Qlhg*4JCFUscyeeBNP=bZ9v(
z(qEbMw~V#_0380-z9ZCpEAXGfP+fR`#`h_8;yb+~O1QSvZZ*pb2X|Y$rJmkPMVwiz
z65L%pYGjQe4rCFQ{VMo#;C~E$+<yh+@YlsnF5km<{xa}{wwJcP9J`M7bSsjv!F#3I
z>h>@z{K|;aMof$@B4UM<mVe{x_GSM7f`;h754<sR;S0?hQ?<2^Q?<YQ1&*&Jot@UJ
zWh8Ew5~KndB!)%Zz6n{vvDyUDfCug`?B)AUcrW9h#A$v$=>9a;G_66kSg)k;_2#iG
z7dDo+N#rM!r`k2OgIPlm3%yy1eUcY5kzQXG@P;b_(~4=ur+e>fTg$flSss30n9{Fz
z7PUSO{{Vu6{{X=ed~e`S3+w(n{g(Vss(eMCLeb*XJWr!)zi7Gf1hPmBmpYw{!5%$M
z-f+U;Cgr%=lkGCdo=E<Ct(M@r%LA<T^2TI_R4a#FfTq@72q2S@)Oy$Y5osT^ov)2N
zPp1C>YIt7j!=60w1-_$o;VJcZjw7$zf@8h1is*?hJc$D%Zjw0_({0pB<_0VBkL`u~
z7JtD$KWyt29wyRlz8d^(@d1wd%IigwPm@^Gq>9k3)Eb4HShdtwO@Tby%WFv%@T3w;
z1Ywm4_xLZxoJ}rF24@E*-^7;MbzYr+1LnAwfM{Z)?Pxw%`JclEi10;WZ;Ys0xtI<{
za=+nF-rikH;wV;V8I`SNP>Z$lH>p2>J!>k)RbR2XJU1~#aWIbJ-^^I<0aLbk(on9c
zD&f&tLj@`r2FR<oSAc7Ad11_k)%G&uZZ{|)xdd1B9AkMocTe&^1jN&EtvJ6w$WIbU
z9GZL(#|y<NxPu$hZUV>&`MM5*y;DT^!|@}-!bv<Y<2_>0*qkbAcPyiW);VNkJQ4^h
zN2sqW*Y7;7G7)eckWT?(fH43#Ambn$k&X>my3`e;Cgdw8Am<0=`WjYTkzQv!aTO`W
za!I4xejof<_^+h=3%JsB{{Rq67K`B_VD=hUlW+EMCZ&4NO3St(C?FPd`_8_CzI40R
zZ#7L`d;7-!0FRl3&Y)ofvg2?Zk<%E?Dy^*M-$1pp^2{D`M$#|L1At2*AP^e_<#U{M
z7_5|UD)a?l2I2yec{n)d+w`wPnch}A@mYmhjlylaAGluv{2`-wg4^~|@lK@;tn%rR
zYf*tcv~sx-!7T9Ykl~cZ>A6AN6rI2Z<bC7&YWP_EN&S$#dEvyGNTmBcl*{GZ%Wc19
z{koNRiCmQ-kIKmFoD!!1SHoYk#oo^ae$7%G4X0XM6YF7fkJ7&G`01*$e$JjemP3&q
zmmJ6b+1}eZ{RMU5tfLlwv6fv%oAO7{U$tJC_I@wZw5>8}8d&s*t$f+P(xe4qc%x=A
zW6dXSPVzUNxXG{0FW4VU)Vw|WA^2v~T3FIXmg~qwwie|R?JNqihH%VTSeD2KI0FMG
z^tbku)M1<AdWoEkme#}!^*=fOxv$Sp*=JUG{{Ux?41*rzF-qA3kjCn4{-(bk&1zbB
zh<BR&q<)KpR;N$U_~*r+6)rpj`$72H9~{YGwl|*?d?_Su*G&OK1--j7h~|%BM7P*v
zZ#0lW!tKLX=$)5}yiA|)QcX9*sT^lbi@+B~IXw84@cM$hjAGg(BswC2y96<8@q_Uv
zjPy%Qd*fe;EbiJ=7XJVid?PvpWdm^1Es5N$tfwFzql3shfUmycxikLQmbWpSf5j1W
z!#sWcQXKyPAx2{=e$6{;$k*W;GH^1JZC|hXpL0R3Tt?+)K46e>laa@<&1%}or`$|G
z&>+b_dtg@2UaA4FFSFIk!lF}xjetP}8tm5R%K3L^oQ!+)ugt4blUkoy2X%A5i!e#H
zBXI%$0Agn-NBgW;RIpv$$#M2kblo~j5<la>Q(V5Et6e>!te6g?1QH1!m25|-pR#ZO
zkS;y5+PtaLX`5M{ToT<z!+SvF4oD3d`t@N`UEH*)7Fajq`>v-Sp4#SOB6UwZ<l~X}
z)T=nNc0xGDRG&)8Ld>Zvm*=~HMo<YNAaF`<10PJ+7pw@svTiP>xJ>M9vz>q*pz~U{
z8iPv`$WL6?J$rt$={HeK>wy^~BO{MrQC;+-p)z(pW&N6Gwuj?q#>p+CKqm2ym${Gt
zNpBD7ha`?q%t`u^dz$=o{i5{?d4FbK2t#ZHGAD@qT&|#FmDZ+KCm7Cg`QpD-{{Uv+
z5a>tacgE-QBiRRwG}e*6>c%6`Y!S&MV*tk4!Q&j);-ALP8tJ|!_y^#vS3sA~vAgjn
zjHfILkXGYZmV0xREC6Vv3<x+N<YaPxXy95kKDj4ukiY%{&xy|}#ZXaw-|BEb4*VzK
zOZfFa?QJ?1oo_amQLunuh>lYpx%!{2aNZQqY&Bg|SN_m>NP*$ls=xqBl5la*@xjeU
z;9rRn=ns8sHHeg4U5N(QD&yr?_TiLd-~*1l)=!4~Nd}Fo>T=!3A@iOszFrs&s(3jg
zk)CVysZyP!k@66fbiT(maTH1MTT$@+w$mTl;fu^{nHPL<3}-ka=E)fSYqZw<C8}tC
zERNA`5?I>C;!wez3anBnW!M7)yF79STJs$@R<^wOy{PK>D+#}XMlFCw#EXNB<Al%a
zUf1G}5$O7ti;_z#n57@tcWT=XerAz2sqPP7uUhJtGLnyy{D^Nufw{ER^*vWkODRlS
z%<7CKG3<0jVn_gzr3o2Q4tVKY{{V}$Zxd*?_CsC1S)!I#F~{dSfXWXbI2`TiU3QzP
z+FNS6OJ3X}1bdPTumA%RsQP@|53jXn{94v+Zgib48(Gp&*9FOqgJlXZ&mQ%3s!2{T
zxAm!=YH@U%x${n=Jd${#=v(kiJeF)=9OtRyfnM|BKi=GUNuvaquk`1@;E<OQAIAV5
zmGf=n;k;R@MZ=+kU_C&_=EpykeFNazBYAnHL30<I6mnTgir_NulHvs5A7?+;y?XLi
zrjLisoBHJ>e)|5>8iPmsGg&|nGV6XC=N*?^vnTbhNd2Pqs3-k}ZM2cU&Azt`(jD6u
z&AlK7#~C|;uL1p|*;n>&vaxBULi+EAKh?I@Io2&n=Leje@z8*4)W2y{J@4!-X=`J0
z_Dtr<JlNG8zFYib5(Z2+(>|Qn=b5xWaFcyk=8w~`6Kb+u&o%w7NVxr;d~B+$9O-v(
zjCCsPs-OYXo^kyv$o~LnABEl+)ch&pZyDcPG`F_84ASODEfN@_Z@C%yLxYY+2tDi7
zziJlL;{BccMJ|?!b#Nnv2cIXF92=OGw-r|BJ$_IRwN(9}Cz3CKem1=^mT5Fwz*Zxk
zN)=)W+DKA!kT(!GQgAEaGJI6&#+{z?fBR|l_~>2@`5q<V-w)X6pYTi>>~y%2D5vl=
z_mae`!^?1nSCNJ=PV=8%O8r05{5xR_!7Zw+PRgnR@%I!020CLL4%PX=X{+hhKk!X9
zc`+b|z{_hRAZObrk|QcY0)AHEy*bIR)h`WO=~|-4J+|ajZ#NI}xZVNA(g7JAn~~nU
z?j*$2i<F!DbNvl)6c;Rcdm)-{h2-#*tE%{RH@eeq8cA*~W5JdeY_rX5zw*&pi7yA<
z$t@m9F}I~?e-J(%%W&E>TIQZ-P)UWZV~$XGBpBpnaNWw4$nGmkPqMcVp?+iem5}-o
zU93@9%#j(QM-dFiy;X|y)D{GT?hSm5vpefFdY@HmV<N-EH&^OMg^=Dt!Ih?F^6i22
z^9UwPbRs2u9tjn@qG|f2gr8|^x0Y#@R(S{sl?0I-N~Z}D5_X{f0C|fsCaig@GXUSg
z$J5wVvn*LboR#i<dR5cRCGhkm;g<bP=DE2l3N{NI4CCouYw=s+--mt_d^y$pdE+Ph
zHkqZuTJBI-`Ej`s`HTim)hr8O5(gj}>a`tH>@Y0(%S9PwQ_kWtM<1nrUwlrt`0?@M
zOYu*`*8a@Vba-xHz5f7CxVXBO_8Vqfu?USJjUbL!MU8-#Oej94zK<!w#=O@vvg&!b
znvNP+`WN=&)Fe;XZ^n^aNXsnNdSd06Z3bJra1L+}ezpA9>5??<EYQNymUhCnGRL{&
z0~xQ^UynX1_}lS6{t3YU02sV?twgteAk(ycQf(Vev4RT}x4OK7WkT~Ci<a`BA()9%
zET@cowfR?d@RQ@EuY<3=S0<fn9gI?2+7=E&8E+*^c*08?V}AJ*ZNbN1uj_mhfmE>b
zjn~H4&dbpJ^NMP@*NeA9%&vT4;rsnFQ`42h$m=8uq#jv%u;YM-xyL@Wv++i2DEw_>
zb*x)Cfh;2lIAEb(9qh@-U`sCnNXJ$g!LFC%XYA+k3*mo-tUOKQEh@qtK1<&qUFrA6
z=3@H??q-Tu5xlj*CHEeB@@va}F1%7-rQW3=vXt8@4ap?g0a)%P1CTICUI{0)ecW*C
z+Cu$qeA7}`dB#gyqwB8)>H3$%PYYRip32#+ZEs>r<cYSBt0*q3@*)GZNCc{YPdFV0
z&&7`jS!uroJWr?y^D61`ZDIjAI0H2g!H*YsU&8(d@TZ5hd$VsgrKZNVMp!0Qonehj
z7`{WCDF>i9JuzLc$3GExZuj7yi1dvv`r7L5OC|pRM~X!=5Yj0B09W_<!5u5jrsk^h
zrKQfgbmMEEnVKVRy4Q)%`n-2JV<bzAbtjIM`gi*ne`!PDuMk6T6PNzljb8)iQY{c<
zgU@>W(C{=j7TzJ$8ulrXn&RCT%tnuvyoZsy8<Y+Ysjt?r*$Vm}vUsBAL}fGhk=S`$
zs_lX-FR&TN_O86qwMnCnIA#5$t6!zRGw&79H5fc0Hm!efJkY8(ZNp%Y0B_GV_YcI~
zR7>$MR}w#$9j%?6x^^6Z=O0ql@b<SKi1jNNqY_0GqstpeBz|2L#z0j7=N$9@0P6b#
z;*I67@s_6x%$DXzpp^?N5XT3Ms6Bwk(AVXhV<xbw-Twg0{VOAB)%kysvth2<v<nfC
z23&#<9M+Y_uo?vsK3gNEdsmEEz0~1mh3#$&54#-582tet*I8<sqT4BGT>|#uxcY;G
ziu|@vvGs3Fj_%)6dxS9al_ccz-n1gr?jul$N8?;|y9k|{R`1mG#cPLG!K^0BjIX)a
zTVJy<1Fj8jMRZ6F)1`5Cj1c6WK)|ioE(0b>1L;{f+-g=j%X@;#9kMbr&uXwQBi=zg
zfE(+Y=i;0kdv~W9e858tHvk`CX(%CF?ycriW^s%Ve_GC-SmKSG{n5@vGTP_;5tELb
zkL6tcv#BMHopX5L%CM&5ft5}dB!FCn9CsuRE26Y76p=7?IA4nzMyujqg&rsH_K$eh
z6W?jFMHRr@Of2lXWC2RHR~?A@*XO>O;6K`D!?7x8-XpfvRiEWcms6gnZYPU({zb2J
zZ;6_}jI<9Dcz?qe5ZmA0M?BW+dwT_=CAgM0`&l!U%u%KaqJmr;E_tt<qw&|pJvUpj
z@br4!uCiVcJh4e^*4tm^R)r+M6O=e$;3#3pUzWdC;Hdpy4LH>A`X48sLC&;!dmaaI
z@jK$>zl^+X;GI56uNTDHD`~pkoDA!3(2bHzZf$LyQtBAG7$*`(wU}d?=sq2O(ASne
z1=TdG%|}qv;=YydQ$^G4qmsi>HZmeHk)Vc2(p!8nRxKPVqYg^~OZ<8JJ^1s$J{i+L
zX&;DQAHTcM{84oC%pg0Vx`ODHGAk+h;#mjplOt$9FdPx*m-m_%#SaJ1uV^;9oLXOp
zq=oKnwCk%Dw9~Ei8C*2*!E*6$`&^M2PnLzU`<^m6KF$*nhpeY4JK5R#o)na#`CC1U
z;eU-U^?h3R;%2p|=~g}&@Q#xHJ85o}*HD8`*)5IdkrXPebeDmcK^s4na*E$K%23nz
z-zUM}+f(7^g!~iW4;JZd@qbU$fbgb+v9){e5L#VZMGNUu>y~!578-u33q;dCn|BaT
zGs_-!&9hg|UMhpYQCfJLR`B?_Tg_6+X)U1EwB&0@V)>pa?P6&OV;)Eil|Tk!IV@}J
zUxPmp^!x9Cn(yrS@P|m#^!uNQ7g{#A4xe**EZ1XIMO!wK*HO8a(V*E3DhZ0+gsZn_
zmht(A&98~4g_N<5=`Xt0*ZvD4qfRf{?0mi9pV_O%mwyDMJ}}X5JT0n02uq3e%S(+W
z<WB^lTO#fV?qRo%GR37>Smj(QGhiNvMg5uVym9+PSbog2UyTF9mY-shO-fmA?r!z_
zk!>V`^2#fN_Dgvk(ba%Ok>Ef{JR)@;5B>*!(q9w&ZuZ_k)I3$=9cl!)&@}0_KN7>K
zE}d~Kk=))!$5qrNF_|r(ks$@X&*w9l72Q=U+O0ol{{R*E&rZ4Uw6}ui#(oyp7HuIU
zyS6ve>4GU=`#rAg1FD4q?c<s^VgX48)>8H5M>34@Zmg$x%i*%oUfp{C0Kq)y(u0yq
zW8wAiM~U=56lmH!n!UcO;VT_N(c52xPjP&gPYRp&D8@PEp4LPb&lr(o7~Z*7t9~8$
zm+<T1uB86}3qCboc*{`mYHQ2mZ9l_$8tJTF?t50T*?o1W$zgOMWN8?Eot7Cs`zM=;
z3;cQD{{Y%M;2*?G4+cMkHC;2rdW>-0=+GNzbt}PeRNugmTf-)&74eN1%rTEU&D!CI
z$s*SeuIpYM@mqLn_JRGQwC@^fHroEJb)@RocD6PazuH=TjkBlNbg?uRHjuTX(Zz3c
zjK$$!G!3(=lkH+DDaCt5b+Su;_y*XRIuDwY*8NZEcVF>e?3r=<BisJgp9XaQ01;ST
zc(g_3Slq)LzJ0U8ZtYeG79?;|H!zYnnAsVNFmExu2jQQ`T}N8|oi)#n_qq>^yiMS1
z9Z1Em*y$522Eyv#D|wc(%?hJiM;P<kTY?wmDvVf&&&(eNJ}G|CzaM{QofpFX6gH6P
z+82oycGDHD@dP@NKx|;RgxlOLzMl+9B1v$C<ZxkD-5`v4hmAjGzl=KP#7!^Z$Hgxi
zEsw%`OKVGQJT$k5Pt~oA*9oY-+%ipXZw1?h%6+kAjiy*3{nLEw`PL&RjVW6dD<$8n
z?d$oUOAN+t3zt-WmUuhj1-Ha_JT2ng3te49#_OiTsmrL{Hkyo$nV`3Xg)!StHN0?r
znm`q@%7HxX?#Jmr+Bf3o?0sqQ8&AHoe+%eS2a8D6G`&qP?*nQ&iAZgqN4BzKEP999
zo5-FqB1IS>+154PUyon47wl>9-^Ecq=Ckn<>rvINY_#iL3&eBj@mYPA9W<Y@X*Sk+
zR5lO?@?K;fQnaf+>6Tdz#;?9SLGa$w_RH{3!LNiLwHJ)MEv0zR#@-#4@B3#_xwVf`
zpH#GViYd$=XNbW*qi)wwJdE+PykS-)N7%l02Oy0MN7gA+=H}8-<w^N8_3Qeb4z)-p
zeGg~-nDlKoUAOq7s{C^B4Em;};KsN9)6-^(&P_{6Yinm)7Phx@7)Z;nmv+s*5&#I<
z8=K62CU`^OpMdmjQ{pbOadDw|lUtuoy4P;JHKj%`E^b!IV_1~lTt;M!FjQnEV-YSB
zd)EW-f5N{OJazHL<MxjDS>nB8;x@hEh$PW`ReZW7<(<X8p>gF$d#4RvSytZZ4YW~t
z1{38;<wxeZZG?Kq$A1F&tHi$y{Bhwp^}D@hABVQuHRaR1sSVuvZLwxaMx8I0d33QV
zGMNiaF7;9gBLz;2RU;@}cTcwe06v%9Bes=P-!zZMjThnWo8xbaml_wsZw+{+>r>S9
z%dZfO+r_5GclIEr=GrBe<|c+>%%(+_Mt__4XyI$<F9Cda{i1vU6|S-33w>(;08a3s
zySBH`cHLf0VH8TRyf)FolEQ{~82PAWR+?zCfxdD)ALGZyop0eG)3twyz5vzjd|iEg
zYkT2$y0&|Zn+uyLq#GiKK0{njZ!ecEu4I*?B*r(XboGB1d|CL7@c#f@(vwl}<@bzr
ze~FsQ>pHfXZFzNVqB~lw7U^ueWtuf>G<6#!FvW2pKf=V1zonH_ohVdIZQp<E^E@}C
zw>+!%f&H$24*W*(Ro0QFcs|!&ZBNNt-A4Z2_QO`Ncs$sQl0$7Qkk0BHFkd0JDzqSC
zUCB3ud>!zsTJWZqtm+h<_dnZj7sj<(s`lQZwW{{sQdPSsYM0n6Vvitbsl6#`x3zbv
zy|>ohDt4^ei4j5gK6(Cu{P20@KIgvAxvuxcM%vw;e=<W<ls{_HQrDESonV?zZ2U8?
z8e!v=+%Uti_|)R}N-!USCt5zJ5EhKmO>(;@hr4t!)Xmt^qnYkHb7c*4sopg6NsKkg
zv?N|f{2~?-{6J+F3F5tXI=gVknP|}x1?mm?x)B8={_-z|aizGb>g+w>B1lh$LK$c6
zLg1wS;D}>OG(9=Ptfp{iC|0E3Ouy^u9;XGE!>n7xZPACpC`--v?}<TAG0G~7&yxl$
zDN!W(0u;+?kGOVQ(*`2@p4iMT@IG(LR~P8`TWaXZmu0{PM9yvq^#LPdaI+*sgb?|@
zF;l`|<HV<m6z<|p;ueRzoi43$zxfb#sx{#srVl^ts@t_RKkYrdltMcqqmD@fZngKj
z6j7xyZUEixg>57{t`t+Ta~Z_UaMA8ew}v`~_{y1XNtSh)X?s3OqY>WO88RN@#Q3A=
zdvNO|-A!#~lh6b<=BW-GUN`Je7l}3U_}3)G#2*6*D7SQ3B!WClY8*wIT4ijF2H$Qf
zbH3s^3q_|}TB;k&+~K7CO`TG|LfVdk;bCqw{*FVkq5Zma7SQFM8~-8ZBw}4$oC`g;
z(67`M>|ZUJ<?AW$iHi!MHwO==O;D=1@0dsGHO@H3i|DR|Mw=BJhZ015a|#hk>dBXx
z_5GVz%<warh<lzrZ06A%>FSh}lt1c32yK-y^6aTFiH-8EC0RFeJ*gYgsbz_SDlMC%
z=nCB(J-3o*oidnwv|W7LxtC}os)h`4PPCRhD&DE0I{8-<GuMfKwgI#_;3#f8Qb6Mq
z%HY)fB!n4Ss@gFn_@ixs`BuH~O*yj`O@^bcR!M^g%MfRC>T8a^j<^VpjD)vF&vis%
zHP;1h{Tmy*x4i3Vp69LYxW^YTgxXI&g1QfOJ;(G{<k1f-CcA_H65&_MS==oJI(c?8
zLO;@}t_1{&v;2OoK$_DZ+-)X=HOKAe%ik5^#>wT!i7BCoRUzF4H+KnlO6TOi)eBjh
z%ZG<w5s9bT&3~Jm1%An#?F1BC%XiD1nLa)5!o!r7Yt>qS?ic75n8r{Tjm%fUObdIa
z;R6{=9rW)soP*KgZEbBr6jW;ib-fS8&2vOlH(<WVb@aEpU!hI_dZ>XWsy0ywCh+4R
z#=Bzu@P<2$V@;)WKV=Z&TV^(le^>l1%T-_?t^^=4GK7-8J2?#^`k32!L!Q2F;S=Z+
zEV-;J=W|~1NApUt95aY49qcB@?Ng=qyD6}Y70y6XqZ!1B0JU**9eAfL!zttsS7*Jp
zK-D6G;G>F@AeA$5KhY|?_atuRr5%-s<=s5}oDsqn-p|Iw#yTeeQ`p2{m4hp}qpDX|
z#y$7cN|dPAiz^1jry?VHvi$iy2Dhmxu(z0~O`)eD699VhSQx%@F=nrqDSl9or#oXy
zcdqpOSxbb3lNm_SDAGTbJ5j?#F5y_%(H>|D)e};b$0!?PjyD7Vy?U5K6>~6%8sn%t
z?d}uNs1>*DS-Spjdf$6oR@;w7MPlrfCS_&lm?HBDUm+ko;RT;dO|#p&*U{~INLwP)
zAAnCtfAy^<R`Ra6Ljeii$V|K_Aa%(U;Yr)nx|2PbF>3JU+JoCORSh{mP>*SXx^B9r
zJ>aTd5%NWOqZ3f;!veO$vV?<4cq>lLY!dST?O=QjXMPF3XbWP{?yXVN&zVzYRTFW&
zRdYsrS3tJt@L>|$KO7Me&<6&=pPmjG*CJNE`;7fVSY}{)vQk(Mrr~6icqPKXqpVC_
zSVgwsti?by>W|)a8d69NvyK49-vjb|D}@p*DHjXhcMBg#$$lxmbe9bn&z%VnfQYA>
zat#<$bZ|S8jg1UxVi>pf7i;w!WZa3>Mh@W4C98^o?RgE$adkJ-LAY=$;|O^!WPdM+
zsRMAAQwpuWkf^CeFo@qu7i!6Qvo!5X+#yB@>iG2r{g9k?A6~X36#vEC5)XvZc9Fse
zrY_><kVpB?kP~emo#6|g_-mo?KTFU5*5q?Z{p`@J*Ww$fa4n24Dz=>%BNa2kDB$de
zuIu=?!DB6XFCtC@_NI-5v|4BJ#-Nvll%HO>`p@laGi_#x>Vc|AEpX~U)-&cwgw!!1
zjs^VYF793)8h%fkkyK*(&#ZHNwX-{Br=vSfXQ~ROEOJX*lE?3*B+&RLgI8~jFrVAe
zD0B2|%ldroCxffKyS?6_ePJMwYw2F{uyvVN(Hw_mt34QAlWiUliU&3fhxrsFJzSXC
zz3LBP7v9g-8q1l1&xEe&Rz%kbY;>s$&Qsf}PAQ4~-rYo3&UZ)V3*BYa3J7&E-Otd&
ztM>*Hybh2q*?yh2w8afnx<Owhb)Itip?(o@@@B0NtP9Q)fjI9+ffS0|I2!0~VIlSv
zSitOlhSg~3fYoigsHw@UNF+ugsI)<<gpXf6x(iIFn$FrUsqItHV3dxN>h5650sWIp
z##=lwKIGBxVDx7=X<{ouBZV?VVO#2_hG&J6>+S*+;KKyt-lc0xFN*q;D)Y2fhl4v7
zWK^#6q3-tGf|mcU#+&`%U{WK&r?S6(12?`EuvRIu!elT}h$IFKSZ(TFeBVr^sYD!1
zs`DS-d*oG&yhzPZ+Z)*d84+Bra;m6?y!i~}j;NbJYKZ8pq7;l9x7rdjL0;y6hXlAI
zgh*FR)=dTG-s${9e`1kS)zF|EVva9A1~rG0&~Ho*0+tDf*6BMQlyrUH0+C@QW?_nJ
zEc5XW=0H*<#qad+Z<NoX-qm$R3|x7{MGj7xuxSNwFo$Mz)5D%&Sdq5qP~>DhOolEA
zwYRw*3$g$C3-#IT1KN06tK<nJN4G$?Ezz{9wz{w-7W!R^p*02$_P0_8)L|^*N?-aQ
z&*Ku*&)O^DXK`+_`}U6D_CJ=3^Z5ksrXx9fW@hXDm!U$fl(>f(pS)o)Rs<!3N*Y-I
zY_>OWM?Oqtj`2HV<hN-?t}QQpPh3Fk8FWX(`#o8gTR)1I(?61vi=Gcjz58}AiZMsa
zB6m77dut=Ai#{A^dln8?fK=ktz|K4^<gCXH0;Gd;atqK+$CpUyl*pN$d#8Kc2)=PX
z>Zo;NodH8W$i~o$3dBrmg=@v`G~VXPuFXjQ5$w`5x8UA43FFaD#rdlx-JHpf>2bRM
z2*9slEDaECp0f!Gmk+9RGDf$J2|Kq%#X_E&kjEhEW1WwVjzgyRT3Q<d9#*|QLGsT~
zgr{7r7-woSwhbW4rBoVn+Wlu$XM&mG@WXAGj<K19NB$(S#8^gtsn9JG?rT_K6_AT>
zTT!^|sRW2~wO}DZ>GyHEIIBhaSyLqzdbp3a%`v}7KkLe($FSh#15S}H-2C0}t`+Fc
zDxoM03&L>SN<s7FO_7U3YtL}15UgCK*@_m?jNpZZ>;!LtT0TI~km?mcJHz7lt~7f4
zr(fvkWFn9V20_XpPNVN1Vh#?q^RJZCtyA~Z3yw3q>6^ngIh$Iv!_<o-p+#yh;tiwi
zjP&`&^1-dOMRO-s{}OATB}e>|4T#m?!T%V_bdyUMx#Tjy52HOv(>mJcdeP7(zIa_A
z@YT~nGLO9c4_vEuEy`I5q5drTN%9BLp;)}9m28q_3@o-k@%#|AtD4=*lxkt!|7OSt
zyogJ2jHuSe&M;nq>MSnfX!)XuN32^l%2vsNDZ|gp%rK>W^=r)KjZX@lHu;#<$G*o{
z=_u+;vtE&P9$u1{{b`y;`g+~ee<`L}n#Y7$`OK|H4j?_C6D*$B-bpUae4J&<c-{v%
zgZO17{c(mRdm=-_VVQ#-zv~X89bBy4`-PQ<$l|_HzFag-)|a|R;VH=;p_b`U^V>ht
z)C!DArH4emK)U~V-#DrJj9L*q9nSR~(m2E(G<KvZ^fdF|vb`QOt(T&lPynWz4P;18
z@s~aP!&IMc6=IOfa&_~bVwm51(5Lb&;4^+fdZLVe@a?U!MWel!#)R6jd(ZFhih#Rp
z3BtBE4GwKfu0$Eles(bLj-nm3-_dIC)Rr%qi14@oZV93sy%ojW1Btc3kC$e8Ndu_I
zDRmo^cey!ytV}!@sGDmR_CbVL29JBnyBuz%gkJ}5_To=wYGp$t(0jw$%8orkj9Fw-
z`*siFcOnKJk@!!@8hzQkZCJXwf3W}fU$DlllI2JUm-(tifVU=p_0?xCn$bvn#uY=;
zHb+jf*1?dV`w_E+I_FzCOo)QnIC~bNh3$ja_43n|5wUicL>=fb?WO-P7=<8@KOeT{
zTG8uuhfvGEtoiYdp~KFNhp)wPN1F4a7n!2o-PdYY0Y##J#>TR7<|5{QnPe!c+(MRw
zpPGE%AXA-9S?lH;=PlN64;|}9Z(X>uESLTtUvS1zY32fKP>bPbWo6QhWn;8CSDg+k
zRAzoHXU&q4B=<g*B8r{wVaUSFC7&ZM?4m<-dO{G?b6#H;rpx1q{$gJzDc=!qm9X>&
zzZ=ME@z2bt5p`?Y+|}6B)!2Y3-VER{l^ml|`Zj=Hvf=%kB}v!i){U^G>8{>qb$=8p
zdQr=h+?L*@yBo@~C}>qUf(y5J!@wZHb9nE#c%vIN!)N+vy!%n@PrOjGg_hY9E+1Tv
zIMo{>I-dDuo&EkJ)p+KFF{*ms&5g7zI4hPy*bAr!$}ucEEx)YO9B6|SWz4FdzqlZg
z&0dJR(<4r4$=CQts#n+EB4+*bDLF28w${x4ry()vp5oGtF@Jtr&akb+jE27S*q(=H
z?~Py4twray=ZDt=Rpp(!0H2F}(~`Gpi;rr(u@#bn-yZY~Ngs*8>-Cgu_}ar+aJG8o
zl*8d_hp`-=a+BO&+%D<!1J^zVJv_k8_bM0F_TDVH?4Zp3wf6GasXq5|<kivEraKu1
zywyE)c+56K9N^wzTH4Q(PU4xy>@3;*w$y2xvBuu(Nw2?yjHBzl9~eX~|9qWTkqv78
z{_)W+io1pJy&91<cR94iWGI?wnMFCJ=Y!AwjRrE%ByFpCNF^t1O>lOEvgf)%K(2c>
z8@q$kclve%{sBol#0pJw=8_B-PHSwbp7g(N8yh|q!QUmU37C*&Sv*|fk?l6g<ZDX#
z4{wGMl~u&Pzh<$%8{ppKPO_g2Q_1f86Waq*FULO#h*5f^^Xh!`@q;)#Jp9yPkzo@U
z-a>VUHKNRIC+vVvTW4ZT?B&ZSDOA?`Z|^4Xwk3C^hZ!fp`?X>J;o&JN9s;R%7sS81
zru(c@eF$!Y?>ZsURT?{#Up#@V^9{#ad-t+mo?hxk;>MTN_neqtsxueFajpE931p@-
zc=fa@bq=d%&11r9#0AB{yU)A0X;}*Ag~mfN6@y==nOy+6s<1$kbp~9Lpa>1Y85ca|
zH^Z+VUNt7F!emd6SM$}nJ-s&$ahwDL6L?0DXHn<a*oiV<QM+cvXAVO4v;KAN#!DQ^
zNeKxU)Vk9hhCfEfc-b|#3$MQZ?I+1WLNs#h`1)H~m=diNmNVO}aBJGD%cgw#<Qd0P
znE=Dg*8Rjz@V`w<ujbN!0cj;EebAS1_$i_!qQr$FE>1(G*ZK@dS)%c`e^+J*Z#(g8
zufzxpH+IO{?53_?qWx?kK2x#z&NK3$Lh1G|M|gqDC3%GGXGs8!k9l0Zrs{0kr<5`N
z2aLm;mhPw=i-!3QrR{x)IG80>{9|Oi^^}Kd0LxYNe$!!5Q{AMV%B;Vlt(Jc`N&(Yo
zF@|F8_%v@mpV{4|8fZKVBs-~^wV0vXAG5REe?Y@)HQ++G+}pDe5R}7{C=A}!vWpF+
z09}7)gk@TBzFVbiVI(XORgm57ib7_5Dn2|@A}A%Hc1?Q=611bLWULj~w8O)#dRZz1
z!_?SQEIaZLX^L{9#>4vmS82L{zbVp~C?{8RJwu*d;xqdO*#zt_UmRL~N8K3f{*6<6
zWp3R%J68jRw1uS%f4G-8^FLNAJ-ET~0A-1_%B=y*aOtO!?7*NP7QTUU_Q#C<C4?m3
z@<teSTSDfUxH}P(f5SCq#lab>VK>uRhSvPQn|u95a%o4lWjE}8GHxV?FpGUF))8^{
z!<kdlGDok<Q|_m)b^+np<EeSeJB_cZigidYWQJZ%$ZcdNp`-HU+?Upeyzp9*R6Au1
zQu3;F-{yP6>q5bQFIVX|6jtEk`Mxvj`^hpXBkt?L53RlyCO;hih<PQfv%X1Cdu%MQ
z+I+Nxkc^T4;}HHkxR}~S`{gi)TXKnCBo8B5pwRdyQ0C5;G&Efht`wyxw$m3mV7tc<
zFgbsk(4UX<^Xy)w0w4F)S9tUsY4>auvSrDq27@oJ-gd-Z9rL<XMzCk<7iF-+N?9)U
zvhUq5$v*`)?j4n^H?aMxK4^yfWtE!4|L)8B6q!@9?2^Ac;5>i-**g;Qt%e}b__+IM
z8OhO8fY-q+6{Se45^M{uoM=lQ@YlbqF>1|Vn9m#UBQSdUjkaf-O-w5uDNZY;Pu=dF
zkuh^)0s0*v`5aQ#vSf10F+x$ANr$gFA|vm)cu_MlB)vFFB1#jIh3G(!H$KcM$>14g
zZ+NWB_78K%*BZNP{j@4JzQ@Ydi$JXRIwAyQB&nFYWD`4ZH7uc$XM6qry?}?7_z*7{
zLadn-n;5EDjhl+KFU8xo+FK{h{P>dX_uQ|JttiHy>N_W%ce01)Wo<spx3C|={nKkd
zhrnrx*;)UY#|nA^I00TO>1ecisF_rt3b=1W3B`?ilf_h7ys{*PTTGeGIy)^{rR`eu
zeo0yON&%UsBUl{LCpnn4R41bpIoG*xtTXEVHW>S(IeCRm@B=2>^!6ZWSfc{L@vYKv
zF6zVjAZe)b4AAkEuP?^K=hmGP>ZiZR_w;u?Y2XxjKAqKcOVUT3&G2PBHB^#HT0c(q
z0V0IH4vL90HOI)VjI<;w$1RIR{C)<Nez!Et{L7N@)(~rtBC9UKC~w-=tFU%QUyf>M
zkM`AyM`@)Ca!@rum{QHZKOu(5jE7wIepNGzuTZns2YtV;rO;4qFt;Fa$Gpfd_6$XK
z_bqs7?Ti9q1nrz?3!eOfPyWn}cXP%6s6PCGjqhA{%d)ui!%_j4z1H@prS+Y&HL53X
zLn*C-p~ITD{pbmlQ2~Pdb3UnW)59GJI`hcU5cHeomUpkV9zR%0+{*`VkjFCR2J)x5
zP>`(T5XSKk2-}f-_3-?t%;r7BcXACeBc8i%)fl0QJ5xMGvScIx`)@s;k<)%Y=YPdg
zL9CwK65<)Q={dJo!&h)uda){rW**l+;Y>XvC+px9BdL!|c>U-we>B&3SYif>gTKnV
z<F-KLf6X;m{IXfMGPz72HZRe{pRD%kVWnkQVz)z`kIiOrVx@+}H|JY3KFI04-S?RW
zpd7ZZ2G@XMYt4Mz9(*JF^#W+oVB?P1V2=N^G;-wZ;2GCqCIhwl!;ho6q<<Or2SZBl
z2mSK7aex~{o~CvP`Wd8ZnB?6MyFKW_#LmH8lt*w~n$gAs@2Yl0fsU6Bdh&7elym!P
z^u=%~!z3u=@|O7afi8snbK|J9=(ul<$RsP(!YZL<K=1Qfk+7Z4Bp!jPHCu6X-DPOM
zjG`Dcyg$3Di(^r|6+Q}Tn-!pSWnp~Qlw}(~vhT@oZrWl~MnA3MpZOmiYl!ec0T~wt
zM<O9L`MXk*C2=_(nN_aE)i-F*`KO6mpe1H$f!nHhwnl8NrQlQG9{~9!tG=Zv*1D#9
zlb}xACG-Jc??ZQtyvfXcpDsdWXB*=yaEM>ft<X5IeR&y(-HI*e(V=v?KU3Q`)t=W7
zN2}Gj02(?=BSHWwC?SMVMCHF5@t@|JXXB4M&y~>iKe#gZOzm<-91Wk@O7rB))N0Nu
z0<i+KObd&aopEpS&$Kh9T{INGI;1f-4Y=uZ`Mo59$Loj&8IJ%OxdyR-$L#gfrC{hz
z+qA1`VJ}SEA57)?n?tVd4@)o~A42z&t3*;Xkl-ST#`3`IXWGD3n3KDZLn@*0zJD4=
z^p~NO-|^wQuSy@qZy>t3WpwC@Xo`LP1v=7i@>l8_pC5M(A6UlJ{<}HOvD`PP`sdxa
zk;S7sMt=wPS~sqHX6uO4HG7c+D}FHE>;4!*g5^Lu9&6!}1dYS6K>I?A-c92G(s<s7
z<6QICy0V6^<o|>fKH#wbIh+r@b>s0f^z7xB?Syq%heyb85&Fzeg2>Gb61I~xV)aC>
z>3D&wUPbsvN`Pvop=q))@{o8S3DbE_K#{3r+F8nQnXQF(M?EJo%eT6xqM<-!t<+ME
zWR2fD^>{^t#lJ~=W|Ung8^#=u`^z7A5q@Wx|5tktNtjTG3Uo<86HG6y3<&zf<%o!9
z3_0b=|E=5Q-r)$eqipeIoRqkZyH&cM0#e+wVyqE!FeR|PU#gmG8IqwednKV}TrTVR
znty42S=C5K;y1u_@jOqYkf;QSF%L^(fhP9wt||loQ^G`i+h4=O082X;Dn-Y+3u{22
z#>TeDm!qzAp9HsjP6nQ<>QRa1vKHM5>b)i_GSp5IW0c{%CePov`=Lm9K;I_R*UhF-
z5OaKC<lJzW1v#$uX}Kg-dP|_r)uiEOn>r=zRQh-)x^{#>a&dZ{<uZv}Efiw!SYl@C
zTuI}-4<AbR^ceT5A3!GXx(QZq1Z6~lHHj$4N{p!Nyg?73mG6+DJ+)5&c<WGHViC-O
zugAS)hTrYGaB+Lot;FEm&Xj0M^0MC2*RGzzM8|<?r$C2@3RCFb`?-r%%@J$1%)$@a
zp57Am77TD1!<wBJw!AT6Z^~F6UoXZ7&v{k6hgWKkTF5S4Ux%pmAw17Z&GWU4Ldvn?
zceNq-S{r4Tp>QpIS!!t5!M|m4l7H2eDnzl5KfUpARyF*k$Fxj5pHIYg;E<|<5aq+w
zDm={WW@I65A_99~k9>T)ujn2l9_P+<Jll|S_yga<B)H+VAZN=Q1U=}G^qk)vkh4AV
z{d;XLL>^p)`47(^t`D9o+4ez_E~3iD6i+K4oFL!8<J~xWOM15Hqf}{w^aKyQ>YP=_
zzBaW;L2(6;=1+)$ep^b&I@)*uxm;$E(L8o--^*>XKs!WP|MKS&m%M`W`_CZp=EZyR
zZO;y4@z$j2P<$B6T^10WK#VAe31QI<Lhk)eHieR&?6l8cWHx{qYK}XAg5S=y9>*_G
zwo4Re4?prUZ=>-ah%FGu9QGN3ei`>o;$aO?mU$bebZeOYK1xP@taHh@FEH}5lk9z4
znr>6%(r4pgJq=At{{20E0z=9i7$6XXf2)fr98i>*>Co5`qCW6vV;^jaDsf_R&gPtH
zh;w?A025!8eNx3UO9$tze%v`ynzO5En<d|Dn{aE6<;4IILSfS`AUx&)qRl%w?fN-i
zr|JypDtg@+yH)^7ps~%zK%C8Q{%O%btaX+Jp2VQJWCFjd@MYeYV|(zm<(*JT_L2Kn
z1pB6oT&{Z$4oHi2#r?5Zsrx}BFxPCZ?nLoJX_(5R=W=nlxYSogBj1bIf*S{V!*a^Z
zeKJlk9$Q|4nSG?1Tbr3^$yQ{Yc(B1+q+3DRfuEnjC-h^wX~yT~pHirohBh)8K6q7O
zQ-P8&<EldnCrL&6aKr9!wfraaI!*b^PHrLNbPp9)e$pwuVD@j|!L^Kcu7kcIBy(0M
z)zVVIg0j#)sq#sDlS$u_s*L9o4+|XI9wL5MHg--w1b;PY)8@YXDgq-fsf~(luS<A2
zfsL90;48iWcjIP(o6NZJ=4ro~%9rVJ@6bvO@FO!D_~FfffO83^P*dGKe|Lw!BRz)V
z37nB9XKa;VNLT5uP>}!@h*L>2=P3`}3!@05f6U2i+n0j_o1@?8TzOiWr8+b=T(i9>
zYCq!?c&bLE#MR$kvD3wk9PV|;eJRE+T+sP{cr-3X@QD2CN>k@OP-oN?(&X=&V9wol
z8-Wa7j>Z_b85t7Fon8~u>1L5T5NdC5{S%-O(3cmqQPZ@j$TZW%<`P)(0h%_@mYbP&
z;3uhrT2e+kai#h=v^EFD*d_{xG1ATJtB5|vByv?Bxy+WU1`5It;Ck1GXL147`hd<h
zpm@VLU<gFf0Ez-Wfk~8M0KIJNnBd@2QsCRhHiMeO#YyO>Cqk}}tJN-pS;9On$66#3
zG5_^5zv}6d?qjSRrWAL26J*iVD6!#CLN{LvuZc;MX`Ai_Q~8$}H{%xtOLa@8W|NP1
zy1s`#ojA{F&(gDlb7ZI(6C-z<H>-uvKjtq&sWDn+Y5iR+jqQnxeN0DeECRlFjn1w@
zM(C4)k-8$!4{xT#8dA-*xEex?N7;ogPLKAG>zkoR3HC*p<}HEz#<C|uf?bPM=8X~M
z3&!toDx)lc5}fY?njfV3^O<vDuYi0S)%<AImO>|OXpB$Yd_?bvz!{9oJ>JZ+(G!_C
zJdn?gT&t#yH*-SqFQAdD;!G>w<O6;0(kmh(gounIO$rHoz0aR4yfW{9j<jsc=R(r=
zfa0=?i@T#>_|~32H=T!-e{uJd=41CtWkG*6bURq3B}mLCEhkb#J%a*O71e-AyLGx>
z2%*7%5lIp41{z56sNGD1S&kqL0YS&QmcJS3?BKyRZSN9YdBFs6q(!CL%j=ZnBW+mW
z#yD>grl4|FX_FMFJ<T0t)ID=t+ckowuzbkKd}K@xK{tsKw5Ner+pg`JUxN7swLyPJ
z4DyQk{F>H*hu<Z(S6U4e;i%5Nh%Q1b{|t<;RQE0hnLTO_q{K?z==^k;<4HMvo_B;>
zWY7N)%yE~dFM*>)o{ufPV-m`#nS%xSR;mPlLu`$<&5A=|TBSIEa9+(1H}bE4%FGV3
z+qnx~t~@!B>UC!x5M+FkHKi!7NQ0Zr;R?7MtJ{`Z*sRXN5hqjn$&a)BOooWJ$^31>
zrOBzvoa5-PyKQ_PiauY(?aEQdp<8d)e@*uA6+{DQIuvU0ZF4{*`+n}$Xu|A?jcen~
zDT~ellxYkT=of=+(!{y)SI~2%!MJ`cdiu|0HEVHur76WAr_58Iw|Bg4Q>8d^N;UKQ
z`G#Y$ep&yB!IWvpUiOWEc)w82cE`Jwjz17_l%~FF^EIc{vY*=ukZAkYU3CX-B{Y8&
zcPQg88Y~Rnr{YrkbQ5I+*LF{Q8k(EKb@}*H204iy_KVlGP$oobf0Mbj9RN}(3gD*a
zs*1E2^R2~W?UKL$?g=r@o0v;hvA%5W2G7R3@eV%8Z0(+>P01Q=5xBt+kK=orIF`qt
zP(!2*`GZx=^K*0=Mj+t(0ULMhiGbO<QiM)iTR?c9zXi^64RIq0v3|Mct=#%W6lFPK
zY*|9(_3c>Df^}wQ$fcs(4lO^rv3InJ2#o-+$crFA%OI2P&`7vZinVVIE_`FqM@X<k
zLVQunzHCj))!u+K<Hs7ToKMU1iK^%$j-U`*tk!I|^Qr*?7%c&O47J0AtG3S7?EIYP
zsYiC`ubXv@O|ATnMfbAV@o~Heqae0YE$|7+feGSpGFRwD6d*?4e^bU6NDsrUO!}ay
z{n`=Y$6{~i#C_)7QiC9ZT5+>M@}g$sFL_xDqpvlRf7?$^+<=alabnLv`{q~}2hx8K
zo{?7mCez5+6ZA$Ov1U(BQ`z-Ta`82T8{Wp57|24W>VR);^7lmmd-de^|K_nNNP=nv
zIXTo|DASS`X<r*D@y*R{Mo>ab;-uLX{yy%>3`B5Cz{MKxrLybvAjDm9A3L@2_|61F
ziLxDDCsCv|bH0)KbmVjT5ZVU6)m`uj)-uUH_z!Q0dTAhKrN2~7{F&XHeG64*OWG)#
z!)~h4QfCJTj=*1g0i<>U5)1iGJ~15?nRBl?fjNKYPTOpEuK5X4nYB;8OFXz56D^Vw
zfutI#q#$g=LZG;1O0O=Z29Dh!n|Yj9is_T9HXCQw$zFp{jhamR7ONKsd6rYi=Y)N7
zIQx<6oU3Z>Yn^cq&eyoCNSN19E4eAQ>n1N)NkLy6wx}szNs|Blg?7T^X8<0BaARdq
zQQ?=>)S3<2HVbGl@vXAJ$RJB?2v<IWT4wEv8Pb>Yne3q*-{Rh4L>FcECkgksd}<_l
z+;acDFw(Z`yZ2@Rbw6uDS7Yg*!}RNHw^C0xo<wj%bAa&}__MjwR$pb^7hDDHagPao
z+QD@z3--Y3&S8}b56uXwgSNmB_Yd_=ty-<mW5s71j(NsS8kNgdELf+rY%}obzb?fB
z`N^N%l`6`GEETZ82si(R@G23;_?{+Ya3897&iedprlT{n9VOlNt6LtZLLW7YYU~_$
zJvEVT(SIJ>W$^O%Ig6m+j|58>Avef;W3Zf@Pat2w#VFHuYU+JAH4Vtp#5n^<&ktWa
z0|4aVQc?H)eh>*pt5uQgvl$tx)ma@4ZYOGerzshJ4%d;QJJMTioOWhCy4xX?%t_=R
zrULvQ9vNc3k?7(MIMC)-`l5{w;%{HP>>TpuHC+4Shm(&S^+PA@8Tz+C85jt~9g2(8
zm>p!JM9~hT7c#+~o8W4?-4p*LRpeb>a+Hr>rj(YyySzcg0OXa^l&fRHss&-!{ckpo
zyP`&N7H1H3L)@yI(Jb~su}d3RsaB?OW_#w6p(H4ptCg<)<f|Mm$J6SpAtl1tB<o9X
z==`R}tyyZl@p|xoc!aa}5Bix8IbkUJ#0Cg(z;B(!_nDKt9@yu`Ez1hez}8(Xz+Ixh
zLI_S}amI%oGc=rk-NbiszIk<wFNM2h*wA5U5r7DA1!ixvaXfiOh`&P%2a*~GtIS=-
z%xXvJ+z%(LzpI<cz~41n;rUt@&1q;#2uup$#e~;5DN4jbf-Gc{;u;bJd`$P+8XM9D
zFSZ`4;dOl(f-V2dG8K9ruN^ivD<AH0S8*4MB}Fp#0B9QuSTU~&Vx<*_&}%ey4Zpat
z0aCJ&-^)4|GXe01{v8$Cs;!Yk=YG~T2VFt?ghaNq^3n0)`O{f**nfBy^AWELy|g8R
z{(sTLyqJswI!%UU0Dl3J#N`x7Cb^EA!;775yIW_UCx-r7UxF5B>EVF*4h`ph62Buz
zTnTS}R9&XuDnh$AGm>~B6)AD;jw@rfUp8+gkoB%R2ik1*sl&J{`{ZD{Q1}nE+1Q&W
zER#$nk{Nl6S_nYAyv!{>%p6k)LB8zMQqUb(6T*dhvQCs*)wDTOrP1I}0CP22KN4qb
z*qjg%Z|!$l8mV4SbFa_HWnm>y)ctErm^x&Rn#LtKPZP)ho^cU#MptMpaeazCK5~04
zf!M!pZ1RHD4+$T){F2(cz6TN!mFkeb_G_-)YaThQJDBy?Ro(?MLPs|)_o89ch5y>n
z-ND7su8Ca*({D|!O}IcAs2Lw$+;Bsxw9OZBHtm%-?$NKdF%M4wzy&tNyW$X9tOru4
zUpGp2?;}hO!D>55Kk84L8S^9TR5_N9*hg$VYeNs(tUM0=zRZ}CEUNj{*n0avyoTn;
z5K^4<7jI5c82hxnqhadUb!}l?102m$pMk4gMRn`@S4PP(&;RngF@Ix9@|`xb1bf{T
z7aWR{lpJTImn}PYk)!ZkX8+y1hexLKw+T$OG{(IPhl~*`^aW>Vmr&B|jD36Y$6<2B
zTG%E1h3$U(!R)nraDG8Xmr9>#pcbx;y1Orx_Jsawj_sgF6hwxQv><oW5UZM7nu{HL
zKMr574Z%aX{D<8Y=K_3gZ=JU?7`Eg77)KZV;06eN3YiM61AOi<M>g%Dp(vwLg~8#d
zlcS5@h^e)iU^iBqg#q~#xcRFY#nLt&0N7OIp?yS)6h%aBO}DFiOj~pBS0CL^z($^r
zSaK9!uWUjgCTzH$`A6e|z@?1od}9!}@&zKu$?+QP8vc0u$&ez&^?EF>wOTNvHKU=K
zed{!2aU1R=hq6)w<kX|3CZlC886i~DwKj9dRlAY1qX~kzrhno#COT4VdyZ}VFbwjJ
z95USg9$lz6r29Vga9PFg2I8<bvV%ZQzn?2zyjj1wblh;q((swihB_2Hgt23cZzVCa
zgCTw?8+n?fYVU*Ae`$Dr!=&EGwZEX+(uIC*5`3Od(A0B=4sgwRHQX0U)?texIPaHK
z>ofCNG|QrHtX?suLJ(JaZoi5gd*CACD*3{GbU<}cI}W55+G~nCK%}~xi^D<P@X^iF
z=!OD%m^fyq_OR>Ol&=tZ3fl0?T9%tDkD(*LDaKKa#3ZJWYfiN;9YBOp8_t(Sa*g*Q
z$1iToR;}J9J4o-o6mFlx*~?Tp6n=dIE#?wsS|9Gvl<It#32d6r@o(>1mfJrAijRAy
zMVP7{tJ#_X9zw%4TY{POXHQ*An?8&6%0E~#j3RE5ba1_R_ic}M(FynDROEvxB8`3_
zYy0z`&HF&`P1@?)=PsHu%o&PXX8~isQo8iy#a@juva-pDG>AC$y(r&wj}HMN-~akk
zr0^>)Vx<pCWzgcCw<7(AHJ5CQaW8$rp&nIIR{?IDQ5TZnG0hoG>En1|smGY8{*q`l
z_dK8P*hoY2SdY8gV9Uv>d>S&9_V!Pl{!D{1cMex^@fW`rHLRM!xmBMx!k+H!P8^jD
zdnRi0EzhNy;On)-|Jl*_96%#UCQ|3!!;?rLW?70H5hBKD4K$hE7lQ?h(3@EgoCZ?b
zb5CNHpzM2$Jj^+SgtUi#Y@%})aktgL9zPMa%|lGziu0tc!&v>p2if#a#SgGQmCq`l
z_4eg9dfWW;`dn*k>ap!fmz~k6n;@_3Sngs*6T{!-_T$@^W~G)e+rML9A8Q`FsRrUG
z1!=odzxg+s5-y2@2<+KDIKeKX+$h3E^Su-_hDrF2fD|y^skzZo%xk_sN6TE=BjhrM
zpN#a2KI-&;I?o$ZRcCd<oTJsJm-`oPBGVAi?etdl`w<o@kBTa*F99a_g(|sWx-J+0
z5Hxh9g^?pKXFpT}m{vyp1H^Q$=zfhC2*0v<Y{K>(XJ@CsWew=zX)c5Ysm}>or&oW^
zXB5=jv9)E0uZSRJ#&2;OI(aqx);1fRpp4c=fg;2op#(<$uA6<M8utd~>t-loV)5~s
z<y1p##Znd%afDKGjMnh4CHOzdpQ{O~2P%mpeGC?B&QDL(*<<K5c>G?ezaR!8%UO)(
z#TX<C`Gk9nzPz_d<Q~>p$d(>FXAq9%`dVjC_TUls#$aS1-V<!4{&Ig?_tJnLU6_x*
zGcd3s-i{;w5ngJ4-Cl9%Yd}2!%iMcw4f6p5nXo=Vzz8-#3w)>X=apFpDwXK$qQ&Cv
zv&HnFm@RvGan{NkHViIE;1K~%x$2B%Ok6u3zEQ120SzNXlW;HUe%9QNsed7oJ?3!P
z_zgzGWjy;B##*8+cv^ky_{YrvUT-5mtnOCfrhDYQ3>ZXq&kU`^1&+kH!8lmzoS7sm
zj;$5$))r!qm16*7DsPM4?lae|nY>KaU4id?{twT2GO2(>2q*X3Q<?eEGG`&Mo3U&0
znh~-cY3QG*<yfCq$vxF)Q}tPvPQUej@16<EaF=^e?zC`2-Uq<LxcAffxp0IDNWE?R
zr1#)A@n?R5fWyV?t1@|m9riG(CoMx158{JG3@)$XE2Z<w<T^x7p$~74*M}8&hGoYW
zqeEz*O^98sdM1dRR!djCSTuIVHdVTxVbm^aDQRN@C(iCT+<XYLL`wDENvWXdKf>I>
zLH1ld&jBQ0SF-DDE2UdTj#J#h{}|{E`j-Sjj23Z>wt5g2HfydoqHwN#a4R8}w0o$_
zs7Z^6yS@EBB*d|f1x?wwzrKeXCjN&fl_2yQ)i^w0VLK3b6(v#0PzwwAc1S7tz1Y$$
z&C$`ODOG*Vhp2&L$h4jSpZ65>Y6)7~dmi#vR-xj<j{=N}kbv^QHis_PivL65ksde7
zHv_dLxKQqYFYZOtDRQ!|NN|}Sd)cUN229#!W;}~?7w`1N?WI9_s<{)B`tmKR{n^W{
zGWJ`RL|(1P&U#PX;%?%Q&$EaprC8wb{R3=<88GV;#1A74H%%G7mnR1#xR;{Ce+y(I
zxDSMpxqAmSd^edtF^)*kKySk-1BSZ)e5I$?{@iEOgHvCMv-~qCL*-edtX<+<Gj8Yx
zItr-FTPz^Eu#-M~<W2<86<FxfqTC$U3TmW0=#PJK*8=Rhx1>G&Cg8DvYWtC@sctNN
zQ-1GTxVusmefFv+>2-C|obg3m@a>b3q2>cWsF}H;hZ5b@mAWwQ5!ZiF^ZGx$d!pgn
z7i%(LiG?bB|3r);`HVV_0fF(1)722_zJIXDCe)`e3lhTcoR79-0!1c2Py`46(pTso
zB_De)DYjyKa(9JG7TQqQ%ACO()ZoB!88dqS;r*CfB(1=`l3vL3c`}FEVqayE={%mu
zt)A@86ul2?1>tS|K<n-%rVmQ<pt}h|Sk|;WtbLbK@$gx;vj<}G%}oVrCdVj{YL<Z^
zhPMKhxL<lMZz>Bo3T4~ZC-dN`Yl*uw4m=wN-4pTNzE)-?1y~}F_gLK9TB8*ILZ95Z
zWD?n0cL1M-x@~e*lyw8nfO+m=W`5!JsL3tbepSO7tf`HngM$&iTD>2$NwSn!v(kiT
zE*@dejcRK!vU{-LDNJgER8A*s(r`|Kfjee8DwE}AET!%<$IGy?B9d*A7lWZXOgvc1
zH1q&6Gyw)efWg|-@1h0*^O}A<ZmOgfK7%}KWUrbY4!=zf++w>#F2({kBD<T5OX@a+
zD3vw>gdC9*<zgR#am1ZBbl&TYhr)Ll2P;1$p^U^0J-PME%|j_YIq~i%jW_uOjz;Nb
zex(vuh5h%`(1PC3CyH!X2qwJPv>(D2fe>)iZ{^ZiVk3USW${;L7@2F^9f+O4=>CWI
zm><(^i&C~kHST>D$DKJ1#87iq75~Y2^6YrLmQx>*886B5Fi5<HfwDk%r52Z>&?|`(
z<R1%dgbqv+nPJ5jpU-ue*L+w}*@h2F-Uh%QlljTVuD8dBG3N^#Gt`bg!&Sl4yRI%=
zcwtZ(6o1g^Ox$(*U;UV!p}-Qv;+0BYyzN5Q4OMtV5o}xd>`Pu-Zhj}K<P@DZrznQ$
z3ubYa>;m8n%^P56Zu*2>xC_0po4!fUYcd4GgM#!xCXA?gCoRmv+xKzDYwDsAsq&|N
zswq%-k3VbD+pFi@I^B-AATIEhZiG)#T%b@qR-t-7lZ|I))5)Q0)}3AGx%k9;@u`xn
z41A~CZ=XJjfVdAr39&Y7FM?m6YMs5w2vcaDYI`PX^|SY#zo0NV>$$l>u9eKjc8&%>
z3?|Xg42osa9D9V!a(MWjorjW2${nueChVntlgNiyiz-n@5abVW#%jR*Af?Pd)!rfl
z?=33-ty1@xl}2FAX(!VeMT#nDEu`q|;h(*)w->)++WVOn>H@FmKbd`K1<Iynuv3tE
z1RTcBNQ4F!<!6ZGKXu9Z&{jZavVWxymbw*5!xw{GP^Rqn%3L0URIx%ogDO9-t#_E`
zF(eas0UIIp{j)9!OS>KSp^w&ky+glp8bTRtSx))lw^2POa#o1WoXy(Ls)d#P=o~Sb
z#6t}cH%r6B?@w%qwqaQla%|9AQ-pqG>F}2D_}0E|-Hq<;tFdb2qV6Qa;sy83<GF7f
z=f}A63A4zzyGw2;$uhOnI%IEUuefdtvsJjp;W#$BSueoHx;+_2?>bU`XRoC_d--5f
z2q7&O9%vUx!MCI+muG&@==dgbu1KX3!Y$>fjRC+t%KB1ePE&)7e>?n&`%cqd5c;v?
z?uRzT{j9bOM#~>UaCz2P{j7P5akUbD+Iu*Q&F;Q6HXkNDD&5*4Ze3RE<owA(E=&@l
z*jaIUtk|4{^ztt5r<oP}UMNk~&d%wQF(zzivgg5I(ECqY?N-14dB~`xSW|P%*FTP&
zRMsEisVhQR?3}EFqBxVjyeBBbKB3(DKfK}p@O~FqSO}U1hGq>y)s$v&UXU<%jK6CB
z<F>~3sRkb>JG{vAlj`t?!Vj)<@4%O$T6BUc718l_B_e-W$ft~V1k(_CitA{)DabM8
z#4&PVv7heKM)Vlt!p*YZe3HON<3}m+TWL73HbjcL!>Ps4i!4~}vQ{qISz|&!bP_mq
zFuFs_X1GKJXXHqf&hn2xzG6JJApX!d%lq<)-lt322*5~BWY6%Sex(TeHWistZAztz
zg07M1KOdFU*ExaV?cvJpcBwi65?}068NT3YFwokUGJEOnnY_*xPpjv1q3cr}`z*{O
z|Irg9eLvGy-5sS!jY%62J<_xPaUd#I2glQLCi)}IdiXD{6taPzyEq)$tWYJjUY|7Z
zJ_jfiB|-Q>jCUnjjJ!pOJy}$SM4CNJ>FTVk)aa?XWVhI#At{IH^Tp%O?9)J73rXT3
zf+w{w&RDGi{tAm_kzTxX2IaK<-?hI<)zArZUA$OZWW&#YQ%>2INfip09d&;MMx{T?
z+y93*Upk@}gU2f~ERTz<D`<|2YN#egOU*XKMW&>w&B5eIya}9nRL=DY?NU`&J`9bu
z+IW$Xn_=G-^#6xPA|RpgjGv%s>PMS}u%z4?N9rk4y=+Vz?FKfS5s$_8hP=Ni1H|1n
zfzyaM(v|bSh5WtIMc1PC`rWDjnejwniK@(87AX$gJw0j5*U`|ouEoXd)(q_r8aCT<
zJ-{0U@dN_8W^?@3>CeWiQ#(>+-s?{+$8bnn6gkFT;B2tYmZZ}{?CnT}g;GxluX?tC
z4WGBTUCPL)+iS|nl8pe)3pV4eeQ~f{p39YSGd-?3I_Po)^>fD3*n+Pi$sw-CR%!}?
z#;a5JJW}QWAVJ#|P)D5a159OF@X1nh|JlcI8GZYY6#ia{8z<o5P#4I%{=4E5Y8>cK
zQuZ|&5gu`SOx>qR?q~7-wQr}~-R&`T&nIH7!j+qzYNcCQ8r`#g<=_j$-}^KObwB3i
z&-{hS()@X5tn`VYyq8G4KCNAPUubl_26~v!CY4eA?p*O5a#Y<h8e41`AS%NXLk`q^
z>&15oM)S@8Kwf=5sj;Dmal4GsaNzOdNaSQzeU0YHJ<|>`hq^sVoEfs_^wPYd66`sc
zdBzp#_bGjn@qq7A49!2)0HlD@@jhzb{W)K=V5os_)v7`5RqjfWFtw52QZ}{&m1ENZ
zX?OH_9d-Y{;oI0P^(_gRoMiFW*Yfl&2WM7_msNRtmRY<d!go^m8h^=Cs-!k_<9iy_
zZ3P~Gy0c(f6~fx<_Lmv|<^F#1>$EV#y18@HE~<s92H=v55cRlpBAl31^$-^BG<2Iu
zqGg+yo6q<6Uf8J#88YsF^X36p<W_&6Z=vK7Jyowe-TRM9tI4vl*xQ(8%aQ-^CX!~(
zEDUv(^Y4BD8@4e4Kb-TG@|`=>HXD2rKH@tRx<8YF!CK#voKI-G!QN$W!`v{c87{2f
z7bSv9-fgNY6;Cq4*whW!S^U|J4NzXvZuZFe+^K>!+!Fr-ohqO$y?ElmB%5WRUsWh$
zNxIZABXUEVDkq{2MYGSx&8TP7sC<rR&YVj{$aoB5jL45M$2rIu@;eryen7nq8(Qwl
zBn|=MSppr;iX_LY9>&z3e#QQUYy6dEx!ei|**RA^^lkh7Mh}6vk{(3kLImZVPEdbn
z*cgx_?vEg==mgVP9L}qSC1~+4T11;szd-TyBp0b>b{)UZC7x-2%`x9Q2g}Z`p*3VK
z*B1?CYpFgA0Q$5XyxIer?XnTgcL$}jP>C$m{(*`g(>5~V%PJFV8q#~`#g2cJtHa0h
zmq2j&+g9fYuhHd<q(l)i4zqR4V|W_!hzCc*7vWt3I3PV3`w;UBu`CpML%Lg7f{A-C
z2dR>P2%d}>r`S51Nd!;~ncAw_o|Ak^$-d<lT6tBmZLcQr&&GrH=h=2OT|t&`Ib&sS
z>fxju6s)K9D&N-pH}%+`x9M9R7nARRn%FKBeZM=L*aY*batXsc(3CBhBU_prL!{xx
znIV~|+xQ`p|KYReqV(JHw@K5wv<FvA#t}7_W#4b#`qgzLeoWpL0=~ct$0QSa@oktF
z#D)l=q@uH6yqk?Ef&z)$)OBT|R_Dz`{;G-}Ym7$9J0a&g{ETG&f?}5FcY7n-nQH-G
zM~_0FSeg0Li(1M*L}7~-jTWjiB0+wq0!t0EHA`Rn<urRFMo5cyG&FSRt+}GWD4xM=
zQ79dR>9DW<KsNnyOAMOG>bEJ7KLHQ;{3QF0UxEF|z!0E;If7ezGE$G~i6WONID{0H
z---}W?)P>QJ}5dcqOyGP$*MkUEJY`U_i5$x@X?5#e~*3t!+Y96iIVHjC)bTvWS9{=
z6@a*nEuKHI36i<kd4C=rW4QI@xBu{nZ0_D8UfP>nzE&<tn8R~{<JRI$P!tsmjG9j@
zFZ?%wbU~U%pISOWiW?Is)2-=#4%0}9zV#bsNXVqZE26Ve`{rCYz{c?t71}2dYT0p?
ze?KAK+}I#n+~I#Cu+=y9ihuq@;C^oUE?3Lp54D@E=meet&Vi>$gUsyJCc3AAs=e!i
z7?{j+buE;1OQ!Dgaa2iWL%NrYU8fltOH!?D2uaDml=aj~ZQ$NZpLr%xTuqq}N8jS$
z)D@>x{wrROBhb;=az#$?kLg(-L4O9ut&}%k`7FgNM~#=QhaZ1G0M%zhZ9+*8@5wOB
z!QjoN>4xRe?njt9y}e+9`+u6hmKxs4i@Nwp#V^sF@oA9ssgX0wt2em$0x0ii?@5u9
zN4VNganVhLp&w`){~{SRaBmpTq#Nx9VKe`?W@1|Osip*Ha`@2^DrBYV%!tj$X%ZHP
zOc1m3nzkKvvsew5VHF(aqS|%)eG63G^#QYL8ZI|$Xa^wpzUjd&M=wr}<>MY{$=SM~
zNOE{J^&$G3QERGnO;Ky==A&lG1V`6Yyo2Airi{2`3wB?jrVdw#EM+Z=if)W6wwacn
zy6n_;H<SWPHZ9LZSG@^{_VY7>cSS1>dN?|M<TG`T@tfofv9n*Xk?#|0=OLus>?ZJi
zaha#ucRqMyfi5mzGT)bF$*5DUbua#hd?~v+zVlr5Ovxk8$tG(`+#oCe^&zNoO$-;L
zO+O^No3eGvGA5w_81Oe12wAr7^8ebQ7Y5m)_-)6WPWgoRg<P{;s-i6B0cvCzZKNoZ
z)W<|0(_mqAa<i+T3V8-OVbi8Ij5x}kIhi@qVmNDj644{9jE)fb?Ce*`7v$@?w#G8$
z-}1iaY}|AObxMu(UAX6l5ukL+HxE7iD>1t7+KC-)Ih>k}jMrTvwLbZBrD@uSQIwfH
z)ZenRaatVJAg4riZ#GAD$ie`dr%|#NgKObi+Qd32O)#E@cg1RN;8|40#cRtKdfY~-
zT+VvPQm@MGg4%8uP>k&3y`%Mw0x}GhfUQQH&I}wJEpGsErjKPKb+Ds1k}@#ie7CaP
zbLJLi`dkBDAgJmv5%O{x=8OPaXsNX$C!?!;a)cg=`?dLfaxYhNgGY?*s&#iYH^tC^
z_-82=?dXJssVJnf_>vxf+6~_}YP>%$Wqi`kgS(R>>uO+JNL@{g0Rns{r#mOG<Z6YY
zToJ#Mm1q&+%=D`~*TVaJ9gko2z3ZG-(0C8XyoOmsd*H;qT`W*H05v#-W6m|SLFh7p
z>Sp-e?2pzi_3@4^(MhYgMlZbhyM@nnHkF)#jzjLmFwnd&IsPiff8a(k7abE&s=ev{
z6Ph8t9X%|M{C(5kGus#LsSnwM*=aE<g<p2nA-XYKWbJgg>~uvC{Q;9?EnZ8GDkjLa
zjYbx1KEj!LfA}_4PP%_(vPpHOC-VuLI&6wlZ^!y)>i2+!#J$jkeN7^ze<5!$nOlTO
z?)*RI6xm&_GAS(Ma<slI@HEasxSJY3vgBmZf{u;Oeo*pJ9kt_9=018VN?}fh2Y_S^
z+Jq{hz`iz#TyUk+6_~ETUSOr%W2T{*l8=ai=&g+xNpyr%q8LaU%YxgV@L-ya<|K5Z
z6h))@My_5i!1HF{0nL_>r93lz6vO+@`T(&al{9e1Q;#Zn9Dp3j0>JNfR>8Ep7pqur
zKm|jmeaCg*2Ad6`s<*<xb&s3AOgF^a5wO4GeQV#mvA2(eRwyp%xQuh(!8(J?4So-(
z@M#JKlXoiOu4lck<;}MgyvU!z_%ZguC<A@jH?j$XixD=7@+R=5sx)nXbc>Os`bQ3*
z)QURB&y=~|>x@`CMT!0YQFPW}O}%{>M@0eYZctL`2B`^3gD6PDCIZ5kbdB16(%m5-
zOiDnyyGuYqx?@P!Mh+PB-TOD!buKuZ^PK1T-uL~v)8yBp@@5Ltgt?Rq)lu7#A8LWG
zq*r;SMHFMD3rr`~{Jqn3N=VdVBoat7@q+XsExxjbl1>Y$zu38fh)Et;1Vwq?E_Kpi
z47CCc_3O~UgtE!KO9FG^zbP6n+!|s@S{8oW^bsRZDwXlGF3}ioAn)83nn%nO<MKMJ
zJFj-)w-3XQ9vxGor*%*2Vx1nn7OAjpGGVo)A+HF~w06H~tI0cB9bLUTlXrvujAF<s
zD#H@p{p=vd&?1RKvDQdE$h!#`D<p@xM$bccvP|eAw8=s?XLVrQVCqP1xj~=jj5)6<
zB5m4K%pr|9nq%`dCU&EeUaKU4ej3KH>d0u{dxUf{>;XQ<jZS;6u=dKNyT-l-HyX>x
z+!SIbwY+#{#Z?Jb$4UE!IEb<WSnm?+E2Ci#aD6EIIM3*{aC=bA9DlfRWS!1|f1m^s
z(3l$b36kED^Q%SUv#y7@>2J59uRNT2es3CW&{qR60W{;`0efepu#`fCC%KU01fgUD
zLb_*(e*vf>xjZDbs*8U9h)*urS*09Z_sk$EmH0~UV$V6pDIjq!-MYOaUWbzrjAy_~
zmv*w_<@Jr+Df}k_D>l_Jn!hHK?!KyP!qNs|0a>*@8TSx45?|!eqpuzBc>aVWG`<Go
zbgPN$!LebyzC-;DFfU3Lmgm6@4W~=-Opdc1hW(H8H7=n?e>J@m<AtqK@jA!@{#7_Q
zQ0FolgFpuQ4|vZ}2QZ<f@yxeMQaz9F!tHfp^Ez8_yN0|u6OZ3qRnxdBCugqrr*^3!
zRZ;|_zyl=bVlwWr3MwDefw9>5g`*lRf;u9t1ZH*CNUZeSCl;E6WO6j6(;~M7{%cj&
zmb5K-615wW+Wu?p$I<7;g=0u$-z`JF=o#SOET-u4E1n1h+7M*~)8d92bs+02HWCMZ
zZ=%W}d8Srr{${pSLHo>HGL7$E^JWa!4cC0VS`PtwAQ7?3(%n8qxG^{(_FWNh|0b}o
zerwu~z0Ulcv611=!&=-@Tl%lG*;C?$kpJ{(zT48|2mJ@#PA|byr}r-MHpW~8vS5L~
zZbD`=8S0&gYo`nEmV*|%3v(tFe6kG!mb+tO@!i+5UukjF5IBcUakMB~Wh7Qj_#EO@
zMCxlZ^C;VeP}w%B=DNey;dPMUe@A5V;<-IxoKbdd)9w8}&XpD`IR3?LQ!+K8Ta4UI
zDKmgf5#)lF)Skl8L(jU>8*qYC^~6ux;0@)oMGu!7IsHiZpcCB@!-LMJ5jMO36`NlQ
ziqfuN3^$D%Z&jhJg94d5VfKwvQgyQ*m)!i)_i6&)eKa**UHJVqA|i>WvB^Y`VI_$J
zvU$}jN{)YLK{3X98=W)`e%0w(Ig7ZZcTJ6<+hkc?ZQ^B(+Oj;hR8=|J+Klw4;X!Ry
zWgydk1U-V_VoDMy2-w6TlaCbq!@X$XyJ|W4%C(n-%r-@$`ANUCZC0v=VS}J(z)6Pl
zKY~)2`g^<Q8rez|`AGi$P6p^&pK%MQpIlHA{Ug7~p$6)ropfE!G2Am+Xv02jxG3Z-
zt)l^+WnGG|qpHv$F%?;}#}J_*$nmiAY<r!%tgTKwpe9=MyxjUCtN2LRS*T2EemTqS
z#|gNQg6m_AK36`oI=3owVu$mzlcIDkCSDgM8x~M{%_lB2=Q?i*Tw47V(l`2JxlRm^
z7EqB&9Cp&HiXV*;eAfG{GGCb;D%gi_Ue3m+rf~{ik1DKZKeo60;l@qW`d?R;Ij4;p
zJIQPQjkl%MELD_bcx<a$#`_qu<zcBLw-_9o;&oe3B6AVBak<Kd)`*vG?PP<n^z6yL
z-Ae@f(G^E3-L0&|4yG3^^|ESEee3lXLV)pE1V}XlD1{tR2_R9H#(4CC80thBAs|$W
z<7{U8b|J*Kz_Ry;BT%m$E1`AQ;-%o)C_&oz_{aJSFB+<1na_X>AWJ7E76}UXOUCM;
z)$03kv2g!K$=~-ntVZh*+5WtD*trfcyyn&Rur2p*au04zBmI>5J8KL-s<aQp)TUJC
zs4PAyZ81(8plLx#welm|59uVTS~E?}vUsLD^|$eT-Sq6(_J)hOwVOS++HHJFF{;)a
zxZuy|Bz5iC_#<<-?)E%i?uVZ&md*yLA08lHW*$I~N!$=z(J;-KQB*6m1ShrUly6{$
z;*?Z41Aew1bH`pa1hj^y41<OeLbq`g0p=LIHfs>ywaSIDvq!?|mUmgga*HhY{r=uK
zl~m2dFMdusV7Q5H$V*t}Z8kV?t||-DVx)drjuZ`9RX~MDi&RYMPRxkpL+eHkNQ3=_
zZd?;0W+6kF&x_vXgYBKhG=4{aGciQX;U{oR9puoCIV4}Q<5eSrZkUeiDQCR~<w|HI
zcz}ZLzlC@8D(fb-39d?~7Y3w=pY2DmimQ`TIycyvf&G@o5&TvVHhF@K3@~&-11vD%
zj*G2eN{Elo!<F)($q$q+#cFsFy<FrdU()y4kwY!dZGo|EVDDPz#{+U5i@7{Z;O%Q@
zmKo-Ai%cwCKF}g7I%}Nzz)8NBV!_L|^8D6pJyzAiqP&%)Z6@pqJx?V(zOO^Daq<u!
z&}dL&|A`P-^sTANAQrj*yEwY(Kah3z6Wec(cNJ-oluWD8hK06!E&+=-rNWJuUd2tV
zeZe-wp^X{*Pu3HfIr7V4q1krseOu#1dFdK1fL0e#39+fI?AbwI`~*J|qj&ouz~C-H
zYN_%IqaR=C1}m|bu)&2;<)<w3hN&`VDt+npZ(lNI7vBjr>bbbGy;5vA0&@wxz^TDR
zF>99@m~ekE<-narU(U1WH+9MSjfwnCpJYa>>RWXbr)XXH`fXUU%U*sg_!577uyJyz
zc54rfHg#cnWo@(W(qK07;mFtH^3g5(v>@Rh;Q|0S(b%->>;a*-Vseg#PtpHn8Mu8Q
zm)sA`_~!f6+y`Rdv;_5^kCfjjttZB_*^dy;=5TJ&OZ*n-H4aK`07ELSTyCmggfbeB
zNi-(nJknXxV>nfmDW^WpmPr{Fv%k7k)<}ccKy6O()woM_Z$2uUC9^KPnH3_q4<a8y
z)Ap}EiSNPPmzAH*m!#8q=G3vKtkQeW1;VO7sDEL<+BqpPe)$|fx_txXd=BU>)o0d8
zF!O5Wn?`;jQi!dkZ#W3XRo?H&o={fC7;bc=wNQ59ZRJqsN%01$s=9`$&9_8ss$Z%x
zb9*V((mpXlz9-K@>XUIDXBZX?ekVux6@TesEVKsi66wXClybq`p%(3qJ;F3gY}m2I
z)c%57dF!;5D&<{g$(vTx8jigD?q_A54xahnA%kM<T>`Ul6Z1_=?|u7^<Z(4A)69Q3
zP8pT8FL)_Q7R0VBipg6a@%Nx3mM2`{PTp(2F;Uw@FhQ^Sa>!5xFqQ_!t3~qBzdqhQ
z4%SJU$06=KdzX=18jHXFG*PyZ7ZI{78o9-Kc$oPTy1oZ@hQf8mZ>F(G4EsNVM{}?)
z7_sJsel!e#2E@fI*-|YiHN@M0+j-7g_UQn8^$k5(4oio=!jY)p|H@z#3_+2_*qzO4
za!NG9SIaw4B-+Z@oOr75G205dZ{?V{Tm7n7-KlU$nB>Xz=Qn2VBzWd}aMXoAv#E?l
zA~34N%g6ubtG{2OcTDE_)Tv@6jy(f^UHCL;qy<B{!9=ndz`(`8iF)=+sT~rI`GWr$
zo~Ib}4w}`QE(4^(7!|1%|7w06c6l?Cp)yjY&$jzIB=AoH$)=Lvfr0@i+ov|c&GZ2!
z$cA?{q-d{d>38~#?PP!Zt2Wuh<(^_Ykhp0#54nh#WV`&C!QR;gQAD}y$@}CB`|ie0
z)T>GiPiMH)(hMeaeU0A1hxL_N0SEuAk5#F?tLAn~VAh)lY1giS(DKfO;7i53IJiyV
z$AkZWcdkNVL*@D%au<Og_w_*U8yf<P4kv(?Te;x^B$`2wxP_CAyw)PkaqY$9WsVYc
zbCL~aOL0VM1g`Xc1akCvrw~cSkJ9lM?3CKGOb_Wx%BsD1n(g`KO0Mu}BjM?Cp=1XB
zBoFfjoD8jX@J<vaSR0+GJ>T3GHI8c~;{Hd#W?ZQ^DZTc1SlkV{BEto5OSdQ5e<D}j
zo}?km?YMiBv(_KtI{0Kx#UAPY2yfias6-qBHW*+wXjsy|##Kf7_0n8m0eF$^uP>1A
z&o|B+U%`I_xm>dnni;*#N8UiL)$Y`eyw+#Zog$RtSq~2Sec#}@SL&8a5P8r1${`;{
zK-S|diz#VLIhmjTpnT##0-+!H{na^xG(uqhZ;FTky0K4Ib5)M@%iwGqTx;&+!b(LQ
zx-#~BZj}-(Qt7poWroff*54Ow{DZw0n5WKS%0u2gWX!HyKlOP3@hov~;W#9{-v`|g
zUjce!d&cD?e&uDz@Tu{|F3i~TV$bRxI>qUX8}|Zd^w&H_))1<FIjSN|5_haDul3+T
ze7_d`m~O4c(`Ur&9pRblmxY1G63QVUX0pJO-&0uwi6z&X4;tL{0+4ei4q}uW??pr_
zsg6}$HQJ?(yi{@HR^!F#0|`5>u)tUVj<!BN)b){n=JoRn|J}HIfO2)O(U(Cwv~Q$o
zCDTYmiss>{st<``zwaq$x9=Tnj!+djb+7Ejc-+kOiz1y=Uhp9Lrpb}FZ5z=r&*fjH
z(oW-zc;i|1`PWmxxML?}AJpS^5D1XRDBx&G$8yIvv{x0U-@6Y!n5Nu`qU-(u@;HA)
z87Us#og8n22OF0cEAxHs<?Z!be=)cVIfG(VT7g=3&p%>feOT{Px~KxmMZwg8Z&vgt
z3o$8I<PBO2?HRS$Q-Swrk>rvu?2{HlYgg3+czJ}wa1`dIftFWwU;4t{OMOQU3`ds#
z2JMgdvrT!?m^<opkK|sZ<^Bke?{qmoBGUTWXviB|`;S2G;CFx?>eZzU+ADM*8F>=k
z!8Gl3{3k!dZn7NaWgR3d<k%ax{@3eK2doOyDgFC{<=xgg2LeI=Lz&MP5r7Eb#MLW%
zik8k=>BnEJVYqg%w18J%mmxX#n-Cf^X6Z*dKS8~U%yPVZaUV3}^PjVcFnPYf_#;IR
z@oYFk6o&Iw)p3nnkso!UJ8eCcGd|KjqnjB!(ez%Yyj*C^N61}F93_)Dr~<0sq{6zU
z16iXkHF!OvLz`@cG-b|GgLagv9`J<Yn&<xd44zQpml#e4FDu83A4v+gKbq=WV6XEZ
zFZp;1bEs0!5pY~grB9~X$vYd@OzayZIT}eT_qX5Scbw}Pt1_sS?4mx(P|(Nb*u?EX
zuAAdkZbcz>ptM#^{u42v+f;%e5q_PhD#Fq-4z99B_k23&_oGjd=#>J~@8r;bPteXd
z+jM{FN<w(HS_<XZQdHT{Jo$3F4(QO1-xt6xf@8K6<`9R+>Ect&asd3ZI>tEIiPAoq
zUqZeKTVxE!2|H#w>bSYMWsL}e-`s*HH|`ClcY6|SHtKRfQZe}d6rpo9rU=z&hVj^-
zjN#z$oY@o)Z>!Cg*;Y&V%X5_Ay;)pobxNsglp2}hM2Kv=NVc9%N%5X>!P&nWG-({b
zf#Hd#%7ysryuSNh1|!--kOnYUKut{2^{s?;(Q8AWYwm)!NwS05_#e)4(b4#F^D|2y
z$d6-bqc8CdFJLDuUt_S_i<-9jln+Vnk^;2XCM`=kfed6cZLs}*c&g_tOcp(x5r24R
zyf5UZ`;TBmdMI+Eg&rm<+X+vW$<0JQt<~Sc>0;M0;V4;TXZLNB5bpV|Nha;ea|hTQ
zM_&SEd(BI2arUl{8m^K+52yPw>y}haFMa`LJHN*-^de89F7!G0L)#z$H*wiMPJm+(
z?@^`<I(ab)3W^65^1)-!%E}A<#{m@RN7iVfFe(4#9c8D`YQ@__!ntvib>8OydxMct
zSSO0&q7OH=jG7z5#bd{}=z1jX{Te#wmuCB_#uM{l6N?5-tF0Zj-aduKHZDV1)nePN
zL%QInw8C!Y=~&v^ONChz((fY<AnrTHcP%lLuFUf$S%$s)d$&oT$QtA#rIuP{D|UPv
zcof}W5^n<%fz2&?F2*0uZ2I#U;1523ob&KYv(<ZbCI7~DxLM;GN{4eH-jGj;>%_8-
z|2X2rCYe)Th5_fb-boKwj|35R2w?c%p_ERdq<@uNFa>GGlYeUyd_-vdc89CJ*ENnW
z+qBtysG`GmJVLBS-{cD3ix^rvy4#3eqk)Zwcekjh_!L7HUo#-hWCZ1hEy*srmXiO|
zWSiS!$hv(J;FJaY<LMLto;~`huM|S_N@1BW!)d$uzL6m5XD*t;FYAeOh42sfxd+?^
zurT-rQwm2}ASHm%IKX4a3H=9=xV}p1Hplnz&rNe*ZfTA@i1`*LxJ!=TY24x;w7+QM
z!hB4aJ`JW*FH19JWwBqV;jD~S@ssTMjhx8Kj}lr$=*mA$enw()pwc0THx6$dx7n^O
zlUCF-GO@6z#%k|(R#6_21>pNy11Um1;4oW<{2-)70IQLf9gQ|>eS?CIyjN-P9TLvc
zX*<5Cd|=M;2+>n(wZilfYBLoh%ei}5zBSHG=W6je>Dh~W9o7RcI9Jyq@h^PVS`EGj
zNUH$a*$ZNo4iq@h(23ZHLiQ{=*jf~-!KGz>xYB(nF;LR;Fvh>7a57MUO88&{g56Ug
zDNVxE*I<wG0n^`9UeRWeUu$2dJqI2J^06wqrYklo+NbsaNU_XVr$w-NHlm+ho%EM&
z=+SwrW(J=jThyxUf<bH$Yaz6Aa7A{sdiFT)_1WJnjfm<&R3z&)3vT_Sa~)5Lxrg;Y
z#_A8`@MB7)GUM`$qRo`Dy6zLu2b2U26B**_PWA7%aUu~|R(VAah!@d+IHA4WImuTN
z(RV_>#P8F+HD5jS+j-*Z&$4vup6T%Z6mv9+FYV$CtFwqW6tezW>y#i*rA3<jRPOJl
zB5h7n<@Cvd#_MPty>JakLBdKOHWmjn?C^Q>UtAQ?^eN;r-1r|sutldMobm`x0gdlv
znTU03((|&L@=*XXYru{S95_+0{}C*uZvaA^>WBlxAwP#4Ypb0U-qojjXdZ4lByRB7
zUMwo7X6quebq4U5gV3qs{UQt^A~P<7BlMO)qX0ZfEdc#!kt-k-;qx`;trpq%9^z{l
z8+CBhP5xyX%5DTU9=}dbgM>aTMqPeOQYfnt(}~usv28K)NwQG*#=t}2x1+yVdDx7G
ztcQ19;x!8$)s~6+Qg(7-p8EEeF&b&y!wLO7>VI9-?XJe@_dy(<<R%8FlKQHc<}6DT
z<`?1Cqg=<GM!jO+$_%9TzCqrc7U&eeZ4CsPgr?Z=Kz#=H0@OGoU>pm3LazYP!jlHW
zf057lod$<(A3S9(7SLiE5c9xll&v-%eOYH$9^gAIuM>7R(;_2?^A(<6KYUvC=ZV}0
zMs7F4?=F^@>W$lLMW^-Gwq43xzN}kHwEFEIJTADJM{QnZ031#z9kpoM8afzfs5&Mn
zc-w0Q$AJ;^H<{O;c}<J^;ok7raaGqOzifCfyZ7zey8>ly3rCq)_VU6X!C<mu8@rSO
zLrvnxhx5vA0Ev>#oQ0bfV$b<w#epx>oo&G`Q-uM0sM9es7%z14Zz+LDUDdKH@zexP
zv2g=<wq?0&<^1xucu=-jAf#v1no;WL4@~p8x6|`*y~*L5z^DLi4E0mF&8p8)3t?w(
z>kUMB!E?+bd1TassL(P}3oz%yfo;5Irkt9~!{|XpA~+v!GuuW)>g@9~lT#M+lpobN
zcxQZO)fh8~jE>-`%?^H~Rqpg#j}lEb#B%cL8=J(%!9~`J22bl7A|+Xvl^akC2`8|`
z^y)WF<|ZFbg=slC%Lza16JlY0sT@bZ-IAm*=eEA03oY%X+D}K5`p<j{I_Bum>(lsL
zoqV{yer3rKVgeJt)l@I=bHG`!owEej$`iJTFX)hHjGz<lJy6ER|E2~KuM$k0w`<S!
z$+V;nNL@BNOq#W&Qp({wHKZIfuFaAYW2gu3x8nri=NddzU5JuO#rj8Qpq#$t!!I*d
z9j?Pk_uuD^xy}>RY|8ZmLC?E)?IYuri?$HG838Zw(~mR|l_IBGu^Etjtg&RP{Y=l1
zygj8-`asd}enf|7Tr6Lg&EgKBH&KtdRTrG$AV{#>@V%;z3Jv$m9#v*)>UZ4Z+#kuK
z%4Bl%{6fROc*fHQaN;>`;8;DE6Kj(ZfkQ?~NdjVKid^V`37bbEupd>sjtFzcN;2dl
zmDD#zb0zd_Y=72BJTf}n%=ut*#`^RdfwnpcYZfW!hhar#jbAxs#?MSUQDOus#-wW^
z8+asg0^FgQFYp*h?0rns*eYvEY-jfJ5zot)1jqgUTGJQou>BE>KS$-~<vN;4{-HC%
znPB_YG!5e~Hhn<7>Ntj{>W5-Oyrwa`4uD6TmKyFsa;^bQ(as+z1ztRO@*oDCyazIX
z>aQp5xeEU#{rjH>Ysgz28}j63+G);8`q79|rv0%pUVga+PV({fGh~*6sr0CUbzp=4
zRtt0|O+C}>(TCH%Fs3mAQZ6CuU%xXHAp4Y|2+9B#(a1L0^|eO}oK*T{d*JegQQpxu
zMxT!|o=suHl9JbxeG^FJs<BoVMVSmC(S%oJPy^N8M`_zL9)3UdwqnIQV&$1l1~{c~
z9fA$)6SQ~U>aT-`%us6{3lo2?tJdECRj5CjL_9`9M8Andd7|ICrCuC*%=WljS?=Rl
zvDTP-9;m@V7QW{1<Gy?yG^Cwm`)S^?$vQrl#;5h9R#Iw&Zssx~)=g(Q3Muo=#;=Xp
z7<)ngA!_-*D9bvqkl$^M)`zukNX_O>J6C2}X}_R(L4U-X1CSAnu4|7TZVm0L{%uOj
zeP6S46Y)h0$;r8l9}5GldCD(8c=?CrC|vW^etO^8reXcr`LgmvG3D;KyI$o%j-cfP
zmKpV+PkuZWN42mF&IAM>@<I99rgm~hJ^KaS8yUm)+}PU+KB<#Z4Deb-j&Lvrm8!DU
z9nY!Z>;ZM9`gZ<^tWGvB2q+Rri)Ls=72#+elw(|Q>d}$BT8A!WCnDeGyTL9L3&MZv
zRL!?v5Jn)Lt0bP{GwC39O#Gm6rb!P;U9`)Qu;jbeSx>y64wRZ}6%r|%Wt^-yUl51z
zR%WzZvi^tu)p$>RGWRR47i)k%iLX?Aq6n&l26Q7`s1BzCwCsEwt&?@)-<`@_OZv*3
za9J#E7;EJ#<dbx6Z+FVzo<oy1d)L_N6iz7gek{i7sJ1mu+fKia;I8-8^yMY~)iqcp
z<o{+{=q;*mt~q(To+XFFP3PL`R@mjNbJgDP-n*gctjV2rcsBrGs~>^mn>sEltK+0L
zw}PPf((|=jQuF)emzT1Z1b>)ro!y%j`h!dinBQKh&(;*Gw*cY$OUD-^H{sE3+N)Gf
zqJt)6r$ZaJ{(>()d-}d3N-R=)IMmK4SLcvu7xbJ!^eN42rqFBF_2bZWLey*te^>(8
z#P9Q5OP;yuic(fxT9uf^cHE<P;#!;my6bIZUAe|Xm6MbU9+$RglOxbZYangk>HMqB
zwZ{%xm0%)^X=D?kk5QGx+K??t0cfR2T7&#>!Z~Kst5p~Jcg)dfCuL@3wZvQ6)O4!o
z7;gTJcjvGW9~e@8fcI2fZ7L>?DBkohi;*}R85Nk)YwGyR<tNQ*X5>5>rRkNSM;f#t
z#{UsS0m!gmRB}HHfA1Q(!`!3sm-RE8uNvkUUd*DU!SNYxN>M|#kY(=JA95V3xtAgH
zkQ4ZVJG)Jnxiq4eC{Eaapcc4)X(H=qcP_KIQrQ1Z%ZF?cahdTxT`!8(H7+3(Y?cSj
z%kJ`+#(um@X>&rSBkR!Yp8{c%gZd`zP1B!Pq_KP?8FsaG^{4o3QTlIQq`R(N{%0}z
zk@S!DA$^@?@2}*A;gp8MeN!>J9UA51<QRLjML%O_%~c#;uq(}PM&&`H)!Y7HMN7eH
zz4}!((>Bz@Pg_FmAYa&aLvkAzWC#=UOA}^}85?p$nu3w|0~*nI1r*ZDU~}ZBSJ5im
ze)l&k>0yqsn1(!YRootT33S75?RF+%E*kq5Be)(&bom+G8F`fdr@sYbywk_97#Ci&
z?`<GGqSdf!G4y-w<5%hqov%2Hh|bx=PoGV`2XNfw<GAn?2u@TyR==*X8smf1p@}bv
z*7RhO`pWa_a{~&zt&^4T31+H&N=Mn;;94{>@NBL~$e2W!qtr>t8wj7AJ|1~e^zL0b
ze*+Ho5i5(<1<|F}twlEYB!lHsTcu<6c&PQHU~m2gqEtIRMB7HiS-6oi1(um2-cI8b
z&7sLXEhiDeFrlId=_V1Uhd&U$8*_CH4O6qLnv0~_=6{}q(9`H_OAHCt<_(^yXO$}d
zBQQWQq;Il|OafT<<n6zV@W!0*w#gc3{Ipbg2C?`W1IeQO`!FT{X~YQU<J@H*ekADd
zKiG4u(w~5*>mymw8<qP8BgN+C7JDX)^6T}ccK7#;KDLFqaH&H~U#BIh;gT5zSvj76
zBCku8Ij++wY`w|3QzYA9=H)5xMC6VIXkY+noy&YodWnUUOfuF){<BPMp;+9MNqg80
zaSrRP15k!frzu~{o?0_2X=UvyMC`K_pih~!u_}n%zvpz<XNaYIAWJ0tyLtP!@770)
ztA=a|b$Th{E!<C8wS&YIPjoRE$e}hJbn<09#%NPXzduJT+Kl5N%4q96&D^OW)jnUk
z@GeT-E{=Ka{ghpEikaDxDthR?7X6|QT}aViP?Rz$Yyl{W#%pxrEYPLCWC%;)^qkKr
zxxrte=Ir0evd2YH%2tur+-kV};x3Ldk0|OZfteT<9W93o4ZM=|T>9wa$|d069L~^o
zN~FN*kLK|EEguF;+5weK&aqa|J$zF{BdW+O{w>P5HLze+jcnG<a_LtdG#6o?O=qB)
zM6VT4KqjU!EFNP*o`>bW%NN1(1t?j-K(@KD_zk99glSXem{-&QYr0pIMM#sHS7fHl
zBfXf&AX|q)e!*UxNaM^C9jkZm?A)0@y*iaSR+kUmWa{p|%#Xyy`&L+Ko3_=|ROFVv
zo7BOr%>E<bTT8t2>P2XYu#W%K5E(-q2j@iRjFBIq1Jn1@OKx~K@ZMS21fssMzZHW#
zKIp?Sp$b>Zu5y?fI+`r9zW&Zg+jOcEm2z=q!t0*uJ)>K`E@_noQt{y&jOiQob3JQp
z2Y%kc(v=a%QduV?Rzl+C<?VlUe0KB{CE7}btD8=dl3GtRqYy95zHtV1&|vZ{F(wuL
zo17G%GmrA|@-m4nbUm}@Gid}LbhxG9=XXX`X4B_}iNRNeMLqhD@TuW9oz&;g5N0iC
z!U^ynOx`~NGlY)SQx?pK2VW_D18I3^sg#%nKKW!9$D3sQ$y*3OpCe+lS?UAS7{rur
z^wl^f_H9V#@)unJFV9Zl-1wfK%KkNcY@z=j!J(7KX0|k7gEnlWuY(b-`)7XCQK<61
zrDB0T-4Ad@l3s%9ec~0Ms``5UK_?Mbi?J`7Rd6j5M_r9>h+a>wHL7lGzkNPU2S~N?
z@Fjz(+_FdMNdaw5s9T446ecYhEAe(Sdr;6KD6*d2W>X_H(TkIG#W8)6BGtz&W23FE
zO0=l|(vwDy*^GtvD?<X)>A;H&M!Udxl=9?KH>3GwRzAjApTd!5M>EU<Y<$kDWWX18
zvu~yPf;-cJFXdrP2C-KY1&?Vrs~o0Qq<^NMh-u~X?Hazr9`H2R2)MIL*>y5sYKRu?
zgHs)J+(U)d&xLzMD+pV3qgGcG%|iemTSJEE1`aL4e04_H1k69>aK+t%!j6@RFs%KI
zpgKIDS+eMWWF5L)n=|3y2bE3NA&c$UXL7lGxm)7eqww{FI)nE#MbV$a4CxYe5{Pn~
zx(t}9w<rgxPZ`h7>Ce=&#u{uNvl?(gzS<=jft~3yx&BBM=#vVRq<Ov71xnl%E2{h-
zGu4Bj$I>EMt@!)=WMVneOQbh~pk4|giM>{O^ga2lman;Jg4SyXNX8^!KIC23`SHi}
zS?01eQ+m>~x5sH=GlG-1x?Qsu*^g%x;vZ5{^ZmS0&J|+#S@XJKgJP>C(Z*v(O(==S
zKkxRZQH?Cww?~cc646cml&DI!=>W;iK<88ccGVrNnZoA8?Zo5H!asbHj71Iun!k)l
z(!5bX30wui9%F+0b3`YxPZ>fBm&jE&xO~eWu4JikcnE#hNF9FiiJ*$`KS|IZU%yZ?
zMR0w2{Zu8W?|ScTN)fbn9}x;7ap`!vT7O(N$Iv3&nwn|qeO=Rp&+5JN&3FrMJ0u3F
zLM#8Q5kb2G`2WDGl*t`rI9NivXvU(PMfo>be>4XuRG%crzkK-qkD_QU)I_BYH4sc4
zHZZ^&M0~~Yl<EV+C*F*#QgNOnExyXYOx^*;%F2HPz`7E1%EEEy(1*keUo!`zU{9f;
zzcU*uT|H)O6!1b*ha2`FHMuuZ;kf0Iy^?N`+non6$%%Ji+ezT-5YGn!B@BHZCcGa<
zhH7tWLO-emJO0qjW8E^)O&+JO)A~<q`D~O<TRiFbyE}NGuCRb{*>f%TjS{`J)pvm#
zH=G*(eEL%(cRvp+-D-Ld*0}fUIQrZ?@Q>5Gx9%p}xZn%v@L3B^<**-LzL(O)(uOdN
zmmI_8FGz)nRqv4o0R#>MWH;2}#Im5Aaga&jHVKbVV7nynFaM9C=!onsZ(m%NodA`Q
z9Q~5n%PzappAD$Fv`6S0qa}<~`vdLf*^5Yq)yXlwOfYL+9$E6mA(2PFvZsfVw;}>5
z+UKOO5gwLh+NvV`cOh<UN$$+{La7ftGd@9~S^2x&-*Q$_ugnq}49ci*an1^;Y4n)C
zHz5#5uR-8uh3Io(+Xqkw7y%+h-w$#qmYR~_!&29Vcbiw=u0HzTi+ebreBon|8W(S4
zqclF!1T!*<3*2As2ZY4?jU`TdD$d5e0-J_?B;INN^ya&W2B&tzX^`)p(b~@Li-MvV
zTD$5TmwHx@h);I?4rZ7^%Q}EmOmBrscX8&h$;&>ki=PJIlbAT=lojB%v+Vr&C?j$<
z*Y38&^2@Go#px9CVDwbx9{-oP`ZJw*IR$vOj9k%|Fa;CQ*?Q3hkjDup5mq$`j}}cR
z;%1V&IhVee3x|n1rg=va$|kwZH{%NCwunM6qO*+I5~D7U0R5ALG$$@^^sLQm6G!Dq
z6gUeK0xWX&8Kd87R?w(DiR6xLd@$!Tl6*a5<v-BDsXkdx?70Ns^G+M{q_z&|dC-F)
zq?aQr2o56th3p`yM<1qbK8--uSG4)fbuhMxD+3pjHdJ=Lo<c|;)0w<FGDOA`buc(_
zJiJs-g<pCY0UGc%u`FGel&3p{V@q+S4J3;mG3&HRboa&tH{lr5&zRItJ)PXj;fb07
z0pnq3(-ZG^`@NK#)AYj)#Q7Gt04q(e@FJU<*^v`!H+$G6A8T!maTVN>K`+@vK71MA
zcYyzD%m&%!C0;=GI4LS#SR8!)g*zu+8|wem8PfLf#ocOk72;$`_S^;}iii-8Z+|LH
zjR|Qt(C+Y7R-3r7#VVrO%5SsXr-LWz+$(XzdiKi!A~iO+*q`$qfwrDFFbK~spjj?!
z!a6cwV!2#-J_NSBV_w*|7jS_fQ~=!vk)6{ZQ}J^~!Mm3~T~IETocjg!E^Z!_7uG-m
z<!8%J{}EUOADJg&Et;3YngF^pXM<HUBtA;tuuN!3jM{xo_<SZeHs?D$m_sQ7{!8K$
z$CAZ0E$}UZu0YQE`A+9Qf{IEFw6>i>K7wfeaq81k{pMW&s<aJEHGXL|@sFV4jm9py
zu`(5!N8&4R%r1dHqbmQ=B9n+}0trC^h5V=H2%OmdJL-ll%oSj=eglK9cug1Bq7sMH
z_(#A3oBH1TDY8=W=}(BaA;$TJBrn=92*USCorzJr&WxEo`oRVL*-0<N-(`_<y*@QP
zDxZ2~b-r(kq7qWFnAZ3$=JfG!S)AOjU()9(Al8$j>#<x{N_PGL*y}m)MrE9gn-m)Q
z^St3J?O5uM#alC`fQ84V_TCiAKk_8pl9HBr3f4DmHbp~$6f<>JEITUgG1qDCb+%+V
zF`C^sNrLTJy*^Po@@$mvKqg?I6sjV<c&+HtILk{y_hXW;({$TUWru}`0SgG(H?nV;
z3vgEGBk=0>j#^`1#LqtilRO_v0AlwdjbC&>S&y-G6*K~6$o%%*3gimV5D9gcP{pO{
zoo7tgme61RUF__E<Yq{HdL!SDKRFN0lnNigC@o`q$ko^G7OdUy=7VPiKcA|XRep+3
zcv3G;UIx(4&g<f)zffFd#hAG+eduV5=8u<H<-=b70;C$bgm*k@RdBlag;WY@n5^7>
z-&AgHMNW5{BaE8dw&EVVvBGjcv=dB{yZ)0-bXMt~h14zHvR!8KV*cq3e_S_$Z$<lj
zQA(m%LXW#0fEke7{t{R%MGf5SoAFQC1#Q4=BDQ1F1~eC$)06iO-U(I|=ykVimE)e(
z*@r8)L%ug+nu_ifc3~l*t$4oSua*4921x=}78zs1^S_+GANOW$gvXX&JIQQv9_G4i
zWrFKO%#Ev$y#dTTjc!u1LKQ`EGi!Tm?EKAYqq9t8RQiU8kiY6Em&kJUk!aEoz!825
zy<xPZHSMG+F>nyPqKW&ME)FmX-iP_%rW#hcQFBN1m6#kfbKZ;#!l3@^Y4R&^!XxFM
z?lJN~FV<sj!@h7i`mvc1yHh^76(a+@0*<0Bx@Om?+n8n2y@I{$v!c}jzP9hqo+-yQ
z69!T`o+83o=y$N()eE6QA2=-FT_gm!*CvHAeLa;tleO9dsNlEYn$pD&r;<jQE0R}&
zf9z0qJNiPio-K6ir(tb4CvE-Tn;$LZ7W*DA8c$nWF6nXkT${!p7!2j>WfvFtZI^cw
z{`s!;h#(IvUQ$23f`a#nQe#Z|GGQei#mjeTtY7u|V34CEs)KEAvW?UPDwXx9JL5)l
zdM`X24{c!Vsp{U|ZCNH&gt?4WTQZ6xp2<GdTC8Y~R3-YY2Ya=;*Xhszt&ZK-*cM#u
z5P|+Yc6qp$BPjAZ)4IOp(>S&!+hBE*Xz97=to&vgi{h9C%bWbncN+UHc!M@>6hQCU
z<VhKsgBO@@b-ab?%tOEVkT5H<=e_ja=@19WL*UheSlT(fYT7)5W81TSRaz2h8$$Fd
z^#ivTLCLPaNs0rUmUpJE$z|uW=C0!SRXEWFeLdbu@$(x#E2zB-m6tTJ&tR$FM6J+3
z5GXyoI>cWT<@}*F@bUJn4wx*F$%`~~eoH&;UV(LXL0mSu?`1h&b&9?VtGB{`UUjFv
zN(FQ8HPDb27vAT(9Y$(e#P&+>{=p2$FiS+WQpN;{7z33gC#!wc9+f3d)Uv(ztKBZZ
zPy8idW5$^|xusCZU}kLlKp~foDB@vTbj!04t)7Un`^6__i{V)6yxEta-Zd)W0;2Dk
zzhdsR$Ka`fc8qbB<fZ%v#vACnWx)PlKrqWzd2b4TDR%8TTWnk$;)CJdC|$#F$M*|D
z{}CXKkX9@QRm=P#2&`Mb>)byAl$Oh)d_UU$F4a4~%_mfU?kceymSZ09ZssHYmS|bW
zeN{BkU>qR-%$atn5`S45iz?(mWVAtpI!%jC0c@i1^$d7DLmCzuU?~dcI$o$Dnwg$U
z$4?2n@dtNsCj~TV=Y1o}JJ0FjA*FjFm!=|Spg-mFry<Xt&fBO!$komGrhP<SmqiT*
zcS(6xk+!rsP=+|jlu+`H-?JPKK~{dcIG455Jm3D&$$19ITCuq_!i*M~>oHVs2!9k)
z8NQ3!{B}bJ#PylvK;awqefptSq(ytHH0|<EJ@n0WubZk2f7u4^aop|pzEG5XTAPV0
z`iQymK&-0K!fbA4+baj7U&u8zTKe>I9%!eN4`=<saiZQ7yRkE(Cp+)jUH%|`{b;{c
z-t*&%20Y~LWATjQm6>yEc#>%h=8cgm+g4MTGb17E#b^ZTlVhK^)+9cqR{Jj(`h=t4
zd}pp6Zl!@l1lK>^0-5H=Z3I>A><gHlC{s9=ww!2G+kCS=vUa&kYu(#`7*1(iMfo;7
zDjIxag3s0eBlxSov$NiLcv6Wuz7{%HQaWZLtBz;0nNIuy@^#>>0>!ed0RL(@ug2CP
zCOeI>@&Qksh!QuNj*b%W59G6I*nf}rn<_}`>IG!>$5s(2XBs5&)Rk-9B+#!GEsLBx
zjIYGVzVSU4cY`o>Wy-03^BE(xNuKSLfjtR$5h&Io5c!gj080Li`qzM%-x+Au?k+T^
z(4IH;MkrzUaZS~FFbDy_|CS#_DKL{a{wI_NAnR2vQ@ci*pUF$^Er`i@YxCrKB@-mw
znSeBMCXn+7BCHr^7vQw6$Jw13uxKCi`M59rG_fd}bOe;<`7(c;a@+Y!W9W-##5}n|
z6pD@7cR!UC0tCN7K^qrw(QJ#cQ))lifqg6O!>V6sX7@t=6eJ4RB|m;#&AX6->@<Ue
z^)dWDM-Mkj9V+Ye1lI8M9KVi-Nzp;nUq%8m+L}q2cV%P#gLRH021E%UH+px|XnZmC
zr6{-MD+THH;cJzbM4@=pq`SteriXtorvgq4<7u@8WW$PY($^(09s1#`GMHNwa-XTq
zaAU-ODQle6EG6x)xkhnBL8FX$(sI9Y=EMW~X|bW5vWEuGZBm|bQbGCEYcQL|OIQum
zcC?FEzJoh3Z`sOfVPP5H8tImRU+x~;hsm}W(G*k+8`Uz<)%$ja!JY@`V@!})Yn)h_
z*^_|hNOFADrr^@5HfisZyN%Dz63<sonHh9BJaQnM>!uhx7c`^(gtFo;3*KZAF6_*g
zwjW6T{Wh@v_pJMpg(9^jl6+&H$k}3quwtdWHUB|kfT8{b%04#9+n+-ewb^Z67#`$;
z2ktMC*j~xD+$=8F$)+#reo+ZyzOT2{V-}gDnYY5M@O1++*YN}bAX0o_y)hoeK{k2p
zg<zYXUov%&SKI1K^C%-5CE>D&2H#izc|zx2%sS%Q>t@}KcWxu+x+=fO7w$wUlDfET
z-Z_t9mDAznS=mp^%DJO7x4rA4Y__9A(|={o{`D1UYKiRSadcJGK(nsLM}8I-QhwI8
zSn?-7Ngtze;;sCfhT3Sp?9&VDr?x?=OEq!tzg1u1N|?3y8ID>^X1rk_>3L*UQn0hd
zmEy={D84Z1@D@EWvQZM3u6PsJP?u16-V)Pr5=i<8)G$itPJ;YhtxdebDl+jq#6%BO
z`yQ1Zf)m*7WPyoCcT)Ewm1xGzEgIX}8q&s)TSG=I78;SF9K0c)m~BnzL8G2219aHi
zO?W&|2$QjyrB90q>KQveQMHy1;hM3F6MkVw(@*|KC}2%A^o;oZlk8zxmMc!qeHKKI
z|Jq}$$s|^^aFvo3<Lh<%C|iWk1-$(tP}`Koa%q@{Re7|5sUQd-PGU9FAu5srex@bz
zsr=wfF_YSIvV{5bxyBw*6igYyGT0mVswd~sgy`XBO+yuaC{{1>&iOp0LH0oU=x|PE
zKoeVNtoipkj&v*J0}aePQ&3oRGbd|Z*riVrf?r?S@I@uBqu)ztIY|ODl<iEp%&e;z
z)*PO5cg#`I5s!v*N<#4=BD8(?GZFr~%)|I_uk!m$_>B(lOqqxX>=(R2q*uk-jW9^g
zoVh6MMS?zA*{D!riGu~*2<2k_rv88+fC_6iE&3xJ86M(u!15Ax857H99w4zaR66eG
zt;b~{mdM^`(8r+}q#o?|<#a~QgIW(>Q;?c-ySjSdZQ<p3@M^`k&pCN*;t~)6AjJp#
z<uJK$RDQQ#;M4-X;c;qm(`c^3<b87^Bh=y3N125_oQ>E5ge+>dI#~4NRaJcftXF=k
zG4vcx5#Wj5iP);eq}xGTtOg?U^^r>Qi>C^qjm^mxwn5;$+NAdp5t}l{!?M3_i8!=w
zr2|Zxat4vi(_R*L5BgSlYNjhiq<^tz>D>3_^%a?YNH(!%p(lPC0X0|pN6_Nh;ZT{|
zhBuZy<e6%-zhyJU4R^>_>4A|Gm7Yi3I+JzT8gJXtGOfkKPoN^lxls<bZLNt@<JnJ>
zWb99)6vN{w%0F+XHzj4orj(^MHk7n3I3JxVwFy5K$t;QRc7ZfrQ=p4_%U@lZpdRHG
zjH6|HVO;2eA|!LYLLfxb--^}r&zrE1HEE<r55Kq6rLmUUgSlGFe)oFv`uxP5oErAE
z=;rXFIdYMDs!J-eETO*}B^W8nfF>eK;ThdSfBojB@l;H^4FnNzWZfkshjda=X}yyg
z<Du3#=V@AQrxP7$^17wXq96{bxslVe!JnX3oEt9rkDw&`mCN8LLnX@R@DCobG>W8e
zT~u68T$G3uKMNJ=O8mB-KprS!k*->%)Nby0dTIjHU;v1hlHAJayU5}+{!L)lP()ZZ
z{ac$|Wscb+<tMu^PPB2kuM3;JUaxt5XnjgJJWKdD)u<pajP-sO%R_+7&I1CR03=6j
zrp<0M+X4xX{9fHKEuA$Iy;DDRWK&aT#?R9nw<wy#RP%-#SdjcJNeBCCLjm;Q75M<d
zjpMtE&5$P{(;L^12_B6^`JTx?(fz)szkHIg$<sG;SBOV;8FagWaK5Om;zpA@@AC<)
zWV}tbwYcH1hl9Mwj|+Wxx_Ya0i&Agb&D9b&Le(40^)6LJY(UW_$9H~3smgD=V+4=I
z;sb$U1ZYH;C^cw54M&GoOq0!w@l&c9cYji!Ve*ce%0OQNITVok+O^Nw?%uTh*+`FU
z@@~sYM@u)u>T^POX4syYvIfY&``c!NBye%=1)2}xIQM5Bd^W=7q|h4j`s+2V{!^8v
zpWL;{L8`$~IF1_)S6vCqQ|2&wbNc$mH+Ja2EB%?;JCd6hZidKJ(mvaT;O&xED+Ye8
z=BU8qOvoSZtLSy2L6^t|yy<6cgD5OOwh;3l{=R1Qb<l<DHl<C@Y1gMIM4otF2C<6M
zy~~o7SoV!8eNYwft4r*nGX!snBrgmw_=9`y&;o4fkU;Sj7J*yr!{^?B%O|f)+v66G
z$9#?Ye|8<v*Z2JDQd6ei5Vxcjz>0M~>=1F}WOhD3sEkRUga)hD)V!ZLkL0eMESzvT
zTqNcW+P>$^_wiMIpY0Je<89LD=~2KlOfw$FBYzyb4hqISpZ4s$k5z7IX`S=3u&^jD
zn3i(jf;uG|qc%_CENVaP#yX1RC+V1R4(a&PFmR63jO@QFSYdxEv*y17nY*}M#Y>9M
zpN$r^0CNBD$YQ`gL`(MIBxma?36{ZzKppvtO7`})<ceHte->@82X?G?NycWci0R7g
z?j>#X(nO<`mh`D?TvtCn>m~YoKTu`-`oM}a6b@bsrwY){x(q<ceqlMVXsB|s@5_`)
zg!_=EWjhsH^vfRGG(>{T6F)RZ5&umM`gs@+&tQuNX$08oe}OTh&NQnXaJ22H;2#<6
zAwEv-BIgHQ-~vbu&P=wtmrJuyglD<P=7m6+Vh7<S)NZEmzrp9`1xqp6izeDbYj$=;
zDw`;Z%645$<=ZJK|FpA;&qtB(t}>afzD&ClJ?M12ox9Y-0DL#{W$|sK^A>>>OGDK$
z$CNdyvco2FZ@a9aWGXxtJJT>y+}IkWqLtmJkvuVj4{hJ9$j?ZAJ1i-pe)Gg<ciVgj
zNp9Eb0+nE0?C}BJ(rk(+^q*&+#mNzbkgb)P95d+-9!O=I_80mKUYwo35Hoc)yIsmr
zLQD3OuUFo41adV%X}0M!k79>ZsGBlo<${UQR!p6(Pcv**u3p{u00}^EHwXKpK~xyQ
zUOYVDxKMs2U$4XxZ0^<H=c?}`1+ivMi6nf?P0q75X2fIi@n^x@d}jSln6vQexcRO0
z?>7|I83uNW)Wc#QpgitMj(O0Z!>n$Q9|Ie74@qc<Cms?IJfiz>?>{0HVAuo3#}eBq
zFWU9Z3zZ$*%N57Roha9f2K`5U-p|%U*!3-|n;ZQ-z(_0bZ&?p5-ukWj$-YsEuC&fQ
zDzQ@<eYsLX+fZ@`jLjv_Odh%%fj?}r;@jaaNE@p=XX|cNuNaa+;5mjlhQy_;AR0kU
zU5`g3k98#5+-plB1OvO3+l$|jMA5}74GF<@9}nhi8m8ab4hADqU*acFmv(($o2^ue
z*EH-Vc1%qN4GS|*JY%2e{!P-KZFRYCWoF^X37#p?<R*KxNBr(I=0bV9&FZ_5<Z}_f
z*uEUK_c`P{9x({R@qI{tQD|-Jr{xh_SkxZA*-e>Z7ya=TRA-Q%syf-Y#Zs^AvItq%
z3n%sWeZhG)JZuSbrZU-iEg!hGdF{PxaSabuDRE$A7@l;dFidKCg73IIj^j!SsIe#4
zrBTMV-Bsi0%)~6%C5_sM6tCa*$^9dMS>jU9ijJsnbt$6&l(r~%@4<^Y|6U2b?S1WZ
zhRM&jr9$4PgU^isVvje47!@C1XKa3K^DvX_I&@d_n+6-&vz53X(3fncKe+ra&3G^Z
zD@_GhnQ&qKN1!?r`pRhoz8DQm7|g{Ww6bfv8c}UE6oF&K@NB=tne);6J4czB1(8fb
zMq!8d#@w*Az^Pk7+%)2$vQU8FO#K>%sb1ke)xK;)rtTugcWGAAU&6}*dfV6H-#;ht
zsuA*h*(6&c<!EV&QRK-TDZP-4m7k2xKGzsC2Gsf-jZ}(JLDS#VbJSp9vrpqO90mHj
zkgDiQ&buaQdf|Trq#C_4%zN9r)W0>R)x5@cK&HEJI%J{=gkWKZpMFmUKucG=s=j7p
zrk~n6AanaGW?vS9pxEm~y#X!BUv4-{b1pLWimAG_(4!Q7E#NT%d6Y#XzziZRZPDgY
zo8}05Q!nY=RWwwBn_Bsc`j0ZAnbJduD4Y4RI?D@U<q!`mrOL>6gTvQyd#3O8($JDi
z`pxh})H$LGexw5?C70b44dKw=fOHaCQDe%?PyNriDhF@bU{f-Eq-&f|nrrc~HFC#>
z1+03x41gQt3W&%sd5j+-e{Yz<ZZ<V4r^Z*m)}dGMyiG*o`^@0C+S&#4@E-D?I|QE&
zOr|2SM-^S;n-)Zuf_EjZ90%PT>`iaBd;3LOQ5M-EoHL~-okW=bEXJzzCUTl9E2P*R
zColhaCpO(1gJhOVWhV{^Icc`P!-U|;gn%PTynAh<qGH{rX8Ih0KhX>xmoJ?c|F}co
zq~`g&C<!rfOAdRNOcekNh0++@{Z2od=EY_M%5q&7#<-V*g&&iT?JfrAalX==;V`+W
zdsaFsv*i(TcbADJ{0EmG0p{rOs19j(Fz7MXXtOm|`O2tyN~$$0LaG$v8@qB?ox4OR
zE+Hrtqfh$fn@tohcgi4zjOepJ4WL{%v!Lq^85qfzom~bdbJRETz@9tdExn}(sx}2M
zJtAI_mc4bUVhCs|4G~Hupp6v%(KW8`SYH6|wrS&*p3t*UpUhL=`RvzM%BQfdZ$kx$
z#@}KU(%o~&N&4IBhHsqLdo;4RkotZ{1UZc2AZnx>qodYFKCN%<#0Nhq9(|@R?uYw)
zjGOG$T7AE^+IdZj@tlOOmmvtf>WwX)OQ<k6PS;(lYgo5H&#q0p{-2`LQl<d)F_&GK
z#<_(;o_BJttVqK_%G`G`{|Ia-nV##@2JoR`cbzFS@)vF6d&Gg9mGEvp`1)66p7G1h
zF8HIS&pV&8=&aNMTRE$47U~6R7j4{gsg;A+_-*%b++#+R$nMwd3#g^Hd_eq7pQZ66
z3_tU^Z_7P8eL?(1j<v27r7>N`V}q_-)6>BbyWocs88g&rfM9v6u*0O!MXe2EzJUF0
z_UlTCX~6m#Cx+MStk&%RJNszQTfX+<0ip@!udt5@DbezwON{Y(=L-G`Snr0rI)Hs^
z5_Q|#gdAL8`7)?1A%3?02;exruw(4h&`E_=B7G3sXr9_$!aqThEde>-KERQW;74qp
zgRCN7iZM$%D@g$eD!u1K2NKO#NuU{$5+j4SG?^}x*agtTp6oR<Jvd5BzPAhay|<^;
z)OegyYJHLq_rWvtr8+rrw7$`FK<NoP5n0jnl0~h=sn{gMY=aOUHl*?PA3=h1=a2D3
z#LDXbD7wmkrrI`)iXbf@9YaaUmu@B~B?8jTq#FdJV*=6*(k0RolWs<*h=g=^vyp?1
z`JM02eyz^-oaedk>%Kx^4J{imaD!oZjyUErqud&b6%q~!uqgXYhF+qONj`}=7oddp
z!01noGX8W)c5k5+Zz8@WCHAZ79iP@@2E2WVfrkCVd9lpQpK$nGgvMP8w3(o1aYw;D
zg#w60Si{ypf5v|}+=x5_EQtpSa4IX_U!%dWOKpXSM-ubp5Bbv!$_k?9^4EZc&`^MQ
zFUyqG!Gomf5iYZc9pl|94Qxrg{1MMkZ5?Vp1mKV0bGaU7&cDxyD?z2|AVj(&>sb+5
z_gwEB2qCYD;yI0|yw9ugH3#s#?sFN<O8MkVb{x@IASE6b_?DroC|gO^pA8WQ-j@wX
z=To}KcYf0k@z>?@(~iCBoX#kB8e5a^a08t@B1wyZct!oDjIFVH>7~(rHl!LQ$Syu|
z|D)6Sc5n}XMVcq#sInfck|J?G*G$bWmSzMJ=F_@#283_>5Vd&GO7!?4Qn5sK#TD?`
zV0zzD0-Qw(K56wlQkus($B10Y!_M0QMPu#PJ4e5|E`xug+%|a^<D7m-Z?7&aX#mTU
zK0@gq&L7231W3>bpca_8vxRfG$jM;m*T_WF0s>$QdjrYU9ZGA$2ia*ouEpRx8I@;v
z$3Av5)^oXskmiZOJZdhT{<X(}icZ{d@6L*jqL{k3!>P4zt>)A3vR}T>>!LK=;0A|-
znpKh9BZH<%LGjX9YW7s7UQ4o8SnmbUB?_Y%03IXZZVwGZ*CgM4>)!P5shQx0GZdg#
z>?U%8*E{{>tKg(HGw*I;Er0pZC2<F}S)rYAUT5{WnzPslU0(3?1in{0G$&d@)-UaS
z`(<qwPW=gvdMR*xRP|GrrZx<tCYC2Iml=bM_sNEy^dVkcg7|N=<F0`XCtY)vlAW^7
zyB-}^7WN~*77QswMJK%Jdo=U+0!ah*e|LjkHrT!@I0-^<>lvh)w}dA;91Cm>wXV1V
zZl}h<v!I9kU1xF5-#M`XbkAw;hGQNp^9|8^bmnUQ&4EOtZUfJDfE3_O=c9<2t*aMs
zfy;tKD4}RB)W)|@IWyPF=DtM+O+z(L7M)E9%OdTx92<IZO3l2&Try-rGHs@HCrC5M
zWW1IWaA38EvbMN)db_qY7wz(!Qu}McbuM6{i#cdOF0Qz{1-J>IQ(2)LqD@__@Q-xw
zf69vG^&Jg8yVXjK3jh@sU5Ct;bho#twjQv#!?9mVOQx{=2h<*P>(ifRe7usgT#6Ko
zBy`RnpP-npZkN4|mhoKHnU|4wI`~mF$aBeISrX@x-FF+LLkA<M#*NA(>Z86zwMwY>
zav^4N@TF!yS;T2eK_9i`Kb%sJWo1mU=xwdlmKs{=K{RWpR})skTQe{B(TSed@`zUS
zjgD{52H%jd@28<9L31@g_{l?<X^Nrf#8I;-A6UEb`Pht&d;*KWPtawyVZExbM6SPX
zWv3Ev8jzADYqLVE^{8!z5{)Y@XP9kThYwC{_QWM-dePxBe%O*E+DeQ7;wb{v*G(n}
z9GF?sg8$mFmphy=Jo3n^&Rj{v$EQ6R2s9(>*OigUtce-g<X5rZeZ=%cqOhz*iAhHe
z&@EG$E}%T{e$KiG>_(?ZhsVh<8-1iQ%?gc&ap?Lp`p+o^lVcREN!)Cw6Ys2%BmZ!|
zwZgI*&Z6p;t5<V)hirDLY6VG>yH~+4T5Fo$phCR(z6iI68p+FC08F83o3VLq?XEqT
zCSrP1wCrw$<AV85J9M9A);XUMX;wfZM#H6iQ<x0Ro|Vn$?^Ifji14GlA7Z^VFtb3G
z^(T=xYj>EsCj!57`mxTArG}bL!GCN0&>)5irYP3i86~H}`RpqO0Egq25i1kP+`9P!
z2LA2Fxh;)q@1+{!Rrdq-1~SaF2v>u{iOoE6rlkW&a!ssOyGDm#IIm##iJM;G6PO?e
zW9u(oD|WOK_vh5GviLw6_b|_mdy&1GnH2Cn-dk<Bf^2bWNAe~)U;;ccj8Un6HoGf7
z!g^%>M-&=<aSvFFD*+YE1W!c<P_6Q*>!Y-QId_uY6tvZ^;GR%e;p=RlSL!Nf>g!F(
zNcNVSYT7_$@T$I!`Hwb8&&V9JehE>48d2h3MWPLXaG{4|UgiA$!KZlGcid)v-&~mt
z*8R5SINOG;!Y-@F+-Tpz16b^i%-#g!p)3T5DwhYa_vPR_qUppw*dxj)8HLZ@LMHFv
zcLa_ZF)4HJw}I__BTKFTNw`V%nD(=*Q&TOfr^19wuhj;mgBAUK0D2<BSw1Al%-x`*
zb-pgKxAtq%{c_y(0Q8{xiYUGb%T}8#|A<^}m-XOYvWnY^^)G#I8vFO;LO*0W*7u!`
zX*%wwkst1XS~C_QZVl+rIAO*d6HZxRx(Azq+R_<66*)0<JKI$r+E@3JKv5xS-gb61
z2r9Z0ad909d5reaYRlt>dM3S`hT%{3Xvd4y6#MJPBVqa}TBOBeAH$LuiLq9=^c!8G
zSbz{*4?nRgQZL4+Pw9CP6xtWfxMaQ#q7DA`uIMIqS`bJmb~jCf_X7Tv(T2(njYaGx
zH??*ix#TxTmD7RvNDdmJYt6E=O#sInsw_mm6!2q)vVFfTWW5D$%Fr*+p8vYUu%rHg
zt89o{z>5J-^;ddZ?thj}KGx@$$}ZJJo@vSW99+g+gN@(yqWw1?9ol05GqNP|jDF}=
zK>F;|^egQL(sh3zvGWp9hZu@tLrfp6iq%D&k6yEq40LR;tG;j#O(`6<VXg6mjFe%h
zZm<M8;NG!-g2aC~k6cPy5#HnV^Zi8QB@+5P^l^c+zvkzM*p+m1Pky%qdX|*EHUPOb
zrDA}xvmne^IYQ(t0#3@;#f1_W&;-Y8q_tMxEUNq2c^q8(o$My)=8K1)k8<#&$MFlk
zm>U$QXP=S!8<DrA!tZ=?x*OMZYn@{CwAZsC>j|3+=NZ3eSVC|$l0ET@h})B>Kypv^
zqqU%H2kPS=D&Y^?`*wbWzucuB(Yc6k;iTHRyXp5kTTfJKQR<i)IE0wbH#|vQ5p6Mg
zuj(BJwi60058In>Ng@w3`#ALXiw)Ni^hon)*LNX-&SY)nlU(Y3mK<yFZ}`K;L~;y2
zsseFlhOCL-3X*c-$(R-;cky%Pv$YM~dKZIWBk^cvuu4&jNRWK-0f)uK?E$K_1h84u
zoxwcVkQF<f8(f^NwXHR3ENPsX^L95}ex5D++WUfSG%$;AI?%cN7a{kznhdk9_CHwA
zGT=HQU5qjx1WZrV%FXEVr#4mh{^}VE)Eh6WGTl!ta{p8SdlEi=9{e6ZX&=hude!+_
z6DcqNBi_&cI%T+OC|6y)G*asHaMglaW!kKdEd%dUj?<fgqJEpXaOXs@K!tvBXG6xw
zSun5zL;}1NZbz}&KY`XQNC38?U&e6E30z5YVH7zE0(iA^d?M~n2YNWp9jZ55(>GV>
z*T&`z2QBB1SsySgc%7)Na~@Zh9zdUddQ@~I$ChR-Zmf~azN}dWwfh-E&U9SG+7d9$
zYHC{fqj;CyTJVS1S!$yuA;x5;gP{yVkg8&0rZdnM-?^Lm!->S5sACrS{adKR_6sgH
zA)a@ZBSGi~oK&X}I=Br3G~8Tr>MJVrsDHeC$<On^KW1=_;|+N~-&O#Gn^QV3@O#v^
zII_%ik@_dSu6f*P&M=P6jG>ao)wQ70=B9|BJu?|_br&nn&7pn}iEsTNRv0mKJZH1v
zjledSEjp@0w`?M&jb>b*oppw(kB`0v@@*AqTN?;>iuAKW1($uv79l{ESdH9E6IAw@
zZm8OkJ>Ti4u#G6TDVK(duQ@4v;a>~4S{quSs9SxCWg*tu_vIBgiM;{~&970=4J|Ju
zjZ$QPcFD4TaG8}&rJ7GkL|b!Smh*NtUN#+{v5Jm|svD~{(<t(%Jm3{U9EO(c+w_`i
zSW-7OV?I}l%wG+9>y*~i*2Os-Gb4X(sQ)Ccbj5%{;fw7U|5hnpHCLI|P&)b1>WI_5
zU(V)=GIjBl*&QffOpf4h7q3IGG^!H;F^)ir<itwyi$I?p65Ti1%$9Ni?U%5XmX<_H
zKxIQ#9RJ}2V|8of3~)xnt?6VG5oiS<{juP+nF3m)v89b{^PYd@%Tzy%#a`8uZdpUe
z(?!O5OZ0r`ga$F!2PN$iP%RA<jWL+n%;P<&o}voTwqo?|(yQ(-iCum>Mafzjd{V49
zn(uTaurY@rXIS5h#e(e3d6D=7PCP{SIvS1btxbxP*L@;L-V`O7h4go<f?6GTTe~>B
zorI}HY{iF0pZ=T|y&SS%{x^x$|Foj~ZnmLSlu45ABsV;tfVTdXX&h@V$-d@Y^Lpy%
zkA3-0`lx^kdt+-k;h8}Zr`U|phY8g@5}N-#H-CZ)Wfse|s&@A$EiCs9zW3t$FH!oj
zn9!*zd5d*2G@8~6l!$B4i8ARo2icR%h(YaVH1=JqPKy%k_5XgYq|Ho0M@yK7?I0G|
zEaBfS-W7nl4O?yf-kH6_T|0Yu6`6gxkJa9vXd6Z4a3fy}B&g@AYX4fV)+k+_M#JWQ
z+z$Pa0X7DHF9RbJ>H|`l2F*09?yW@g?R@os`-s>|RE#XA>g3mva-pZ0bc=nQe)z0}
z8oLwbdFp=4UHIaQmqIApmk{-IYg*}Irw_jshJ?3dlBlem-DK{MW9}(YB<o8qU_-z)
z+CJ_^JcE2dy2eL>mx!DBn+rbecE11IF61r0_*lKE+#|G{BfyoMdvohtke{f@dbL)#
z7D<<`$oreFL|px)lGO37ZjQs1eu~fRUhP5KUIf@C9@5{mM(|>)>o5EG_^(ywuH2R7
zAwR2YON7ahdw;yJIZ+C-KWfU2*IeiyPQZQvF~$$2gMMd>iaGoZtvk3|Td-)WC9H)U
zh>LMZ4`yHgst|g!tAF8o-3fn^qWUb13RxBkxch%ZPR?B=K8pnt*mueN6%awI+nKh~
zo28{!Sol*P?v2((r#KCNCtrMPg_aqfv^M1#NWb?$?Ue-b&d5-$yU_=ab-nl_y0NJa
zK9*Ab!~Z<Q5*Rm`&^ZT=^9(!Glo?su7w5m`jeqX&CgdYHtK3#kkNt~(Y2KQqG+fqY
zKUg&JQ(0`Dq4QF6$)(Jren<mnuVzHoe}6i_WvFx)z)R{&{1rB}#!+8o(&&(KfLNUQ
zsSTm|=I>L;>cZP*O1~^as$@M@*z{UBPzLM`!eZzJq5x0<kois!@0*Lom{h`veNEmK
zXaod|Ej@Soc*3)4sua_c_lto|P-UPfPu&Cl0BYw3P?V^!oW45OWq;pf%mp(~GN{HF
zg??@EwHvR3(G43NC#e#o-aFNUL^HozT|KsR`06sO38~gMNt*2M(H)c*gKMms=T!fW
zaU4Y+y6l6<W%Sm^h4^TCI7oz^JbQ5~whsxJX$ZLm!g4sXx35%1!Q_yMDpbs_T6<-g
zkQ!Sg?{ELqNhk}?2a_NCf48XU;_O84aJfak`oDOly+Hd~qwyUs#J}!?skL{tFvVW}
z*Q@Yi+{Cn?ASZu~ozmo}4<ok$y6UcKfOe7j^F!4;(#DmA{cOK@>lsc~A549etJRg&
zIc!(6QI(_cT8F(fmf}^>4j;9-5@&5%D?pHbRq5OIabYE8i{o0N_B-T5P@zm3cz_dB
zDy(1K5R0F=G?-$lBHg8jbA{u5mpyMd-<<W4D0!Kpzd*CM(MtIC&6_SQS2b}?<O#|f
z#z~bulOCO;6l$D%f7R~bec<L0&X<BGjM~l~jTtYBGJRJZAwxdL49_#l-Z}Gnkj^Xg
z>?s&PBbht0gYJ*j=~m8}yDvhfB`@XDCf>Gpm7G^HYLvM+1<4JMR#o|a_>bWa2<pG>
z$|9Jqibv<mk|2LsGrRDHfWJ`ek;e=CnxI$LHQKvkBNN7Vzwn-yi~<l)aef(PB`QGk
zuc7Q8i)m>MA$*Orw@dGU$;gvWLCjB1`1pDZH=-3@gsL%ef0ndVy<*EgVvA9deoCQf
zF;Z1oDV@gl%sF9x?;PexdsQYZVW*^O?|H7tOVahifJxA}iCLnn?g77HTVl1X>A_7@
zmz5IGVAt;cY|G$dw5i<}HcRU7sh$I>1T*IVjtnIC+DH8i`^yQ@Ln*h!t(5;N1y5$?
z257{5-V!{~oNhF3nDru&dHi9X%BAP{7Zc|sC}0t_vV7|xVD4l-F(~|+e<AY$gm?jk
zeS%fp75sUs^w{SP(oe$u@w-}s%txOP%s9J-Km}!)P3=uY^j1{gOS`SlDv}tdLr7$>
zB(C#?kdP$)oxx6U@@6@Ea$xjU;GI;#wCE+YZ;jftYXACJ!{a|+nSdZC!iLoOy$Uro
zP`RLQ#5?M^*)S*P<RP}tCrK0p`yW3-Ss}9a=IrTCB7Tt)XW0v8ex4mEJRz0Bp|i4s
zd=92NJg*Mz$6CaKDtk{b3bi}2*8X#^9X7e{Dv5(XMce&gdPC~rTdq`3=4tL7_!g&o
z?<l6XZMIiTuge(cI=Si%sqRdeaTII~MgXV-<Gpt>89$YAMrnA^GNS(^O`ZZWfAVX8
z($XsBUnIVf7&Z+&&#<cso&JPxOh<Q<>{g02f3Bx}R#d=m9lDqZU<}M`84R)fWUW{|
z79?wGZp@1mB8ca_;x*px-m@$CJAe|;mDr#A;pg6rZHd%=V7dj$UGdlIUIob;QmVH1
zqLShtD1pCh$Ick^iTv(Q+w64S@*iqh!$Wb<>b*nc`z$OH7aem!hEmA|2#;I(I{g~T
ztBgL+o?IFUm@Cj-ZwKgymtfMzb_aFsFxN0X><UAd?cR~T#ayz+totkGI?<e__eM>7
zxvm!XjvTW!WW=gN=r?mYWl_)R9=BYL8_{p`4X%R$mm3lK`J+=4^$yU1chWELQvCmi
zAyi|B%y=lPs)ubu5uYl*_2G}#HU)!e$3>jD$T&+hL?trG{3SD)&0xV};5tYQt03US
z8X4{uvVFU#m}B=3=Q$w)Mh?J&{P6XxV7`oTB!0Ks!{yd(;r*ti5Lp$Lhh$S-!|Dnv
zzaLceBgLPGYge$>i<B9E^ogy#y#TnsxImI$sBvasEI9P;ap)eqGi&xFl*`8WV%!S*
z1lXK$2mdzbKye-E-BVMqNdgR-24!X1^LegVmX(jRi+FM$jf0)|cj2bh0T=Mjf}~Vv
z4?cK3--MotPsYfafs<!b?RHSJu_xpF;KbYuAXoNuLTX)ql%Y8X<wT~Vu{$eY|KZ$e
z+1_HDZYbS4Rp~9d9I1@V*O86Q9(EUbHPD_$aQ$`B^9&W#_$Jz{ll&6s&NaYHcfM9<
zp<u$kFf2*upHKQ1GLpzK9b&nIwn>qz?n{uB7{=f-*OKM4WEo$*xMZboG=0Zlr9ONe
zK8&>%0D7)9*y4-c{bgV9b$F=gex+PmMa98jV7!?D3@w@?j(K{9C4Bs$=khG!j&HM^
zL3gOygfY?6=cD8uXb@hmWx4G-yjwz@!i7tIRg9!qh_}_#ZYuBq+(d89I)UF)5x7pH
zONn`3=q6c2qc%RXYlS=6G_!XW7%QW>r3>Czg&>TXD3%p05DDLP5nK9=Ut3P{?rdr?
zLV`z-ztK&(pTN~DkvdvwwnO#w&&^jJ*isxOV{$antiU_lTuLmj1WHbNIWv|ww$uj8
z!l$cIcX9VT*)1q_0F!k1(>G9wdDz;?vKQ2D{1pEi`QbTeTJG<?&x0zv9U<u2n;CTD
zz}}vO?4V;%p_*WjB^;K8`3M0J+s6!(2Ep|}<ZJRefc~4lCA+`9IEtCUieqQ7&(yK(
z_XUA^^yRl5l_Zu5I7cDOX`C0L_mw#(4kn&FWGEcKGv063>)X7x0=kB4k6Qv2RL+XZ
zng%<OC2CWl#d}U{dvcFgDo7MY6j~O4y}7ew<W8NVV<Ek|9*jmSV5q03$jFZ5c$@1x
zS6S?9_}u;wFqEAs)_w^a;@<X*L%83oax|BJKl#d&0RNApa(PYBzXXtk+mg)4$k*TQ
z*8W%u-VN_#QmX=kQ26J^0Er5Iyk^_`VC(*cX-ca>-YZu0po$L8wdfxQaAV~0ZTYv9
zi6MW61gW*&V#+^He?7q{LRD$Z8Bqb{J6>)i4hD~E*c!s&mu#Yaj*v%iI}#_K>$$!H
zQqzd_jA<8DR%AkjZid#qN7$;s**~1m!5{|+V;9|_g^31|Kf^sAZ*17_|JcNz<3PI-
zbB-gPF~82ue2%+MmQI&w?fYoBMdDMY#i3qJ65uGe)A$U+eByKWSwm=mP@Fa2R;@66
z(=KbJM-VCMM@P>pb$+8sMfXKr43+~$9e^M{5O1bz_XlWl^?b)`{*NJ<=$EiEPGIdB
z1$XOMFQD}Ax|;)nH11XIg71HDLD$nEb)sDiN;5KAWohVAKFhsC^qH4{gWV4ioxVmS
zxD}dpvD4KmjYDT7e-<;HXv(_7FMk7b1=`;afh-A{!f%i_v3$d_^w*O3SXr8@>Pj*c
zr^NIUy<Pu`OKP1)lG+e_g(LMxJH3Lg)C9urOJC(U2O*rQnzZZ_!TnAU0nIVbX6&<v
z6GNUV%9!gq1@NWKCu4)-fXy+duP$l>f|?Zh-V0ooVComGds@}nQqPa2#)HAzfs@x`
z>%zMfWQ|H*(k(rNYe}$9zzM0C9iB>Z%NJ+!P4ggT2RKn|mg-8X8o7wPZZ}wh<4upq
z<!Y@w`$TP6H*M!!L)a4>i+r<psUH*Q17N8n41#n!K0x*k+M0n>8fS{|BO`XK*r4st
z@j9FgQNn0NqnE5b;yPQYJEpJJ(&^itO&i!ZYpmgBtipf6#rt98Km0r(8cKqRf-Uz>
zk2{<^cm2kN-DI{?v#r4-7zgU~$bM!b<X4)tK|W_bSBu}^@UE!@<-f{P9Y=<f9X@4m
z)Bm7Y2deLPGu|#FmW~vEPc#1LZ~t<tg5B*e^J<`V{i3nisC>$MWb2@+eH4)Hr1S_;
zb%4?6Y3?_IuHX=!+lx%lKpaXJ0YChP0LdGn<%My|2QR$nw4ZFHNYRf0zAp`+gJ@p6
z`$ik=2ZKO>6zmyMO7VVbXp&xFAjq}%T*N7w5T?ji&=&?V_EjFD_laq!_*AXO+TPq2
zU6@bsRZ5*P%xUn@*T$lU>Q>FIs_Mh-g~>oPUFz=pjgNSAv7Wis#O|p;=9C~Ryl6?C
zLap35a*Nv*@a)>xn^T-h`Lyeo*&*HBkg$(6gs=Z7_&J0TA{#PO?qkNU50PQmvQana
zyNf%D=6%te+%;*>vEQYmLVl5gY_NMA!g^sf!2ECuFvAf0**WJ{C2$oxmn$zCMo`+6
zExuUc9pVvNPcb;&YA(b`exrN?v;dC@?z0<UOW<pTxem%A(axc$2EziAKMO`?*uSn>
zzIdbx6Hl#Wf=<fHVViyL5p(@ZWP}UH(|N_M6ei-C32ad;xTnN8gnD7DxjY_H6)^VM
zG|2$5OKGad(V>-Y0WcVba$RBz!n9)UM9)S(vdKf6ekknV)@HQc{BrjhE%-%VaY$V4
zGM?1EU<HcVEe4F=NS44%koXq)yW%^Kk>kZuPmX|)IK}dWM}kH4nMH)wF29EkY3<n}
zsn=<8)q>;H_y(O9glx>gx+!7fPseB#&}I|8Pzu)mQJqh~_V9ssZ3X5Xl0TLv#Kz%j
zKMuxY9EuooXB({*s%R2y$hRb^0r_OYUsevN>*m^!7EGH*KIW}^d#csC2c-~E7dJ)-
zd~P%uf28~KkJqOF7rY78mJ3(D#wRFM%ckVSG?!141kX*pM+3vB1DN1;0JKVTynt-q
zFo+CfLfZ976?_hq-#iHp66zZ|S9kwmI9_gly}KJgVAEPJ=zvgXR9cmH6Mo0$$*Qo#
zET6G15DlWikZgiU1K*-zH+b5)K8<Tn8`l4=vVPM}K)wH<Nqc{?PLZw4m}f9fWx4EZ
zZq9gZNFcm`LdFeAxe4p#QKvCLxW?O8y+A@D8|h#$^G*4^!;7V5HD~>6PVVwag?2gu
z_LNUN7Yn~#5tF8fw$r>T*AXK~z@g7*-2RAKAyU7-7(+4JLF2G7T#_-?*p_x#md`Li
zdb}&SU2C5%$T;ztVv~YVOgxv`cpABOB8bT7E2uviY;^yj>hi<ML$%OB?D~wVVe^n~
zyy{%GerHv}SZ0Kgf~_Ztpd+-gWZek+%oIg&p@$$TzDalTa>tFh<|)l>VYg0@*cM>3
zr|MGKxL+8VmxQG^{KJV85+C^g^w^vwe@+>dX2G0QuFfBASFA4eYO+T(t+-Axo`Z}7
zmtw^2nSqedLk?9Rl{FnD3SYwkKG5awz;~A0XRX?9j0gFkKUZ$gFuF*l_*`ST#B#Oo
zi4=>X11o)PGTDutap~vM#)sl5zfxF|6!}qc@h=rWFqC1(@5Gud@ane`7vKZ*5sg0d
z<K<@Zq$w}*4`0zcSY2>ZxcCtXoiY4W@*58ntvG~`HOOy{llAjd98sFB4JVt8FqNzn
z%?r0h`Z0~qEzUe9AEC3~R%Y+E6kJd(!}!c>yQnG1v7`^KXSpmpX2;+~-zre?i}CA*
zg|B~N)W7`rU+nY<6ymqt%s=#R3agy)x@+p>S3ITg-s9S%L7b5qcsJw;mcw_+B+i%n
zSHtA)t6jw?7V~4nI5N{jXZm9|(G{V)e>me)m*rJk{6<zj={8@y75#wBtv}K`iNQ`s
zut*P7ff^!fa(0zZl*59xq~nF;E*q)cSDOObTZ8AXPVzNRmsKynjdfLW`^w0aiB+Gm
z6<z#=rzOHR1PT+pl$i)`)A^sqIINPi9@J#SsLkFnW_-DnHR)+;rq?fWW2#;)P9~cF
zmNA~76y03v-aWtepH>nB8?)2F*_Z3Pvd9gf#i`VY8Fi}V^+vvivblF#<jYgdr1*W_
zd`_7e8}1UJ-XGYQxDF5ZZ;p}CEHhkFrOwPaAEK&X8BQAU;;kFP)xS<2)vDpQO?m&b
zH_OiXGbu?BaQomxuoIvLylPokREm31@&*W{tp2sylV>ElEM*kRZ-`fD<wJ_1Hyxe|
zW#wjL2Y>OTPp#CO0r=%BDbt-9$@e*%K2g4b^}N`z-kIG>uJh)AhHBfT)49tyP^8=g
zWJV~4$YFCWPRcuVW90*h_r=C;yWI<@jbhb-hl~z?eSnM9n6t=8^7ELb<BxCkWNwKE
ztO+j9K6e;wxh=jnKop^>Ocl2#o;vCaul$}3pnr2tZ*&@$eqCXQn~duavlYjUuznYq
zf#BRU=pWZV>jqJ=qfP^<Hr+Qtv_loX83PDqsGSqZ)w1WBJVy>wLme-TIB7jZ)yIQ=
zCAlcpnRJS5_6)^o*8_THj8Q^`pyg2*d%<N#nwKR9-mB!%)g3}f3Ni~d4ehomF5eIG
zaN~F7R6evT4@=cWD;P!;xvqTLpPg;WcAEQz71H(F`BZ%i`e9Co7|h!^p_uFQS2&JX
zz_E01Ngc5r6gu{^T8S22IDTIUunOaJsgbILk2r~kII8QCg#5i>En!-3d91n&=1X-`
zlMT&Tka!^*vVx6J%GEv#XHxNB^UFb0!51JKT(p4&UV)ELmOkga<nptv#Nbf4G}t9x
zvj<Mr@wzO~X0F4p&_3HMBC*`TxGB2gFgqv*LeQjcCEJkU*<WjFvdr;>lVa$(Hqqmn
zY?8P7wq8s{o`>)UfqICt{u7TQdBmbwrBQbV@kQTGRm>D^lzeLr_x!L8<9|be0gDbu
z2lt?|_gvGLYL;YU*qPkV68oJ&PPa?<iO}`(g1X&A@#qe}>erjG0a?5!p@s|g{s|=>
zHAZFm3bQ{uv=mwrL>$=Ek857_Zr|O+g4Y|Esp`{r!N36v)I~oU=+$St&K;*5+7y_C
z#%HB-;QS_8uHJ8ssUp+hGLJ=lYn&GIV`nnkU4v)L)UUIQjkdK_(EZ57S2*26jn>PK
zb&5}7)_5f!aoRuX!iRg#!t)A%2Drxx>O_R<qFY4qY-EJV{GWjLsqFgkb>R=lk)pOd
z18>Gt<;PKqJS-9`?d5}tfqG~_Pt^l7SnJ;*WLOqdSP%W#0FTQ{8S%2EHM8a~m$7QJ
zo?eurEc%@>=N|jzWgor%;TTHPyrs31<f`BSUfaCuSjjhe9}v{sFI;vfMLX&Hkn1-N
zGfK1<l{0WB9#K6$5qotcD<!%Uf3p4GgR2WBC(JI!2kjp`y+-~kLrw$<jTZIez>(}g
z;+0RPCf?pOWiLKB3Xgkq0O9d1+AOWDSW&T^ZU~XaOb8n)@)mEQid!zST820}=Mjx+
zhkj|kq4^zc1^eTh0w^xdW4`sHXg-W064o<2EuVx`tn88b5hV7?bZ@bPrXPYZ{J&^1
zA-?lCFvz{8!HVU8UaTze%N{O)_OfE~=_WkXV(W~Fy&#XjR_c4`J9nyRg^=9G@w)yA
zeT!XRW-lusn-jnY^^qgRuM_`lULBHSqK@YG8Q$AFQG6r6c^nXz4sW?N4el5LREFQj
zUHPgAi0$DoJBEI5#dagk;u>L@@tdPl1HM=2pk;p9E>pBYyb~Ppk+WyNIzLEw!!D{c
z1n*t_p|P%tWDk2$x_sP~qy%gy@p^B@1n?Eam^{&HaH2?_xoU2D#CEZS*=$V{&!<3n
z5{oybUu0c+XHjg(%=fNDyySZS>f))OHRp5Fhw|O9>S2^v1P4Wd@D$(uP<S?ycmJ*2
z;olMfkHD78hyo?w5gZx0SctMfxQM2@>|_lisc|j!&$k4&=hbcsLK3iH*?;PQZfGLV
zt!s8~s!9%jp>e1FKfr<E@mglPLW&A@3}^j6bnz9e2aaN&k-vh_n{pHL(px50v}7h|
zYEXCeBfd_V1$wqMu7szZQcB#`W+v)f4FSyAE=r;ICFY;L!$uQ-^jZd$NQ@Vq!GIxj
zj{{cR*Mq?d5C~?=Wl=5Rep&VnMeru{KPFVl_E7zRb0tyZIRHVJOvD5~sEdKp1Ig<m
zEvE!3t9$+8F?5mdai&$*Jt6pk22)j6OrYMozuN?S17C$j;aQ_afk~l1eDNLF7_F^y
z=SHFQ&c`wkw3M&-fE*{$eNpA1pt|qc$J;tX(^JjN6lx)=SJyowyXgeIRa-Pn49$=W
zp@F%tuG3(f8t{5Oh`~BQ%^piQui}<?itE2~cBX2Ep)6ew?6@%P0^p0srKr5`s=Vf`
zC>}RQKD(Gjmo`jKicwSM*7M7a^bd#1vQJ>~4b&-aq^RIiN^F~oio_wY)_KrR51yee
zenTT@uc9BF9v+{GYL1Nch~Q#>0owM5EY8EG!l*>4M1iXS+P3rh6uX1Rkr?Xlvf2w*
zL=$1gb4hi)9BM8~1T+D5L>bYfTM3yHSA#iNq9BCBDg7#X<Fu2pJlKn-%`<JH#?)Zb
z5(U$3Mfuezi<H<j&$3My`X<c2$=@D;|23kDQeq;NoS-_diMRNW0ka_f&_6Z$&Cb(B
zTQ``EG{|$Y3mxg}O?#lK+UPnou^aeWhm6@};=l(BazKm!DmsxPMe?%c2A^CG?ExT2
zN}CxNOQeeCA07T6$3Gn{F|lytg89(mD(wy##VghaVpkIWBdn^yk=Y_vbW|+o^^gry
z8JtxW8cXQ^!1&=(CeA?7oTiX^DwR=qbR2L8xn|fnL-E=5pba&zA&DJ2j<I2NCQRxG
zvcT`dIO9Q`2mpI}uq6OOIW7&X;vshi%gUAq_LSLth)ub0liB#+OxAt&;TfcTs>FkG
zMd(^;lKRGQ{UTuR%3?Yci6p^BdJ$MhrI79==nrGrwWSRX3XWsfPsDru%R&O((JCnB
zAq_yw7u9Gz#piXjB0|ueFG>!<O9L1U9mPVUS_Wfyddp9<x2sdR23p$Z56Uv%YW%`x
z1%rSUt`%s8R9HNbBSCdRXw8lLc4GrnRUT*gDAlR4$-h{A!qU3$@c`B=Lxg@6JPV{8
zm(DfDD^}Gwi=g8bPFJZ-eo{<vW~;3GBrJD?KMh|cS3OH`+JoZ+iXlL~u}=VduRJ+E
zvBlxcP$hg^M#_*u)kFW>?Nl?eIPA+F>W~WHdF@JU?G5>hr@lk0E0kpHDp%kmO=$c5
z;htZRXe$Wfau^RGgZ5|!I#u?N%q(6SJB_svxhOa(rKQorvU&&3TN!blFvgG1c4`b^
z37L@eK~>o`SrS9V??|C5{#Z6Fm!mM|0}6x)+rsaMkonP<7Fty=jJZPzd<DkiSKxPw
z4Ic8ujxke0QUkl+>v7CXxC4vSTM@hYRAk{8L13ac9Yjw+us1_h<FKxSqSF)n7?+)E
zaCHubw}Y1UHl@qGV>L3Na~xR5s~O|q)h=;sX4kB;=09)YBk@q2CUfB_kyfKi*c0Ek
z94GZ^=`61%I7ix}usCyN_5}@W{`Lz&>t|%YC~46m**nRXN6c087;b7a9!So`^DV^9
z5(3;I@ejuh_KZ73EY{I|#as(>VT{1887B=bib!ap>w!J-xDmtMgVx%Q{%DAip-3S3
z&v$E}$-I+7x<Z$1u-!yp@vQec+^!h~{h=`YpdU&pV{jXu@)Ca|?9I<c*6+}{t6lAW
zi<||}a$4ERjWr;NCl137bYm;b%=6IhzWyjo+q=Gb)92tHbBLoN>`E{wVZ$<~7t2xq
z<$UTjlI(rUor_5)Z-Uf^MomAo^8`D3eB+EfP<4t*FUzuVwjp5sSn^54(OZ1ZT3#CT
zFYc}it;!21#9i}nZ4M)O|MxZ8(*6zhLbdHt*Mb#z!^FFwNg$MrhFTm6FfOf}gEb+&
ztk9lUSk{9GLssO(fIUgehgC;kIcKV!5LLb+=dEun6uz+XU`FgRq>-tZzAO@>x>*@y
ze4#kAR~r!h>B#G1qgT^~mDh>ZAi&RxpJs<xWA#6$BMHvW$c1aZ^`9v*X}O(eJl>kE
z=Zsc^bl$3Ach}r}g9i>>%@<~g$JnLoMwEjj5nDzw<^4WzF6^_-E<+n`dJi&UZ)xuL
ztwCr$=<`L$$pP{lzkf(M(~6}rjJP1E`C+>>2*m{%q(xqz2q<MNSmuGh4#JhIFI_h6
z+vOD?*EhGt!7i^49`|0%YJY{Etev;s+X$S15F_0rKZ4zd$*^JCuoE&w|G8JWZowJ;
z|38PP34+ifi_+w^bR%^zH<8fy%HL7J{jBjsR%%Oh*b$7-R@Z!k)GyiqQ~ARB=v`KG
zq+iR3x9L|B#D`XX7$M7J2(5ZzEwML44k<uJMr8edQ_(R<D09=89bk+G3tuun-OA07
z^E9$i=2tU6s6KPqYzNIfh7V0d)OCTIT?Dby<e2X2C^=DI!r<p~yj@-XP#wr{E*zmv
z_T<%J283LWUNZGGOO#J(niacb%$#@6eOdsVKy-+zxW{{O*k?ldB{J3z?l#p#j;?57
zQE7x@UboP!>ovWi#(y}l7Ho&XW@1Dsc>iwTYu05x7+GxsjWT|h%YIcmVZjT<=s`LB
z!6$p`D~?CUZFW&uCI}q2x-8Dw+M>Yj&47P?0s5_@aouL`SYLBwjf;$C@yO7hVW4OC
zn}kAqgWeXX3g0Cq4*o|iXV&kAJ&pm;R>MFOp7JM4pD#r*Z9T}X!IUIE8D;^=LFcP@
zZk>W}tyGO}0FtfP@UbpX0!d-T)*x;i_!+v^zKs1EAXPB>x_hWN@!$?j^*jFJVZddj
z)xgxChY(pQxCAN)2>2T9V!ugqAPnO9hX3K@+t(#x!ax2kg*VwnHB4k*C?a>h0d?B2
z*!4T;THQ=5H<a`0h5{j5av!vJIV@w{M=L6U9DBZ~$vQK4VStZ$_V9EZ4_!dFw7x~*
zAeFB?cf)7)I1%$qT|?YA!z3gJjJzr}SH8VX@4FJYwQi1vF4Ubum7}-Rw=v5Bf4?GI
zh$3x=_d*3B6OZATXFeKnE~!IYanhQ!I)G=)AdmSRme8OmsR&TJy-<L{x9#q92Ud<>
zcY}A8FX{7TKG3k8;#ce|8f!AQ+wtAbtq){ip2-D7rEf0v`^zBVO8o&E5{HZi>Q?Ar
z(_ahfuN8s$Tir4?MdxdVrCgz0JQTuu!-=KT<w<viPIMZ^4*kw`#SNI-;wV6SEibQI
zy-k(vPXJ$AnR&rZvVz1^e*R2?)_w#!1BaKdZNcTbU^CF>Bdbt++RYqLzZ=`rV@cR(
z6x8YH7P?FJ2s$TSbg$p|{J!d0;$=1Y5V{$dUWim`6nHR`e%}uUa<H_UAM4GCJ1%QR
z(>q5J;{{0>Y;OktU1d&;jpsigIIW2TCsn#*|E?12KQsyGzrH2I{^DvBuV>$|Z3|XD
zBE#@9aj|@$)9~v7jYf5`&J+9Pk;xSpV}2%Hmm^*|3z^qI53&ok|5_ehx1&4(_i}Sb
z&sFvguq3lQTWYu7ZPx`Oj&!!`(}j9Ti$ia)-t;C%Jm&}t<0U68R?i>AgfiCaj|pkB
zdX$X~#=HdXnGYy&n~glkAOs{*2_v;%eD7!SewtowFoqo`jJ=5emQ-U|VIX?Hw5z-R
zz5+{eD3)|c?+p`QI4x5B?oe$Lp^(Dm#mDgQeUhKH2lq1zzW9>R>c>8mSMq^c8+5)z
zbaI(=m9NbZPEAD0xz_Fj!R98|sRCl_TWHfW%4xy>Z$BpQv40?>IS)jKmHZ!dK#v=w
zUh)lp`oXt3F>TX{_!_q3>sOH`Bg{2Q>yEtv?BC#GE?5~9kf7!?8wR?Z2K~}M2GL{K
zM(Jf8r?LNV1W+?*(0|(*h6Ue=O7}h7X<uKuVLMes)TMt^V2;+uAhD|;ulw0r$KX^>
z)a+H+K<vl9<GU)(1Hdf+shfs(^-jNOA8l&i^eC_Fq9Q}B{&iB>1uU&fjvJElooC1W
zguCF#Y_<T&qwDOK!kQSUi>4#gQMp;ip?%iadmty;+@WXkby3qxlIpMG55sptDTI-D
z4P1Y|m#bFHD`M;PsC2Lte6);oGuk^JCL2Hd|Mi>l08fsFo$`o5$?dNXjrPp(e5(lL
zSnLH;=wChA!p#rP)p_q`F~4tk#J%=nQ2F*wr<(mQeNc1MkIeNN|9cOoWDvzCxefS3
zlDBYjjNFPE*=U0Dyrf3DNxV5{ceqiIyy)A2quW&Lbm{v0;{w3<6uA~zA|2REDkLO@
z4szHUVrFuEGjv{JOD%cwTC=fp^GvzX6T1wklYZ$FAO<tPG)U<czxjvbF-3lNJnsJ#
z35(RkG~JWDm9f}37v4)8{u>zObLzL!6iE_GcYKn9$64k6f?4)$`M6;KUJHX=lPaE+
zj9~MHF);7i;Qgbi`VZ$dz_umO2ZSTCL)#8-#rNNuW$k+U@+iVJFUKhc0|6ejngqk`
zkZDsr8XU-seC9$EB|}hX&a>r{Q@WJmKD^B$Lw^H7y={0s1p(-bMJkV^CwAT+tQ8hJ
ziZ&#M1_l8=-~N3Z#;?%Pm~XDHQ&=HKFLpHjAC5|h^J%0utx6bfsOoLV8DtE60tcS^
z8`TFqUSvR!YklH%f8`jR7S(4{q1EQfGAZ&_pB|3exl^_FMt^-&TV%hN%*rsC=7f%P
zqjLB{)#GMmy4#2!-l0=s<_k4$iZ}(TmWa*S4Qdse_(3`*+NYz+@10UgjWmo0#q9KC
ztTb=3VMkV&u`c33eUzx{qFtXuhoTE!^^YT;hf{1ukJMy7XDU4X_UNVhH@h>j$<(=v
z_I?NrP(2rQ-|fwx2*~Jc#&*61%;hfY)QBXii-pu^+x?oBO_vE)3X^VKnjXhLs~jAK
z)@Y)*Z!i?oz;)Fz6~h}jk4HA<OA!s?5J$KQOM+A93mXeIJTYs&ZGzC_q~_CvN5sT)
zNHki}7s#3xLW(s4Dd8?mCF95QYWDJPv`+_$673)85eYN@`sGh-Fs;+C<RH&5*T?QZ
z8GN*mFIx$jS1dPi=pt$*pEqSo;mrH;RUA(pQ#X{-LP(qbh?9xObz)Ptv$|Nn4gzG0
zeXoFu23z6@&vlxhi~xs;d>YhN5k?7F5ON~p`ORTqvIAUc_BNe=^Y3Oe`ZcddmQ{qU
zQG7@A_V3DC1gUbRga6t<Y@XQa?$MyZ32!p1Wb<@G|CieLs_}{;gjwislp!J66O?At
z89d72kO$h8dnG)ef77T5K>8DEkDXj3i(1l|Ye3UIf1^XS@;e&#(t+`3QjYH@bXn{N
zq6=Z67D<SkTjVtZ>Z>z9M++)!eT5p5rmxoS_Vi$!S%nl06M0poa9-KXHxmMBha*BU
zPR*0mp8$sEQFeUpACu*wy#eowRNnS_xe<OFgA@g&E9lBna^^D+QtKvgV@<T3$DLiA
zD2c*WP)jq-H4(iky_w$)@#YGf%F4#W6<qsQ#D-0;hNAiD`^LOb1?8K8Cch71!La3&
zd$K-Fis0ctzC`_P1u=3|7$cO$mPxha1N&KK4rEYMe$(NkpRJ+K5^S8Y(3-r%hQaf>
zsg<NT`+X$TWyNZXETW4O^QaS{(O4aO(~h=_^va{QunFQdf0JQh4R^4v=OTz$&^CJD
zP5hC@?Tpf?puyB%&D6=iytU)Pjmf2SdS)rJBpt6YMmc3(%rfp*T+dfQLO*=b0szt`
zDu`Kq5!q8f+rdzHNY6f-`L15w#x?`$OhczVM(+0V3!B9TnD+;rDKnl#K24vh@$99X
zkWr)RSbk~s>1x>pbQAI!M2+DIDDl<2PHCCOP$3_^%inv|(1;Xv@S(nI?EF>ikkP)?
zl5%*rI!nOO(c(1cu$6?Vd!eKrT<$A=y><`mC?D2Bf}f#ekqiUbrgG2!TrPRdTtW#J
z<tn%#YM?xKk;!>hHl<yChmMgf;u1`+YG6So+(|POONi>MJTT`$YDSPn%UChhB$k>u
zX$>(r61X^dBO7igM%dgtEUf%EfhA;2#Pv9r5UUAwzIWj7FbE2+YcIyK<on*F=%u~T
z+QpUOSeNI959F6+pL@8H>LTk*SC8S<cPICzS-Y;}>aI|2Fb#BlQxne^zaI4fF}3wR
zN%~tmlD~+m%Fcn+!{i|JYJxQ_-7s-02`nVX3GHzMuNN{)eO=t|dRdPs=IygYxxH<y
z2Li{1A%GrFrQ1#t!n^G?M0M*@>X4Cf{gOJ(erPP^4a*0TrI88OZ>JbfgUHVqO&>3c
z1}Em-3BLT#SKS!EtYVMst3}bD!6qlI{ls^uaI|6YbOBXy`Wb+}3s5?-&+VyRRc<`X
z@%ZSnna$%?^Bm{$MaOIT=BC&o`o9C;m&o1R-Eh)ZpA_;A;-_2EJ(V0G%KN3^2Qb|h
z!M)P4Iai4~ZI<I~s*SoHbQwM#{&q~l23Q6ZSzqd*RQ%3j7PvvQQ)%;Ig7RshZ3xaF
z-mF%V-_gwM#V3{m?wL*B^u>1YNBDa3L+r&hFRGNEE%l!N_w!cOW!2_Zi{amzEEkus
z$4KkBMdn1Ax#t`?%J&5wTB0*aBYV&NuDGt#l0rI7`*$FZKGJo=rV>$Xdl53=jkN{P
zrnLPX_kG&wXx12)u3?p4%rm}SVH}k9w;Byn!HID==|3D>NL-gNim4jK&=XAjSD-@~
zd_1sm!l2m{GixDpb2DX5_wC*1l0vA!FQDSK!Fq@jV$Ov7mGp8hAPJH6N{t(~fk9py
zCu;AJ2FK6W!zin!96*kJ0xUgNZqI42sgOP=4S*wyW~?0R(V|!V4^+kgrO_aSP^MGd
zCYmnz$xG{gX8hj(t7j%M8b}3L<W#<|2qr_d>mxdv0H%orV#}yC-z2i(^L-6%wbl8o
zSh5Z8v(#`?_nB-Iw6_4E3{O~Vw9QywaaH$uGbM83ra9v!&pUW{Y9XW3pMhuSV&UGo
zs?c`>=lXqY{b=l~?aYR;aE9XT2>e{En%|hB{v6_SYl>Ar4kq>;-3XoVva=8I4q@vn
zWV#MZ)M%yBxL9v&prKT)aGFg~5&J&i>QkQ^_gS@jYY|=}5DP^p@Ck2#LpmH_M_@`m
zFB0Xxe9Bhj<Lb_)%nu0;)mbw=Jf>!qKV07XaJ%iDu6rVVFccG5f?EX5^$*n2CfSp~
z4>|hzQ)^1_&iaU6x7zZSkniLfDH5(A$6QPn;q7fSE!B<I7QJv8_X<tM@U33POk6c}
zRWPl1&l;JUEuzOgfVJZtj+`N5!ap2-eDk41e{`QV3T(U9Sk^23)hNnfGB%>yl;FWZ
zd>^j&^#s+G-LX7cB2Wy~idOPf+we(<D_y+1UL{(o;}O0RpfB{*b>nG>i+kve={C61
z0`)=WUvI(&$(~_<%h94BPDQ}ke61REU&-`EOO;_^IMKD~M*fWdVI)C|csiX>aZ<lQ
zbe6kzyrC>~V?sNEKwfky0JK+#4zO>M!avd4l6LY8SNH1;n;7Lgna?fou1bvAq3peL
z(D~d&F_{!H?P-j+?T^{w6g_|-bW(w<P>wcVd9TWT)t}<5p825`(7@t>InCF68vSmf
zMEG70(&Lpc`X#zXZ?sD{Ul80D*2audKcX9>e1Y&C^xK3xtluT40TPDXL}cwb<7)y>
zh3u7)VEO_xXb<n@QN%RHt(<Ejhd;|T|5xat=G@1JUFnE7zk-Fw{m6T7oB4(32q(AT
zro;v@&>m41YB;Hkk;E;%nWf;$D+2p*)Pt_hiH&-`n}L8WmOYn^q1OeHPnf`MWsSk2
zxgtofMQjsTX$&4l3EHylWDfa<^MpB8Zl-zW)b_I=mYlBxMh8%oC!u+PX=tm7`!qxo
zn56D=lGAlFxxgz5CzH@o&3E|3${Xf$Xfva+fDN(-D?K;Wt|zu6(|D4sBym@xDjKpp
zgJ8ExRThMKynoC4o7hLln=kHa&0zIN@ELta%Iae3#l6a}XJ6U(gB&)>qEL2y)Ky2j
zXHnr>>=d*;L*;$!zRH6n!C;gMf3@Z4Z7_R%b5a_9mG>N%@En7!#abB^AY9SO-|NlC
zX=&2Jrn$Hto1~N9XUpYb&nqNPW;@_pCn*eh=1zgPO<0a8c6QH+JgNpGxej+tBC<6=
zj0f}G&2c0FY;c)rDi=5k5KU)VP0H!yo?;aqKm3)M%j-UnhHVcL+#$1XITdWwH79ug
zV@t}vy<guCxEhg!H3YuD5kNQ@idl-#C^$L%XYftg@-uV6e{t@&mlK2Lgv~7-ZK0A`
zuQgkg8J=1vwJ><I+%DJS6l$qacH_aV5Z4a6DXv2UNG5S^?-&^%S^;v2{=D)o0m><Q
z3c`ikxy6DTl;fs*Ktv)=@%l(iQ_dIzYqRnJdw<z>j0|z;nlM>QjW28#GQWp?@)s$v
zrH27Om6IdD2yTo;%b<=Qp3KyI_iS-BFg1QoyAzUue>&I;FaL)VvR0qbbGES7tDjGd
z@+>hqFb*o8NP8+>9O!Z0ZnKk=uhz<|$u^l-Rm1_Sm<$iA19O5c;V4$OkgjJ$0!$ct
z!w$_&34pfkQS)g@^8MbYr^CX$G5%@-?q5~z3>E;?N;6E31_?xzA|JhKZW8b*b|`~1
z5DJ~~XUc3bAAhXt+kMmR*%(C&`v$jPTfA9^9Z#;;Z?47M%^2&|+wiTww{B|-o?J31
zHCMXoUc^&nA;hY|T@q0|i34kk9-CW0k<&Mj)7$m5jf0MFJ(KTbGkxezZ<HdIA<i{a
zAQj}VtgYW6F_))`E)brK^P?}H_&f0s+N0DUYqw7G#fwkj+GLGfEX&2Evf~Nv;OPRc
zQ07hA(w@uOo*0eQ!;;K6--vd!Dn=0%_YY^`C;XZ@<E0*&ukt@{{dL}H#5nfwMANJn
zo_p^(U@nS?sOOK~yU#Y^wAWlHHPZES*4_A%W|4cb+F8FbaiWe??jxcazv!u2BuJwt
z`hV-Q_{3`G8TT@&_|w&OubRyDbu5i%Orudy9$7v1xoMz0V(s{19THJM-ZAZ0coh6x
z%%=7Q(M#*NHs0<eXi)8EiBYPTtwPEZQ0H7|6_c{#4LH7lxq}m#(}QJ7R7kj<MXPmo
zIK>9c6T2pvzA3iov0oD^A0}3z9Udg{C8mHq_*nc&?&_;OmwobtepT@qtG!fKTGH2L
zaXZFOzoil!eSlCd`LwfqPu<mXwgj#s(<D#$eToz@R;1FCK%=YUUW%-mBkxK`Tt$<u
zO$=u{MFRBpv$-14mloy^2Do8^?n|OfU#?Hto4;;(Y*Q|Qw#E%?wR_r9NB-el&2R@j
zsMiP>=I}yu-#UC&8C+)ekp71wH8XjZ(tE|v#~(cQ@sV?y>ENN{4%0`i+CQOBeoN0j
zt{LC>A4zB7*W~-YeG~;j5J9>nrKM{yQE6$(0aF_39yz5u1*8R}W7O#GMnXDANy$bI
z82dc?{+@qeuY0fiy07cJ&ht3l$1iSY2F^F!NkfmmVWGs9Tvo=f2}FYfW#}ihk7-(F
z)T`Fbzzj21zQr2J6M%4g#?+PO`tvTPk*UkOr(2r&Zl&fE<*TB;nOCVlj~sInR}ZF_
zn{RK@G?M06ssar8YYQryq(3n0E2&=ZC+vei1-xvnlaUPb%4e7En!Y5Jr2X6a3<j`Y
z-R231IEcQF>E^d6?7v{c&Lrcg%%FR+VT@~!3`Qu*dmd1C_X~zLy|s7|$^iOV9sk7h
zE{?OrAy4p(hw43vRI+G~m-B$uI+O5BbA><dTvSX62_};xb%ELy?M%2*>BNgrehPFu
z0{`{@bz%1(9>5-<pRG|5xVLP#IeAibljyJwUB*&3+~<ossXk-><K%g-NSs^2|A36S
zCHC^(;dp|}>KuPxdJ{KkYz(YyTo*y+!kKq9-t~<T$;B8=j@%%?gI!tJ6e%h_zI<aB
zx)t1<EC$Co)wvhA_%t+{Ya5vlji$l%<E^@GxB~L;D?H<{HD8}S7?~=u)L$@b=eA4J
zgs#Z(0S1TuoeASYZ1XMR9%g$>U&9c?Gb-4{ID;6{a<dxiq>)Kwz~$v-ISsXmd5K-(
z7Xxk6es`5L4p*|@A(y{C4Gilvr~HOqR_Jm(iKa<9TESdbQPlD}IZkNMY*A;G+D##x
zfIUgz#UB1d0P=v(gLsV6!k9uin(K)!4MmN`>pbAvqeyXZD7Bw{!*ymvi0&T&S1w;q
z7fv=VFspCu{Fe63M(a)F{a@jG<j0^<Xb*dUu~XrCfa>&R%-@SOVb3;F3xsOaS;}yl
zzwxdYIHSvlLq!WHNFbbf*M}umEEqySm-q(#0GZM7y`=lpY7M)0Ln13HUy@X~64f3E
zi+zh%M%^Dj*YG_}&(kkE98A$k$Vu2USqDw9jVpX+Y$P8JE3m@{RXjLLdz+=OyvkG(
z{N#|2ZDmkiG$gY9T~*J2c&6|`CE?i_*)aSfKdsmgLz@f1a6VP4_@pvOiE<)^kMF|y
z;?eWs^=xIaU;ZBE>_m<(Srv@g(1`gC03*Fdu9D!dxhjvDlOW!Jj|~?5?e>ULb<39k
z#mZORx8`KMZ6`EW@%O*PeiLNj;?<)G6$HB~G=`e8JTK3S5awf+;+>gT{jmYIUd;1k
zk;IZm9^pMWyUkhxId+1jt{4ZWz4C8HUWfjS=mS4@_S`Nj%3fY{7;`dwp9y)oIub)W
zwW4DzKLyOz{NqKeA{u%1I_OrSS7z4y2nej~a_m~6m|q<z!5E+vo5qQgycj#=_M>$@
zPC;(iwXP<j0N}vJb2Xpm0mGg?jDDxHCY>#4)Eygkva4RH7U_IGAmg+V)sRPXGy`!k
zS*b8v%mC@PG-auF#H*+Z!*f#FMo2zWZ||McQW12CciAxs^|9bwn&_jxAo7|0-wg?*
zM<!`GE|$Il*L4L4^>SrEhqlGjtMt$*mLIMaB10{y?`Y$A#cB8rH@!v-;@em9-YMRB
zW0yr_`12@SxLNnFm$kxo2=fpdg}FfbV-U_%aQBhlJaDh<=ND%JyiVkN42L6h*@%CW
z8_Cw0jaK|WeZO=k7urxA9he{BISWsSY;EUd59HHtNTNO{T>l*0t2jO!!Tu~@p{K_j
z@4{t;@aoO)cKtixIxg7AdP_sJZykts-4miZ@S`e8dRFLI%QxcYLSigpBaog}Lb4|$
zvepH8wr-~sn#ZpR=bcUvwe6k4b&v7TcVZQ8KKU4#mITHjkIgY}y|Zg_vv)mm@|{an
zOzKys=)BJ!#9hHb)RRpHuBN!_`IDS+$hlr3Ajg6~pnH2Z8vPa&DiIt|X3%3m$g8Za
zz@)$!%nPMbIT8p<)F$oBvS+X?wTT^8xOI8hYWX#^p|(d)q`WoH-#)J?FY+^72!@eH
z%Js*}8}mC|#^4{F-T1ZVjn7;Ehj&uzR(T9YE1Vp!aQv%5DMwZ=;>I9ef*jkOqEl*^
zTTs+X9U4w$g;^NjBXWI=ar&53<#X(d+|G^pvfUc3kMHYw6UuH?x4Kq<{kb%AY|S{$
zp8J1zhV@<XHtNO!E-;h(oK3rHr)HHB-*^0ld~C1iXeUL%z8FIEB`RWDFvh1EqP&$e
zwzxdX>L1nl60As@Zs)-Wwx6*QsjDCz`r5+yZ<r-I%}x9?jJ@kUm%4`KsD<o1AFG`g
z$5wFKYuLj7G(0o|W^CYR8<?kasK*$+sq%wk&By(EkMG`FVl#WUgJcI+Z7n~~jQt%o
z$X3=9t$1?oau}HE1PjoOUXuT_nLu7~;by-rC+}!`hwCF}U>p#zWe<eQNfs1lzsz!c
z{}bJ&2Ct>SH4)@t(5*E^+h(Uut)=nL#J|+r<u6Fg!lekh)Y?@m;s~|+tpbY!B0C~{
zFtYv&c@VumGQ`t~bNnl#cxxA3zgO}lT|f6{I(U5r=|%S4TE-Z$aJUL)|2_-AcW1ha
zt~(t7Hh4#EJ51o!Brj-9<CsW^YpZILvkb$|)i|`AV#2P~^HJKdqy&DC+wbyh4q@->
z>^dbwc{eL>x$<6a$672H4iY+AMj!8>B*SpSHu3}Plh*cNQbX-<RmaK%iV4!rX}<T(
zH)(RCj0tTm9<i|(-afA8AZ1@0gh~;eK@VLIdp_PJZM9m998X)3%ew-=J7Z3W&=6*d
zvK^gYv65YheFevF&wbvU&JrpU+k)ZCnCp~4w@yba0rbn4xuhKuB5serviuU<!BSlu
zrYns|iKkXTW)+Z=g})B`{uQJd%A73K&Tc1-X2qmN?F%a}Hl;Ikl39y~jPS@!e9lwD
zUXW!S2gyP15n;vXuuqlxKKCWv=Ddw`L)`oc4b07e_|#cY&~JH>5IpozZ$jHwXECRs
z*^A`GBy$u3NPCb=ioD;5ZZ|9|&M96Tv}tZ_PW+{#^yG0)R5v~#b9x3~Y*}TxVRS$r
zyrxk!DF9=Semn7KQ2e_xE0$WgRf@2@M(#;vQR2In8FaWoYe~uF4y2!@0UVRxn@1Y}
z$Y{l01!`{mho@v>7+8YwLWvcT;DUf{CEW6a`UU9rXD6E8-5UB^B3_B}oC-LWh>Vm>
zT{(p9@1&2ZN@T~fB+a3cCT0HM3Ww$uwwF`aNm}PrDO;B_;0O#wVZYn5HU_#$b@3lw
z{B7zF!jmAfX5hsELfse0Y{?SlCm)A8?N28uSfA4P4#OZ9920iaO}6rzW|@?8Y#o;_
z!$mRkaHk6x$z{riI@V`ZE;Q$S#!w4)$A5P9nN9&LxOygB{@d?PAmnhB06W(F2D%?#
z;=qa#7WbP>y;BKzC%ngJreRp};{Eo;_k|%hJ9A=poC|_NS?3CZ#^52U@<`DFQ<!g+
zHy4p)yV3h;hBU1hW1Wezu9^fm*$F#}mWSg|4R4>Q?Z&whw-bDEVH$ym9m&Qi?QMNy
zdsUUGEUTnRshsj{WV<N93Af8leYH}|B;}o}@U%M*SqZL+E^*r;dql09>7LIWoUB$-
zQojJGvky%3R2DCsCtTII)4=H28fB7#_jU+pxqx~997J4jU#e-zn11UznX2dB|DT>B
zp5{G4TSFqvd;74y8)iz%vyO#SlUkc=z;PS++~tbp{a>#RCDGGsTgrEw)mZ8-3hRu|
zGDAq^zpVGaf?jn~6^BzWCIW^n-X%>*dkxh}O??^bysr~qBZhJtC-+hxoO3BNAH2j>
zrexe9g1cXTqHJTeEm^pu#N`QHIz)r0%mCa7vF?zeb%_r+AK=To5*$nG+6L|`!PhF9
zW*u^ZX8Ae4(Ik+UdKD9OF~#qev#X?~bz?uD!GfV==~m@Vbt|{aZ}sq|-0w1g1%vvS
zrBapCQGA1LRGTa(Pi(eluji+XnsANuPA>DI9ic%M`rgoeJUjPGT<FU(=pug?(isKJ
z5Mugv7?g`U0>Gi-j0`*tM_)a##m7wwDZ^{O-2)#xuLP}h61P~e=k_H0oYT&m!v`l0
zZ8r5Qk;I@92CQBWa?D_O1m(_dU%D(%<@w*qn+@Qb9d3}j>}pctvcxd_+x)JgaU3{e
zqHf(P$lDDQ1!;eFfQ9Y^t=Qwn?TulOa^yS8uh;Qs68FMp{45RYF~Z$-DLxI;O=!c-
zV{n~whWp@0lw4{LX_^QG)K^Clh-ouI-5Qh!jlJkQTZW{30KX03D~3r8LcOQYPeHhb
z<ANE<I^UyPtnH~l(+OP>kZp8Ze!S#{eo1Tj#fN~$buHYBF!aKvY|zBIoZ`oscH5$r
z8tluh;koTu;q@ZRLtwq+3IDtZETWUguJOFC>AMZ`WW9Uw#>bbwRYG*Gnyg6q%FB5W
zYSLrAx{+~D0m1~%JUvMpJ$o&aOoMUwfbl{eL;d*j|HH#$!6_hKbdh(;VOR1V1o0f^
z;-eNKSKiOJ10NSxkj|&bZ7ezSryWwJ+0C5o?a}4uuB(RdC;p2|{8sy0-2YKtlgkOz
z<zb)G_E?#bt>9G}31k}^7@>AghT|;_+0K=Kp6ZhCcz-eMT<DC-BOJuCTW3%i=?=Wr
z-8a;fXhKZiCxS5cIBpvg?|v^<@EgptLy4=gt+6>Iz<uD=^6=5{Cxsp=ER+RlPPRDI
zw^0ioq{DD;rWqiIqEAu`k#h-b|3J`&a#PUvNrcl<s#zop-%zqDtW7Kd{mS+v>T?-^
z3!Omk5In=WruLJP?_CW{>iU0?cAK3W&)adxsV!g+ENX*%KYaHhP7@b@p;~n^FHO&+
zu0_+!zMJra?l|%4V4=$2RDILgA!Vzp!Hps$*1WxH10;}bXwaIgOahtuZu2ATYadUE
z(4M*{Y`SwC>nyhBJ=NR!LOn-R&0)<__ZeFY-Fk$)N$F~37@5Ej_Z&HBe)&44s;aQ5
zsWbQ0wsv{&X24I92iJrO10b}U1Jh`aB|=(|ga)D_=)}yKyjuTSf#03%(yB0|Rvk|P
z$TNHu1DYaLaAJHe|BIZG_qb;E;U)<QX$1aE7tOeb48(WYd!gle>~)yLY|?*o_qH)T
z2J6DJz%5)<92e4Pxe6DsVL-p5LDbPoZW{SMdK}%H;(Pav2A_9yua%7YU6nmE#~ciI
z?vg>mZMs_O=l61Z(W*~ZjZAnzM%z}OYSk>s0d^89H#W<ly}jz=PWrJzbBGoQty)?9
zJzdq^0K{sMjG#ab0elk^N4uolW+B|qH1z+7ftOBuZab^CMliw^OG8#>nby%hjTXAB
zGb^I9v4~H<N*N1d85u7Y*Vfht;@*MVrd?JvQ~*xSw{f@ND2mky#)n*96313sFTEb*
zz79GttE5da-@w_4WPJKx--gFG)o{Y+TvgH=&sNCU+0@U7@Ya9IuN|eX(s}e$1N+Rm
z&^ntAz84+rdTn~8>%f14vGr1!v}{TrA6Y*yHMJ$4Y9kCL1aF;2nLk))H?-bbakA#@
z%C#|aT2+B@Cwp*pABsH3&u0E3VCts1oR@%=or7JtaTQSz0pbMhEjepMnFhA~n15_9
z%o(B<?#$5!6BzYh2T?Dh)?CKeMF@Q&6={jJIFMR&n2OuG`+SY~Jme9$-D2HJ=J7de
zPmiVC@+(5xNzj~O|3<B3cNbaE?=Ff?u>jh+h2sOnY54iU^oN!W(wRd7b=3k^i4nG3
z#ZPxCgbb}DZkEDhPw%iB)e#aRyc42lC5q^GDBkV9bSQbHCqrbrpz~Hu-p8l(D??=r
zI>5w1RSJy>=U|OqQD(|ASG38Uat|&6#U)y@3-`|ZU|;hnT?8&v+kK0cj(EhZ*Qx}B
z*fO=bRnwLL=&-gZc4M`(HY>-?Ah=yuz3FWi=Ee5bMqi-8qVeJFb%JLgNGD#m_J@Fw
z3s?Q8GrG4wseccPY$*(l8X-EKUPYpqzu_#ej}7m$0fAfMQJx)dm;H_C*$PA-$Nky;
z%KIDBrji~`6w9peh#cvG@Ph{)$~xf0>HlOtKc<{(T0nxb6GDKS$>3VUUJaA$!3}zV
zwHLzWp=Rb=d!Mvf1`qL*`?<!-1g<<6zqqHvQH)B`J$lW<-R|=A_Z?7+gpiHeTa0|j
z7Io5Yfqmvl)&1O=mivNan#s4bV)q4#0^zvE#OQKmoW2}}r9JARhXHN#V!$Mw-1ZBN
z2IeGl7sdfVs(-nTBePp5#=h}r1xgXq_iEv)S>um#O2=ZE7qCxVtf@|WVPuB_tQr5r
zCoDDHT8vU#pPRmtGFr{^VIsn>f}l;8+fh1tW&RiEN7wXf>Fo`tH(Xu7?mJuTlk3kV
z3U_Q8V)Q1)_iY0SZnPg&#zqAU8N6wWZItjiUc`FDr=H%joTzVgMPkKVA~JW^q66N-
zYg?nLbXWqs!~0Ep?_d;G*5`9U$CE*h6kjiKQr@M!fo1OF`a3eT1vG{&P=X32)gG-B
zwiE6E%7`l%jc`obc4J7*P%E{ye$rNvkK{hiLB{k#;f~OTg<cpPv{&8NtwKJjvgZ+U
zgsT3KTCvdVipzq<B7cc5>}-ja3lH`}9ESb9lZTO;#AU*M7KA1xAsMbRYwq(;;ZtFm
zNv&-t=WkmAribYdXJq}gg!F<X!f89lxCOrvpsu_=ke}C%z@`$Y&_mjd_o+ZzmKXMC
zKL!%|xoa}sm$ns%07o|~orl$2D|a<TUb`Cp-B@}V^n3}s!9rOTM6x<k`Zrz6sZi;f
z_eM2;rbx8A7$IxRX&sv#HpsxMa)5f%+=8p(f*l|X206c!ksAZ5W;<L?rSCp~9Pm)N
zs*g$^?f=U@r{y)jy9rXcys->2OMzx4U3TKO`}&|2AbcZqvq>LHj@GZ1GK>|bep1n1
zng<Z3a}RvLXt+a&!3BgF;{p+!=pR08tk@dMXB*kg@X;V~76~hq?R={_&taRr*X1f!
z!9e#velLaC``6<*E)?$0ibp0e=G+v8%f9)#>G+`W_Dl|l58RASx5ss!S76<Z6z$*E
z>G+qd_z9>-wUs1Be{gyvKbZ>h0KZc($=*!Q+lCJAr)@zb1;=pb7S3Jn3a#x}h6r8V
zP4jOqku9}@Ilo#{IFk|-aRAqn4D)q*7|DZ09B$Llws)@sRFHWXO7$UV1JkWh0tq_d
zg9LTHZIgczdlBwV_$S|!0paTBEvx0SD>x&H+{Y5LSA1xDaSVR$VoF6GjEfyeVI@o`
zm4ggfPC)f)0zRWtafR^Xl!(pT3IwS}fUw8bU)blF-CQ@T<dH|QGf#e~wZ**GG$L=#
zro!?K+|8Eo*exqfI>}_WIdr7}r=DVowd?~~PV^D#Ejk133+XXWpR1+CA6mK6?oc#q
zzd1<ip7;!5JG@pw=C(NbKTRn`s~z@;JTtMM$dB?p>>nDM>BLz-f-~)>A<*sWnzMJ0
z@+?q-#a71pR*~C!-w|&ll1mB+1`XL`GtZz==Cps>g$wQGTTem`QW}=^r<-2W5+=Qj
z*SGt95j)sjqEpY93%_UYp40zOUYU2slIteOIXgHLjkUdDv4Qr;1`uw$p!Ln!@l}4L
zz|_XRc2pLa6=qY2F6M@Jh;DI*1ekYGI&;ML+B%LC$681I*zXh_62Ha2!#lV#U?J{5
z%r*7FzMNy=3_7cdj(3+K!S$?<^3e=i*C_~rxs%|UsHR*I5B{&rxdmM$L)$PDI3{7*
zRUGPpe-?9<hLntDoef}mYM&fxO!?K-_hTGnA2lSt18&;r1Ji3DgNF3ewUU(bDhD~8
zpBZd1y~xL&N8e}Pmt%N5Jc=RmThFPKg5L^{@fcCnhGfTUePH&b3c1rmYmW5;>;JX5
zxj#5NadIhqpkE_U^UoDBHM}%c<gp9cr=PnsJs6tGOl?mX-H5=Fp#q?!K@1KC%btUe
z8)xT+@dlUj;Y!@O86#62mH{3}npkIn0I*B(;s<9M!|5Nm;gI<-ALG@|Ik-BP3Mt+g
zgRIy(4Yz%BoV29;^`}*7L*gz3i=>4m0__vx!KAqLWG4XHWYo!O7H5b|`PdHs(T@~!
zQ_OO(XZtkv`jup(YsPYyy!Snq8U2q~wKyst*qX;cS#)&RFUa*V?2bG@9bLP%WsiEy
zh3w1|KVMb+v2gbmvMkM(lphtt|LXW-<!ssHv&A1&U$B+9dN7v-slgH&^l+M?7fXXo
zO%2b0x(L*pX+2NdaxQw~bSgjnN<<7b9u+aQ%K!7R6pR_S-25?gGw==4zU>_EmE%l-
zR=$B3qJYYZuav{9^_Fxt-0Q6_E9}^(hRB#JL*q^sh>gS_FVKg#^M0;Rnc7~28t>oK
z9Iw2I!yik#YjgOwR~Q}=E6?RRpjO}Yu5k|j1H(sh<VXFdDkSC`J0ANhl|*5=hc&Dz
z2jEa}V;6=xqA!okv+ROpDRUV}X`XE1<fpQB5y`+9$>b`y%W_=TFWbTzebcoqbYfT)
zG%qjG(tckapy;wiMmoXTrbTFfwi;=D{y-MaHxS4CSCsnmb0XT!*A}8U)7&DxPY+J;
zwylp=hk;g?77r?{nX`&h)$MYDQl}2y#2>?6wZthsdusKGOa^kbKO&x=0@D=yZM#3z
zPZpg=-et!UX^%*V&RiRWl^yC1kSwHspzD<_CC-0apcJ}msrZq}J6KiT8X+KlA!mO6
z-e=W`JB?(UAy!w!mif*@-?O4PL_7Q>;<m0Xpd;ul3;S7h1tPg2NPgb;F-KRcYhbSK
z_QhwgGL_xA@_To+!tck|Qjc;KNxwD&E|}sW+X-iUN6>KZ+*i3~k^|-(8uAVfL_vRC
zip&=KuROZa$gNr$!Gh8cbnyuHJ`u7SW?)3nF8*a2E{Ggm{^fi!iq}(_qY#cym=?x|
z@{WF9x9Qq5G<V#0Zh{IeG#Zb`DP$hLEA`Cf&}S%|{JR72b$tGqcO@eCGN9Ot_h>XW
zC-CuLh1`X=cN)RwO`OwbJUINVzv2^H@)Fm!1b5X554PI_k*x1Z1pj1i4VLs@7QSU5
zB>uRcxtB?sk-+|F9|NWT7b?RX=qsD`+FaAhs#zx~)-sj_iG>%WTNUFiuW5Zg7=%`N
zL_ODj_}pEJ6^YY75_i};aSoahY{lkce5Pn`XTLkzo>;H0gXZ;DiRgxVv2andm2V>)
zk~arNhjn~EX21G9xR=$-dOYr|OvsW@M6O=eP~2$y&Nje;LgcyOSC829zrY+#7Yfg9
zZ!J?lXqd;{_@@fXm3T;1>Q~m~fg~iYtMX_dG{5MT7n4M*uvN3wgQvNRbW^j@w=0`z
zg^w5dm}DHn2%KaG{Ni&S;O`m1Ntsu)KWUkYr8)aQd~@iqli}#X&g`l7PbThXBcVt4
z@SyY+tPn>ziP_2P$>mcoIVZ@ffavLb^;*7el5BlHg&uN^_C2_S)g#a8E(1=9O#Z`j
z<~#Mi*UH!qs6R565Dfk^nq75d>(YNmEa6nh#Jl6(><Dv=o!x3!A!a!xNyul^3k4~U
z3r|3c=ZaUofMd}O$zKKsGrU(KJsPfH?Dq|v_*;@+0XqEt<MfjyzlNc$^=||h7C3Hj
z^S_I~mOV$NB`2znOkl?mWh#eNTrr3oW|T+p+x0@D+9}6>;^^!6C1}&uDD1`*jQx;)
z7_@K^IOP9~vxwj#+nNQF+BLy`J}5nJ6dLJX(!7^!Xss7t+<Y%_a4e!tqq!|L)rAX}
zakQKY6~<wA9MBJSaAP@zfsOQa;k0Alir*ht$S+wUaB{Tr8^?(RTx+^Wdaf5?dI7le
z!3k^2-`um~_9LeajnbgsH0vawG6Cgi06T(|8psn}Z#qILNj;!)6H);ZHfs+VX6rJ%
z#HE7?4dE(70@;Mvg>-Fn0to#X_Sf&eXhxATrd(vmjcV*2#qm4#<zWui2kphbAMD>W
zBZXoC>bS~ffZiv*oz9;ttHR!g$j91;=%EqUTh~J)@^1bj72e_TSmIj3Qy@;-(W4<R
zi>~i(EeSahgA${mdZ@<@X@1phg$GVfrDpF$C{wj>#%t>L)5k+ePKZ^k&v~cw<Ywdo
z<OSz$%(`GlNaaC<gMjU(X7yjU`*cJVjrsT2(o2>03z=`rQG-^&jCbe1qi;{QpvS7X
znkjnYiKkFhCw)tr0(7&=>l9xji6;8uF1@LaSDI~pXXurKt1CT$c6aSme`^r@3QFvN
zWvFY?s)vLNh)5eH)4wP(uR10GxW#Q1vZ87ypL`N++MG%NGIrA1CqZnx<zIEpI6Ch6
z<~K$Rze?cjPj~vpq1ATJX84_eA72=MN7kV;l}A>I<ow8@tjt{HiqB<fasx}5(3=qd
zo2%$bi1NsQdKptdN4>o8Vg53rVb<BHnpv18Q{ZQ+GuwD<iYk8UM@L}Gf&8-;lw^Wf
z-UBqt09M|G80~M4B8%|cAcZ>Sx6I<m-$y=Ovs<$qxi3qUndY9<fyU<}=O^h!*&l`l
zQN<vx2PBZA5D_Oo^k0-+BHEizNb;UpPU6oz2$IbDkRx$88nycE>Sv$48y)NoisnQe
z6*GVpooR<6NDWp_Zb=7D)+)UlsngO5PIaO-JKJ!QKg)Q8e`$8*%s68c@?>8Ed5Hrq
z<n2+`UKB!Y^Dmj}krn;SeCT{9WZoc@9H0gL^%vK&zkre*w<It7R)VyD@8&L_x>58n
z7dg4Zie-zPLI|GHTHqlt;wT0cwAP&x`o&f0pJyf89WTr}{&+>5z?+X3OmYv$r-}~K
z(!-wACL^9^6eRNuF77Is7Sz$W<njkep>LNDE;;AkFGx~A{16Tqta1Oio00X-Gyk~0
zV`j9NACB=^@9XQll$y}MK|?lT<@pY&>0!~9Gbhmcg68m<DWw_>i9s^>q;qvHpQrtk
zWQ3!tY<v9VCNm!1$Jh0`yAE1M!@PU1fdx?9;jye0j}b1$js2i?8!>QFKAkureppo{
z00{8lI{sBFv-VKQkXPvmd%T0*l?!TNAR(5eDLn?ud4wx90S^k6(6XAdr(#v!95jY_
zYnoRtCbiq8bzM}*+aAXRt6I<?S8yHCi92=d1U=(AE!w!!go)WVc4KLIB5&n{)rVt@
zv##>D`qN<*+lPAOtW9Z58CeH8ggA2zY%yr66M&ScDn62l=%0#wVcszm4Y(7pfyaAM
zHy)8TLuG{OjN_8tC*IiTnl>7*w{V81_y<hAjsL8ktm^!yi=`QJkM1dju!GSNh(Pr%
zv*rfm?qo%&deNIoI)jNl4`)l(L^jX9{s+B-qs<I%riL*Y8~q+1y4+Q&GJtCmsBH|d
ze`+*?k~*Z{fntl&^MMkT@+UkzG6h}8B<(gzaUvV&KEc{(nw_`yHo6}-@vk>uWAFqp
zewfR$+s>9wp{<JJrS!kta_<7lFP*IajK<SMxPflPi=9JPNm~H753rD`U-2eh%tKWW
z3m&adfCl3iv+fz^@6USI|HB(ijgWiqWAz_i_JT_>Bn=vYQr`aIlBb!a^4W)Jm7C%X
zim`(G5zW*Cm6!Dm!M{QV(Y(e>0m`2pKaP29Rhd~B?0fzmOm|DDcA9WE=SR+U%Flk9
zT}Pcb&MU~4lQe_{opOBo#4K|@^`$pke?el%vdr4!YU4`bzDjIkMbo}vY`Aa+0J4c*
z@CKjtoD4lg{KjQ1T4ua_H1Z<(nRa2*p;BIf@d35lLF3a%1k-J;oN+?g5qK0BR#}Om
zBF%)nmkTkf8zZS19ufIK0NCP9M11%Uk5+o0iSJT&6NaJm7&H;jmH`e50I?KCdb@XC
zW$_!@#LalaagFO93j#lkZeN%QF)%xW>^wg9dhqpN5;}ukEvc6T*r4?hpNNO<%S!D<
zY7QE22i6|kjy%EhTVO(+56a6Tm0Bub5tp)UcAt>Wh1Di~<Y0cYzpY_y>N&&xH;w1C
zYedT*t?*VCJhnEL{jUtruwv!n4TpJc-(;L7+H!&2L6V}sr_lQR>)XGZA~HCGH|xUh
zItbs^M*OyVOXbCh6KUm@+UAfuDSRG)_TiJT%)%enbwxAOf73IG$qcA$rOmTJ>@)nz
z#DJ8i@)$3Lm=+x}b<t!7d72Rh)8Z&f*I$~&*ryyFwcl@&T5cY>3;urF?DB*0p|o8m
zH@fBB;n_w^me7d{A-Hc(;Q>zxBv>pM!6|RV%D=nB81R?KYybkQ7nEoEYq+fiI^pD`
zH#n^&z&*P18u_>OcE)N8OJ-=Z%3p^k0hDM5ri82aLClTutDvQ&$W*hBpo2-P`bfOK
zohEmaml(n#s@G>J9b@tGIp3|Bx~4D<@*o##j9QET6p5Lc0_6HRy0_1I;+GI@+w`6)
ze+<{}N_yPSFuX*w@|2tS^asA{!*X|_yt8#GFUK|r!0SrvN)&yt{#HvF;k$4i9Y)Jw
zf|)1mET8hi<%wm|ug2`71+jlT{P!ZhOD+qsoe6T@q1X7q?B48ft7QxcTHo5m!QP>8
zh|$2+e!iB~S0Yj@DihJm_LOPNNt7m*IigybD*Nx`2)Owjozg7~+<APH^#<LAlGK?s
zpH-`acm4S_eR))Rf@mUdSdNdVxDVfawGnI;8U9`l%$VqAUQvcIsclA!6AlVJQhiov
z$v?l-a5$YB4C-(CAyYQ0<;)nNH+U)C4e(Qpz^O|f*vr2JQyh3FudEFTV5Wckv({Id
z+f_Z4`04ahL(JhN?N$#voj6AxQ2-h68=NIVz=`d^q@hWY#x6xfm7^&oD{5ujluGF3
z)JR<61J}n|HKi~cy#bvR^HXqNIi}JrG2nfxnHQqH@qLXJr76TIcz+^x=o#9ETT0$B
zTHyl;Up`|<8U!>LhhiS<OKVCTa140&tGMe60itj?)xh8Q+vFQn?FhzyYpI)tI9+1z
z<E`*{U{fabc_x-gXYfC~Wc3w@M!V0m<~;@G2Y+eHYaf-0*#pS{;)SbyUPbRw_sQ#r
z^V2@N0tFqZHaQlwgd~R&!I}dMh7W7Y-WI0aQXkDUwc@;{U;o3?X*7Z7e%k_-4Rp^r
zi}`b<xjtJ+TzPMpy`LuhDc5z0Fv;Ah9J0LEXEY=K@=$`4TrBP*EIpOxRa)9@sExqt
zmFJkJHHWLi!U;y8Xz9>UCYhZD&QaU$=)t_S3iwH4yZ<>QWl&Q%6LGN-+WIV~#GYQP
zX<;EPlVhf%(ojU1)rhmnU+;^`n-6R}v?Mt<J^ZeZd4Ko@<{jyMp*k4EY|JNI);`XQ
z&wJNA6Tn&YS44GhfMYnZ{;`A6E?i6E`B=-KU{kGBxALJ%HB=p4givn!?J3(K40n2`
z*E;94uEOy=(NQRE2Atw7Z}jUN0`wyDTh|KbdmJA_n%h;b==)RU$lm`h;)jV!d4f$(
zA@8&ZTigzvB;HEhW2peCnpt=on0&>2JVf)45Zs9MY@7F4!B5k-;8RM03`%5AZT7bi
z=D~t`m)lt^k#4_UeBJ^WO~4Y`$#LMeWY<YIb1YQt9``78>?$K)1x_#<)8<6_%24-A
zl7W5D{mVuemd_5$KU*#S6eRl{(%>KHEk(ez*U<99ktmi-3_uc_^8>~~ZwB0gUJ<le
zBS`T<Ee*{LZFAP{FQd{N%+z+wCcca=;SniWCI%c59cq4=3X!KjFejSBjf+&<GgA4V
zWqpbL=}W!wCHI7e6|={cWx+_o7Q2)DrA)Vs8djUeRmGKs6QLtNz(~-zMmn=N3LJXc
zP->HorO=?bJ=biBwo3lp$FK|-?okoo5n<J9+F4?iRo$aPpKemcab#<dh<>pzQU(-D
zZHlV;dVDI{v7iR5g2X<9_PA7<Z_u`3@=p%T$x&WS(PDB6KjT*n=e+dm;~yL8c*&|%
z?FF+kT-(hIT%|0C)NTq<dC3zmtwC%DpwGNOe_b#<2vAHL?(fFvVB-Yt01L($R;x!>
z;pd-wE8Z{NWU)KXgnevyKU(y3`4-v(jbB$<i0>4F=xqhTs3KzcPrXScG;HiGRK{JG
zK&C4zW`L|;2IB;Kl3v=H69evsRQo}X&}}r~09k?rl#>5lhXO{u(r&}?PF9tk!{qEB
zEhwNgp9bgv*C*T)-qXs^S=2}OAw`W*`w;=+NaX73deLb(yo=zlb!?ym(KL5~wvbFN
zPdXQy|NAy1?pWk)utPBlh8u&hP|3GYCn0{-HT;3gc4*2P3osjfPJ=i;5=ng_cyscP
zKVUBXE48n-;ISOf-TUQe`YZAhh7NNacomKgM1gwq$S;W+ItUnsZNglh2^JXj<;ZGh
zskiC()s9PQi)4SLGiFjXnDA?<RV@^rqD@j*Yq*86Glw#Vw<q*$;Je^>chUea%kpmi
z_qp6j$L!x`eJ~uEag8O|nijgITpm|%48rnS4YPi?`&{ZMWEQriuQ9rg-RCsc^MK36
zGxTNpPFr-<HZ-bdRXBtioJlHignyuP<*)_58r_z*(Ip@n@b;FZk<<lM9Hb{!b*Fm_
zM@7ck;;Dv93H@=)3ovlnixQuhT~)Shm5ni;u><Te{P<w=)i<_3oPS(ON^|jH1$UUx
z#l4pczh{h3JYKJK9A<RKosu?^=UR0q*<-mr^w&0>>X(_WG742S9nAwt7tIKNg4`|a
z!S*~{F$<;>a%%2(D_G&=@GQczxJNvvy{pZ(Gfm>7*#Ob*(i9+A`R`*N6YGh_Z(CzI
z%Ke>6DJ2I<?K4_#p7gX;ziE7}Q>TV2CVhmvPnWB2GbUwN;x>>5Q_of$m<5r~Qmo<P
z8n%78uV&Rr2+xc^+jX|t0EJq_k@9iX+>v4oLeD|uyN41evsX-b8Td)J^9v_hclwJ#
zzkzVCy#6@SC4kV+Dcj<|N3WNstf@xf10%YU>}H~}Cx9CV>NlT80ZrW!Cj|$|5P|c0
zg^rGy#Ebj2xbZX;3X9;uINXx`J^2BvvT(hpkGZSv`WVD=5jh52bcNpzWdL(B?<#$?
zr9oe5(9Hw>Kn&%qmJ1c`1}oVxMY(buzpXacE+_H<MHKt?P!$K@pz4Yo@*GPFr`rq(
z2FO?hbbs6o0fPcO8)AmQNOdr?G9=ft)iC1pG|`oKq+o&y<4E*~K#Pyp)m0IyfUXF>
zYL|{|Qfa#8!r5bQ7J4gtbP$Yk|KVl+Uq@pvcWeun!Ub~Zif}umk53Vp>2r`M7dUa|
zCNCEim>i;xwEomXfE=SU`wveZWo}s=;E0A5IT&V|-hTWo*KqcJx_mA5ZS2QV9&%lR
z*TkrUfj|$M<28hFHN1nn|CXcmd!m@Tdhr*@G6xPN#IkHD=bel?{V4sq(V7UYV@k0*
zVd~J&)pez&q^D5^+Ke)4-;5+#zpAh@|73Q+)Q;y!YhEIX4xxS)JbK?(YXAFl&rc6b
z`ttP)RxGYC{X=>nEW+g)+TSP=&bZXk%P$%%8OBh5ZdJPmHc&;4b%*a5SDLdniljd6
z>T5-?u8Yt>7rh^fh9tlCTbL}t-Q}mR_!i+OLft|YcFR&7b0nS24XQ6S43uRw=1`Fo
zD%&fR(FYBLURXwtqQU@j<l0~%cSM7RP>+T$RfD08EQ4`X(V1=LI~VqMk7_C7jYuG@
zu_`PK^=Fs5J~CV>^55FgyU6c6x##__mqXu}t|@pqek403I+?|<ouV500&EyM{!=u<
zTviG>@2l9YNi1J~v+zs_kG%ia1V`Mp4!QA<#Bw55!+vN3_~ac@`ARi+qlbmMdrrLS
zz{_K+ix3iGKwqacKl5bglh-T7N-f^VxyipoBTu}YVIyl~SmKv=N&)Zhi!L+>x2_7y
z0|39_S%J3db#Ux@=fbbxD>IR^ea$)UJpJ?3qUgPKN+Sx+rt!*HuE!c)Gd-F*dn!?X
zVtwS(@9SA~kR^RBo>S!P_6xU-ImMJUEqqM#E|+A0!D(B!<X6@Y73qlG$<%PVyxh*$
zkd!T-1RO`PuTO;@cQ)Z1*%)Pn%F{AyP#lfU%)bI@rMRJ&b@~el-3eo-OCj5^0j*`x
zD_F=-9+g+te|VG*>GqHRTosjnSde5et@<5D*BsB0^v1}-2%#An1OB;z_bFl^ufZoi
z;9*ijRaF2fs^Q(We`uU*t!e{Fg_Uo>HV27YG!k9-_{r8TU0W4!d|*L0x#c$O?jv^E
zoanv=`vT*$5I{z=j1etdMw2L#T-6PJOEGMw`PBn3I3~>DtKN%BdsCp8^yhm*DwYqO
zd$+aG4PF8vgud<G30#MJZaiNxQm22VlBGT`Fz)93hUpCpZ^HLb0eJHxcW_;0EiP#f
zdctS<(Dx4TvgmL(Rh>6RPHSA?ED;(bZMxsQWBXhDln&zG*Hyc4e6k&AafJ^I2ROk-
zI25+db#d4Xmu(j=o4CQPXXF`;&V%!KRzX(C+)2&XaevmZM=Pf*!<Xz-1!lm}p`)Uv
z6a4MG<t!}G#<o^Gkec8}?o0SIMwzrfjT-wwyRT?{d5V~-In)0uxpZQ~WKoYJ_nNsR
zmiWL)z5~h9Z4%1gZ;D>;u~H?e`th#;!by1DUTv%_8+~~&-#UeRc|C8saH*XXNNk7I
zx)|;%XV@=&d7?Z(sNqnhe!Q(4O_lZ}d1k?*qQPG)#ob)AWjyrLLM9{yOMHJvwtlco
zkb&zL&+4HDBg&7c-}NP$85=7zWrCJ_oER5yd1s<^YUPUpj3O$}zrL{;Gq<6692e)k
zrO~jl>wkf*eC5u^xrS9go4Za}p6%5`4_(Qi4UzGO2mEAF1r|*Y=vB7j?{u|zuy56$
zGgy^VlDr5XRJ{T(8FsI8pbZf&(dMKmMt6V#kfMRBzRlk|o*}Yx!pW&~RaWW4=ej3R
ztN4TNZr~hX)BXw3HZBP5^c$8Ft*3|`4N;j@97xRx#Z84E8ta9WX{Do$HNV_>2D`K7
zQb$kl@XyoxyU@I+7)rivvcXzp#GBa$K3OuHf@NdaUltU_-O?QSDqPyCb&e}qd$v|t
z`KyvC;d1^1nT3&Zgp+l_0&;F%<l5IXwf$ae8WswC;taINAsb?WlMRuwf1Kq6Qth{f
zIdeP^6bn=|A91GU3_n!XKVM3gkj=8wZVxe+MU`ykhHQ}$qxrBzBS>ifJTvz^Zk?7N
z4Y+=xQA_MASyrY@>94q=Y4rsRzKLQem(BM{*p2!Fr32cNt;Ar7S#WrwEsjn~bSeV9
zpxDwm_c?b+3tkgEdbq9GeioeZvNqn3I)#-ORYx&)PA&cPrXC@uca`4KK3iQK04iHq
zJxJ5GpVwPi*CLrulNi9n7;#0-7=6+>t&>_J#}_Gm5Gg;8AI2-=H#%|YkEM6|j1ZO5
zE6q_3YIWM}vh}#zMhSJ3+V+B*B*Sr<N0#SbYL#s(?O2deW0oSOO4B2xMg4<^s{dw3
zh3i=rV@su3PbVp{pU@1rAmAwACulU54t-yNahu69nD$!alDJN9l}l|mIIkZ7#IkkS
zCw&e#u;`BE&5pG)JTtBgph71gz;$5E+doBf@%ej{GT9TpvPxM@OP#-GMlIKN&y04j
zeDE1sp~rVV*2P0kpP^S~l|y4qu?5T?-MWP^V3nU3#6m~&Qv6>2Jkxlcc|Ne}CU4I0
z<N;1ksF-Jnav5xMi7}vGh=Z58c&Uq8R<4?xRF`m{>N$FQ>lPMFG^8dQFld@ZPS`?R
zu2%1}<oR)5mL&#<J>6ouT(8Fg9&8whbUa%s_w5l4?cPtBW{ephX9{=in(nGUd;;6k
zT-l`R7)$%(QvEA|`zwv~6q7>F^(i?2KfKz!o;IOp*xx}^sGR6A*ED9@h0vOY*qO)^
z$L%*g1b=j&?mQ$)r1%*3L)LKXR``CW$h&JZMOiZRelZ9rB*eZ6MDwm;OWaU}W`FWD
znx{`L*KDp$;7x7GFN7P@F2<q?gK_aa$r9fQR9~yEeyn-45D&>yZ$rsdrx$Ka@vp1(
z#_X%iP)5J1Bln?Rj>$_^!aIH($m4Y<gAtqSmy9Vf*?1cB)Z5<5Hf!>Jd24B@)0-XN
z!@8MH{K^1+CkMe-tZQnS5%UN67kkC3Qz}@|=|8fSzCEAsve{bo0&p3dN1K%X3JS~_
zJEFZ6F=LRgxeo=1Iu!;ynsIWpcz$1@Grvd6@pX)m+*Ng|NiML}umC&Z!V)RYaQXuD
z^>f#3VVkCC!|<6j^Ww{hEfBbNAspruL}VA2>J<(quYbNMB{^M?>z3`fkKw~D#b7Vf
z#xi7yuH<G`2eYx`K4GabM{~2nCDAJu9q<&owS5)_1pdh@{+!3p+TQi9`aWL_WM*^P
zO|OXf7q1^h%PgExRkL(7sLG<Y5497*KfI+*7yscjPm{C?QbXf04j$rP5sJ9_F&Z{v
zd}dYy-Xeptc(+HAIaV%m$^Ob1ES%uP?@YXtD@u`kQx&E^!d-jbr`4$_%Nd<8D2YIM
z&;P2f`Q^s5Zz=D%oRHqV2ctn(L1?FHbdcf9sh5Mcxo)LxLmHoh?%_j%o4%KiHowJp
z@S!3GzWqX3mqfP93(|syS=_?r>P1~_#=j}pS`1_)Nb_syfq$~V7h*9$1en<v{X*GR
zBIrfBPPE1kqt0nx4oy@=LdUMJjpQ*4&Zj^G3lm>)Xz+HD7f)18N*Okny@oAIN&CMl
zGnrVu8TZuBY>c?lx#PyJ;<A)%<DeG!NZ?jPjOQ9V0#L)1MQ?s6V?{*v!_5ugB!CoA
ztNjnJLc3+v<F`#0?zpjMS=2+M_qxz8;+P%9Va$a;SIvHitt<)&z&T>e#U|X`nA(%!
zZ66-!h;{LBT0Y|l01o3K3S5@;`Znre{VQf%M}5=Aihl98@h}p$y{q@%)KfYYT0Sy9
znGvD1r8@=JOMsEaT@mz>Q9HBF^3=-J5D(pWb&a=R%8hh;fg)zpZzqn0$s%D-1FGDH
z2%DJKMTzHDPjNO|mC<xIAiliRUxVvT{&{%T5)*x&$}DHBAf<IlGWR(F*#mu*LD{SF
zOs#IC!SvFeZK=I9^%$tk4Dj_}0fk#jhRjGxa75Vfq{om8YJPHF!)MUd=p{9D(Jk_U
z#m>qQ1R>lpA`lsk=}-3M&TSCH%0hxpU;+Ve&sM<p1}KmKy!Djkt;)}gUm{d1PZ(cm
zYCTF;!1Fa)cK`mdAb~gzaoh-eF+G%A+8*!&7}*0;#QvV~Qsv4T`kegF*T4lHX5$Wk
z-*0^H;+lVK)F|nO<CtvOK&l0;Gyece*OpS1Uw+J`^xJeZV~GY$sT->h*MXLk7qRS5
z!1pPou!2JBvWBLn%bVQFjrIh^S&T!82@BVPaVtJ8ZB!Ep`E2YJQy1^w0(1s<wo~!^
zuk6M*@gRE!>HXAgu6BnW<qxy%s`g%$3Y-JY=YZj@Pst+RKS|VEdt@_1PQZ!~**CvC
zSG*t-jEU7_UM&xPoF)=DB{dszSSv{3F=lV46w#SK^HBc>7(I{W`dN*2z{GoNMN!wi
z7C!8es3xMW!y}u0wCR6UJ~VXo>6pIV>3(&&?tC%fd%&-t4u{`Up*Zc}`m)Ih5%>Bc
zk!jBA72sZpCqfNH7pvgpOxcs2L0o$=MlfdCjNhf8!>A~mUEg2S4qkUH9BTX(Iay`X
z=1zS7qjV^rJ84QY_Y#H!k`VNqus1n$h%+{#+;&AWXcz)Y9^C}6WVteY>z*X_k=(#}
zYCI6M4O$c$E`?*FtSd6U(cvnXev9AXW_1srZRO<GE%pq(tj3T_(ECkPX#F@l43|`j
zCBJUO6OE4mI3Gp-v3S+w?4%YiLbR-Ydl!=g8B*CT`Xg4iNK2wdo>2ZDUf73q!Py(P
zYI|u$4|u`_1_c&C$M>7?zfk1uyhpuWJKqy|t#*l5fkzfVzPM0~wp2m(XL<td!ghUM
zgM3$}T$@ieQZA~aK0A5;kFoM-;e~k)?-%FW+?oJGt3|#_yCq#RPPe2B@#%!f*got#
zlNUS;DmEvp%zlBw-)_%v%=b+P6<eA#w|b>_gHJ4!o%cznN=v=IZMGe-<*q1)nb8^h
zz($4tFyfzw+!(U3eQz-d!ZGE7UHO+&{!X4PAjH?xy_oY09a=dnrx^#4Q@eGyN$_vF
z%5)dixZ-3Z76UmcUxDafRH@B47*$^;S#?@fSQo9o3tD)bnl<)ZhCeKFn-dz{sR|8G
zLZ{*`x1ruF7lSrdQ4o!gvPa0Do+F#C(&ASo$I6=^KB4Hu0Eq<08OWF->RFhN5Ifts
zQhU-{AN+9~A4J4=>dS?_emuQS6-~X?KU*_N^%okmhVy^#IecG0-n{<#iR4+1tWFs4
zHB~=E(%6L@VyV6ml0k7by1r#}$!3%~7&!UQp*ao|&v&m@s4q3BUJe{RHmBFFkW&4U
z(}{S`3RSB@i9G%Tv>}UbH7(_kSf-?J_#E!KY>m)p_OCvkyQ3vOY7pSYQn)-tPxUOY
zc$nZku2ycV?GJEftv9e_6g%<J4sELrRu$L={(VRGv{s0$A0iWX-_ZFVp3fzas=eex
z>5X@;@a2J7P>fgST;Hp)_bZT#BP_JYcQU3NYJY$PORenp*FiVFkb2Y0^%yfg=<}Gx
zt!3~z>^!=NZ%y=`Cv@$f*WI_#JGY6CnaYox@czA&{gft!&++xa@ZlRK)rUnC&c{kY
z2bF8@Yoj?i60JX=V&kFJd@)HEGS;%re(!T>kl($X*-_>2(=}X<0}j-p=(QE<qi1dc
z@3s9m!PGj~my|T&dK;Gzsk@b;)Es<9l2g~Ng-?E{-S7hkXNdDktZ)?Em)^nZTZ!-<
ze|TjMq<1T`&3_Rvl#`A+sc~UjUUoIi&n|o9Pq~en68{EuKv5i?(DSLdZtwHGVs#r-
zcVeHVh1m&<MZoZX0_UrG+c<Z&3A3-N4iMkHc9kd!CyJ(WE*YjGmz}1gx0O?SxfG&}
ze!K?QK8^s7`x%&avY~$Ts&C!xDh^vb7iG>y_A^4wFE8Y~Ty}@+gh?lR3Blm8^*YRO
z;hV1>i+;I(4s-_vLCx7-_F^X<0|EeRgt{_|<Fq)_H+Owje!Sa#SQFLHJaX|}A-ZWe
zVQlQnJH861>wP-*4W^1U66@D&9E_JtQ&pznG{V&So3X+EKEuFyxc=s)D@OB6O`S=u
zfXlX-vn%M1>n>RSvW+BI2Dw-rJT%~!rCG4AJon^X$nN0JeU_7E7FZDc(7=1DdAs^e
z&q1E459Z6Q!rj!%=fn4@lqtDrovDRrHEoA2vCy3A$+tq!!BbAo0u3wk?nWaF@5^?-
zZU~KA_5IUni**9>TvlH#_d;n7uWw_UGBv}KHD_4o;j#{-qsJ=v;}&FuOn#SDIilU`
zynp7@txJaW>+oL_KLduom`hMdF_B6C3J-jt?tgEw$7d^?uA(0!%iO)W`QjisutE^R
zUgjb7*Hs1^Q;B}3>%`J;P`vELY(dW9p~$as%^7ZIqEZxh2XO4G?R!{2Dx}TjM(KM~
zL$=2w?*GtJgzYh#D#>&yt@c^c-g8-+L$^QST7Wro`q|w~J)X%ImlJ$oUCK)TlAbom
zsXRYAXmIm5_-YR%9jLYr(sGKu{rBB43?e(wDX8_#Nba0>H474YI4qT7ak?G*xqha@
zr>FQx1(g<7spOqyX3)FUk<3?`b94Ph$swy1>2;D93%_SR0B(;N&z%e^P4D&vin&2|
z#KAC=qrT0S*}b!SW!>t?_?5vRo)pdu;T6wMSY=?b-$Fjxh9%mhI^U_pZr;fk>W7b;
z`z^O$Q}8@!dQ$l8&Q%#eX6ov|eJ9vE@lg8jgQFXLzEg5DuB!XE60;9U3{t7Vwc4Y`
zKgzUy@xFa^mtwS~R3|Q+)zvqa2vnyD#>yTTSe{@BP!#FIPRq;%%FOwn*zp^+a5z<F
z5p>w5B5s<3oVbdkPwE6!ah;7bdi7UPLZ)Djd(C4`GCMdiu@ezj7|rfbrjAD}1)gI{
zZolOQT=GtB`+erZ;6v}`Gr@;)?J2T@+l3E{YKZWX5-jK2mzzTylI1=C%&z4`Ki*ft
z1BnV-kV7&1O--rzPbLffUkt82u{NG%ypW=+hN<4Sw=2y{%u4n<ls-vR1UOZ$rkf_`
z|E5!YsYw@cE#fg?O$t_M4VE3w&)oNYpkGY;R_R~9QC>fZU*>jzaXuQ_FA<{ZPuZeM
z+?C4ql5h7?_Ph6$^q~7=h!Dfm<?#zkO?87Q&D#4eEUx(e8G=wwrL5o`apQuqzfT}%
zeYkGVDuq|9myM`a{(k^CLC3!T00j~F`WEajjxI>IQ6e$a2s0ta`k=+K<e$1n1Dg4_
zU+}(}X(g-4quWOv%uN_Yh7w(4B2mCml>j#l_p)(ZcA4Ohg*Ns@wR<?x)=3mZ5-@=k
z&cYZeVe;dSqqPyQPj=Zdg!-RkTz|nvKWLjt{IB><Z_(6)^4>uxIRJo3jDUIc{HtR~
z{{VuFe$vy(7<l65M92gg?OU%-w*LT^YWNC20eD2}FJq(Ww&E*^{HRuVf}M^xArcTV
zpI$N#HDGun!kRVIx@GQ@Wg{*(y2Ok@<O92$dX7OgZlreRf7i^qcUz_RFY-T1?f(Ga
zqrbEuUElDTOk1W4SrBk>{{TLugIjig@KPU-(?u))0K#I+<c-I1)A51Sb7(Q@39rm#
z@P~zr3vjkp%DWeF5J#RryypwY_4PH{=)P};E@Rd_KG9oT!hxciHCX11=OC-EPsXvd
zxqaC`ytJd)eaGnxfACWO0E;ka@oN{JG_ebCz(TS%mUngBS-hdJE(z#(_o`OE@KisG
zTC~i*7x6Zos;poa@*=R5^U#Gv&ePNrjE>dvIQ^wRXoP|-zBbijP^EB}3fr(w3o9dY
z+d0Mn=z8J!qvFrSKZ!Bg=zkDAMR}{*q@c!^A_nrAjyIuLk%N6(2cgK~p}LFhKfHE_
z@~^ocbuauBi}r<J3SC+-Z(9py$NlnDAI`V*fA}bO?F+46TWF9=rps}AB0{Ki_>^W+
z5M{)?e8hG*ugxj-CY581!xB#lc~>p>RpnPJy8{7R*mtIBo-a)gQnb~x&4t7_CGrQ$
z1cBS1P!}HJvi7xa%go4hVD)Kz$LJb=!BIXu+(W#klN)yu>4SrwN6B;4au2;aPxvZF
z$J=67D}4^(RDrl@t~2eAwW-a1dVE6DPJ!_s#QGa3@~ri}MF3I;)O&`OJdBgfZo5yR
zu0RC3k|M+fED#O==fBdrooOzw?-#R=W%nPYZT|oTZur$|!W)}C0c33LU$D3*Z(IX@
zGux5HXs`Sg*W+v|vVUY~WFF07Hh&ynaq0dw`N#10#`n;8I`6~UXV@T{QfVWRFKle)
zhIRAHtg_t88_pUyRH8<#s5dvtSgEf!)jTudWW1Jpt34|GOv5Q_2}o3bbY)bJz#Mwk
zZy8oCrzR&#FL<xG{d}|k0D{AOVQCRAbWI2Xa9CN~5Ide0@VDeEb${Tn9~&*>Nu}_{
ziRC*ghc?$6M(^(*wVk8f@$|3E{{V+R0Qd>0Sv8-Cbo~m+jlr4jH3oHdw~=^QQ<WZ5
zDbL>|9uQZIc!R*+1btTO+efmuic49(Q)EnVO%!f$%%Olgmj`JdF!UpgKec4vDw7Xm
zPx(>%9WVSAgW}D*7~8{o6Eczr`!&uw{{VPh<MOL8f5B%yD@fr7g>*T1-MB|`qyGR(
zzpZ{k=pGIDN2F`%ta!J>{{U}mxDxW&16?J%rU{lGE^V<s)>S*#AmpNvjE^gQFTvV}
zh?i5l(CuTjEXA!Y-dOFnvXB5paCqSI+@964#!24NdJ*iY+RiBb?X~{^g3EkRTiC3x
zd@-O}qv!YXt=Ez;G6{9LI0vBj>slKB0Q?p=;|75Qa^CnuLv@&Zj-uypK-tK-IRqSn
zGBIC+UlV*K;e8jyvuWCPoVG~O!#TG}?j%U0njrE<j_e6U-SVl*p(H8BF=yfI79JmG
zk4w>fKd2~Il_S?Q%S~3?42~KbsNC}0;1Ca9yw-0MQKdCEVtth>+m#=+7k}_ue~Y39
z8h?ZIIOQXUbh~h*^!W|K=jpn>8~FbK{{RI9_|yAG#TJk8Ust+qA_rLpk*8ZFmYiJ)
zD=R>fyUxQS9(=L@Lb9r`&3x~5@hef8WQya#UkjdPa0<cj??!?+&Uq$Q1&WVAymuzN
z4_v&v()>j<s~mRl-u&^~MIIrG<^h%jKXxqgs+=gu7+eb8ooP=-?hlea^bzYCzr`&J
z`#$F4C~o}4ibfkzLEp5IkDnROBi_G2f3<C|ej#|8{@a+Zu3*$-$6qe`&f4ogi%NeQ
z{KB@l(51FZZBEhI%P14YDft0l2r%s`>N@9eZ$n>qcm`W*X#6h>H%9(DuLWouZkZl7
zo?9_<V<R#@&a8gUrIo&5de`lq1miu1b<4LjTKrS}5666L!TWrf%dBLd;MeMV?X!8Q
z=65`b{R{XN;rmaCU$b|Mei>W=G<u9Wjf9b~46M3_n>2e$kU<Q@WD$d3pEe<x6yyB*
z*XUR5O@9;@+SZ+L*iZB;mj3{CC)pwY0KOQC{^ZW^k;LV7slA%F->2$-5M&kI4BniU
z>Hb>&hw_V}{8_j0h0c|({6f~^y}Y>6ts3>O-8aEBP(ZK%Ta}5R!mfB56fQZh8`ZQu
zQcY6kOATvK5Hzl1@~pK6k6~lCVMW?k9SZPAPAm4a;P?Cz<Mzq;({ZZ&7V)N&sAzu-
zJO|?qV$vN-^X!VYYWIql3#C9~X>aAaQ*ZZ-mdhk<^P|S`x9Gf|@NNV)@-@Dl@wZ+}
zbR}Y6?0r1p2MRJUI39oxYX1Nyv3Z>&{hZa>KhtRN>#O_4eNX?^`wzw+75@Ne?*x1s
z*ZwYems!4+-%Fa>1-3VKer?2Z&lEeuPo&%es?U%ga5&=?_>22r{{X>j{yAuxt9&Q;
z1Fv0KrNx_R+QzeUZKb{1$omhIqutrs*?B%ntdTs=6qzJ>A~r(x_1Ep;@pAtF;RozJ
z;@fK*=_Y>>-f6lr#pf|AE!Es*<c$2nH;yRT(42BQ=D(Kh4$s5hDfpXVKC@+Zwllw%
z4UMES-CW9I<I9daXlH-A4o=VqO7$|Ta8tc!qBWCljndZt0D;^1v-Y8}@E(sK(Zf8~
zFC^w!9J9|ev1ufEAAFL?%u7itmUnZOVo5dRpA7#1Y2T0jF!;scooC_oui7<>T~^ub
zAW}@17a`OnG4u?~4%3l^4Y|swBz?4>@JkPjf3*k3y(DNa7lm|fZg}l%ZMAr0ONi8|
zV1m_ME@Y9gPCTg3Kzba1K|ix+>_y-Y+55uQ(|iH&qFfuBba&N5K|ZH(8=z%*A9-|K
zF+NNxsDzLfyYX3;wt_jKLd)Ji7`_C4!9G3xk-Sx)YQ8<cusY9)p5oE0Y~EX=Wev5v
z$Yhr52$F5{6+F0NI4AvM5njpho*Tc168L+?KeAL;k$BF_No^BU)=KH~Pc^2n$!k19
z*5F-4k?>gNJ<+U(4d!Hzt$%9y^^Gs$$AWa7M#ka=8V8B4r1RmDBCZ=whBYEZTy6~b
z&j$w`4SdVtX%Tg+n@F$~&Yq~ljBK1a{P_CUhh84hd)pp<BD<$iIG-|U{{RMlJKvVD
zlJfq-(oDf|95)l&#UgZA=T(*jnlM+G<lcn!1mishk^34Y&Z2dlV&)aPbqOT7Rh9OP
zC@ma&*bczU#eKznAeqIwfCkWW!6&%>U8)(cR7P(BJ7dF@>B92E@gK^#<3b7DBZ=m9
zrtY1Om_9Z97t_8D{06twbd<Kex;D{Hi*pmYm%g}|uqE8H4=fCE(E4=rFWL6a4O`&1
zfi?M-C~mDc-5BlBVvKo$SqICEfCLx-ob(my{{XjEn6}@utd|LyCa|;6EwVZ(SfYIU
zZW0m4s1@bj6my{XC&TudWLQ`<WR3s{+Rt!~pyYKb&(E)}4RGcXe7YWv9;}@;C)J;$
zpYT>~XI0Vv0B4Vez8C(`xq+@U%?LXoQRIm(VpQ4(C4**BxD$jpJP>>n;_rhz6Z<EA
z%AO_o-|*JOEPPvkcm0Q<U8d%^Tm4c`C9mC^JLIvmmP?{oVWyQ7ki?qyKlm(;ll`;t
zm*IcHYe>Y>L2aW(kRTpxlJ4^3j2z&3hF>i}9G7F-zDNH6g1UTMwzl|rci}w_Upq_q
zWY(5y@!%!apl{=wQ=dHK2|$i8c^*avas_3P(u~|=Ew6S?VO_<>D|5r+wby0%CE%?;
z!~$f7!%5j_Cu1YD4>QQp?q*`fX$vu9^EXq?dDfTU-78nWmsQr8VX?DAad#^pl_7|3
zZQZaG9R5A)-aJjHCa0zNXTUMX<=pst!oDB3yI<n-XSDN(;B_qj0H4;my=zJHuHpD)
zYy%~@i%`~|Bn|9CT3L=c-H$p^o)IGq2$s7l)sH*m+3aOrSC!|`^XqLk_g=f7#d^FS
zXPWy03w(2JXBj_dh~y8S1j#R?j><9sHPI)A;$WCXC4tBA@#qKB{{Yusg8DNwfit<J
z>HsAEb<^DVX|k^vBWMF2pGwAaw&xR`w>)8dH1eFPeEqTxYwf?;W5UyEelN7wORzS+
z74b#LP^<EVUnHq)Zaa<}oQ1#wym~(m85BHg!*PSgJ<WY@`#V^hXuN56BNDoQgSA9K
zo)^zC=N_42N%!kqc&YP2qq7G;c>KWe4}>K6PveHwHtz7%`L~XBjaZF7=zu)YjN;aB
zlrR_&$@3hmlAod4-h~O0*3qL@^R7@1hX-;K`Hm}))pRH?^}%m(3eOz=R5HfO8aIu?
ztE&USQVs|;+iKQL@Y}~)4~2C`d9+PZ_$HTgBW^Iuy+6>VC%73fG5hP4KQiR~R$pEH
zPO6uY<Kkh@h=h*c_CdDPZhjA4q_<OuqL0KOBUuUnWYy*=f;wemA4<3TB=|*qFKh8m
z(g5C9{3H@2WwW~i)d1xE>@yLbdSbh;*;>!+-v_6+5ry4tB!CWiy1u$){79#K7S-m1
z!~Q(HlMKtPUPl@2h?!6^_5kG9<yGCITi5kJM1y?MitJ+k)BY)gPx#&89V*NNb$Zae
zW3n%tfVuoo;CCa?SAzcAI<B$ckA^xQ$93VnIj9S(c%Oxqf3jS{hEC*u@Gu^rSE2at
zLT?%V)}9g9bqR;qtX2sLVgZ@N)3Ew3K*f2t{1xw0wbTCqWSK2XDwgpDg|^iolBK%=
z*Z@solcg*~BKot@#wMW@yMCwhUvGJEiWchO?qpCy%^}?Kx#iv1^=E9e9_)Q;RFMh@
zw{rY_asEAPnu2L0l!ARv0=I3Oee6m;=*h-?xaPlLO4}bjC(P{6dH6A;T8VX?W>o@3
zwuTfwo@23YzM%z4uUUk$c*ZgJao3D~6>H(V$p?q8%)c`{(DnZSWg8!sY5Mc;wvZ4{
z$bTLy=rErOJiJ^|n@H$BDO&Ei)DVIsxbVF0bDWimXh_G?J*(hfiTahsh2yK&vVuAM
z`x{w`$O{mBgkFG*=N$VCSLk=e8*likZDYpoKf$`z2T_G<EPp?0{Mz{AB#?OS*`vT0
z8ZC*-WDFSG_544jXGJe*%6T*|&3_~0mSMZh04X>jMRi^wCg;Q2bm|Er+9b&Jjpaf=
zTIRg4C))Tq+IaUF$F+SO;=K<~vG{M`U1rK9j!T<8O($SK);+$dBB4H|W06PD0bY_(
z=H-1)Mx%C8N09tBdx(5rV<eVB{Ua_-yr|BO1W(igr-9E=(><%~?}a*in#YG5Ow(-(
zUq_aWWq8%5=)r*m{MgPw!RT>bY4C!^U3cP-hxC2N{U-6D+@yy2t>#n6<Q_VIjd};d
z{T6AwH*QjMxozWd44^tYGO6Wp&IcIoGAkTqB?^4EJZx<5HB!f-TwGs`(5Bd5?wo++
zU|@n6<MHiIZ6V=bw$FCp%9tS?I2r27FnaPir|NzmydmV&ZX$pXvMQ~<#7;0mg8ebu
zpXpSsv@Z>yNhiH$d~RVGBsO~$RU{Gh>BV@>>8Z(5cUm2dw7wRx@r9M`&YHFskupe@
z@=RL?%E~*-B9am2D>Q>?0U41&7_9w4v_-VJw36*^red*xh{}wKy_!U3360MDCNs5i
za4-&)qIfev)?vD{vyV}=iGO$}i|pQDDYftzz8^e^0M7560D59-`o*-?%^sO=<Pfc&
zHw-X8iz*kKADDWKjt?C1gj}wIjJLV)Z;X5=s_L4x#Clu}BEd0JjyZKx$4<EX^Iu8)
zKlnM~yUz_-%9hKWgZ*O=az{N0<NEZjb|tyD)in#-m$zo~p#>3$Y&x-45#@;sw1#3x
z1b_!M_b0)tsINQ^ZzC{R<8Lewa9e5T0QJZD#e4YdY@-B{JL_SSrlT#70)N@l#W-7u
zCAG3xvPdW#w@`DEI`P#0b#F}g8zSArFGB5*5Z+PyjkN8;fN(N0aB>D~?5QsFX19`5
zibV^YU<02_`uo&2*Gn{E-2#Ki+y+j2{*~l^XjOV#;&=*a-5dvn`~jkPXG4=ugaahl
zGEB+=W6*kGM{msYTtDoqs4s;-YA=Sm%-fl5{8gsfI)Dck(|=|*LFxdyVtt3_?H95U
za1;0fs~*GD*UJ9@+RxxGi5C7Tn21+E*R1t7C!)t;e-+s$8U6^fT45?me97*5*lKZ$
zRzB(YW2BD__&&qJ7ZQ1r=!n`=x#Kcv(lwjs-*hKFhP^^K0UT8?6=+g;bK<X$d^>WO
z`zMRF_CPuWxzwk-h=1R?l-7l;i-FG-{-yAaBiiM7da3USzx<US=BFHC)g0p&MRch@
z{V9@|0qI_o@Q%?Y_=%(1zbSPrmaIC0E+Cd3eX`=XPf|Iqlfim~dS8pQZAF`Cx72Lp
zVn4dGrhiP=vzgNN*lM(Ynk{|lqrl56x;UCum)Vkkb4>gz(0nfXO^kXy%abLDHj)rF
zlJGH!xaS<H>s?$nqSql$EZIMR1Nql)@heJ?!(SLYYvJIbO|OY{g;gB_8~NQw;H(GX
zT-WZ|enH4Tt$&x5B`CWy{Ya8c-E}M@$f@%Z2<z|s>N%wuR*-JmbF^{D@0|3hBSKe!
zgYEu*r9I=ykU+@?f%?`;N<9b4+1Xo7Y?i3;qhY|t>33xR0N*36Z9%E%@QBH<RwLGV
z55IA@k4#r52#QN}jDSEuKQF_I)-P^j3hKjP$UFh>lhot2U{Ty#YQ7u2ji9)<yovVY
zeV^>@k~<GEQ2zk+>5<;}PAA;)Y9k+cOm^FkrygcGKDe$%M`_r}I~I0r?8Nd(&QGp;
z*4~wW9CC;+A`?aq<CRj`>(qh>JqSHPH2E*7oTq1F(xTNq8|pUir|J{kLmQ4HlEOJ0
z5<3{=Zim<d*yg9wbbp4{)*{7xK@`k$v8B>(R$fWqoVXbE$jy0~wt`7sXwb&4#g$L+
zf^q=%9ji{l(lLP>90QJhd-ScT;rW%W(lMNs&s5O#AA`C(TuF1P-D)n%petB9gd-%8
zxQ?fT?N&7_e}nffvMkrg6cMu8(P9MSzV{3Ky*=y9WrY>@7CaiOGblSj{HvxodurP=
z=JGu*(^U9dr(1b3=$997lHP61sF^?RsbB}-O=wB+UK<NTW#Nr3(@x1JE&IYxAHu4M
z+dnq!`&W)_4f2zdo;^vcQQ7&KJdycUikd*BW9?4`{@Gf7o#DHG4fyNf$A|n?b!<-C
z=>W8vMb1<_QQJt2<EHg1p6Uq6(7OGn{s`(0X4U=ycwR<f^E1i|AI`|<^RJhz^vLbB
z`*pByEtm(C`nUIa><6b`tvw>tBfEJ7fNkIwRcz#S<Q{&4xg&&+HR8V){$$nFXnG&U
zPaga&_>bXBYYzi_Hq$&0aSY8g*E(rZ^Cy(a<TfCSfJkt1c~Ql1N#MO2+R_WJ4oPt=
zQjAE~UQ=RDqiKmy0k^0*JF|m=0N#%NW2b$N>O%31ou?g0#z()cMc@w;NozE=agZaH
z77x1)tT+q^KBKRG{cF^v2MAc=oEy;^dM=%(*he(i4Y(vyG@Rq*3Vkz*%J|c-#Sg}B
z6-8<lRka^EagmXCZw=ROKjpXiHK5uVc^*3%%u68(W0Vr5PdVN)an3MD<6dR)a^zb4
zMh!a#xSq#Ld2yaxTE}kQ`TfY``U=_@j!U*4%5FTU>-8-QTJdI?WvyxUR(fm^+aldu
z1{Uy_2jzDR&6!wr^4BbRBCz~FrT9ll@o=@(B|44Q*~7&mAy`8rx|rmOZe2-b!vGj{
z+C^<$`0r5g?Yy23@jjMb&80WGbc*6PQM4xY+!#o>z&@VYuMF`NaLcLb`mUB8H@wOe
z;kNLyE)QPDxMz=)(~Zwsju|b_tu+seUk~K9j>}N^bE0VyCO}OKON&j4VsVKiTXsHl
zyaDECIO7AF@Shp$QLfvFwCU_^-NUL$8zL@7G6@*(QEC1^@fMXCX(LOJqX4;d<0Ot#
zuU>elwC^8W*|<rp*U5d#Q+qQV-AUb$-7|yzO?h=EChpHhl2O?8?*YlHTxeGR0NL`u
zV7M(JMR9UsW!v&d5miaX@t(Z&1Dw}yVWR5gllxj!xp><yib+-(J4*&pkLQtIXW+d@
zM7Z-bjXp_YjsWf&7dEUzuq-fg03-u|NaL}t<}VPzqv|k3w?xE^`@}N|vW%o{GB#U=
z!;eBe&3KrW+?|f-%c<#!;c+AnYj|y~;$YcZc<{s?xnqp?KIXo9@Js2heKwb>TShNY
zBYaAax;I7HDsWVF+Ii{@MS8pZNQzcAuv<yH0KBg8?F-)stX+;f1^jF0KNslQrn}?2
zxwM%K_Zp$!<*C@f?ObFM01boJ(*)*>EjK3O$5wo)G<6;>D;~Bl^u<O{h{UE_Yes%x
zP?k7VAoE!sE7o9&C^Q=;iVI6zut<i(GZD<Q0IFT_{7sy80=T=aFIezvq?S`h``F}$
zRYq3|&bwV$1I|Z7*!MWC9e3iKdZvJMS?q&cmW(yV6fVTZ+yRy(05g+{?sT5Wg*&UV
z24rOlc_)x~`qis_L7`#fKGyk{Z*no*WB&lv+POG&Rf<0^oM-uG{NpsmzGsnI0NC6P
zO8)?yQ&gl5Ry`u$RJ^>A9^vxw4W(5=fH~&_gU3@*-D<l=Vvv^{f_cFQ`Q%qK6j4at
zbF1zIj+|qsPw}fODx>TuNFe8rT9-~m9nQ1jn{9JdzLF@J5=ojw^PH(fkSm|v-~-7d
z5_{J@e{l@fa={z1c@g6qa0m{iax<QJ`d3CgS}!$AKL=`Q9G04mm4@ubhT=J0KF{Ys
z@5m#{9DUa3j%r;-TWw9m7dMDx(t^eeia~f3lv1snZA^QerEm@jtSZl!MmW1OPvbdj
z?~Ho4h}PgF9wxNXb-3NLm5%30w8#Jh)>x!C?!@}$xJcnb!KRs22;G(B@J3GFyc+2~
zBx%TF@F$3^2wQuf25H)ICzxbA^n1(eNe1EpatD?P$E9)eD1z60+LYh4p&d!;I&=s1
zG)_wB9l9BQ8y5*}HIf4&!z|mk9#EvLqaMc~06DIf8(k12^Iq?YWg;l!XDa2+a!UDZ
zHph%GE~k-<^Im<WNp&^OrkfXHT$TfFNHU^GPfu1j$?4EkH}OvsZ(z)L$ieIAMPJq2
zo$e#i?{yy!2yOJePRi~ETzS*QGPswxaRi8<U>pD?!Rkotx1KHV<&;*o-W<HVp4Q3b
zk~puSg<L$P3mwpw1U}GCNehlSCcMMXxLu-Hi-#RPZ_~X|g6e24(rK-lNJj6Jf;xf+
zLD<w!2Nk)UNwkk!)isNqUNyDUE@QNc7ug!j11wR=^S758D@b;-jNsq{_i>u!Z0zN@
zjy-*&nIR4(ZzL*hXvimP%F3+S9TYYVN22(mQ+9&?08Te3EhM!<?;&{FTmv+GfFwMO
z9D$!<Q`-2Lcz;ih*26}&npP~|YPqvVoS_2?y_L4$gPo**TFp~yL}IF6;xxQ>;!R89
z2Cn`p)MFOL=xt&$QJydrm}e)hGNXWc3|Bv<+g|9m>~x(%A{iPJHM6pV<_s`WS3UNV
z!Ov`ST<`X++>*7*f~<^LQ}{vP6O4O)KJ|X;^HH~UxxSg^lZIz1smKG6r_-lT&b3sz
zVxlQcJy_e_PgaqNyz(qy>;rJ>J09fvoRWR(kMSMV^Xv9kSF=b^D2?|?xP0iq93FmR
zFiv>D6{o1`Uun9Q?^2me&gMrfLgcqO;~4xaj@R|A6k9EXmryOk&l19hRP!I_0PS3o
ze(~UQ*NW=HQ+LrE?X#qU;l9hcTlZnHv|~BOM;XsS>Ds>3@D8(U2ZBBt>RNJ2f;c=w
zr`!qKb3E4ijCVk<KPqj!V-lWK4n3>lOB-2jWd#^WNCSbK=dVohj->r->purcV15tj
zQP{MSOJm~m9PJ?56kq8Zh(J|N()LO+OJwAOj0*i9!t7VF&v5PaZGG`;^*%eqOh2{B
zaS>e={^ptYJ&n>ThE@enPr|;|{gf^~)#D4z8X{C`T1Dhp9YZSReR%{NSLf!Da$ek=
z<g4-zJ%6Qr&-)->BwrjnKWKPMsan*I-@J_T{{W8kuk<euH}yHD`ZxD#f1S9va%L3d
zp6xHcL-ixXU+`0pj=m4^)}i4G?}6H0zoqFjBo<nwuZV8#r@4Sb8;M#6f@F=iF$F`B
zkXU0luK=6=3)!MuO4iq(v&OIH#!A1F;;TlFaNz7_fk|BSB|#&wucf2-Gw}Oa@YbW_
zeSXixn%<{trW=LQbg3+@Mf~>B6c+aPH$@d5M~EirBt;BzSPJ|gi~b8G@Rrgwwby@T
ztx_xKfJ=mn##c=m%Dgy6@=jDXKt08Ok=$99(8K1KiVfLDa!YQKeb4ouhqEVFFQHZM
zC`JA0AOF|<zyAP&p!{95{{V!`;r{@_D+y7w`*>f)7ol)`$GHz_VbJp*mG+i7AA4yB
zf)C>7#b1irpTUn9*lJ%3bvdoIX<?bJUN*q;XJA5S?+xT`z#}_(<Ae1l?c?$H;kU;B
z0NR24ZSapr)bu?P(?HR*t9xBpB#!A#lyeCk;*{=Hk)+&!oa5%`MSfKLLe(VId})0=
z&e8>uV^aD1s-pwg0!@0@Dl&E5`WEVP;i8(<_AM9o$o;0gJ>q*`6!>$;8lIPbWis4b
z+*rC>%M_`|bY)V(f$yGc3rGE}ziO=#?I7^)#IF|Gpu$HKI@S8G-T7B<pZ7=TI&)qT
z=7or^)yYBzM=E<9=dT<Z>O2<=(fEqq?pPG9+7*S|4XRZ$y-!T3TpvJAde^J<Sk87x
z^WAAiEuYZm!@t^BPx$+#Y1Td&)ci@SY5oQ9Z1ywX_@?aM>Q`4&-3GdEHKv|KwsuU%
z129DX6&S7m01o_C_+M?}&1TwNe$>6Iz|0Z+#zpz|{Hx9fARhk!TKHS`Oo9AA@Ymu^
z#lFEB=r+ufLUM=glU+%)9mhOi9&w(S0=(0}Wk2B}@eY1f3vUvE#}WC!ab7IxMe`-H
zb~r1+PIhPN`}}_RL2VzKF0u&j-b}xqLjM3Nttagj@NVQ!r^l~EWtJCs5XCaH1M-jt
z%#a;`&rWe)nyuuB%&3_NqnzV8;C(4HEfV8j@xO+l(+1nijeAJ4P=4!uvi2BuvBAJ4
zz$5}jO9gCT#Aroo#SAoCvHLmue|XQp`p3hs5qKj@)!{mt_=Y<{Zkw{_PqI~(FiMUP
z43pC<j=WZn!@mJ)ek#+v9pP(CCS}vaY;ZS3_YlV_@;GcU3!iM)<rnSC<H;`kZ{gyf
zy3{4{j=ytvWWj`yrOofyqf?MKBcr*FP6Vn8FC9N}{t{eh{utJL7ve7weW+>rMdhX4
z!Los_u39**BbcH>hjWt4w+I>WovO`%es?rZF;_dG6&po9r@8+C!AO29cvHZiwKs~s
zF~m|<_-?u`k!d9EtqS;yRaLjsfk$wI>@Z6$?BrpB08asH@RRnw@eYOJ&)M(9o)ywH
zYb|Q`Q)@_JSZ*VlN0w{oqDc<cIQie^C!YOl)<58}zqIdzem(qb)wGX=i9NrEEUu;2
z?}X|jnr(LS-a9ulM}W%qRxrg11IY8_R{_-H^B4AR)9rO1h!$FUrsH?3_<61f+6j&=
zYSu?!M?WlT=bpog(<Q?=;oV2S`5d{N`LPgPt@)p?w>J~`AL6IRAB=t=hHJ|!eSXVD
z(QJq+w>LU{g|(Cr!ginCw8X2p$|lxk!B@vu;NJ&o8V-y`zjC*_we*d7sNAmLCcB%N
zSyhV_j1jgZ&Js0L906Y(_?!0G_*vo)iI3v{02OIEgIHPL>KB?OkzgXqUFsJOX1ivZ
zWLFItCKlkvCXsMU5Hht-_$hyZE$-gOL+~!CJgUSWw%^*qxgNexo<}`#oK`e&wVYIK
z&{(I>IWzQb%SE?WSpXS0&N}hwU4^xj7%WFl0sjC#_4y~M{{X>BynL3hOQZN7N3$0(
zmsgth>hEq2ItZW#^8&iB2Y%7t@K7I$nk3ry!;J$>coF{qbS(6RV<tZEA8Nj4J4Zva
z4bWuqTF(PgD)ZCkWlIS;J404}pg~~=o8<)m0CatOSJGbwbi25G74a_W7@u(P=zw8+
z&2X#zEBV#<oAF=%3L~KZ0B366F1_&whb^z<SXygcHaM+gl2<B`wbWLUz>;7bMkn4d
zFsE=e)_gtqx$$D_;3w@G{w(okwSRGAW#OGEeB0^6MJ?v7G)`4iqejf3GB&9yMtH?@
z*1~(KsV!~!o{k?cs-)9Re2?2Jtu5_5S)0PJD7cApDOkY9(0O7y8l(F~d`$RJWgH$E
z*L+W-$1U#tkUj0Uobp8~Iy6AOe8}BHh8(Up0tm0=uH#Cd#NQqu{?-2gO^)YW^5ZuQ
zW+9<Fn*vSP`C`Gr^{;dB&4ef7j)!xmM-nBKtkTF)5l$Irbr>D8ovZF?WRY2P>N#~s
z%g(b{$Wu$X{Wkv3_BZ-R?C);!TrQ(=3V3BwTX!KRmJ2n!Vyt-!BbNH-J?gK(PabJH
zr^5Y4;_pg{Enx8-@<_@@`by7yt(h~~Lv15(J9*A)xcF0Mx=+F=beI$<7rJ5&yc>Nc
z5J(=uv5&^SS^b|i>lyw9Ug;Jme68ZE>uZ9%?Pt_P%2kF#28ELZcgX4uejST#!fkbz
z`Jbj?*YA?@I?sxKwMB=Ae``Gxz;-?ux0RCKH#0P$cH%3kM+*_-<^J`2vHt)CXZY!<
zc;nzsh2dMBF5ceXQrB%RJm}?PBK@8TrN%t5!!%n@BLMo>BjZhG%fuhIjl9sGHEm#y
z(oaD!vYIyU*`{7A%Rk_yS44a@@KV1dYm-8A#tK<nIR0!uO4Em8-Y%M#^||ZjFj1zv
z*!-8a%gpDmJu*5T^{rwX`$`P_zc);D>x|YdlaY0X<12tq>swZjjb0PRLk#xq*#19_
ze!S0;J^SJD-KX6~aCS6qdEn$Q&1m?7;s&*uRB))-Zv72#9vRkQ({85o%K<E4bjbNz
zKd3q4wzX^Jxl(Qa0Er5Z$m5Sn_V8D-Jp5Akn>~}_iQn-HNw$n-f8iX~?T@zTY~%`0
z)DkQ6Bjd;?#2P&E43^OBuumMRoOADAr2Z<n8jr+F2~~E6ZBp2tGI!a62jC;)>0h0n
z9Be%6&kju~`CmnY2alPflHhan{{RXwa{cnZ^||5FmcQ3?<jaL&DwF6r$UTL7)}g6S
zto$bMjjXv??XNYPWns<>%V}|rJN)LnUstqvWPw}&3}9q)oORE=dhVSA{{X_6wV6|k
ze-K<KE6+0N@iqt7%Fp3mtfLn=x7_t+?+0VrJ_1{=kMU!{n)jHjTU^snbp=vusO{VF
z+aq((``6G~ZNGs$9inO;AMu29eY(}mc25vpp<|GtQy%5ryKXXm;Q5pjkzXNvHPo)4
z@g|LXC&*ycH0Ky@p)VnP^T5Cy_8n{PA0GSx(ls9!Ynp}ah3xk+YBz#MhVn*LDRU-3
z3g$Kd^ugPXoMOIzKgGCCD(6mDfTdb5+N;>{J!9f;!_5vAy}a=1N~0T#Bn-pUjDmAq
zoPV_E!w7+b*TRNA{{Seq9sNaje-nNW=sG8cEzFV`lHr{Jke%ZS8w8Gruf2SPJ{|ab
zPVlwe-Qn|ZL{dnAF#<dis5r*rc+P!zs>)po$#c8wVzIe3C`<QiOMhKYqo@6;d<O9{
zf5J5+fbyZ9-vExC0j071r~EB2^IO9JlsIsH&Q+DT!vdosz8hNzfNnBJJ#k$E$zk?u
zXl!jfiDO-|$>uv5ShjLO;XvpB{7E(Ubog%#{J)DnZnA=lasIy(=sk1Cx(|%?`L&M^
z*e;I*R`J5{DN-5Lv%lmDFhR#m``6VU2L3DAX#NvACH0xS+cOe(g~m^*1ob_u;13CH
zYrDHEhGyRuLm&1*#(jDYde_sQ1QypYI?EQ~oGSn_ILA(y_pU5%RZUOWwV<n4YL_}b
zv()}C_<K)|IPG+!36m!R<T+!;e}~f;#}zJz@oPwu>RDFUf~rQz7!|{eXFEqA^IizH
zP&9y;l$>=cGmlK-yKN%g*K40CK^Q-DaqEsN&Bo<4X;W=2OsHa%<zv@h#J1Y1BgA$C
zkXdogN7L56O8DP<3TnP7vw$--#k}PPJI!m;-;-ZgcwWvUA~1|(92|^&I{p>npBFT{
zLGcp|fl_OGR$wv6!9)K5px29mQ0Hm&JzL5y@jpj?BWp72pB#K`uZ`YTuXUyBap!<i
z`$5wt+`h%j^V1;rtk^Ck0CVqLZjY%Y{+-}Um2WWK{4?-<#EsROSfRYJea9d4=%D7i
zD|E=fuk^RVtW&MSxJf_cOYYP3KhJ*|aIPFni;M1`-xU7<Q(bQ4WWlPlPkU@6yo-?%
z7gB$`oR8&JQAq$dO1b1Dv72@oRv7#UuhMC?eNp*EUTu%gpW4x2(f<HzPl(ov*p2m(
zaD<#-U0K^){-#1rc{CRhI&4=`-FQFe>t5aaYH3h6?F%-sGG+CT4`@1(ZiU`UQ*PZl
zpY&{ZCcbvI(Uw1+DP0`kec(spG5J^djl>ugOC4I1`!bUIn@9SAk>mZo28D0tgkRqj
z&bBzmNXX;3>6}%URshI=ouIcI9y)M%tQc)I2-D@c$j?GC$@+f3(z+`hGg_UN5h@m7
zLV~26o}Rp)Ok%ueNwd~fdmjG);r{@HdOo$GuZZn@VQRK7e`lt7vS}L8D|>z$?AGt(
z+02Uam0-AbMk4{vMtWUK;J1aeJ1e{GZ^u?PvD#|$XcIH&`ud3VOL&a(*}in{B}m5d
zr=pIgzC^t6Hm#~ds0r_85$X*HnFD~092|&9Bbdn~k=&DA){EiW{WikqQn|jG@@u)x
z%<C^Zc-olf?xNriOq1NztSloN^K1Qi8$3jN9=yH`_<FH{ACGj>ae{xc_0>FkHl7L1
zSYHSDJya}SG}7hcf%Xkte!pP<0QFZ3rdiwF?vu^gx3S0L-mVQfhbloU?@d!n`u_lc
zWa`EAI>|ga;mcV#@jjgDG52kCFn<i${{Tu8N6|Lyi^SFlI}-+@`J7s2xpSmRyvp6M
zeR_J-@M!Yf$>s71IP6KsHC(HqlWU?n$ow~;OND<HY3cR0)XqN<XM^|}a(GL^Eht$$
zZKn@mVXQZ=rHAWSmcAa5oQ4H}?0tK4T?Ma&;*TF{LEPne1L@wjrAAHYOO>^;wP*0>
z!PiVSc<)Lbat(&HkUR9S#dkVy!tVjXpXq-Pw54Kr15MW(uhUQC>s&h7L2Jq?{c%vv
z>keEVM?dHP0Iywd3m2<k@ex|`p30sO_;VC0CisV?5CG@<FI@v8r~JeJ0R43Wcw6C(
z_Mva3S$ss(-s1LX;DHlG@e3A`XIP^d{>}rJU_CR`*MU!Pi`;MzYT^7%3|gYLn{wx4
z;79{~@CZ8yIr&dU801yLgd+9*Kgfkwx<1p?{s-D=S623I;^-xo>rvEn$RlkNUX06m
zq^Xkf01bf)BnX9=6M_fIO?;i<?Nd(|_YrAVLh9Z@F@j+m#wLvY)(apGq1Ox*fMJ{v
z2qL_PS~nJ2tXi~pcP%>JKA>c2n<nB&{F3DLC1d$i^#B2$IFm}%UdK{`eiS39!Rfak
z5rNnaYbvfOSv#617qYSG4Xa&|<)rc=XN6Z`{Y82Aj_>Xz@f;0tD?5FH1<MnXBa%=u
z#N^-}In8y~w#{vQC95$igpN;ObDyR$UR&eo(%)Ru?y@k}&V+QpSwZKo_qa93PO9dy
z(Ksa=Bj085rP$Ez<JDppwl|2f`4SKcN~3P*+o~SFbb;y(X6ZVXgK2!4jJ6tXsT@R=
zwbyK#`q(x&a}-lsw)F&sb(L|GoPtGiz7x5!)pQ^1d4J>L7HJ{D<&@_jd;0^^nnhGR
z<Z;`N^P2Lf?#n~A3q#j#ym6pix&F%Vm&0gR01-Zie5WU<EHzLF&m)1wHhbIK1Ln=(
z4~LSeBnd6Fd#2;BQLCH-)MpjsMk1pt$LUa{CM0nlRY}PJkPba?d8kusOPa<@vG!J-
zZSamuf3)hp4e*0Tc9nCcU12gXPT_v}0GxDOV<(F16T`m-EEqN4gM2M!$Or<`!sa4y
zNZdcuo2l*vd_!%lYZftV)9zgtcI~9@O#0yG^XpyCpW^|28C_~wVRX*Pm!3x}oaFL*
z^NuUco*sAH=#5D1kE<><AB37?oh~g0N)i&v>f-G-oB~4=b`%x|fO#XPYsG#i_@2Pr
z!48e#Uko+6#;I&?tZ%M^62r_ylwTsB?`<EgQPR9i;eAU}vD5CSSnUS)x!pIGWR);e
z2mP*3%s?GG*RXhJ#F}4<8rH;18cAshU){;Moz@_V>M}yN2RP%Nm^G4q#$47mR(f3d
z=06$h_PRv3-|&KXO5zI{79n+QrQi85`HEc;ifTk|Dj499cJqJ%tPM-X{u;W}oBJog
zeh`8;MPx~|+sRk~pW_;eZUl7sMmZeU?0@W~`yuOpwEqCY{{WAF4Xmu%<502Ed@-%)
zM4u`-wOcEj`NSzAVU_M-FKsIWg07<+5nq)4EAXDX2iWynI|=nm0lB=JgnzW!5`JWI
zF)I2Tf<YTxX1FrmEW+Zkc#IV{@6mBmU*d|Ae~VtJixWywjoIgR{y5Vll0W#PJQ_s5
zcm5@JgDekk_?h+h`ckjNSs+d4!QKgQPT3FkJ@;OqXZu?Nk)BDbTEB<1SJMs7jOA|4
z)J~dogKW{p<cCmPrtm&erx_g>cdK3u_)+738hDQ9z#bg2mQ6<LSqNDJ2$DMsdz<N{
zcU54hu|W825Kb3AFt4DNE)k2Inn@h6Qs|2Z;!N><-vjsol&*049r64*);jj-QA6=Y
zNm1^k_<Qi=#~1;e_<He=&%*WAJM^zIH@|JtY;Pb(MV0{SWJ0Bbvo|VmK^egZq2m?Q
zYAI=_EIt>~<QG@W-euB6rO0&vDk)s<Rmmf6dCqagI*s1Ol<GF@dY^>+dEnVRLush^
zkHY#UlF%!Nj)!F}jgq?MgFU-TcFiefCFJumc;RqKq47t<15DK8)in78*0UgNkl~fN
zz#G&t3IWOK*l}F$w{3r>cxy_xy0MzkkuHgLQl?2KaCVKuB!yglHTEdhG(BF@-%PZ+
zv>@5Rb8!sO$m;<DMSRJSuPc%OR{Ohp^NRASO{peyMmIi4*5=f1eiVE+zq*t^+3x&Z
zrnu#Q*XlNR*5iS<h^AxCI-F;dTy3@eu#QM#2Ow=eVc_GiKD_bY+Pw$GF<NUM32oui
zAbV&mz9AnhBBVpeywF(us2zb__P8LBcLI6}@%>`mG|f`t!pd~Gg-_oMB*Eh&a)1v{
z$FF+yDWxr0g-LSkbm`)F^l2uukHWqZ)`YGIlf=3*>enfS+C*~;m{K^-0SE!-ob!R2
z{ymO%+b@8=8%Klx04)3>nfB-HhxM*rS)ye|h_>=Ra85@A;~(Qu=WtYzu_NWiK<}PC
z{<YB;%dv#3Gpd8)6qZD{{44(ehOz>rVZ0%3=bug2U48Ta0M~q95h3#P{{RRt!;Rba
z>>dxa-M1OsS)_IL>zwn9S1PJqNKjiG4y5~Z>rweqZYWiXqVbXUK<$%RwHY^bzT*X6
zPjk7l@y+eU%g1Hl4~LR$LgyY3)0ikx^Dzf@037EPJ+H*6VvXki0E9!~^}9p_h=;+N
zS$QzqSVqPcRVqGzpBY{hlTY}428A}Y{h2nE{k5p-LQ89FDdZ5LEfHY;V@VPtuF}fR
z=NxTP_^xe}U-7;6blWwR?JWRU;Y5l2n0Ve$kX_GLBbFyPsi!!pS}Mi4O2=5AA3RxP
zkv^5-?+IE;H*fO%FQRRHpOl3*e=Zk;lG!|hI#u0A_KEnHG-~2M4<ckHBJj?Fj5_ni
zpV<4F^1l*kw^~ibwWa07yxZ-fxCY&~g%d9Dj>S}&7o({MY2zewT=`JA-q{V*bQnJW
z0O4A+o~)NvOGbNz-^cHbx_yPM{mbe0_WF!ob)>_?o*z|_1_3d%>1+<tMn`W-<#nIh
z2jf<~q22gj#2V}`V|gEuaTHoUg=k#~2WXntO@egjIgV6sd{-~xe;WA9#ri#tiQ+v<
zORHTfKPt*M5ru_ttAJ4yu_~Ztix4^<x#JmC21p+-BO@IJN`l?3M(aJ3(CZk%Yi5ko
zgFAf8a6-p|K}Hz)nTH^P6m;gjtKfdH*FFRIffeI!j>hZ48iZ?%0MhCgwi2-9o>FuN
zwg*99J3}~?N}<C5Sd8}WbJO`(uzVNs2Fq_8_;D8&^LR$@Q3Z!0T_;h~u460C2mr`V
z;7_JG&(iR%UuBtL>b{eQ{*;d&J)`Zgb*Qy_#!K)%{{Zl{=#ttM<cR_tj=eaqu779W
z5&r<fG4Wr+dW5bcSamyBZaaC3r2Z;MuZaE~UM0?#Xh1uaMhkJBtVdp$udIF^_;191
zBJqBe;r{>$+0Cfx+JuW8ovpHOnt49<5qslq<~a(g3o%s$kMxfNI%=C$9hIH$+Q<2?
zn$fB4`Jk@TR!hClvA^J<AGD9{E&D3|&^`^n_&ee&i+vvFOVply65<%{w5!8ye#tM|
zVRYZ~rOab7NgINogTV*r9Si;o`TITCXqI+5hrq8B+uTD0amf~)aijf>9aIKee>Pa;
z@>KC2^hVo_%BLWHTYtf4zieOGZ&2~ChqO-!Ur*xi82CCH>npU=8*Z5l*WY9_!8PzD
zWiZ@YI?659Og;wThOg%`>-LEFpFPZzMI=!xv0#d_5TKlZ36PQpPI<5MGmf%~c+A?p
zdRB36>8`g)zsBeKdBD|b(aEsXaWQIYHfgIhtGD4}|Iq$>zu>O_00g`-`#XQZKzvW|
z_u=$5R{kGNCquf^zq9Vr^4e&pv(K3nzGJ@EWNa*f7-N-HDo^7Vhzd5hbnE<czIuNu
z{ha>*g28yk!^gkyP#+Qat4uabljzzQcGISg<|1RZc+Orh7jOUu1317H_|4*&Wd7W{
z+B3FNMhCFx{A=hk=``D9W(ip|taEpH0hPx%CjeKv_*i&HTD7><d`GUXjeG%x0$5$$
zmRF1`Ooka2G<<&S<Zd|K++)Hejig*79u5E}*ZgbQH7|sEoxGD6H4AixJAbxH@)tfu
zyDWw`J5-iuR3s{bM;Ys0v>K9jXPb4RKT^MEO&-F>_FD0_v1croHpcTw(W9NAFqtCz
zFqHo7i)}k(;BF)ka%<*~4(n-Wt!j6#G-|WzF<HLy6b;EE1_P3E%m>rGeVgE0HPHV6
zV<=&SDod;Q$>e56&SJ8(ipWL=IYP+J4mSgyalribpTk=8_LsJrc=Ke`H4!WrE1jm-
zBhv+W`rw{8ubyor<K}IHq^i|@KjDw0-E30P<&xwppOnY7i*fb9Kj)EMzwGra7oQzG
zBVlDEvRp^5SzN~opaw>=VR|_%0K(g`B=k^DdsmKFU4L!pmb%h1I$gw)4UA9TIQkxP
zex8-={{XWcjm?k8{U5|d{>&^i{Z~;BfX8Gyb;>J%0U)=U$^QTX&$zi?*}I(fw7FTr
z{@0rAhm5`<{4AOqi6ok0_q)Q4qwN>TB9MBp20k)5!RStF_S3_@J@6Kt;Xf4ki{jsh
zKjAU(zLRQ_K9PjqG+t5?6iDczNM=zg<<krY%%o<&5B?=+FDLC6@bAMAHrO<6JHz(G
z5y_L8WIXbI`0Lo`>-)LzFX6X_{w(;a<KZWXpq6bP#8+|Y*U1Ep45r@Y+{`1EJTzy@
zQUfjs&jb)F<@398Mm|N-a+H&2;y3MS@h3?5wecgw9yajqiEZI+56HBz(zKgIQ68PA
zSVXYF30Tg?k$!0;WjwQN%LEL3)8L$XyuS`L`|k}Ri_?DX9L(NWM7N5}G=-axs?#0@
zPEP=u`!D_qIpF;_!+*Blj65medkC#`I~{Ao+FgyT3KA<=0$JN67~_&-k-L&f^~GBM
z0D^w}1=GK2UyGh0_*dc`Lgz!VOMek+_Y+wpPjEwP7E2N!m^5p>RQ$|`0C2hFZG^<Q
z;T&nLZK3LAIes3#V;`=`#-CenWvlPec0V!oe*>?9^$iwts>ywEb9#};LX}dep|=Kd
z%y52FoDSd$$IyHculTdXQt93uwl_1g%`3AUENach_5k2>&;n0jabI@-0KrCn5d1Fq
zE&F8XUj}{{eWJ@s(k*mri<z(PCA@#O+!>~lS1q{YszL%Hga;oc3D3me8a^!e+rcP2
zG2qQj^s8?*=9Fpst=eXlo6c!WTU!oJalqvKpx0gwwN*uP+nL|<XQ`j%xpi#DZvvcX
zB&~h+SH7=XpLXbfvj@Ok3rg_zq5DAmL%h&Kqr&!fIwj<uOP$V*CZ{kKs;pE43dHvq
zIZ=`gear9{#9s>ZbhgmHW<L@&_2!uJO4l&7kzP#$;53bH(52*CcNGgHP349MBn*${
z@5Ej<@wTm{+DUV$PpaGbdw$P<`{@x}?!vp}$l!8IV}a8ZmEn($9zXCtyJg}p1Kv+z
zb*F#FywN#HqZ|fM>&OQfAaxk-GC8Z|wJOH*k>7-?hr>QvYS%w${9pT7{78cO?(4_j
z6E%MhY5GO=)sOaEdW84H%yJ`XlHA7;$v~@dI*thn>z5V#eftA^aQ%h9Z9jp{@K5%k
z(DZAI%c&x<gterR$$uzdVv6;Z%Fd=>S{a$vNSK0fNNWBf{Cne_d*VK?KBcbBB)8X+
zJ;b*XIVMvf-o?oqvRjf#JC9tP8ulLz{A2Mq!EFynx9~;eVt3g)31eA7<hrp&$Om>X
zdj2)%<{3kAQKanA=-}~il%?&KhxK87{{RFa_;aoNVbm{v6nt2R!nay3tlEXPiQ+&n
zE+C5MbW&PLlWlnHrSlZ-&y-=m%win=a(>#su$RVf**{;K#U48rmtGsaTb&leR<)US
zOQ>4e-OkYni7y#woHB+aFwQfIt?^_23hU#~+V{hr8rOVX;oUPp@i&CyTX^*iC`crj
z&Z)jh4%ESr#tWca21Q_N(!MSJ(H<@RsXhuXfgxAblS`XQzPM0X-ZA#XfX^y7c*Kpl
z*CZjq$i;Ke;vB+?`kddm-nZY@;>Pf%2CROy6=@`W=kZ75KBM7phj)Gt@bh_h*IM=E
zshvUH1TblEqpFdRCEN<+jui3pV!S{05b(~a;r{^HyFl=EryeeBE;MU-kxv2AOM@vK
zXCMx9&&oIzgYk<}w6eRiMwj>6rmy17MN|)*rJT0b%tsg@O8{~B^P2bX*?uc%be$el
z8)DQoUCo~7>`dc6pEGCbYsAc;p@sKW@;n?r@wM!H9pOE0PY{0CejwLEEM+e>Q~?QL
z{(~~x2FV>;W>59&NBk82);Rn#;dmm+5o*^r1E3jrBv5|^kPpVG`~$H%kL@4gCAi$P
ztez#D=dM>(0hjOx6`}tC1wV57H-)5(U`S>@yoE^5^y$+z!^2<iwElmSJ<Qh1A0zS(
z&Nde)<C46Ak6(ZOwQIzRy0~WTAOr9sv#h~45qV(ea^Uy&#c9eBE?vp{tU*4wJpTZn
zYW;1a<C!Ojbs=GO1YnQeESb+j71w|V*1I1J>L%f>(pMm<D#MOXMZxEedK`24*O7cp
zm96eH>68*roCpW6+&_<6>%JaceYaJ&gYJfrI31fKjyUc`eGVR<?i7*Z;;LFrA52eq
zcX#8BAQkxsh_4|I4oQu)+n<z<$96OC#e7@)Kxr3qS@>n*2jtVIQI0uT++cL|<BpZ}
zzk~JTs_OQ)QjLXtU3jEtrqg!@It*o09zXi^;U6EYq=!h*V}(Fr72HLAKhpT??V9rG
zPEoBN>$&Gqg{1G$_;<%p9Vu-fF0Ub0>7EGN$^7fkydQln_rX0%-c7_<c!tK|*bln5
z7FTeNIM2-(80u@ud}DTX8HM`unF=oyo%LUn?-#~VP*7<^nyG*&2uMjY0cq)vbV)bT
zBc~wgU;+Yyz(hJnjqdKzU89?g95Cj0-#=hKJkRU7&(3|F>%6a<EG1yF^8%i3S9cFU
zBJCYL{wU+FFE_;Q1at>^i-3D(Z~pYZ&|ohW&(}Cf-^`EZ7<bLdM0&?k3&96#`4|@;
zAUVVjC(48^>e956npBG%50sH2u}o&2TV5HB{v%%T(A*FPu&o(?Dlmy90j-urZTr3Q
zO*`?VcQ49fTA+=PV>`#N+8q|8cAMoUfY72>DgWgyrLV5%^7j40v;}O$E!^+11b|mS
z?{v|gu}9Ej#%mg7C^4W4OMx-8uw#GgqoEg5nMqzUWvSlGYc`NCF$4XHqqRftuH>G^
zryI17<Cw6C>yG(oi?Ak%Vq}pzKWDV}e%n9=RM;8Hy=kY@Q9-f|Nw>eQ!4i6ddvaI{
zzGc`S+}km#sGzz~f4`I)Hu^~(#aGne>{g#E8!y-|n=lJ=ocL{15JzE<>V$~E{lR>b
zMbkg72I^B~xvfn^Wnv1VMP?lXVaH5M<e<)H621Mlsgr1AhSJ64HO^dvxqP#^3=C6_
z!ZEE0JalF-21LCs6S-*=TkyI!sVn!I<co*UhXPDG_2<2OMj5gfNu`yX%cg%qrPwKh
zPc3%C)(mlC>wOdJ@;gtMdy-1$Yi^b0qTTbt6<or(5x1-Lh`NWHxfZ;iOo`fRfKUtU
zE8v0cjWFmgQWslsBe+L1_}GtD<~Fwas<yhbI4OcEy)%iEjM!CiUOT)4HYV=Zm1bD9
zPh~7!x|6xvI*L75|GGEvXKy@X9LO3Z{M&-MK-^mBi*P(-gB=VQXi35PdY(|CB#1Lf
zE!yl_tjFEnOHP$khA*<|y%ron^<S>Fq@Y>I&V?Y2?^wLj!xAS>=r8=!5DrzRdtN^a
z#H*$tPG8dPH~Yl<SkJG0%8+u3v384smnyQ0+cRm~^wP*QX-qGB65*zC%xU8B<qfHu
z#2Nh-0m`x<G+5vK*S-YgV&zbicer|2Q!7Mech_7Lb3Hi^%GQFp4|5f=&&3g@HQffy
zAYIl04&u-2nFPfPpy`YRIvl>{x`_2%s2oGG3-0JNTpM&-ZZ+4wI)6OlHG>DJQmk}B
zBO1b1rFM+BevuusL)Un7pm1rf`CDQ0D)Jz-@U8_A$K~IOG6oUdUt){MUgwj6e!fiD
zHBNVusY!wVMM3OkcyB4t0@RzGKdsI^JT0z-!G$=1^_Kf@)+CcSF0vW0CTFj?Z{!iK
z4BOk~MS@vKgjuv&I$uan@fncezoa8V;c#;tWQfI4lx0)Tw9u=|YLR;n-V{_yo{+4D
zd^{O$Zd4Nzgc{%cz8D(IX+c9fHNb-`gl@9IJ9bez<%yVwz{Dr71BxJ962%t34MM0a
z@RqQtE!(8j5%~I&fuwrd{g|*YHwvdLzA=q_Acl*#@T}cYcef(D7uCm!8E<e_chpzu
z0)jsig;m?6Q)&t#$1BHt;cT}u0hCi?yR|y=5vSQkPvoj2x0#Lz<Y}ZRhM&(Z_^(p)
zdH2-tpy-Aw>mqLv|5&}Ot_n$L7o>ufu5Vwz<jA%rs-u@iJ!4NWf_MUG>b=|jqS!7u
zg>3EPuf8n27Ha8IPIeWVt0^+)wb}B%$hY!M&!YE8puQ@1A-{8B%I$CFr)eV}pz>sw
zy{n+&3Z!?8x$V=qEM-=2pxVlWNan{Jl0OH)!m>0OL53vL`+JgK&xTzY-+mtW`(aC@
ze_WT7)1$o%saYAj`I<^91Qu=-I=(DeJE$w0^!kS!BQYa;(wsWg<D;Sc829&1og~z(
z9_=`wTH2P%`_{K&H0e~O9*KhwY1>DnPJ1^E{c1h^|0oOdqrwuA2v?qH4r8z10U54K
zJF3j0+fNVMj)IGy`_p9mKO!O(-M$VVtp06mC(d?bAPR~VPUXzF_Tg?lDdU+<a?UP$
z(<o)Kq-t%}i1zwQ$N)gbpqA|$8n}Ix33*v+BPQOllxDxqw%LFq4wdzg#Vhd<iFWb*
zN$+8gU^gu#$ANeQGfH@UtER+R$>UfXc^Nst_5y|;4*w=h!~RjOt)DQymvO#7t<dNk
zl!MvD>gDqmSH>R%ln&`$37^rLbX`f?^M;*mu+GE=DSK?rnpv{7I9Wo?N`T3{^-~;8
zX+52N*8hmuqhc2~jUrFsl9=$=9dyr4<V`|Bzx0>(NK<_fIF^krrQyg7y|m*n|IwXq
zGE!lYQV`nHYy^MSIHB3Fr~<IrlXQ~-u!Z?u!tbJ|)_!HokTdd<!!&_3x6U)teBK-l
z51vQVG-&alRKx{qKZAOxL^I!J<PE?4IJ)y;R5C)p&*f~xV>&YmeyTKkL`E2d)JMCN
zSSL-->oz_h8_=YZrlsH%-V-eA*gNbU?vwVu5bg2y$}UzxF7~Z+$aqSzPrZ!(h!zgR
z(?_}%nRVrIN4+7&N<2*u0qW?n1<Y`dkVod%1Y!>5{3KaSe59fQAnSNo@7Y>OaNM#!
z%}~s04H0jq>RFLKbH;bMWJ^X?)^(U>$j`LiXjf_A-xcS2+TXlJWjb;jzo_eaTa<Xy
z41Qi&Pd0#Qft5h)Ghhcndn69&9>*C?LZZDeRK_sf8mbrQG`Gy+{Mlbnhiz(^KK9DQ
z<yI~N=%;+8Y9$72M>X#fq==U8S!g3rw1aMy=4qHk-Udusyv=uLeL2rh0N4Cy8||E+
z@}D*^Z{@48Y#3VjLK$nZTFUq+kd0dfT>~XMc(O6Su+Ck!{%XIUd%7tM|M2^b>;irq
zP{9BR60>%)pOF@&#bztceSOtDE|-c@dV0v9zwA>5J5o^ur=&BjEd>cgiB=gSFB#Jk
z@+Nj!=Be<DmmvmbT4lxGbn~*O0E3YSVmB}Gqbs$fG3QhipvSux<}71F9?k*y(#MH%
z4kz5H^wl0p1D6J#&!{#?-^J5#CcJc**4i0t2ck7Bz5ps=?eM5f4m5<$xkX?yh^@pi
zws`qoRIfW%PATUTUrfl++zVR^!LN=s55I0$#*ls_wEu%+vg~*y82tfE1Ul|A&~|9B
zy^L7smAt(jJd6`Kd^wWsAzdkW^P_Fxd*Vq?Og7OS3ttE3oE4f7Mt*ql?zm%q7xRCo
zk0c24uL8wp<1g!UZ#uH2pea_~gg-xod@&}ytj8?r|8;(Pv5R^&wNW_%OEx~0Svm~l
zqeV;vAhhmhF);CIopx7Zf9LEQ%j6a2IQU+SnVIB_C3=Wt(HeI0cUu<6r*Fgsq?I~j
zxGlyx-s0I~#yd9`TF4BBkiPuNufa`ny_Uk}Qma1`CfX&rl2%V_A~mXGCojCe(tqs@
zf*7d&@Z6KRT8|;v)2GP1q=dKg^~^|}(x&0XW_%YFK3qdPIS)8pD&xe>+q_q;MMs>(
zE^GA@6n&&d>gMTltbQRs&>9eD3dYoW(3-x|o5-&r6`8nKP;02^`$I@eo{AIJIo|Le
z?d*23&T>y=r04_pkbAgy<3A%b1hmnyxL`R7ui(J^0k2G1RRhNJGD^n9_kU>Lh(F!%
zIv)Xkm<h~slKc-$)$)ATR}FH4wZ8dJGOl$tASq+~E+v7`>v1kU^8mGf<LakWIl0Np
zveXf0&4h~D5k@+BgqK<C2PC6nB&=zK!;@f65j;g+Uu3P@IJe7)3YM4g^Qe-eHQVIp
zAG23ixAXpk4cP>Iob#^Je)4Vz^f{lEvgzU<5%UP5p60{2{J=MB7C9m+O^|d5AnD=l
z2Nrh)rFlndEx|{3DXH8%;v&;$W(ip3+5_+!V1c7MjesIL!0BdEKou&hTjKoBOq#6^
zBi0<V2noK^YfGK)tn^*~>b_5Xc9(XAO}$9twZKKLkzW}Dv7<h6`N|{leE%GtPY}ca
z^Z$stU==CdyvUdq>IuqXFF#wh0xd*o7Ifg}KnYW6SyED1gXB+Aih3iJ_KlvN;#@A}
zwH*z^e#JVsU<?pP%VJT3XqZCqnREv<XZ)2uF*O7k&#U`I-Cee^MWiyn`{)O`+h)yE
z@~$jG0Lxh$!&l~hb|Z={v0HnTUxB`e`lVaU)4QeN^Wu)aL7&?<H>WH7G5+BM#u(ku
z5?0br-eT!M(B#EiLtmV#I?`KJkF7<2j0QgEDIg`f)9qE;iq<=3HCNz7uHN(;E1y0{
zT)W>oNOYe`cS<bi4?opl^_@#4-Yr`#_FDT$fkU>x<2SASFf{@Lg2ZEzv!e00ZZ)<z
zr~0#okP~w^G(vZPn?_ja@)2=!=R4a6tPvcomoak0uYvcgGc+|U6w0S!$YKvm#CX0|
z{`cW)AE!@`M<1JTcgSxILi25aEd)gOLiE~e686-6E^3@t=s}?u9Q=oK2}@0NHrk6<
z_GAH{1)+nt{Cxa9Bac3)#J4jm6*UGt55J?p-WGDV`Jg7^`KyMJ%h|K?$NL4M(SE^i
zZ)wG{eQHq#H44_;ve`9K`mu3^{?;WX*qRls8t=+9F^A!r8~MSuQ=Lm*caGOgE!GKd
zJWQ|6qiJ53jt=<u^~kl4sGMIOn^|kDF&)w=CBB(odY@QeODSC`<~BfAZW-HIu<lFg
zJYlahES4hL`zwqkdXcDY;}lCiQ-ouxsKt<WHNqYmbv#e$BFG14;#2Bxjm=(ctv=yQ
zOm^1x6d!pbXl`B5PMKI7E4$6>K`p2rXAqDeynE%lZ{B_*RILxFKK>%Wzap4dPfp7(
zW@Fwin%wgg1zz8eKaz2FVocRdC?>T-u;dSC%a&m|g2kfNsw*d~WnCv7teI|lK8W86
z1%Kg2SmVb4)!R{L?vI>WAGNSAwxnbYvZjS(d9mwm8_BD_9dG!uoA1WtZ1dFg&hH5C
z7d)FGM5a!7N_0dD==3%rm}i-+j8ocGCHutA^mOphh8R9<A%ruYvcgbiJtMaNd9+|~
zl+pV|a=lE_`)oMmY8}q1582&(Z0qF4qgy-Q=xd&4R+hi9d>0!Wev9`om!9GfBQtYk
zaThT2K7@O1z$-2GF17r9UOb{nSYjk1BJ%jc5DxHBdQ48l8!VDzL*8OX_KzqNdn?#G
zUVHxNBO*rNm8UB3tum2yjiwi@qkh-T)`&@WZuagwsYuy#Eb$PxjLt1JS``?m_iqeG
zxCMlwb|sTi4x1fiE+hGyUSBSgk8wZo;~Es|6~%FlN_%8{%NxB*ZW&h(Zzm*AzOUFf
z_>hxq&v}pii)A8gq_qf&6+cA*!kVNoQmZrFD`ZY$iTTme97PITnYj+re#wV<PH*n1
z{<U+>xvhvW*p%`VA```xgJR{K#mG*`8?tshM!g9O04sx|1A-yb(wMpIZ0Qd9#0&4u
zp%fFt)gwA_!Szh>bKrP0Py=%r#k|+65y9fZTS940@8!+N_}GjUkA3YnkR4aQu?iJe
z$xm2gv{q=&F)Na_Qk5nmlGtW!BhYR&q}oHCm$!zQCUFFsIMS{;K1-0edu1Q^>fs!J
zI2cq!**-Zl`RPA@t|5@;SoTG07juv-%WZ-zUDv^X`^hK!k%=cP)pe;AD|f!M!NYKX
zQWKeo46bTk`kwUKd#3|Tv~;w6q_<wd`7&D4cCC7?1P>~uF_r@bYd^j#NAuOCiH>o8
zu6<QL$Hs>Ii0G2gH$Q8lxVM#^r)e2^uX~RC^B;c*jcPy1o%jUaZKwIY1u4AC!s~>O
zZn$A+B>StTx(b*a2qmlcy5hcGY^62iE?FnEQ}isQ?fXI_lm+w^rJeG`oDxIKlbs~M
z@A}E`1pF=avq51S{Cg=!13IqWxv*lzWqUAb6qaO2?SHQHaH05EYp&yB!#RXkmG5uz
z{INz&mC=jOoN>;Bv-BP7oFx$=$W{(GrPpm2yg9C95Aw-OjYUQ^$lp0|jerr<#s)qt
z8<e_{dU=uVmcXk{z5$`Wv(zWi246(Z=6{fVjyX`|=Xb$yr*T)=s;)bHvL{baseCCN
zr<R#t5AOsL@5dH`+m%JZkEN=D6U`?#*)5;CAeKmPPk$-9fh6E7@L4?#Gmft0Q*llW
zuI|4rf+;47E`i>_*q{{JzzS7gWl9=jk1JR#03n<4iQ(|sntI@jV<&c9)kxJY;r*LA
zWFgT(SBgjTqYCK+t$_0t?6V`Nm+OrV?tKInoC|&MJF<hsR%{;PSyc02@Xq8aU3_}l
z32?qqqrMf}jG^n+R^y<?ZY)0QC4XLCJrN4U(ura1S}F<WMYKD27C&Xd6r^Trq|p-Z
z>^273d{*NC;QK*3<YyVGM9RrL!;`Tiz#9^ovmP*UqIKeY4&(x_{$ZDiTq8Za!H^nN
zT6N-S?W)4Qw7vN4N>MYm8~xm4H~kX+&1X_W(LV9N7*)7cKW!mZ1>4A|%0_*U6rOdv
z6eISXDh@9+y#9-E+jK_2huU!cQDDHyvyFd59^LO6ETOuvcgqz&T~f4%kf*j@yNUZ@
zS2H;?oK{E!QhmBo@iHiSM|V_O)VT~~J|TyZL3F*B{Iwaye@->SQkfh4E3B6^=Jpx(
z72z*zXiWC$&h+)>d1t5VXR#7EBAvj1xcfzTViR{O4MV|0vs1d}l_R{PHYWM`Ip0;B
zwkTQmD1mqg`38w?@Ev4Z$i2xRz$%DAH}ri1<E7?KnKgtQOwD-Z73wuZ+`@b6#=B;G
zmXI&6Uw^$#ie6%#@DZeGP~HH>fmhR7NJqVqm5!8&<sZe9<?C4L+qY$#GMi>P*?De5
z?MxEA>^(SbO&qjQ5mH`pouhdA8`U-Fyubx`2BAEjHSNav>e-yM4vaH_Y$Khm`Lz1_
ztA%OE;7XNPC!Ap~EhQFb0-v*(br{VnC84%h7^pP{@gP0ils4;M<|IA*{Midh+%{PE
z{Ykc;-m&a9po73B$vOdY;#mlj6y_GuPISWY8a?d0Nb#e?x7`Sn;TL=J@6d)yB@4JS
zUmXsmM=rem;){|g1Y<nDV)anC!_&$4FbfzXP`xi@|C1~eKbNoit(+*t#u8%Y8_|(S
z=w9FThY;aM@UO5Q1doN^SMNqXp+Un5il)<*H~)xKs#C%KTvf$S`S-f$f!ww9I98k`
zhN_nkTKez~3Q34?!H-YiM6>qSD5yS69fS<T<|!qR@w*zUdnc=K2m0B-yp#@LjV@v4
zJtnErW~v=}x{ekKr;Dc~1-e`LPm+gaVSf2u`L`7~y&SA^j|I64pPjmw%t%?Rm*DMe
z?bJD$@vh++QNxRgI2Pik_CSju`nb#YSd$zx6#@<E$gLd^L{>d}0z&e1v`VzD77{r%
zP~?TZ=oH;dYUq4*)Bn2XY8Ifemo0vF4j%=F8Rr$RY0bgprj3bh3zl~0(V*X?13%z%
z_X913Fy_ghm|oMrxULDYmlp&@n;=@@P1wr|)6Cv30CQQBM(&VX>9Omvo4(#ZB0lTp
zMtwU1eU1Ss1AaJ6IG5jdFJ(Dl9W5*?h^)wuNrB*kIF{^xM1P~!r&BJTjM8=l-pUS>
zYdbRgBvtch9u{*%`?4m0dhT$)XePbLDTj8guu0SBd=43NEg`24Ihc0&bG=SFf%uew
zAon)j`Hf@RvGd#ty#mDOgW`4N1uwM#8ICp6BtHx|(!Fr|q;je~v37|YeO3^{rODY6
zNxU*%3vrR_W5fI-nubs1)}Kt9w%Fgpv?w9Qy$3`6)uTyUho8K|d31XNNkut-TTJ|2
zl<sNxV(B+D*e|_a*CPnIEOC!}!_>rJ?>mf0IAISKQ`+;G$wz$*xv#p7?fd{C(jJ0{
zALPs6Gxm4N_pt9lN$WT3djgcpMn=v$Tvd@Y*n};MpBqrgBcr?Vy<9J-_N&AC%Cs&Z
z<E42MF6u*kA2dR;>h>nG*i-l8O^18x-$t%CHa}D$ak$hsE>dCnJlO8^TPc`c%)Z9S
zec_2cwDa2GOC_;CsJnswD$7!Mw|^VqFI|~oXf(e~Z_<$+Bg=r%3b&f@mMc*3+NP?G
zn!FQ7ZnMp_r-rBB0}}JQabn#u9LnFHMZ|w9fSmDuDmE6zs|!B=o6;efgzPXgFq-<C
zVcxT?mcSkVu())=^qIIN)w|qaIb@d9%H6|v<2bN0GqoMstwig#B4NbkAJKZ!p#iww
zEueZNoz39oiC_zbdUzv4>LY30SMA~tb-v<wTVTDCHN|Tz3(*LP%tO`=F{uHRHPf9(
z?7|BGo*49?jM~<qUP_<N<F5p5>z8C=Kj-!qX_hplq7OScS}D62)M1prc*2qL(9ef7
ze>4t1g-nxE^isE;Ld^w^q-*J7gT=a}mcWOZM2>L&8Jeqfw)QA{vjr{lUSF@#FpCf)
zvyf3{zwgyxS}a_%2~k@~(@(rxE3{zRF<S0AW~%fl$&b~RvEhjISkD4(Q4T#=SOt^f
z7{_oXGJl5)odmBYnqtH_He!ne+lc?%dJPA=t{)R)13=l0frjb#qy`JP#rL#Gzg`)v
z8o{F6_xT}DORDQ{#gef0OsH)A5`+U`X^dnTYjC58pNFwebTMB-L{);sY~43`EUum$
z&CtGJcAV~!^2tQ?EgsRn98n;<gk)|LlGF%4`!N$llY<@9NM3d|4|dl~cJK*(Br_<V
zQ}SUUu4l1bk4L@WS-<p5Euk{XN(T|*8-X{(@)37fBay)g2R^X|TPJHer(PqfjKg3B
zJa0K6!vTg~KGE<Wsx<i!@g$KC0SN17Q%f^+*%P`wuy*7NSsz?uX9xMee4EZ(o3R}I
zk0=!{lq`36T;iTTWLYUeF661?0STLdGhHykvv2}l7h2T6HWrIEtA416ORU3DX=gy}
zOK96~*xbZLKL*+PE93oJJjY~H65|4+bG{e**pIs<{SfwV0UlfPJofrAF6YR-Y*vHw
z*TsQ`y2VQ`z}yDyH%ybcxYEo`S1&gREA?l&YuJhNn6!+?<BF=x$j$v9z&<#4G`+!}
z-Yg=Y^L_I~R5<N?k-|bD`)%MhZmr%cP5;ll^a1${;=?73^tG#yT4`v0f+XwpH8_)(
z<s!KzwwmqvVed#St-$R$i^t4u+8jEmNM^oX?<Bxi_751ksfQoC_CCc)RMbI3Qv^eo
z|3sL#LU%15DAq>D$R-G>E}kBT`Mscu(Epy%V$h}gMyl5z<p(fjsAjq}zCIG+8<E*x
z2Y;Q=BK(;Ezq|7P-k9(KlP<sTCv!VO@RAa`g}`As?9BXId+%qno?wMzixq%!5pIr4
z4LqoW=Xs5nzJ5PZ<F4fDunX@XpshvJX$x>v^pe!j^fQsH2LQhJeY>Zy@m62p9Uq!C
zFe2s(b|*+e^1K!^G?oZMHH_xC1Pi-S5&XXkf1ydB_9HKgK>XNfug{Ix-h^6KYn8Ne
z)>7{eP+&EIYZm8Edk1^k9rVcIP$*lVwsq!g*P;vm29+WEwA8Papa}Ns+_tZ7aeYMX
zQF#A<RPc{TSXXpWj)P#CH<=!b+-W8y+McMpEV+4PWXdba8UX7}J3b2(|IEn|56xfW
zJ-Jdm3Q6Czq7YMbq_oH<vCg{SmZk!CH1?HhOu}4R+LK1q{kSL7s@!OvDl8F}qL312
z`<j8j?z%4uURh=7nQ8LOxXaJW(|;C6Zfac-UG=R`PHXg3xH2D!n?izGx106o`hDy#
zex2ym<5Mq6v!!@Bm~<1DSoECU7?<6)L*2CoDi=)SEZ6V6jT1h`)Av|7y`=LzlWFid
z9QGP_;;)xjJv+zoX6ErMu#9(<&P|(Hblizm)*Ar<@eNyUN7+I`nZl!KJ%K59y1iff
ziui!PMIf4MbtLE4UZx3MZ+*F3W9@!0slkUnONM|mMAzAb+n8|0RKu@vK2HPeOI6(7
zt8YPn(LlUc*U_>`VSZw9JwLB~=Af6V>5w@83(@HNsfEF<)=ETdmwtz4wz*?<Rk2t7
zI*p%?Cr%1J*~J|^0R}>D#)T7iJdH=<3siQ-3apy_i7bNy@uF<WkwNI&KQHLSxj#!)
z+%89Akj7`cfriJ&hX=Kf>H0WEghRmsxpJ&X78h=DlrkgZK2)u4%D3`<njp<mpMDRG
z?@JDGZ6I>naK5y`0_1ig(X#h^pf{6*P~k(u5&|t}6#PExW7^wR1vyq`R_H5GZ1hbA
zYYstNn@7RMEQ23)mgYx%Kb#?lLi1>+gdK{rksIiw;|R6a5f487Oi?|I^8NwWW+4id
z3X7>?joaYx?w2UjLJ344Zcgx(h;G`IPkxFfV3^1W*58lFOFyqenDN0;Dd)sdUPYY*
zh|^&<?ptAxQXqTw>~xZz#?qp`x~0E7^!K0jJg~(;l9EN-;zwOom&;*8jrg)P59sNv
zfyh`jQ^@qY$|u|&y)4ZErxx-dLjdB$i$v_8En0S>Tc4e7+6Vn?jC<;EGp*y|)~|Ke
zKJ7l0J?BpA&grkb*qr;^AML(_kx%k3QBb*++WgV&@iLP|=j)*20<7jI=i-IF6lR~1
z&z4PJztto{!iI!%JSnMoN6+BEH{p)j>7P$Fe`^jG=Ul&SDBHGUS5JNA64Ge_ZYL$E
z<~jN&{TF6{_7rQ*i0@qojnMK$4TZBldW`a+;LV+oDPR>aG7owYjpo{ptakkn{MDz9
z{m~&`UW3+4?gc)xuJ<YPFh`X~Ei}ZmckmZrdoYCA;*bJO+_u7A{i%kE+2JkoK;D~=
zWvd49DhK)+ZBVCk4HKoYCb{fof~P<Evy-G<?xO{Bqa~%vb`O#;=kC`o4;$WaQY(Vf
z#Rc+6X;uYK2v7zmPwhlq9bHJG=E!h=aj}o`1OX<gH?Cv9kq?oT5Q}MDh2kl1^PYR<
zm&O0Z@^)Q^Mo5*;$WMvvo-?Me`|7ynDl;N=Vs5>YmnZboOkQ*)&wO3G5FE(`KQFa_
zHuxP3X5mD!A2DJ02Re@a;%Gv1NdbbIVgtFlVotf@{yyAm&~1F;$T{x56=66x>Q>YE
zEd;ZkRJ>1xeF5ve0z10Trl9<K*c@Be++RQ`;wpa|G4tuE{v&$d5}Ool``pm*M^~mZ
zhFxgj<scbmmcp^<!~?ukOwR-M`u6vHT(vARi>YxAMus0F)|>>}!skpb=+SeAB_X_f
znXIEeWCmZB+0jdX_n5!kyHBk6xhC3`2k^7!fbq=$Y(c_}ZaD1>R}r3|u=Ds8@CU2G
zsq@V<-1~~#973)jY>v3c{<0ivK^TY7HdS^Wna(<`f8aYm=~%s{u_y-;{F(Fj7cR_h
zA+pbK){Dgja=GgH4w$!KaIsU^fj%_^9N;KtJ@(Nknuu1WOa>LCHvE~1g0a<ELKU&>
z!>b0o{_yFNwkZGp2J&<fAtsse%{VW`yVbrv*8W?#H0Mf_Y1qUj2jpX?Z87q>M7=&+
zC6E{fH^sA`-LOfnD37DYO4S(;v*MP8R!&Da4QFJ8d<*(ZrF0ONwG!vjA@ukby)h#`
zDoFZoJJFF0xN?JHnuz)1umn$K?o3_@@0)efB#)<7_X84V;4c~i>&fF$4fZnPC4s4_
zRu?k8yT%=2f<IeM2zz3mYGb9{$t;=I+hloa`gv<#OiT1~qJ{4ZkJ^==yYlLciTaBG
zp6t#@YG%7Xt##(zS1mdEYd=fFJPle;HEQa+xSJ|#Wy!V=Ge@s<?&qW95Vouj8!}7(
z?&}W>b=_lN{y4A9E?iC9C5)MQG~e0?U<;YBs6t%Ex`eQR(vCVVd*<^)BO&XR2~RII
za`}_kYcIa}>Qdo8h|CTUEnN1HF*3n{^f4D+V{EfQ96tp(u#)J=b}9fUUk(!)b!NCt
z+|KNiT<DXp;p{t;@&Fu?=GvtHBj@!&kFV9xjkRKI*c&&}iB_}*aL!ugwy@O|d<VyY
zZAKlsHc`kHRA7^BYNlK`;+7Q~YHDf{@bmWqCEP?A-_um}Kddg-avOjBH5)iR)qCi8
zBOauIK8_9%3!=b&%_{vdA#!MZV^&*NOIs6-igh=xn`E)sG(xE!S?jW~I4v<*vD@|1
zI{qW7hPDkqx(LG@x5tw9G`L4@ph>?s39q@j;>X<J{3%7ETV<BDj;g9g=Pa{N>)z9<
z#V;oO6^plJt?X6JOOWCS%gY$UsRUVJrPc+$U0>u`Xf=b$hSyvJ6~=s~5%rN;lX2ez
zMJSUm83cQ`h95qqE$mD-V!Z!wNLsG!@MpY~!1C;WKk|V~gl1;GH5ZKKNr8ks#x7hC
z^bHEHk{otUY~cEmL8mrIe;%|tsiz-iGHpF60Dr1I{u($(*Y4-Ydl1`=G)Qphz%#X@
z7re*KjrUWSZlsK%2t~TuA1eX019eYXPYl3WBfM2q(VAlM+iP!dl?}2^LN66$hI*~g
zo+?B)U>yyIaqYLKvw+gTUL0?#h=i}>rR0aLCv>l?OxzkEaZ22YoAYFxywA4NV^9dH
zNP<Ijmb-O=|FA6YyRfwWX--1Yw%?+aDgd-<bH+L&U&s#G@V04SWi{4CgfHicgzJyc
z@h?&uQj>BoLT(Hs=(}_yY?N3e+K*v_1QeL@sS~r5!}z=Ds_z${Ie!n|=lhcY_SN&O
z5x?n;&y>`~3U@SYe@6_OQFUDSF@GDE3^^jd`(HWf7U#=8aq?c`r)b`a!1ACT)tW=P
zSrKIDWj0DaNS}E_&~%V^Svjw#@rb=mtz6xs-sav%_01XgM?HS528kM;4Z36^(W+9O
z!?ku|Z#X|y?anN>)HGm)F<xsush-&c64^H)jfZW!(>l@?wh<;u(L-ZB@r}TAP91KJ
ze#@KxZr4DtdHePj8Z@#ySV|M?k&_!9ejHiNvQx@u-K8PA*~mnBhbvQGdqgV1q)>DN
zg<&1{aM^*&^}Nb%JEP$FM`SX!Y64>Z#8F_WdKE3vqq+%2$KjLqX8_dv%H3KdMFUWK
z)M21}#PHKECW@?2t}}}3AB7%_3stF|2ur<HXZ@u78*8U7+Tth*;-|3=lJ-4##?!Rn
zmSpHf*mMl=+5R5#qNWzT_0@4rfXZJig{I0}*yO>ZUQWX#zU8HpJNHzz>qqX8rZvRt
zW;Q?kn-+c68ZEkS_Uar-ngdDbU!&0RJw*Mfm@Knub5jZ$ZUXzUBTieRy;Dn5HS(27
zsJ(i(dpVX{@(F=O8p<E1n@s#ZiKxwUM~SM}=<C|pG}SqhIJEy15Q^9|5hwB)2Km;$
z)>V4?D^5;3AI_0zp}rPuJTa6NRdCESk+;4(&}x#I65eXyZ)W`8$8@Jj-ScgN!kKpN
zs2TL5kguyGz9*}qIUQFd#_H3*O&qGl8VS3DU5a)wf}Dndo&WCx8j~f*0>rw8)m6~;
zU%d+vt&c&;DDTp@<M&Sa-T2E?-^ab_)&X%=B^0uL%9yj(|8#i<K)W;G9&4$76{&H*
zL+tWb;J3+7*bmojw-g9w0jh?(T3=m?zZ6A3%*ar6M?n9L<5mb7%`%qPq#SF4_Ur0u
z9xnTRi})K2DV1bs44u(_f6A8H>RU5Z*Vf**!+Z4$V+5Fg#V_0-vefuPrH}B`(=Z%8
z;fjZiyx^|EMkBVsRM>3IG}UB@Hx(<K^Uh^kW`FM2DXp&lAT`EoNE@)ymga;J{j{|b
zC(V@dVG=$3^h$}MAoW$fPNVpOjQ+Yjh9a-=VPxjW`wRwdb}QRN@m?h&jQJP}NZU)8
z(l~}Zte9A<Mzqx3A&TFM=jU&aGpemwT9~`|X*<tAWCMXw+{jF4iC0%^kC#gk3;p39
zee%?P)SmMUUeIcDOtPePV}xbtxLV}*VH48s0@T@u>N8rBS<<JF+$Fn!n~4+*Xl3=R
zEdX6wR}0cc!7=k6v+GW(EhtSEo@ah%eiSL~akBjf;0H6teMjHVerznvneFu8?kksV
zFDXlb3MQn5^>7Hm4AZXRgDDEKow2l$Iw&D0N~czyL+O*&OSoh%&TQsK98Kv{NL=YO
z^%3oC`W6S@5eFD!o{2XHGF!eBd(re=mU}AsTB7vZ^EU$${GN|21>1;xWtaB%k7qkg
z!t|!L@S_wpQn621LW@+vyxNR5Bct7u5U(#?Gd%&J!c1wzHCEA8+$7W`o~mq=6oFa?
zE56de^+H5r#4ke=EteN*kFDN?C$CFyCnY++WW8j{)iV^&jQcdO<DXrPr7K<{Y+J%0
zK34$etA?TawtcT6$&GaTl5fGv0r=moHjKs(M4}anuNrbEGMYSVQjCs3;>0`mz`Vf9
z>KR>7nC^@yt@O>{g31w_Cw**pmrx6psZ@f$%&qhF_uJn-jM9RrV4!|$s#R#ugyCdf
ze4Tbh`*XMLJd*V7S%X0j$(fYC69>_eRO}~AWS0`2ifvz5@Fo6jjdpL@V65(4Wi3VC
zg|E}i_V@>>>nIfXLC6%C-I~079&4hVKtJ-?%6=g(V@}z8MGgCXy{w)K+D=8gILy)O
z5x7>YTMUJHgVJk+$l8e~nBaN;h(49lp6U=zKoIT|dIa_?X1lv)WfmhDJN&y@dC<Dn
z^Qc3q3j&!jH;T|{m+<q&L9IzmZvW~Xl!cgLSx{wgc#sVm)^RJ+)9@|caSv5h@gVF_
zx9W#*jd;6n+XyL}Vh9vRxUGk}f+m#E2xvFe*8p7Fsd@3T+3bo5r%*L%PR(~FtNp|;
zm4a@O($oP04?>0rGy1PU=K@@?eZlXY(sN<Ai;DS5>G<ZXiA+&<iAvv^%`2)ABKRb)
zE4as;84LTgdTX~UB0#ar?1QNG9H#w~xlTdHtNGs#Yj2W2Htm*%G#2!|sd#}$=CJbd
zw>STYaza{BROFlWag<Ga&N`wqwyq-Q_1JK<d%L-?nO*0av>#ng3p3_pOVVfg5_j6=
zw$b`iZC>=o%RA*%>lW}<KofA?RSK0K9YlvJbVso8xyv;gmEcFmj28vv#Er6-Y787{
z)HXh^ifQvkV+1-&sT2SVEr8wUB2(v$zb)t-qm!a-8fp!54cni7ZBX&_nDKyDiLeEB
ztUPX_$N{yg*)&X?JBycDS>@+Mr&~)~qLoWS0yFGR;NnwiglLmUg4}Q}{rg$I8g2F~
zA7I=uHP)mn#r(~USwt#V_J^CAu7fW7mH<c?Qer=y8Q%zAjcFwjJ^tQuzZx4z*grGR
zMnUPRYWLXbQwC}?$EQz(w>TuV9=Eu7eRw48_PHy8@iXc6b~nN8D~4)GT)PQ`QyNN|
zIne=l<{#v#gt1n~S?LlH*_8L`h9C%@jyCsshPGCc^FSkMrlQ528Clv02_V9KqqYVS
zs$vlM{*$A=Z?rG2tGnXsm1?PA>Nkw`H&btu`AZzqT43-M>T1%~p7$sz@gI@E5T<qR
z^kSRv!G!I!B93GEr44-6*zA?cr;hZDCZ0|huk}o=Hr%{!RBXD>>&_RSW~&q@)R_K~
zb>a*e1-mQlkC{ILP=nyznLvzh*qWJQ^-CWP&H#gmwNy8ox7R*ho12;ADx=`PMCHl|
zrnlvTV0FU#aBq1`n4Ho10Hc=gj*655y5IC$N!$8SG&)WU`iQ*x%t!9<A+EA8&LBat
zJ^F$?*|K#ozw4NM7E2g*<gXJbJC3!2S_~I?RYf2AP?sxaov|fKf}6e1mEti7!Cujm
zbS9;y(<X%r%><n#(c_cm<qWW12Zn`4Gt-FecVPa7TUn{w62MssAPjET^<m?2k8UAc
zwW^NP3(k)Dg!}mJtwSz162y<3&lTE)jU6rSpY@N>TXfEMPlJGhbqVJGUr$E?4p)ki
zYg7yN@6d-^>uiXTFfwg_{pixA9x3V+l8y7>kd56Z0ZD|?T<<Dk$R1eiPNt@#eP7B=
zx<?Pm*a=CD(+JtloY-tft=$Op;T_rsGfUErkVx=sv1!F9{?&dO+w~yVWsLsviEI|_
zc)Q!<ssIW9FGN1X@Imu)44ZYzMJd{b941qfSj21dkBFMK2v8<(5RdNyP)hq1;vC1N
z{fiBI?P{(Sk5WX0RRL)?moJluIH{JyR<dLQ1AyI3Ws!%<&ftfY$WN%j;xD8h-NhsN
zcHStzsLv2rpj`yU<CO_vSpxjq>k(NfSM^Tg(h+D;=LV9zELTPRDh^Y-;C#1bD#h<Y
zot0%bJCXw^^^!B-AJKJj1L1p07%syC)`ugK+(I?P9g^P+WWU<dAhR@0B8m|F$-4cA
zan+!YdRKA;k!_5PR2nZUOF$1jr;$HxJu=O96Xd-&NF3W`&sKbHS`^x)9d0tegT>hi
z%nf(*W@claI}6ZZ1<!^ber%|tlSeTm-!9zk#a|8k_jW#l(t&{8Zzqt%AqVvw0I?wm
z1AD&s`gjA76eo+VFWkpCzGc35UaWS*46YI`%7DmM7C*VFfCQdeybq$qDy&mQwLBYt
ziY*4>IFcjIKOVZ4&Tn07?=1Kg6>|zk^bWQEI_Ig|UJShuS$tBkb}{CvvE#qeBL@h_
zKYhQcE3qA_#ASjv%FRo!;8y{7eEa4Nc*}dhD{u$o*Cn|Xy>=Y+CYn#=YIwN0Dce(O
zh+}rVaPM*1N0t3k_R!|mHDEi{-C3N8nU`KU;%6@bB?h5g9ge=61Aj%z2lz>(&A>SF
z=AP&Bb7sw|wZLF<<PWRUupW?+f=7J1uSA*J<DXei8aRe}*MXpMS@qjuKA6&kv_;M$
zKM*1Mh)<rPE2E!9zKo$pdxK_{W;W)EYBl&;t`wA_0SUcqp}~;93`;PaV<NhSy(BQM
zT=6p#s<+`qCRc%(>i1fr;xCz*p2gX*^(x|=*PwGqEjpaR#DSZNH6eB45zXXPn%UlJ
z;;}ho{6a&$5cB}yp4#6@QJt0=^A@<PQ^EFyGyRM5D!4TG7VRZBc2x2Q!`At}A}LN^
zh`KT3bFaic#F~w&G>BvMs^qz=l>Q_t0c3r`Ss(LUVVKOu-|B;9L_9H1d><!u;LN#K
z8Ms~YACZ*+1W3G!0dzJB=bD1xO3CX=l@so6ijX{dhPx`(lmoOMZTad}lh-*tFw)?z
z$8WTAwP*s>u5*1(rvODD=T3UeQRxRMgYdH7Gw{U2D|Ui728<<a$I%laj#7GLUyh$)
z!^;~IRQav7zv5l9{M=p(-5-6xx%%)*xEF{f7%b;tni2aNV|<8GE5pmD4yCk=3dFTr
z$y@JDy{>%V1UtP$EB1v}`|(`wYJMdCDNZ7Jje>vQV4|nh-JcDyJd??-ZuF_nA!Lft
zq~`t0DzZh1#nN_ocWVrcta`zM&L4*Uv2f4tiq;m?W4ir!gQAmo3jh_pnxR1J8$o|o
zu#f9%v?Sw1amWQPbKc?dpX<tVFRN2b@RA|QXRhcO{6oP%LC*|j1s(oQd)FDLzNY&x
zVqSq*Sea8um4&u(=3Y$L7h)on?Tg+E!o!3`0&Q9$>@+ZxTP|wJK&>@l+)*R>`__Kh
zF3J1q_>nJn3+j+*eO+M)O-djXIcJT3FqMlRgOMOwqiRo^m`iI)rj7447lfA{aUo*O
zI_UtvhCO6mXGmP1Qj0NPD_nToM(d$c4jHm>!lO<9i2_;77QjyX4VkGFOX-;u<F3&O
zTP&$u4yT1?UAu19JbAM!CJxpq*Q@|C+tLx5qN5C$)~WQO5>T)wkUKi(Cudoj`*H1N
z_KEDP{}-GfC$!d~GN!Yum8D5abU3#wZ5zgyoNIp}m8_n{s?x^9vNgxt6m{nn>{sDh
zi^=F!OD)o@;)brxLKA!IT!~#k^;=_oNMjMR#u^4)#^3h=&W+KrbCs#{EDkx1NpnZ^
zUuY}Z?zLH392;<>3fj|<e%gO510pzx+5C5poG(f^|ND&j#^u9CcVZk8d2-=@kKEQU
z*VX(Vk^iCo+p*@Xq&WEsQkl3w^3(1B`>?;}pE$}bCCO))SSegN-h*toRL(dgNFkU-
zgFsaOgL=UiWIS4$LV~+y^*`MsQ?gFHE%+3z=bHdRk0Rdri%VQHAB9NI-BzvQ#+8Up
zxFa;Byb>o`l($V&!rxK;2bUnp#LeX3K2(_y-c3N4%_*xK8r<|?;ri4fQ;sVt>{K>J
zs7WhHmZnG*1qJNts8;${X8=AjF<ptsg!K3e9@lJEz>IG~2VN_NO3k!`DHMmB%%xJb
zxKZ0NcjGhJ>8lz)uoF0;iZ5E_N~}~@Rjr<dLB7ab!4HqKbKNh3KJuP_$1&ehZ31)L
zm>PabE=|s?GhD|Sss~z?h!($DKQFy;CMQ>4u3oPSSMnHd{cCyy82MS?CmW2t%pDXs
z*k9Y1|D9SU@&GOI)MRfo+5L~Q1UyWHLg-1Y(XUTYBZ7q4lU9p>VXr_t^vN@(o=h&{
zWvO3`U>@AuM6O}hBZv=Rn;sXtp37MUnyf)XSLbi34lM2#2^=V^2B!{Ubijqh%wI=@
zM+m;T=Li@1_f)^+BaSqI&rHu!1{vvSl19Y$z^v06Tb18aIW51$`LTcT>EDgPnGI%L
z<5G8-Bj7Hqio|Ec1b=<t(tmfQLz$>ZFe|vz4+3l#2v^kE$@tNk@@B=S%`hH!Z6mKZ
z!T7iwN<^PYHN$1?C}Q!+$|s|^UBd$3sKb|$tW~habQ=Tdy#?I@U9I=AH>E1pPUYGj
znSZ89@XwM;r(Y6=mO_tDk##bd<zlR}RucvqRe}?<Td_|-3l-Nn67hsz3y62XdZ7V(
zO@ZjR(~e~(Sl8&D$5L<tC@Y>u|E(S`$&QU3Bc}~bdVqm+1#hZc<6HOFELzFRcVruV
zH<V7EFp-dNY!kLr`f?af2EHzCz~5<tJ5uBW)vsKtV*_?e50-<NJnN!!R_hl9<9=7Q
zu}<ROj9R06;3ATWt5YtiehX$@3d#bk1-1k3`d5a;y-YpMPY@M<J5?P%I`1k_5kec{
zoKogZO@;ngX>rC7`dGRkK6DN{)fi3@HEhLq9Xo|+N?0=e+nJh3S<vo#tSVXN1&JZp
zCRp+#UkBOx+pg~7r}Db16`yf+TDrP@7LLeO(oPtSnn?6jDN8AoqW|gIw{!sRoG<GQ
zbo<OHrB%opLWoV`D?_Q*%^yH{0~mUgwBPh0E#Ez5|J$6nw*3t!h|;kQL^&f)&bjQ>
ztzZ7UQivCEU4GlgWZf=J%VV3ZUZ2ma|6yo+3vqK-7OyFXqZG&SbS}xU(B`mb-18zt
zo>V8QF0eqdlVs%BdgMxt-s|>^L~@Ya^%OowIt@3Q4J|U|q*zS{25yXSq>1%bmdnWS
zm=wsHAsLCj9La`x;EK3umgZ_neMgtCE^{X<_!bQo+MR#t%D-EP*rcjmR?uAkCIO+)
z3fN=mK$*#{TH1I_%oEzHZ_JYcq&*f7Ef#NkX1x0-gZay{Yuwvj_sULn?}-Ur?WAz~
z4Tj6y7tUPN4>E2WJ#XZ5{iRHq;pZ4MGTZi~s#jJM1lU8$G)#HsXTObzWeqZChAN4f
zv)7Wt<_yG`0}}lI5y_{ie<DyFW@J6gmMf&pkd8%nRq7BB)%~r`Un`lB;v~1uC0J+{
zSIXhNbt<x|mwam(CJ=io)0II<T5<dX?NuN89lsSKY0DPcy2gnOlZt$^S6qKUp|>UU
z4=udz)UWp;NjCJW3UOVkJ$%{QVM3Xv)MPl>Bx$h+Jg(4V@(osYK|HAR1{P^SUD{8o
z<_BC3Uv~)(`2_7v>xC*}=u1};`7=Hzz{&HtIiHZM6R~G=23!=R2)xtNvg$6dZYu0Y
z=GUH=QpqG;z7Md(n2uTSTZOAt3J#pSQ90xE(o%R%yU<5kum|K%*Y}Ja{#jaoTMur3
z*aRl+LSnfQt(_(d9VxO8rhPQ-EVGi<)YN$tINsbRy3gWV(D7MGk4buF2i^vlr&Gc<
z7h<zfag9})*f8|P>5Wv^wct}#mbV&Z*>@wXu0ygZ7rr~nJyT$`a2ZnxyHX^SWcrZl
zYx_3Xe8kNvIPNH6rjtMswydqL&6MYeVG9_Fw{AM42!0H8u8(3_50y1)gD=CdFX0Ea
znD1+VsA}MX)CFI2q8t{r%3@!wRVDIy5bkg#B%8{iev`_n)E~k7!!m`BjxoK{gY?Q|
zojY>Y1;}iLX1oe~X=PEJtApdwohk%-45kT`1kX9a!3`Z&^@U3I6Rouj9q=f^`Uh$M
zI^YYEt+g8v$)M2P@+ebrG5^2v7{!Ef#lEHcS&p33Ui?ZMDWQyaf%M?j#MT;kht2I@
z+2=TBG>2>|${pgH0;Xva%rz6Fb69?wHoQ3_Lb|-z=;GWc$9xFVL4Fj~Lb>Buy_{G5
zl?mblI70Fp`<scSPj&3<nezkN$dBYJ4r4y4hh;9goKL8uZ97hXh{HQz^StZe4h!0l
zNk78yf%E{Jk4;3KH(jS<C?L#`WT4XoB04u=ZO=rkGI>p;)}OVZTUg?DV@%xPVQxqj
ziaRv5Y7i3y>|zWtROQzE>ygk9G-w~_WvnyiE}Adc9W#{8^hyo~tpTrol@*^VYjs))
z2T<_m$mQ>b+{c*A3Dec77L}z2d(_XaMkGjZvb}i};1Nsk<`WEPq2Y!hvtUM7+^baz
zc`mHks&nmk#q@@ffR^m%j4!4X1Ur=mknUFZg&+7UVI*B}Ygi48Ul-tBlYtl^A?(C#
zFne!a_Uy$<f22WG!iYgsPY#DtWs2fQVjjAel*;FX<4AJv7D7NSH(Or-CtID|89*#*
zn3U)sy)q|BiW1}4=9019d8H)phCn%Iw(%>P*CkLN*(q9;w~EO$UD?;Z@JL274}~?C
z_x?qmFXg;7PrXu#HMllIu03_S1J#1QZ-p>n2^}4w-ad%L(S{NFTish=x1MbF>Y>xg
z6i%cD{oQUtWU%hwXwx}14~$5*OMA+wuz4@`hlEgE>&4}56wnSl3trXg9A@ra>tYwj
z&aFv(n>=p@XuSPLWLY!n=8`e)@JHVt^}e3^uZDEl<-HXbM@Dvob07bk`$3dgzZ+is
zD4?RY(@xU<Yml?A=u7WGBO)_q3O5#qqf%EbzQ^i()m3dJT0c3-z9>aym){~<t&wva
zYX%1}f|>ApcN#DpM}tCAI_R2Wb+4aPS2c_t9c2Ad_H$?NOQZktytq7m8pUq7X_gal
zGxbaTw?S4;`DbS&p79@%WGp?bD{U(IYt|s~%3d0TS*A#&O=&)MvXETAN0FTVvM=u)
zv4~^JtFOo%i^Is9``F`)ySLegvUh_VC#w&A7k50cKS7}#BS%uCRTP{C?4FH-8;_j7
z(WspOe@geUc%~)`-g<@1Ss+q6;8?Deb}(fS3mVww>es!@fJTNdm`(7D#0qku@zC3E
zm|q){WeE~?2p>ysu}6>N9xThTMBNfzVtAN)3C?p&_AxSl0qI<ZRXR40*wf}rA_SLb
zB`;X>liO%LjvZkN-Jtk0o#dq|2HFW_y!SX~2Hb|1z`5T534y0%x1qB4f^<iZek);X
zgV$I}S$f{iz`f{@o;5Q9{*GLw)5xmZ)RvLyFG^+TI@GuDV$AVc1AazUWC};;b0ZG|
zcO~PWCw2yKf5XZ0drRHE2$t{t5L^1%^)MS`9aul-#$+pKyD1d3Q?!S`e}z4i<p`3#
zZIz`0X|1hv36Re#+vWx7B&eIPbkv5J9fgBE9BsWggm`WXH&k-PNv(gxj69YK+6HvN
z=DpUa4pULU2n%NXgR*$^dVA*cN&X<g^(!A0QR3i&-W)A=JL@Xq;VQ@V%mbzeJv+(L
zN1rl%VjY*&E_liq4A`J+07JsT^u#Z`U4B-Ln3g30{hiTmnRcx<l%2|J-|8=xX*6As
zPpHmSzs+EpUIosr6ZK5wWM#7#qrg~#w+Q!`yGxSmCo{Os)lJYB`ZmMS<4LMRr9wiL
zxTD*+l=7WQ-R-`FcN@=Jhe$6I|A4aBDO*vF2r7s<AhI(hKnrS&)QEfZ^>d2x>wsv)
z1U#C2fq8FU`zZ3BVf<G^$(bH^HlrOpAppu%dW8(MuQZzYCS@tlB7<4=L)Z}0?}5n|
z3*2{9^yfXov_uL=pU|bkkVqVz)CJvbYLLf`2q<wKaJYo-4${E9Sm;ihij1<y1Th4(
zl)Bz#i1<!loV*N--r#-Gp>nEzv{=&j-%JU<XQe{m!13liVdtruGYuF9Ns~E_74W8d
zxV)E~^5i->-rkiE(|7y*&?)6fyXY%7CUqhtbu8dzmh!>3Y2(&#ykL+iJ5%VghT6W~
z1i}PVW*6vSo4Kx7UCZt=rp)`d%9whjqOTL+y-vR_`*5<!2mL>at}?F4w~eBtf`A~M
z0)kS~4HJ=;?woXtMmi?lEg%ij(%p>iP8r?O8#!R?|L*;?kNe%*b3fO0opYUYocn;J
zsQ3QB=Gr<)H$1hw!lm7EQZm23JwdtAfJ9OA17)O}rH!ol_7smS7}K?d;^4Z$e;Qw&
zR0?cI_@(4DUBFNyK{cxJ%#o}7UtcV>N?x8DY7|iKe0ubVgJeTop)KG6^EZyl+m77{
z)rjT;XfHRnGdi!ASvUDu2<rSc+%K%%$ZNfEwe)9Js&1Fj?GgeA)7v>bT`ce?MPR}n
zl~aZ`sdwW)K3j(#={|hdrAX?@{IT${I+^FT`F5#e|Cgg@lFXOa>%qcH=wEFrCEwo*
zmM{eQdwwZ<Rf71=mLWztuR~q*dOSYgC+$=C)^m=1;ELL9Isyz^y)}P|L~$Ywx`T(7
z2bXkn$xP(*^v}*NZaxyJGV>{%U52+d7`eH*T$YJY3ADbf=I5K>@$U4ndsK7wa~F4;
z;;#G-T~<?tI*^2F+A-gw-~Yk+;9en=RA3Jj5+Rrn4OxK>CG0p$L6?nZ{r8*FcCZXG
zmv%(^#$S!Z__2Cb)-j8iHRdB~wz{kKyuCE%$kv~m6h&Zdg~z@}qa9w5(rw`1VI-}`
z_Q@s@8mbg^6o^wg?0>MT@J8>P=k|>b9IAJaD7su`$)&0M)+Uiy7AN^4H2xl2#tFE4
zcx#`&wZD6u$u^h;AT}Cg9%MQRq-zh}0XZNmXxn8^&GE~gy<&-bwb-@7&=H#w1pF6I
zK{_qnb}gmb^o}|vz5LkFIjZSQN`o~IEP<^WXpoJWr%p(;!@g8(Q;3*5=8_q_{rzC;
znBSl%O!-&ZzW8mdLr>p_o)Pq_-UZU;Q5=B=!xKtRsJTmjd-wNmysLMV`LcL@RN5G#
zULS8AR2<JyHj!v7!zUozEKFll--<(p@1NW)yWeO^7X;X5ZO&7c6*n}{`i{9d6*7^)
za6u-u810f)hda?|6YhN>Ju5)RKHDkm%#(Jmaaiy(%OgsL%#P5l%?d4y*@AI2EHrJt
zMlft+)oiuBRU^)p$CpqP?+3mA7^B0H!Zh;CwW-Y^Q4ZVom}ylDX0_B+vOef)Mxt<V
zfWC}no&434E8^}!v1pU^V3>B@roC8T3|Z6UfG3}lSq>dJ-cBB8{aBYlaP<rYgOHmn
z;ZOQxRzYKv*}sU8A>sB|Q?X<{>$D4Wv)~_BJg}rbIZbO-`<HTWd0MRaI)U+Z^Lhp#
zfi~N##s;pM;$C{3%Mzi^qFjE|Zd%h?Mj(-8yYrZz%D^c?$>Ns@<1%!mXK`)&g=-Oi
zSXyfTKrh~>GLCO>#;&f6S~sqN%j;oS<d>QAz!8PI=+3L9iUoCuU~miU1(2B`<l$@s
zXx)3JE8Tw>{U0L&IpFk>XW4YV3Xaz~A{-b>ZDKzQ_!kbTn7VZ$ZtD?IC4HHmg*y<c
zV=wY8d9LlQMg27~m$|g7wktfY-21A87i**Ws4*#4ICd60AiC4%w=D%5okODu_X#jg
zdMkEg9ADVHu58fFLOYv)5CDMJjB^a}X3ab~vzPt(pz;u~$^75^S@%1CYnc3i+DgqZ
z15u}rM>QfDK!vc;n6=2$nE&W_ri$Rl{aHWwMxDhWw5TlK|IemhCdvS8cSdo`JJbE%
z7|949%Gn`$wP9C7+W*Hk7<zyce@y0}Y{$WzShX;mGE6y2_L#G^iD3H=<Maa7(Mx?X
zL??1`XUZ}Eee$zHwX=sJy^vK{t!22tmsA%Y-4SFE!z3>9jmb{JZQ<fu*|*94YI;~;
zilmfWg>&)D2meFdAMrwOYDrT<44adeP%1}H`a9zsi)r*)e^SrAYX%r_{Uy*2R?a2<
zB5-}Uwy>?laO*tVTn5he<<8OS!9}Wr-(mFQ>MapW7S;A>j9}B~P$*5C)@*Ih-Pcz*
z;3XUXT*0^(a+&?@Sz~T%%}9P9+pCs@{L%j~PL@xnkt7U#u>kux(_{W$*Q<7PK)ZgP
zc<FIp)OCOx$5+E!Z?88OGif*Nl9;HMq<@CNaOZ&*1&KbafwDu<l+oe&JN?_5A4t33
zuU>I-7Y;a<uj0iUF^Ijl{Pt|hH7OVAtG57Y#=bf><zIxdj<0cQl+$4f%<)d4*@8-R
zDkUBwqgbe_Xq0?<V}Nvw?Q!;5EecC7B7M+pC4tCb{!dXn|Cx)4$tc~x5V3+nJ%1}Z
z@fe{3jS<nb`KP^QwDI0^E@vAUd9ZVV0n5^jiro2zd7x$dUqymw#mC+pH|c*uTU!`X
zVly{6cZuWfwG}cPd%>&5+?yrRBIjbui`{r|0blN@EjlL4a1Ip;`P}<MLRW^>TpuUl
zaOms8K61)$!Zxnc<4wMr>Y7m})=C`ffpUkTjegG0y(3hGxL!9eA!UkXvA%6Zb}ssV
zWELlM!G#4425$MAz)28lw`vQO$<j2(50rBY5m47M(@)8%QYDgW2M}uJ8OIu=-_|5n
zc2#u;7F<Z~f{!5&7vpK44Yu1An2%Z|UPD*vhUUED3EV7Or~}tDR)r1K^=M7f#No6i
zyNMb*k46$A6@L40fVRh6ZdhBpubVDwJlBb#o6x@yJ?X)u&pA0|SOE-cA}qG#gF0V1
zMFR&7&(1~(`D(~Be8k5@u}H}7d}B$W-E@d<DkRx^4BE9X+9@a5sBhVN3jhoWx9`s3
z5JC?Pw8>H~<!s<vQ^N`c^NFj}mINQ@+S@#4jJy%Ox$XR1avl>jc2wD1C9?46*dsLg
z#%>i}_aqWH1jgv3D)i@=MTsJYRSb|CI|v#*A7`_-jsMPBlD4Apim|>NCu3a3Qi;Jj
zw0(rnVs=clZheSBRRwEk3hZfs7bsXgFQKV~xU!7@!uxBUF&&GzBi_6B27+K?7&tT9
zft)I$J%jbE$Qn`fVMvKNlDXmU?OFjjPM?zASl#X=WXQNs-qg4u_P6w<7!h{lm;AzM
z^(=K;X;gA}t7L6Z)w4EHI?yHOIq0=cA4D#2y-y@8eNY+yH|PR@(+P&ZmXL*)%w4EW
zu!3kb|0s|=kL@Wmizl3t);+9Jdld8!nDu{|Io!WV)?fs+^DW*Am$zWzbW=WfzacU_
zAuY+DiAcDuos$4Re(+a|zI*`1<gnsKFLBA)61XaDe~pgGKDU&qO%$qS4C=+46qt^u
zCa>B7MOA7TZW=ZjmHp!VGGNL1hZ*CHk?@(Mq9m`W`~&2JhDLM5%5)?}le?PMu`~2;
z2h|1V*!?a=0Xsm;Fz_xS9M8@iOCZ`rEJNVDy<RK|YaLBW3^(O(=B->bw?vDL_unD0
z)byogrsIwt*lQI0_J#qg;h|MS1nh@wK}l&)U;n?%3t)?BI)BmS^BcTQ8T7Uvsm%Wg
zxK$3!XKbUPhc64AFo0QX5W&;H=TAidTeYCPrkwQtniai1D0u-O=A5Z98n3ZJd4+BD
zgY`xVM?P<v*P28(#wZJhFRY1OGkwvn+KB743Du>hnfg`G*Qv{g?F2k~bYdNd0{3$N
zhZfQVZ%C#Ow4*{in2tC9mf!v*Gv`^w7cKrqQ1|`{UtBTx6quKV1Id=8zSBiKJ~|`S
z7gE%-CNeyL?Ds5j8>|{;lpmO0#no%B>Jti`iN1|OMT6~$BIl7p^MVYKhRY!iNUq&Y
zQd^i^%goBEfx)<!6NCRUe_Yh-OFhq}zn|DZn83*kBq@g;8gM(@fy8v`@k=C|8V1yM
zgb`?IEwX;!c!T|FzpoABS@zbmAQK-#Qp47)?=2f>8i^s#b;InOod;p0<_8^z=u}4x
zLz+I`hIgRR0<4ZD108PWWfD;fOl%u;W1M0(#aFe@|6xkp1@yoPryJ1y52JQ7jtv&b
zxD4!VZa%PG$XJ+mpvG2zCc)2ZQdpzzU31WX8wt1inb)*A0H8*{Ms?sgB^v6M_i43)
zW$J!(vn?|_klzfExkA8D^jG@Z)C@BXK?BoELaq1lWoh-}A_4|`=n*x)cQRGAYi9#U
zo&*5=qs8NzY7+=?)Qj9Zv9ubmfZH(KCnnAF!IjSOX2*Vs?ANh2v9}l3E%DcoroaVL
z#;*8ndO=vxs*dys$tZ1q+vx;4HV$18v2N#oFI=0bX@*NS3}P+wd~nX<ABiA9V8IS+
zu@2)GmkklgC&o{O{vZxHSV>OdyWs3^QvK8v#_+lrVyW;petk&g0_a}vA4s;w#s)ck
zWo;7$ww{ha_uqGC*gFt>f8}|z1&92Z@BCP!9INX_#$$6u(*%EBeEwYGp6Ytp+H(lU
zRiEt^K=LnqL@Q8N<IG=?4?SE`7Sy)4r14=-M5-k#bx^S5({=K`brE5hQR{nUPsfk;
zc+T_WevvFL$@j+isV|B%B=>%p8D7)py8CX?-=u7ub9T_FN}yi(?K8|#As>lcFH4J*
z$$(8P?VoK&E%ouaW%sJg<s&-_-@Sx8Y2eetrgVsuf*b=23gYggxraVw#RgjN`>U4s
zi6m4R(T=p(yTunP7q@Y9R*0*@Rqx+@AYQNPPj!k;SjP#R2gIe=K!T~RH(M!F9Hn!e
zR;AvM9jR=nzm!#2Q-{1G?Ma^C^!eQzQE^3oWRDAuYvy4$HG-knl<BD)$%WbPj8p2q
zgD~jslPHQgy;JiG{&cw#85yi}h)Ff|Dxk2m2zrLHnf_eGy3^)+Ema3kAIxDM29pRX
z1MrU3*G!HsH&&EOt98xDn$~6;eu@Jz@-pgTckNES{pbiE&m7BrLd>5NuBE^9=@mIl
zP&)E|w&RSUnwb~gO?<>N=uy?#UR_+iamF`QuVj72$IBe*(?H9}Uah#xvRsDbZka`@
z`Q{R}FU*NtRR3=DOW?AyPBS<CTvx*1r0s|)LW%a9T^_JDRxym#5s^>**!f7nfNyrp
zCaRo?mN~;OhSsIjXc3@+%(Ev*V!Lx_lL47m%Hv>LJ#Tgx<}=|v`tF=zw0(brLk!U{
zgz$Irmu0tsfEOU;P{0F4ao~L5%qHfU6s<oC{5oAYe=XsaJ-oQ=o25RowfNP02G`n(
zOVUI&k(&OGK@{%#$Us=fm;qVSFLex2dJBPXsCOqD+nr<HP}1z2GmEhap4a`0>PGg`
z+dqRiIW1jQjBFM5JT4dZzCH0?0GB9`B&5T+w2Kg%8lr#njEl=^i%4<z>Np|sD2orS
z#aWjv#F2Ye4l<XaR)7v{Z+2ebn9z@*sU;{Bm|76^x{EK8;z933__W)4Q3@O3Ij5hd
zucfuL9)dAC_`qvS8}FVp>;~$H6wyp`4u6QVbGuOiS;u!%?fzN8_KGi{cZw4Rl|Fd_
zDyrOjrCuY_x5TF-y7}v4v}c+?&JAi#_b)gJo@r7ku*(xv7LhR$OV^Cnpr=fjGSN!K
z*M-Up0m~(;G&?uhjVgBmB?<=bmJ7Tiq-E{_<O{$8LT>C0xeb7=Fa2Jvu3}12%gE|j
z8JQ(?U;mtaH))TW(NxCnYV;IyT&nYk9k#RnmpnTC)=*AI(|a!yr4-IglWOs2t9;RZ
z&TeHzT-+G7(x=;REh45rDlO$*T9erZp9+^E^k(R}-Nfl6^7<I=RJDO0z-n}-|Ba;a
z7_(pC>%M{2+q-Vc0OTHRU<_&y(0~OY06Q~~+5sA!`*Zj;An>X@=oXyoCX_n)SQtb-
z&fHsmFKbPTW#f?;CCq(b8VhEY;sl9h%zaxt_h-tKtB!gb4c({f;}F8RkBKZ|V-UgX
zmw5S<j2^q~Pz&J3ri;NP819*)<@cBXHW{&&R2I-1U39S&h;i%CdE+xPvYKT}`LfeJ
zuPC;{kM;Z<ISr7g-c_@*BCl#u;ra&_0mEDlW53r#0b6PY1ZJy}XS~f{(e(5Eu1`Ev
zY<^T4`P2IPTzKp^kI3so#0hL#ZON>$zJX$T|3bI_8Y*MM0*^1mUFz<7YLt?y8NP^?
z`iPh=SEOo31XZq|)D8Wp;QD!)!8!0FQD?9=nDy0^_SQGO5o+roib#PDk#n3m$8p?a
zQT#>*bN68l;Ie_xGqZZAz@IAf<iO@-I3Tn&h3c$<x}oH{J2!nECV78zuymm*%~#Zb
zrNug=BOZA5dM!85=`h7)IC!r^v5x<O%?rFuiR|L|G2hAc{77h7_q_#Y(66*9@4W=q
z=<Ax7=%&F2qRY5zM&Co&832ON*nBqbO2{Y`_0yT~I}CGLr;^yaPuL%F5s^y0Xpe>-
z177+|le$4Hu5bd4iML#@*E3-Nf-joeZ|KEBmXRp3>!nDz3VQu;Nv>DS|1fEuQsVLM
zwr27~R?aT(OR3d&f4fJ3-DEk^a0bc6huZ=tYpyGrBKn-}`wlTAxu=cOJ%(`gZm$Xc
zZlaDH3Xobd*}UkBRXYJPp{5Mu($e9pJuO#cz>lW$XT8owZL+z5t<P=%>WA@d`V7J#
z*oo{+(0>?-j=%LUeQCb-NIy9A-jO}|U3*rH1IbiwVu5S>C|i`<gY=AM|F*q{X7c0Q
ze;CYjZ-O*mVEpr`Jn3kRD0yWuUgoCi{jhvPRt**~@%Vt$0yrSFc2?gH8C)yxphFdX
zm^L6u>Yz(iN%Q?ZR~lr&s@<^Da4^Ts;6Z{$OZ&XlzLO*OHoGs~?OYiyoC!jR6s;Kb
zLECJO45le04VQBkbdZKjf_c1e<o-fQFYp7<s`!j2*)2gYPHb=P6d>Aa;D>M3;M&|M
z1U&I+2rwmDowwaM2^f&%7LQBb-+Z?0vco13A5r208kH-2>lT-$+D|F9`Q&>I2=j_X
z0h%lw_=@85Ey~n80|~%lDBpqpJBKH9H0>mSBFbnGx*7GoS>Zp7dO`evKV?GCr!<sy
zF&u5%C@&1b_>;pCfsFc!-s9BA?Z)Xe`=7=sGe1yKMZ9hHG5E)i&}%U9=IHhG)oqe0
zVNq6*PV+0_<GCCY^|+kYxu3>Nnc_F~+I5a(z`yotL>v1FKdK&&{r%e~JWAFYHB+)8
zB3@hBLst}=O?!Qr3bt({5p((bYv|S}*Y3BSW4U+9s@$yLd%+hhQTs-%1VO?q+^2jx
zMt~1fIHHtN$^WG2W<3lf*uZ}jL*cJZXN_s;W{dcW9JbrUvqeRR>5<DH3jAeSV7K}0
zVQDe;p*Yg*27Bz4JaPvX$^FbMetLy=48#&VX3Zf=v&lH~(%xiaNiV>iT9^{KYEr55
zn*4^1o;&=ME#8HhcAdNo5zNgH=FtRG$IHD4kd=bW?`Hm-j**eaVaD&36%{6w8=FFr
z=igUY6QMrwMs#=t>#Nq!Bz>*hh2Rmnk8fM%tL_x8FcJ%%cAxHO?))c2*kILq1DRb<
zQ#n{h>0=R6nw7TE(SO&&)C+5;!M=lB4(}4;51wjr7=jBFSualymhv;-GGkPUL=Lm^
zFQh_ShbQ{!+||8@rRTpVkROwax%mje$8-g>dPb%wBym)ESM#eQ`ntse=<&ZSIGK^x
zh2FEQH1mlE`||Bwa*QK^l}7eb9~YXqq_kUGGSz209aF!(Az1o(q;yIy#C5DJSro&o
z<JwP4BKDCs*Jr1Rt*Lq8oU6(#W5uj7T-auslIxON4YF<gqRTa@k(lW62<5KpIGly&
z+B2={M<g?8f7I*%PxPgqEIQH}1@SeoIK-vCx(t4qFhj_{wjczJ3#X!%-Nkj1-<?@b
z!%B8D&wzf?b{S}PopA#*sIq%IY!S}2SG3@!UL(bpz`91w?o+>;WA7wCn3L!FPp3|6
z%Dud~Ib>YAi%p1F?eUdsv1f_~1$@3zYPH?vI1s2C_H%B%wtjI?Mw?hjwnuGU$ygg8
z#G+}bS=^lcC&7Q0?XSy+*34bCg~mPXUjr?XxNr%qa~9uwhaLts!>Knwq2C1}>vD3j
zS5T8iCLsbBX$N|76yser^N>)oi8n~AAr?8eVmu`Ft>Mcy_*rh@e;8GI4mEEL=qDSx
zd??vyAABE|)k^<0XAV@onusm?i%aA4DiMsne)H++?hC1uvc|VW@w)S-fpdW$7r88T
zC^F;1pl))qQyFFeT4G@ewqwx0&6oCb>qqT(Vfp-Z3)i5uNRA)m2jh-=1gpPX2)>H!
z*#tqm%@L{9hVpQ6#YJaFw5pQ`58<xuLwezpXHLHV>-8vumHI1>Op~FmGEg(GilfsJ
z%db%<q4s7;dDpqx0qODd*+BWI`0zgiS0~g(s;t51RubPXBtlkOkw*z|EsdGd=y7!j
z;aRwL@&;9OnFMX4kGh&nqMH3>j-MV}DCOJN=8=htxb2wK)rDHx?+?pA6<sBFn+CTh
zA`V7TIz0JR<<*#&Q#Gt!zJnLH-EBVQqS)0oc4FB33Hca-n8nsv9!|6#BD)g1RqP$V
zWM~QE)udzHmp2-v2I2}QeLFJs*LAe%U)Ekf92OK$T3M`X@1!Oz`ST!5;JCXC@d7nr
z;1}28n<U;LCW*aPW)?vbvCpi{m<8-ez7+aRT*}p9P_~M@Ka~YelLKIec_9qAr=9$8
zEfs_#Tv@#?WIX7iQ$C>dct?OTUOemX_vXgVbXuQq5mgL=%VtXeFB)KnfE)C}I|X6N
z0}M?bNRVp<qT~UMw`-sCEj{R_eoXmZruNdw11oW4JPtniGW(Ql4cw~**eU^%22%Jd
zG(1Is%@u4GP#pGkh4#XRj(?6R+Fdd<&^mx-@ua2~Oi9+s1{%K`f|3<~zEDrta;9uO
zBpamtiqPWfn=2;}_rEI3YhP^J<g@GJofQYMcD=sX`uAS5>kdEz*eV4#qs_@FcGx2K
z5z3GH{^E5AE$q3o$2W$Y?#8BlzusvL=rQe{C6b1tS3|s&U@XJ$!Hl^}ZeD*Hc5^Y%
z?ki8%FbMMX3F>9xqw=~P47DI7CdB}IdV+46)I|F$mm$&~rc|oGMit61Lpe8jKh>EI
z{GkzL?;tuMihyk8LSUcKkdA4bMOoldE<0L|C?U;wm3+8kTIwtie>4Jee94nmn@amU
zt$1YU&|DEPw?Pe8m8a!&>#VN&pqhDCsHCS{ytwLl<GgU`s{dljc<wLigMfH3-173M
zo5(<LwKaZ)tFdfvp;S|KGm}O(O=Ft2rluGygKl>f!K-=b9OqNBEob7uX&`+dmcJ|<
z?N3EwDpl<89fD`yFj>03##9BB?3yfcSu<FFV?c>}rRg@=ESq=_Yy!YgU<3=GPnkd8
zUljiC$^aTfYtc_nybzY5E^=8MJx7^?YhEeqc8DT0ME8=8ihRRQ1-o-Edcg>}n&#bQ
zng+B5Z(v;Xz}WAGD1BoAJ4q_o^bi=qC3tL?N74BXO-&XK=f0lz*V$HR1Q3~++NK=w
z%a--it+#b8ERX0H23h2iI&o$C{b1_P$8xyx`ws&lI{Mu?*m)~2a+BaXW;!}VDL^Vf
z=|Zo*VYbwcnYU|TsR3uf{7O5+a8hTNk1jW`&yt}klMP8LjUL}emJBRf;px$p!o)@E
z2tDJ!{7(n*8|t{_lGwgKfiQhF1dCTJ@YHv6NDZfO<QXq0kw&-o@W5!*YIxVUZcn2l
zYU4h$E8&o0n*mAd4BtdiIRRI!@A@){;w5y*gC7X!*~Mn11shhI{;X}<MG-`CEx3}s
zYTjpRb<w{U{VN`TiNX(gRIvlnp-2!@^Sznuc{tvt&NynX7FxswwHN98#ZnY$y~DQC
z)k22}R0PyA$o5Sh3sFI5Qo`U~5-BlbsqAhR#Jio0eT{D66q&TorH^A{RrgCx=>OOi
zeLx#T7TCFBatj#RUc4r)iyvb%uWN}nm_F`ZqH9vANTbkukX<q7_i0up?ZZmmv|1Rz
zK`jA51hJ9Sx^;yOEHy6~Mnsvzzb(9`m;4MxakSo07<m$y>+f}jvG#K~-X~ho;KMJ@
za?sFA#uFrv6=ay+GrZiGKwyLb48ZJpj{|AvGv_th+v+_a^~pX?+}vibhc1Vi2j8%#
zh++JP(PoWCZOqX&7rjD|tt=_V=BMe<#wK}9>4s&e-zS@QUO7*oeL&<UOhygy4sF^k
z;Zx;ZstX(X(~{ou@>0=m=S&mZg)#C2Ub>MO1|P1-UW#g*A&=qEA)S(k=^P*(zyR)b
zL?<@`$*%7mJ!+_r#3X~#m0NlKwF?M+<rb(Y@T0AhNHG>`ykh5qHb`iF2^NTF$jO_Q
z5Pl3qE&qo>)uhJo&y*j&zb6DC@t`3h^-kq{8$4*UAkf?#yi#Qu_GPJ#MYp-`S78dM
z2(Kn@g9=avszC_vqF#h=#W)HN>W<If1@bMRS;p>t`<eo9@ALm#evvK|Eegccyjh*(
zlw-T{*S##)l%b6ZA<TDQs#%>;^eZfms7}$FL8%?0Z&5tB_p`q^dL<!bM*=``vs;5G
z@iU^++|iy7HkK|Kn=u^vCZytw7ia05i&qHF$yk}<I02BOmKbRKRh%mk&b#T65{kD#
zk~L}W3feiEb*W1uS)H)G<T=T@O7`gIKf~}aUCjA`?Naa2U-o};ly!HZbg5Hi$0Tsc
zV2`gYW#|Nta4q@SH;TUm&sL+;ci2uF(2te?%%l<u90bQeJ=0o}8o#yxiJ6*`QiIkg
zMw5)BPDaj5t=Txo4}mAV1@vB>ZF>C8%bwk7UmjnUJArw+d7l0Riu-FV+<;#nONlOU
zmn@m5$Ye{N)+$OR;8X52w|e}w3fet+6Fa8p@I#R;2{xU8<lVJtgaHOC{EA@?{G)VD
zjbd4Upo8C^uPJ2)ET~w<G23|4_zwa^SrWm1H$X!4Nh<%tz;{5#sSVb7SB!Y3kJK)s
zkM)5n&lb>8?<0&RSOM?%a*LL;P0$-FFlUB{n>K-(U`YM`^dOxI)8+xtR{cwdHt9qz
zbB7`&0qt2_-J0$K?3yvXz9b#Q;aHN#^~z2Tnis^-I8_Bp(d(S)WQO&t!`Y$)uiW4=
zHWemD$0@_sWOa0*LXNI31^YS^3gkRVc`59?ci>aB5)~`$sXUO)pA8Ne+>ELP_hrGl
zvV&!I7#Ix3i|tPA-h3H#+1Ua4WpkuG2QWJ8tkq+iC3wP@k+gAeqds3{Z;M+t1jm+I
z$SrYa;;{H9LGi{YVRoX1RoPM_S+>uCKC>>`xKqc-E(BTvg-wYz{#P9(ta=1`Lk0lE
zf__H39?#bVn1--1d_dUQpYd%CD4h(jq`t8|nPI%V+a^$}zeRJkY@DX#IyE2kpM(&p
z+u$(rC3L(k;86lms0P;y4`i@=XcTI1I$JOdEdFzx%ea73T(zF{0tsm_$oSn7KSX!I
z)E8E4?KQeX(}RX%UU&o)tyL0uHb#c)kL5x-BirdEPp+0_p9%wMl*Po2?1f2K3Yrz2
zUp$vA))l5=KWR)<xNoOdz{!V23<L3xZs+=-g9oWB{1fJxYonO;-3L*b3gJ5z1a-CV
zyvRl<MQH2#b>o|D9KQ;_K$6OjL7Ss0y=62y<}D2z_7wM<KTbHaf1W7N$IRxzNR{w9
znhXemnO_X&3e3&jI6J;;i<>YthMmzHd%wNw8|h5zx#t6mop>-nWd?*<CmRzeS=(?Q
z#3te$FOUtbm48$QzCQkSyf<i-T08)gbUFuYC%oA}fVXdQGYZPANGFR{rN7+~9<yw|
zjdXC+n5WTxoo%^Xs_GQDS7`0iT3J4q(CGB<`pjL?1h^9s_HHpv^xKjE*1UBzT`zjc
z_?Sl}_9~G|?!^d4G(v5NJhLT2&?xVP{nrvyZ!Ap&lN#q%D;<v<9@-Ot4s`l4Eb#3@
zr=k~Z$@%sAi}US{r7f?|e}rVq$u&~dUp!Y;<x_P}28BKqNxeA9eVe6=-Y0B{IDPm^
z<OS~Pqcs1K>f@pyt`s(6ymyP6@+jofUq9rsL`0!ts(qi*a(Sf)+_wzWNIpEl9q_Ic
zG<f$iy9%i0mnH-h1nasOS{J$j%%h66-&IL{_|mIzYzZsMCj_6QSNU9mmZ}RT|7yy)
z@CKdDb!MLIyqnk{m%^Ll-WStOuP7fU+<JXMLf%Ar+S4Ct@_WriiG(9YxG4FH2Fe4m
zFGU%9eq7}={rAJ+Rk6nlhW{3BiSQ9)peKgGZk&!8^F`JcSWDEoAO~m!;*xBjKcSRA
zy%Bi{ln{%xyaJ-hdgPl=0)Qr|3LBS6&cwe*k(28QE5s;&lpy-vP0t-s+YBgoy_8fs
zG|JP2O-GqQKoG=jj?HX!rb04PtL@)>P9sr9b4Vm)wfz7M@z}jmdFM7spH)=gDQb<=
zN1EO%k+Zg3torf9)wzKgAFH-z`C7_iL4s~4PHeE|hED2$l6-?Egt?cgG{qfNqB8jT
zGzDeQ?FoUA*Q}!#ubw)WP=fH5=o@ka`i-^wFbexCx{hx|CDJ#8fl?<7O>DzYell=C
zM5p{t)|u+^;AkmpS$c9n;gkxiZswr0%U6)Y)Q0AO2AO{K8ub$zQ3+O3dT{Q|i`rnz
zptuv-P!e))S7iR_A(2x+@z34l*PyWKm5D}Zrn1Z)5tJG~;k9@Bu40QjZT-5;OOaki
zJd1H+->qO3*JU`TZtz+hO8v!r^&%$oNi0h6ABuIMU{UI=$%v!*tJ^j!qgYZVAK7{P
zY#60Qtoxvg;e7qt8|DKmuH06Z+mj<>eLAvu-`eKGiFBysVo6Kcm;6Cz^aXpA_{OXK
z)hA1O_g(Z4A}S~EgD&|#!`qZUNYQ1d$}_mDS;1FYB}Ms1hqR@C&(n4Zldb$XToiU%
zFQUXe8rzLbx18nT1-D2ahkEzm*?~F-fzK8^R6aC0V+!PI`|iCiObO{2ap$zhJH(E#
zSjFl3)0k51o-AlR-vLk$q%s`#fRpw{`SBHxByZU6m}4aiXq5i?oEs>Mm2I;Dk%u@d
z#`u$l3w<-#pEr(ojiTLc@puAVp7hT31J1%=?NAabMo_sh&WNR-0Ze|I0XPOx20LZw
zs)f1^et?1-1v)%%<D-Sj&}yhU48o#p!ru__2{Zc{No*g(;T^yb@dbMJ=!#l^uWbk4
zAyq+VfWN}GHi)1{1q4T*DK)G+%jE%ho7+U#Q28F8FspR!UHb@2(pb*iNagH6o3+2t
z`XBv(xJO}hVSDfI49}9QgV&tBdp8`4<Z!cSjrbbpT5*i0x=+I4YDL59-b#h~_9-eo
zZ`~OK;k@nD^D#UPj4wrH$7?IbnqA$z#L*Q`d7x-z!+E95Y&mjnkP*dl397GlrPdEr
z;8JsD+iqJZKV$!w@TDtD4i*?^x1ERIPuHAPEJIe@_#rN-pE^tj!$bVjZfs`2P@A)z
zQ-jg_46FNeJBCg=40WH88}xOr8KB7gIUA=mbDwmtX-uhrSM-tQ^AFz-lxXSQGSxPO
z>?kv^m^;Ojz_W!fu6R5=Y-$ltUOm>Az>;2ZFpw+ypj6{Zyd-c?j`t@?f=n#h`Nak;
zQijk<(I023wh^8I)Z@&Pc1`L-xv9eSUB(mAao@{=-$KX$)(JHJtnk#~zQvzagRz$;
zcJ)eM%nzVijj5KD<1UoE_eSxd)Tk}%&Tu2YDh`8qmbxUu{hxcmy95)@j`D^D@ADqD
z11CUmrMV-A0`0Drl*xu%Yy&E5D{J-h&q??$lppqXMV@!3uur@j*<Pd%FvN#`kjy~V
z%Lc%Wwl~^q5gX9s=_e*pUF9E4Bxkft9mtxNr(_?DTe7?9)6K_E{-0qNXs<dH**^;3
zq2KRx<0&n!_DDmzl%|O-XdI^XFv{Qk+<N^e4a?fDE(dK<o+9O~lYiBw6DvgtJd1JU
z=&>5|W=jG(Av(|iWSA&SOAVp5orfony^){(&~<j!$U9uRGWJfVG1HE#zoRam={cvL
ziMNgPr1#1&eP537N9(q<th^$aP54a%fni^{KvC8sTEV-;V1gRitQSf^w+nAzu~m;w
zUz$zdHqWrmpPw~mC0tj%z0s&2BXx;4s3w24O!1N@a!xM7_s8&k<5MBn>;h_o!fSgp
z`g@Gxj+ut(c9qeI(SdwNZOV>hcV$~Mm|rrrHjJ%})3E++U>e#tK;yGAK$r>ystb69
z@Kc@LwcskgMw407tqw|;Ydo0-5?hu3>WR`pyisp3S~2u4fM;(XIgwcC_gqBaGz9=p
zN=Vwdyk}%y{}`V{a4~G4E>$_pa~Bk9p8V`CvHlRJqt!W*Orcc~wCIJ-`8`71`+L#3
zT=p)1KL+789CxCeJysnxPzvp+F0&m#0{!~{DXaFDWq%b9SCBio3AK2Y&hmuZKb^uP
zOD&}G%<{F#qc+s!<Ub4y35#uU@uG$-UHHcc0UEyy;zrk}lJlWw%+-2(xSW5#xri_>
zPeB@MkfiAYfV$zcm|}lCcwV>wMC62=R39CyDTAeVtL8<&+N$S2$6l+8Z7|MJen`o7
zbg??$PYps%`Ie-*T9XL^->h_Ssx<y=a(8_pk@SO<Awux3^`UM+r{7O9{l4bXX4f^g
zwz^d4F&C}0z*=n#VCyS?wM)SxOV)Vl9^Q|~M|mmD>;c%0UIRfGq~7DNP<T}56mr_i
zN!f8zi|T(LVPU;Ehxsj6qXrp><Z`yiRj94MOFPgRV`$V*$L^v-R%-~+izJ24k4oP2
zcZ6&UU&zf8I3iXV8L!2yqIj3n9+q>mWu8ijk?98^xJFRTknS_c#F_sKi-z6J!7jOf
z44n39o{t>@=Djf%t^MhkUEmLWP}$CCl<2MMQj*eeDodlngcl(aep7P{-bS@Ack?0E
z1AE>#FYZH!AxR|zs}VB|L_Nz_AI;1_lAVM&Lqaaxs_0tEdwn)~SR9c4Tqdna_fZ<W
zSDG=vXU}_s7AT;fASy(SBHW}1zBck@WcDmz<t4?$<A^ln<wJmb=IzJ7k3;;&fJUNF
z!B@)TI*qNJkffgxPkV+QYq5hw@1m%NzrsyPw;ye<bF7>X0%EL_m0ZLa-YtH5NW(lb
zt$Ad!g)71-)EBE+G@cT+&y<ev--}q#>h{}7inNL_{)b`snB6<5k<(stB?Wph{$WU0
zVhlj#-O+nhl}*5uJS7;F>;|-p7yL?0NdOP;9dbAA-6Dck>=1>YGA&dKj2yHjyVHf%
zk~is3*cT(Saj;XoCbZAh``=1q-Rniqf1UT>(lS{f_BnGE?`xah@O<`*UUa7+eW!Fl
zjTm9Nx_u1|o3}mlp_{3*!C5b9{+u+yJcRWp!Ys*Us#TAh?2}J8PCPfSd$7<ruSdD4
zpRiNuMmIL1cQ-E{hLl}E%Mr|k=%2$m6Iaucx7Ng0agvaI1s0b*Q#5IuJ}j30Z(-$-
z9hA2meLrv>$d-*6fJdA6b@?Co6bJ(wEek**H{RM>pr#UfGgD&(>M_n(%bne+u|8FG
z9zee)Yx|dCkJSPvAz|r63<J}I#~G{p$A&Tl?pHLwXm=rWPbcY^Va19%Vc3>wn?7y>
z3soAbg&l2B5P7<8Ajcw?xyEDG<KH3op7?_=3_tKE15#jFyAlw5DZC?e&0X1FwTCuP
z4g^|;jyV>+jGZXMk6<HkO#*WG%PE`%zDGnTSV9>L7YjFY!<^4?Bx`X%XiQWk095iZ
zLcg{td~d^tYr`wfoEvbK`9s{}rp7wt=T1>hf|ThvRAfq6577J(!L~U-^vvJzDQ^ev
z)nCOPK%v~)`HNFn`1A3$&CB5ZVvl!ZvH8fTFbqN*&`|=3qK8!()%o6~wOT66zoL*t
z+=7Qpls07RCqqkW-f2Ia6&L{|IS-Y>gc~1QXP^!;{5^l0kOc0L5GC)H8MEZQC!t0)
z-*l95-kGco)%P-;x%@S2YUhy%CMw&3B>Kya!bQGr6rI?YoaccNlGA6-gjfDjA3qdR
zQ@e2puA-j7yoNzWtM@pKE#Jn7^GTB7FdsIy_|EL_e}K*1VY>_~YG_kHhPdw;2Vx1s
zT!x!{4~xj8aZ&>W`1Hzn+>sFeQ~5BA6DkutE_^;>9^73HOU;YW+EI(}sM4HUFfu$|
zsux1^%1QGb`sSt9O3DVHa{#ct7CK4c{X2TWV2h8G$6Pi={tB?tXcjwWop-Dx`Z6}0
zmLX9Ej&p;TXa&wK*=DcKLS5sx8{=`<!uIZi;1Y>zu<wv6D)K)J2_Wt1!c9y@2D5m#
z4r6$)D9fJfW|N(_vPzo?$@175)>rM^kRUYf9m^mM)buxcLIbw;z>sdC1ti0c8ukWo
z((J94pLJ~vN7+?sTeDAbtOOr79wuk#Pk$c4U9@kYDa^rf`+{T@UwqH}(#WUo>r6O+
zz2oy`zB%DpK@>*p796<T8taxr_6AHUL3_05o;zIhFX@jRPa!Q#-q{!}r#ZRS!S`0f
z!k(7UOEWm(TV0J5dM;*}E3Y)y1P9qA9PoYk#)Hd<iSpC**k$LYQ<YUx^0Jw4mt2~o
z(vyfKT)dVKt;q+yk~w2xQL}Q19scnmfsr&(+;#d0n4Je}5fo?H1if)=g}L!b<?r4n
z47E+F?Rd6Toj&?s^0PfOSzOkLZp%@?dzqKIJxf$X8&~W8`N=wIRl%y8p}>JnLi?BA
zO>piQUP%n%<E1&j@A!FF(N8#Y=b1zQVVKPKyW7-&ba#))i`^>z!-x+8CVNSJP<aoD
zq)j(sxZa@2yLMw`yE4r<farFr*+KyW0E(l%r)lD2&D-IJuLu9W-)2He0u#uVZ>#J-
zR?<8clRe~x1iWQI2kd;%iH80L`dgvoW!x)xUn&QZeFEAP9JFS|DcRPJ$+;u6-Y#mR
z*SSuXAT`~8z%-R^U{XopemzF-bhR}E&i0$UyDTTkhaCu!Ba@g!vK`B_Tir|Ftssi=
zSdXn>j$5Gg(pwX!K53+|?p~f5`|>Vs99#78j$RZe<?h&`^DG*0%k@fOW1Gi((7OW6
zk;mndtAGJ0C|Ki(&ea$;*em&w=&AFFshv>T?1x$@9j^&EL@;KOW?%^#p67U*vAc$4
zzz$?i-6HKdETGj(eCm>ya>2wPR@m|+Tktm0XlYr#zUy?Ws|=Ztl=@6lPPz3TMz-D+
zIV;xyDtrIVAt4`W11B0ny`6R9;%?M3vyUw}z%HViUI)C#EZxpC1r2;;)+)-dq@yGj
z^BMxpBc0(g%8QNV=)lyLcP=q38GY<dSij$&pbhjN7)aX}b?Hbn*z-Dh!$xSgNav9#
zox|;;e|cO{#pJ(-zrc8=_L)!a7h^awuJ4z2#$@FaaNp_Nru2&I6H8w+MsLR+s46>7
zy*P}0*t)w=X>q;|lOQIdzrTC%n)FpBDqfjBOZKcgQQo<r5Wp^3Vq0b0lOuU2?tMhf
z3V8X?UwJ#nx!;rcg!&2AVFbCcGE~IqyV!!1Ns6M0D<FtZma0XUwgz_jNmBefy6~D-
zfWffM&kJArwBFiI__;>B-nvu-^q+DhR|#b{Pn5D)tk{zKPC}s2tv;GL-lSZ-y?FVn
zO22UqM=_KUNYCaA#}yA$RokYN)`pHlZZX>MvyF`wi>m^L$cR}k?=(FswP(Y=<<>W}
z(1(ThaoAgA*!X65quoyPXKGTmeaTc7SBsOpYtY5hD|<UT<{r;yi3$u6h?m<A9v_6Z
zTSfnYC6-DfE?DhK<s~rNUL4jqUoHLo*XU`s*CKu-l<_uQ{PWh;JeEZl@KW7|nI+kM
z!5t+yt?0uCy$=lvx7xD_nZiL64{;!)HG#BIv1aA>EW)OFd%A3j&XYpR@B3-I%o0?)
zI67e-=UI+Bexe>>u|4%~62HEXQ+!jPDKaJF3v)GfxDfd9Ufs(g4^?|}WO7ixweIA|
zYpI)XH=D-hy&G%8cr*P;bc)>yKOO5%;<v3w0O75P&{0cQc8$~NU(QMVH|DCiEU}sY
z(zPtpBu5kR4p(b1yBz&hVYh|9kCzM=*E<vCtD(a_6u&UI`|tSasoE8a4!gHN@owQP
z=0dp<^lLUpMx#SYyE-M!HWi3|ovt{4BB%J-0+?K!9iuwUL0uap^lH;~co~Ma9;f`)
zy(nOln5re&%8ju`>Wl0l4fecB=<BwEznKNv1`@R<(9EkYyfs}jveyb(o}cVF+bs5k
zs@CkHhv5cDt#%~xuMRDzKBikx+$Jx5SNpQ0zPo)yWK8mbO+dLJHl(##cbg?cTJpAm
zFrvg2$kt!cm<Q3JN=aSA7*d>8dcYj2+By07<~W{BCtUn7OkBw=*oNw5VWCIwA#RiZ
zL~`7Kg%4K9un1c$SgDhX<zm9>Wqt5$PUO;F)ble;C$)`Z*CB5}s=Xn|We7gXibc6L
zIP#dk7m~EvRxN0vpo8m)JK=gV<42wRsI(xVSge?DJEQ1YW^cPhUduSH=<z*p+9_t_
z@p2@Z$lPa;GFF1b%M+NiE>EE`%8~a^1KoXJ3IoxT$yQq4iyO;%R>*>*1inQ@b8bG%
zoo{>r12lOJmtA5tCSwWkD=2L*C|R87uh%WtEWpYHS053!YaL>W=!fHYE&99ed^6N*
zgS1<4HhXF+NsKhE>ROO>$~bAr@Qm)B05B1%(><nmGo6@r)RojYc~+%E`2-*TZYzZ2
zI*{$ob>KJzV1q+_HmS`2=nl(;R@RZd6K(2D=ePejcGle9;VJ(Q9<AuZARdS&HyU-b
z9$8T18zN7?YnT-eU_<FFOXO3%*h|H{#CEs6wLY203NtRg*McaQ7EFySLkOI(N_bT;
zPS=O~MpErtJm|44qd3>cAkf<Gou@x-PzNT4>(l?q-#&2DMrzebH|<j-lESy)70Guv
zMRaEiwnfJ!yjWl9+2e7t;7RF5Y>eBdjUu$=I>ne$R0P%Z*PCOGC#DA`gzsfF9cp$!
zZqfB)mdQPN;^R$vrtLk!9sRnh!nFVry97xO$0-&?jP9%}_j@i)gyCf5D_5<lzL2sW
zdbG+G+Lyzy%jhTVxmOLWht-5Zwo+6pKsy)cfs=}hGAO+TW*Wt5`uFwPnh5>CK{rNR
zk#5E=)l1q0)nC)wOKtOYS(t~IB5W<qJ~b!pZT_rPUU#`V5_8&15vQ^VJ$VS`?=x8y
zM9`ES)@av6K|pwe0)<qS4K73kpmfc_@E6Vfbk(dK_JLc5L%!cI1|FKiN{TIbBm)B;
zVkyx)5OyGSLr*=9Qz_$a$gx;%wnqgHN<rrf>BzHF%4)!K&{VFLR(h%$43)9+)P8G=
ziu7lDe2yBOK{Kk>wvZP2o->t_^a&ZaIm3|^O6ZsNpAr8g`FN+$v=e%13(FEVoFMTg
z5ka#n+yi-iTzhZCmS+^d^g+XNtvAMKEftIO$1}`QUzD3e&7R-Ck2O@)BrlTXqvbd&
z%X)tis}g?d9ob`WH%)oUXItK%<@()}*00fO8&)~Pa*HyaZe%a~NU7U*#!NZrlj=4)
zYzk^v>v!es$}G8EMbSQ~ccX`MEYuuF`fL+JP<yNHmVtNQ015w*P!`3pELz(=fF^92
zmd^@H5g}?O9NT#jNEy14kYa;1<0JaFu%<r2$xbfXFxkPI%22Y`IlVmIl$13SInLXx
zDaDAmPOcJfFSU+t<>GkC!PHtGos@lby3cg$axQ*0P3~Ya35G&%aoyQdj~W7fyJfXv
zrnObUuu2EE=<|R4^`Vbbx%zApKSV_e@k6QtsOcOWEU;Oxr52X}Te%F45xrf8n}h#h
zkW0N@vlFBL<^R|*oFdyAjvY%*I5c;=9Uab?{oycAOT*i_4}vG?Of2ub(?y{Ia;N=M
z<6-A?L|YWj{X!;$QKcxi$9H)MYTC5bC3G(c#zQD8&9j9Q`^dH>D*QN4W#Q?YB^SAW
zL)?Y=+I030Vqo<|7b+CV+}3Itr5t*Nxh_`06Q>T#%Ca4u#$~M^Gy^F<9$FJg_RFQj
zW_6t0)4Rf*dp3z2I$gapS;I=Ct&;ZT>9SuID~d4R1!mt=ZoV4a&JkM?=win^wF(%L
z!BWJ-a!=O&n2)*9)xZ0OS}p9X@k|fRSZ3+8HG{=pi>kn%#g$nO@%=ql#F|HOdE4}u
zzJQ~{z+g}HV`moF3*&s1l>}kEjNgb`)p03lFV$2hBuJul7p_1DGpZx-E}$v-En4<o
z|I1jEhO&;c0+Cyq+r__BWA|{7v&DebwI5qU-%=fgB}cxx-<!uN-t0a?p#6TYMFP_x
zvou;@JV5F|nX+J`{D%hf2-Yq$W9AjYAL#B!;L^{0UokWz${>?45-7NQBhQj$$UIn+
zZM)#bb6!;#kK5kgrh|o193?3#RZ@QB>2*gTPO@^@@2R7IyPL>ApJepV5;^%(k)yLX
zIQDmk6Q`=UC*8Et{&&c0`;<wpyX^5q;xac}t>IFJu`c`9De;l_E6O^azT9E<vjQDa
zLu9I3-lKxm|46=KXdjm0#;>>TUY7U^%t|Ql(!`W~hrd?X5KP`VP~#@Erh1l_k}TST
zD_Uc#79z!JXA^hhNM|T8;ozjqSq+YOE1xEIZca!9%WVohB;(e-krWel{d*r{QvWC%
z)j2XeF7eHy*OZ6Pb%e!LuMi#!uri`^yYc_m?BGLa@FlQynvzoVFeqAzO}YYMqtz1r
zugn`c_|AZeMPY=c91AABD{_*pH{M>|;a6kdBG!=~%l#5Fmi?wzl88>l_m@9)1<lBA
zx#9P{d!hw!c>A@k=LXT@+ZX&?sFI6dD$ntESsXSfoXOLGK^H)?^I*j?>=4Pp@M^-s
z?*Q~9n}yhpHkpwLO1f(0%gwl4t`of4>`9;<+_tS|g|GL{pB5w)hqfnAT;hdrYLs#B
zMfMXs7k`-DU6<P&G8I_p{7Np3eKRijXY4tj(QxFB?kB&pQMxFpn}=Hl@#2W>U*F6=
z28=15{E1tG&=en32fBxELlM>QbNLz_m0qhz#d|9Hu9!R&`TJQsL0E!8-}Z#5hR5Ur
z0=rW?1@p)UB#KAyhY5IxcTMNLtX}mAHV|OALogW=dV={^qj#ab1~CfEYigpZ?iZ7R
ze$=o1MxIm~8XA)U|1CZ`-})>$djLsZAQgVwaS6nk%M(UD{)Wo#n2Fp=V`6dhPl83f
z@?grqki15n@N{_L0P5|MLlc*?@_eSBvPYA`?Ahtgk1+mzj)WT@@xPBQvVmK6^zWCE
zZ0ML~BY0qf&%2y!L;Bz0RxeleS0<|Z!?9AWY2!nmKs}xK-2TkJn<67ui(|i*I_q5a
zNGEiP47n$Z`7Rg4#r+u^T>aD|KI3`?U^_>9Yyul@IuBMlwRT>IVFr$qYb6qDN4_}>
z>1Eh8je_NE)r3N<AlUwf2;pteW7et>p#CejQ?fvsB3p~RsD5Ad>;XHhFupVMNu;&Q
zz-*laZ<9(FAarpX0G>8Pt|L+^8oN0WNgf^Fy?i4Z&F1&RmA!o*1-@e3ofzM+Pp$~b
zeR!v`h7ebJ%0)V&*SJ7!PL5nq4VDgroWHo9jL5=l9E>YNip_fYSm$VprOIz2j5{y#
z*h*dyv@)RnJoNXr2agA^7QeUBj<D-FOm-1D$ptOaj9c=gjy(%n%Ui0Bc3sK)2;|A~
z0(?ZOJ-+siFlmWix)|`R{c>8BP}{8-yO-4N<eu$03|1<)d3<K13bE^iv-Hj+SCJKc
zL6^Me=JM$0NpeT;yOBa_%zJJhsb5q#Cr=z=V_To2t;FRv-NPkZ*S0cGJ&r}72S9`D
zMk#WH)}s_+{_|726dh80R%J8NnL@3#Lss8ymRX+D){^&mIraStCqicg>k=ERjb4bc
zPI%?5bR=N~f5vr_W4<!Cv%!azwv;T_N?3q0cqfxn|2pirP-1ENv;jt=gy7m1^>_Yb
z@THp<F4>5y*``Bp5AB2eTMBA>%S>SMLxg)E^ESY;X>mO*Ez5IV>1!7H7<$y_4#d(}
zFg}qR!F!a|uRfjcM+FZ<@`-L*afXoBqu!7~8>J}jbF_J!M%yUkpXci%#|pH5%Tr=U
zt#A^FS{0_TXC5q=EmTwPy*)!N0K=OEdZ>ZDo|@1l)2HL=AU-`$jM33&?w8kxg4>yC
z34TR=%gy~~#1WsFMoBQlcuWeY+=pFMeRH#O7bk)4M+Iu>+Gch@V#|gFOEiANEVQf<
zJV)%_&4;rj-4^5WOlk$gCc10)jBwWg?Zh{Cz%vzZW%JS;z$1dKCUWmqwB7JmPxz0a
zZ62|}-TVdB;CdPBizS|t7m)-5wA@Ct7D=nI(Nl<kUD;WW1M~-`LuOnqixxKtN7?3E
zI#pp_hwNl;=VJdQvtSkA_v!xuMnSp0Qwv$&P0ruohsLGxsk!i1h)A~a4T`$FPZAj}
zquZRK764;EFko|>lg)d6mEoVV+`y&O+S`#Nb4&xwuaCJQ7+t3%dJg;w{Pz8!{0FM|
zd&C-l#V-TNEw$i%{(MYZX2Z0QLhZt~0Xf^W;EZ!$Rs0nA<0p=^TWcQ}!}bkYILvI=
zA7{GR_n8RK&D^g&_LJ7Wc8)LD%axv_==(_CJx|gtclI>C@xQ^v_?_@KR<UhL!4^Gk
z+DOXV#~w>P%q|YuUIpc&#uyG55zq7O`!D|0{v7zN`*M6x_&?#+xzs#2eJQfhuC62x
zEUBi(EiP`FN05z^$_qynY80VT0Kq5veEo*LE?)QpURX7&`-aj8TX7VrBgG3yK?=O8
z0(!1<k=nl{zi!XiSK&wO*Z%+oV~h5V@MYea;e8{=dRf(?(${=Vd8u4W<lf5+YYN2@
z?l74n^BBC684l7;@0j9BSW1{G^<|`*`=06i?PK?E0&{F~;v7B-I;%gNZL0I--@TV)
ze3APFYm&!dFNE!4ypHopyqd+#u8xsi+Ro@UZgS)~8-Z@Q?a+T+U$L*mJ#6XH>3%XM
z8~Ef>kX>zw*-m$aewbXA1Evl;X1|&5fIkL2H+B0<c!yZj{6`*<6W>N<f>l?Q;kyBh
zkSHn{VkG_M9Fj0ie@ovA{ujfhX||ewg}h&;c#b<YjTl@i!7+%g)dZrsbCL4$53eJi
zPbiX-jv^0MleO1l=6qbkMvf+?5~|uwZ2Rf1$6fn*{>A<d{jdBVr&^dHhsHh)xlL=s
z*NP758ZblJ$U`V}l}S;*a7WtUZUB$tPyPx=;q80FzYO%>4r<nuTf6ISml4XPUO6GP
zxWIKhsUC-+#eaPFv)!hV6jLmb+*>GQE^tU391s){-`2k_Kj5lgu-ApZY>(O3SMg4a
z(CPj)@U^^}mAtuv7&QYNXLY^Ij#CF=AtYxT4l|X=KcVFrk0vTIZ$$q9ue<U5{{Wk_
z3<Ie_$K=1R&+vbT^E>+z>F;IW?PA(j408!mdIJ(lIrQyb75h4~YrZem{6~EV2Ip1N
ziHke7H{WIa2t42%SJA(*-j8!>;QdP51)diX$Xg(1%VK);`_<vUvNn&Z%V**ZNLw+s
zgIOC`5ON_rw_M<<HTC$)kd;hBzhmMswB-tP)9G`}-@?Dxz8(0(;|mtes^4p<*#wZ0
z*{Z20p#bOK9<}_?=-&-|NpE%JuA+fpUo0yrag<e3a(MuOk=R%DA#EO`b^9m$NAVTH
z?R%!zrjV6nQg?X=Zt>0=fP0Q>@GIg!hrh7(ht~ACe3)l)CXHJw8-_V5I)MFg$Ope7
zz1|z9={nPc>X+P(9P1tMLHVC7>;4<@K8DjvIEq;2BpHDva7S_2pMF0o_OID%Oj}JO
z;!lb%QAM_!;k34W*=7F#O~1DT-~Lz;$EmIp;&#2{=~385%3gf4arZ*=l7A2Wy?STt
z{jF)bf9(GN@osC^%gbe>#-MUp)_ds&G0xq{xjly`fnQyToTY|N+qAzE%ECoPtL&3L
zI@T{W8>?2i)PpaWs>I}yNj&E~0&~!Q6}RCFRDDL(VquiEc?c|WcfQeqjtIx(b66fE
zh2d4VhiOg2jDyJ;>JB>oRo!T4E%jMsMLD;Q8)e2v2$^o4rN27*Oh+n(;wmz=IX>s>
z&+Mt<3qK2Z7fkSep9I#g<1Z6x5xW*vlIFuo@TQ<6SwQZWdW?<~5ECOR4=3@D!&-zo
zUEYzXN=kWiSkC8+6-J2n_FVoI`dRP`TCvl<Abb(iHLIxY;DLNesYxWKWNI~dwE(Ac
z5C-M9MPci<zdSrQeWQ4O-qP}TzSlciL$scex0a{nUO_#wdEny};$=~O+FEY4``E7Z
zf7es#KaAcVlS%lk;_Kbf?rnQjlHN0eyi0pDh}rA{u*Y5BO8Ht?-r`c%L6DM84`bYV
zd)H|;yEWwMSCu0>x?_$pk3m^41Il(5*jS8XJQ4U;y@#jCq0NY^89St7Tj39s7~lcB
z2eCNhbjNHSyo&wv{e=Gj;G}wniSY8@_I&uxZ#5Wn==NzBv8S1EmWhG(c|l;(d3_@%
z=G%qjjGx0D7eUwWwFR`&V@V_AlP}2{1sk`!^cepD^$Pli`%w5@@Z-aN62I^ZT}k5f
z)NUr!uVk8EB1=%1g=4pGmK7{;#DgPkCnOwK%JHuc(#)`~l-1tp_Gjw85phg%?AnXO
zKixKzmzDKDs9FC2X+MJcpNH+V`8Azd%(AN%T@vnAMj+sD${6RN2N}mT?%%ba#GPlx
zx{tv<e&!jz&1Y|^TSawq8MnC-L2Cz+j~3=+G9t?}68R205nqzu2L2;WrAwxG_d~MN
zbqUm?#x*N*bdWZAc*4mTSw?WLlY!d5Q~v;H9ct@V_&MQ^7GD@l&}&xHB%(c=Mb)(N
zxEUmX-48YV(Zela^BO6~UTc1b`qSd?0ObpXF*v*ocBdwrY5kk&WV<e>ed8~Np8!AL
zqJIYLyd&{bOt-tguz4QZUoB+0vbsP~<coT+DIos<SsN)=9Y;bxDgH2j!4^N^OX*R~
z;r{@LQbB1Gs>C%N9ybcFmS2+AYhYC50LlhA%AU2>&!Xu*F4V5P1thmINvX#3s#spj
zrrpRPWhJcdVP!GR9syCEpTi(Av*Y?bgW*TQzuJpa@UM@)7qph%1=FmPG0Zb?mzKb!
z_IEJOU6NFAM1b+#Nm48NW;m%+()u&}bj9G~Jz77EU)m@3B>4C6OH0!)?({o-UqiC7
zNUn9S4-1>MIA(EkePYG#tz=-~AIpwNLZEhaC9Ct&ZC-201optq6Aj2y=Te7|*&Jbp
zFni=z_6hq=TzJFwZ1|sZ<IN*eap4Vm&f@P%e=ql!7jeqA&1<-f1dd4~+p`<PbC3>y
z13%!Z9|E+Gg8u*&tv(|BKGNF9!yZ4k^B>BLEvy>Vxj)(wDPNW|aD{FXA%M;2FzDFy
zuvorjsq=XJv+cnA(;Ah-WtJvFGxxfI@9kBg@dl$6t=*eTh;PIKWh#xIv&rU0Rhdgh
zLovxlUFu4<R{(Q2+NHd9CgSpcE!7DKP>@)*00mD2zDV{J%Zsg9^yxK1%GTLbXD*q`
zat6)fPC(#=+B=-rvkAAc<kZ5{=xlhGQcJH6>Jfkr>sx>@FmhsH)8D0j()gQII<LeJ
z5?|mHp6bTs9B^e@ohHU$=iHVdvB4{zq}SneTC$gAnQ*ME1AAcm=D%US8f%BdHgn4{
z1i`0hab$X~lWuT*`2hVZ_U{2D$;6S3z9>z8PxL<x`a{v2cvht4(r|x`zf-2v8yuds
zMmY%N_TsPKrq(gzipLGd75%d~`}Sw>g*o0l#_g2;Ov^7It1EH-%LB*dUz495pc-$-
zzZYr5soSjIzX0@>>S+My{gwp%YxO!ODx|6B2l-d#AMI$#XZuii#UR3@*QqEZWZ~^?
z+<vc`{&xCB&|gx*)c*5ddcWv@O??^hE#k41Z}wv^x>o-H+mAGBpDjV{&mHNJ+$+qC
zrI2pjfyY6dkEtK2u5?J)%MMRm9x7<Ae|j01g&jG_>0im-&09nI!`rj7d;b8ne9fG8
z+IIBn0sjCVD*STq@U+s%HjvpI^VDNC$^tiUL%4oDy7BK;y!i)&+FOsAfd?CMKK2g-
zo;!Q<SxyS}M^q;#cOx`hNXHU#q~spMj>o4;wwER;15R@o<2fXbao^L{x#hVB0y1zg
zc941#*FFCLr6XJ%U@;AY-y`}Qf1i5n_I=J5d!1Z&t1ZclU;=(ojAxE|^*`iSX4=KQ
z&w%apshlmvz3ib-wpgnnJHYF=Jbi1&{MC_w<hDs8IpBRyZ{=E+w+H9gOS>)?o&oEQ
zxhK>0tm;us7Nuj?$B49<wEZ~*fK3zvId^1WgOCn*$6?<U=X#aQb6-g$T&p%W1KSxD
zraUEUap9;uOC0hm&g><Ou-Z1U9C4iSgIrvbsA3S0mpJ3!A78?qC`Q^6<kqItQ?YHX
zagKm-$sC+<&OW}itD)SoYYfmGiH*g3FbCBBwaE$DuoUIV`ru$-4}LOg%s2l4VU|0B
zcq~+p;`-;WUZ3YTC|xvfLZzjt?J|@x%@l_u0#uFwEB+#@X_v-rs@#>%%x3_4^#1@o
zs-?Z!%Nj^<0l+yNan$ksD=kdc`o882Vvpnl*?1j$cfiGYQHMr*4fQ=0E*EGUv7Y>P
z<NTWRn>(ndv{Z^Xh>UT$0meG|bKf=MvEKy;VakFt-~9go_3O~QHLUKHw9ykt@@1D|
zZf<dv7&#w+Kcz&V`Xfp;756N7o(o&uCRc_r8`(-OxKKAmI1$O5dP)(A&wk|BpESuD
z<vQa&{Eh(s01EW$!D`n~SzTmX+?TPrAQUSVz}dKGA96yDah?~wc=MZ`HtgxTz9YDW
zo;ix=Z<`q^z;)n|NIy!b(z+t0O>WOhwpP__G%HgmiEPtQP+Kg-PjMWfKmg~T<zBns
zy;94=y4IAsr=5EQSJrFgm-{|TOn^kMhGkYf6O4dP+#31&NV<;Z7-NmN85?tq77AE#
z-y@pogzXNkprByIwQC@Il|eF=$j*LM$^0o!h4i_rt)c2(Dfo?VKZ~_V=C#;Av@ePB
z<qW7i`F>E$ps*iwG31U<Ccb&qZ)|l<T3hWo9ysO!*&hRufJgxJ=lRxc?xPX$Me8iQ
z8LwpybG1~<COGNHKZZcAIWL+fDZ9BD2dB1sbo$psDMmXUa;X)vJp~37Z5an04nY<5
zKkS9^kKrG{Z;tvm#}AD@9n^ebXW=>H)U@p%PnOmZd8xp~?G4=5Oayk;(g8UUq>?<#
z76Ph1?})AS>~DnR9OEi@_2-T$^XoS*-#o9m#xeBZW9eKuwo^|Vhn^O-`DU7SZ96^n
zTCb7OLmSC1WRL5Q!{6|7{k84X>*9Zcaz+H7C)m73lFI6O78e#UBDp<A{iFNFyx;bN
z{{VxIzANiq3%b&OXCH?)-VW5IO`qEO<??EmHifwJAhEZJE!oHLJhPQX`HW5m*8W)Z
zjb3?m=Qm6po-vNc<?49qdS{C2wHv8g#`VC;v|RCmN}QA2=hD9h!~GYyCWa<8so+)B
zot&oE+~sHJ(>=GuHQhIMdRC|6U1P+$<@bvGO{m;zTCT4<-(KHcv6kZM=5xAPrjYW|
zIqG--VN@!GQ3$>_5iD*&Ja)(B&3W~%wF}uoWN7yl0Dyh5$n9F%J)XDXtJbja%nf+s
z<{=7&MH%ItimLQD$pyP+zk66X#x~g_#hxLzc1;q9?=BgN{{X6xka3PjO#c9p>s<UZ
z+%hQybQl3Z=szP;SzF%Atayh=)X9Qv7e~}Dq(O!TODNR&ToMND{IDk&&JJsUwb!m7
zBhMJdH*L=(40P#UlxeoKGp#!%DIKhrGZ`?!eZT|tsuSH@Muim+m2Pq}b6G=Hj#tb?
z5a8pk4;<&*cdF6qrPIn{94W^fa66C3@#dehkv`rpW_Gp?vXTh-^VA*=4^OXZ^uG(e
z#*Kex;=8z?>^fETzuH+qJ3}`B`wVX5xW`jpJn7p10F|hOb#Ex10mmfc7!~z*!dY}r
z8EHNt@C2ny+SQuNY8aK>EE~Q>1mkxhvD_*2uOk;h!&x18d8s`QNBI4w+cm5{CV?Gp
z5mq^sk<hY`e6}Tq(Vx0VZ|?e6$eujA^X>E(P(q{^F{+-xPG18b@0$CYz&i9^H~4tE
zezr{S9DiZINeTI+PyzP^h8wTSbI*GDhvWBy^uG`4+BLS6UMqQ$;y|oRY%3xH19id3
z;O4Nw$|>?a&fHDq9S<kc!21`Nc`Tr9#z;9NekQ)4_;=x(&kB52{>iwSH@UIXOwt{u
zMTzHRP@zFXy+9zGjAZd%ZSZfxW5mA^G|MpwxU;sAZ!XB;L{Ng`aq06(u|WPT@H*qu
zej4h~>t7OlU*cCgjIzfNZoGMt1GhfWjE?x?vc*(#a!AgcU9Qf1;<Dd(qvH>U{10&A
zQF8Xtks6i4OCf0wR{sE&YDhW99@X}-zrVH&ZEois0c^w@131YMWZ-)7UmzrdQvI#8
zWU*vp02{#Ju^p7eft+OJyJwEo_3VudM|J}f$j5wlt~^?_VHeowryJd$Jbu)^E`v+>
zQzoBtcQ4vCE6Zr2jf%gRk+_;+_Y^J>NzO;0JlE$P-l-;@!gyrcEAAj3pmUb`*W16g
zO~`E{!#Z-NUQ4T~TL&3ciC6i(d<UsmN#`-2cH*i*CkGg>qsgGXlDXt&Q)+gJUh`OF
zw%EhWY!W~}d4c|Bx;;AcZl2c@9jZt?V;?93Iriu2kH)zK(^_Vgyst6$gago?{B!MI
z!{HwTUHG?M(!3oSbALL;F$7^_AH0~5f9aaGJ@H<yGm<g6%Rx#~(ED%pYw(`C;SU1c
zUhC1doyM_xw@{%x`3nli86X^u_$`8R1~LYC-1xWgA5-wRhVEpr4%7K%70Eb8V~>8F
ze+u@MSQcH1yJL@qQgRdy03A9Gp4Gwl{{X^Po+r`nA)jIbj@e<JRAdp?7(H>@iuhR9
z=B@22cRrp}Wg2#ljUSc%GrQFFeHQasyFY1@Yc!6>E}_2jdY(>u;=CzuCu?}FtQ^NA
z8#jOkHz~@o>z;$C_OGfuN8#9J(rzrFV5U)ynH+PI`2M}C=8Z2xy}s41bn9>2x&h|N
z)e%AYnb>i+(0>u&SLj$ev6LG}i$b2Zd!B{hn^`rvX7M(<e9L&J22VE(W}6$9E#G@;
z{pTNdXagLY?dQ3g<56>Rcge#$V;mgx9RRGzVz;o<ZS5>~eV*A{%Q7w>FY`#pJqsTA
z>Bj(7!M;QNq`(GTD`(JW_56C&%59##I%+D&gI<+1y&mUKjYOt3+{#J$jxaOy>&1B5
zc%4}TJ;?-&oWiG{uX^@fbS|Oc>xklPg-|eg=O>H;I_IT)&?nSTYyjYK(0_$?VD94X
zis!Na*6Cz}SGD*X;yGlQ9d7h(LRnKIb04uv0pNE7u4~JDEvSgRBc^HafG3vP+$-SY
zX^AkqNI2WhNdOVgabBei_S1YW@ivzMd18-5)W%5KNLv}sJM`^eHuw)wl0OaT0_EOY
zn|nxu2)}h4iqL_`AAIA0eR(4|uIzm6QD3onTyII+x$Ab&A|yucNV2nth`}I+#&QV8
z)6@Ca=9i4TH9fb6wR`z)?d1Dq?0Ty-dz<%nx6?}<zf5_EjyLo2?LBMsNBc%8fYjVb
zo>24BHj!IuE?ee1NMrK%>0g@{_ZNC+?ET>OzQRkZYf{}$oE^y&P_{iV3%NMy&MSs<
z(8Dx^lDplO?1V7ra$MVuk+i!IjxrFFjF0!Lcfq&v-slkB5?xEM<mUr%?t6NBSD8iP
zTYIZzvbA#lRK)E?AYuE0eaAojdg^ppAhgr$_O{hSA;92Z=Wns({uR+mO+{S!3eNI0
zb>xt0R;XM^&&CMA<lvFlJY$Y4)V>9HM%%}q8+<e1HjK#km$AIDj!@e|!byt`Mgo94
zb+4QLDR{L!CE>U6c~3j+*o_g2;iQ^Hjv!8c=w`_SoOG{Y{{VtlTzKQeKer4J_?udi
z`VBk7+LofxFj%7A?-UV)h+zDooQ!f5^VC;edJ_7TTvB#XPv>MTzN}@ArH8fon*7h{
zBK}CPu3F+kQq_Lyu5$kX-2)iF#d-dzs_FLkEF+0`%^NE)4I}N(M*bWF+r4#OCTZ0+
zzc}J9#d0~@?ibV6ydPfDmP@}j`+wgOG;#5}D#}4Q$pGVMBms<%f9JVo(oWGor)l8R
zTAA9d)}N^Pjc}><ks6XBJ4h#tXB@d+fFZ_u5zToe#M<tQ6SQVKh{JiVkb-8z0$1fF
zRhR&BSMVOXI`x(HtZQhvxXIe+a!4uyqL6-JgV5uTTIFuFy+=vaJd5a_D0a5>k#<Dq
z8%jBWP_U3^=O=-V4<!27EZP0EVN(ljij&#to-~#2wC4LI_{aKOB{r5~Ft;ecoSYJ)
zoOH!_&yKX6Q^a<QZEqs!{v*+@H^3z%2WD<#EQl9utJsWZ2ZFe-X4HH)WvU<Tp9{|o
zo}xrfu}3j6$sC~hYO2uWFu?)BhE~Sxfl<A>{7=)aCvEU*_AUvIWJ1m|H=?-!fOhR{
z?#@9N$TjRvyd=3_Q;l6p=)v%ov!Q%R@XA_hw)=eG)>rYB^2mL-bz$ai9$bK~K>z{H
zax?QDk7*~v{{R);co$!dB3p7}jj&tHg^1X4Bp6UW_TEV+HS2yA)GvG^@g7KS8_9=W
z^I(-Hj3A2s4XjnN0Ul&PZpazh2sP6F&|VOIOF~Z+SzFw|bgj}bkqa>lM&%N>R6S!+
z^8x@P74bQq6<ynN-@#Y5{ZGF?VDF0>M}j<P+TV%d{?&%kGO$}QW`-7i1m07z1(X7y
zwsD>a>tDM+8$1#4r~V2V@M3=n++D4u)r`?zXt%17$u^&Oh*gFZ=V?+_L?jZ8o}gFq
zqx&j&u{Di;TPG@BdwDWYf^!iEoZyUuf;!jfcfs$BULp8T@oP`kZD$7FKbA{xG4RPC
z<j8=5wBU^MUQQOgJ&dsRmEkQKJy_1I3|%~a4sI1-(~Io?04;WX8r=AU#eNd;U&8O&
zN&F4sgb`}?+GKXOq9)zCYe^YA#dS^FWkyF#?BM$3SLkoRuN3OG*AeMjUDl;(Ff7X~
z5<9VvD<0Cg1xY<iWM=~-HO7CzM7|waSbp0+2l(gV`*_Bm<L?PSnBH2%-)ga)1ew`}
z1=3(nNe5>HbDqoK?Zy6=;(ap5PTc$M6LN+QxB&h1P{oT5#1KaW9+knBW$J>B9qo1U
zySL$E^iDhC@9lr~`&rI0ZFEwyQvU$Su71J%H2A0DX?!#X_M+=c3_Bh<kf>${46>7l
zjn{x!1}by7aadoq=Y+g>@#FS9@xQ}Qg1T*`{<GpuGD}NqJzS3=yx<l>j(0@m7bOYD
z%m+2(ntjZgHh}&lj@sJRXnB$C=2umXmw7v4!zzM0Ge%b<8$cNFUxMGX?z!Q=6zW=5
zsj1C1wDQRc-6xqYLbmM2yJlcUcD7is<mSH0rB_bMTOWqg!zs5oZngfbenR*o;V+GT
z3~74bfIM-eUTJ!wJGH{yr<Wr*fdex247mpkq_4hnUoQU2*6`13aES+&C%=+AmdF`P
zcpsqu0C~vIU&_C(zuG&)-WB-U`!#F2w~S-^E%uY8+}+vTT*TgWw9&?LK?MAb(UcOb
z4o)%0@(cSkYI0kA3!lVuE2Y)d#-Sl@3oiJv+pg1*#eD`F5h|)~USF^I9}St{y^4!o
zXCJ6|n$kbm$Hw}<*@1#TwZ{}&iQbo2YP(K*yN3S&fY;#$u9luK)}KwdPbMuwPapyR
z04&x=!EuZNRPsH=e#QJnzMn+>hWtsUUMYo+rK3T>^}LNA2fhoO{VVbF!q+j|_^!g{
zLD7}__49rG>-3Hpr)brE9KS?<eVi>}=zKrp4}iZKG|LYX_~%r!`(~NptMR7Z-9|>(
z*_X_T_VfF<jgiSx+XJb6pza&K01u~r&E7B6$;(~eS=dOO0-?5c5AJtNMh~yyUv&P{
zxBfhf;WhQIgLNOX+a&&Op=#`^lgH&WEX%utA|nt$<>Do9aH76RZwmOI!C$k+tKhE^
z+1%;Z?XSYK+TKAmwZf>fu#z&-PO-?LmQc!BKyX1^f(?CbJXL8WPPMJft!?bP{LcJW
z)a61IaJN$B_wUkI>EzM!>P=yFBzAXEZ)xRFt};w`>V3{SbjMz6*gPxYokLr<n^;&@
z2&a{$5<kir1_GV{B#<-H>w{lse#zgkcgKH^TD1Dd!v6q<n*RWgj*D+3^24Ru%N?st
zu=#eaepE*klKlSwFf3DP1O{c!&%~dG-x75{g^TgeO!#wi;NJ|gC82_AnPn;iNRMzn
z*09g>Z6wCXvh7nUM$iV9y&Ps|2Z&T6pRShl?ig&QFE3b^QFAwC9eJAXwUYH|zKHl=
z#a=P~+=j!$_SUGDI!>8yrKF4l$vklGCESsLxtx%SF^;5@#|dNMO=rYfwYG)f=)Ti;
ze>^s@Mlczsxs@S}7bGrPMgSHdWQ>qGuCQp2sp^TQ>8m7{w;wDvkVf*&C$E<jVWfO_
z+NYr=x*bEn{{Rxc9YYt1b<H1G(BXnak#BEw>&r!kRBiD(%{&Pjx;lnTpS%Tk)WyP_
zIbhO#E<7#*RT@%@<u<-Ge$BrYzh*CpGW;?4zorWfNmM*WDMZ%uukn~B0ai~fj@JMJ
zjlmcy&E_D;6|MID&zO$AGsxq;e@=e`{{U!@*_-|fH{j?z6Y;Z7va|8q+620S=WLdj
z&mYP!EF^LVn11^pB1oU9E49ua?VtYu1PJjrf&LfC@#FR!*6;o&_+w79^Yxt?>MMA>
zOQf<7-Z{0jMT+*+47TVO&OkU>_X58Sm3V_spX#{y@>E;)erw44eD}i1!arNf<;_X$
z-FZLBdFX#TJ{0iEc$>o7rl$m?-RLokwSbM@b-Or8Spdl|4&dE6LV6G@l)07C=&qu1
zG;C3W=X&iJ!TJy3?c7&)@bATvd?@&hr1;Q{(Avwk<RfKevz%<0cixQ?mjjSUQafYL
zymzLjg#2l%cwOfEU)b*Djb#UMmLfyNDJQ!`%1QqAc(2lEN;7vy=AOb-<gTpI`sw>9
z_{L3dz*gyQ_>vR@ukj}tAoS!{?VrTo7e%ao#@3!B3+0Hln-|<ZVU`lBW4Oz9_r-rO
z{{XU|jHJ^%3*uxGxNA3tKosDFmpK{gGQi}D{cQ24#Jhh0e#1BVE~h-(_3s+k+u83s
zvetTGzPV)`0^wD1GB@?)*YhSnDfWCysX=|T{{S2QNBaka;^<}`5!A)je)q6z=d3OB
zW)J)<<vt*?xQh47Xf7j_Trl}@^6p=3WH23j*V<kg{{VubTYk%*2`2H?)uqO%EE>Rq
z_S)Wf_eu8nQsNaWz)50>kSe~=P=Xi^pU*~(@hV>wc;*ibX;L%Y>JzP`Y=uS@_?3vr
zAS!Nbj+n1(_~oH#{ww%3@v8p-O~j)~@ivL6S#yuvK?F84$fdD`5$?`=SMHL-EB^6l
zf0LDKJG76`U)u}*3Qh2n_Sf<6g#0t`eCiEp;XQ5yv$wg8trlxipKE4Vn1)gIkf_2<
zrz#i%xF@;&s4e_a@zeGg@m`3d`)gFt-rHWVw6kxP(mOeo?xc-E=2rVZow;~vhV6h3
zYx$A*8{!WcS@_Xx{0}3+dpfac;kA<P<}}F!LmC6~9N@EIM^<15Khjt1RDtxnpA2~G
zRvr@5wFoA&pY8YdvTIjn?M!}Si+LnS!DGZrwXy;Ls&QR7yd-e%mJaqgDA$zLq>tuj
zSJmTdsbP)7sM-d?8-_d;Va5nNdvj1}w`(+;LXR<sM9Qw?laMj!dV5wUjC4luZ;7wG
zEM)VaO1PfH%e1ERX(PeBAvsOnUhEUbaoW3Ihh7TtM~pSQ5A2(18aXFVDa>p{&Zj#e
zP%|qWbU;ArNEP(7r58n1*)(uTS+vX69vj!S`Tqd1Z6J{z=PFxiD;l>AAt2xc8Eg_V
za0e#8Q~m<#HrE<{z2Z0#p|RDqMr$N&77$t6!(^Gq9bq{3uO`qw5Zrh!^}IQ8ByHjZ
zA@4u}RMV1Am<gLD8s*gHD|ODmL&`uZ8|e)nPKQL&Ep+=tRJOH6jx-qgRYm|OsXfU(
zNhi6l=+C3i2;ypEUUgPBrxes1`%UQD@=LFGrq18WKS^#i!#urYblP<!(~@6hEmD4M
z+1t0OI$PV7VnkzsShC!OI3JZkcR!kO9|EbUC+_lV`sz`;yFZNRQnYN%Sf?_4tKW~t
zzdJu|dnoL_KHgnpdulp<mwMUAKfSTHO!ViNo7%rZZNnt0dUIb5e%=;lFN+!up~*L%
z6w)8AbMsxt`41}<_$SgD3;QO6{{W|p{{Tsm{S)+WT)DM-Z0Y|1?a@9!w`ojaL`MgK
zo&fa!0QFPEQ@mT{ARWh!oMS)zdd^$PzUjfwpg*7=N@<bVw+20bJa8-d22kvOV9GaV
zSrmpi!nQUj#(R%(j<q%X)5GDkjv<8ePdUlK9Zx;$6iXyl1z+zR0qczR`VRcmx{RKD
zHg>LdnF%UL8$mxWZkene=%rCRqY@e2u#fVUIqGn6?b5d3w7Hha?~HPJ5tUb%DKV*I
zg$%%85_)GD?V6qs4?_wo>ND^N&z8M9ahL1)RrIm2vA1~RxtT5J+Fl_b3m{%pvW3CH
z<P+1iU)E!DDKv7^OuHFmf8Bxs<P77}zADa_Cy^_>4p8Ha^~vMY>syxA{v3_`(BdW?
z3(KAkau4Ox9qEp`d-=CE_J~PRo^fU;j;95-=ieEvBU1eXO9jrisJ@)KOwyFLjrXir
z95*K*ft+NLIsTQ5*D}bhB)zf8>OubiKmB^sOIW^Gm7{JrC9(kTp2D#b_R>csfMy4k
zU{6k`9mlchS}5OQ70V`8X3BMJbmxz!u&3V^Xqr~&yq4*VezmI(p`=?zV_SbQm=Th_
z{YOky;o>-on36rguyKL3@q_EeI6T&T@><xmmh9{FtCzj8jJh)wQIbal_3inZ-PWz{
z7Ts=MHcNyXCdkhtq2r}<9vbm{abnq`Tp-#2JvhiCKb9+|gI$v{+wCf@q^Tz$AHa`V
z^Q9T7UdN`Y#lqJxEUsd@47<v=8?pDjx_AEoJ?hNMb!Q7+*-IpE2oftJ5W^VHAo^5r
z%W5zG0Mb+fep1-yfsg+HSNRpYC9=S+7-B<=@yBdpw!WqjC|&rEQF~z})x?D-UUz)M
z2l!7N{{Tv##5akm=}>se0rOm+vR#GFQh1Z(atSyx#sTZw*ENN2Y?Ep4rV<`V8Keg|
zCy($a9<|VTWoK&*TS7o_b7a%Tq+m3*-#lX&{vb&DX0>$GS27!I=+1s!MoVu6&3k7i
z$ByPT1zdsyE^)^>!0%e03tszG@s*AI^1H`sUglEenBpWZG7q>J&p}!8S}eZ~{6V+o
zXfJFe-RQHd=n9@Yra1PkPla=vW2?^DSN_SlIb8g_s5$SQr1bZ#p`|%8WbaWkoR?6$
zPc_Ek(~YcfKvrxP&usd0TH2n0Wv6&*(^;1P0L#0(8T%xPtmQL};Ks)aM<aL#9jYta
z+jY{{_xoa=<gA$(&z8In2V!zP>zmWjZzYtitcag~B~J&Oo(Eo;J!z$VP)-S}5Uf%}
zj#r6eAo0hb!2JIJ&TBxz@UO`1K~Pu|(T7v?#aI^VV2P$tlFUiYcpL%8T#x5k$!l!4
zEYN^mx(suSboC%qN~%u57_E+LPBNyw4607-5rfx(!5xQgJJ+a8vt3%svXQ<>Tye(Y
zM;r>^_eT}n7b<qMFje%z@JIBoMuK-fN<;=3h~$r_`Sz|XQ}>fcW*vLBIju5NCX*Zy
zK+{hU!(n&_uMNOI;nux-;V+B_g7r(E?MOmf>J0)Gk8V(_5xK)05EZg|o;Vfdnmyxb
zR)1leb|NgLfXacM=i5DSE1}b5ZGQGGCq`wG;&N9GLZ~VW9FlM_qd)z6%N1stdks>%
zRyzCWbp2oBzPY67vWX$_4ZfqNhF%6P?6SmQ9!!z&J^8PiwEqAq?%8io$R$-}QNdh{
zf%WI}&3$37co_UV_=(|dS4Z<M;F9XynVCy4B52Z6l>}`l=NTTkJ?q5pJR7dsUtL;S
z>GSzeT+IY-A#l4AM^!4!yGS4mV4Q=&#chSeLfSry^%f$8tdlqgAH2$fL|ObZ>Gh}*
z4=H~BLE62~<}20g{tkRu)ty&I@V2LRBsf-r+DU=*KPGSwbI^CidPT47kNZX3L?&+z
zn<ZcZ8_A(XBh|JvgagkcdU5H|^~!zDdUz_0=@aKjEm)Ai05gy?oMVyep1fD4_*+rE
z(=OrFbe1vP*hrJa-7;0WA5ebl5AKuKn)G{5*>B<m@Xrm6_lE9n5qC>#YpeN}F@wMk
zt!|O8J&dEjTC<`26*dka)cjATLnMDJkOZ1mQ;vUm@<#o>>ktnauP+mfr!&x@gPa}O
zJtM=KotB;PZpQmd#9D8SY}(<V1gMU5S98e(7gCNm;Hw`&Q~uL%+e_iU3}3kUqtx#0
z!CZ8j*(U4tgwbQ+`wcmKHkP`bt>n55-OSA+Zbf+J-L(}{%`1)FdG0aK9Y4hzFNgmC
z5IjAjXj<or{{XS4iuOyCOMMRi08t9dZqa~c65FW^9k6h_an5sIOln$u$Eg^;RB>Md
zWPLlq9xT>v@eRT(ds{!j95TqCFa2}}nydRg+oO0(RlIEZ*B46`@8a7OYJXD4C%tt(
z7|}dA;SDoVveLEbwJ3EMqJl`@N)Qi_vEHEHIZTHjf*9k{xvvgs_8tV&#*LugUNWqv
zZSNhsHs)0g^AP-ey*hRJ1u0*f&co#DdGCN9`&0I{)HR0+QX6aJjh82BiYQ^p^e5&&
z)K}YSs7SJfl$jTh00TVx;=X9mJU8Ia4(rY0-7Rlo)Fl%6vx%V$!gdWNKXgFJ9P!6&
zRjqf$2|h`eP%51BeCjdZ?gjq<_0z=5+R12C6{BN={jK~<q)Fmk1H+}2Zmlh6x%sdO
z7cwd;;Qs*E5=VSyzCP3o%C9aSM+HK@)*xe`ECB!k>&1OJed5c%Jk1rP4JO^5Y|kw6
z@O!(-yYS8{nwR1?iL9gzrZg7L4nwW95)py?B4m(p=t1?bR|QeR3Nc5Mi^E28a%}Rg
zGfKXMh$2HJ#F+qOZYMneBp=LXzJUFnJQd>^ekR&$`i_mLM`vRc@+`60&u}D>)5=92
zN<Ib|n76R*c*0MPpByc1Bv^b~e*_=^$!?bL3=H4{6e!(&{<WFmFBN{!e-`{$-Wl-a
z--$d&tXwIZ>^7I$g!1fM11ylmC|KegZkk0{S0KBn=BpJ_T$1N$F8=`4io(VUYB9O`
zV{4#zv44LqfvLwC0k_F%EK9WaK61uJKR;^Yyj`MryTn>e)|ug}FEU4uWN#$)w#W;N
zHs-jvix>w#PMJ0Nzj*^{akN_S`&;f|AeGkR=Undvvm&+*c?E$3Adz3Ezp$_T5+ma$
z?VoKQ#f@s(&*9&~%S3CfL&iGv3lcT7Nxn&RxMflHuoshZ%$A9r-elNlkBL(Y8g_De
z`fhtMsOIeUJ~y`gnSLi~TC83fi&6088lB*8v)f6o*co5S8{9`7ytBI$OqbfHXyo8m
z#J85P-D;9p*hdsLJHagv3o{`<y(Ax;Ki*Of(zqk7e)#^=9~?dhd=B_O;_ri>utuFP
zh5RKYqUpC@DW41CuNF-s2!7LjeibFPvTen!>@9>5gyu!s-a`Hp-9(V8!)~EaF9kw?
z5q|Fg@CQtGuh4OM4lgg1BaBH(OPiOfPiy(<w@+QZZzayKnS!ZT2JZ;T#{JsW+sjmD
zYjV6=RqI<b7K#GFi9f@^&V9c+*|66vB8d}HA~)JMGjh2jrbaL`&q~A8?e6b1TfIG)
zpEUx4exQzh>aDf1UFncpO52QTK4-yk>JA5PN8mfwD$Xao+ghUi{oHWcNit3(icmpR
zV8DUKc<;@8{{S`UX`Q2T6tTee&(ghK^_tSu$6^5kAcLG8-8Xg}I@gXptlN(VuYSLc
zb>Ur;)P|Ivr~lWpqv}&f@ax33g}_;~jZp2|gT;jZ05^W!vtKayTKj&1qkm_}rgLj)
zAV*`LEs%0fILhZ8IIp7Y>@_<t3G2%~A~#wlrw}|GZnK#Ea50{v>t8MWE7VPohIH7j
zyucx|wGrI721bm+xEn$Mtfz*-ZaN;rt25SdensUg_fkv0=z0f=^=WjU2x}MW3N@{T
z%!<l!j6~VzoM4=TiujY`^}A?a5Bv$H-0U*Ex`Kp91TG(NU<azAjE|*#5Ajc4)tlir
ziKUK1nCvb#vBuoGh26(a3E+-8SL27pPmNCxihL>I%{DdE^!phaJE<f6_u0+O#Aa|x
zXKSj4kb}v_Fgn*AC^;)5pE;u`IP$*d(!LXwe4?`w3!Uwri;mx4%Dq0yNaczcWRYZz
z5l+K_wSWW@->rUn{AKv(;{?>T4F};*+AX4hmU*ph{P|=%0Kom*?Trh9NEt20MhHJS
zx9th>+QqG=y4Lk%k~w9SW4MeWVHoTU5RC(d0B%;t1mgz1N?1oIu2y`@!Oq;w{Yv=F
z;mvEro)n)-(Bb<`u*q+G3<DrL+e)(-#s*i+3P2q)MSHjW5<|!SAlAQcMwRqits2u+
z@Xn`YHt6LL$kx(BEJydKtgp<3WGTi$2Lm6PQvTfjCGkz%T4%#=3eRz<VOl~;#)`mm
zxw1rQyPUZL0CQh?e!<_gUFMzpNO(f;$GU1AO6OQe=9=E+yoeU$v`O-q*M0--Ez>8A
zipwy@NoBQg+`6>?02Qy~j=YyHojiRi^6tOk&*~>qk{FseFhefpC$MAGl6v;%*1Ye;
z7R?o`vjtM|p_FbTX^<VmpO<$aahwu)&3c!JG}%7iumHYZ<--oV`WoZ!*<REs19pB=
zbAZF4$mjCGujW2<rK$ZhrH_~{HKV7yLvsOzns;_|Slr02aKjP|Kg-J>yBlFgBDxO@
z*lGSQoBk1t5g(H<3b8bbA=w|_StpYV7C<2cWA9e>yQ9H#adgvL7{1dCP_Sjd*&91~
znN=VLB>nE4NG7rL4}t#x5qwpsNiV~_KIZmILmDz8pz@kbaviX8!>2_!0AoD+cxlSl
zhNcxFo{vNB<NFEtbK*C{4Kv1{1Fvp$eM?tR?P;i7$8o1kBxFhu6k{#3;Z8i&Z1lx^
z7305$9x?bu<4bK<#@c-PJ<?1*-5t~@5Wy)WXA?pSl?31rSQY;6E9swuKN-Fz{0#90
zl6a=h>>C*k%fKRdNSW{%xKMCYgSq}=h64vR`bqIm;<vzG+Hdw~)_e`)spPl2xVLj`
zVe+H6hUv0nSf<)lT(|H_p<DQ~*0TQ8zwYOxjOBrxWTk7T_<x!F<bK&+4ALz;JE8nh
z@atPcaT!Ltw(^-oS8&KYx!PuD4$~>}#sZKyAm=sc9v^!@8+Zy0TTC;&X$(^Cfl=lW
zvJgve&Hx{HZOaVfoK?LR%fvn}@Q$_czs6$gO`mtz%MU0xiPLYK%IPF!823^;fs9v>
ze#w?Hp8?%`Kh-2%N%TAWjVwrnkbcD>Ovc|MC@YKsxbe##`PanVb3U7!(xa`r9w+eo
zSiSf=@uuHSy>$@VUHN<56h?x60}+Fcqd6JifyuAcy=!c7CaBUfn|2c}#6ZJtHo4vN
z5Ho_KoF0|=qx({LM*7O?A00&Ol6gz^f)tk>Hp)j;A-aqK_}A!H!mkpaiC+vfe;7v-
zIlO^olH3IW^1B@woMR)Ck&GJgF$&L_9?VjbO#LAJqco^KDt^cR01dt++N6(l;SGDp
zmPU(t7Wa_6OrlUnml0xwh71cRUJea;55p}&;=@~uPejUJx~!3IbdAOXA!dk&03E;{
zp^v3|-|X@IpYb#HT=B=l85&t;j>Kvfs?1eY>>JEQECzWC^8zs6sqhbnwz@pND1=`_
zFO~pMJk(vFC@NY_jq<l3o(Ldh^Tzb*-f(NG{IvZJc-}PXQhgiypS}6Eeg6RBSg-89
z9GUbu;fULnK0s_kEN+Ch*9u8>Y>;;3HbY~f{Id9Y;v4&~6HP6vBvQ2Q@=2CeMsVS<
zQIud1N`)iS1RPiEM~XCitKWoo_qNu;YuHtctgRt;2o*$tv2fV$l?*!(k)MfwW$%ZY
zbNJ6y@Q$|-y1z@OLh;Dp$FOH|1}dL<$j=Nvhu`X|r7I)nFw;?tq;7w~K>Ta3_#gHI
zm|EPJE<9Nsy@I+-+k^|Z?Fdze-EcT46_Y)BSK$8u!)vWR+u?qpq*<U4>9#tQts3!#
zW#1Viwm~3$EBi?JmGB$kH^#4lAMm8UC0N0CV|8!kqoS(GZzvd9plp1SDdZl6@Nx}*
zExOO_WvBcS)qHW_FC6M~>oMBgNn#@~i&mQ32&iQ!cV&>|h{y*gp2ObCsVO%~FIQ*z
zY5AWGpH=r&S!k8l=c)No@gKuJJ@}XVFlk;F_-~@!>(|<&TTS+RBo5+BbTg9WnPX4h
zAW~#>P~G!hd+;m%2^sN!S=24{uZ|ksuZQfCCT6kH&)ctCBjw#Ys@udz@hC~T=-hMt
z0Qg74{u=P7!dp!j!xk`UI&GkxlG@TWjxB((Br4-MCnTJl_2#@2S^c7X0paa8SH03N
z<JB(o<$@z`Z0gKR(*ywI-~d6~PfQy96Dyme2}O5j=9ub^w4&m+J)ibw_+RjE_G6X}
zZ^Awh(I>xz6m3&dxBEt`CidJ_F5hvC5;L|mRp4<{f8eoS2Ywv>+JCUFuj5}0*;)Sp
z!gb)MPZH_gU`4-{Jvm6ev65aH)@wr|#vGIq2;5+(Bj)c4c*Dm(5jB|gj}hHLrP#tV
z6hU_)gT_H(1Hb!681%2F^?!@s2tF8iQ%kV;g{*AT^{dgQ&355SsJd?^N8PoNb}1*E
zj@7@msOFjFM-Liv=Ubj9{{RNcd{R#me$0M7_+=H-8+`}FlSvVZW(38m+QEJ#j|3DZ
zSti=Uk&NfC!v6q*=xN#qz(3g9KZSGa7cl966TTs7OL$f|<u>tJIn*xiS_sve=H+0u
z&f|w>058l%d^7(51X%c!@K5$D`1RwThdQ5+p}4TrG}vrWu0mTw=V&)`+N{edl*cF9
zVw@FVqbPy791n5-0D_8mzu|ZM6?^u)@CWS2@SDc=zwnIs6G7E{MX%}>4-D>Zt|hm&
zir&qfm|EmQWZcDFVn-#%%%H5sqNP%GXLTL_01N(Sy~Fr9;<E@-qOWts{u_SWAMi=9
z*oVW=cn|h^TaOvvUZE{>p;%mAYMOzJeA3)qNfK^7099~_ovNy<$JgHie{1i6{{Xc<
zbZr~MekagwXMv}l4SPwvw}LRF21mJ)CbN)&*a))Z^Ry5N7+(u~VgCRG;Qf^+kKniL
z=K^aUGP-!}@9exY1lsnyJd4rwE2xCiBxqaj+&pnc5Ad!l>8}X<N%4=0HF+Vv_<gQ;
zX5Kc!PpsYPt>%BUkXqebxX)kS1jl?D{7W~+Q*Kpb8Qts6DQf;-<bPh|cv`wa$_XtT
zVzgg7{)VT7JTLnf_zL138^%8cybI#1V>!5#%c5FCs0j%fo*UJSNMry2Hy%I(D~kQ7
z{hT#V*&kcIvef<pT3L91P`6C2pn%!k2=Rto9C^vu;JWADzY;ztSY2CRLvu31!tH)_
z3X%ckoC0__IX#VS=zkQiX7J^Qh4tuU#+Fs=ueABT&vyx2<2%E~{2T_tu^mapd6;~4
z(r;Ji{%60LWpS$)2)7?cr_MWmO!!Ow3;X{71Ua|xi|Ze@@9dYP?(oK=G?zXn(Cniv
z{gZP$7LxwjIL7a>O(ESnsQtu@Wx$D~Wd11pU!m$E;jW`Aa@#<Wt=vtukIS{T7UzyX
zPC9?7N5WtDC|<MSC=P?JL#XSP-~s1dHKNR;rq?lrSpgsHgO0WFpZpcG#NV(V#vj?{
z*TkBq!ygT5el@q%H2Z;fHkWMg1(>>z?XgWPVH-Cv?u|htsbL@)P)F)K9pVj4JmZIJ
znKqTXU$>F@7ZUIkt4E%3_m|sGMwZ;md-rR8&E3EA^Zl9ip%;kt9R~5X+v+y42hU7H
zFh5-FV~l>a_LuGb@s2$^M)23d4JuKy!g_m~l~*kr>l);VeRv211ln6IylPKC?4XWC
zeuH?Y{t0F9GsJq_zZCxfWS<kA2J+pUE{Ctm*H(qL@QHhqbr3mSttg#A&V6g}!}f&z
zl7DMYgSHRi&yC&^)pXkgx{)TmpJevp;#M1r+(jg+yUF=pLW;l)9@Y9K9IlmY>E<;w
z(OcJV$k!9%bm{OMIA)W)rBS(gMP5mK<tO(ZYw*9sFnC(qQt^}O>85H@FWD@nc;%hd
zoNt-YBLrt|6mG(e$2sI5z5f7aUm9BY&*3k`-vww5d8k}!9vjts>&xau+}~z>k;iKQ
za2IgMX(VO@3@GjS80jQxC6!4|c9F`GI5<3m_*dQk0I|=Fue>ASFNjyx5-q!0cxwJq
z=OmVBjB2Fk<qTW`6lD6E`)pM>N-lTM{(h9D8(84J33xuw#Tsx;2f}_Q@ty6+KWewJ
zoN4-VDH$mD2^^9+9m6t$bAjH!Q-5T?3HWE>_rxt1SkZnB>3S}t*GLxjc{MF@>|7D^
z7MB+BO1R*zaCiqN2jh>~cS^p~t>BN~tomN7t2oBZYg&#8VjzWghe$_NKB~_tf191P
z`&IC(Mfm>!ZFv>X#4jJ~8hk_rmMbf9Z*92r3i2$0l%6mc{Y`oGs;N!3wL0m-+cWaV
z;z#V`;r&bFe~Nr*@w-~G(>0A}R@5~$(d-}^wz~dw?D6c<Es9#$tg#hkxYTYHQTdV~
zxPk1R70}yBhD%QY+0Eg&E)&X@@>`X>*X|R#%cv@dY$9%^-%Ui?Kr1-uUt@fF@NJck
z#SKeZy16%FQWp0fe1I&|m4zb@F;F+K5$)V^NCU7H^X=vQF|$RcU<~ygKMz{|)bPu|
zEUn=v=9!gGY~+-bc7nQ1Cc4|tPb2tS#ebw$YO&SwoUWg;P;M?;$=S7a(RptC%-ugk
z&^$R~9hR9CR?w#HvBUsSSe9%k?!=Nw<dR7wl50LvWhG<bdg7-Dic3gxPkK<%fq~k;
zrm4oAIH*%rOJn&~b?Q!}s@0Q}o~^$9%(){Ynunptt!aF+Iql75wgYj}rJXdYHiyDg
zNEz$nU)$ErkBIyOtblQM;dF!!!|Ymx{AcP%m@DjXdE?T)Tm8G@^DI6Y-42VS>d}AS
z8lG|g0Fi6)4<92Jk;YQ#IQ}WG)cx=1^Hr?!P+eg!!p!{gK!b-RbL-!q(ypQ_D9H5$
zA8LvvKtXldGBNmftC6W?AvwU#JMekOzp(9J#*#<&bBlWqF0!<C;AFc3KMp^}w<m(y
zJC(j?2#|od$KGR}dhz%Um6c-!(Y_m^Vh|FeY2~m_9@zXVBxyRfp&*#SFb>CSGCnd-
zZaZh3cA_*d)KR3-cg6aH>UVHj+K^*Nl|qbyTPG*33GG~bQ^^g`l2*>v!N*aKIIfOA
z4(m}&v0Pfnh4K(f@;5$#%Ji-4KZSlPzaC|^tedh<Uug$DFcq5^@9XVdl%p6$K<wq^
z__R2wWBV~p$0Ur7djA0R>$1>fx3#udujAdc5=rVe4De4Kfj+!fsrYZ;m&B)>!=&kj
z{N#A}Sy}SHWQSP#U}1Bf<GptS_E7lP*1lX?W5gGgF3_(|nGZ7Y-x&RPt!ZVrs+v=!
zC+Qad03>->oWl(dcBNRaSta?i=M6H^Ldo`}Wjo6i;C#Q2Ir{ThmR74B?(|&z+1;L>
zhtj^)v;B}hC0;^iySvjY@}+{!eQb}wAHn9c9Gw3EPPMIN`xWZZg_7&UdR!xrz+F2?
z0qRPntAc)vYu2H{S+xEPH2(nb8Gn)F)#9wOo%!)J*ZsdA^FA)Tw2*@&XXIdW>x0&m
zTQbMyVBj2MA9ve|{R_4Ijr<=Qqv{?kjzt(Oscm-L4%t}X{PHWWv;CMp5b5!VZZ4&{
zL!8MNyb^!FM3=iU+nV+1cx#_jvW^yCJ1@<n!o>KKkW!86V<Ymr{F6U1p(|-Jy90+f
zEAP}C*IqRbwA-!B2g+pHK|Evmf1Z{4G@r8{?9c|;;MMMMFgJaTaDJ|r2OsA(-)SEQ
zzh_N7e$RE`N$+CkgQ$I!^ZwPPsyAOlUX*+p;tHSg<u6%B{LUJlGw{_rL+cItMqlKQ
z%SX9QM6}U5<p|Ex$j4LuKGoLfnqIYeZyQ@$&oBgh>l?C;a56%XkzcC1CxX5OXl=Jk
z_<5$vyzLr>p{m{m&r^oFk0<gT)$SSvpTq4lOiO(u!2S=nk8pjz*&b;QKZ`TZDBb?n
zGg_|%GnM>D1@mw6Oy&Ooh}V(1HAkLb_Ud1pkHnkZ1H=$Gyt%cK5%*hq82()6tA!ZP
zJRf?qq$SRs;!QhHVH2v(g+QL(LnLJ3_8^yW!WQ5R<a$@_rn~VQSnwQOg+o*Q*GG{O
z1p(=p0)mo~(o<1VKtei{kQkjKM@Yv61O$PJlt>Jub98q%qop@u3^w+>`@R1F+}-<)
zbIzyAD>FI`1C&y^)4EI?nhb1h639WSZpBg^`#{bRQ712{p0OB_wE2%MpgZ?o{*$;P
zmW(y34Z8;JFzTggpfm}qkS%Z~bdvp9S3S$bkBk9G=2akbhg*y(G^$01E52aW-0{+g
z&AleGyih^eLo!^QiDk=SW+t4+<*5~QZdwFVG;)oe{X_Z+UaI6R=SX2s%b@ispT1C#
ztxh$FVo`g2O2H340jI|f_2%-QKAEd6e|@pp5ay-0Jjt1Bzj6gT-py$hmq-XR|1jAn
z0V&`f$ko2MKZd84I(&bv^uaUjMZ77*14ASWDGVai76l%ZT)ZeJtknHSQm>O$coR#I
z1AiW6ZSh<0uc@&YncTO0G$CxQr@eW4|4k(j#nvp^5nuR4(-Ez_zLUu^L|KIPsq*gF
zt6OpX3lX@K@y_9%-kBX-qzCS1(>?x=q|d-8xCo2u4Uqadb>4jTkTeXCMhc&zSJ~v6
z>509TvpI4yo*%gCfDgVq>b&9kyI@dj&igH>0Jd&-1(WVT0wS7n5(|J2+PJ|I1`Rb0
zqFx?(IS~D(+-EG$lk`8?(>uSsTguHFYQJl9X7~+41+?vVvvUmL+qb6ox+9%SJG&*e
zwFQ;KY%HfK#y?Pz719R%yTS)ucjbfox^fxO58k;D=1@DSUj3U-QWp95`qnDqHK!r=
zrQ^0}`wl3Tl9|vd*AEj^O=76(@U;&<rv0`WIS1*e;8rz&1RRy>`ehyXM9_-pu%a&7
zf_sPP8)d5~H$;Vi@bJ7-!$Q;?Mm$PYY#FaMU6&kPU5mOY5D8Al5H@tjbiUb)&(@gg
z9Im*0W>-ed#lg46hNX@)H4-=g$9uCv<f{6u4VUl=;UHQZIXInUF*gy-(>^7Q)bG09
zN!^gQ69RiGymAD2za;DrosXIB3j?ib7cP6^PJ^D`6x3)k0G>H+5`7s$*u9cN0s2v9
z&9~L}_n5|kUyOE5`l4Hu!<*qzIn8kYU^HTNZ2YuBuD>ci<9=+!X)A2grca600a$Gb
zXHzY44B<i@=f^UCuJ?c|rv6Q?b96n&=|AM*v=OXHP0_vuFI8eC46Lz-2%EK@9A40N
zh_aW7<}@+KB5EpZ{&kYxpRfJ+eb+g@A-6nkxS7~Jy(g?KS|-xQ;TedC(uQH~?z3Pd
zXQ1}%`qP(6HvVuMX|V}Iejt<)W#3C1*~W);`O^a9Xb~&{TOPdgq4wHP6xh{K<K-oL
zzGB(I;lGl=QlPL&Ap;+%7E%&7A564VhXg1L1U3F7rj(yNA1}7!O+8mSM8gm3iGCk4
zD9*zMESFFx!;f<QH{<XqlKps0{D9gf!QZ}3a1-(X?@A0*W!B`&-*mC>v3y`~m-B*_
zX2~J>km9lCP=V=h)=ke!9_WukAFI1S7dN8t2^rbKY(*LJ^k8ivNF%*I!^X7gn+prO
z51n_XIEC7ic*R$Db`WX=;x*I}2z212k@1E?xyUDo(!0dJ%m2=X3eBJIMpifC?8*|r
zxT!bAxy&4RE_sPf4&Lm%$o$wig8JaM@|{0kDuk35H#6nFnb;FQoNAB-dONc*qc4Dv
zPrli*0IIK2MdbBY=SuD(0FfRqEcs?Gp1lkBa`}Qcc+<l}sw?0k`8#axz-sc2Rh=82
z&J9zPD@)|<S&{7JvdqAI_gZw<|81N`g<N8Kzdxyem;K<~V1PYE+<_1TnPP={N2JTD
za&g~e;w^qJbt%0z$69q)9r$iid=)++%>N-53w@Xr!FbjH131{7q$;)>b@?}VDHAtE
z{M-!j5U?LK?Nx^jbz`pW))#zSI6}Q?ekQf51h64o$5s56M8*~6ZXH>*SSk@0$1S{a
zWlLHcOOVOmh8V!g5;j^TojqdgafMJZUEpouP);?eQ=K>jG7*M)52X}3n|EMij{Wtr
zS1kYFYt7`*zdJ_b3uL?j105F!R_foto1NeT0U0d+qE^>`B$~R<)9?QI7vi^IQChj$
z*ufhT1W7f(tK&9pDJX`6u7kVQ))+663W-*ND{ZVk!64*Z+&Xo-ZydX357!T^wCO|e
z!70q?RFsi03aM$!^mhRTqlS9(@;pbGyG&b32Op6CE9cbN#TqTIH^7A8c#d~Z_GAzP
z)i0t-T%dg6C}mPsfa}EcC2)7K@ye%AImTn@1R{4S48&O7{Kmfv8OaY4MSp|$GU63W
zI>y|x0v+aH<$ji2#P{L?>3D_L;|>IVVY|s1#%b=;@71aOymV8#Fn@Z2`}^`xhmoa1
zaPT+Z!A42%$}Zzo<#ny*QW{J^v#kA*c(skgQJ-RTt5;U*+7IgL+aHX4Jr1w|a|iWd
z2xRnsBz3S@5#5%+-&oa-S)AtxU!KRG(PAFbL(D9y<Rldn7A_x$3v36XUW-O3J^X7$
zPZ&qg`2;($h!eT&6J`!<Hcv-M&9&#4ok)0|h&)J<X}?n4y+S}+o`p|rq^bLcd$~;%
zY+|#7nriA)Pe)3en6iRCALyscgS{gCGi_e0DUf?ID=olFl!(x6hvI)E&hSN3hYA8S
zm{i|_&-2!d&o?=htgyzhAHGZ`1|-j2)_?GB&H>soAT=;N9SlPc8@qww<qNT6J?Wv{
zB0;jQO)Hqg!~><)-}0|mS;(RnsXb0hWEii;aPJ`<pAgPti!`gdU5NX9(Dl(U8Ha8*
z-Vy041>;AtQtFIc!tJN&$*%`r3W`xMj)bAvW2>W`Gej|xYxtImqhcSez_Ec<qQUx9
zF}fM?ILHV`9@1@9S)O28kAFz9;W8JmV6`Q5fTSf2*>P0AbIZ#Y+Z4x%56&BjlO7k#
zF2Ubm^KqYo)UXG|eK;UtG=#DS3ql5K@5tn#bi!Q<{iWn%8HPSgSA2RESZ=PC&t)FJ
z{h;yG%>KI~DMp955<)_zVf8w(cF{<s(8~blOOZuboDaW44VW(|BWv@0@R7glN568!
zq6jtq@0I^5u<GQ0cAFD89^$JN3Sqaxe@1f^y9I8@3o16PCHcTsD0zS(_oY{|UfJJE
zjHK(f+(AatD<qHw7k&7uo%U8AU};>YTw762i8!80%1vCg{M<IS(tK%M50n5RiRCcr
zHGnMWDGCqaf*^mn&s&YzxM1e-k9{ZV(u(?6&e(!IT}JK?b+`Pm1AdOC7?!BiYcnIB
z#C*h`@@*eht9XEC#R?0h1Mi*hzHwxHCtBXZzm=kfYO_eNC3SOsxz?Q`BK@cY7fgJ7
zWra^Ti+#@^8Pr2RO90l<{;9*^)|E)D<9mFDTzEocqRt3eu6s1C^q%`yg1x!p#IKy6
z=sAAHfL*DZ!gc#dT56e{#?DrkO~CdUWR*z13ic(KqTPD@=Zb~k&wRrt^(+Dlw|D2p
zuhuqy+F~7f)OJCZOUJwEJi~&}{Eu66?Jp`U>INxT7FAisP|$+|t6;+931fX|O@R<e
zhVEnNPfbU5p5*0CBD28i_P$VRWbpFl?~Cgj!QCLEZm(TWi+o0`)rAtSefdT8`k*Ur
z&<$PxPv4(fn%wxdwxZZ<HJ_s}sVT+Xk>s(*ZE2tG98ro@QTQH)O(%sEOX;2MR4wq>
z_C*aGV9%zeF5qL<<$2fB=}CREUV%&>c!bn=v$>utdMxjTL&`s=%Oc@7r;tt<y=#Mw
zAelw0yzAzj^D<1st(cYZ8=%Jgy3_7|<LT=3CtY&eiyC|sZ>EhOP+s+9Z<3z%X<${g
zr>9LEeHXna#f5X4s@{8ctBCu)&^e34@n|%HTd3h3UV;zVEPu)DBmQ}Dz_+uoq_3uZ
zSn<Mz=8~aT>Au^`6}N^pvu}%&>v&kO)|73YiSkd<UkHXwD7~nfAdrEhZUFS=Z{0rI
z*gcY1G3ULd&N?8EC=8*-`(sxs%!1S<9P4Q+`%?xaT{t|cIP3dZJp>w@$#hdk*QPGU
zFh8ds|5#7@QSi4~)u(*%$UO8`s5+2`bw4NAoeTm5GWv+tfeAYX^Q*>h`&sXNTlS=N
zH-`Sc$QOxoI{erBBwy(ZYOdFf91GEqgT>*W6q~nB)7_SAbo1taKa8(7(Xjc3yiNM%
z<u2E?oK-C0Hh9pB_mb<`xb64o#isJ~ygQmx0<N2NKkmvtO7V1;uo4F67z(;o9rFtI
zvGDG4%k-V{Rdd$^?5owVUrWUl=)w{_F5p_9rtR$J&(aLj#_F7%6}W}Bp=#KovzP9y
zqTVarzjhrz-JfFG7i+LrKwHkB;(OWZ!qC9Z>%t6Z4ekJpf0eILbrTo(*_JR~KdMQ-
zFD@QDy3GL{0t@GNU((+?B_@T~()Xo^%b#Q5jyK;W9WJaAEEy+v-hhcow7<+gO+Qdx
z>-zfY@YU{YgV((m4NLZ}T+LqQC4fEPhRm#%p2@9#YaPz#0T8*<a<!J9F&#@>#;H?r
z=LqIO;fo1gaJz3}=t+I3*c68mk3VSV^<?`CLEB9!{6K7U+t|_`(1#23d(qmeZvKxy
zIx)^nmgsWqoy|q#kG#Ieb^#BEaTZ}ko7N5ujgomQNzTk(+jR>MgIYMM?k8@-Rrcb}
z%qF&79plMmc~h6OQ**WarK{MT#I*R+QXf5tiFcM)yW90!fM(+*@R{t0kfLJ`u56-H
z+%N^`k0-@_4iZKOF&kc@7k<VR6p=bTQ8Q3c(&zp3?eA&mvE_dxkIG?eK~y(CAWjz2
z_jO)>#fDsSe<V^YS~3;-hQfI1OI078q@LaSN|ct3^+lby9l<xVokZCglZWza!udW^
z4}((vzUjM5B0HwLgvrM^phd&Vgm|i_Dpq!f-6T`ghSwZ^+^9LSI47cL7~4LAd5VHH
zEGLVq1N^fY9bf0x9A{q5;j}`Afe(Q8_XE|?fEeyLOy^O-)cTCe)K(fbx$&~vj+*gv
zUQq#x*Irpz(8~#XR38yte8>`X#vJn~`h6^KBAuycuCl*Knd!^dx4R?f0}|-0=J<(g
z7%YlO#Xc(wVw|p^Uj_ZcFM*2UkASv~VG(cTN*<*ov>>ClkXv&b83_>NcR<bO$T9$z
zgWkWzjlJ}GI&&fV7Kt&+kN<`^1{+w0T!iH48qnEd4gR3R3oTAo-%nJcYf2`febt9S
zI-72HUzPu(&=yM%C1o!euxDZafsLN}sjy4lxV9iZd(f3jHH{}{HSxC4HVbt7Rz>&j
z%~1O2)FnE3oW_47kgvqYIhPJ*;5V$>X=3q$BZI?+f=p)$sBxu(c|Ge|p<uW9Lq1lG
z>UZaZpr0g_Z&O;%vXQ&xLFfCj`o0T*H@{74##Vvzn%+tZGeN@Dmwp%{$_aT!L&M0}
zJ0i*@KtBrpD?A)z@5b1zKdgT#Q1<KnV909<1=2{?tp_syyy9@|7~v_#5Xmk-2i|YI
z0>?&Q<13GWqQR}Qc!9cN93W(ZZBnNk3+X})a8938AI-UUi6zKO+U2`<yt>0#oSpmD
zQ6tT<S3IBmaCK-LSrU_{Q8Q!m#D{ayYS@=ZCFfl*2YV6d4tDEDn$#Io-7B5HK7R}r
zp%mvJ#Z^-A5Y0l{NWnZRwKK#p%P8lq6q$;`ILfU!HG0mDH=$+8c^_WWXq#ob^vl43
zlaNntaUN2ItF5IDv-N)kGKG!h6=bhW7z+~0V3rilMm}&*BC7d)Ef%sV{2KQ%u9w@n
zrS#Ratk<^-I(@!Ab}m7Fie@~x2`J+U*zbc~Xh^XeJ6a$Pc7mtYM~L$_ld83!k^xBr
ztc-ff>~sv)uNb6tWA>F?RSO}H)=(B}i}jnk?V<?;pc{>2m2n^EXtEnfc)(Xe8MrWR
z?m|K4X{+}z?9?V91^5RMZW<jbjEr>gNfjn!n~42>^VM85^GxF1tD8-FDzYW01~!#I
z4ZzW0^)Y)lnW}M2Gj6p|>gXouCoa2@B$_j>si@~lOWzx0Z8yt<RaE1?m<!4}Uszh`
zr1Y&bln5~L<WE?&p5w;W88*g_7I5nOkUQ4(jWb`wR<JsHh~%TMMYd^q#{RVJPnK9%
zWe$kk_9DU@0C4WxphLZ1IWMWq=TJUTyxVpa9}d2QZ<Vud#ci$@@<%8E5M4Q+%#P6D
zklB8<IL4sfCgn%He)sP1(nK`EM}0);#JR<7&ytgF^#e3+E~9?y=dfyPTm}Hr?1$#3
zG3ur(w7zKOBM43#G{@yyg(fxes(0+^?ET5rpf*A7wFXEu#O7_fu^m`ZwJ>|Y4_?%F
zs$Uq{cz8*6H?2M>yll3M8ZJ>l8jZ|-d@4kts0`S%%-dX$yaBG$Mz|pFO|B^ig0B=r
zGlISDewD=yoGdBKO^hbW%oJ^MiY^W0`cTPsTH0p>R|pSqjCW7`9D4Ra@T<Q}pD8W^
z$(*Fb2qq<R+*&lz^~xFDA$O-ld4jFfBeq{K1#+4``lBD<AIYUwe@j5{jj~`GkZiRN
z6PQ_c$wYVlDB!oE;Pm5ZHY<w4b{2ud@}=!wr0fMnxuIQT6t@Cgb8p9c+h_OnuM&#7
zHmfOM>B)U!Vdh96aR_k7D&ijF+2<}k8*9w(EgHhyK1WF+>Flhh%wvo~&H9}=XlgHD
z9l;R7U17A5;Z%z~I$9HT(y2qEHYAxv-6v8CH}7N-GwkYO%uJSu{?;7oX|4Ahk`0+B
zI!!jh3Ee;{DK}!CDvB?;ROipW7UZU4&TD?P(jkqBHJ9bdSsv8wc+S&>!j*Pa$q}bU
zd@KtfXl#-8Z3F7tVk;s_GIL;!Jd$B?h}-oJZ$`qA{JnchW4u6F7I_fr&?s6a(<tqp
z;+=f_sjJRb9niM}92uR&B~@zZYBj)U+iK+oTZMdD6~zvqs`b8uL29$-dp<G?Un-xh
zG$f0K_rFOgxhF2s0gNpx@iCJJJ!u9tKacpWKGBcqm*ItK{6``m>t>NtoUFStx-rHk
z#(TkA$(y?G3CXcnSf7UpQ{etkoK|EY&*BI`q$oC_+6@bU;z@6qBq51b)RH+8hXJGc
zAWU(p<J*QWWUTEgt)UbOHd**{Vi{coYU4n`IvRXnv`(*7ssddc6<7h{1Kj<@|LXsN
zF`fj>h&T6-uld9P`=F2S14IVGk_eJPHt3?{pG#n(<9xm8N>R=&!f4#i<`MTD-qPC=
zjaH<N;;z9Bx9aA6&DL#E^MfBg7)<&F_)a5-TlCTesZ60&)gW(7TNbPocn{&Q_7Lm$
zAr7b0`ZcH{sB?keV=tnelbljkrcYt+fVmU0m_`iol|Tzs4-qm8i$w0(N^B@mfBO^>
zE^d(U@vH{|@C^||(_{pQI=kj@YJ>mzkBaSCcAy}bG;A^|qBp}*bo|7Y@5Wa1_rPHP
z6B04OadhuguTt9e`RUN%SpU<FMeNwhNlY%&O&CD}>+A$zm2?4i$@P}B-KyB5y2;+y
zdHFJ3ZA0k|mPDTS&*1Vo{EPShqN?KTA#6b$L~q^JCq98bb#jq)B_O}z*z$acoOJkJ
z$PDS*=K||zNpb7`eIr&iz@8m+bZ5@(m6=cJ2f8VHHWmn8U-WnEVgo=T!Bd>#ozX0$
z3eiJL9i*nk-DNoas|p<w{c8p5s%e&Sw`n$7Qp9DJ-t+!;LhE~IF1b*_^F>)MF7GMO
zj)9YkeKgjLKy^Um05vJ@#wZD6*?V4?y5v3Xi(b=cdLy9nF3FXjb%5n&9vP7f+Ji?!
zXk6Mj-`Z`^h9THm)RDgRjZ84xSst^T=N7jq>oUtlxa;fuI__qC<<?N6#9=G!F$y<D
z3a`-A>zF*$ki{%aXYQ!%SAE?q6<3g*k{NZM>@dt0_CPB+x-RX`mq@8eCjeuM=7!2d
zn+VwEZL}78>oep&7OM4*+Qk|(ps8u&u8p*9s3i|%&9tRNOTJxtmJOOtP5ritn0tM0
z2vmhQoNzk99w@P5b-FDd)zdl6{?)PhUHVdZQ8xLOMLwxF!^a`I0o{H>DfE2vH+%uK
z^DluC{}FY8srpSAiyHYkj<?7gD#QA&i<mg4Y|LbCCJE9f2<_@Y?@#LvKc?r~iW1*;
zs{9ecn}BM6phOJJySi4|o#@`8%bWcHYCAqStMC7hM2V2R{2X<4IXl;7_za#7J;iHv
z$@V<gfXL-@<b6xk+(|Gx9t;4C<@T8|ExvY)3_a*El(?s_DaPTU+vt=Q&*e7y(Cb7C
z8;=}|f;{ksQJdi3R<$&mQETZw2Kj}(WM+16^ggo*PRWC^SMGn9ccI7%m${U=p0n6^
z`q+&I?2D#7k#_O`7QMk#Ao8=W+5`rk&*K%`=YOBQ8n6IO-n5KWA`egK(l-RG-95Ln
zBC2t4tT~DYMUC+@T$U6z-7R7Zw#x_V)y+;+fbuG__9#ttDo$vGu-#p0qBzZRpZOzH
zuiQNz=1wu$^s`~hrwEpjZ25$i##1h!Oen<ZKa$L21GIh&f1QBl#C-98B$TkOTlD3K
z@D`x+K`5Lt$^2GweNc*QuRPHrbDabAmDDx9h}f>!(|8>EZh7wl63z8i5NYoK3g>WB
zDAl$%5!+(EX+rd)s#-wVMt-GnKZwXdA;A{&c}?q%BL-!*3tM^1_8-X;_;286w@?TZ
zkoXKSo9p#mxSA-3@`Bc;rnamPb#--#Y1D1)hr`3`Hg8!!k3G7rI=Cw<18;zQ1T4C)
zVJvTc3bmMQ+@^^3kr~Y>=eTWCoio!mN%haAkXkUHo0o;(RR-K7lP&$hvgm_Wpm9$_
zsSly<Op%5n3c&hfJpYG5#@}x#>G10{uXBCkIT+3lzTVDvqYu)YI_lVttjO?^?F*8e
z(}nLeVBpqMKxE7s`DUzYtb#v$1t`mu9^lgiz+F8&n!EXPQxuk5iT>MPaJ!;_(T?X)
z3FoUj4+7)r6Xvci;?Yxa0<9j>=LtstAir32?lf4(wYZmDHv&gsgS1DrL?+29+U+ne
z9~v7%H@()Kdp`wyRM3#Z8+F=g5@Vdc$8)pPCzz8w!lK*qNA9*VV7N{px7DBVW*fZL
zp~Q$yMV6bbpCk&u-GNq^YT5--5oA8In{g#5o#y6+@)SZCh!HjR9sfU&WVslNSQT24
z>P`0eE13Ps^~jd}sKNkwn=dAOo`s%5_Y!nn+-}8KYX8kXeE3NKYW7;h;c`l|IRC=Z
z{uDAv+v#MYsJ0{P?V=JOwP>~VABhUMfr7&;$%!7xVIQIAZ$>auus{BfB(}KBNv6GT
z&uT*T^enPokm-&)q)`3V>GDVPp1!}049{6feofZ98nJ5VM=cr)R<YIoX-8ktK`%n^
z!DNe2PfcN3qqR0@#7w90!R>#8YApRXg5!8OR~PTv$X~$+xyznlxFFGT9-y4+6{zZy
zm$vD1@6+pGFkXHxN4-xs>lm*uG&RJa!<><Dp|CZ_>KS@U<gg<PhqU<o7h2pb`ny|Q
zs(x~$H`J3VwK-)CeTx{(8lR?XPsC(&k2566Fg*Sv%CJkG^USp6hI!xH%ZgTO4e{@F
zc9P?(5<Q8liOM<6s<B~-Unp_VzcCW9QRgKApf1HSoXW(TeU@;}35Mr>P<gIuIu)-s
z?J_kK<@fgd-dq3qefkm_V|mWT5V?m=UfK%%*CD&@ZPctk4!a*I+~4xL7y&I}ZPdca
z>uU__4b2%?yL^wmtVI7Y8%^#fx1<i#08ThQqQJzsb&GtNtPys^Pk8EZi9un0+8Cn0
zbfVkRJ^Y=5ME(j`P?v2j{G{SM5ZN&@o1>8af-G8A!n8&YV9vyiP*!3mmObh~XSdtN
z{LvRg1mx{z;uAGmyNyycct?UqmAww%r)0dIWZ#?=Dj<3MZa`(P#AKVG`~d3vg|nT^
z*bE;*$LAFIa^Nh;lG<EYU3r4Igm2-;Ca6MqiGNuD;s9DGzA1s&2kKCPj2dx9F+ohG
z&&<C5tZDN9J1r4Pb4M?fT--wqfl@h{XU3$^kKmZ_eofWQYM8zPr_MPerejquXYqJN
zgZkh8-!D$AVDDdZCP5hVGz;ffYTW$qYK+T(Gv|caNz-gy|FoYAyt;%Bc)`iV7t6<}
zWc47}har2Q|432+f4175e>N!RFtE|}$H7lbiSeeTLByIboP@BndZ*bQb%6EilSYdi
zEn1vsS!^bc3n%4qb>#j>vKL+4M$t}GPC<x#xJ6oIT{$48jTiqEtrIQ9I9QGkFt4Xq
zO*j=j?{H6ss+`R+UZ)ZnOyf7Dg!@PJD8Hl&>Ufsuq2dEooaGeP7mM@;-GB7nq?Pb-
zXcQ1-0%hGpQ!0sondH0Kl`X)osHOhCM%<IV(_Tfgkr4eKV4a*#$Nx@epsCgMS!o#q
z(jg_O*y=RHzZE&M{-y9#BfK6k3l<HiQ$3PJouXSrQGJ_Ah|jayZ_*j|b)8O<6Joh%
z^e}HpizezxQSh1;B8o%idefkw=*0$((zyqYS}?d>pCy!jN#ivjvAEJ5LBIp7oCvY5
zM6?P^oVgxRe8d2lg}r|>PB~A2yI#MIr}+Is=Uye?cLw9@DFRg$@x;m{T0js9474q`
z)`8W_TPLVQoFg(Fna1Wb4CdzyRR}afn(ME-TIkkiZC4@u_0<u$fB}RVtibN7jrk#B
z0i<G?2qdcH{t`b25^p)RO<fkmhq{?IAsMoVTbb1(j#oQB($*2JPJAB_7nOhcMw*L{
zRU|WVkkxnzH1YS@dv^Yj`oyYU@>{a|WFc8j5Y#I-EdTWAsj;J__*8wkk`9BDm#9+s
z(GEa)w&fUteI$DLmUk4rPmoS<=C#qU|5%V_skz871?|hiuhxetFv<f<c=3f&#H%W|
z@W9&ve}sO4XU=60{LBXI3~VeA&>$wITI;FE@Ug3_U2e2_pjGkA)tiNf_uA;NAJ%iE
z&5zDRYF%FA;cgAWF3L7j?i59DLk1z;Kv?CQG2%80M6g-X+@dglZqEg?j}iyoRy-J&
z)WJRm;u&73q{vpZkp4M1j{bfDc>rRrY=a<fH5$YI4ZihR4`M(zX#szi1Pr>NcB;PI
z)SCc?RlBXQf|o}J@Of4rQT9Dc%Gw~Z)VGr^&MdxyyH2!0?tvep&ZW==7(@-?sIXM1
z(hNJa`DFU9oe9sh)Q~d&%9WbYRQdeJaMf?j{AqXQE{Bkic~J}<mQ*3+F-o+P_72!|
ze?^-5O0rop(<q!Mf?&nn_FUemYI{cf9B&ZTW8t&R(p<t=*ss^l9}?==-XUBw8Ntp=
z^Flvfo_r<YIET-G^&{M;i}F%Fau?nV5^wmR4`ZUwdnbN2R!Qkux~^s7e+Cinrf_;l
z$7>~FOVbtbocd%Ni(}+Bh1Dl*n(;kQj&D=mJK2bjq|5CATlYQ^jzdPQP%lsBaqBws
z7my@R3%n&!qR3;muT~d8KafzjBC-O7aUC02j(F6Bs`5x(T!sN1;fti0uu7=qO$LE>
zUl;4^^&M}7rrA>v&Tq1{J37jAm6Fe;(Px_IMFLi7BrrPBK;ow72$_J<+7m;;*U=%Y
zOz+>#a?yt_?s+7fCfP#dHpj2vHUE*g8?9_$ZJ0Ig`hU6N36u{U3HZG_HmEJM(Y5<s
zR%^U#Kz0$+ia_2Bz!(UVFqAHEp&9djg1tS2-Z)4HzUOhp)W$ik&`?&^PwHf0-d(gf
z^6<esCob!jGGeL&@!avl6k*qKrr;(;$R^ECw%$>d)OVA@5==jek6DJr7&4#q-S>Fr
zXeRWqH^Bxlq1sJMR0D>E%#H_1Vq<^yqbvH$r0zd&Z=p?7UR;)5&LyZ{8|}dRL>H(x
z>ko$>W)&wXklksrRlW=;`qp`-^EDgUlJ}vUaBMun0qVaMyLa<=y_nXWaQ_(+rWkTI
zNu<vB;ze+E&>c5=FjTtN030y&z8GKSr-L_~!5_9j2ee*vTpt(R39$H9o&Aw=Jf&|u
zVDr49f;KEyyvf?fPD@VsM{L8Rz|C7wnM=m=aPZ}Z&#=mr@_70{?EYgUIp-^9uVt>>
z-YPz<+a{1fyIx5YaT*b{M78RFXz<bgAnQiE!p1N=>xVAh<SIuf{mbOGw$8EY7UHNj
z&lF1>s#(#Pt@Z?S%w8vUS40SK^47%~WPg2SsDLxtO)umgVD%B{u2OLCn~JyrVQ`pb
ztPwI^G$JbsaeKh$H`Z;iCCc@Oa{t#+4jO4^m(}4oRc-`zEq@jhor+%?u~+SzL}bgH
z()-tH{Po+ZwoI@82hqcRG6c*||Lc_A@{GSA(n$HDx+QSkq_U%O3Aq1Aa-G-<K798-
zyGmhPzZ+^0Ou-xCFGa7xaIaCIkDni2A?JPZ`xw4B%S>89{_s}rW_q8-6_;h->Y$^m
z|M}8K^?NOUDk-Y2Vif{5IcA?Wzb6q8S5*Cv#InYXT6(}L+-t2!?&7ixISC2;kA(9-
zk^{ru2O53<P3+K5nu*eY>ip0(FU0nm!qp$bcto#x+oSYHL8qnbs|YVZ*9sFxQzf}V
zNO;TPXlt$VN~8NewiAv;TTMcHX~Rs3?S9^$wIHc_wy2Uo$1+XMY_;J_TeHD;?u>7j
zao>+DVB$%%9RHDsSy8+3$FE~DKmzI@slspX`~TW;a>;zrqk8}6uSP|oh4JmOyOnq7
zGyxXcy7e}b9iKR#4&I#OGP^=1vm$p&?A8w)(pl1HuQxtIpT4JEn5WGQwJdum)=u<_
zp21d^<0Y_A=EO)$dETnOAG3S}uZrD5Ge?b*^)5$lFwtZYvzxU;dmn2VtYj2r(ApAP
z5SwWQGCLMbjtDoBxquG~0%9y>#y{0-iRx#OWd|X>&XUCaqP7xjlWG?t67s3LyBOr#
z^y=fwd=5ZMQPbtFE=ONR-w!eTO6<P<%7@c8=|Wqu)HsJSjZ#xDfA>8p!}z`2+#FEz
z)c@>^60+Wm+;404)@>40!;$<)Vn<45nG<@l5Bg=bn6c44%01)C-DK{v#H;%i!mI+E
zT5Ou}KXXcYOX;JaP5sSyk(EPSt=Y)yerSRZp4Ro^TAz5Uw%_~+vPa`E^(f!8b@^wm
zl8F1Dx-3kU{JM4B->DV86`}9#;u^nXrdX4!!y>I^-9mw^O5#|cVdYIZA1ZzsYt!jB
z$28Z}!bB(a$K2d_#3{YHzluzke~C`}_(umoX_1fzLB_!DIV*97^fKql&a}ufNBO|%
zonU(^YJByL>Aj0jlG^(}CyAq*j??+rBThuLH$c1K3>l2E<KW_9U?bOUDZ#hqH+E>w
zlSO{V)6yNCcIT}q+4jrZErcm!GmBUG)*5P_%09i|9^dDdj@O09OY$*0Pj9EirX^X)
z^7?H4+_N;<xG#R(>+91`Np+>(MWV(JFLojX^cc*2zX8$IRLdoXtgdc|)|qX*B~{Aj
zq~)5~VJj^A+W&**i6_88X0Kr@T#d(_gG&zixrwOyp3s0TWQFw}9=6Nut-;Sq*?QAR
z+-ht{T-x`}?tR>q<%f3F+EJDFp>Tf{eE-$9h{*|xE}U8qrHPb9IEnSLq)ykryw(57
zV(bfnADpy!EcmR}P`dlOiJj*V$K%l8FNwvzDgjmRW$!SUuhu1(G1C<U-hSOK5OGE#
z&MdnU5s|ACBAD39x7uxP(Vy$I{gs@fTG~C6m4%dp#9bmRdyWX9>AX+z1=<lcGZRg2
zku7%?w?{^nhzduMQPNC>{^c?dt8VpBvTwBQ*D$;-8xDw3#2yFP7ry<o|MtbZ$(CNf
zN1=yILV)jb0_!h%ZKUvxEBp16-+wiGe;<?oK0|5!kR-t!x&H0gYoT$}T`M>rMX^aJ
zMWNRAn4FTOmUZ9U?>aId3%%J`>fBCi=XZU*NfgRn@WgC6=`L@ShJASaRH^t}(F3Ot
zGGZwnZU$ut0!}jPn()1#{3=jlXWc=t$h#zMu;pqvii-r=Ll=z9&|gfKSMN?3>DJdp
z&G6xPos1v337as}{r!_dzRhct9VCLy@!A01S_NkqM3!&0Rr^^~@OClH)4yVM3{$x>
zpf5;@P`FPU*7gGO;9zc!<Yx-2o>ZdMJsZKf%a~{fPExPjtMW}l;nJSqz68_-cfr+a
zt{Z-=tVJrH2z>o@qru9JPHCHYoi25TvwVNxk(eEEK1%V>WO*oWIYxvxna8Ky=n9j&
z_5yutOwq#<<W{~ove6jQIV$~Uut>Zt?^`ZH#6T`Lb1UKAoQ==Mk+g{^mHFTPc9HSG
zB==WWIu$2{u2odM2P#R-k&d-Z5dZ1@{E-9;%E)1pwc6<_iWwrW8vYoYx!y{>VVNo#
z7G!a^wXLA}NQC+6#AxVxzQSQLt?aR)Km4_Y)6SAkjMC@C-Zv%nBwQp47`OzQb9b>O
zc2#yWPVI@wM(Rf!qRmJLaJB2>J*00R%k;+7RenAh)ob<g*<m~sg@_bYqQw^L)?@R_
zYby$iM^QJa!*oLE$S169Z+zr`IGU$X@FLwo2gD|fFe?`%_oqYgke=tA?#%9rf?Buj
zcaLztltQMLl&ni5UTZbPOe?hDCPjC!eD~_@Q?kO|Z2IGCwJ&zts+~{Cy5t#oUE4`R
zbrirW#fKT|Zg<N}GrHmQ`+JWXxL?^@7cstNwH{;FwmHhd9<(chcJuGnSo|tWU2DXA
zI9NwN(<p%R)g7%VqfZDl#O@&c6WDA6-qiqfC7QpfLXS+AHYr^+y8tOv5B9m&SYE@w
zADbB5E>P#O7Mer(YyhZ4(mY+HghA?I8=uL@CQ{yP*#rm$dHf4FAAwYzgw@cJfipVj
zgZR<pFd_jc@}iXW{NPJV%$1(%^V3x--D&m44*7^*wl=I|z-=3xSx5&#4huq`^eWMy
zMl+sGdb>dMr^;&CV}%dPxu`)UJoTqD3xzUYxKp<`dBR2@FTo%5*%Ql9lHA*clW}fy
z6TU!>&FzS;^|spB6sSmsi(o~@nOT4_egdY0%8&Gd^M2uQiJSba)T*wVwSd-%4Wipn
zWLKT6vtsz=c<`x-_wAXO<P<Aqh>@38Vm{I9NFi9v5hw06$NYR5TWucp1yny6`?*Ol
ziJUX*&e(*zm}S_npob{SM7mfJx6cZ8x_Nc)B2rWDfF9#*;rl{}jvyT4;I>XGUP~}|
z1kp|i=*4z@9oLrJZzR49;79?29YEi+-UzRT@IeIy|A@F&d@*LZOJzU;?ac|KcU&}B
zbpAa3kSxJ)O0tJy<tnrB4pC!Z^-~%~t8lCM?+6#vjW<4QXY}3)wx)0ZE__qy4Ss|T
zw1YTu_#S`)cqn83u-dEWQIdGe04H0AFFS-jTZQF*GHtQqMhIvTL}qcBTeg-GpQ;)o
z70B3xpEdKXF8UhbCs0nKf23)@bM+;ysJeobj5_ICUvAL=1*+vaabYr?O0dY!<^v66
zq_+a+wzP4uzf;8}rg~}}QfdrM#b47|DHcnU%t+&Qey3Lb(>G-{K6<HBX!=5J|M6X-
z73=lY#h>y^fy{$Af$47{3{qN(qs@m+!86IZtGXP6vWZah?4bPA_N{EFQ`fSN^X_j(
zjb|3L3Ssl70v-xB=`1%OCz+TbqkIXBu!Do;zFg$_bF-D<Q&s0eZWZ1?&txA5i~CDW
z1u3GF@=*Vg^k!Kl*0iqrX815p{;69b=tn)v1%JGonsg(WYM40sa#Zem>WwRfcI{&R
z$iMzp=r1W?44Y`z+9LmZbbZ&~rl>T`RdF1Z0k0oZy@|iDE#UdxA)YtdN_wO=0)mH%
z`kmuLM9>T67UlEIwM7)2s%Bx<c^zM^viIABR&K&B+28Dk<7S{^r6&DE6>d4iL{ccg
z_Z;ql+U*q%)IyQL!ncIRejU6AWxcx+#+Zy-+fi!Y)p#xYVd<=5!@q(<+jLQb?fi3G
zMHbA7FtRw>h^86pTzx#<)mDmJW3ZsIThvV%`cRc+vZ~)MjQMWnN3xaT&ky_sU<TUj
zBoL{ZMqLAF<=4T_@E?kb%8OKY-YTS;HVX(khZWdbkA|vr`3sRt^mrjqT5zHvT6KLV
zfEAp9$;39V%Oe=Efd+w@R$X7&{WRk@er<XQAM~+?Gp{{1&(3`C5zct?zoFF2-Y_&N
z27B{O<U;eK5dI}k<MT!eha|$_DX%<O-u$Nw3#KPzbNvPV=3jpS`a)dO>SWN$O*VUt
z&v9)NF%<`G6>*9`xvVI~d~1AcH<jyXvA3{ywpP4L8v{fp5_OQfQEm6s(biZ;&wZv@
zge$D;>ln|zNBe{3`<=k*mVdWaZX@1*u>H&e{3f;>`+A7=UK!~#&byWUJo5=`gdYSp
zEUtSB(g9Wg6|Anj!_1{i?D26QZU4{=7S(A9yKC<{zvFKKUN7`iI<vo;#ZDCL5%b=9
zHf|`?5<k^U;a`=Rw8uQBe=5ZulmC)}<->c5N=969l(}7|4M-!({t3T;_kK^0>0sf_
zT<ehwz_J*bE9A~+64s^4nBLQ);#thQa=htcRMJkNDB$odxAp`12AT6)XVzDoAdH;>
z0aC*5@Z}|QvPD#}%PyE%J>$;v*6C<PkL`K3k-t^qg9;7pT*dfv`1pS$3xXJCY%<Q+
zaW*4;>;}4SAz{!G|9+P9MWk=|NMdV^>TOW?!)!<?l)ZpIW@#JT9P8fb%5VTK`Q0ll
zO@Ki2E|#gfSjxs&Pz?@V8oDV~eitQIL-|-Qi#eaClEHkFfu%!rf^KeZ3}XrfK6J|T
zH7Rt<0@;4>ajR$uN&~h8*dVJ3h+K<4!oP6E3M}4inDh_rKZ<nyOu8^bTMN;E+(LY&
z4Tn@4#@}S1GE_7*OTG!O7K@$Lvi}wLk{Y_d<f%?qG(RQt;dU$PZSSoOL~=v*o@RWG
zs?O72`GB3=a(t?K(9#uPF6i00X}ex{uFHqf;QU`!FMJ7G5NT>+sjZ9M7xqKM<Hh-w
zE~VEP$BNK^gSxg5EOD9K`Eyel!fC2rV(K7Gcv_brA>r@><o8H-RI6pc?FBOK=n!;0
z4(>os{y~P*YG7MvC(UA?8R-4llv?OrOI2O8X-ndeGUWKS{#1!*1(-92EY+P9JrCC2
zRG$&vu5GIE;6UlH_ehG)IajGMy-^CA1~|F2Q1a3yT<;cd$P=V)3J8;czeXLji?Fvi
z=I$e*`+6*cCI^OLHq$O%Q_c<C#%BXjAJO&ha&xB$9ML)r@DOP0#!(#A;#vwRw90T1
zHLg?91Wjujlk_A={M=DvjV0YN^d10AwQ*o)LN^#Md|Pwew%s5yZEZi`QYH9_4biZM
zmgt*5@tALrOktxxH@-k$ATrge_5rpWm7)`7Db(bs@Cph3YSNOJ(KIoC^kp}E%%QJ8
zq<H8w2RdR^p3iG9g_jSyjYV&)Ev#+qM5Dbr;wD!dnb}vDd}o^KQ@0vxLwfAv1tdBL
zs>YTXZ>sP>G_l}*3T9TtCL_(Dwg0X!vW;dvk>TURdEcHZl)?q}-9Log`HaZG2cT}Y
zWnpu_Ri;a&Z=TEqU0TUILv+Cm8+W{ds`u0E0&2X2mji(5V_U1c#ti`B5N$|@F|i^0
z-bTy^hHgej3bVOA!1D3GP=7F-VX7>>7eyg73&ovt<m5X2zAC*SGUCgX)NH(;aZ}NS
z85*)0>OD6|LMBlj-w!eBRM4{GA9noA;#bDCGWX$3b)Unit46}Pt%CGHO%@KO(#ndb
zR-k5gc?5V(<8?wD9-CUkkgyQ%U^n<e$S&ps7U#d7D8j_WG&55xd|Ugcsr>qpI?4Un
zlox5xt1W9;-Yjel6CYwaJ6=8?+A-C;UI^CWLsT5tFTl2q9=hK+S92PX#UvI|xM7u`
z-VU!G>Qz$UL3L9rJntt^ssS5ih&eJv`8f|qCUUW?f4w7zqd^r^2aF|?W||GRmeHn|
zQ|E*~xwNJ`Ja<0Q%ml0=pAJ<$@`gVvg}tR(^2$Ivim&$G-gG(*21VvP^f<BjT<%-%
zHzKzcDh=&gY%DoTQ9XqRQu{oF#*WbEs7t^aH^j>)aseebr-p{I<)CVo`fqBaUUZ}l
zH|IXDV$Q@yC9Vx?5Kzfx(dpQpGGU-e$QR>H#gaynGpkP_gNSPBALv;vNZ%UW1sb^)
z%|%%scha486>&uSAP3)UCiqkqr;-Q0GUo2GiL!I)hY~jsAcQ)kH><CU0nLt4LmS1U
z>Q1`-teVElZn8W|!fdP}rAJgc&4>W=oA)<G;yT|7#3<e2>(&ijR648|qW;YVi}4=u
zfzPCVx#_f8&KX^o0Z29vK8Ca&_egpF(9qNLdw8jN?h6EZuPC{^-g7ycZmvY$x<)Uy
z0yVIp@_jna^xeC1U)_TtmVy^%>!R%^VMOO$XxRCEtIe_S@;2_ESLnzua-IK73y13#
z4I>K8cMq+c;vS57{a$@4e)#F{suDSSW=Jgx-UW|niav5d8Dn24<7guZyr%zF`Pew8
z;=5}!BO6mTMl%0C31wGVXqGixx_rrq@<+rykNA<N)$oL`u&{8j;;8&uUOL6MsfmcU
zyzN)uPEAm%)qPf%np6*!_}i9#6evAAW|oi2P{S(!?f`$)IaR~jnTHOO%a9NwnSeRL
z_tycDmeO+-e3LED@}1;rdul9$CLA$-%uo&+?6O(k<CpFp&FqyP*=#oturM^#0PE#g
zM(9USNLmP(_%z3yANih|=}H}8ssiQ2O&3QCf^!#pwvtAl|L*>lHcHE{ylHiGYjbVk
ztd|xiK^Vz>(u8VDL@q=Y6_z-v$Q=9RcnjP#U2o`BSaAQ4M!i%`k7pn^BzukDb`|N{
zShl$f%2KcOJsK=Ok>{IPGBj<gm~{+xWsmS&rcU)?*L9RvJp%n|Hmc28%}v@vjPQo9
zm=_Es7KBqi3a6obbV|u{hwdv_M(Szf_~BgeV77g|`Tx>roM%HMX9xg%2>5X|0-Lu^
z9c=R<eC75VA5Gb;(Q7--mRY(gPI0Pz?GTox$w!TPDbj0&0sbnA*1uI+(%?;pQ;ww<
z)mrArVfP_gQ*Y}NmzF8@;%)CKQAB(Y<8AkmB`o;b2RXxl=I^K!nI3u&4D4+j2x2en
zmkte9QSY%GLg94mMWEH=_vVTZpDHdXG;UN0uB#pCbg$h$mQec<?Tqf5s=A)jDhg7@
z`uvuOlaJJ~CI|Lk!kK=okA7VXQI$cSnYf_#J8YHAyG5^#^o3~HH0Esehdp9fdL#}g
z6&#WBQe+i2q(xp(n=w+<&i5c2RHkb>!LJ7Q`m3Q{Y>USNx*=F1>q^8bI=w1S)8E8X
zmV*vUGt&jKx_|uss?N5WE?2D=(ped$9944MSncnjEuPZiSWY_?%#2BE8ovvm#*P_G
zbp}t^m#lK5$0@s;#g3qz^*&JSQ`$aZaxH0`4)#ZdnQ83mv*{J8pe^Y$nU$S_=-AtI
zHAw~mUm;wsc-9RyM9}#0Q_tsJeskF${1p^81osYWu6XQxzaQP}N~wIO1JPLTb!Rf3
zliXwtD7e1nYydD+YZFZkPpX5VvqNjxXNW##B@=9B+0lgw4|UR&T|EmS<f7}qs-C|G
zz~U;0fY#!^bE*kQQ5TT<aR}-0LB=%j^9WQ?p3OF|Z%>TQ>T}uU?re|oj~=}e%l4_N
zhcDhc*BfUKJvLCAwp+<Q`e3Ek9V(FDe)Udq-}@KhXdXV^Yx!uG5%9z`X%&tiYd);S
zxg~}OSEH1oKL^>so%AV*&U?y%9zxOCr0&Bq012j#zkgOUzSjyV!AsrbK<p9oJK(m*
zLADX9XjSMT4>RQ)8BO$0y8h>8X{Wmluf;GW29?g`ElyMvJ30$zIw+k(Rn$(f^)1G=
zZs3F7*phuZQpt38HP5Wzyt~F?y#8VClLHCs24vg#S0&(xKDh&MemB9uy6>{EVwqi7
zQk2}p?D3PPyY9o<-MCoT55Jrv2R(#%$XJ1|=UJesl7-<7^s_hm!>@0)X*#tcLw}F)
z*WSm3)tid{NI+w8mZYeP=uLI0Qo$Vk9;R|1I~Vs6uRp5J29lmnA|BP%#MYDWHl{6e
z-Qj$R7srkeQALfLV(<Inxb;qO(e>$$@t_m45tmk9%H;hGYU6_V!Nhg}lg^-syA951
z?brykTQ}QS3@_BIRZAV2oYHG2pBHGC{KbWp<bI*MM_9rsg$CYxw#7#=a+}axT2QaA
zDS0a1$DlpNo5B>_thU(AVVg|`-#i>jI8#_+my_wuzpM4TS1?W3qM{|G7J7(}4-?Oh
zxOGp(jLRua&s8tz1k|ivQGQ-K_6`l}aieo$OK20GhTCa2#_$CpvbLLOXfPqf!~nA3
z$2cWOhaSWYw(#d#5Ef}EJHs?UGdCsmBe`VnQa3qDy{y9UJr60?I-TjL!D!bdZL~B9
zvi@Xx!?=RgR9^6XPdZ80lN{)3G9ni7<sOYhHsC%u{H%v7IDdr5flpJH(c8;r=zC=Q
zF{EX#IdT}J!qGB9u=3d2{5uGa4nS*N6+qs#u@L7a2_ZvPH9JtnIcUv_1k%2n#oBSc
z;B){vVn6h9^3J!uT?fAkO_uyj+v@KdVxn1BRtnPyhx;^EWUJV1A5ES@W$GbJvmt#<
zxchd$O?d0wT)&`J(AC7Wl!YP^W^rH0omos}yqZV7p7QpQ?BkgBKH<664-+3gsaISW
zcP@`MraUo!3Rw0XwR86uSs3^ShBplcz3v__9Iyz~9yx9cHp&>p{I#Oa!kR?Dr4)o#
zl=hrpMNPo2{tL*WDkh%zh27XBFZHyu=&L}%3L1M45)uT5tFqN)Sw8bJ>NMpnwE6n~
znh^@>hY_ngNRz4zP+Oj;>@USu+}I){RyBqa9zMDmM!LQyr;*>SRY^CJz7AZei50&%
zdq~3Zyt968woRWgHpd_5RB;+ueNt&GXB?mrN#;<VoJodUETe>IHF6ShnBHpmj%K7m
zteO9gDnIMkONyUkS0|*JypX4)9JgTGi`7HFs=ikkc%=CMM<QGBdFhkFOQu^L?#~%G
zveB1e?MgYN-|aJv;psHA`m?n=x$0iY9a|h{P+|yQw&5#EZR5JYN$I2?u>U4+rfzbS
zXux0p8LrV0L>$<*nmFPgE<V9T884f;Y};k6zUH@WXLm35+)54?ydu^z;X`;~6a}$>
z0Ck}y)_rDbSEJDy9X{tc?(Y+>8_yiQ**Lp9cix(?n!G=8q@k4|Y_&Z+So{n}3X@;H
zo9Qi~H(mPK3K13YCGivb_($yDdn8<g@EnLloc*gLtVO(<5Hel(gu2K+m2}+hzGN8k
zJgo_?e-LAPs7-5%J?843>D^?MDYyG&m3MjdqgazxcfjPW1?F!^Fr*YPJa%M6%xdp}
z(0G@4mzpKMaWpMR^n9d}{#MzAJ9<9v`)})8k2vge<wDf35t`FALy}s0vMvQldi2jG
z@;?^X17-A7*ZV?hZytiJ*<&w6k7Pn0n3lziWq<Y~PUf@kZNW^@@Ytq{k=14lwYr(D
zdc$pXj@_`i-vpnVz!b2c9Lk{3EZrh_sr2R_!D0iz^7u=u+Qd#G(GL1r0;TQFQ5I)#
z4+4fH0uM8U{#hp`d4%6O>GiT|CYJhtU6`I0g;VLIQ&VxP4jhacomSk!KSSPsNiowR
zUog7$DYGn3mi1zh1~dsj5AK$40)JV{HoY;~{DcR0zHpl6ZDoUO`NIyCH-Qme_{V5S
z$J!#mFj{3?>!NTx_KDi@NyuV}oq#gJ>F`U>y*b)uv97jP;d#*)S~&6`Rbnaxga-fi
zKawwQmVf7jU?!TSz)GvPo~15#tb01!DN}egV|eLglpjt|?x?yw-@NL?dZ9o_*Tzj+
z!R}o8sh!HC)twD*HB*I{e3_2KITBg@J*&?lU0Fo^;R5rfN(7o+ebVLpU+q=?L@k5!
z=%2-4l#W!UNnBO<2X*Ba0(q4$c>yEf&3`9ZEl;fM^~4=5cvsfUgkSh7;lAL(Lzdjx
z_Ec|QfNE;yf-%#CFU6=7sqw7&!wh#KhMYWgk9NcVz+!M&wY1DM<gblp%?3Y9SK7e9
zz?Is`+-!5ArgrV*sygQbf$V&mSLW_roUb_MhPmWtkK7ieYS%Jb20A|6-8O%ysvK^_
zGRA?#&7p$w1Y9S975e(7?77?%uHJhKdAbSVo*FOAFIevc{_cZIRTYD(*1DTQiUrF4
z$jB^;lRuZ`z4$+h&NH6P_if{pR@Ev>ZEDn}_NJ;RerT=O)ZViQLUh=xcI~RwTB$vo
z*t??k-kXpZ5hVFPd0ysCK6mci_jR4;bsop}*nZwlLk2QTITe-b1=9{kyxL%OJ8RjJ
z%QcBSb>`o7<qY~p>O*|<n<|y=FofmxCaBp&;n_v=g8+4x;YZqbnQTZh%VwWwxxc5w
z)3YBABNxwq)blNzvUzKEk0|@N3=$*qw!}~V)wq0;eh=fSN@vdJjTSA~C~yk%KeJ7&
z@HCs3-Tp5N2BZZjZ>JTwGEFE2Z~c~8RZ%yI!ynum_fN}Ka4=M+bX+hUG;;|Ksoxx2
zt#Mjs^M8`Ul`idgzc-dDsUT^zohaSED8OUIC|U9REzy@}ynf6&Hsk6>1{QsYjf@m2
z0{hUr#1m+LJ`-9pw$FNAWkqSoLs~@hb30+j`Hz)noXuP5H2$SbZ$4A)iK9Mc*(dh)
zxPRR;2kNUCqRna%cy<usJ;&2RbH0z4*ncE`F|x~}W#P98>d$=OvV^(GjPmaxIUpPf
z2T-VyfqkuyzUqeL&b_g4R9Zk<zYcsRoaK$mNc*aOjQM=026CBk=}7IPdekr?6qgW}
zWx@CSUH|s=Yq6((_WiD+pA&Gh4Va!E7^CSEMF;JA?l+F~Bfec@N>5EKxS1BZWtr}^
zlkBa8UjLfjn?VV|vya=a20w09hu?jyw&luZaD1H3Y^K41X6DKs6LhGeUL6igX*PvE
zcMtxFH1wm4bT<X=i`BzOA7lkv#drmLk1-<z2F{Prpu%4fhzsQw&3((uNB4Ka-wZx~
z`L^)$*sC%&Mt+YM@6!nZhuEMp;N0HxPltSo?}FW29HnIU^-Jt_i8!J@pQm?!db6z^
z{inv^NEBX!fbzN<G_1a<CNkGp5pJ8nMq2>y`=`Y?1;&u1g!ZC16F&S2)XDGbXuAD)
zXPATj=*u#S8ib@Hnw8JKC0F%Rex6M6+~iD#(Q5b6kV@M=nT7;W8E}fN?d^>3DLw9|
z<InKyPr1QONuBz9*_KDAeq3k7Qy;vw@r-;r(|kEor{4}!tT$`PwoZ=y%VF95!f=$?
zm;@SV9aPTYqj{ky@DBw2CvJFLLa1bMzB==#R}oTgThig6DgArPqBFm(23m1JP2o<_
z51CeZt4Js}=+iEp*AZ0im5cel%%QYHGCzjV4UK!i;zxwFFxQ`Zn1rpr`>U2D4L_W7
zi$F(&u#0r44HVO82ZAXiS0xXxDFPn{48HhFpG%gP*da?j!nLmqaIC}s1yex9F^Vcr
z`&zH(Jl)JZ<+AcYV%x!(zQS?~pm&>b5^h6hu#lzdsG!c>wwAo<cyJAjG_=Cll>(JL
zS_rP8Phxy|N>@qcBSnCV9|rGuU3$DI2}EdXA|T{~FsAsFKspEW^o{F?-pNp~qxbOt
znO4~KU5s_dXg5ZFcu+;58*=t}<E&>rp7SBru5!ulNHC=G^+)DR?05(p2|b(l+W-r{
zP<S(e;(;_tc9FOX#9B19#!tzj?k~N_j57UbJ4!U9^l{^>wr%B|@qvw|3B0<e+A<$}
zBMlzMTiu%I<vdHugoF;*?ebjsUmiPoeKJtWFdjv{p%r`S7sdT~g6Kdfvz1gpldo}5
z(<ERjz<{hAToIThaFDf#57nXv(<>&kVH`YX5^Zz8w`g2Ebg*#ob(?9ZFsy#@ZmkP|
zK0;M~a>W>yV2rz=jHw2(ckjw`-gUI4@4sym_U5jV`pEWpAp3%a$zjRDBu9RKx~Ws(
zd7*}L=Us$^okHXiOM>QR1X<r>qTms+@B4K`%U+3?Gncb#&+{|p`cXC|n^w<r2vqM<
zO&b|4*AEOM^tR9O?_BrUyPZk=CeHr*KoEk2&yv5;>6uV6>pzZ*+sOC~2jSVPIeast
zv0z*f_SwXW7dT8ki|zWSwq;g>mc%=1nC?#1$%j6NMG|}FDtOPvY*BSyoqw_JT19`K
ze--f1$eSb~Dd?|(25nn#o#hLo|9&aaI+F3XmWR>wrP8bdkB3+|KVsL#?=10iJ)AyU
zF?&IAFWAv%6T+XC2`C@;$Zq_T78C$sfjpm!NaC4)pYKlGh<4j)H_~o=EphfYXezZa
zv2dKfHmz|(d_f6af`M#6*g*Oi<BenjVS^nL@zdJ<cCe(<iadSID)8bgN&efGBrjM<
z;nA}(LIsD*RC^C!dWs&v^i_gb2<dP6e+&VgX|Ge2=?5HLX-V_*Z_waU%Ryq16S+6q
zIgh%&2;icpK{}{?bTA4qD84w<eY;ocyg|SdV`?y;yj3OB$|q+;e-wYHi{ld@KObc#
z_2Rkt*A5441Yr_?=*e8A#s_)Jo*oA4E_q+Amg+{OGwN_<KMxw=_jFc2kPNhI@+<z*
zHa;el^4^%1NuhcmptWM@sJ8L!coIv{k3013E;cnBY_4Romz_C>+v&68uMWcDh>JT#
zEH|#O7DRi;4tfBK!HY-ZS!TSime2bl@SU~eIU&9RFa3o=1>??1^@Ii`l4u$UaFGf-
zx)TJ}|4x<w3^1-bT$(H2D5ep`{<E@swPy3Tc`(DDp=*F5)Wx4NF2p{1<)u6~OkP<E
z>0|hK)VsE(vRE|z<<XFc4nJ=_KkpTP#z@_e1+J(JiTf4)NA|UCrGPQ}h?17n>Fn*P
zU2mHRub+9SDQtFI#uH>aC8~RS*clPdnP;-K0;d(R6?zh}G@<xEB5~o4Lx?wcgR{P4
zf9MRufA$3`OAr7e-@!>S>DT6{xynrfGOuUjz$A1GgwkYAH}9%N>5fpo?P}255fTg<
zi3ET1_E{df-K!7Z;(Tll=R;hLU*|}Q{8x3cqB}jl!SS&ym}l~_@FBb7CO(ge*HBtW
z;cZ=?JKXETb)Cm{Ur1hnZv(UtwjQvrX8boC%iJdqD$X-G()Ip1pm03Kw4N<A;#P+<
zOxdn`KDdWW7Mj^+s@R$N&{c$3Jp~eZ##xO*<2SydzcQ%Re#kbkc$K0<Fp6BQ*xKoP
zLa8FvntHV!cKiAhhGJp@$kx~<8af-VN!M(h)hIoeM|Gz=LRw`7&I{3`>BP$Ogspff
zUVYRPn>q}xzc~^x4uhr!9@8uoqjgbs2n*DEWno|GyvW${nh?v05+>GKL~fk<CjV!D
z1*0^Q-pw-mSNFjuBz@3F$kaY?w4z!Rmi#?qPN_RUoT|Krhl1rHJ<7!~+eN{}K}SL6
zf<U9ZlRtnpob?o{Z8m?@2_gu3_2ztL>{mVLe$ussox~A8d0Ct-O)>|qoJ|<nTy~q;
z!PUY!uli{Y?e?`3q0dd>s8i|nQ^8fu5d6i};bQ0tLFW(RMb4$DM_K>FU0!7%aO;{F
zSXR6Kjf@lV{M-*crCz9gH2OA+E7CP#m!P2Kz)<u`Fn3vPQHkrRkI3cBA-9pC#5mz|
zMH3;D;4fB}YG%L8Bmf!pa~uZl+J8XT&UZGEBTF$A9Wtr?a7w)oe}8Lr6flb@-7{F9
zgC;hF+vrZHXd7mUiB_`y$a`+V<9}3FR!vh<m*ip*-?!)>*tXu`d7<z-H-+O5?#oQ=
zV&%<4*jI=I<{#3P@T4J#k#Hl-JCx+)%3)rfKeyvVOCfmH#;Tso>7U$qY{{;HNt$g(
z_LtP0X62WC!l@o(WXaXB)hshk+X9^xt@<omzh{n(vskK7>5Ya}uE<@~^@eW}*i|i&
zkRC|G#wC|$EU1_H>i6pMsGQYmFAcUaSJIDsVRL&#KtHkv+`|g?pszRz0XM`Zxeh=p
zE{<&3LzG45D08wM`SDgi<s_(28>uCKKt~B1WF>x_#dQGwIe48}`rzKN>VuVeI)R(=
zsps#}(Y~IcvMYq4^y?@`e@M448PE>@xHe#{AIjd9-e)o`=Frj9sd3SxOwA$qlzld8
z_@GZnognR%WmW4%6;p<@nPtg>R||sE&%<wJQ@8ng7m6Nl`TBkWcZ4l>aU9QjLrijU
z6}+$Ov}GjTC9#~VEe>sKCElrHxu>A~?(ezV+KhdFE<b}WLQ1-e#D;t#fg_yKUS&a$
z4-!KupJ1^lj7OWtRNq{3Ipegg8-Aj9>(_iG%S_=m-v?|iQVwx*CnAo}zf)bqfYn<q
zl;3Tly#X2y!MS3zkN$etC5g^hq!uyir+zYnrCEU=06*;r^A)7slWNX!w?muL>Ha=2
zIj7e4z~4Mmwb}*p6c56R2?vnZJ)9VVbdJFRle$?gqfar|peHx{oex@8I^Leh<~YIJ
zmgI;JyM2VuzEuS#8&mG4n}#WkK0QO{z=JMM!ScYf%@$6U(gJO5c0Ql#(i`vV587L@
zg-G~7hHhQ<&b<Kg!=yWE==x5WX-+SMmVuDR^&;$)pMaHKD4BD5XkK76Qr&hx^Yh0E
z&)f7+D0it^t{d`{F{Ra&jI5Wuh{3ZuYZVXo_1e$-Y>5GsA6i<^$A>>lGx_?^NRb{f
z;I#%E6gG41DiHdd+VzlQ1&{@t-?B{(bh~vJ*{iObdq{{@P*K1IC`QWs`w}BmHU*94
zaE$9V`rH9fwyDrD*ojy?CA+MmFG%80s0&ky+YWH#P3b@PzuKx1J(jY^XI<A<I-Zkn
zDKxv?TJ=TVLuQw3w4Gg1xMuI^jWO_ta(0HdnZ}U)l!t^gVZxD(`kCs^->pWM+oW6!
z4B45|Qavz`|4{I_nkLxEn1bA3<MOCUN{mw6N`Q*Qa9z51lC4bpOzFj`k&Ia7?pvkQ
z{>UKYLQ*S(vZ<b-o)|PhO@HiS1zJR%kR=m7;?;U>xBy8EIE2xF9bsRJsg)H-WhH=f
z`g%iod9OY)dJRkCMC6CYd0HsPiaWY#CjsNd<XCZc6wg+1G?aC%%?+ep>%Qa^CqE7V
zyc>{Aq8)qXM6yQkBY5BaaW%mes=0`Bx`!Czazl|DZV-`x$DiN+gIFrHS!8biwb{wK
zTQHOFmPf5GPQRXqk^-wYIT7XCi?uaf!u%;G4$T*PYVKW4(>ppcqOX{c8VgIpp#dwt
z%lq$%c=jMMqrVwPh0F*meyE^n!_i*3lDMg7m^jbn$q=htfpK5B+G@Ej!t48tabya?
z0Ck&xXF^b9)u-g%y#yX_r4Dh%|Ju4sTy@!fkBt5Jt!sp#NaRQ3pSkD4zOK7N_l89L
zK1#|vYl%?<*B8mq>9N~G*eBwICKw_r>Se6i3~g(g_Tq7BnEvpWUb~aA#m}ebyoCC}
z7KxIS0!61ArWl=yi&gUwE?#~*K=AK%ac=yvvTmE{()hXN4q$8vWM%DCF*vna_Kb!J
zqTg(uS8#ZCMQNEfP!svu;&QtvHrAuon_vTPpv=en1KE-HFxp#-K35-->E^c0^_0xT
z{-%uQG^T`FGVuoPsSfcrAY5*4b5-vtC`AjM)>;^OC|OFlYYJ=fLMreVEvFOf>TE+C
z7f_F;EFs!zu!2me&+2OPvS!ea_A!FYLj^C`hw?<PVe}cHq}PgP@eZ?M*Mfc4(oYq0
zM;x@JDqilhQO}+O62NYp&6q~>`DV{x`W26`XvFxJ{k`;4_i_jF<8+-mnhnl=0%wZw
zl`J4;)Q`1)6*)a&1JQ@E0?M;3H~g*EzlnES-D#yhW|LyuA+Rn_BrBdARf#p4RdZXl
z+xCgw@{O4fOIo^ueQa7N?6LsnNXpEkMF$#x>zP~>^huxps9JttMB6BE_uoVc>;2r0
zS;1EFX<g+iqpngxId=L+(7)!BrmzE0jM4F4s7Lgp1gU5pg+S@r2c@nM9~;o<dJAlT
z6%vc*#4sZ>0IhD#U@DOGv`>(L6>CYyd}TJKH#{bp$EfcorHbb!IaFzwn8Jrzo43IJ
zjyk4oJq5<9?0EMQ<c8uL;$#c8TY~by!VllS<aqd4Xu#L|u@G_0+M4|4e?M1#wM7x|
zBS?5(aa@tgzb?%!y9aK7u$010CE_YiImWMhtQ4YacEt)4v=sN`M{dlwJ?iaBhTFoj
zX^0Kv#{`4sH3gNLn(^)yA(NO$E;x$mWCDWrUJ2Hn_txYCxARPwVQ_v`EJ|;&_WQfc
zoViu>pwP~JCn`8-gU0$1(#)u=<}+m_Dd)Sn@BSaJu*Ylo;XctHpdmC`3>~O4fS0w?
zJ$dz&rh;0fe&7Yj;cN2Lif&ZUvnN+Lun;m^K+!ncjIDxZ#wGP6k39ju*#Bn-UUpfW
zu*7yvnUfR3#G^bErEq(VIJ8Z6tZ~0>zmrL@UXfF8b&)!}?kN5*QU>*=<2*l5o9%O(
z0_RVz*@NcJZ!UC;-&?teNDaCFM|84?^Gu}8P(Ob9YdscTH4r{}j8dKS^nNq^(`)CZ
z?S7F=&oP{Ts><5Eqx2|Pk_ifLvG5CdFmld&+`0q>#BRAJi&%L#PjlJI%8QWU&^kDe
zx^k4&P)L9!*$ibkpQ}+ql@_<3mj5u<C4`kWbM9S($5N#0pIErty2%-V*;rTpd#-eq
zB`&o@^nXN0Bq$jaEMArGXlXr#@j|0rwuOT=tLxW~(cHR8!jP$sM=gXMcTCd%KO#mv
z-|7O`zVBCiIyT>__d5@8H<9=&Lx6z_A%kXmy?(w&Seya#u}ix;?#CoZgfvDkomA3B
zC^ux>5Zm|>fS~929}(gA(=ufGq58CdNe1;XEvL6U(<Ooq?QWZwnFOgzEBMC^TD2Jy
z<m`{U=r+Q-Vh)2Ot;^g7xiqXb_r*s@ANA8m1kfnR$0+Zlek<-5Up6M78Madsa?XJi
zo3o>bx9s^|2}-i#<T3m^Jc;psPh|RboHzwdKtlv0@u#TB*`@s<Fo#-iYD}OZV|*oJ
zT>DCl{AxXKM##mf0q?iec4l)jY!iHcFqf?Fe?*jZ-V)&<j1+$bHsndTmG2RmG2ajH
z^V5Ostx0VQjyC<80(TwF8=lt99bF%Etlt`c0zQvcq=m!-ViyySafczW*El=9FvAlF
z%GUz<08%}$b<j+a%y0SyzF$VS`mk<#Pv_e`1HPBTCz1wF3ZjRP#q&%$(#W~)_0v>m
ztEGCNSYZiItLn?U>fVT0b3KYxAodH;jT&mhRyQHf`Xea%<-iUo>E4M@fPL=J>1wJA
z&+e<hvByt}Hs-g5g|igX>q=3aty6ysb^S|JN?XTInwc47YYN_sMTP&g4_F)uL($xq
z9@(remy~3nvwE7e*%L}00gd(5SSXmU)~Eb>B-TJxQyVkfa|6cNR3{==KeoVTyjHv)
zT<yFYT8-4!J&o36k~S#`{vh{Tea}MV5viYMW-P{7O~@ZVOvV;g)SOnWwy;6>LQN6D
z7mCw{h9^W^ZHd)}6*)?2v#1$vm=3W8goLM}QcmAAiz<%l#Ym`2kQbk3TnN()!74mT
zW%IlkWKcYRLF&Hy-TZI+wI|t}l6Fv+IM1xsMQS5{RSoR0L0C$ac5@J*m7w$Ii$0GU
z-qpBg2y*(cRWEh|`j%Ah==nzRg_8fEmJ)RqqUWxo$VRVSO73lI(L!iC@u$F|cD3mQ
zxO>*O&5u2o=wr*Uq%)Z^+d!vE63CWkk-OiTJr~;tPJ?C}G2Tx4Hx|@$%;fV-r2F4F
zw=LG}FMSDKx>_@<Q)XVDN`l;`xZLC^<pbHsVq6%D+!r74|EBSoYOcl0eH+)QA|TD5
zz<dK=Dqx0ovhz&ox!z6xFwf|Znt-P(FKLGp){4c1&#my(tQfM*bq=7$<~5=ZSrE~{
z2R>nUIDP63bNMRWGEmxM^40LJLbNGrz)&7CLy$7}&%v4i@yed4v4K3kCKdw-Z<uN8
zEv2pVjO>9Wpu;gX<bF%z_k}WVQUvc5j$m<gMvx4y*MkQ*qwUC@JgxLSbqMAgv7K~a
zQ~tvIL{mp=g7Tg$mvFQ^n}h<T@V>Irxci3G62sCz9a~&cG8O_(Lu1`@L~QLWqh+Tv
zEzg%VuOZX*SQgEy<wJrqZB1`SdD!V|tEubFx1^Ah`yiO;O5R|p$|dYsn{)D06=E(&
z<Xhn~lwm?`ke+dQjaP>7X&ZIf6MKo>a|H!HtI4FWd7cWUfvFJzdBc33)=CC^<qn3^
z^{HH^+V}+TIJ-`j4R=^gztjer$bU#ZVOyO3sS8sSoQQfSZ@zivduQwi1=g_YAWob|
z|IAo<@5-|tHrJK;`d9h-D>nt25h7u&z2rO;TY#?_QimhH53fS`U%n)S-2b|r^<`Mm
zmEqa!Bt&wYSot<~z1+<UeL^0X@`b*MczEcKUnB#HZ$8?m$PMsUM^{N;Bj?Lms@h3x
z&-*p#XI#3n6d@%;3LT3~jgbjX_e{3xe__4yrX(aYs(HD%m|{#jV?HU0d?1v0)$~g#
zfE}>;#TvQ`*$B_&zTNeZX9?3adUv;umB2}0!r!9I5|KQ;NUVCgMqSU3MZWWB)7**_
zUdhj60?*Xp1l_(&OCt=WTCXxYR-ZJyAW%h<GyJlhoq=#e;MVg{%+j3i<0Dqu7z&?0
zC)a`^MVdc7Jlu_ZzhkwhipNNQ8(A#I^0PM*GC}9h2?^iwwIa69E4W7jWlvfFA!_qp
ztu!YukY%eU>35w)hK?J{Hii~9b`~TjmL3f~(_RGauvlLO&(Nb4ryYWL3q^)trirR(
z1hXzS-8!CuC7(fordA%mlVqLjzCEUX$U`K@balpYEK4BaNM>+zeYkU**d7b8$h`L^
z&M}HQEJ_nZwynYp3ab5;rPt-?cyC1tOd(9U!G>Fj3cUs78_0$gBKTR0!EX3x$l{bH
z^nBN|2<mcIzs@;xRR=2~(5T<&t8K222{Gq)CuSGKtdDhAJLFgmq!t)Q@UaOuse||@
zhOtHW61K>I=2a!>Pd#0<160A1swNOyRkZL$-4J>dSKb6meg_gr1pJ<>nZMS@l{;`~
zbJ2mr+0rEGqYM!H1*jq=KMdGyNn5$n+i*UyT2D3`ERiXDSgJBi6qq)z6o2~*T}N*|
z`KWndH-%CA;$d#LAieZ6PQSOy)4NPsWT8HOn%)=#fiCyWV=$9@nMmuq-+64YX}n2T
z)b_81{gj;-`+40nK3#?tKJBfUdOl8@tV}DF3U5_0W*kvJxA(e-Oqs&xBz^%j=z4oD
z7tL<Iw+cBVk%C`5NqfQp2&iLdf1sB6c|tQxlThcC&5Ze|zRB!3)4yY4??$|0K=yIb
z7U_)as~U5A-X@YikDoPhkv4fo(7rfv+714O1SRwI)sOrFrWz%z$!D@Bb2BP$cx$qb
z@JA`Sws@|VD+%+Ax$6|WU<EM0I{U8`D-#oL=Ffe^IT)o~mYCz-b&35;uF_iX>e?5_
zAnpP+H))<6<f(nyf+gzYZHo9_RRh2LULL-8gGT>Vwa?zr%n{}({53+lLj(7X&#_~=
zvWwOpz*9|&NrS2RwwB=^Zq}v5tj5xE?$f=LGzkDyQ+~AF-z-i6H(n2@edz#yQP$a5
zRqV5vPS6zj-8(pXv>L!+)h4=Q!E)fU(#ZXZk#EfDM5SqWyk;?@ET?N0J`Y|5qmPh?
z;+R@IBc@ZMIcCuLoDppjo)&q89Scq)^PU=N4KX35lkffsRf!x4Ba0Jp#l+t|^W3D{
zTJjuj`o`<N(UvYtA^r9#x0QQl%WEHISxT|VhmfA*Gop1Mg)x2|qxn-W#8pbNa&c@E
zo73&zCiQ|pz4ntl)i9)%unQ~=^%D+Ix2A$97QMy$q4uhlE1Ysv7cQpH*c{!-gkJ7&
z2*&^;b!;t5YxU3cwC5WItUwMZJ9K3ZVQSJm@Kby5RfFz1IsLwIn@-{8wqO<!wtYL{
zE(aY!2n^LIx2ds=DG%UH9nmaMlJH~ty;8Q3gk9Kpta~l9a?}c?#eG+1eIK#~EQ#=0
z-Aur{n>|cElH3JVmrH2-7=NXnVvan|Xs-S%O|!V)<KH$PIf=BK04;|*X=eN8E_l17
z3hoI-tssm$Pd7eW4$+X`O*$zX>s;_$f8GQSvh#0AE*ynfuX`q2GwV<$JaSbsv`+34
zbm3)lrGVf3ja(_>@5Dsky#-!ukxIz7%mg8{+^z-nt9-19n^XLw9;!T4W^;gjr&-Ft
zKPp9Dpsg{Q5D+UyBGkJUbBkAK8gc`NQm62~V}tt($*Tf2?tcFJ7JHNbh@5jwta2;a
z*Q}{o?wZcJOXB8!d0Lr6>1n!kx`8_Hemmq+>L6ot@O@NJV}TPJ!|PJkgQeBZ;H6bU
zbob_Z*)`jS|C3+4OcsH<l6%36mWR*pjwYPgurt_z0Ko%Q>lwO{l>1=c1-!h$>2RL#
zP(uWYCcha(b@v)Lv2B7X$EW^Uu76{1C9o@IH6Ae{rn}+Y?U>{$&vA7vF|sp10c(Q9
zG$lgr>1=&u(z^@wF1dIRfNJ_q`o4g@Y*%N5oy-!OI#>XqO&qQ`7#-!n<^-{>f?99P
zae$tcA*#=CLX|1DfBL*b!GiyAdOtF@+X#|>LEV=`x#0*quNi4+@IFqO>qm}}yA?l+
zQJ>HvAA%fO&^fi}kY%J@Lblv3mpGRvS0(~K7F|6E-K*=^4G=2$!Z_gx?_W8N8OT%<
zQ{vS90#W$&7+vvuU*;eBov?qwhq~UrS9h*4J~9OoZcfWX|2gJu5B-ExM$#Tm9z{}g
zrr1lMztga*za)?lPqrm*3uUaz|J`cGSPN1fOJqN=c`w_QXDPL};&fqG0Y(yzs%iA<
zBIj?ZwzT)2=lDj1^IKE>W_o+;Dn)yihuxiNTD(MPMaTwTSPlQ9TZ!le6pzA6d@+26
zJxZyudCE|^c~MJIfVI#rlY_Y^7wKRU`DVF;)BBlwReqWgHem@&kv?}3L;J>kqcS!M
zq7GMA+6a}_zSM=~Aw?541_HrcD_qpzNW;Z@Yu2?<hi>^xzu9*^9sxe{&ncgeXAYkd
zF0qzWv=eA~Y%b(yU03^pA9u57>$%Aq&aCXY0hr!uKX?Aute{bU|6_{Z_=6LO!rAol
zAERa@dks}az{DRKiUfQUayjl9Aojqh(?B>!>sAVrGoVUaP0ihJlDV9em(|qJVfPCs
z8QI-IgQe#mf(o^AP#_B@vI69jY{vY!`RiT>{I|_~JgDt&_npADhMff72@wWPLCW;U
z9j>2!*@OE+guh2+{Bz>V+$d7T$YA||tN;{EAHqPzt~c+?+{K{Y1EWY36F<?%0zd^w
z7gq|E!fH%CeT`DB6<uv(lE^sU_|WYzdqbdz_&rx*DA0J(w`FZ~x(pUxN2w8H#E)Mv
zv87l<0Ch&;jRv?&IfA8F9K#Pl$RX>Lk^|L$e;!<VlnuP1p&Az}9%JT9{)Ic_m~1+U
zPy+1r=3n?rOODWoQah$G+bZz*&+=--XtU3Dzh41N;;AsZDDcK<MG$AqEdu>nvN%_?
zfLFgrJv;;ueR1@!*wOCII{u#>G1x;!Uk%+csg(+eHh+(T#B85Kc#fVTvODc2;&n#I
zCSC@tSrVt+?b#_7#G77sO*P&%!$#JJ@t#9l;IJi2wc@L5&H_Fjshl7Re#aj8B<l9U
z+6T5dIW5*$>f78I-5SrOWW}}b$5TpjaZiEN^(UlGRVi{DuY}=u_uVE$jR1>#EKBT8
z2r(0f+7U@T6SVw9^(~o~#JOpykM4%mFEZ>BxvADjZCGCU|0Ym55JPL&fiOn@>+h#9
z$k8BM(@~#Y*Ifv~691_OKR>1JS?Z~nol2U<J;1jUrW^6YjKG+D7FtNsBDw2m%DeBz
zW|orz_J%CM2Ls$%uI*@Lsy+3xq3+L`+(c#*G-x&Q-QEqZw7kGg1P-db=<+V<bLT#0
zu_S)-?c&j;h#^%mx_YLDpuCoQiQFsSqi?aA;VlBsh;t0>{sp<HeQfY}oa`mbLhB7_
z=!Ec`oZG5SxLSUYFprlRUAit>fs9`xGzRc5=6dYtJoBJcR%aAA-SZPp4CQ$TK5JOB
z;vm?^wQ0KcM_Rkc@4=dg^Cz5hZL+An;!icZaof8bSw@De%Qsqt5E_zM|LGe*rJ<PL
z6m5gTk;~*SA9vfKa`>;6rbu%y>Tmo!=aBapnma?R6(J>UXEu`6gH>d)r(?>8LbfnC
zcf{fu8Lg7j7BDK!fPC%2Ab~Et6%$P#Y7Bn_BYB_qVo~*TFj)5#tFW1xfR}S3XqxzY
zIk;x?{_~RU(7!wgJmh|9j1s*8FnVTg9=-kGUvHfnBy5FJv96ZuAFTTIC1B68qE)RP
zytuu69R+h2kCBDZb=|X+c9or<Gk)y)yGxUbkMP&?KA=odwcv3M8umbMlqxV_J`)Zj
zN-+|5x*!o$YvL6=A(C|lB)W;y&}&YRZx&6<ADb!6<q%-h3OeUrV_!Aq)_iM4=8Je=
z>^}n85K|iQYY+AWP<{GYsc%t{7hb(|tnCd`F+|kSj2~|Y90j4?`sc68csKninqQgj
zoR<C*s9)T7JL4`>h&A-|XN?;D_g{q^DM!1R4Au(RYh@UtDm4pb@i^yfa$`x}%hqch
zUw0_nFmo^jn9vl5;o<38B!2uVnqX$TR-I`FTmw`{D~^w9O9`F@HUF0<(9lhiZQuWu
z`l-UO&w3M%l^-DitdUwA(Az778KeG3RK|X=ap2(Ck&!x5O_)zruG%5>;mZ^+G1{mG
zPGU^L*%)#^#W`WnHInD^J9v(3V8%HjSj{CXCK4OENd-1AlG4)kUNRw|nzi5A?f;Kx
zccgl)ex}?rr+~pvXGPtnjWv|b@8O^l;0i&wuLrnaytr~g$U^n|EzkPEEjT&TWuf<k
zoHaudtLGFE3GVr0iVge!8pJ&=Rljx-{S4TbcP?#mC9I2Mmtgc+U~IRKGVmu{sQ-`Y
zii#p+{_G?IpOK8=%nId1kRijha3zt{$7+w7gUxwiNjlCS`qW&YU(Q;JSA;j@@w_6H
zpKS}f$o~Gv<juSX%Y7k#)aEhS|2C_fF)z~7_?CzDQ+Zse5JT2B@3ifIcsAwmEjTk!
zsvm%-ocB^|ys{D6vJzenmHbam_S7+rxSRI@r!biAYu_i~;VZ+Zz*G}bYwHfK?MMCo
zhsFQRBeb!M)f>UF8)uxraCF?1cNR_J>%8C!`bV5^>*I7N7l@p9n<>*Jc#HW|j*)0J
zIt@yv9(N{(w)-jmc1QfNxd_T-q0(>vqTA=H8!ct7Yn4+k=m$jdX|r6K18y6G4GpEQ
z3{Qm(rOy>Epe{aTS87?#OdrvId6%+wzBInLwRiYI-&l}`W1$|#W>@6|*nbBr=2~GB
zYNot5Sl$WBS0~jukFIS)R^l8Nd*m4ZP(S=T?s!>U%g;x6rF94Y*qc#<clYMiFtqG$
zh+u`chLeCSeQ*;&=1X`?hRQ9)k1}i5?C#vJ?M|-mKv+FoF_d`~%iKwDr^bMSHko}n
zjhm;G0hKr?h3G2-+pUGzS5QaivR4mX`92GZcJ9NMIMH7*^>_NfV>~0xK>k5pUFk;=
zglH|7l^zAF{6)ju#6Jq&$G><HV~qS_<Nm2KNXRFU^Y%LZ0!FIGQu7p2?Gca|t|u(O
z5gxy5|K`p1ON$g@$3+uHhbMF@)!UUPL3aj`fAuQVhI~mqBA=#Oh_wXRMig%6Zoh@I
zjCe|;;vcgQ%GzT{qq*o*!-{OuHv?(hGI?yv*N$_q-9gRno^$(4HSoClcGt!(LO^52
zwC1ARZiIL}YvdB4CT{>ew~Im%q#G<4m1nYjx=+hqiQcL2-M=$TCmY*k9uJSy?^LzC
zNuhEznP$<R_Hk*E(s~bmuAQXpL^;^==+ifn9W^ncZ6d%N2PrNIFMxsfN3u7}`d)%*
z+``tsc!9!0w%B#g#-=V)X*}q382-$aJ~NTf=jk6|s5(staPio``FER>NRV9=-KIvX
zin=dRuBrW#p^2GaV>V=l^$QD!F6$(|l4N25^MsG^jahqtTANa^)XU}7|3b`V;O3gk
zNF7kBGbow0GvnB4n=oN(M}Lre$<SsPk9r&J^(y17htQd~GCJW1ZDVn+GM^0PC#0(?
zxXRX6j|4h1K+sMS`rNu>F08;PGBf9-7dPRMmoK;eG;YBV_mQ!Ku!h(^nop{9$hT7<
z<4xg0%Wd2F{9(~wtcy(jKM($!h!y6kDS55WQl_56ONg`5ypzEaAvt^1?t#K_Ib9Yt
z!0MjJ7qFQo_hq|=M8g@;AQgdMc~X?`UXuoBS<FbD+I&BC_JW9_q|mODyMzp+)ELf3
z-Y#~GAX6kbwpm~2^m#fE+=SJM;OnBU&+eB+zRurCQFdm?S4#0rVTM{Hm`G5`xa*&6
zk8YHePc(&jG+QlPx+4bzzW@uQ3#|OV_#nibW!pn-JC_5ufF~7gMEyj=yd*Op3%)9C
zv&}bw#Bmj>f*=A(7Dcit9(7hL+60eZvbNM}W&2&zIOa~F>+iEW(>vZc!rBJFE!*Gs
zlE2d)C~kgw0!KOyhOM8hZWMpAeS)&<OQt@$R)@_54YL6umhJVS-p^+N=30L<nx~|*
z>ov*EH%*otMO)NfASuibijjJ-xZ9#q7K-G+ExYJTNB>r8$El{lIp?K?)kYCLqKLpl
zJ%%D>O{N+HhI4}tH^%-U2D(%3wiAlFYk6yE3qvwx4oOdnB<ssf)o^~`qD5^;XK;t>
z&^i^A1*C^r+%^Z1AanX|Q{%7hCNKD6a(u4onWoQ%dmb!o8NHNzGs46xX#eH`WPmdk
zs*K^;>Ri7EvYiyi%GDm$-?TDXCW(@w22C33jlYie=m1^~FDRLBY@e<ta|okiPrQ*7
zJp?<pTA$J~j1p5ilqXZ14CV4*0W}by<TBidl7mm@%#3ceHQtWyKHTvce~UDOm25SG
zaNmRefYF3u<|l6gJ3l8?+$RXkcmRDdk7r#z3TbE}M3i~&70FNtR1`MyuDb-(mkwL%
zw~O>Q(*NZU?!WUeZFjs1OZPXl^?s69>;o7*X>Ck`R3}{i!i3}~2KE}1K^q_b8oTjY
z>ag+2Xx}Mf!o^049jiTVP9*~#ooOPqayOIJ3}(C3x2V8xQ`WVoYGurg!lnEJ6ybg;
zq-Mj)gZAB7BtfC62#Gsc%r>Ec{S%1%JkYRoG>yxHznwm7iuKI*)*X6hG#A47jdguO
zXt;i(^;<cySGC-_9n#z`!BQSq-OL#Ur7%g<L3;1jmDb$Y(=-F)FFUOqrMm*=Sgg(F
zzRE_v<J~68LlY_?PRbxKTja7@qrqozr7Q%D+}_}i1zE`?hI)vdNmpAP*3{-!IK5W$
zYH#wh$<of2e6<Jlr5dz|77-PhXPWwQIBK2U^3TZNIvh8m6QmFOSsZht?=joZB?-FR
zf3geS^EsMpN!$<I^CgcQ1UFP9qG)t*S*pq)_4yC$Nnuxi>+;Y`jQO4+B|xyrOd3^o
zakcf|+`7tjUiUyWcQtXEN!HM}$ViMPvT?Jr4@?H^+&)9dl&U3Mo{<C7x@gNWE`zrb
zsw$5CzeO6?L}#&rdwmrPR<E7E4p!*JI46>1W-MX(OM&!gAxvB`C!r<z9})Ax`r}Ax
zcR+>*+LjJE07n;=!{Yc?C7>wknuHdVh@4dOsChSsJMY7g20@ZETydlj{;wT<<bz|o
zMma<>#8Z|20&6IqbXm-5{xZkY`<IQSXd!0SYc|r;D*Ay-+Ed!>zz+7fo!dQyf4?jY
zf&^6!T(XMJ3a51h1C~aQPUm-hbQ&8JTmX7c4Za+{V#tweOboH)8=E+DS?)YswxP*|
zxuvp#NHA&D2WtWtnhhO1`-o`4aqS_+FWK@6(Io>_xLCf(rVpJU*GQhA=_|dDOv3H!
zdp0lSmJp6aoL4o0C*KH;`07KuC08^UWp^@!$}z_%Z5>zZYuP9b=Pkee?J(Cm2S^h^
zxBB^vi3DnOBOG*pJFoO;w2m%aLN)u1zVFHND_?Gp?cjs1<rUk28}AkA11g=Sz5lRw
z%pPBN7N_pL9WedNuSct|Rq^X*weTW((vZ@8<ydh%udvI-#o~Tp6(M%=Yt*Z|M(^Z^
zy9+y?$OYKrQd~CJ)ti5V=F6zgmS~ua=g`Z3oxOT5sARB?v@cH-czcc1xG&)!E-#Xy
zuMA{9<t?N2I<dEfb7?7aqU4pewAC;u$wBfjcLA7e+b-L#X@B4kVC!sP{V_;CKIO2;
zDng9@dNW?O`iZUj4ec|Y`s6ryN4soH{(zckuU4U2BKR&0Ku{RAnpN*awr&<v4lyKT
z9*GCZ!VtrUzIS0(Sa{}D`0QlUMaiL&)R;)p{QUj=@wPVNY$LXeb6E{GjxJXPh&Zgd
zEtFIuYBY?<fXo0Fb!bCu(X6-0YY)|$HQgsI0@Ej48<GR5m*)NkCA-xG!<)0fagCs=
z(qAr)QTKK-lEMJzJM}_IL9?(wjkg||<z|*%&>bL0)&|ZJr&0F0+TQ1+?QTeQ-5}y<
z_ByJ0kt?L(<>5n-;NN`RY`f|cDnt*UovIut;RY*ry~@KX)f3CYOWCO`d7>L3UO%aM
zpz(ClTqI=EkPZ|4pdF=|y7=8NPcP9u-ObpY)YoZg^x=*am#xBkD?rS91CF^5d8wsX
zeE|n#;LnmrBQR4)W#E1)875hJ1qdFbQ-1pbH+~W#!n^%w6&xITI9jwYp)}co&cnKJ
zn3=fCk!0~%_~{&eQh=B1Z55Mi)L3;PiT4L3I|=hrd9IY)Yq&f_33>XH@F4QTjIY1F
zT79AOtketbIQ_3dk>%V`#z^^}%ED}+;GJUU2iG8o)wgEH(7`^|-gSXzlLb+sC!vRM
zhJN*cG<R36PSA6wByT)jtbidq(fdKg2;s>qR;y!AHJ*3cG3@1~?Qd-Wq&^1<M4aD(
zNQx~lViPvtXsgU+-U(B4&P;h8-*IYLITup&M#5C)Y4Xun+9H$UXyU4@!rn^jW2y!T
zUf1HB<F8?W;)t4o=g2oyF~?YxZ9HTg{Rkc6&){lPmt?T9`jG3A=o-SCCOZ<PMZ<;j
zT<INK?UZ+>7;XhesH_d-kctx#Cq;nEU8K*_weIV2y&o$u)!|%f$xL6F6G+>;(c11l
zk$M*aeb?Jbq_!kucfUa~;VaiA!-!CpRTov}yZ_DLYhbSHu}f-w#W5`WAG<h2_daVi
z=>-bk7yoc4r`%u7NW9KNLx4}t8ZN17lmegA#E0n(RA6Eha&(^+Qv`Vix3#wjx10V}
z^}7oZv|X9s-9Ld5tc^*8w@MZhqe2g8ZkrNwnmPSoD2YB=-AIt{kx(dF`ELGv`Hw~S
zdxEH&-#fAcQ)ReFs3hrAO);>LivJPW>v)U)Et`M(u0Mjs++5ZolP0rde{v5d*kfF+
zP5;zL#c;MBOa|Ek=f@)ak!MC2E0ke>$NkmlpG^@)o13{j*)yYvXKBUY+`u-P7oRL1
zE8N5~$y}&p*44{pR9ah0Iqt;(dEb)B_a~D?zJk?p65O#^dZkUWRORqGPYxE8%rdaL
zpM|mbX>_)H?*g;P>R#T~CbxHvXpp<m1CinF(b0{Mse{E!BzW?%N{}K7l6r=JeB4n~
zk6iBo(}-i;WRAbR518)=hkGqqC$seCSGG45dvg1v$S9BzwcctHRFw(LKKx_`S-KN4
zqP1vfqSo}$Ni)EG0snNHFqCU#NG{ZsE|niS{C6CI@I4yZZOcONiz+{@uO|`m+V{E_
z-lW5gZ#pitdd=HE?>Cg9ooC5Iz!8}WBOnCwB`cvvKFLBlcEcD6a#A|;qYPl}Kv8+c
z(%^_#;xB!B8F_CPuuOj^LUI88T7&qDliwK12-y1W#lxKr;Br#o4kaE0II+-jsh=_9
zzi*+-QoVRuSZq2APQz4y`{2Y@3yuP#lK&3*8WE?k@z~ch$}-g+w98bs!_T~H#sX=4
z)<GM0+X*->LiGa%Mlypvi%D#?gV^f%5dB|yUn(N>6wa3i1Jeyv6a)W)$SZ+)*YC`m
z5N`%TJ((8jZyvuHQh6Hqd^-a!q93tL=)mtLv2vV<l8xBuF1fOv;EWaB`9>=dx<SpR
zcG)wQpP?4!Rn<-mqAO0Ip?C%fJ)XhmvwsS(&@t7-z9iZE`|<z|&#JF$a9igCux`kU
z8j)!UX64HvU(1ViMr$2(xVPeJpy*ByLx?x2_=NiL`9|Q!bQR&LE4S1|)H)Y?|Mi(I
z|5j%kBIu9mmcy%FjM=*wM***&jziD<A|Cip2xEi#r}bWgf6cHiT&Sf20->dWm9O5U
zm`fV0XLy16pLG`YKOp&jwmblR3iOsKrdw9-DUH|pI@tX|^IAl;O#!Yz3Mc`Egw|m#
zf+$C$-?wW0*Rs+`XYdAps%m}xH`tC8tAZ;mS@V>8k<oSIe|F!{N9yDJQd_9_a~~+X
zA>nZ1s-pRKTO*;B%HpMH6QD27V{}y}iVmgvy4Z6C8HFzfZgxRmVE$~WaoD_S#3efi
z*`qd;+u45YvvGEIZ|B{ep$kzWY70+UF1>|GSK||v-xrz;?N)g&Y)0tD*mma2*J+@G
zk$gFQgspzgmrmukH^A)6%EVf@&fe>tuTo4(T5~;*XcQFw1{qb3=`S9+Dp?K@6gW>^
zP^~e_b`jM;YV`H%U@D(8U+zz`-&VJu$vM(-7ro>q3Q*)A>#=K+L#RQpZwWO2?Ln4k
zT=eXZ>gsRY&lVR=N@5uJgRS<ItfB%FZploixMyZYtDk(*DA0M1mOrR?-KRzxuwC>*
zKfuzicc^7b{OT?|_|s7c_dURUy2k?qB~5pHyno8W?w$G4*q@nR*9xA-A(Q*c^vL`z
zs#b((<?;N|1f<$6tT1_pZXi5dx|j8HeP498LwuXqgMQM_pOog8@H7~~%^cL9viX1A
zqKNMFldj*TlG*R?{!DS@_V8S5h^B;XaHgtK<L6~L9u?Wesy&gezQeuh&upFf{w5!x
z`QizDPuiJ}Ao?V>CEw-({Pu)31;c(){Iy;0xt6f%EppO;YiGZ#JdJ)^VxE%gh{!wj
zDfP@RNw%=D;hfZO9q^4_<HKbU&Q4=O9*4?q&DQ8@cy|CUOixAmJVB%KUITxY6iA4G
zZ(m~XW%Mj%C;rr_IuK_g1kq%&S2H<i(3x*@Ii*(;p$g^;fS%|jjA50zYHGC@gw(K4
zlP@!Upb7adohQ~lp#Q50U7&4oY2-ZTy&#-}`DN3b@80j1j87Yb61bLMzL`;$*nC44
z`1BEQn4yf1FL*-L#wPV=B&Xib)xP~B#$C<6Mw?#H@FuY0CMizti%tkPbccwL20tHB
zf#qoLY`^pPW$uzj<WK*`y!FvQ$pyI>0ra%1z-x~h79WH^0;#niS7$gF+GqLZ|3RLp
z<q)-|aM!1Ag8okJ#*Ruwlaa~8r@%DWP?X%3cpRe1Q^5Q3bGXpZuH~!0Jd{!Dne`cI
zsU1}jZ+I96;s#}Ff{jalC2r9$g4l6+1m18fA(b(xE?4UL!DZXxsjst{@<Z>OYe*+&
zXr_R|J_*AO-yOlB+@p=>2bp<7NU;J^K*QeTZwngF@RMD(TE~geYMn-k+SF5uQmwkU
z|L^P8z&-LH3FJi|o*h@;Me*KUIb?3~051|l&JV~jTKcqfRc2t4X-pX%%lRCTqLw#=
z(e(eRjZS^En*3Vd%f~)Zh+m6Y_4P0{h2(?tHL2#sH_r^m><;YyHTF(0W<SUdRhq4x
zFIxGXzAAtS>Ii^ldyM0`P-p$NJTXF{HWbEXR|cXNx=OwnX=sRL(aR*-mhY?z#D<TE
z6*hvgLPkU+?878Q_@XPmf#lutlMe4G@9gJ7WAkK3ia5;=k!<nYMPL;$F#qN1vI2a6
z032|qr-f2Wl#mJa74!)(>J)zR^$AZsDd+I4wt|DdZDG~n`qJE<6uv29j=$t~K2MKr
zQX$28X>5k2!!$HDx~BX{W2zwtM`D1IO_PnU`VQpp*>QUCirETjFKnecdmlHt<Uaq@
zx3@of<noauSl#+2n<dMGzTCoAQeXN`2C@<MO>tImE?QS?itt(KAkqqJ+?3rn)Y04+
z#hb93g^pN3z9bE!79QUj46{!)#>{K}@&vG;OTks+A*{Lo^-E01r2~(`FDxYM&;LgR
z40w5XqE-&h58^S9N-syQE>D->lQ&H@4TM?;oWZsgdiDubeF_M(9o~C1hN!A?13%$}
zCZDj!Y_SP}B=a&X1%U?gK89iR*Iu&CEH%Vr3|HDc5w)ASTx9nvgGUZ0DV+dgymWqw
zfO)n1bTX5O&-eaIS5WvLQ8+ULN*RQRYRyyo4o#LWz+}lx(P5`>hV@YL$nh|>#K>ny
zU>0Qnud%zL&5pwoT)`c}xWr7Tu^y%Ea@qHhiQSMA!Q_s8PyR?TKW{61v(V6Kf4*Qu
zOz?L47ZHeAV`%q0jg3@RcOO+Z{%P?iB*PYt*{gA!=>Eui&^}zg>9q&JlJW9mTn}g0
z*E%p8_5X-QI|8h&kL}$je4TPuK!AiB%N~C**)OKGgoG2Mc=#3PrXlko^sz7FI`Gq>
z$cF_H+taPxp2bJYYTxXlT{s1KqWReZmwWhdP?)o?+6f%>AlSFF%hJx9?EB3ZBFFU#
z;f78tmGD7ZE{tPXF3WEDRetQjm_KD=ihR#DM>BTB7AQ54?No-AdXRMA@4E!0su`&u
zzfz-JonH>;R=^Ssg|1-jl_B;Y_IjY}{^!3E6!dWg8O=@Zk?zIQl`$|6*vB=QMfXj3
z9D$IZBwGfM6rmhCl=iPzjVj7Ip#`SD*|y4^hPUwGygSK_7owyvo2k>&H{@S!EXTc1
zNy_2~Ff1dQ$#dZ~C>{Qv8ZDGzZE%UPQu^&Z$xp9}x4wic{zeRXUj3IbU}-AK=B*Su
z<lBj7!?vm*eVU#jByZ<E%d!dccMPZ0Z8)r}anAe6P&_wV(F=9eKRpn6=v0El3%c#r
zpJ;d(rg2jZQCf<bVA@8B!ZQ3yG*+xYb>*>Z=`@|ciw<;AAMHF2p<JzV&r;rr1d```
z2z;%c@=}2}jPo6~8tv6cZ_vzOMI+`09ooo+K5Bk6ks`#_pk0Hd#r?qgB6;3+)K5)O
z8TQ>m9cP<_uP#2^UA}Mbum5eIE{XkN%FO0VO=NjZz}n9ZZJ+pqv~fwctc8zGGNF@K
zR!yxPlRj_YX}rm>zb$^?fNg)KC5jSORe>2V#*K_tI_lNb?+6Sa6e+%4oC<R_jLU|q
zA=yTs$Ato9=Sguz=ZmRlqCQUo-n9#L)3aiaS2zv+ST>aMsV@aj-G$oSc3e(g_?a9|
z_X}k)Y|n~{uPra$EYIyP;3)}fr80gpVDWDSCe;#&PW2ULG}Srv9Tg6;sqcBnq%brQ
z*?dX!1-21~=Kxdo`EEnv<$TflFGrv1OmoME6nb+rh=zy`k&y0i!OJ7-v5Xkl20R5!
z-LxJLCCbV-n0c2ont=<dLHWy+ZP4E>ShWp*5ITCJ012F4kj;2;hW=)Vf0YMI#0(8^
z2=;Bceu2DGA2`Z%?6`1;_2d6-s!_FhKskz}sPqbT+?K;tSUe6xRcJ;bgbVNCQgcdX
zAVQI@@yr)EKKIr;Nm%$Fk;|yO{|!O3=7}fYy`#ezNXN`?7NteB7T$i#dH1#0Xg)xv
zco4d@RGH^bL<!hyJ9~UFZiuQ6^lX*VJ2kWWcuP$~n0Rvb^r?fFf5H9~1#J=nDX6+=
zeOjQD$hC~p!QvpV8t)B~!-f}N%gZNSojmWeMpGo(w$G~?e)1P(@#;!t*zwyjm{srn
zdcK~onwRzH!|eB(_%`D<YIox5`rev99=<#zG9Rm*fv4UzZ`aoeh=dhpm*7n^`JNER
zlPC0c-PZ%faYk4p455pPZ~sa-CD*L6^Z04~7*su$`}~XJ5~F&`!XB(@9U~NrkSoKo
zV93>aMOpS;<0H8=`0}ba*R0$vD8d64c0mJbu3xUicB6!nw9l`p=A$>nUcVEVkVSNJ
z6oQ}GEfVZ+1mIb8ui5y~5GGmRR_i)4`S4sVO*L&1p{(y=;jADYXc6`&XT<YDxn8`P
zKe;wt=TXa?v++!wpU&}Mguh)245_hdXwiWCjx{Y|Uw58Se&Jkb=+g8jb>x3U|IUev
zL4aLlj_1g|*YBQh$S*NyALrrY2{VRd7@3s;QjTDR2p|4WcuUY&bK2yhW7!~WY480Z
z^l;o3ufy}1;Jw~1m@4lxk26bdM=<Oy+hyh7a25br(`Som-_~k{>~=<GdtSJM;ETcV
z-0nj|)@a>QDgd2qhQ}bW!%L$715iP)zVykj^TBDM{(w)p_*?$~1<2L(=J-AE{{X^L
z%8Pk%uHEV?jrY8ZYY8pc$G4et8lSCyHPF~vH~P!S<Lki%kL0=M>tAz!!AXB<Wc{T-
zYE5TT(QXW$9Prld4@bfI9vf*7+Aard++2oWM_AG_E8)v)R(RG~Vsu9bWRLPjcH=l^
zz&PA9gT_JWU+M>g{5MxA;oLSFzLRU2uH4Pa-z(Yq-2VVEd~V`MX1qmOtp#|-(O!1a
z{{T1WQn<Ibg@}#Bqt!vj>xzyv4ay48ySB87Mn$?wNJVAxa_YpMRI%HQqmn=)JP%P6
zLP8a7txT_sHto%lNx=%camG8IMsv;w>T05~`1_+P^1a55GU{Gp8TJF3jchK174qA!
zp{|vp@vM@UwzGKHoPi7hKqICA8T@nj*GcwIi)^6?m4O}hmilD&ABHQP;!^6q^QIU{
zHM9GVF1@s!Be#xKWZ!pa0mo2o6Q9d9yBk<V@-5+3C!(Pw`ey>SHBSk6%H}vmys}$^
zd1<ysUBRRhf~q!mIN;-G?^qW)CGLqb&2b{`Ot@SSPSenK>CZUy>t19l!dQxyeIxpw
zobXj6hNk5kE6e`?Z9hnSGva-B_EY_ft$rwYYgCg-@yEuCy+X#%SB<=joh!mRG>LC|
zZEgw75^9&lVl&24L2L%bS5V?V9O_;+_)-4=1k2TQPm9+VseADg#x`Cd@SdBh%QM|B
zoub*l_KvF@H!RabZE+(lvNqKdvEBh!-rq!i(;u|ze#$-=_$BcBz+M6Ht^WXu{5SBk
z!#6fwEZ6NN)vl~pQjX$Tmcq_$wvb8Y#$;=TF7C_&Aqchj?c=W({7?O){vlm!{{Ry_
zL3iSR6Znzhu$KE!m(7}Aw79p4aG@4Bl*)ET5=Rnb>_y4X<@p8zzB(%~#6dzF?xU5{
zl$2!o61LGvM)!Am`>UC=`V&3O@VRW3T|#n{`4l-4vRuh?H{G{(yzQ=s>OcGy6U6#w
z!`%nrAMBUmBjueF!JZYp*Q87<&o#A^L8Mzq%5u@#Bi-DrYzSHI7DdA-HNyVa-xKEW
z{{ZX<`!swB)AEh2_)0$&YOV<eSQhr+=@2;nDAG%di;y$&%8|A*0Uk;J00msvBf0+o
zf`WWmxQV}Wq2JrsM}l~dOVVtk+C4Dn{0i6q0D_Td3E^Lh9}IpKEW4M&Ukf}Dqdo?9
z$StmJB+t3?)RFYAUL4A4#)ef2n#reC`L`Y4qnfv(>~!%CbBKT1vWv2djX3L~SLx>M
zfAccFHtM$i8~*@;UHlr;SC`a0Tk#8C0eJy5_FX&w077rhy?gfK_=T%}&fm9Bfi*t^
zBwug%N#TzHT3bUe`mZ-hvKOWoz$I2ixhTW}${er+fn2BULExP~#6JRmWN(DJYdIRP
zf~UK53dqdfFxR3X_WH0x*O6VX?RoGE;!o{&{{RIz_}$>2g5uXv)@*MtF06Fv?o!@s
z<k2j2`xdgX^8%!|Y-47QH*{7C<hp@NEvbf`XwMYwPS~kR`&w0!SN{OFZguDD6$~`t
zf?vJ82&LBQ4o)l4>(kJo@vq@W?05TAcmv`G?KAr#>RPvjJX7JTOP?2bo4{K7tkEr$
zw=CL)=8b-vyx8KFQzJlK!Ye9lfVv9uuZTJ&t+)IW3*oPWUBqATn*34mJ?z^~8KJV%
z(?VubocxAd1MOXQlkhv@KkQHNH{w5tKWJSg{4L_YiJl*mz}_0rZ>5cO87wsmm}S=W
zYm0c=LvL#Zyb(ce(z3L-4$H7E$8R3}rTj<WZFBZh_yh36!us8{<<6I&c&__fhR$S?
zYYYDX5Nj!NvCgVVigboD!5a(#1op0+zLe)yjvEhJRVb>y?4P~vs#135UlLQYP3wId
zZ5U!J(Zf@zkHpiBEKI3;>uu(>w@FD|=yX5uRV(|8@AxRc#eF1WZk?-HX_oPfe308{
z+HypL*aMI~{p;F1EuzeR4F1QTv!t+RQt{`+2l#_?6h%u7I`>(%(=@3Z1CTCs<ep_e
z-A44SuZaHu5P#sDAGKbuZ~Iby(AvL@w2vHKSXf8m-w0?rVzsups90M^XwzEj4!bO(
zzJeIiQqrWcsLJ_r{Kx0741U+%CDi`_ZhsH{**-Dw>{spK?Mm9_(?HXuHuiS58g0C`
z+HRR`Bcu6nTB{)quorP7>{BMy%MC*lh|6eUBSKM@9vbs5RVl`sf>CbCrrVb?(@5*9
zwO7Yw*bK_9VJgvoS(I&UZ40SMyDcwkTi11|^Ox<p;@w}zf3&a0Ul?1TGUopP#QrEY
z-45d&?aj5g<J3fecjznjQ{sk$cku`Q3Kjc6e$BoUjbzoO_#LTu14g$4CTrVW3rD+4
zWKuvaBD|n3Ms}ZkekNS$-XPR`Uj8oDJecmTH3z?vDMLE6k92OFFkPgpGZ4TKN|VSZ
zk9+Z_#XpIE5I<<$NA{h))h5%tWvOc8Tx;DDIV{D!;-W;4Y#HTf)lxM;tnL|duen))
z^mCkwrD)QpO{MJV$}9X=r^}~h$o})f$au<z8m)S+ExFZFR^OJ=PglLKbi4T;bMR~S
zaPbet8+~uan)^-QuZP|evzGT+*RQN6TYEA=TU!fjVj*jdM(*UK5ZT9x0W8iJ2(o&Q
zg#Q5Go1eBf#BT%mQ^$S~@a4VFhkR+HTk2o%k;8p$CXJ(|z+}4q)VX;f`#hR<8Lpz*
z%y#XF$mFW}x5mGZ-yi<~X~=9~{h_=^s`#4QOOwsBw!U~Fw~AI6GcCQ8P(o%ZO8Kmf
zAW}lIhG2ZHn@jMHgD#nMb@n|n=3z9pZ*d~qO(@1BlH9+QB!g%n-3xr6gTOVc^BmSu
z=2MJh-qvzSc{{<j-ny%3mA7xt_E{_@nxQEruQa7;H+$-rG;Pz<Um~CFeXk#nf3#M$
z;xC5Q^G)GBGT%<{_Jegaeo>oE(QKo#f_4Owe$esDI^Y5$l>-G}MSQ)bd^xv&i#jKR
zb!(;G=q@g{45~u130M={?SrpO9CxpO*S<4&CrMU<-d4YqsTjBAcXkEOA6!?2=$hE^
z2a7yq@fL0B);c^^a4tY0uGm7Hk3qbjZ^pT+(X9+6ECn^o8^$ZWlUKj0PUkf&bt<`y
zT*{=mrD?a>UM(wnHoBhOt$5=5!(XzWkA5@FGA^s*-ADTx&7>G5A3KndkO!2ky@1_{
z{3G$C*Kz7HSs9#vXKsKU`?*#-_P0_U$vOA@zg&N9%l`oQLOvCIF!)7igvn>4$*)~T
z@s>uG@tNZ;qp%Su=NvXWoc=ve2ix21%bkqsaypPOPSN?-^QVegs;!y(DEu+~cK-m$
zR8Q!y4Dy#lEcTB_KhysJwsJbJh8hGnlgV*@rZ_E=%$b;H0FZFJ0$7d*e`@XiCV1Cc
z(Cv_TQp$UuEO}QKR!V=+M1$qGjl#Csih^a741@c$U_%<+@bXWl_;}n|g${*U0LnmV
zpX7r)@&OGY_FsDK^e7?Gbkwki5!yh7?j>-ZV-^{h`G5n5B$1qvo~N4iyg%SailHpR
zZ<bQ{U6Zm~yFUARY%Vb48hAR33Zu-U@hi1=zfRXyU0d=zi{W3v_<kTHSNdLtknKKX
z-`bNkvX#y=B#K0w^&0_p?ZGTQ!L#^ltLf3fZQ)xhDK4RcJ72PCH`6t>{N`WYI<BQA
zEoNAb5;$DPGw|xU6~}mgQ?t16oA{){(ZhOyyxj2=U<6+?_|;ZDpb|E-vtX0OZTv6s
zm4&SLHxi4xizsa*0^F8(no>cL);0wSpP2HwImtX%>QLc)Ea=8nHJ^2-;I!9$d!L(P
zc*h#*R7yVLdrI>4SH1MLmAy|Q@o$HdNWPjuZf#aJRJga2CxxJp{Gj=60gEm2yk`bC
z=r+3J=Fc7Ii*0)Pj9}(h!(#vg$Ib6wp`Q@`A$Vuw7lh!tjyXTI^kUJpvICiPy}Kn>
zJ;WSK6ESHOP^NZ-$HJZ^i+oaB-!2+0(Xl-@As~_I$j{K%^RFCm>&r6)=_^8K?>rmC
zKVQrFYkYCjUH)e)ZK~ebOJQ|sa`x!>4;s5{Vc+*elq6$0#&gv1Uqs8`&jnn30gK}K
zx4Qy6hPS)7wpf}Kl1qaWMlHl_SH^a;XFqf<PJU!$k@OiO!%5@<Lnu*z4(^>o<E}aS
z*S+}1UbMIUmHZ9hyC_x@b$PC8mre;DX|%k1du3%mDGTShTw@HQ(~pv!SW}u#H|Dxt
zUT4)p6>3E&%E>g}n(Tc2;%lD=YLhL_pM5zhM(;iXNF#xQ80YzVn(}+yM?{a!ir(H+
zCP?|t&<{^?FnPsy);e{ysI@XIk~Pj*cMhW&-H%MyBXy%C&-#_X1e1bsp1pXlW|g9>
zn>L%X_l_OqmR8&VQ`3z909ta|yp4{v)x)DHC65j7+x-6kpJ^qv0f8XldUV13`&UOg
z?k9*{4rlC(fOFRz*JlTVT1XN`lWAoHgA3$jbTrQo>8q&gHnxaz819hzD*WGvO6=~n
zB{wn{+4k-@;PlO5QxM|pj;uXCWp>a1)%$zkr^bKyBuB;(Z)xMJ4J%0TBv3^y-OSM~
zq^dAjJG>0=`O=wBnC#5wX*f_g_#a>KFN1EpZQ`W(Fwb$}2=(Y<(=BeNd#j6UJ6Q17
ze{E*Zm2~J@1D4tfjIMA$EB^p#FA{i{$G;zZU#<K(@NK7tp^j*A29u3S%TR_JaIsuP
zDVaXl<S>;*vP!WKps{5&`jh_v1i1Kl7wsqUpTOthzNcZUX;$#WFJ`!qHOjV}2{yC1
zL`0fpk~8*kle8RUX1q#NAwr9&rF}Z;eu*mc=H<4XPw6Y-$H3nT>0bkW5BSSpj%yq5
z30pjE5N)bb{?zYlf`0dwpq!Jz>F9r%Pm6lb#Qy*Rd>--F!CiXk?W{FlgZ}^+Z?9~M
z#=>XQJV|sk*_ntg3R~UFv?~BapD-j0e__A3FN3vji+`}E#P0?89{KIH3%?EDrk!^R
znI7I`fy8nlKX|WTM-}{+d|dsjei?j3@Fbo%_}k$E_Bz+YJI@c@4J^m@+jiGsVSO^p
z#Xr%exKbn-%19$)l6d>y3Mp5_({3^6N=r_u*|l$0+x1_6z;T{BjvJP>XUo5)==tOR
z3P!Lu!;g+KPB3l$Hu!8?`h4C9wvUf*D<6g{^V{|^*R3=!h!N>m@S|GlsP>N|1!A(X
z4;D9nyN2}ydRNz<wx{hI@Q35?!M_gpE8%v5twrLUV_Ad69x?k>w5pAJr|6OBc8?pe
zXx(MEM3eVeLANc57=!tLZGM_IohsQU*{*HwBAOXclF1}&2xF7fGJwDkG4Eg59v|g3
z<C44`c(_Tuo}CiE&8w%@_dk++Mb0QoJBBKZl%p7}SKn{BpGf}z!A3kYrD*z}gte_U
zBV+c9O-9kput@yLw?@#Hz!_yEvK}#x)%t(?59l5M@ejoh2K-L&u8m<}*IH9*Nbp1v
z$De8QZQI8s&P{%Ke$$>MwfMvPGU$I1T#qsvxE6Ate(qV7?VV3ywo;?@ueZP8le(Jf
zUKjACk;=A@rD}RV&5guq^La?e-J{yyLO8GIUMa>`!OJtk$-By%d-hzf^FMastR)Op
zECwzyO-6Rvb$s8U`!T9qIUp`nHUJ;izH{-jT<X3h(zI(m@_nJ%?h+8H!YEq^``-X<
zlb#4{XBG4Yq<rhK8WZx26Z+SJ$pDwe+JiC+iACPc`6R;^mK$g!fEDq`10lOt@b)3<
ze^%kNN1J%g3(a%J^5u(p(gem%;jnTOBz0nW=i8oZ+x57tyd&Vn(UJV6^4VF5+5(<f
z{KRcNmp{dUQg~B9Np-2UJx3}dbB)>Cf;c{;{d!lL{B+f3dnxp*c*3xW<nvfKRRM5~
z<$z0^w?T|>N#dq3Mb4(D=l92pEo;TMmOl>sF$qa#2#FZk3&|9rOEU*1K*4uAjHq%x
zToK2&{6e~)N$~P%dIywYiq|ZnbwMW5qztJuZbGG)fsyZ;;=CoKc#Bl{&3)sWxY{i$
z%F(UF&V(5*BnYp!Ic6X!4q33g0qIpfA$XEesC|!3Qx&=cZ*E=Luu~&?0fh`VVB;kB
zIIW#D;*pm=wmffGg8u+hRJfX9wlH5i9E>Ooi~FaM0U5#Imf-L+Ua_v}38Hu+&q|!f
z9G2=PEi^ltUok@L+8A)FyK!X$AY@l3;NJ~Rd*T~i9b+z67e)Mn1FU3uYEI={%;yS0
zJaM-<HPQTGlrWTO>=S*vTQO+9V$sWnLni+KynvIq=cwe>LY3r^Qhw?1j;-KJdG+Pi
zVn>tr`AJzrY(?q8!yI$b2N>ry_UDH@Eom)}*)Gu+aZEcAAVx(vZNDnvyO6^e<dMa3
zUK#K~yz>6pfL8#h%lzD64umm2n}PK;?s^u5b$@pjfo!q8)XX7NiZbgS?hY~nD+T+z
zn;H3=0=ryWmWL(NO&<V!L-+-2;jbCoYa-l6nu2|xaKLXT=Ntw3bI%+c)4me?JhQm?
zi*p-7vk72^Rbn=P!zw^K*}4pofI493HTvE08}?lIgQ<KxZy7d`c2dtdd`bxpr!33N
zY%(xfHY0<K4r}uFLuT*~#hnw#M_X&rCAd4e$Ub5X#PsE{f_UQ@HR$3a?sG@6$%j&M
zKW4Qr*x$w4hwSg+zm8X0THR@Oa=o~h%M%5LRvQUZAe1XgxI3^tPH|tOU+_<#*?}*$
zOOJ?tBeoIRS~lx)BJ$#Sun1RFAh2GckIXpa*Q$QPo+r|NHhdk_{se0G!WX~OB(i}#
zsNG}-E*k`V%$exik^Ed&>5svU6GQOFh2Zc`n`CUDvri}Ff1AugRoJdU%P=P&FdU5W
zUOhJ%$xbUr`J3WuN}OdE@qUk~jq!Wo-jVTt;8%-26#PN8g6B%s^!Z@8j_To|P(mH7
zClSbD*g#<WTOB|Kzs!f?ABW}e509@bE$3yP&hBWu>vv*~(8^QHibAMfHz~Oofw^$S
zMsPpXpH2HkwxJplNOO*OAmh`gKKMSyzs-aG3Wncm{ki@sYBGmJm&Dh5QPjpzszi<o
z7JOxto)04pft{oKgXnFXRgPhbz&&9osd-&AzaDSE{yX|qU@6NfrHqQSqdO~qc|ZO{
z{QK0ktw&SVuC<+AgqIhL(mUV}nT~#3a0hHvy&(CTj^IWa2tS7-`C_ncHnOUpyaD{G
z=Z84fV+WyE2k;sGmHvjiDA^yubB{gd_dB@|soZ$a`8AKL=@4p=dB1kyMisjpc0RfF
z>MNjf8>s2hsXkEg+OUk8)fqYRK4f`a?w@;L`!3>SKDglh4S4s*9}q8w{uOF-hS@#h
zt)w_OZPJ`E&uk`6YwHOZO%o)@vJ7Jk0seLQ_4{e-_OZ#Lcs|1k<i#c2>YxLe8_SC)
zxY{KAYva63&t4BAuTeWnOO<-dPr+UMkI?)sz{@hvF!*+~Pnq_#b^KkI%=k}EGH;a=
zy5}Ca>Hh%MsV?1^g@s55>-}n^E#%Cuc^&c32Bep9a-C1De+JT>(f)!;I^3k&hX7;i
zP@MWzsRrN2ny<!qr8H?06dcr?V}ne=6uHR7amrVAHy6`AtL*;(gLd!zn_!A|kq{)G
zT;{$o9E=XVtMnJ(u9&N8t1|K-P`=%cJ<q*<b>c23mkO7e{YUgtz&g3*Nv@G!i@)f8
zhJMYr&1)}=EtOthJ4CUNq+qijChle6E>9k2dRN!qv$fP#dPcE7IG94Jn?NcH5=S`T
zk>8Qcd}sS4c&k$IkH&pMJvL3Nap9ZsyK3)7hT_%HfjtWEY#!OKw0sG6Vz$)ggn-ku
zPo6nDn6n>pNy$H6Yo~(e{{RV;)ARh>K4a+}hf(7kV_kV4{z((brSUbaf3=pM;p^sD
z#NJxN!90VwDIksxNc^ku58}R?Z=!r$@lKA>xEA{Ms}S;?mkO7&00%r{(;V08SB{qM
zf7&9?#c(?`uulssD-cKr0F+)2<&j^VKeb<mZlwLB{C2v0MIk!f#JhM0_vswRAY&P4
zEt>mmD~g)A{Qm%rjp4E5S0859E!NKIg~IOK7U_3msKUD7jP}U@cdt9vybUaO8PG$`
z!#9${_k(Hv9DV-)rZ;;U?R3pL@$Oy=qT%|5Cj^Z4J$iBVt9IA&Tgr6yEwH+-Rj^0R
zl`2O<2<g(jH7;AYv&e;K7op_d9M|sjtN5paLj=(k^5hMTm^_1?p!WxlTKzixoquS_
z><Zb;{{U!+f%dyGfC%7u@DrRek~z;E_#oHkmx{b9_elEAmZjxP7ucuwgS&yw7$3Yl
z_4hem3-L|ghc9B)tmjmc2M)WC6WkHc1z2#yxb)!H+3=4USIerY!TYau{dGQ1jQBSX
zn^4tSYiHU20FnJQcyC;@*X@yX`BHC}hfEN2mBH(^y;Sl$am^Zqr<$x8a>Mb+ub2J;
zd{*%$z3}ruw(yprad)5}lIKTReDAPoaRw4xqAY6PXLOLdZZ67>;g15o!m!h|4S!9$
z)htA4ntiL@&eA%fh>)s)nfvbS>an7N&QBZyNA(U>pHjuqSc-C1^*@tyo*l1&#5^@*
z?!T`+kE}mnAKH+9&p#E{!oDuL5cogEQ%7&97tYH|k@8yV3ywc@PnSPU(6J=qFc0+q
z0B>_8vbCMU?0+*ZGmse-*Mr=A+#cfxy?+zUr(SCMgXwx*t6i~4Br&S*#8IwgXTZRX
zN8e_`fIufCXZN4>T>ZYh58<ELYfQiR<8^-ekA^R!@VxU{+Dm;b;M={%n>5~D;-&54
zlHI0|s<iMF&h}7$An~h%-adqJxLDq*vT1J9c3(T`{{Rer#o)IXtQ~1!aWb_xcAMEW
zuKx9}%gp_ROOQ_kikQlWt$s52xBd$m@P|m>4}|;~;tf^T?#Xd2m6T2R8KsndDVq6L
z$Di<9Z;Met>)_7;XnJuxB$v0hckDCJv}qlxegXdg8vHje@K1>GO(<dQ{wYO%xBL&=
zGcOnTe+rwaUiR#p{Vn*P(bTfW7a;em5D6y7maO^y=q>z(e;*z*{{Vu!{@h+9fW@Ww
zj>AC7&UB3?+7<)QJ<+>4_pg$Cd;4Pk)?X2~FN{7Vc%JPT5K%Qr?GS_5rHQseJ7BGS
z?p^d?&MG_NYeFl^?fyxAC&c4^k{KjD+Ax&9NiWR)?sZLnM)2$(XxFc8wD|kA-0@qF
zu4HAe&2QRk{tCtWHGB=x?=<g*`klALFBB+bj?YS*Nnr$|BR99nnA9m8#SfV=?4V_b
z@(%@`q2oE;_g4o|n<I3$dAXDR`<r|IwdneP!;M<=VVC3pZ3Vh0^Z;}pO8d-@=-roL
zYbu$JA=FFkrOKbHyLR-k@ma6Z7aNMC;g;d~Tl-Dl@UmZdbK>vD--$mRz9H&g6TT;E
zt*L8Tw4vs4`?N$+h@gfbNQwxQ?TR2y(UMC$JGTMlPbt{ti9B=GzM0az6E2rxEPu2e
zt=(itw?=KdUmLd{x<ekIXQwsQ>E062?co;|_UIz#40#Mj2>_l+!OkoC7Y~_X@buLh
zFtk>QEfPrl12M>Pc*@ScCT+@EyZ$GR{22Hl<DZP55i}o%o(@o&j<<acjiWN;E6bA7
zk&p_(7-^hml|nn$_h0bm;lGBy6Z}8XJ{Nc@FDFOv?Ti|IqLY*5K%ql1JeG5pVsc9{
zCchj10N|2;0j;Feb${9?R<{ccfRjei@;Ecd0luAi!PtQyQ`9k(de`n?kmG@0#eYa%
zJeFgbM=yi-DDVC!zuc_6ozLtq0QeG~SC>l}CGXYS{3~z0-TA8(($tpA8u;_}{P@o&
z!5`VTR+B-xHk$tciB+^sE=BwCNpl-{_bdMZUhr>lPw|u;O?{Y+BREtUB;XHo(!ZKd
z_$Z&pzxZ6Av?b?<bUTqQh2Y@&MWIFoB)L`w`eBZ_nM5Nzfe)eQ;=Co{cbexAQ&*=?
z-j{7QUpM$%`>zu?jb-^<`CX?!c0WDe$#w5z^19pMhJ~lFY3-Y2N)Z%clq!rU<DLf<
z*jm|mSVjie#?U#O<d6I71M(HyM8FIwt3n86JEV<Ro-#ltzrUVkIWKvi!Qa@l;@g7U
z<ssAbby4I+2_1M*&PQIAp$tiGz(R_@Km}<};r%k{)>45O3}s0N+omZX&@Le)!*RKP
zy5m2tX?<$?+|F5ild_2ba;J81MLA>zPaQ{Eu=ZClj#qcmsL1i#HYOoC11-i$rO(Z|
zo21s}M!EA%q}wnJ=IVC%&rBlAA@=CCvE<u8z)cb|ah!m7^yGbO8&WAgrK0&x8Iw{|
z*z~r!Z|PkVTS|DxLDslvOZW9}<@p|tBAR%5YTf?;Kllget*QN$KWT4-J_48G@5Bp#
zhkh^c4vQCs?-NkdXVjt9^xGD8u%6fK?2K+>iP;`9Pb@)FHaYnR_Ja85@PosCCHQCH
zuY}r7`}{KS7l~~AMRz5{Fh{Fvx6s_c_d1QvcC0c<ZxOb$wJedr5yXHJ1b#vxcu63h
zdjnj*i0^c}TR9@XxP^DA!bnC5>5Lw=#g=f~DOUHVDMMR9+m<}ny{waayIs32k4G`$
zYM#MLoFfUVURHN}wzcls*2?xu?D^C7nD~&Nv=_#2h#wT*DQzP0uCJ?KBvO=Vpo37B
zLlkbvN;Ag`Dw3qG<=~NnT^H>^`$G7G_MQ0Qt9)_s1%<YgbE!pT5?R_i$ql@A7Li&+
zi6o(2hS;}~z<kVbF^cf3g1&2P00K@q&lTza00{gyYpv^zE~N@f6l=hdLjrv<U#8Cm
zhQmUgMIYhC#y&~%-GAh(?msG7-ZK@?Lz_yI=YQhYU&WtdXg?FaAb6)i@OHJY-T`^w
z-78GdbV(tNB5O-M8H?D301#w~MlyM=mS({{1x2mh>V6~f6y7e@?xnfbF0Q1%n^0#f
zboWxRcc0Botg^GQV(LN3IK@*-IBj`Tf#^;KewC|lX>oAjB8{It0;xIttMl6PqfYWx
ziuo-&dLN)+sA6i_Nx3~QySwk|aT@1^?0iLiF0Ze7m)Dcv%X4)!liWyDZC&$9%_CrN
z12F(_Fe{jo;fICg3es8wx1h<!GoFJ3`Pa}k-VWBT`Ab;=9d`}C&lR^9!w(T$M63~E
z-OtQ&e<iO26XF(Igj}^TQH{EDFUd3Br{VTtiG1r1Cg1m8=6vH9gET8<1#Kc2{{Unk
z&paQ-x?3x2TQ>gyL5M^E+5+&PdI8XW74!wa!F$`Z^6u^yHuVdhKR@TibXtGFttJc$
z`<9dsPn7rUGmp>kuaV4rZpdk^Yq>up-{zA1PolthH=RyO)RY&SOY+z7K5s)Tcq+gH
z$2@%i@AwL{4Y--Sv<l7WFi850e>(dA07>{u;B7Iy*zHWtdNl6ReK;fm?ZtIgo)_@$
zogb5BX%r(Q{E7w-dibn=(jP63n0iu|t(WTm03+<O{{RCq&d(86G4#9r5%A*ZI?U(&
z9?n)_o<g=b_r*}Z{g^ELR385TR<n^VrNeoPGbRb=rbs+`gI{?|V~_+=700hn(z4p#
z`Vdze!01PRVP7GP`bT5G<`ROBt8e^|sG;Ci0sjEJ)pGeI{%7a4@9b4;6rs~onj|<F
zAz6X?;BoC<L-4!cUZdhoH(b)i^jj`9ud*WrB)8d+M!R|G<~jG>?O&*O_wdFRd!;dj
zJF?)8LF>=byi@j2(yfzB&~*u0DRrvdYBH0_*&WQc1bzt?E9YzY`@~fx8S}+7^!Hb%
zTlYPB9tdO+r6j4nRiC`|S5M2a`APo(1tRe+(*D(cA+^%o{GA#L4LTN91r=ib*OXVO
z3*?vo0D+#B`K<R->UW}4KpEGf3}@d1x$lblH};M3dGVLVFB$lz`BF!HYs!Uz`NIoj
zX*YH&zE>c6lV3e({#<j$sKorhWZ`(=_53rM^J`=3;->4@e)F~d>wbsW;qVmj@l<H9
zb#3{bH^%<}6zYEuv_B2o=o3c-_lDx(%#owvAS-PU1-?_C-myJ%(Dkody1Udg{{R8_
zXI$}ahb6?i<+;4L)7DAtT3Apr?O7vNk`;0cfwrHNW1-D@hr=B%PZRi)Lq>qzeTPBQ
zq$A5oFyzkVh-7v7nSkVBjc@#MOYakF%RSw<p3vF{SlxE6*qd`4C>;-F7(Rezzov3r
zhZ#o)C{nMasihe0%K1{h{qF9Pdb9cCI?wR07Y9;>+$uRab&_{!e6F{BG(6YBI`*e;
z;V86avVtpJPfv|5eCdijATuhULZ3PE-{vg9WM=^IJq!C1#w#zf&RCtMHDn6J24lkT
za0teF;|FhCS3BYT6I{}@DE|QAB4ae{k33shnmDcG7zv%KHz{62ZuUIap=rWvi08U^
z5^(<jBxU2@<%o#f$>`;}u;dI5=RbYIcq~jXN;u}6{{XMh{L76qd_1wPSS8C1{a@b5
zd@&uKm*R=+br|E#^DUf_uJWeFMKK-;BOn$ekC<=|0Au0rih6a&hx}uxcym(uu5D)7
zE&&70LFGtKpf4L9I+N2C_OFQa-x7HRv};25j)j%{u_oaYt9e0k7_^xy@-T1<ZOP)k
zVEw2TIKDF6>Qc%c=T)_e{_Rk0Sgs~%HzJIZ6yPvZmr=tLn*6)Q3><#13B@mVUz$Hy
z@M|-a>rGAkaohYh{O)}2Jjc^7BUshQRsme#Hgo>~>-=l5w$t?;U%=WHnR5PJtPmB2
zm=n4enn~m*Cn25W=Z;1=u6s(;Wz?;vvVufLbGOW8;1URDJ-%K^&Ooni@YbiGYc}6!
zx0FezL<~c6jznajRT(~+-RMPsJ>n<Iu8-*qzMnF8Jg8_=Ti?a3Nb$U2vl27Jep@IR
zJpJN0^sXB6-G%eR7{=T_f7(5V_4KcG@db^Jk%{!#WW>tK$tc{r2>Az3n;!Yd?_Mb)
z>NeNs?GU4>IV~G-19EUaY!T01D@qkywL0p>C1XDRB!bZS#|22h;F5jMQ}pj#bpHT9
z?#U!)Bn)>wKEM5H+VLi^t1yn<GNqAOS-$p3?bu*<H5P-Vt=;NHI|U$lhm)QN&JW{V
z)RT-`XD2F?vC(MSMZS%sPpn*xlU*r}EFKm%@5e&Kb<aWgR}giV2Lb>`t#rOO)uJLh
zdtw5{2*;oU3&0=b`d5;jjCVU6o=*p_;Azm4)>7&^j$aHOi2v64yWwa27Ng)7z^Mm=
z{5#=C@e1hn*I#Rx+j(*s(-9b;d!#H`n~2f{5U3kL`Lchajbrvy_<8$Hcq2pjm*MRq
zUjTTAQPMu%NVR81dG_Kvs0v2|Y%RUzgcj@4zlhKHBG2rl;{O1Nel*a2E$h%}dY^{$
zjZj@$*iR{0=D*Y5%!p047ijIHkO_AU%3Tp~8;bt`Kre;fG|~Pd>YDGu?NUiJyPF#b
z-4fr-jzxy^b4<nY^Gd~bfZ#HL%HZ?)#&uGj9<rx~Z_NEiE#|37RFd;C{{UzCK0W@z
z_nO~<{w~<wc-!HbGhEo}_A)iuv9(yiluK&)ontInLWXbv&jP=fkN7Fi?Du7^_|`o~
z;T@{BpKs!M*G7D7QKW0O%W$4bg~(L9gUc(92VOe<jd-K}3Jd#5d_D0Gia%lvds(#c
zWwXr|j}7(3x-O+1lgIXg?opKt+Zk75#gaia?4CFHWvYBf{em>#i(0JBas7>|U1`@6
zMvAhOSr$mhm=el{LdeU&=dTs|_l23wOs5|VOZ#mvEqeZ+GxP5ea%kpwDbQQ4z3hK3
z-wXc$WZxEiLb<=yyj^`gj)A6mh-HkQHs*N9EgVYUFP5hv<jw;Pqvi}pbD;jsnr@}=
zYgxarvtPH!vq_{l`KOb~C4eo{%5bF*8FQ8g0c-AW9{e|p#=87=+TGl?z8cdl<F~TW
z>||&ok%ExVbjgNfP(sHFkhlc4Nf_0Ith6mT8p0nU-rWL05C9FTHm?Bmz~kGV_5E)?
zF~m!jaF<l<x?A(VQ~7E<8-|1>3C8+8U!VCOlm7s-KCPp8&q&uk2l%W!npcRe&CDnc
z9VUwfnl{1NBH?61kG!YXpVwdbCuhSAAK^cVWAKKPcXNJ`!Kht5#n+Z3l3S1&$yk*U
zRaI3$QSNe0en$Am;pLaZPm7m2-1m3-b*!^B#e|k6QQyu!V=6p~V*)d|SqA1H1HkM0
ztN#E5&ha;kJa_R^#v1pCH59zE(X^-{wTd{BJ+FB)hi7F~F8*9<GC;>XbI;Fs-Irl!
zmSS^?R@R-H>#dc)uQS*1dmV{}I*wOSyD8q@m)GuJk^0=tn~5%D`>_H~rxoJ50kzaM
z?NV|<oZJ?XWEm<-e3&DqK?mq-)-}0a&rC3q2ihCwZ$u;lan~oH`qzehIumLdmaXDh
zzEVotF~$L8cg|NMJ68ZVQZZlVl=nZpDC-u_OiPiZS%~e(ETG^Q$v>5RwecS6YrQ7@
zk|b$SSSZ`LtGfg&cM@2y2cFy#IIno|H1gbAxe};cZowqvj(}s^>yFs#UpV-(z-kTl
z2@)xXCP0NgRV$J6J~`dhKqnsjkzbh>;;pI1X;<klhd;Bd@1T3;9(&tQ`<60;^KDrU
zRI$$iy)#@UtEFH4lH%(B08VRZmD)++fGmomKP-nRth@lvfXmckwzUf=t|4JGW@loo
zG4rYE@{|kaILODyH!s~{G6}DxE}f>USjTA;QYx(5q?Tlf21o`galYh~JUSTTQhG72
zw!0kOh2Mo5U9r;cd_^RGy1UyHPr69tbiph~?=Vn5D4=9*>w+sU#oiCTzmc!*<PMRP
zU8uX=06Rk{Z2Yowy9>r~k&M@<-pDRs-jL6=aHu7S#~JPWpxab|)ZxJ+v2H7uBkePk
zSW)CG`DjO%B!u$AD#W^}UN?D)GC=@zQA|!(jf|}uMs-Ak$(6wyBOwVVKiv!q5sor;
zob=8?ud6?2{{RB&J|6LwJXJNcQz|dn(51{#!tOFW#%Xu2n4}Lelwgp*#53Xk42r>I
zHx{A~w8IPUl2Y?T&RKk{+gjwbpWQ0!!28M$E8RXD>e?oS;>XounZ%LJ7)Wec;DMvq
zJojl`B{^Tc<*@~FISjjptwNIIyEtVgosa1I;4~f^*E}C<<Z1SMZjsAJ60<;A@$!i_
z1}eZD1`IKr^xI#>ulyC;!}gy6K0e**QR&iYwpw?J;dr5yR2ZPV9XMuPo8->mc7S?u
zivG^N1zd@AJ4?7hvo4-wku}0?RO*hQRzSouo%@^REO1ETzm0$REuOOv#jhUt?@ocz
zb8~uNhDfB0hnC(l0}X*!91Jq3t)ou$5rzg$N=+ZFfAC7*iZ+w@-$;hmD5swJQr-y}
zfQ|_Zh9nRM<=P682t6@h(k7{GXW`!*N2tG;S5splk7`a4z{BC>`ND=!KvVMPIL2%I
z_kZA&U$wQ}wYP_@HOt4hzqXnH#h8#Lh>khhq~UY4a8Dd{ukV}SuDu7w?}V{<x(kJx
zNN%Tf^1woo%aYNU$#M<|$T{bsuOVTjPNb+k)4AQ6RE*SX-$ty@t2BcwtgUb`gl-Br
zBObWO{)auQ{OA7w;IY36?*0&d+<raq<ibN8#-!SeGD^lqc(2#(0k<A_E>qA20CcbP
zFz|+@Z5(#7##jhblwl_1IU@rk_sBUsj`jSxf5FZl0IZ`v1pTBmn8Ms@Nj8P37Hn@8
z==V0oRODqxm<i89I5-&oq53fK9B^DmP7>OxaQW`P6>pjR+2htjEM`Go5n961UoHOt
z2HE_3gx?@sW08|rbj4V;cqbhTF#N$4jAg*Yef!q6rP3Mgu1GnI<;QLa=D*a2v_H+M
zDI?H<=Od@RK{B7bD&&#8b2L(n6(k(`kN&+?x|TQ)Nc}6BGoH4@F(&yHROFL^pVGe`
zziH1B4-$N3*6txcySKRe9C$e!El@;od*(pr+co;raensxb<N5bF+%qw1`3g)sbRd1
zc*i2Y3pL$RZDUiDQJC&&<awC%JEmhH&t8SA`Sa-snK)sv_(k@cllfUM{VAW({{Tk3
zr<)gv#>sptF<<ucZT|r2D92vBR)xYcl_YXT@2A$NXXf44IIhQ1(%vm2Pu9-&T|y^s
znQ%A6`x#W=0sz6_<ag~~%QPmJx_@3vdz^a$IO<J9&P7;!?&q3)q)9#GcJe=zj=@>6
zoC0u8IL;}`_bC)v9Wd@bQ_%LL?snJgpNM~De}w)w{f94nL-5Z|SiDo=9BPx?5T@$-
z0maNxGKMS>GbCy-0bC9%@wI_WrgM&%?kmlfAvv|x9S#j8a>benZs9@Q)N%E%(a(l*
z3pjVbb;doup4?aGpN64Hwd+XaATOGyC)=OtU!Xo7xsKON{q7Y&&UhHl{{UXUGw~I<
zC_~i#()uG)g(+fjGj`Q4xi|WsPX5j}cNZTYuPrWHD114nk5B_OwhjkgK;!z?=q8ga
zT0euYubGw1k}PQ;JxcS19-y3H{Y8FUe#v^H-Tu%zl&;&1dIjJZ<PFnXC>(taevkOe
zP>)XVd{8T5IN9WEFAT&k033mX_}9>Ig$E425or8Z$82iE@kT1NcDno$JgZN&v(<ci
zZFh80$D4wlh0abp=W)*_zdk=|+dKU`_L=ej0NcTUja5q)I0ahL*_8bV!Tf9Oe}~%0
zx$%-UyZy#Hk&Z^v!_(90{{YtD{{Y~nmwpfMPwhQ4TK0)&<!kyzov0<+`PQ?{!AvX~
z?iL}6`Afu*$N(T7F<)($<?_VTRHD*;XW|&#SF)z+S-(xs&d4qnMh09nV}g1S_<eo3
zt~6=V#TmM2$YtR61oiai*Z%;oUYmd6dpWG;*E}0}CGEYcG?UxPinp*tFbuAd<~iU5
zg7ZLe9!Hpog2S1PaXdbBtf3?uSOJi6>(5Vms<bL$>N+)5na2v$>%~r<sOPONUfOoI
zke?~>xlizt19AFfcCRq;W{7lsPwh6N5zI(s>J|EsJ7IwYdsn63#*sF5Zr<H-#t*sb
z#P#$Q7Ox1_^y6&G9oc~0-3a9v=corGj>j3Rr8_blt)cH<u`k6h3Vb{Gu@8p6B+WAT
zPsNBdy<6<yd69<)%bq+d9q}>Rm>hY9^YRM)w(z7r6`R9TXgUq=_TkdZzhk>%Vx3@-
zT02F$gd-|Q2+4G8NWUlwNeleccs9~aLPbDINRC;sNM%#BZph~$xZ|AT>tE1U?CoXa
z&x-mkmp+FGxtM9QY7WpUtn-UyNKK$vlu0a!BQrx8Rt3Ib%EagN&H&;Cg~Un|smm8@
z-Rau@0Mq=B%=|*gC5odOkfx<2ewzOPU*vsz<6ns$3er9v>c0>E5a{x0QFww#7g)Kv
zCR>KKv{=k`X(sml+|#SgH$@?YU=flzpMep#jdk5;;EaJJZysq<TG|b`MAo#zHC-B4
z=znu_YSDl=CgAnSu18Vu-meauE~j;CBrrwhsS_(k?IbJ`SmRazyQ8oStCGE29V(}V
zyhEt`9q~=C#4~EGb)#L_>PYz|p%zmm+_9+pqDiBV$#UGryVPNrk^K{v;HW}`snB<n
zy0>=Ti8kK$vip(z_m9M4UM3Z4E>x|uvP)N`yX*624Y|{`3wZSlRQ=7uEU}gx?2$t*
zN6^=l{7tj4TS(?WsNj$n7$-l6KhnQRJbn8n{B+g6F?g>__+#MRTUgSQTD_9e<`@K4
z#@6O$xwjEbaM47_kxGa*u>)ydszo^e0Kq8#0Bj!}-a~b9X`*<2Fj1dT)YaWly5b9H
zE(Y&$AU%N{Xono-I7zCQoJ?cZ&Px9PcK-l@(~aO<(-}fk@Ys1u{drx!{l63OerWyr
z)_jp;oLBTG;UD-RcB?JIOXL3liB{0Y2h9$XrO56+lU>|w{{YBU^>2ay0N{(ivOkB9
zo8qlU#J(kyApZLLI|TX#)8d7(^?du+pPBt3xML2Rg;ziD#s0Qmh_aufw-MF1wTxiA
z<iAUw&R4>}4cyvk52;^7P|Q_;An*V@obWT-+P&9H(C&4~L{<+JZ0H?UN5N$|+G9`)
z$-ij}u~-r@#eY&B2K|CRV=n@T<k5Z{={FL>07<nalTw!>)=S5f=DxGgd_SOgdL*>)
zzMX5QfC3`gK^$BTiZ&=X^cDF2bM%kHPNSX{gq{BYnWgwHWA?0rz)G~KDtMa7TeaWk
zWB9i54y$3{dr@lfTu-T^1(GY63=0$B9iBvk%q`A$Nwi=B5UJ-^;k>>v_^;wiT@y&P
zYn@|PypGDz3ZLHGTu38`9ixQYL1G3K0XzX;XMe#({v`N2;=k=*tm=Lc@~&;PYfEhs
zd!)k)tGgDM&mdut!Zwr040$Fd>=wSF{{Vtbd=LKsgs0*TrSbDyfc=BQs%&)a%ksXZ
zbrxihWO8lop8$i6(~x;yKT^$j#u!c?d9`?Q&y_nj_L|Z?I@_kl=h=S=)WqkX+4QPj
z3QcIbE#KU`pSGU}J{M@81wI$(UkW@n!b@EW(QVAQ0M9Y`r=79Yrj)y%t$J`yGmdH$
z8R#)qz&Pv8f1j9)MC(<RTCVbwZNE3GKee#*AxfNSQ&x&rUWoaF_P_Yv-?Q()9dE}v
zREnC-(v3SuR{sE>>!4L19mEJ8W*&)O%7hwX1REKdv4YOUosV{AJhL(6l5$BT@@w>q
z{t9RD?S3NscK-l{U8Be((fkmm*~o8}O-f)I?fPT)DY6wg$Ub1jes@_;mr{9Fp`E=H
z5`U4e?T-hzYx^%KRch%vzVr0^EAH3Tv-umvZ1!1}Xz0<_H2u}<_MhLU$q>h6=-JI^
zM;i~l(zR_gjbiv_-qusj)0HdRIr+Bn?_2i%2JsZiOoAl(u|LRH-D9}REW>{v5e5GM
zZ!4b<h2c!fzwoF@{F%!jkE!CMyOz?%54BxLi5Tk4z%S-bE1}hX7Wk7>un<`4=T4CI
zcw!Pa&=<xBuLRc?e`I^zTQYcqSGvAZNh>q$L&x`11%3Yjm3+-_7&vN|$BDm`V<-68
zFU0k~;u+`jvZq0Mxg@^}zrf^mpNhT!(V3u{^h+va6^AkqM{I$N{x#-0&&Qn{KbNKH
zhTtBpaKQokFDD;b`o~HAkh}$E(Va&VZ0ZSTQ_g>g<EICYrF$2L{t5gu&=i|ZD%cQu
z`AB+t@yRvfV!n}lKS%f!DpY=Uiu~I;srVV6Vl=N_oi*f~pW>1EPX0CV4z+h_Hj`|T
z%(4>_K&<7MLon^h;P&FX548T#8pIndY-f!WbySW#`~1z@*l}N{8t;d^KNpL<J7sBW
z9B9&N5|vd0m9^M95Bh2JuGHw(cBeKfs0qm!9CRJ)<1v3py0NJ_VK7l#&i?am+9lH6
zkEg-?9jLl+jx!lH;+pqTjrDJ@H*@lSF9LqhQ{iR0c$9!kZ&xG!_*3-jOKJNy_~*nI
z2IE(`o_6OuE!eToY{<Y5UX}W|Hb*A?illb{W~`fqZb=yQ=szm?d}q=}i0US&xKsZC
z3|Ic$bLuc&0C4my>nYCP%_sU;{MFIFWIN}O8_4ciy6utHF^;_KQb*%n^WhJG*IpRJ
z7S_<l2M6yv1@1Qza!;-}74>t^Z*QBaU1LGj+=T<bQ^igt&&)7E?m7|b550UYY2wcj
z;}cc!b8E78Uvjbb*?)#v77g=Z@UTz2SNvVh4^HrHg`8_4hBcQMB@uCtPDekDZLW}G
zUI1V_9uN3d`jGAGpT?vs&3r~9F|S%&)u!d@+x*X}p@gMLT9i`sRxqIpZr?ly9Zor`
zLgD~NMD2zctxO?P#X|B#qazs|tCCW=(Q+hj;z7am#ZDabDhJZDrJmdZFiGvSR58nN
z>U@yvfz^i|-Fc;OHCqFYX+e>>thu4pZevju+S;C_l{azU0jU>How6mlmg6ImFsu13
zAUWTNUlzOx@Iywn@#n;i7gg~NjUDV3*H#)O&9$Zci*QQ*=4-IfDN+MA{AED_fx)jp
z_<8>T1sneWf?oK9c{=C7e~A_wK>q+qpIoxL%Mu3>+v;(G6l9(TK;UH8$se{X{syx6
z2dhou+l05cM~U>f)_t!%`k&oLv;tT%mo71dP*{<-HTg}Vc)ek@MzexBQYRsCIa8JT
z1K;qkOASIYh1qoHXQ}-&P5Wv80KpD*8RNF`)t`_2Hf6|>mq^vFQ5AAG2{h?$)MS6W
zz;(f|Pxx`+FZd!?#C;0K;m_=^@rPfq)uyzT!%VWfx4XQUHN<ZiGDoP|!E(pvIn2R{
z<(sLm<nP43DV}&$?rm_n$!|A*KTV>(#s2_;VE8Nch4`KOL+V~7{g?bJH;T2t2I+S?
zox&Ie#iTD3W>_ucJCpq)>4qVQNUbN{`>UGLbYm5Bwv?3HvG~X1i)m!m{7xs3&yN&p
zP>e!G-Ip^UC4nFUr~qDh9Zh*wm?l>-OmcUIIQ!THWMkW<cZN?EYOAg5el4|@()w%Z
zFR$(Y0My5Cb8~ScT*lD1&W#+*@q}!;5w*EfT!qVvTjOmWAIt@}XKvQqc>e&tdJ)It
zUu{BCO3zc|>qYankG(zz`1`^i4!lESs`%de%S}y3!xoXo_s<f>)7xB5k|t#!7XXYO
zZq@F88T9vzL*gwX3n`F8xS~9MTg2poxF}XZjyfE0Yx7sf-T-fj{{Rm(U+lZ6t!^|+
z>zh|;Lo&6!_*<BXE0QrPNP{B;5zcr&b$k}E)@{BCufpZJ`*x+LS^02HF5RbVmXBa;
z?O5^=bI=fdYx=W;vwTJ;maOT1?~*o^_t9Nj$=~ktKbE-X1%{&@Raf_}QoL=lSF^vG
zwf#>s(6zbV<zHCT9#BWwrQMRn9B@8S&=m(9bJU9ZSK*vmU7oQ%o2!8WqvZfnS)8a1
zjP%{m<Q~Kjb6z#!e}Gr8$*b$Stm47#?b3K<x_y@N07sg#pO_-3-G<x40sJ}6r^DY5
z+<Z;AxbVJ(<0XzAJzXzZT(jdlqiCKzpu`Ra;6me#r;PpXBQU0-;mmv$ES7Spt3y@h
zyPr#VcGttd5dJF*zYXf4^z9K%toCY$%aUl>fs_~f;aK20ayAj3Yw;`NKDT46d}i?;
zxu+mDe{PwfKg1&}N)mhI5P9jGbBg^%p5Ffe;I*Ca#czueOp;z&Po>$|M>Cw<M{dm1
zDyk$qRuS_~R2;H`OE?Gd<`^F87MA_@OxP}PalDRrI3NyyW2Jr*;$~}3P8fK~{eQ2#
z{qw^-o=|lw^0lRx>-iqf@UmfU^Xhk2dUm4|TTf-=>K4Z8H2YHdOK}Q^k7djyw_D0d
z^55nt_{Ch)rMR%v?=)wyiWn{TNgURV^6h6odL{!7G8mD;=e=q8T05@`cw*jd@)$KM
zyL6d`HWW?MpeKWYAO(Al54B?@$J#Duyb^Li`>n{scRcgo)9|mwT)E`mL-%?R<$_4(
z{8^}8T-`{avkJJ3GV-bj<8a1QAM$W2jpv0mYfl2%d_$V**w|`U652!M$%#maKKXXz
z8$m)o_C{2Zjz$i@sM%TFN>$nJT<-!bsl#w`NAu}kSFY*$-`S#$ZIQ=vvP?z};GcPk
z$slKp?E@#1>N_aH?Ii3)N~vgbM^KAZ)h5(Du%cNDFHD643On|%T(bj9(nRtG%-kc8
zISRak&j+dR?Os*kZ4!N6>L{W+06UoX+t)u)j-I%#!^EB;d&}mv(^R}L#ucy#!90A~
z$v*hUKT7nH=8B2W87Q{d$6nmas$G(q`T7ChKF81s*d7v*fMuCLJo3yB;yYE{D@ub+
zjc315(y$vwasgqUMrf98Ov=R?MFgAxxd3}}S-mz0%d0>C*Z5!d4fw&M{1&v+?LHs)
z>q*kAY%Za-x3ev8G;I@)DrqhEZ7(QI#D;cNKRXV``n~;`H9JcUD)4C@Mb(a?eCs`1
zQ4K7zzmggqoAz7Cr;spIXN|b#zs|Se{{Z|G{{Z3?3w@<%zBskfwd;6{c2WI`=|0sY
zt^3G+)eA9<0s-B%lfM`>`yZqK0Kq{&Z7<m~SiSfI;!hUZU1_>{StJu%+l$GpWVW?N
zw^x}Nx5i1sd692oKo5Xa{&!y?_SJc?wJ-P|rqj%%q03r4r|);hpZFw<zB2L5UMq{n
zk!o6|zjn9RP`#{H^T{m9Ch29C-B}h0&J_#p!9V~!5%q8EgYjFyz5@6?C;St;<4u*v
zhX6c5!@fLIIlQ!v{#%%Cpuc%k$por*G=NA5P)OQX5s*j&`N92!zB2rO`1ku?Yd;qL
zD0s`n`nQI(Sd}leDel%5eNagmx6<5NM;)v&znEky0CtI0WZk@j{e|k^6+RMw!Z{y`
z{wC;$SJLK4?Jlk@V2Wn8fFUn%g)=S{w&Z|}y+%cLVsX_d&0*?F?ON98XsD^f+FJMg
z&*ksLx*nmT_=@+#I<l0yu%1h4mDdD3EwRBJxf}!A>0U|VYuK(YUe@1~h;0OPE#AKQ
z{{Vu3ctb(>VezW+Uk7TVS+Mafyc(sA>axgWiggMJBlv(`ea=r>_%lh-F0VC9a0l**
zX36ME44-}u2fcq_aQ-?q@UX=H05VMeTjE?SsN$!GT^aEo?M>s$Z}>zT;mSf?e%}%q
zvz$B;nIs)@7_$W!{uOMKk&o10_$9mA>i+-&H6IhjZ5^bqJ-vkK6l)r^){&6%4ZODE
zbCciRzApW#w9kZo0Ptj=6TT~3Pc5mE-rLEt$DcLBHptx<C=7~>LosX^#v3>o{S^NI
zf_7@21=qi4Sv8M_U-AUFz8_`<8a6~oRZ2QH%p^w)t{a`%<nU{U#!Ska;VDz67Oy3D
z({*!y46>@Lh}C&DWf$wW{5kaRi!SC#mPk(3h%Q?=1mxgj>(6TQUxy78wp#7=!Wi>@
z>m+y$u%hiaDtaHi(<43l*P?ih(jsPlJhHAvag2J7y|bUfxgP*P@!IRG?xjwkWiK0U
z7<2=!I`PQo2aM*wfadkOKd@<}pkwOg($uKIj!fipyN{c<Y;n_%TJim4yXI!zQdiGj
zq=D0E7(08MdsnCGlccjt77oH#1SFG;^MRh-PfYt)nd-LDy!jzWYy@Xgyn+b|%8a}Y
zd0~&l(@C~W+2z`#P{F@?G_U1=bG|(8H~<fq1GgiAjP%`H-Pyk&3znWB8?%G*?ZMo3
z$gHKk3w+$>yB%pKFiMk3RK^%`uA!K=RGp-i9S(YA4^duKrJHMb3<)6$<+ov!g2RLI
zfCwWTj)ZzwbSd9Nb6s0Q)$JjDI@ipXWvjGgu`T7WZu^~sbJTFY*zZ_VX{S=Wl1RX4
z0^ldiS($$4?{_H*4tUReh83-)%(syw(6LDq_iE^%I7I_7?I4neg23c=1P~2Jb0z#X
zw=X5Rc398Px!h!vgBVDL9Wj!!IO+f_Gfior+Os^m=I#sKOkK)`NS|WJgba~_q%%p*
z&@cxh7$YYqKU91W@m`Z<<;f-r4e58fY}-zu$Cs4_LJ*++!g}F`IUgx#nq}Ou+z3&i
z<Vf=1vbOH1=@3SV^0^xsi5+`a)8Dhdg717|;#e(IG#3!z+s}x|3}Jv+h*+|BFbGO-
z4!ki^IP_>#TO5@Vz0c^2;U~oX1Hr!ubsrGjY6))^jRosCWqZWf5nTew^Cy`RBMv1X
zf<rGmhw&}@SZa5ECDviR)G;J~YPh_a)N<KIAnZ)@&kBT$a5%5(TlTcqt$rE)$!}}m
z>#RlMHA@S*BV={J0c6jaBfMGLg<Y+VGOM0HmY<C}Q(YM5%!gvMV1S?!K_uXGBl`BQ
zT7@2GbAp22-A~DX*muXaacdvh$uk6o<&l8-en*hCw5o*syK}dk`W%5@=wJT;1e5)t
z^&872@J_FD5x0`u&2i=-QM-j=7y>|1$=pKw=D*9M!M_nd;ZS^6{?L*_R^IMdE|pII
z0Nwed79~arQa22B#~o|?xBmcwY5a1&@WSZ6HPG%Ob(RGx%_qwwQy^Ey2?a{$0F&79
zTzpGHbZbKqYbJVlc+#sG;iDw<{C~{;#toZkdaK#lG;Iv4=0g;CQMhvCbx;@(epSgi
zBc3bs1O5wr@X{}gpYTnu7Hc-}quh8lYi({e3e4VJyM?$_z|LAHVUzOuk<@;wcsBmS
z#XbYlyi2CURx<*H68`|KO}uh@bmu*5<xktcMtyJg82GoMz|#-4cxO@JgGf+$Ws0be
zELVeq0RSF&ucYA2eDHa;8xt3_;V+fbKR(ZJk;P!@;pDeYKYD4O<@Iq2+uchJHu-E<
z9)KE_$Znlb91Y9YpvwyCHM@NuP+N=rKg~&5yv#NVZDE{o#~H`JTIaN2gHyNOM$;^N
zhhjH_U+p~_m!_oA{z~Ftl-yI<o|!YKl$j2BIX_Odha{&`y+|S(djs#Dzd=*q&UZX0
zH#DCw9ddhOuUJ__W~|b4BjYXTI|1w~IP7?`mqW}xJl_8R!Y%M?#Fthi#9GCm-ahlm
zIT0>N?n`h#D*Q&daBg33Vnu$se%V^s(|!rPiO&5)QMH5)Fa%qsIsX8@Kgh4h7HoXu
zu1^NPk34<Mr99dcdPWI++i&$p_P^2JEmZPqmHN(a?ny86B*s>|OMehWbKw>6&Dy)k
zYjkI}aradvTuO(Y<N`1_Imzu@V*T89p=4-|<T&>g_-d-Oljwf;<a(dOe}jJ%zB6k-
z@Q?g4&@Xknp^eLH5oJv09%P&%4mjMy+co;n@O%CUq4CSaa6zg3TGXKM<Wu9xx3y2U
zT|A6N#OSCC6Tk}RwsLFrGyVuS@Pbba{>pwP_@}LHSMg4`@mi_p{U1$<V0P#^Y0Hdq
zFr&U}_Y1?C-L8T04@K1GnXRIR;v&+=w{&WLQp>my2=&Hsn*1A!d`QN}89Xi(sKzeW
z>VH7+Uxv6kxL9KGNy*7x*Rt~4{Lkb!_V4|i{{Y~jpYTeJLrc)LIJK_{_*=yGL}~XV
zSji3JM;I3>vO=>QsyeZW$~vhe0;<J-2#YabNX`HsKn4YWu5bJo3-)2sKWkt3BzKKX
zoto-;*Ms!c@n(x4P11{<F+9nVJ-p)L+s%Q({p4~h{E;<VNUSwE?Cqb-jS1N%Fc}Xj
z!|E_aeucsr%&{<(aT?8AUg`e;O#H`+a_Cc%tx0mlwyn`M+vL%m5Zxv*_*bKNS5%8e
z)V|+14+<`1k8o2a-hgBg$?7m`fU`!H;Zb=x;=2t$MHkl+T1rU7Ou&p|a2XwNKMMV;
zB*4O^5zcWw4;P7a-PEjphJV2~?8c$v-xqj|kIxR71VMj<`S%%axX1dwIURae=$FN9
zMq3>PZlVksT;L<^AOdsi)8Ep*7XJW(ZCM*QymxX2N+y{RBa9u_40GGlJ^r2k!T6P^
zH1-T-E7t&w@Cd;p)B4xPW2tgilwWhyrB|8?UC%f8D|ZFQj3T&?ECE>wQ_ybXp84m$
zt$joLdHf&nU&Sjg1nV9rvc0;L>9>|kHJp(vAc5nQ<s}3;=O8SBuny2`;!lLKE}P=`
z(ssi~Cd0Jng(p1Zae_Zu{Y(9z^b0>1d<F2oiKH>V_Aachp^n!k<`;wnz{qTnG7dtM
zjPyTW;q6Lr&Zw%fQj2X_`KG^9<ap^+j#FB6q~j#7b-s;1_<tkt6Iu8t;~#{&oxZc-
zO-4yHq@5l+$q$h}p5*QGU$5@Q<L2!QHe`^?kzDtQbc+?SJ|WS?vPQGDrTx95ZnuKu
z<i$0)z&~TWP|pT<M-31pY*G4Wu1%ub+}(@zHrBxY>PyXww2(9AXDi9b9r2F*SI6HH
z{0E|F8kAa=l8pz4{71URbW&K`EyFItrMmeSCOe26fL14E11rz$UM2W-LKGe+2)ymv
z^|AQ3haMy1E7khGJL3Lj_Pn1<{(pV`S=1v-n3g_)Nar4(tyI!PZ*rE5j2VGa-^4%}
z;C@_ot1%_a626_OFOzd_?+nUM+?qBiB9BlVSbK`eR*%e)5pl44?HK9X@b|CgzH27C
zAJ8t+e8yZcHj(06#7ObxG9Aj<8+x+?#zx`E>7Jgo`-%Gr{8PK|PM=||S}U{`7q>RE
zO$4SJg@WQJ?njXS04~W_YXyHmSH9u+qj|m?_aFe%2*R8b&j*voxgx()e__8ACx`DZ
zZYR@X)$Q$V?Qd>vnU3+~OmGG<wYKF>c?#L*r4JJYB<icCtk=j@VK+_ky{ymJFB$3s
zOYzV4t?rn{$HTKi?{6i_m$-Q(dxUF=VflpDGKP|7P)Ot+g1&9>*0*)zFA!=P_P-jN
z&1P98xDlukDU%E3q<xex0A%EK=Q--Mc`x-34e9!1HjQzn*vWAuR)tJqo=J(5djPT-
zK2=5}<ZQxYCpdrbjcd0zsU_8@jxzrMG)i`0HgXqnILBggbL(H!{4<(m*lIDUI<ZdH
zyOP^}uXgo+b={BVjw8#n3{7VUQj=HySH9i5Xuf^V>Ld18@kPgt{{Uw119+bCyvv)N
z62#p6{$?jg7AZ#ljq}EGM+D~;^g0r&v>b}~yY>T?Nk3(60tsLi;@a<2w2mN4Y>M9c
zVGtzpNJbp@>+C+(j4Lk#HT-qPb*W1<#7c~>7bj-5PgDB8g`qW<P*qb+MPB>u)NV<^
z1Ddl5bAY0t-MHaLHLGHnAc5D9t$eRCXV66&P{hd}C#`%L`*{A-m;V3;d;>4T--j0j
zc-O=b6^dBO?$a#g%C*@CAWGmAwgexWG7wcTdk@-w_Qdd?z^f_zDdAryS@Dyu)wIs|
zEJ+y>-jyQ+4psm|zZ<qDTE7c5pAhTbDDfT7j67XDnzo^TF`nvchHcYGagxOdAOJ9`
zn?k4xyFdVT<(T;4u@J8)De}A7?EQSak3Tent435~CmZQ?y7WGO@bAMP6<^IAjhe*M
z$nn8#Yzw^e$s+`f6pp3bs^y!h$*=2Q_H_6+rT)*q1@s?;wggKqnFj0G)ML-SnE97d
z@%`yZ1JOVotMaq{3FYvz^Tyv4r}%-Ws2WFwl_XR_wmEePK^E$NykSk#9ofSe&szP!
zNT0oZhZp#nnP-&aM-^oR?`W%QYip}MZ-qD$1C>eE!`;cNUA~`y=*iASd0)qmiq_u*
zz7lIc5oT3;n@EIKF)_!RdokH=pFrO`9?GQGu165>pL1W2U+_?miP8A4;tij|eLeSC
zcx8O+t*ygq7YWL?I+$P~N4$<ZSHZ)%_EqO-wtiv%0A<+8cO~t_Nj1&Pk1X=Kjnd64
z7m`NxXLc^$q?*-+&v61Z$2jSa^Y~X=Z46MMR7LzoYe60|0?0G<?Om9R(-B+vvv1Y5
zeDypvD1QzqdLy2*(*npQo=`x?1DyUf&_`)$AKW?i?MyJ)u`Xj7BODScC5|*wsg=jM
zt{!G>b4_Ga<xbzFOtR<k_pDJXr#a5wTCFy+wj4;Iv)CV-@CJ|_I!Vq?;a20BRP)on
zzvWzPdgONp5JMvq>Nx!SeJW9Ps7U3G*wK0p^Z}i%-xc_+;p=F?2sFK7fA|oR!XSSq
zBD<L{V;t__p1o_rH8|&gj9Of3`7vlZgA<d-nR{k2{{W6xcJ>c2GF?2IeMUg_IW#>0
z>t?;Q1bLDu_Q=g+YI@_@SlnFck*&?bLnFf$;5^3)b|!mnYz+3UW;r}HZ0zQE*n!C3
zl0N~-{Hpi%rLU9)ta7|ye+*|In_`n?!*lFk*~?Mz$HUJFN#Y@=S!$Z)+yos$`WP<d
zTZRCZNUjn{t>KTA5U5XC8K1A4d|&Y&gLTgo!*k#}3u_=DBK55Tq!P|sJCP#-H7YV3
z$HNji$T|7KOT?CQD6&Gwt1&?5r&0q}j5>|`a2h{Py3BF)%8ol%;+z-ZRx2#dDrWe+
z#;tbwl8l>CN>8f0PTee(yC1W0uZkE<&n$*pgv;sCw=LwgZp)*xvVC=DW-cX8cm($U
z063{0;$6GR>FN2`6yokjUDpz4JcSCMmH{L4r#uia9&5CUJ4q`s_Q)jv04n{b+9UC=
zW^^}tgDMnzgpb_d5&HiCO350DMjl*(=#%#VVt+hi_5CWidn-70A1x%?k&%Lb5Gt}Q
z)y5};7TR%~WO6gu5lft<O&tnq^Xw&T9wHAOYsP^3bY^aQWko?It*puNMz;3sPC)tP
zBx6794D-|Vt`Ar7evjeXXMYpwcDiIF9&V?KA(g@YHUt1YE5x<W+OOaqhQPmyt?wm2
zE;Q)nz9X(ViAw(f<K2Hcx^(K#SVjHC#t~beQNbm{PaA4Fi^l<QtnfyN0B!*JgE2YB
zdar*3D{vr^X{S?=zI?7j0gg6?0G>v2Ij?~HPy2oREmiWg9V1lK11MFRQ3b3=Xu-&7
z3-Q!^p1C0P@m*K`3Voni>vqpRkEGtiYTKu>pH#Vp=TY*oGuuR30zuB`<96eWWSZ=T
zPm7wmiO)P;2=33MzilY22ZFR+J{V#}ePB6Yik~R7pP!U+0VBUAzC`eTouUO*xwM8|
zsk8=(2;cqV^5C3)rn|q2fACNrg@3ib!~H+u*MPnf={^O&@aCYJmDaaquj=}}#mq9n
zG%IXk)NP_gLhK}GM=T6sc7RQB9v_Y5w|0c?V8PhqfLLc4{4-vJXw;=mLZ*zUILcn`
z#utrzG2vvg6KVEV_U)G3BaCIZ@6WG)!oNyC;E^A-AMGpQKaM&l?AxLE=T+0Z0OIcP
zygzI9YimP1k|d8KNe#MP$n3<E=3F?zz#BjV^H0QcO7Yw(XXTI3ZR%_4ulObJ+wDJW
z4-enmfLF+!LWTv1$|)>5j=XyItGDi(k*=3^KN@^xE}t*O&l<&XBtYD2dfKZ>S&F~*
zoy#uK-H&f<n(=LVHn+Tr{zV2CP<i#q<EKANSE~5d@B267CyHaS%7yU`uu;KM3XMkS
zZQ6P0KAhE07ifA?>RVHEHd3No#*j!Rc#=__o7`<Kj6Q!rcqHRLNrkD%qvny|;uY?V
zp9Si6{{Y!H8g8h3n_J`%&m#~#os1qS$Nh0|9E|<l!w02$e}%p-_-Em6s&76aUL88?
zOPE14YR59D!DL)3mRS&nQ?~^OJ;pv%@cyTDXhcS3b__}}JGTM%ik|9Dah{}p73@}?
zAkekFJ{>Q`o_f8cK25Ftp@`hu#gN`htl-5w3U?GqK6uGt8vu6K>f9g3^>X|)@G@%K
z#l4mHT|HL6GxHuU;A%OIXyTfBTbV8Hx~=+X^m{8V{{W}H2l&<SkK=#CSv0Fl$VG(l
zHLQwRt)|>t48mELV;qsOhyg$YZ(8Gzi@pbZ0@Y{M@3o6b^&hgy5wNp#y1lqURI555
z5yH)}L6$~H#yT9==gas?=3K_V5G9hqheH&$QfxiExb2yM!8zF6_O3zfd@JFvGSkA+
z3GPsr`$XUf(c6(C#_aDbtNbrE6?h^tMSabFHNw%P+o+$WxAa$b`LpCOTmx36Z-!Rs
zqe(9|)NkmbZhp`|89Z_EZ^SLD_^H0mWQa!&nwj#n>pZNHzzZm5ns&t34!{@0VU<8t
zPZZJg=hXEZT`tj1U*>Wce5wfC$2@V;s%uji=X=Y^JlEaJ5=mflmM5upCz5lV*RuZ4
zpA0@Bd{gn(k?`l??V{XxpT@WFXxc1t6im-_;Srgia9F_`+~DC6n`>if{98HAKCx0*
znd$m@AGPHeKV{2?g4pPFm9V$8)3tkB>uc4L*5>Ez@cEzUuCq&T9C9-%DVGtme(bnV
zLX*2HJc7mUV$<iECplfak4$I2Juo_c75Wwb00j|)z}_4Es=grnD)?5D!{MKYCd0rw
zFrGm)zhdz0DQ716lnv4wv3AbbT;u=-EA#3+{gO<9<?ySJK^P|mv+JDa+PpjsS2$gx
z>D?}0bmd~SwXu0GuELT?#(Iu3mLt?-fnH<c4N>ki>#ari24F4YKF--VKAT1>z41Jb
z8XYP{`@~5m<~z2KK<&<P(>#AJ6JE8mGwJ#OZIPK8X*oQq@Su*wj-AGOSFcHXzNZa&
zUD+BDJYF5}ay_XL%X*tvpe?u!&Di}bJ44e_%S%b8;#WJl>9_p#sHF3}QLec!`-r|o
z%AJY_A1LD|Kh*kF?QZ@kBuzRJHiatK0|aDq>GiJtm5e1Tl{Jk?V_zx~B>wXpFyk4)
z_Rmq?xWg=pN}`+&2h;PdoBNA-WLs6ncwON1&sN4c0CwV!>}!t9q<Vva{Hpn)x(dht
z(EcMQ@xP9K7x@0?Oz@|Su8`?Bazh2;%PT}yBa|UXesVBI!UJ^3=D${dXWdWYr|kjp
zH%qqCF5vM$i#{q(r|9=m`R_aG7m>nuJ^Q<^BZ4G%ky+U7QWGtNJ`<#V$zQXNj=V{%
z_<Kt6Oqvz$n-hzKmUyQ~<_nUq=4IFB2k!2Xn{W!aueE<?KLGyOU$Ga*PlkUHehPS^
z>t3+e^f~OI)P{>S%r-Vo<III4nnsO$#En`x_b18<DFujcGM-~baB7y5w^d{6p@Xd%
zrBhh_=kz7<XTx6(zh`YX!auVA0E0C+G`A3gbdP5GbPVq!O)c89mxk%*lo29;S!2ua
zcIWl$_H6O><(7il9-=1k0I<-LR&gDWxZLtDm-bLmoQ83NBO`XxlE<L_4L@iv_$yC{
zKWJ~-pm>}1m(i}_(Dcnb=@$0Z>h|vh_U=(9NLE5nH}R}(*PI+z?@#;_AN~s8@D>jh
z!Qrh+$)=wALve4ac^_pE&l<WUcMEYWYRI8BE3Qf$v$rC?4;_<YV>LO&yX&F#_<YKY
z>AG=tvGjk7{u+El`0wGZTf{aR3TW592ZQZ$X)wTHc(m(@$eGdx9%&Ghk{jj#eJkTV
zQuJEuX3tJyqT6f<wDL$DaysWcp7s4Pd=&V(;r{^mD2IeKtN#E2*h}HR8fdYsvFi=x
zG;%?3cKwojn1<=0nN@=!Qln@mB}IQfe;5A%XFm}98Th-acrV2=`C5*Zb09D)DS!z{
zc#3Ttua@91PBD-O#eYC}d&cx(Md5MJlb37$U)OW-&O6~+ld1KLGQ6Ju0HZ%4KX0bi
zym{i^hra}EE)Sb@*IK>PZqJh%{^B-loNZXX(IC$mQH+ycuOIMA`BLNdV%09RwJ~Xb
z@R8ix>9KsHWwo?XLO26CW(@7SCvzUy75U@)M0^<W=ZgGAeXIC##U-Cqv`Z0x93ojQ
ztfIzkj??C!F^jj#HjI#Y>-wMj1b7<j;iv3<qWD_iFuQx*N?U^QG!4E>rs}c)<OIM3
zsK~|u74@Do@fHHF2*!>Yq-7^4=$dcsHs9Ql^8Om-7`Sl<w66w|gVnD!q4fr(a-za^
zh1paL?gdEN8x5Ylv&U14<$NsOW~1T=ZkbslyM(F{^DgKWu*yb8PFN0@tvmT*`$v;H
z2T-JKBZ0<LfPXCi09suZ*=;oI?L*7iCBrFZJh2M611FLP@Z|Ad!-=-f>YWlipHQ@#
zSl@iC1G5%g#AlqIa(+?i+ov_i>ZtL?vD`^1l12nEP@t*kHo9&j*8mK0jz)ck^k5l$
z!U)gt705j}QO{1e<JP=$Tu9k>V=BCWrPJ<=?ge=#Jb-hYazL)CP}Ir0o;$5M%yG!R
zQH_;BVC|1Fik-@VKwg`&a1`~<ap$tUvABW&p_sarV}i0qOKk-UGZH$l&e-{ZHQj4T
zZ$8!#NOALdhBQ{goNZ#yxL|b3jDwDGn)A!+sb2CqEu#^|v_?uV%vX{yRe&I##1J_>
zYuKd=Ee<M;-$PDaYIL{qkxIq4IA1srNy!^zJu}~E`cim?@*A6VEpD<)G_0)bHkkt;
zAPtH`jo8L>x0=n1Q8D>uRaoUKv3#(EvHtS9#0TI{{{UW|q~_+%JF}U*r`^LMxev!1
zwsDcq$^pl0RL=~raE(W?(&#a@p^8Zx%92%GvZG2$@;0_N1Z;z}{pH7AMSY|DC2Jae
zr^LNGMY<O6B!QxZFF$#Sc9R|qvnClpaIBl7=vV@yKM_S}_OYe4xJQ>NU7bE+tN_M-
ze2jI#86&4sdkr7NT8D*iW1mNwSVU|#!vQg_;5!J}SQ4a+j!5}WY-LTgAey>p{bm0E
zf}8lIuD%|4Z$Z>7podfrWlgiiaPh_!(=8M(UKenn63Aj;za)jQ5A&Vz9@IRco-zvK
zaVK*z$ON4C1M%tBzWDf=@iz0~Bo?iGZvmFhAsa^=O#~6E5Ls3r%eCBs(mJjrU>gC0
zSH=D`flB?PqOoakTN{_~Bxl;brweBro@9OBaUaPa#!DZt{9W-yxJ{~>t=<L-;2D{K
z+EsCYdSF-d@&5n>TKJ?jkArr471h|9<3zcd+C^dmEFkWMNbmcyF`n4Rb6?HJ?K`4>
zV1CdZFVh|OfvL+NAOXa?Wdi^Xf$)FEzeN84;Ef*^m%?8k@4g*gOjbV;+J=NP0ET-~
zNgU+vXxojWKPlvOuesv<yW8aoX?!U&<v42>>@zDqt)u-|zhPe=4;y?Ng39y#ZLu+x
z>~M;552(%$Cz|#Tjs6$0)_x3l(?OCs7++|5ghg_4cU!*zDPD8vN7lb9Kj4`k6y~+p
zkA!boL=r<OjW?0E8(EIi!D4U$^yoOR+Rqi~&#ZWBQqv&k?Y5Ifr{?PMvh^H}y{q%A
zo_^AVWcPzTE+MAqV<pS9wLi%E;pK-<lGaSewmA3a7%j1PFC29zrDf>Rf2H~CFqYsp
zefkX7fANP(k3#XK*M%)k<EPxs1cYaojz)-#W2)`OammjDxJw&nxx08&pD9S+&j)Wo
z`Pch%mSQ7U4H~Pex&B3Q78~mL%G7VPn*2_WOo&N!_UW=hoUc7kbNF<wn|GU@xiz0|
zxEKQip!!zsn`raNz0TDc=hXUD)S6nJ1t>~d9|!*4dWpC2&xUkO!#6iKS0zVWM;gQr
z=O-2Ue)~Wb`WOEI1q0Qy<KGYHhiiS4OKG@Vad9(ap8o*qtMkrHyM{Qg;GY(8zTZB?
zPoimk$uG?x=r@D-1%~15G&;1~`N_Y@mIG&?{Hauu>bUMI4cOwWT0CO%CX<B>3m-wA
zPvu{osU;SElNfu*{^7sikoRhz@J?Tcc7Ju`pIelJ)%R+b7;k)mn)}yR)U?K$+IbiV
z=TnC5jN|jq75SI@HTcy(XW!Wi-~`%?>kXcvqgg{MHU=cs*fe7sPDp7~eNBA@;yp&?
zej2k)E2+>mITAt%8<gTzC%!&mk=$m#kh8vN<LcC1Wd8s&`)h_M#-3k7E$tZoNA)-R
zDg0>guaCcGU0=f9HMoxD^lMjxQGlGWw3SS4AQ<L0jOQS6$m%QnhrerIhuR0izuHU3
zKMXu8KiahK4S0iA(k-RPA?@_*`-@9<QaX<&B<H_9>-`@;;GVx1JT)i9e-B?f2GV{Z
z>6cm?jo_qrBr#NcWMDd#=cYz${N=xFe}tbC{s#WiUNrb;@rO;h()>rGYd6qe+uX*{
zy2&NXvqvTylN|9n%?pCbByJg5hE0B>;ifWjuO&CHExzaeO&^T-tCiEDoat>QrT42p
z#Xr3H&q-h3a5K<n(34$N{O@TRvN#QbJAR*)bDA=omr;@!a5|rAms7f1jZKz7UO3L&
zebb)fzkklZta94R4}gbue>-9+drJOD{Zan_f@|smeGA9-QjEHPX5D8zvhJEQ>A*PY
z>t9Xy#^~R(*?GHMXCQKT9G_3~k9zns{t4&e7O?oItN3=@nB&#7OMuGEIeTeikqGI?
z1-<c{SJ<9A)PBXNPj;jL{I_v~fsA$Q`hIorxs+elWRGr)*Rx3FJU?SKzld#bWjh_+
zQHajc*##JM7$<@=$gkE5ok?{M*>hW4nBrxHZLZ2og1@_!OXoQRZO>lS`BP;&>NfsN
zWIGYlj)S4c*A@D0;aOkDpR>n_^tkf!-)MJnZ2)9EadpRH4>jG8*Y-Ju3Xe-lKbkzu
z_YLjv6{&ZNUxE46;_VXu09^6J9vJZptaji@b7IgTC=+7<3X;ssjH3gx?%RMdSw9iJ
z6?s1buk;8l$epcZm6*!1>~j-t+kidE!Onjncg4EY_AlYD6*CceXB<9pAKq430o|Nq
z8`nSW9<}u@{V!G3f3xJ0DdU*5CNjZ^-H-z>To7yfUcC=*hn*^#rkeZ@;(9o_P^(U)
z9jw#)nfQ0(i@|^5RPhSn4QkHIRw|_7UgiZ^Mtwxl$WI;X0!08BiEOR_0Fb_f;C14&
zwQGXD9Pq11*<+{61Du@gx4oTHp4>456}JLKbrfkPau;s^XFk7=dj25HY0497d%xFH
z`%eud;F8&C_i6eZuZX8v+R_FkNin(Ojmk>@03*$Qt^UGVm94Lh4V>j<x4y8tisn^+
zx{Bqqv~pJ&&pAE4EAn$zUprEQD|f_<gaS{<2x0SN=fD2|uD?}3V_i;d3&++CXAom+
zZ8|V;8C;nWTYfr>6P|<98Lye*G`^;LIYPa5kJ@C?Zag^B>AG#a2x7gug4PQ(aGqRl
zMpQ`d;O!tWY!XQ$zAfKd+AuLgY#QkBQcS2;91w7FHu`>bH^ZrPNcBi`nRhjt&i2=G
z#u1gAZ4tR=c+`brNmpfFhoX^Pea4^RtBcjrEJd_%?`YckcXE;{F#=M<c>%hWjYw_+
z@m~i<t<mpQq`9tr+50X2(mxCS1pd!@b+5$BtB4`I*L8TIxV5)?gas1Hb_}RXf&P#P
zWmX+?j{g8r+Wy_2vOLz};CS-F6(c)lit0D~RiOsIC4MFNT{Z97`@?n`T&jr&igk%Y
zx{w)7hMu_#oQ##=93NWw{=?ydBbhF*+~cQ|3j2Q+dLD#VdXi~e#(0ibWA?MgAMjF-
z*=xeqZ*!wxYF;9lMiwgz86ysTrn~YZ$E#$4^{<t$KW)$2fA*o&E<6|eK4>Gux@cXq
z+@;h@a;W(L%YQLMgb|#JbTW4jUl&2(tqaT&Pi+*E003qMn33+p{dqO;pY0Rj>kEI4
zS6AYA<2HI#l0yqOn38#~A~=mk6L1Z=$Oj`F9C4)?LBD%rKW#bbvHPv?`~C_0<3AX<
zlf+&t)2$cHVR8MF4BE_#CVp_z2eylOC+1@#9P)FT`e(xb0PsmU^~gNc_=OFzT!PnH
zOq&KtQI=c2IRp}W@y&lM8ZNV}=+>e1onKMYf&fBUUR>J%K)@j&krWZw<BrwSH|=rz
zRd_z)JI@9DOYs(-=_G8DHOk#Gl;LuhiExd_UFyL7KqG&v(UaYs5TmEO(f!tZ6aAAV
z_yzE$$H3kh)a<-LaIGcP)V7Nxa@<cda_b2Uc7+OvyU7ZmXEo3&7}%u1s{?`<5J4Oe
zLGCO0q5XtE;G`e7r^k(MPln$RJ}7GXmYZkxXr;_nuuCX*ZRSZWposj+Fnq9}3}9xy
z%lO&*YW#Tchr~U1;m3wAbo&@IOUW#wxE6wInHDfHBgt^?3y^Y7!Oe43gktQC9Zp>&
z&(wd6e-}JE@I$~Co;&diDR{w-#@L^p?(Bo*!h^p*G>4*~EOB4Xey6EwI@YIit?Lst
z&F$>cTwF@u^3qvYyp8y?5(i<&YPaKWiGDozp{tJ&c>7ei*6z_tq_ehGHSV#X3mj|H
zArxfw&2o!2qxa*89Py0%eifIsIBV5&(Hg=+I`dFVs6_$&;{jA8k5O`b@)!M_;GB96
zNySYLk0hCC8Z^#x^6okOc>F0joZif>FNy32?%@vY>IN6<ll-bwz0|IvF9N7v?-SGi
z0IgBOqUka}n?KK%<gd%et_5hOk>S;lX4xFBId$GfI^Z1ksCAOiYLS$)+h-Sd3jH#n
zhI#e`n!KrOz%`Y-y84L7<a@p<*PUYn$dD*?=l~ly?T`Tjj-#5A*6AmVfUFpepr-&I
z>q*oare_<A=-evXGM2|Iz<wA|aZ|X|(KkHst_I=)79f2|{*}r2$KsEGd<_}Zym8_^
zGen9kHv7xCVL(T-xA`^kZ^W<oD3|QH;Qb=*^GoqnzPG5w1oA@;pA^?VY{;373&x&O
zD>fH%uo%y!ZAO(^j?sxS<ww<45x%|S&0kqbq%rA;nkq`K<%gA9?H5=H#?+Cck09i_
zI6W)0I#NihGY>O47?q5Nj^sNxU&z<wW|RK_1v&km{u+2*-@%#%hQH!T?IPbL?~`w4
zw--{AEyT<&B@%9yW_cS4)vL+8P5%G|i}6LmIPiyoENwP`5?lM}rXXYZk{F^~XFtc&
zy?S)AJY`qz!I->FH0^WuJ}YK}_s}XTFI}J@9sN0|p}Ukw?G$Ewo_Hkx03%<`7mL5(
zsQ&=9R=){NH&)WLUi-A|J~1b_4RqHy&q8tAk6QV&#b34O?Fr*6lP8KicdlG0A1X(A
zExK|BK}%Bt9(d$_Rp?XU3`^ElL_B;tE1%ZZvErR8Mv3oyM|Eqb#kY3*nWKYf#t0?Z
zdV1H3>i+<?H|)!zB(clmEjspSepic3X1|eeafVxDd}Hvh<bv<V7q?f3QMryg%Z%>x
zu8>P9InGRuS<X5So9kK^e-(UTbqCqjREjOQ3ZRfP!6PTWd*;0wd>8!EF?jhkq<-`I
zYw;)i6ldVhn<Coi8fLYttM!mU6`W~~?e>`#O{cF2Pqlati$CC{+Qa~j3qaCzv?#@A
z)UTRT{`Z!P2yQzE=ca4<<+||(yQmUxE~S$^V{yRa94O#cAV3CiKPvVp@Rk-f(&Bi@
zv-W$$pYT%Oh}ZErPZitSu>^$C^rcJ#+kMEmAc5a-@5Ow#;?LWQ;tz?7jbmNb^+Zy9
zwVLhVjQSRi83Je6NBUR6ptOn=j()kRHk=YV*L^&Oj9au(i^R`n&v3u^<>EQ+<-W1C
zvx?$l^GwnClCUJO%P|?jJ^T7sHK=@9_=l;&BDmG=QCWUvM%X>Ex1Qd=rFobD$<rVj
zc>uERJQMy+dXU3YT@G1mqh{6St$Tl;wp>eci^y4Bq*6zJn?L8;tH*sTXJiLp!5GFe
z4^jOqI1X?+A45vmA1Bip$8TT4x?`c7qMnTVxAr<deA@lX03wlXVa|Vu37B#1p1tez
zUqQXLw_;2DybSa5o}6df+P^q|V@u63;MVkJlV#X=F81;Xi31^EdVH+IBRM&*(5P-S
znBrkQ%s>o$rNH*}ug<f@`}rf;!N-;<BNxT@Q3B5cw2LV?0P&R>{BnO9`p^Cee?0U4
z)%tbLHw1)&-i75rKdvj|FBIItcNmvTb!gvqP!PpV00-NT&c3Dp0D^aT)52d0zi3#z
zckwRz9T!2ew3cb_E^@HOk+61Vd>x=D`f*-uNBgJT?T^II$3KX&K))9}TVo`FUOjtP
zU`m2`)NT(#a6@BnILBJiw${GgrAK4tEZ=3Bq_+g1jaE)%MN#uJI}EmR1_vI#74c)n
z+6Rb!EBKSe9vYc$EN``qLh9OWtcBs8`g!7Qt}+87DcVLxc>vaChvPG2cpaRebC%uC
z-1T5M;Pae*mGtzmE>xn{_B>jXT+H=tejOM_mpUnAX!6G(3}9f44wyfu6_=;$;&RYk
zC=a|SJ#sOepH6yp{3`I&tu?!7uk`t2N$}*w9}9)g-Oh3Xj!8c;Bx1PBsp5v?d*D0d
z6+9gJetcHc+qI;O94)cw(CahAh>+av2oIK<LBRXI{AVMY%DunSB88-uR%RU$2qd3D
z&|}xXrE(U!or*vvl_U=$n92EZk&GPVXOCk}it|shRlR6c$aBl?U^;WRfO_%ttM_{e
zO}1$1o*2II73*K>QTaM_X9JL>$OGkE44!(P!1~wqMgIT>_s#nf{0#V=sQ%Lb03ALu
zctgWpC}>WB;olGHdbAc-cFA!veX{;#xY>zj^5Txs5!kFD-19Eg{$T8NJy*mQLR}I9
z;PIHo<xr<Na-$2h<K;LR$6DX;zMF9*vPU)gTuW*m>f+uR)?JaQEbl5QEQ67jzyqN*
z$(rGQu?|No9+m;}Nw`A(XS#mT-XpW|hsJ-2-X+uSW4ujU#oGR%4a5z;Io5q@_E_ad
z95Tp`tgXl@z>W=k&bP2x+C0R0Mn9c~0m&S6@9SM%^~}~0L1iY=WsQ`k;g%qV8-2hB
zy?Kv`FB!;q2kzZ|VUFPAra!H1m%`CdM{XhOdmP!g`)%W0%<N<iR4LC^1c97%?_Ocz
z`I-%C7gN#^j2`8VdHVOQ+pT+3XKPDjB<Eo)!*J{|`0?%ST>a8&Fy7i<YD3L*B|?lA
zC+{vm9gTbRskrKSQj%*^tGd+ed@Z8IVG<;ll1I6S$sa$j{{XM8a~2v*_jg6LDLlCd
z3=Vn5GmlTe)#uaM)%9(4!^<P>5h?Wm^SAV(S#BCnHqIDrA|EIuvpR#*ImS(G7j3s>
zNV_z48eZ8SYsvSw4o@Iw8T21c^^Dr17A0XA&lwp%k2L$6TesR|x`-<00Z9#leLIur
zNv3(0!-md#@+lC1|Iz+R{{UnE0NIEB6RV~8zwt3*p29hqt?Vz9vR+Hq%$&0+5QZf3
zes%*VZbAN=J`;Y|J}>=`eggQ@<A;WI4-d;URs%)6(XL=vo>aF$(EtMl^4v(mHb!><
zv0!kae=NQiYflb`5WDhj6&;%8w=&BKJOWbzHtoj)ft-PpUR&|YTlnweFNcfpzu{E&
z^F@4a9(GxhAsk4!l4g;%l_d@Ww*ZpEoLA=)#Y+{5jH+#a!2L>|3K)DpBvt<aQ{u0T
zfACPB6Z~S-yi2ZlgTuCV`i8YGV_00ZoGKM!Rq`D^V38nH`G6<pBeh|E$gz0uRPip2
zap6k~tx8C>8+f5>WR2u&!2Wc0(Wdy?N0@-QZWpr(^FI;(#y_+Ng*0FING`N^?rnr`
zD>bdm6BSfYc}?oX;N&WXC#ExBr62H1kJ>->RsEE{BwKjP#8w*Kwc;H{-YY|46b#bZ
z-iCawtZ*^7m0Kh^3A?g|8LzyJS`_f|mK}3G$oVWEwsq34r>=+k8Gpeq{vGH)0{;MJ
zy*A_fPQ>3_!uOsb@>x#F&RxD>?m{DOL6OjL$u;@E{{RJF_|f|__;2E0hJG$<TIia`
z#JW=!zP4Fj*$uRZZ=C9^5UMfG_89I41#<rYAO8StKObmcv$unEdv6cFhW`NJG-z#g
zLveQjxwEq^vKVK0q->ekfaIL7+`%U!=`VtoAF@}+pV-bng_e3(mE*lD&XQEqOpNl}
zS`zm%BLd(ov4Uhw72U=<SHWO#(rfE7ZQZl#@w|<4bw3)kFOUBKvqy_9n)|>$CerU%
zsZhx{l$`VOfXp-Niu(8Vb+8NjKIz(Sn|B@m0FirozH+uf-#L@MNFX;k{5Y?iJ|TX{
z{{Zk$AB)<Sl>Q*T(QUOYerav=$hC`Gc&?|OB7#WbNd>g+B9~3TatjVQuckj`@7cS<
zAF}@dgnU8p<H6S{bEaMDf7%MMyx+Q&p-7!}%FNM%BT^JG9FvZ6UU1_&E-Q1JD}$$2
z?C)UG<$2?dGR0T#<Y$%XgWsRhw{NbZveLv`f|g>rZkWb>zMs;rYjdT92)692adO^F
zC6613BxfhL=Uhg=s7GNcSc1|RfL!1<IQ!hNC5iMOjeLCQ#whxaYs_=n&ZD+6**HJJ
zw;<<%*Bwu8e+u$15>CR=q?84~2!XbYF~br;BP0%Ska5#B-0CROTf1LK;h2SvA%b1|
z5gLu&r#b1=;=JcncrKJcsg3FLWk@Z%f({4=C)^w!)KX6OCQ>}RU%rl686Dkb3RIN^
zfPSD6w=1|0yx7ki*9&!HHe-@#+0QuIKvl;jhFIr0$iU=x_4Hp6++3k|Nj5IhrO8l8
zQ-P90ect2KCzIENW|i(8C2-6#+_Lk*=jI9t_3ANR%@pl(jlE2#7YMrnby5ckyp%b{
zNCW_VfIh%;T+X|5c?v~xpyWE^doRqxfC3f;ev6&JXWF`JsG+%5j@3adcV}pRaq}Ix
zZW#2z<JX$!{70sX+cjBaMvO3YQjFWU>Pb*Q`ux6~iQPu}6MasLOfwq^2!x{|gRm~+
zxE%12{MbD)j(zc3sSU%~%l7ba*vM`;JyiYQTm#3~y>gm$#goSzYSJU92>x-xZX=9H
z#1r@&4x=3hQw_wir=EoQWNrkK+yj$_UBr?y1_AtQ2+_09#mimDyia3m8$tF)mvqcy
z5rO8UK#)cd?Ftw#%*f2y!6v--#TsM`gfRKbsmaOR>73_3=RTF!-_H%j%wh|PCknqZ
zMy$-~v^NpqwvrD)*E#1rSk#dug`j3tWZ)JVU=9!6&gD4c4TE0Z5!weGSMMLnNBk5M
z!;j(r0NSs_Y7w^Gt*y{32o2^ypt9r)f>ex;PPqoWgZ6dt^~b_*jh+_xgk51xBU87Q
zRwM4h&Lf!q5xW}u5B>_ZZeabU?crbH&}=?zU^Zm9IRImU)9|m&OITV~DV*+BP(9cX
zEB8F71@)Y=F>3dXzeDqEb#G;hl-EXorzh-V<J)Z`;s%YX#daXHyP5`h3hp8|E4Z&C
zJBwg}+v#7`_K9+umYlK%-WV|5z~J`;arlb<4F3RO4~l8xkAYqb@wT3(Mw3mmZ!Oyl
z(wNb<u_S@CkJFD@{@eZsc!E89!B)Dw6UiXqo+*)%c#MEZ5>;+PVSx+@4!B@QHT>_D
z(ViO<QjEGbkI}e_q%jz3b)e7l2mP(QD|z8x+Iz<y7nQ<KYp?2XvpH7Vi@BR5f<Zf2
zAAI`Pm081Y3jLDX8v)LE$<K53uiHQPDA$F&J7N2Fd`%i{yfQ+%^}}yy!8_zsc?MfK
z!!ca@aqaQsFu@)KF(^6c6-VWOEBogs`czP(m(ip3NjWH_{p7W>zeax&@dwemrYAD3
zh<K$K%1x!p-i_$DN5>j&m3e(Cq!!XTo_<tfF^u&C72QGMy=~(FSxy%j2g__@9k><s
zt+6VCJYxeG=szJ=!-5HZn64~e(xVYK`>YyXvv2<ZZAO@1qfQ!{_wh~oMK9H#&5!N!
z)5r1kwA;in$!VrpN3e_)+^;7i-+q4@_<_jWd9SiRZ@b}t`&jtOO~kA>Q9y&yVzz{B
z{0?j5Tzc2#IhJ!geOY5FD>=6&mrJ{!xn%h~Fc@lhI&HNCmEQUaNbAy`k_3=38;5b&
zf;k!M%|^K7Qk}m1SDQMD%=D4{BYYY7^1rsn>~rC-gnDkZ3_lb+0QREZ!c0Q<w%Sao
zJ)F>@l4MqnB#Ps2%&rS<!4>*1@Xz*+_)YP<Oz~HSd=siA#<H>pzS1Qt75$|4yP>!e
zz)s?*`&7ugkep$Nuj1=K@fN$`ZB`9)!<UoT-P*_{ifefu84<@uM~#)$hpLcqk)CV0
z_-*l{;!nbFi1uF<d>5(9Z>`x**9&m}0KF{IWJ)9tpD|?&M1haboRhl*eqEXH3@Y<F
zQnu}RH^0dJXD0DNtq8&uVS8CO-7UU<nf+k?!k-%cCHyV$?~ME_q8RObL-3o$>Ea6*
zZsTJb+iIV_A%;MaOzAe|R$ds4j<oL!{3){k0D{bZ&f4yc`%7vzIyc162<sZ2o#6if
z9m^X<1aUpw(<X(ks+W=Ub0d|txCF_ju~r+S^A*1(e`inlDdmo><Ly?<_K(vnEOgHh
z*~uN&tDxx$H4||gBijj_%<m<*{owM{e2(FiedAxgU$bw+?}mC8?8$o{f;G7OL!x-D
zTdiaJM%Wlcrutu!ECS>hgKTAN5<_G!LGpO4w-JD^&oyT3(_3Gu^_Z?F!R8oFNVN5}
zp7y=Z<A37U!GDN9v%kcz5PTu{rKdKNulQ#6YaK$(<cebr%oyDtodY~lt_qcsHYn=B
zl;GfbHkAtA85&=i^S?cL>t5aQ<HUMTiT)>eyTp175nJh(7xyb+6f3qgw2n_A-B1ny
z5XP9t72x_)NN(551)H$PTK>DsoRta@slOt>t3R5t$}X*EN$GcQk@Sb`&*CrmLB2Zp
zUs{y0id(^E_+q(B#Aq;a*fXj2z%}|O@iFI?=6hJj{Clxk2_$7fJv*Q0#ePo*zR~Vs
z)ik%o#gnbVmKnps!bLd8KQfB_P56VTLE?+#@ivD#i)~IAZqZa=GF(O<jlFp!ALm|H
zdxvqW8Lp;TUL{T!Z1Zh4_3UPf?PFrGef^+h<ny$X$gkFK*>6>7t>)7%B->|sDT@p+
zF>xLbUw$#`Uza`-(XO>e7Pj$^EzVfJeq4RvIvg7Nv*1>?bW7pkeNHlNrHn~x>Zb-+
ziDg21=NyXgE7faQ?t0v}i$6Ox8($vYPkZ2~OWs^rU3n8Ly6y=CtqQOl46sarfuE_b
zp}rJpy6%y#%c^R3cQN@fB-4KF<Q{5B#z7$}N*K0~MnL{1%8Jtcqx?Cmcst`Zw{@Z2
zM--Zk#2U0&k1;$&eAw1PNGt^HFab{-^duVNyi4(Q8{j95{7Y)BZK}%xXsKwgmP@<A
z<p&&rml8-r4oV=-2q1r6@b44WtChzYjE5_6zmv7~U7PHGCh<QH(*Dzy2LjVv$v)}I
z%jTDL^FJ~?OZIDf`wJ~SjMjG0OC%1%mx_DKmyQ1b;8E;sd)AeZ-C`KvC<KP*kPjIC
zb<6mw@l(XpSlhTU*odqnd}M61K^Giz^9HW(NRkPxt*vd;mf8jY>R9&e*Ma)i@~(F`
z?IkC!y*!WUd;~qjnUOu6)xt$;jgb=>RR#zJij0f{%WWKV;=e?{WQZS7_<?V0EA42k
zZcOe@G4}>Z7|Hp^r?Ibxbl(|xU*Ybe(|E5>H*;LZ1WM5?ixVpnT(6lK$pi%;o}ZuC
zU$M``9|ZW5<At~O7y<}vE@!!pSl&E^lG|u3#gwTz`Eqh`^{<i6<vC%U)`<6V#cImk
zPu-6Q1hLY@jdLW>BNr(f{HYH^i3nsa22?*gAE4t0)%2TdJ13HOZC)tbIP)YfaKw-|
z6O+doz&^ay{{VqnM};-d4@Kj@6>8U-d~w8JMs>upUMoC`M5?Z#lx#aTZaaoR1D{s#
zKZg7@d!tR_?-kw~okuMphTt+o6aC^!Df4cmB#)GNa17<&j(<0fDJ!2%JUia!IpQxi
zKZZUT(`I;pYwc?2kgTW={7ax8FC^_8XPlhiVz>w`MYJY+i54-?Zo-4>jPu9Rx<83`
z_J>f?w9P%H3uztWI?6_Kbu27}f+`}CE%;Q(UgVRS=irLgFv4^@w&gZ}InPs`NbB$T
zS5zzLaMh!Cp&Yj`K>kcEk};N0PCb9fug<^Q3s&%kkK*ki>||Egjk!0G6)UpSBwI6J
zkQld^6lXhkWDYa>A9pE^JV>E2fyW$YoQ|fyHos~Xjs7z$frUC<n>iq40A>T9O!UQe
z;OgF1k`yV~pDdpl>QJkTX`zWSTbvPt$9(Zz-lO8XtBJ%i+(S2fFCZNB;E!KZUW2Jv
zLm@W`kqmQ!pp*I>X1M)M+SL@p3{iu$j#M6c^c){fYuKa8-i6NR?4SG+yZ#B=`(J+1
zo+P&Tp{K{G{5$w|#60@^sU@7+i9^JCd~yY6h=KddvxEzQ36QyH{*w5W;7<_zJ@}KZ
zco)Uj7WaCdnRfA9&uur_W0pgQ^A>g_xOHIJJc4k?AlK%1{1d;&`u3;swKSg=Yr4Js
z6G5`x*85SsyS0zY1c>8;=6NHC0ryrURR95i0LOX%00kWVyl%b${?@)O_+g=VNp%a0
zL8sh(rt19L+p=9)!y=VPqLxk=6~ka1q=Q^@%PUr>;|F*5A~6-C82iWD_YAV>yBzJ2
zP7ec+KAr2Bj_U*>oyth*$s@lWwfy>cv;GQS`%Y^SzxFxNG?jM<qR&p2=2Z2}w=)$#
zUn?Hf^Ph|V0BSGV8^w?qJYDe<SMr>I@x^r>o`n4@(%j?NoF7A7^!Qs6^piY!W|UL1
zKd23BShCY&d(B>WtYBRH_j1Pw0CXhC$^rNNYv&&ne%W8L=Y{Rw4Qt2xG}1!E7%b;E
z)0bX0h^<yuEuO=g{$O>F6nG|C&Z(>F5$hL40Fd0<O?NX8NyndX-sg}?;}|?vJ^uj4
z7~@uhO1FQM9jwd{5_!o%&<=opwd&!xO8)>9jHj4O?8N?xJV*Zk1uggora6zontzBq
zK`6=n#e&&J20HJ)k`vd_N%pS<@pt?cZ^d?Dzu^t=EtFYL-OH+K6G+3^qPBr!&O3R>
z>tBXbd|>e#hDf4>D}T>GWIa6z0DV9e&ENR{0L9vnWV*ayj0o6>h%iPEMfCh@*rUR@
zXzs7`GkB`+Z4c4!AAiA1e`{@e*u|#nHaZMB8-|sq#S=GtZ@X)z{D?g{10udP@u%${
z@w>-T%|DBLX{=v)$C%~5onyzeP_jfn1h1atmT6mbtY6)UC-tNR=V{>AuS+Y#!$`px
zw>PY$Y8%L7<|3uR$YlUyL7cvgLuc1<8^1G}f^AOjb=vG$4_|7eNb61Sxb-~Os|^*b
z9EtC#Gfz7lgYA(`XPLhH6ZJe%l0XNwJVxYk{{YvkP9kk00D_(qHDE?c`eX9^=~mj|
zn1x=4=~Z~4I)qye02Df&20C@C>t#AFTw}kn6{{AM^2Cf3g2#?}j@bJ9R8G1^PO9j0
z+c%7kJ+V&_k(_=N(?_Gqe{}x<D>p!R;11)O(}%)$7cq%)SLNI@=y~VU@u>RbI*Zyq
z$0hb+Fzb(OfA#4_vpx<#4!>ITX#6uJso4<o3n&L881?5Kze8IQ_%3#Hh}0aB^K;j*
z>}#FoF<Y@HN$hzSlea6>k51&&!%w<mQCFr3&jZ_<_bYFQw^Obogq_DDIVYcC{(iOD
zTKq4+xm5|2Wx|kEj^KR;I46$S=kvm@ZA{T&<<$AA4G#FmB=U(YGtUI)>-qCiE`fO}
zf{`9OpU{14>w8awmz&wxf}1|+1h(Vvk<$l`m7;zgcymeABGT{gt)ad-WQC?hk%lv$
zDbC}-;{*9t63x1!T6hYw*2h)*CipJZJRz&=$rwxj0Jj@fn6J&`q%p`5dtkc~ao--5
z^)>dBs6%Du$|GWM3hX`c)wu&5O=bKv@NLh6yg4Pc{iWTH+O8gTTc{?0ND3l{kIqEj
z9~j=5QgSo68uVR4$)>kgjeh4O1B{II$NA#EM<0pym7K176fo^8K8KIqXxg+)HZ((a
zc>%GC{dNBUf<;678d&^7)b#I<eiQK@kNi`tSY7E~W%DfT^b1`+_?vlEWb@kgOPOOi
zl2Zs+*W`$XGBbW&-Q5JYc-?U0jC%bm?63GH?D5$C(F!E{-)Ct7{{V7DI43>NrFr<L
z`?ijZGJew5KM?*Y`~kGL_@m-~4frz7XmrgpUe$E_R4!!O1)cT9yhC|VU4(I}vmRK2
z#AKZL+`j@NhVBhA^8OnutDUPAyw?$|vNIj4wGJJNo&Z(k@GJcyygB~>1c3hlf_uZM
zUhA5#!y9iA-D>wUYIhB;-QH?w^IbomBS&X*Bfyzy9fG85)bZNB=J;FtCwv<CWuQf)
z{1*6er+97~Csl|0KSs2+>&bO=jY<K4N$!4>qs9&pQKp+{?*721tfcop%unH8{1bon
zv-qQSvHUaemx;9}Ai5YdJMj~3BktVXMFpwnkUZQTxxh90De&L^2oL`N1t9UIlFQ;x
z4cq8VA?xA|Lr=11&VFKTCDdO4@=uqX;1SOs=*MmFtKuZ_$8Yvjg4K5e9o5j<Gxv6?
zWQ81(4s+-$75)(m8It2x@eZG9h8x##k(F>kR6i>WgX@AjR~>#Y#Le9#Z%-w|t@S^N
zFNc5dYySYn3!`oS01G4HR)b=vZ<!T^wf?0hRE@~9sj)zDz-NnYPD<cl{*HV%{{Vw*
z{{Ug11?oO;#D5d`uf>u=s?pndwmMX9c?_{hZEV*{GmWfnGq>Nb^vkCBOX0Xt4BjBW
zymfauvW2=Zz}!(>kUcZ{*P{4)!F~<3v+}gfHtzW0xVc#uIqCA9iZXkiM{4sb@dhq`
zYwkOKp+Y(+{s-bG!jJeQXZ#a`;asVzX}<~dy>4ZZW`a);>Ni^J#X14B#+r<-v7Nwu
z)#Q!_Yv$khEyu+V0DjNE@K1eH;3t8tZ1ino;;qygUA>;4XAP>pooPHb8oQN-A%$o{
z+X4<lN&zFN{-LxF4ntud`YwTCr=A8#QpW?Hn~6E+Cz|+Y{tAWr2>7@D3M2b6TYk^}
z9PuuV;S1X>X4_YXQM}V7zX&bkkQflhac?9Zdorw!g@KQ9GB9IY_)Kh-Wjc=LvY}4N
zC1d=!JWn7OR}1!ax{^lQ=n*rMh8%<M+P;7B9-ny;H*v<x<-T1`NZFHyR$QJsbpE;h
z;{B$-;Dz7tQ~v<j<4(NR{8jL-<HdSRQM}Ko_%`M}b{Nq~EM7R43+#@#TSns?_8*8^
z>|riUmh$;bv8yOjtN|;=*982fPbVkyuhsILTq-VTGv)ErB(>;yJL)6t471MBMg}~%
zglzk>$0ry*q>iVhXFj8;NvOqfr=PON2r3zwWMEsX5z}$}agHl$^45EaT6Z2|WMPIg
zh3|qtGD)nfyKPoGzq8vRljJ7|fM-1Q9P{{B(<r9w&k9g+MYv+p*%ay*l1kj<7YH{V
z<8FI)t2Y|Phi(3?mE1So0FlA<Vb85`l0&GQr7EnUzu6!G?@9Jq<he-SDj2R<hR0u0
z1t%4?$xWS|z1E*|Z7@d>ZgSWvPDfsM4m#7k*jMHA0LN@}r%iXG>6%&l97;*r0Z>ji
zbtLuZJBs9vw|a+Uaj{XrI}cCFqA--TOshT5|I+?5yb=3G_|xF#nQx<bi$#M|l)05;
zxu1DuA9NkNf!m%5Jog8hqvF5Y6XIWp^m~mLOtjPVRGrEDO{8*ttII8&jWm)l#s&@$
zXPyTb`DabB);vS0N2lr0OM7!52$7&J<N<&H88`#*0==)m9zF2?0KvF_xAdz|xA?v{
zk|g_VNhOt%5x088NNH|VgM#0?O!Opk#r>Z`EzU4ao}@Dh?mUidME#5XkhG7ECJi?8
z;`XdHpY1C&Yg-AD2?dln`6j!R#17XSGAow~pc2G{9)~`+`#S#49x&AP{{Rd=fu(q^
zJ2JO&TidUnZxhIO$rx!J_shZa6eB1g99QE10K?yo{yy<Pj828)-y7;$9+9ow2`}z!
z$|DICHpbsBz=#L{?82z|w&$Aq&db6duz!VYH4RI}el5K5Q_MoLE!5_FjjT&=TXLJ1
zJmrsU<ahb}Mp?^Mx{d47DEe$JV;RLNYi_b<?H;TD00j{Joc{o5@7ebE;FYD$puZ9A
zQrg?Ymlse)1a2UnJ;2D)1m5UKMmyY`<YeN%q(As3&+Pa6So|*dg{1si)HDk(?3?sM
zBy&p+==A%zz-YpbM4;u)PI{&YJbp5N!71YXoIFV?_|{JcTIv@XiCJJ~w~@6*Z9SO6
zXY&z!s89rS$tt|F?k!)upB?@&{?)$#d`;oMihdiuS^OiYM+`R>6QnZ5Z*u1{L>(ZB
z$Y`)*k&ZWvW18`$j#qd*Dz)#v=esH#$yAy0XYKLuhgkiYe`ufhNc=tF+g*3VS9cfs
z&D@j9kjtmpT{XO>dsv<~^JTSbVm!4dLUI@os(62enqHlt{95>d9g&gW#7(DbQ?!yZ
zgEQLwkN10y6$)9d)lrP(^(MZD{jUBZYoE6V!OL$M&8N@cNc<G{cG|Cq@g3Eh*xxUe
zaSW0$3lh97xJkHqa|I+}N}nUrzq9qtV)w?s46n5PR@!Yk%HG^r-9>O7ODX4ljM0|B
zXyw`%o)1ySGbm5lxXo&C&GOAON#iJPZmzAZY}9%1NRme7Nnm;C4^U19ed~*`yRq@r
z%IY>NDm2nGe`lErIFd2*s;)j@4t{OK9C2K)#+?txy0?b6Xt#HIG<UMa5Ii)|wDKw_
zV4h(fTQDrq<yCUT;ADRhpS73APmNwR{i3x!V^P+11iA3;qj70tBv)4vv@c^Uka>tw
zKqHWqVj3`~1P@x@hWIYNX*og?wY!s=@fAEQ6KD3}uW2_nF1mE120VhUpx}K*F~`3-
z<c|Jrs6=gN5iSuKm~U(<kQXCyJOQ2#MpuKye<FVjzu>H2w^zdyv9OEBS31>&nIWw8
z*e&%a<x$8E@}k@v9&_h|oO8u}W8ts(FGuY^1FHDD!(JHG5o86~E$(d{(1Val%Qg;n
zki)RSQ=E@ZuZ5YU9nw->r#(I~!pVErNAL83<VA|kB?Y-2LZp$#a57c<ayVroxxGf!
z?e<A|xa@?Ije@cgasw039D}$3bJrQi<^KSM{{Y~)zXbJLC|}3l4)r}g@D^Ervaf9}
zBH9VsSM5J$a@fE*QPlbZeb2+c@Kyf+*gM6RZF{NQ>-rqLgAL}E*DNwdK$6MjjE>pQ
zDmcY?b+}_Np`__O4w`xH7H>%(QOk7%Vo3xn<iC{&%zJ|4<!m37KqF}bw|=yO&U=Yg
z$eEF6B%y?(FkEL0UDpRcDFZ9pcWU^zRsR5jqkh9NX{~doT<g<G4b$7Kap{g^WI#x`
zMv=sOTke&1Sr<I71dgiv{t6-cAb4WN!&ldDHSHy}7!BRDGiej%NVAQ~Vl0?qc~anv
zjo8SkmQ9O-=9M-nX1I3!*`Gw&XjhskV#LA}@B5LlBR_PqHr!{To_jC{n%1?FYdd}W
znUL)tG*Si!sriK2<xY7_0nQIN`C7~V3L*OgU);wG9xszlk+L@4X%|+}k^wBnMSy}F
zafUh0Ijno{_$epsF=b%a7XBu_)E@wtpwVvxha7>KV~q#5&4JdB?94;joBN5DXG4Bu
zeUSE0Ufh`^c|nM6MUk*v9)!!aqvvo1n0&zFu5;DL;fSvxX~e3q;07$JV%$bgW4jr~
z6o3!qUx_~#f8ewlEP4i^rThc%we6;(a=uNzp{vgeEDA{7C)s233o%iEjUZ8+oZ}Vw
zXX3BhhxVZHZ^Q)njd$X^%S-6hRy4D3Cfx#z0=DOTTd|LvsbT=h;=Z3N;S5z(?<*co
zD?g(brl-{3@K=30D_`1f%I?->ni;e!SioQTX7EiqNQ4fDBpi0leqw3C((V~p3<q9M
z)OGf&8s5LH__tfT@h^!krM<nqo=b`5mA5>S%EjHu^=3IZ1Msa+4OzuK*_!J<OlN$A
z0(PQ;SdhH%25b5QA<F)(goPPvWPW>_V-)2oozLoL{t4ClLSB41{hqWfD^1hm)GjTo
z<wY~@8(P(#72AyD5sk}^dm8<M@PGUjU-q8x55v7z;ntLvv0dCn4XwVWS>EE>D6k5J
za6=C)n9vff85@H)LHQ-%Z`os3_yzku{4BBYGqtw4uV~jA#-kC#G!tB1nHJoTc=Drk
zQ|NPD=GOx*=0`lUlgTHkHTZ86Wy*$QTAPiZGyHX5gFcHS&1X{y2`OEFlO^#kr>=Of
zSh(>IiLYnWH4C>gO>uK0OEiw(d7aqhnD=AU);u<m#>Iy<eH5R@muo5Guf2J3X=sj_
zJG-$}HsEv3Piv&=+U}zck)z}^iqc5JHkE{Fjm08UmvguUU#lF2Ah}~DcT{Pr{{Ujj
znxVKBGF!69vX&}Ul<-u8oc$|<Im6;A;VM$X&yu4}MpnI_M`O1s#Np`T>D9$Uo(ZPo
zdtG)vm9N^;Q77#w<D`yxZWbMO`T-=ncR$(XFqS(;I>vF1*sq<l+P`r=J$}J|4L&1y
zlTq=f!~XyhUFo`pp)}WX!>Gh=t)6+<$mJ$dlOQfj9pX%6_Q0>tj}?Byf3!D;E}1Pf
zgw>!`3@6j>VVMs&BWtu$WOYBg>G;>(<rwHk3r>w$`_V}^-KDwW=8aUu)Tv2YEw-0r
z-rpnSB0%K#t2T*gHQGgaA%-S6cU9h0dhN*1(;~em;?KbU0E?dj_4M$^#t#i@o*KWB
zKQ%4&OF8W1X!jM~f@DD=XQReh4`w;9D#!;Tn)bP(<D)#=G5q}~13Xd(Jt;xt3QSBw
zGB~fPJ`aA`KeRu<{{RB&-wi$<c!Enk7h20rY{;@IOh(^265Pcm4<$|*;Ifi4UoK=0
z^(CtBxIlVt6?Cwa@e_?2iuY)`b>&aqgR$9P&IXWC8|B)Of$YEjs>0JQ7S{4PpEw7S
zI^wi7<F?)y#|4<N<I{kD8pcubg0=eICeIe>#e69qCK{S_o%-MWk6YGa7TTxUEtoa5
z#a&r>T#z>boE`|TyZ#EvXX38{=+~OGc}oZ<(qy<-+Of5x@3vVK;d0Q)ki?AO@m~$;
zZE34$@IfIvlwpVfU>=wQ1L{X!^pV(VR;>DLa=3!@Cz`7xta6C+x6D9xw$66s9A}EG
z&nx=OBN)3heD)78jVVeK>G~f~>i+<=4wvC=VB1?rv(0HR3bv|WDg0rZAZ{npzO?<E
zJW=s`_LlgGYvFH$+7dx`rXya<sa(4hwt_g>)#m;c-pW-0CET0@AUh}KXMubL2EF3@
z4-dvx0ex{CCT>c^9m1C&bqk(=^~P)Z*Zqk+1K|Gvg?|ooZw~lE+ACOYQ6#%@k22!n
z^Bj`Q<Cb&41n{Z?t^mb*oF(D?3{`ZiY>yv`IOce2FW7F;_`5vc5xypTK~EWcM4DEb
zTSH^^QxdAAQJyVCds(7=&Sc7d^|O%Jz^|0PIC#UrmR>Ts(EK)$&2QmLXeDMY*q2gC
z8DofJ?--1jEJkv!4gfj&@Ak_5ptT=_{xa463-~V0)5Xxt`hDEd1_IfJ3aoBG6Hd{x
zuyOK4tO&`k$&GU6$4{}3!nO*G%OINa=}A6(nB)RRN-l7j<lw(M`T8Fa_>P?{EOPuR
zO4i$DZimV6FAm~rVqRyDZML+(p7MV!75z?j$t1X*INi%Lovg<>BpjAL<edF$)_gZ^
zlX;gD58a>vdSf`kj(<Ax>uYpC^Qhan6&cR}bDaK_>s}j)H2pXW@0ZI{aWLovYtS+G
z8De`^^WHY2acAvVYd3UxC&mp>-T0CnG%+H=+9)|7^Z<dMVUMMKSN{M6<c!?>Z@#uu
z^Bo>}RFA!w=7Z%P%n8p2rF;{r>USEpqc){;_vdoNdS{^g2Ney5p?{^`MX70$yc5EA
zM<i^>>PK~DAcO7=c^HT~lx0f$p1vM_&PrX6?!Vv-#;Y%bEp_cy(QTr?M7db!wh?(T
zBy0pqWL$`ufNX=8CoI^&u8+mP7k&u*F|li}iJmmkwC^~XH{D-bLZomAjTnYwy9YS*
z0C%t9qhI*B@iWDGM0y8_b?r+2${+&4b9-|<Kn|FWNm&QeZE&XcV&T*(73fhF4?gMz
ze7!CZ=GId^N#?)GkLvg0NBk6{_Ds_JSE$c7ie}YX5U~TL*-vvDg<SlT?MPdac@K<|
z2`0W^@n8HFKj99UW(R=$6{_FKmD+Fa?d-uB=Xa29U3llA=Z|{+cHP=%FDWIPsV63c
z01i!ilz3|nt<9;yJXG2H7vkUeEMLY=LQx-sGz}j_hvp^SZZ!!D9Bm-UCAxw+{sWx!
z9s6H~-xj=i@#n&J-xB^H-7V&+aV*y1<B1?dhTY1>ijj-}HxtPxlg~>0KHyjDpX`Tl
zQ{bhlvPMC>yHVz@@s@s|WDUa{WD!p_%c#(%y_9Tgg{dh^R(&)Ag6u;#192y|Ys__v
z=eRy{3=mtt8+vo=T|C#bPXLTyVSsFR1Ex>&t~Xi?CXj?tv~?bx^P2H!J#KmvS3a)&
zgEjk&JNARIL{P>|C^-ZHyQ?W9IRuV5ubjW&yVts|hx>f$+Lo1Y@C`#j&}Tb)=H68A
z&l@Y({{Uip@3Vf<I%K%s3bw!o0Bnp8&zzCaSC#(&!G5gWKWv>o>CWSG;SB~-bJq=g
zpUrF4$?CtZCEVi7p&m;!@doR}I_=_lS9g=hq@1aC$3DP;SmXv`*yq1L)}#neOw@uF
z+l(GM@n4`Mcxp*#hyVbQ>reT%?LBH_w|4~NpyIBLKH-!zqXCXP4Aqk=h|E#hMJZ4R
z%1`B8Ew+VoD~zcb^&Ag=asGals}F}}Z;?|6JPv<6^fjF3lQDJIQ-)Zafsu~ijVOWG
zg#)d6oL&*UmOShrNzc%JRnc4gJDN*&+7+@@fyu`sj)SMJaac<i1*OVWUsQO9*<=Ui
zAD?=+4xaP;pmH&c4o|gx52pMvn&u^A1IN7ONC8fLL2kc?y>|LX!b_`())=7@w?VX%
z)2M6=XPox-tY?@)Ivo_~PI{jwri(L-x@-(MCp>eGp1#$w2ZowKx*YS!&JX4FudXNf
zNu=pE%X_Oy6^PshZl+j4WBfn7AP=T%+Pn|@F?i?3g4%BgczagYgsgD-R-1dMsp*`(
zq%x=-!#UbJ5t`(yokB6@Iw|FKC-AGEpO)SgmDLa~c-yxGk(1m10I!o<*4_-%W|di@
z0zCf!7#%*K*X_rE{{Y~V-?rb2H4zq>@UvUAf<;#s8i=y7gbd)9`$X$1fypJK9SG#{
zUuF0Y{s=MqSL-oJ{{RVf$AvsU60!2w>J#71jDSl+YiNs={vamDOd9g5@lF~l(waNr
z!}VpaDg4#J@cR2|?6(Q#V1_C==cZ3V>C(CzFNRmaR#>CowBzI}pQ!$w>-z=xTmJwC
z`1oT`3I6~Iuf)kOrV+EccymgM*@*;koBNy7kPZRz^ScKe;C_nyJpTZK0)EPRSxc+`
z00nrT#Z#aN@2F}wNddzt++nsha52Cq1xoXQkWF}4jxeIMif_>#g+3hRUi6YbfW`Q0
zZK6PK_42lmf)vei!X)H{`|q?Kc>33Uq5LCVLf$*OLbAm&uad}jMIxSsWB`Wr;Gd;`
zr9Z-N_$5!le}#9)Q}}Q2XTn|_x)OPU=`E~dn6M{kc^NLHWx>H-I47Lf+m=7G9=w)B
zYI@F<r`zlZ7C7XQAwYArGvy$_`9UKCwmb1u;<?M=r}wj?`x1iQf7jxFmxq9VW50_Z
z5wGLZyc6K9e_C_*WU|q3W`GXrZc-1kso?yrAUWe6zi#|K{{Vt9{@gw^wG*#^6T>Y3
z0P4TtA=I?%Eyo+Nw%S|CN6XvE2ZP0bp%vG`kA|8I7gl=z0FF$NKg`j<(I6Q6#3p3q
zsKFs~)aNy!;r{>vd=a*{NIWxPeShVSsTI@b9C8SaPY0$k?OYFuaV`6)Bchf|hl;vQ
zpT)0${{Z0MZ;LlKHp%fb;wOf@Jtow7t*mVBbyqu+aY$#9O+G!!4<(`_)q7Xko&o;=
zf(L%eT5a-Nc*Dm&De)|P2Dh|bKTd^#QaE^^mQXhp4t(vyCj<}x{-o}%bpHSi$cv+R
zCUy)8{h?#GDuqhmFpJHRat?A=fDU_B_m^d@z>?}3eukyf4rI)ZJwe|Jlj+GHO5v%T
zVx{)~0I$3CJ7I^T1*Ctk#QZe)dH(<ePyL28jV%(x;Vr+49zJ*Yn&$6TUE~~<H*>Nf
z1Gqtq;8*C+!|&Mhz#j{A$n^gJhJF+9zl7~#`BE!eOGtt$frLf3iC7LX)HVR`Ur|l)
zBf^@Tl3rg&2#!U;j@m3L<aI|amFJ$E@miL@1AGY#LMh^&<#V_!*D?hp_aQKN?av*n
zj&iG0S+@RWl9YNM%GdlCXZBS6p*5e19t`-i;NK74_@~3RejbxfySveCWV-td>3GuY
zo(PPSfaxG*lt<-|j2NlLf18<Z1)cj@&gpF=WGRYM<;##VLnDPNkA8hXuk|DF-+{a>
zqUv$arC332A$3zC2WCGvLRjSTYy8;%0N|$)X}ZVl`SF(K;w5r?W2&A`2rDr{e<i{E
zE9i3SlALWWhn0(>o4P((*DY<YErUQdvgOr=aDIoaeSiM|1nJQ=-Ea1Zio?TpH#(Ku
zK-SA`X9Sls8Dw;1R#=s`ZU-Q~&__APHSp$@;k!E~65Gin3gavh$iN)`0G@087Qf(*
zx<;em{{Z+Vx5GP2v}mrUhWcq33`of}?5`g719N<Y3?74y0HZL(wP+z=s3m%hUdP-P
z+E2uI>>`Zb>AG9SkwV2S%$Q_VQ_0)TMh*@E=}=3hc(Ue3vDYu!>Buai(&Rwzw}XX}
zJ-?Cq`q!y3kb@K3I4p2M9P{cx{Cd-*wU$Ly^7zOkGN}ZgZvDBh1yYT-JH4w<W6Tr7
zz81E&BU-W4T#uW4!LErb=+QHi$7~O5Rj4EIK9lm=HLbf6O8JT-lNirFXjc5|(qm}Z
zmd;Cckl+wN0fG1Dui?c{G%^^mZ)UT%MOR{19-DC0E|$6%3XSzScy6zzfJ<w=<J<C-
zKQ2EGF--eS(uNxkIOl`U&~uSjuRK5D`=)rctv1pWk1vt77g7D-%dv)fXZ5ZpRloRQ
zqq?*j{mrQ=2#Oh6>@addm5ik9!#y#P$F&lNDRF$;BdU&T)NRuGamG3Nj%w+<)nrrV
zMyT1wSDrn8{dMN|UNq6XF{l3kYRz*k#0`><J-S2Y5~YDsC5$o0By2CvF`8^Y5w(?$
z8TGq6eJb8UarTK_ZY5H{DTdr5O8F;@s;)Yoc*(A&+_GBO;XiCIjQ5|j_v~@;YvZN-
z%%AXzcsp6tV`T^ZY&MVO0C+hrR4+Yi{C+%NrCaFHjVUB%Z8q8)StQz2H<W=72ab!M
zf6BknSN;w-{j9u2;2+pV-{5YIy3$XJx`JuaEYU?AlIa#ZF7Jy+x<^RegjUSkj!d9@
zgo9t_8}Tn(d38yx)rLzJkf}WHJdZ=hJ^Aflr|=F9wJMKhd~XxUr5i2JBzxPKWtM29
zJmdiWnc#Y7+NpoSMRJbBuTg?BaDKHV%&2}rfwLg``)07;Y0f~+eyJ)b`Komr-0JOo
zR~#41b#WUq0k;RB&!Ep*+mpt6Y_lT(@v8I4B!YVIILGs^G-T>jbf&80>^`EoD&V0h
za~rAXdWiAF0vR?+%3B}|6UKY?<aVsb@kPtAe?Cr5dVlq+m9e$+B~{s-+;h|OuWqsU
zTdv&MLvWU8M2M^jM#;#}JXHNc5!}Y6J;m7n)BYTO7yL=nd=D&dHLR+^!IEe&S(E*&
z<A8a`LtWp-{{Rzy&t5sw)5IPDg6mAzK?dSBkM|b^zVXQ6TpyUWK5m3(n)%jyJ!8Xi
z!Fd~$HxVp|$apH_r%WGl(!SIEpY_T9A>1|3iKDT<xYI(35ZOkz4-fF>VSrEoM$nlY
zA9Ls9RB1Pe*F)XGN?40wr2ha9_$c{r!~XyX{wMgRDQ>(q;r&ALC=@fv9khiM5y31*
z2Oj?Q^cTV(f!`YZAMrCp)wQn(T-{oRS>6kS6miQJKgA@A5&OBroN>tMU!`6+@W;eW
zYeb(>_*JdlSZnqQ^2Hhg>v95ZFf>x-2^|E5cQ0ZA#e5IpkK5nl*Ms#((LN!C)@|)(
zUDh{HMFF>Xiw0FxjZSlbM4PdU<0m!dVY7PpxJ%fj>8;OBSyc=rSjx1YuS5Du_zQpG
zO*2>1ul2n~D?2wwxs0HhkJ@fF#;G%e3A=A9idk`ja6110QQxzz$A-Qs{1dwPE8=}w
z_01CU$s;nnNVjo7r{uWvS)+_c8}xYj{^;vp!I!|__$e2Syla1BVc;)?*P8yPZFO%X
z(nEU71*m4(zD9xq>Wl#Zw%wy3WSaen{gymM{{RI~_@(i3Ujz7V_8$XjR@N69acL#7
z)HM4+cOu+b$}l9n*%|{GQyDFi2tauF+W9qjR8x~tYr8(amO7PaS`S0@bHZAG#n0JC
z#eOOMmNjWDKeD`C8(7{&BnbAmmbWg@t=u_2K)50D;!J=*3~`M7MdHu+Hb3H5h310q
z;Gf3`?C&E~j%L@aRpb~#4$F-!*~$)fftGBHocjL3{>Z=ZPK&Eg6kmAz_OJ02-x02E
z?asxuw7asm4-QCFN#~MBk09)gL~*Id1d(5z-|$#3_$ar>583Bd(yu>c-y6%|9|kyG
zGHXMn+pYD!pqVVDYrA`;RAk1`z-9Oh%tF`F;jzD1pDin2uV#4IoII7??7su!J$L>I
zEB^om$@nNFli@bGW#gMWNcSUYUL^A_Wyd=b(_FV?Mkj?&wC%?w#~^<z{{Xi4fc_?Y
zAN`>GQ{i8X`VG#3;@fRe-&@me{FR>G>Ug5LWoEW{AUnjXFflVG9ANbW^gH6G{1ub-
zi};78PiOHD;{O1QwR0MP!qZaJEQu$se!=!A`RYJWG1~_f`IY-Y{6y2fBEFmAIOe;S
zZARY{O?@lePb7-_H%Rh4j>PR8vlEWKmHMBDxOu|7xt8es?~E-fag?3){<|L_YL;Pd
z<Y-P&+ju_B&;J0fs-!I!fAVW;=F(Wojlht&`4p(*)N##c$r~Z(r}^z)txF7+sQH?8
z`IW9_NQFjo#a5Gd9A}!)pB`8qo$8SRu(jmkY3kBDX-xMo*{ebD=ZL;BX<BECV@Wjf
zC25h))o_uLs@UoaV<Vv%2ZLX#UmCn4;J=EW4=!{aTn85HjcsuN1+64MBDfglGk~m|
zZeK%!KPLVV>e_FD^{@C%b%_jC_Uh3t5V>cNV*y7$cR3*OoY&|_!jFo68u9d6o}1xI
zvo*rosg@Urhw@qQ<Odw{jFtPj9F8mV9xYWNh>f;O^F55Q!gpUI@~6fA5%CYh{{Ru(
zcyGiom@aMG8C>mUKXuUYlwr!B!1Itf_=q_59V_)u_Mq@4nd4ssUTer5wM`%kfi%RI
zcocr|7aqrU4<9eBepfs`RD}<(7_OX;o^Vwb!HcEIK2qG#DyU`ol!4D92h$`0`BN1*
z&tclNEN$buwU#z0n+E;tGC&=NAPk>hYR(8_lgnd}4^iLT8vATD1?>~I=a}cvxo?y5
zbO-s@?U(!!xAu7WQ}I*c&Hn(8{wPUrdmo29r?S&#h3Af2qIZd=8w_D$+P+ri$$iAG
z05$m+@V?XG&F6~YgW{F-?w_OWW_fI2ONm1+HjR=HyH7bdKT7_Q{{Un8e`Os<Qq!$|
z5&V16G;6DQ#0{lu8h`dPT_a&3jyWaRuHBh_Vp|(Z<Y)9;p9u-cbFC5ayj6;+8cv-w
z_3D$;=WWl}58FRUd+jH}9xAsvjD5P#w#GS%P*)vuf_UsYSHaAzzb-lYSLzqWF9~S&
zp8+E9?e+fv_K~yH?WKgrA;fI)y0}&yiV}LBE8$DO1QgvammrsKK2*Fn&@kZR+z+jO
z0pi^V(a$P1_LN`YZ_xT*4{;88R3rSYug3oXspSa_=jK!-8iMmo*RC8cn<Oy;IWnU$
z&V7ggV!QjD9{$fQEE2{Cs**o7;<K0|WDGV3AxQl3Uz)1DkF;s`I2n8=;+v$|bFK*e
zRtSpYKH-7=X|{h3G<3Na8l~L2gq&c^%m;JRCqId<_z24dS6;a4GyZ*Pvs$3}C17#x
zJN-=#zeZ%rHa-;a<&Vu3j0-1C;x*hk>zq}Y^o<hYMYOzyUN#}rGJ>R!OpH~i<uHxA
zw*%7$Kb2aJR+&7zh?^P6C<(`*9CfWDC(yes&&413DxI6_KM=e+zH_*>&^E7{?;+dv
zrcjDmj@27R)f^6h3jC(O(O=Dq-s06nPYg{PFd1bl!(;*1uUh?J{{VuR8IQ$(586tf
zB)T$|Aaljb;~D%#etlnfY71#%5zQp+BoQ%+Mnb5}na2Yoj)3!D(%d72r!2CEI=-K)
zKQPa8Ia0;cjsF0x4;7Qbka+;SJ2!4%<0Bv(V0OSh)z3-ctO7x7o|wVteJkJXtkOGZ
zpt)SB-GPi}j@|GDbN9M*DK5x<T#hr_Bd;B+*u>;`S*>ZW$n&uLMO8aCc%tYI#}P@#
zLUy0=tM*<Vx`N_6qU!6(AZH_vG6=5b3k7Y>a0c!`9gn~D?OG6NPb#V)<l#X*Gx^s(
z8-}oIYH*F3*LHe!bLphhXO`<AeXK;PRaFK$oaen)u~^K)DHkf-W8S`x@fU_PEptP*
zy|Nx!gz}ZT>~-oGdy&tf>F?xr{t>%ZGCKtb0|Igb4`Yt~k3(B!n3_1L%A{VY?0Qqh
zDpb^JX`$2jZ%(+g(arM$W8P4bM+Hw$T;Td*yUT4pIpH%BT%7GA916SPof69P!t+~8
z5EDO}wo*?~vm6d~^y3tGekrum{hxk;We!Nm7-a2(>0b3Et4pEqnS|V=>Zhrr;7ON9
z@phemD{UzzH+ND&3UT!!zpcN6BN{%FG)c6{6i<La0i*$s82<4%75t6c!?N|t^aY$A
zojD)SSM?S99sEtwJbU4N3U-tQjN8KPDZn9>aC80KWCNbP>+U#0x{YgfJ~N1*=TDm2
zBlG+I3w_{?E5kl6@P~{v-6GZ<LtBRW*6&qCWxJ8I*8(UD2M8mQDcrxwy}Y#>wu~RZ
zdvPOzqyV52#g8}~_4TjmOa2SVeWp)o@Z&%e#%_(~t$83;+(cqHpvXNohLJ{jujfj`
zPixzO<f52R;mP};4naJQym9rf$UID?8adV?n%e37+*5yv`hNsYbuzjVdb>Ztw28F+
zBkfmVWEr%K2YDCnvW|9-a(MRZQhZ3&rO`Ae(p@~Oy;O-9WUC|~=NKQt+zcMP@m&eJ
z)9r0#n(AR4y|iXvN_BE_+j|VL`3EPCJ-&1CF28r;O;z<Pz5xMaOp*~7?x@eFQ|d`Q
z>+?FZl%-?uDN>AMp@ok0n90beZNTQ90CR!XixxyPo@!iYuX>#!Zlmc|63%&81X4*q
z=QY(r7eqRUrG_2)&~uZT*Ih34utF2hVOlVFdi~o44hLQj^2a}gbbBP0tj<+Y%kAxx
zU#b59vVN;;seB`kO0$^_)|-1VxQjS+N!UpnZ9PK(z!BUL)K}+?r-QC8vD5?ihy>#u
zYxEoTaPYOZi}22CyCm}N?{24ChdE-&3vG#hiU~OBl6#u+Gx<T%-&3;zHs@r04<wdt
zy&hyza;N41{{WxsSQ>|v>{b_2xXuY3aoUvlZ&a2s_It=w=K)$a=O66?anC&~k<_$b
z5oz}<jXWhgFa#C^bB|tY<f(6?J*Lll{hWMVrTjAZv0>vs6C*8+u3AGJeqm9-;YU-*
z;~htC{zv}+1&#QvqI`4xtrA}j>Dq;d{3AXe()1g&)SwVb*Kiw)$09w<%BvOJW9Gva
z&ltvj<^KSJbokfcAA-Iu>6af7{0Xc0+r_VNBe0VDP_(wtY`$@_NUh_I?q;~|WSlUJ
z<U_Y5o9aLKD_`uj@pJa5{iysc<6ngT01a-hukXA#ZM84>N3_}QQb{cCg4?y#(2rxv
zA$Cym%8pY20;`qR1C5P5Qgt*-t;dPMI+T)v)c#7Xycv2_dC)i@_X8&*^~NiH)4;lw
z%q=KFfj0~gN%?y5{zf`xzn~8T{{X=ce{ate#4qOfc@KqzYy(N+O;X2CMU93_D7TXN
z+tUUxeLXAhFNQzxZr8^xYD-&>9QfPAdOOOI`PRC1mF}*7X6lza>|@3`1jo)R*{{X;
zXg`YnhYda*t1pRI{!p~<hBp!`MGD{+`=lK6gP&~rb*}49_(!YAs|BsJ!Jo4!+D0>;
zhw|&~U)*=YPxv<v;dYyIH~b|!zl=Oj1ivqp9CmtKMCUBw;kRkJe4`R)01(BqUv+#x
z{{Vs!e#o8|v5wvT5vHu4eg6RAD%37DLAZ1e_PN?K$j{3e7~=qn@v%H(O8(+(?x({m
zc}*ky>5s!JJv!nmT}o?vONkHe<Ca88Bqxj_vjWE?008e_K==>#IrzQt2T_Mh@K=L%
z?P^Je=w8Q2zM3Z)=l9D8kO=F`oQ#}fn*RVypNIbdu%E%Ng4WW-;Y}C99u9<^#w{|!
z2;Ezj`^tf_f_=?;?Z<%r7}+Y%tN5-aSV9E0NaW<G>I2CcEzWu9J-Dwjrx?|@xevXa
zu*oPWsNKJp`~&>&J{^C-8NY7-02e2pFT)#+9t8lr`qk#2WSet<a4uz-elZVxSJ&PU
z{{Vsme0iS5KjAs?kA!?Bbgi;j$J;f6an(?w*eO3oJ9*=|{?(%Jzr%<%gL$Ie-(IA6
zJ0sI0U>64<7H4ddcLK*BQ_XsoiK}0EKWEW=9cu8#yc?TX;y5FcOE@`fWc;HYE6T0J
zxT!rFUWcI!o`P4559I6Nzx*4;;Tzl!6!_~|)EzvwbkQ`sTU9HP-EWP_P)0WeB<&*%
z2(Qqug}?AYAK7Qa&mG;zfiFB$ETKe)#Cn|5z{*Mc_F;qrBkyfNp55#Bz7G}rP5YWo
zfuPy>c?r3TvE#5&g~!+Ot0w;d<36*9<kzkA^amtcTc{)h%7V;$dVW>KTQ$T_NmPH4
z(N2Z7ibuvj2|wVL-wJ*dM3HzGz`hXhqyy&LVWrzC8R`~85Fti7dXvwu($W6TULMe`
zmJbnluHMQmvKL5#L>(l?Lx*6D00SQ&$G-%1*Iod7v<>2YZua>{0Ly(eTeosJh(<eB
zAN(oL3&D3Lp{2!r9FCjZ$8u$jj(_Kk%FPxr*9tTE*DRDCuI2L1+RN@==3%FVzh*xV
zOjv5uY7=>bD{m~5o!M+{5bh_b2j(Z#oC@hQ{a@i$j>~W0j{@H6EdavE_Tdm<lfz8M
z86=*V=bGKJ(=N2x<V$OdcU*jncV>eh?#XUqBrklaJn>c&#k1SaZEmb1nUI6J)?{&#
z2S}y}!<>QhbL&*OUX~N1=FJ;#9DG%11ilvVzMZA3{n2$dDi3m&;PdNK-haZ{*DQ(F
zukEa)aniyG91c2Wa-$=jNc<}r&*Gi1{{T+7Tg^T=0cJNA?Ggd&<|8^4^}`Q()3Nxc
zXW~{8X<CJy!2{-4Boeq8z$H|(Wc@f5ZhmG_!>G#fL_<frxsjo}xV&}T7$=w`QS#uZ
z2ssCy4t~4}$-VFwfv@gM-f1v1HVNJuL6OkyW-FgwIj*Aa-|Z?z(KrL{<FCFB3CE{e
zr5%gf+z9Pa1DrV}O73IVAfA4?tBXx+Y}r>zwu4S{Yj3B)YYc1zMIu0?5!7KpQ<6X*
z(AP&DyT%K7rd}{ZrtU{@0UVlsqT02Ei#E$>Lauzt(8n3|{p5!O@g}}n@xSeX`!RS1
z@vS~1d{pqZm2jLjsMTPaMPZT5aqoQNx8Yqeg;{9`xAHlqC@+bhRIRWvgDi(=9n|nW
zJ#qNen|u2L88=(W<s34W1g>#_K|hs#OnAfo3p4u({5q0Y?0iS6_=;r&2=v`5Wmyhz
zLQQrp;=$~9V2b!(;y?TxL*YAXc|YM-d@hpbfH&&b-ayWAksYK{0y=T$4*b`CA1cLE
zx4LrA8%8=dkLarNL-4xEE2W>=WM<sW12wT?dE6Q@xd*w&KJ^+nk#}hNz3ftv^2aBa
zaz2=nHf(k1!oQDC9{&Krc>e%wFBe^zJRfhN_-AxxD89>SB+jZxZXWL9WM|_6j2Rz8
ziuhmRH~bZ+_U!R0-`Hy37Bw4K3}t3mTE@;rNj_hh?X94aJde8D)wB0VuHW^45xkm4
zamUk^k<|V9{{VuV{{X>qJ~#frU$kTX&wc{%PlkL&C6<q-YO-oNt=-L(f=xi&e(c*r
z9J^LOAbjP9^5g)!dHyi|DEvh6r^f#Piry#qzv4;K=T`AvuY0TAn6`-g+sWQ$iY3q7
zk8q6v%WP4&vt*u*_rQKR_|@VmF4o6d@g}Ky;pDlB3yayEoRvc)?dKiLepNCyTNni5
zzL4-2{1OB9()fX@Lu;h?D(}N^x~!>puU%W|keKoVGRG{dAu0~-jH$Q`sV2Qzbg9vb
zzKrLo%{>x4+xA!eoF)CG{vus?H^g5Myfg61&eGK`Wz~FDGeZNbN+S?k$G$H*;DE<y
zkwPfk++ZK?TlQ%Ep?_uHg8u*sd^_+yZ;PG~)SE)K*}l_NwvuU-xn^jst>l_lBX$7q
z?O)8EkN*G$<o?kzc#hY@*Z%+-d^pxjnKv@%TB0a&H!4HE;z(slM@db@K~Gg~mG>9y
zxBmbHMDTxrb)(}y9(+rm#a9|jM=idUqSy-<iiQgynp-=KLRoe=;ZQ=mf7S-Cn#^j(
zthwWNW7EOHF^f`mKcjK+ehcfNW2R|Ztk6k@iKc6K3xYQSk<U6x+;j4;0R9!3aq&OI
zh6!6sw6cmQWLUwPTc_mbXx-&S5N-+PO}t>Z$gd&$9C}rSkhL*@g!%0Z>jq>%tF_iC
z<9*J9hA}xf!NI54-RTLaHNBF_Ev@MCyvNVVk{qjViERkl#0FKBm>xG*jY^$YbEZ|P
z-$T}{JYC}%Eg;t~XS19Fz{RI56FiNAPT}UeCOFBCSr`-dO?if`<B4@Uw$l7ds^3K{
zYUnihFQrMzaJ)(-L}0l&43^m)m}0KQVW(Z_SDqigjb@(GQ!kQ#e<GA1NQZP+#v*?3
zRhM}^z^HXupw#W`=CO+I=J!ks8%8B|k~rArGEuH&Sd@XZvs;%WXN+RHDbSp^W`9{r
zWLUZyjkIa@$>g@QGAwHzn6EVM1c0cP`bNUGcq-Q_Kk1)p&lWa%b);Hyz`9q=uC|sy
z-e0=9xhKsrnB(N|QXztW)(*86sjO)J8P-!={?4@1V!u*MGD{Vtt{>!>EJ`e<8&4uf
zEZx*{D;CdHUkPcqej8iaXVb27up4NnV3RX`?4+8FywSLmIB6PSssP|*nyFwU_GaH-
zR<lQH%WG$-omT22rCkOC?EtmztiTx84>*%-cpobx$av4min$CkS$KvmYRTo&E@Y8&
z8)p9iP`WZRl2+daBv&{gk^~@(@4>G;)4XqIbpu6Vd=94(V20Sc-8fJ;$K_ega<WJc
zNX$WY^;`<@pW7ey((s?`LHjcJr}mfD(pc^^yLPkFbeUs{)wK;`c-!nY;51OVXK&uk
zB1Fp!O7cF{LPXQc>bWSPOB)n_9G~!C{{Y(4O#PxiZTtTKhu#pD=4}JvTrc6MCAyui
zCAid#i8ik%m|gxvnmBD$H#e6hys9yr59Wu*my%p~ihblWmS#BnyMKrDuWi=+cd2W4
zS3V`x?;i73)Mk?A^7X#-*EbRwX1O4avq;Y)alvC=1>*uGFwE>3_BQMh&Q5<y{(|A`
zzv|Q@PTe&>FV8Wa+Y@e!V~BZvU)`M41FlFu{i%hCIpeQtkw_lDhkE)>W1U9Bfxy7Q
z&$U{%v}p)G!cNe0&V3I`t`YVYBkR-r;=NZv@R*-chC8jT92j}pR@oA+H#S%TNL2-o
z7{ECoQ%)&fPh%>zHj3(fDf=A$${!JbYOjrc82A_P#3SpTB)&^kmBKt0ah<<uyto8_
zu-Qc3e4B_?3M0<>5Fhl~_;LRL1jqjXf>rnn;pT(jX*>g}>rJBR*0u*wp3e2<yEf3Q
zUVMz8hIw}HVmKt4_+$PEGyebt?9e}CKiQK^{h_==;rn^MD11fJqP&*tP#Xq`qs_K^
zOBgLsJidI3wrjE!nItP7@{yvi?j^^I^pCVZnd8@uw;ZC|g;hD|6^LL5U_c|dufuqw
ziR;wFwME$@?{b`~ohn}T?ElpMDgGxzCyR7_a{AiYHs~6x&@9WfGYb5>cKtv-Fb7UX
zE6)B1d_eyIg>B>8eQxE7+RP2S_$P?ikC@}AQUS+&S9|b~K)(w-Uw?2Fmepfs8TtNX
zWn3?&c+Gs?E#0iza6i>BRyi2wr@vnHH7F^<ROPch8P}903envDioP89<4N&#g|4A*
zsoT#4vZKc=D0eiBcJ1E3!UrXLn)vhf`~8^W(=D6hSAlfNV`C|8S~!*Vs*ubsO1RuI
zK-@>J<Ht4e55a#6d^Pdyym}XiJV@RW)*zS6hU!^%TS$ZEXJ&G$k|@YrI_KQi+czJw
zFUPMJK;9Ve_r$@g=@UZg#%sH#f<<gG4HR!F0Ioj%bLa*!@f0vIz+#mBt-IYjHR^qI
z@p8vu`5Z6k){o|V1@L#`XN&$2_?>)X;Jtor4^X#XHaQ?eF6T^?MvcLZx#SrE3V8!2
zzf*r?pZF*b?V0f><IFx4o8rayg=FzU{hI0Q<Fd8$$X%$5=333V;n<CVR1?n939iD|
z_7MG&{s{ak@ZIO_LE<&D)x1#;+MvDrY|+}rVJYTYm9~Mlvu-;)@0_VDFc*wZ8F-ui
z30?525BN>~4Ow36ek#+XPqA3VeW@E`HsE~OZX_QpaEviAhb-JLAmiw<Iffq=pR%Ug
zdM9h1ZXXL@4Q_d)maSh?`)2){{{U*=hM%%8z<Z5D#GWR;)Z@~;m~9^Z?S<~Cd>3uP
zqFuaRREBf&2T&LgLBSRH{rh5kLWB0#{gS>Xc#Gm?&7O&Qb#HO28SY2!EiY~HBxW}9
zenm_G7#3tF<vHfR13Vw`ui{Vb5v<!=_`h1W)|Nwd(Oa@#TEn*B3@Efx@iMZb5h3~5
zkDGbRSGoANz@HYE_C)cwg+3Zv&$25e)O9HBBWaWS7bzXp!<RB7Hr`e~brJ34?#=~c
zl;lytMbw-3nb(cS&lM#IBk&hg6C1WjL62)3lprsl0FJ}8dL{OScOHY`$ej6+&up@S
z0B}6%SddP7gVc2g>s@<%3h`5xYq{fx4ZVVfclHMuT!GgI71!M8GI(=E(kwMeJjf!8
z%Mvi!%OW{A191v5j&on9a2;B5#ki-fpXh#h#uVy8imJQ*jPXAhS{pmow_vJOitsUz
zFagK)?_3?g!ia`>>*?)XKC5=ulSdrk{K37xY?Fx_IS13yxto)M6}dju`kb^@K3f3>
zqN5^{tFPSXdF1-l0*&YF9M+g(%tLT{=e8=vrIOxVM-)X&j>@W-B(oF19lu)Tl?5hx
zv8&3R#`uP7rPFlnDo^!FjWG9V7>xVi3<~-m_C@fO_M_vAuNgyeBoOG3jq$<@G_7>5
zii83FuL{iE9zu+F9tq>SWwr5L-kyvZEZ@ikbix6iJAB#WwSAxa6(`yBPZC`M6v=UD
zneKM1gb!chCchfu3f%STNj)!bxb`wwd$4VJ{raBy;!8<|jPXr>GDUE$69;lstBf3i
zcmN;s#ePz1x@5Xup>v_$pWfO?>5w=jPBIVoSaLrK{fhAd+fJWkkS=l1b<Q~F@c#fB
z{O|pwJToSl;>dheX%^Tu2*7sh`}qD=+&RYO#yxOryMu8n+RB64M}BWf={ui4X{8{&
ziKcTJ1_9YdNK$ae2aX0!Z0q_7(r(+yNkzU$jLHV)1Ha4i;POU0el>?2r+99d<KDU(
zyS+<T)1w016th6GIt&&Iz%m~Eecpg`U#P;5D@|;C)k({lSnhrc_><u;g*;YuAB)}@
zy75Mr<?Z_|rl$H_ira_ICP-y1$M6uK{{VPb?~m+j@o)A3@t2Bi{2TCJz&cNYd_#Uj
zOQ`s|=lfb>&I*N&dD+ZlumMbaMo8nFSMzj`?{G3byZ#mTU&5c*C-%1Zli?dri9ZT_
zEZ!l}ZnjAk=AU_EA_LT`B$K45>P8t_FhLdXU@At9RW%M~{I1UjJ)s(u?CNsATQAK1
zt$*O9UNHEp@VE9K)Vxpd&cpjNS@6Z~nRxR;rs@-FBo@~bsZ3@xSpzX70GT9=9Dglw
zf5BP5Y-=e<msYW6Qb7`F(Hvuf2rc~U`ilLF{2BX5_&?$O&%$roHuld~(e=Aotzpyd
zKYZ~;bd0YXmdIowuvd^fcCX>f;xB}CPXTz>Q}9l;wB6|!Q`k&UVN2P{*6eZaV<x^Q
z#f+*F#8Sq%{7TxboPXiWJU+)IN_bT6;_s)Q{4+m8-~I~m`(TWi^$jgE!N!*lPfxyU
zozy?ztY5Z$?YOsxU$M6eFbsN4jz&M<jqCG+80+4Uiu{l2l&|owxcw8_KIh-9{{RI+
z{kG&lvv|~>_jKJUdU|5dilsOF6vOt)oMKNJ-HzWazMh}@4VbTk`tU_A16GQR7uglr
z_KolS6hrpJzZh>G>dBw(Gzfn*foqk&{kVT?jY&#R@e^K9c=<0{Kg(cW>0c|5Ito8b
z)kd6GL0tO>MDe$c{vv4By6?m-X8T;dmRpFH<50Pl=2eb8hhTYGil{6|P(bAI&0N*3
zZ{fYSxSG$%-xO^dmLy7|F~|g-I`rs!QShe0Z#)B{v`7OBi}h!~^^A=F0G~?hJV5Bv
z#r}&uysHd*q?SO@%0y~6#F;xoA92&Ae?V~iwhD^=>OUXNS2ilEec$GCGooHYvA82H
zKLBz+&wN)as2~9D#@)HVKGoPuFp%V^{{VOsgY~TaRtTa51=!gH4th7Y)0*~=9+d3P
z4hY4`A1PilgOQBabKy-E-tObhy?u}_=^csNwIfnV&Uoh>_V?*r<*YAvapgtS1Cjo7
z*Y&SY)pVPUE5LI>WdXUpy+pE!007A)!vVE((`W>ePpPbNQ*og=F3j{5UTV;Xc8vW}
z-8>|dJ&Xoh6B6J%77Z?bPELOJM;v1r@5d3OY91r;RqfS|pucOliNi_INCW5Y_hnY&
zXJAG;S8c9o&7|Af_-x#Lv->x8={Z%BQhsB%(LU;v$sG5uF|o0@wedq<WtCqHUNCcw
z-!{@QgZS5zk>u+KN8k9K=d+H^A&cgZM6^9O!<LuYZkFZLls7U)*<L|70e25^-nu5V
zwY`j6T>-dsJRPK-PhaI;%&Dd6{tAmszA=mW0=>fp!;_uN3lIV485un@UT1N8rQ1xn
zw=!gBxX(Q|b;t7hSF->sLDas7o04*|^SGCGn>ePlSXqGRGmq)beuMtOzY?VIRp*Id
z*5sONIBb^UD@7wODlrM=?%Dxtka9xcWZ-1i$XZ5^ABf#;tu6R-^I&9vypnqK_4TbU
zk9XP^!S4Yl!&_-yFA!_(6~*j89k$wY5<*JAXUw{8On<`)ox|o(O8M8+;Oi~Xcx<Xz
zm+ZU$09Q4CZqM2SOZ}q0E<vg2cWX9@qFN0)+EzIZ+l;p|rg4-qghXzQ<?a~_3Hb_5
zQrN}zXh64xHxi@;;2g6#C!xn5t$EBh*LU|mUAAs681S(#nECVyGhLpY@T=l~i;DjM
z#J1uqW*OZe#(mF2pIqP%!oMfXvk79WOA%S#Qg>(Rxqb;zry4ZXqLq(1@h-ml<<Hse
zGA+>L`nv&*$J-nzJwF~f$ZV%!l^Mqs^<RZQX6;*C)SpMUlwRJ(xsuM!TI%6g^a2<I
z%1Ipt)1Jb=M7|P#!6bic-yYi9YMu=EVd5*xOR$?RuAqlbg+a+(<58N{LNSw%Ec*2o
z<l=J-H7#c~e^cmbWq66Nb~g1t7p=TGd2p+-cW=Pp5rTUf>~#MChnltHZCiE=z}!I#
zpJH*J!;1c#ejEP)!2y43ZEhC5@hm<V@ZFhniDuNLy|`WgKj_wW>>G}M*L2S!zUTOT
z{{RN;+NGf%6Fwr`#@mx;_AZ7klmpO-H7Raalh^lrsq9E2!NqZQ8Vd1ue|g^y8Ljr^
z{eCC$xnc04^t5tHfj}55&Pi|L1Ot!4y$??KFLubUC7T75{{XCz5}<#*zykoDNzXO?
z)p#@h2tE4|cyc|SHN5c$iS8m*%iL=1VH=hJ6Xj^)*x<0>93G>lbM{Yw{{Y~dfACK)
zhu4d*cyHmiht2)5&)RNuQFlIK7&*DTk)I@Trvo|q*N<C`Q-17O+_-WU_oetB=X>FA
zgiqpIvti*qn#AyowZ4=Z_H{YO5L>LSdE)^|&lUCm0K>2NCYSAF@fB9<!JiELS$!K0
zkEL8#AuFDDU#+t8dt`c^Ij{6n(7YqzuMBCC$Kh=f%D}GHPb96hSaXHiEyAlD05~V{
zuJ1<Cwe4`d#4^G5cXG4E6l%=lJe;zf-h|}zKD>D~IJ&*P*stsEJqmd>1oc0K4+ek1
z1;1}k6k8^x7lkz4Ffk?L)-{-5ILAM`vWobU2;^iBt$Ba#3Huy)`}QXBK9BHo;!Xaa
zd8l0J$*mKnd97}VcQmLX4KP-bl*Dqt1vwl72(R=kUx)gXsUdsor$){;OCm8qLaxw<
zZa~gP(oKIOKk#0k2t(lS+b=`5g&8An2kE3KPzYgjdO8og#y(Mu5tEW>VKbaXdGb|y
z4!&DP5psgnABT500TYzj)03ZXexCe_<orQ(3p8M0fyr#=o;dugrPb!N+aDSEv7Y31
z;QE^7wH-cNxs0(!+f_k3M;sh={*~*eZBHql-}^922mCJG21{8AD3O@wBkqh91P=X1
zeJlIi{ez?MABlbsUk@5;A7y)6-!3>qxMtr9vXxa}8=Q=7V}a>kz+dd$6rb?9baf=6
znTb4r1_37^bUau0hyMTs?eRa@J`wBB8UoLGY|9`6a)TB#o=6;a2b%FSzj>y5SQT^Z
z-A_{0{28gi4}knRr|Xs`Bj!&X#5T83?qP;#bqjV`7dxBfl?cW*n(91Z@e|`4$7?5p
z;jpz!c*4sRcIzv%fxBkaXGK;R7(#jFPp3V7;+r|Hn*Q!NRX`zd*(Y!%SPn7Q7y~^=
zTIa9)Nw34^Ute4`pO}%AlX*E{aDhYa+t-j(oOa+>&B?uy>hi;}?VcIc{wM1;!1#y8
zR+d8Li^FehrrJeU{tdS=`G*HM<#F4N2JGJrMf6~JkHs2{%D`|X0a%aX#&(i>p7rwn
zp?PPks#@yaOoB$-%n09{eA$^uIPb#){_SFE$i5zdZG0<vab`rg32kypXFPuCzE#`^
z;5On%dTFkvuxTqrTjYI{r~EniU1Fd~H1jec2Yk6*ht*eNk<VU5bsB$%{vPQd$)`mT
zbs63x4BJO?4u7S5du!rviT4ODygx0zr5^Q+$EdV1$eXxeu8OWm>9y2$=e>2Yd_dL8
z`MQ>v?=jkQVInrwVpr!$85vk(mE?XL)mdNNMKt@LQ$Dw$Lm60$w!{Q%9Y%A)kLoe*
zDhTy`1=Gy8OtS!Rs>;OUr*3oCo-4x7h%}K1)b&YavxS>1W{Hz#(Ut_J<sCD-C2`Ji
zTUu7NYp+-hPs4hhz3qgG878-tCRY#0AdIg)h&=W+eAgE*nd#SB+zvtVBiz^@H&6!$
zp8lM56hDY2xMvWdSiW43EOMPd1Y@VC`952#c!x;RV|3TGJ4<gYDJyp@G4(z7lYo11
z*MVHtzwv+J&Vr$?FB*NQ3rTHnGpg<!A2DMox3O*52LR(V;|DE~6KeK7g6~p_S;QoU
za8-<Bmd0|YrVc&-07}f4P`!<sR!R2c;lmsPJ+a5vr&{^q{{Z%e)00bsTF^8-M^d+y
z8hB^6RA^p2;IKB|Xm(w|kC7PXrf_kKar;1cs$Fq>9ciXm#XQogN9Ern*GU_5x@%cp
z-S&~mSogRY02=A~wAhtYmZ#E}0zF1AGT{uwF<G5tQHDGKV{e=C>(o|@Sio)LYo!=K
zSh~c>N+(cA=L4>B>0cS^9~Ax}T<VuT8Sw_CXQLZidG9>oZ7!cFNCsEST~0r;I)TGT
zE-*Oxab7uZsQA~%8dd(G;w@VH#FipEWwi+-t;mtsw2p54J0-xDJOCHUiWW|H?o(GB
z6Y5LFK>ZukQ^Qcox3}|KK*|`aG|Ho&y4${1Tn={RSDI^o7XA|2httNPr)s){5&5y(
z%{8=hTsc<Sk@>}OxUSre27RmI<6&v3cv9Ny#1Puu-7W0WTP^H%x}=H11u;#mNn;{~
zIotvnfzDZpTIzg5;Ex?ycml>7JD`?!_7Mq+>J0I-2{XU!4`X*0!cG^@y7O>2egjtV
z!NF@LVLVG}$sZK{(Ek9p$NUrr;Vic|IuF2?@SdJx5*zk=-D)O8Lgl>cQys8mT#^@d
z2M0Wg_y@<ox9|KF&&RqXdWMp|E3wmVAqg4quZATN%oqj)Noi?yKK4_el0`T<09W)Y
zWAL}fXW|TgEYUQhJV`T3(%8o&8~oVFR%W}@-7Z;4$@@j3s-9G23QZrt`pg=}tD|_v
z?jd=pT5U&~@y+fced-<bTTMPm)fnZYX+o)Q^`kjH<{vSmOGQn8UwP$Kqd6bOPQ8Eo
zPW)`uMwzeLc+bRIoy?L(EcI(`Ug~2cBpFaacAjFqV1puT41j{b0yAqv{g3|uYyE#w
z{>0M$9P4O9BC_218f<FB;~2l5*l<tq=hGP=AMAe1z&gH(q)#7;<kY9TTav@=aazf2
zW05iQTx+KGWsiVDBa#muW_TP<wW!_co)5J*iyfAqZE9l7cY345@xV?S$+Af-k~|-j
zxNM)|>^-mbk;OF#qm$|j?KXckJ`4W<f=hnc+U3(ht?Bw-gxYqHM-HudG!sf<UBr!+
zlUkM9GF;sZe|J0&r#>Bj!4#wM9*o+jkNzb+-;*RSCAWvP<)8O5Wm#gmwVPElNQ^RH
z?5dz1QykasOd9_Hgzda(Wh=_RYP-FFi6gYIfu-}2ytVn{mhXT@(>g!0<bpSCVv5gL
z)+g5@6C2ApAbBsI>uB;=NfCFIY>}f}oJZ$uUZV!No_&a#(c9z^%jvC8%$*DV2|4>3
z_#;Gv#0#Noeki?1xU`iuZAoN>=ZhH1MRTLdjf3|fft+XOLPtMwcq`#o?CtQfeG|jF
z7l8B~H%qo?CAWaVZ6jN?zyW|48gzRbdz{9X?K@{1OB`3G>67U`C(tzr?1Iixcro@B
zOUG!WP_D`XYTIH`FcTp&#~ICH>*GVV@UETYUqNRCOD&vmU(GxW1P_Hog)eLo5m;l(
zTUI#Z8*^TEBCO`GCfU-dsJkQ5zqE&htuK5%avMdoSSEzV#yd+`j3heYUR_SsFPG&E
zQDiv6q30Y9lXY>c_*&;e_<gBcT}>75o)Q(B@Oe`XNnIvu6<}l^>t>8#^g;zw)buSw
zNWRlNX`$N34YZP5-OY7tZv-JXfRkou>~|`L$>R0c0hLltD#J|n9w8nJ@usGi`gWz~
zTJFAoG?@VNqA&K_twB^|V|1}cgTO{+0=Z=qO^z?cekAdpnWI6jc!NuVZA?JX+}Yb*
z>2~*%%V@-}kshUO4b;w54b0QWllL+(Pqf=emzvGDiLI`$n#%BQl`pI>t|D0OlO9--
z`e`j)mG*#%97&!?AOLtz2w1~!d#!j^$hEU)jyt&HiKMq_)-q$9FWLV9vI}haca~V8
zUCYb1aJHTw@aKqpAZ`t%gtxkT$z|k)5|)9FnF(25+Tv+;f(9UwV^hbRSQAY_hcVvR
zUFg<2to|F*geK$4F^FT5*49HcxyWa2E6sJ>rvfnmCA#Mr6z(rHyIm&c-c31@YbgV}
zT%?T21<`JN%h%HUq(%g18_DP9>Tq?B6>1k=8nF10rin8Wubphd<&kB#ZMP5&mnJnh
z41B9-Bsuv@1I=`I8rOq7GvaG`?WcwGn}kqq5#x`@7fK2<2qBMSBW(;f%RUCxIV@{c
zOw*sSSn7Jk#9C&#rtH0zJe)-s9$P|AKoD6@v8$&7SuWJ$?y&?`o&Kre{{RnOTHH@9
zyt*!=s_PR*lBkB@{F27EH<wa5MnCHw*hY(!j1DoZ^%j>|yzs^0`%>JjlS92&1-pZn
zX$<mC6g)#4=gZ_OqIyB5YER-FHv310+FQ9TQ_PMCJe!X;-edErNYUn#WQ63)8Y-z!
ztHnyBfltWY(Jk*|)vmP5Hi|KDrQi(LAs%E0D;mWXl^pxipbk-SxRN=jpo2ia(k`x^
zJ9oUZVYQ`Lnn|FO<=W3|m(w(nHb9OUMi(21&0t^nw^~mRuZp$V7fHO0*3RTzO&zOC
zG#G1km9Fk=T5ZY!DHMAMB{q?ozo_fl>s(oQ=Ss8lboruhIGJR%c8Wj+!m#@YiU`5^
zfct6|3NUd)jg0wjbeA_5x`Zj>Nftjc(sK;alPr*lLV>k~&D2POR3M1shjtDd+xUI|
z0E2{oYinPM-?iZVoIDeoe+m2~w>B>UiW^jyS=3;P=KA2n09f%2yTNG-6cVX7Dp{3*
zKiRj6d|hGiOGNP}j{I~CdIpE2UTROMrJ-~d_Ll8-lEm`e>Ttw2F4vY=V*nnwHU3<_
zKKO&;zl&Zbzwz&lt{Po$#8<QHSFFGz8SkZgxszgm0;|eZQ~&~iFaQ93M+)JUTt_sP
zi1Tw=&YUgW@Eu`BpR3DjaNCk2yLL0iILBVx@x^i%Q(H=|mct2yv=jN`{42ci(Y1NJ
z=4DrO3Qued<N1DBuO)e6cKgF<;Col>6yGvT_<mO8?opLW66=g~{AnXmob=C3RIla8
zzk8>rex2$yiT7+$3FvzYv#mV~(ZvffNwb~+ImR>C*Y3Cc5tIH2`KkWi-?cWAVdG0v
zH^ct`3n10JO@@v%xQ5Y#!=)q4(ZcfIxWthe5Q{~bw*ts(@rU7O!(WI$7yNUj{5|+@
zqh9O!#;Z8Dv$4~llH%s#W(9;$#)`$Af}Yq_1=xjFVg8?A@Jqkgw?X}f{{Uny1K{_D
zWwXEW)KY(Kc)7HY(@k-GJ~q2b*P49GVQ8RQ#*)O$Q4bBfpOfO8>)2BEG2TahS%Fn5
zDzjQI%>5eFJX@&Ca~FxUTPBWMHxXPLR8W~9C|hx74c1YU<zwfayq&`pqYsX}I?$s_
zGup8Lm|F7j%x4^-Z?`T=^v=<obR8>^k5sw5yN|`%6{wtCv9-Q{l(KT_*qYV=_HY$~
zM!}8E*dN3g^{(l3xWa)4i!|Fv{{V&wZuJIuhh%15Uj>(;BZ5a2`4fTlRzLsM{uTZg
zXg(tGez4vX(j*bt-4vGexgs$f1i14LVV(!6KbJigfvI?xSkwoG;4(oRjUiPaZB55-
z1cTF{0Gj<h_)V^O8^oF}p`rXY)4ZD<Az`+S)dTtN=v=XE6O+-mHGGZZoi6*~uZwN0
zbgw4X&sfyF*#63@%!q*_D4>D>%bX75y=O}i%{LaTdvnW_VHr7HA1J(U9L6^4rw1O@
z`+NHhd@T5Rr}!Gv;|`H-_E!>Eycc&j`H5q=kNsqk$o~Ml@|<#{A3%BHzaPFP*)^w*
zuhVw@%&(p@a-%$U<Q^-YUlRC-`xtn8?bjb+JpG)?<{w=7dD+wt;p_TxX8ClnRFyc(
zm;8m7W0nrQq}9*dU)z`V==cTkKlXLgz65wK%3l)eHu6P0y5#4}v$B)|xwb_<Y_pM-
zW|3APoGwol_>T?qT5P+tIGIQ*)r#Y}&j+5zwR$JRABTQE_=Tp+YvC<2<57y<Re4qv
zjSzwT>EvZV!#po1*mbXR@Sp5u@n2ljUr^W9FAP{f<mTa)S@spr$rMGw>x{dvuQlpr
zxM~<09?ly6W?1ZHTuoIsyU^o&6Z=4Gz6#Enq}oS&c|EC$(s-niMXSxbb4LygZs-Z}
z_ks|UivHgJ0N{oChr#cI{{RDL(L7V7$#;3<+eNn3jmGI>HcXpR&Ngw(U^6qbV|%eU
zzyN<5@_ZiCei^&jX|Q>%%8RxjyoB^Q94PkUzkWa9l7H|}PYirJdvDph<1L+>b~kbr
zu)ch%vy;R!Ncjjz`-Jduj=0alaZYbMMLtS;M(64LBau1{%C@p=?ml<_0D_Eu!V!MN
zKeVOa!p{rOHU9vE^$TUy{4a9lH%X?<#YMY29JAR!?nyk9F|!tCV_%RT8*XIN#F}sh
zNMmT$H6=!6Wi0%G*kZq|@Axl%oqzuT3cui|#k)Ib=CY4c)ciiPNQIgxE?^g{^Qq*w
z*+^b_BpebkU&j9c#7$#b*ZfI!bs~9|;#X+-;~UDT9Ch1_=N0;ogw#E<c&EBn`P}@&
z#T2PlSZHkB+2wP)n`lVNhg_&{n1Fa79^><>o=)huo=>G+xVK1vVAzlbQkWwJPfT=E
z-jWf#Die{<YW=CJtq;vP?5>V+gi*@NASb_GwdsEgY%OnmS8NO+ytm!FwgB2PPvAP&
z19NJ^^9&B$XOE{My??+K4;7uxr*K3sHN249Dd2@*1IRc%2Lsn9wQ}NT?5Rql=$Y42
zYJ9N1_FsACz96~KF7<1zN9}vsdF7i5jKOy?U^Boyf5yJ}{fvA=Hihu-#Y0WEw3uGq
z#}tooY_d3y$Oj0`orDvf26JB}zl9_FLd)c%4shte;AcI1A7U}voLAVtvlN<-g1j55
z-RZFfd9PR`b40QuCzB9AD*^~O#z#GHMr-g)T~|1^`k$gu!}7G#JI!YDecx`jJDO03
zI0G2q;17P->0Tf4Gf1)4JU28tsSh0SJcXBo8=)*8gZw?g>t3O)>YjX%%<=hZxDK!l
zi-VFdx#4r$r?q&tx2XNT<!rST0@&{oLfzGY45a#z=y?2S%P}6xtZH^;V({GXl1IbF
zA0^B{<c|LU;av`ad2Md;Ti-+H#WH{tV4dSQBXA=)C!8K|dsBQ#qPB;tT-du4<hfNX
z)UJM0ob!?1v+V9RPLm?<XjxngXE-3^9rKJ=@99RQY_>iIO_@@eZLV4|lqkm?c=YN4
zuc&`!ui9_oU+nSXB-MNetX$babt*OetWH)tgp8lOI%f^R1zR8jNaDPI$C_rCx6$2c
z(IvQ);38~Q+5+H&R$>MS<eag|#d-9Qn`!)(AeBGDc&%`CTx~eAD^sV4rsDda+Lyt-
z7r{O&yt4hKJP+|6>gwB4flOL{p(JuFG6T5mY%4RXWk}CV*Ye^200kxRPMP2z+hgK3
zfu(NpW!5CWKu&PFjB(#_{>gdYAN^|k*Zv8C`#}60*RC|r*^A@;meVKpqhI)UR)LB&
zwdCB%ZE}Htk{Q`@xd#q$jO?!_{{Vu$_y$q?YiiT!a;@BVI!==?^3ax0VUi%O0VFW;
zdE=oRQ}H2Ft(4NPv}#)UT|53q%5at%czn`$X<gnrY0))r%>02I;*1X5*MBF0H4xrd
zR>|OGV<*!G1Y_~_s}Xnt{$>%VD%d3TJvwyfp5H@XgD5Lr=jv+>KF6D9*P2{pXYj9R
zgW-kb@~m+zn~pduj@*KKS3zs=di~i$uTQ;<HV<KdYT+7hscwYQ)cNGYCU6#%LhL}t
zC$O)nEq(^-PatU{Ax}-%QP=bO{{WnHR^I_N1|Cwv<eorPIRhPsr@1+*Qm4_7sZI1W
z{tSG-46PbPAjf@kA3XBG8>c>lt##fd(XZ_xkljx6K`JAnoR2L^kB}aPeFv>{J{tIS
zsrWa+QpC_m5%mOhGA`Bmp&_=Oamo&~y7XG?8gRP160|a)XoIwDr)cCyj#OmyJog6`
z`+pAAQo+)GR{M|2Gu%6;iK!cPzu&3k=?bhn20mWL?_~Gs&+@FzRLe94W5kY5a(KoD
zG2hy?-raDg0G{KxtXt7M5i_nb6^Q49*Pl^eMIOh^Ceue-@Xy1s-F>H4z8@+ujxK~3
z87$u53<2&<dllTeE}vr@r9_uj%+CvPn9HeM*gR(h{WHa8cy`*yM)2jemCN~4vKe2Y
z+KzMErbpvk)tp&Jc?dF0?I}e(?KlcOakO^qYgESF<k{x>q*p*mA>m!Jc^sVQkFWEt
zufn>Jx0)XlYVrR7qsG|YyaTl0F$<7Fo&dnyeQ{9uk4Cw;gZ&oY%#J=;KyE-h436#F
zrUx}9tt@(tyb!}`ZJ`(i7v%+)ryP8%(Rlj%VP1UCm77qb%C93ERM*o})hC|Zx0GZh
zQw%^Ij!y*o``1a}?Gsk<HTRci8x=cn#NZN6KR-cL{5Rni)oxFj#BrRycpFDvP6yV%
zuaEd7pZpV7!T$ga{5Na+M1Ih=sSdYw5R=3DRorW~%sxE3x#Mu(zmy!ttf0iWV~1mp
zmg1f&qn2U$-mjwWeNPSW#PRiY(kpg;cmB_x@JpZCTTt*lzl?k{qG|S**Wh_~8s)=4
zki<YC(g>lRX$TA(X;}B1a;wSrKL!5)!MgHzhhCG#9~t~_XLoU{?w(0wvYPJU-#;{k
z?&k7v#{dBj7#wW?59znWm--fkJK9`F9n#1h6p1HN%;W{#5LGJe_eSCK1<2y0ve#k0
z%o<z^40~hP(1mG~eb5291rt1EJ`0TDO@BIPJZq1}%JP+$WPaV2aOM*U9$Invz0bs-
z0RI5N5x-<V4qGj!h;<!vTzm&;1;jdJK@<!DCYb~h6)b<}w+guDb$#97ulOd%>^I?=
zEQXKpr%Sxlt-)lt)L?tf?X<Liy}xO^z?__OgVU+6w$g1utyJIM2z1$YH$-xn18Ssk
z`C*A{5J)=*Y*p=N#2yz-DhvDVL|@xS9FfS6E^kEq2SkG0DmcK#IU@w*kSpct<EzW!
zn}0Lhr%DTCay}XGUxU0ErbngtTSc|ftu5KM!DAh@yh$Dh?><0*PVA0B>w-Y8*x1E+
zV>Q^+E#R6)GBh^uw9-ga<#%J{&N)9R9-JO}oeCXr2Dj4mJ2_&QD=e-MWfYzr?l(Jf
zLB<0feqMsNH47L7AK3cy#$>#3scmS+cW|I>Z{2`TIm#6P0071geCbuQHMc{G()9gp
z>{|Cz)J?s)ki^m{NaEX;XITnh?o+@35HbKAtG3YmBjLLn4>s}db*UzaS!IS++5_`|
zJffs!PU16x#ySew(mX9bseATs40vNwzMGi$-bNyft^gzn2@AJ@_d&)$<FBlb0r<+^
z(HBsX*gBDmOIag4XO#t;<-pG&I`++LPIuJKO52<aegJE?arP#)L?9}(imDV0WC)WO
zBcW_#uqPzxTliZ}kQkBP;r5m=!TZ%*fuEIp#_D>42Sb5ZEPMsxh??g2P1a#DPQjoW
zs29Qn`GG*NtV#eN9J0Q73<$+lo^OuUR?ju&m1{E3^Q@LPN{Y^)0sEq`6b`sQA#st8
zYUOn93tp#vrT7a~wt@#XaN8+dd6VpNFgO4L?hgcg(0#$KfwZ}-h<BQMxXx5Wu&hIW
z_lwBRa0hLG`gG^V*T>rBzM5t6MXm0EaKy_b*Y>__L(9O*NQ9#?P+JU&eQ`|CzAE@D
z#2TcRaq9_tA&kWo2yN9_7XUJ;RAq8W0Y>0|0BV)D6N^W-%d6@ZYS$K)>1S^umJ1dD
z7#Kf0;0$xf!Oeble%qh$PH%uew%F6WSMfqkTS)OPoon_e^?e#>P0L!y#p4Yf#CI0+
z1Z~WW>A80{8w7*(-nZfek~rkB5?Tw8+f1sZNl~|~yeP&q_edj(;H_ZQ6=a$Rkt23v
zB3uwdC>*RTuDiCAg4iw2GI3f)PX6xX$u+6|eV@0F!Mk7C3--71r|j9IYL{LjvGA?z
z5L)Uti3C>{5!~3@U6zqxNa6(=c8}ym7*KEtHS(D8Br|Oi!y}(i${X;=BELib0N}5B
z{(-Fj0Kr23B+sK>L8!$Y)r>DSyR3>Pk4?5oP_ps87;StLf-p|tMSg4Pt7Uf}juJ_c
zv5b;Weh0sNSJ`3H<XqdHCM~XeCD{Fg{{VtVe#)N-ziZEq+SiA^B;RWOAGGlHj&*3H
z)2?EL=9o_$K3mGsKGZ7xP^%We$j3j~m%{%5gMSXb6nHk<!9E4ImrRBx-6OrjT-{1`
z02*tF8OuLGwD3QK3jTNh0N{fD0Mc|DO?$@ET21!7X4*t~k#fmzZ7>mt@ChoUw2h3M
zl1Bhn^jZC}sp-?r9;oSQr<mF0l0}mc#kYwilr91Sq_*OIoY%_cc$Dh3bKj*&@}&}g
z?IydnNKKHx5U{~1^ReeDKJibwNCU1hj^gWGjXwA6aU<IW8@83+8=RfM9oSvK<yerz
z7(9cP+RVD0qg?nwto5s6>Y?<6w$x=*DhP8Oq@HW-=MI=*o`;cKF0-sS@pL{O)UP!7
zB%UR6Z+|VuiGI6}$YYM`-fuBDB(l1&Z@um2%Bngeg`LlC(7Zuv*3(|cZDV#$_9o^j
z97IV9xmeXcX91f%dmIjH&h=}(Fluq>sMe1x%&HVZ>{(ACqfpM#lwbpO-N$_5wbh@C
zEHr&vRlR*y9WGd$s$5wtvAF*LS03BFD(CGkhwm$SB0xIwIOHUG_3aAFM6kP`QITZx
zjBwpWe!g64Krarz9kh(Qh~_pf4haMrE{=#{JDt7fir}%=AhXr&+ey5+Qe%6llGqh|
zuGKRZ40rw9WB>`{Bvw79m99&p-)gCIb7N^?43e2HH#Ls%Pt3QL*~*sg%G-JE*58Nq
zLE(QC9Ya*KxY2C1*wN%?w$*gFz==$ZWSR*MmhqBFW&;C|!-~e!HAU6@C2`^{JX+rU
zy5<<?xYNa^sVK`duFW=x`gG$w0QqMhc&W*$=VwG{MH*@09d-)~O=C#ZXO?LRw|JnE
zJM@wzP+6PFn@^QMI03@R*92pwtv|t<W`pq=JUZHuiX@KRuB_&nU<^VuueJ-@NeEmv
z&=U1mAciBYX?TiF3jYAcnm2{@3%IVX;<ial7q<~fChLhhh&5|V*%e4p^T%|g4hY~H
z+ihc0({%p;6ZnhHxw3{qFo=<P1VN{96htyyYIa3P=W^L>$1H=Drlr{1kuHauT6il~
z(tH!E>l$D7t)kse5?ZW|@xZApg^ZE2%dSAUk2zh4jzAwSMl!6t4Xwm1ye;A8w0pOa
zu5JU!mi}zhoB+p2ytA1Ys)AYUPX2*<n(dwv`W~AnhmtF)5@}|gw3uO?)fGf)&e~Mk
z9N~8o0P<v0+;<nOwXGvp_`@BQ?ds2Rs}vUYcQZrwmc_UszR#)HeWehd>8LsoG7d=x
zT6l@aW??KmCGjJOy^i)aSno7VK1+Q*6^2`xOg7>sGKDWBy0x{v$I8T==`bW6%DcHe
z?AMd{i^mq%-cf60xsp#hXVh<PBv@DGXeDVr!ropo41Pm?x#jIN{{RzsKjG!xqvA;A
z&>@OjbjGD6&V>*x<w#jtZEDSjIRgSS(<_{ftF1Fq@inG^+HJDj!XcY=-JY6tsE+wS
z8*en5t0qjS=ghV$eFg@4qnOQZVOK1q*SgIA00l$geO7I2Q_)72uv^<Y$v%?}qe@J&
zC@qaG<&$_F3q~gAD&*#}b=!Xj-0AwIlTNy<uw7fmzI(K@#_E8ow0eVEF_81Kdplr!
zjyhKDwyk5Wc+14rR(hNojIgcFY$4Pvbr}@Im{n~y=Gxx<O1C~qxxhblfjJpIB(~MO
zGw|}-*T!1JmM2iXh9>^kj$IN2Q4={xBG*5)EzVtYvwCNpt_bIPd6It;IVYAhtrltP
z);j+HgY=Cy`%t*Jusdc}GYM@~T!P1WOMO9OQoRev6Z@@$isv<d5No=2tz+Up54<{r
zGuhiV_-2az{?44`O}+G2BoI!*mhvWhW96*7&xXDrywh~Q4|rb6@@V1TJU5zs&Gm+w
z-)h|XTfHWE?a`HvTg<j7-9il4miU@D{vy4GmEmh<@g3HiX>SGe_BI+Ov*k?#sADsR
zwbhKM;Qa7}8?fR&O4ns9WeM*iina>0HE8t>L&Wpyem%4Bwy}L}b8UTlEKrFhnj5gq
z6G*>j^KET>*BH*&F57B@oPcq+;U66QShc#ni%{0}AF@MdEUGo8g<%p#LTxvie43(#
zWIRA36EVX9!4;9>FCSUyUmJAo2m5N`#`99W5Zqeo7n-1X8Dk-QyIo2XV{{uFM{6Vw
zGDu=U2M@qr81ZD^60da~FT)R~y!w8lZui34!op@<z~JgW8=6BLWP-vuEsfJ;6p>j-
zJ<(BW=M3DF>~%gC_?M}8$4A$#=8oG?mdfVUXNN$%X<jyTET!7!T^QSL8Dg`5&G(eB
z;<NRgPs4}7mKK+Bd0BhgQreQgnvw1$w<NYYtL-PGjdCG=s{3$j%=9bEZxmSgi^6h0
z_RN-6)|V-2*B{##D5&m?%MXj;wvydg@#b8-vC2otRE}MuL#6mD!Pk0wz`6yjnySc_
zh}xcls?s8nzCRDiacw_+^2Pp*yX0h24s?tnw<7mFd&M3pYt17@@kfTOZ}oT{($?tB
z6~a6+2*}BeVbv8URs%V=)7=RCaeC{-z7EhnDe2Q(*_hh%Q8vjXv?UNV;uKJ~Flm~6
zMn-a=s$NL>KX`ISl4?3-_lx`)r)sB9UlCbc$8~P^)^>VMu#yyzs^;eC*xks>(`BGZ
z6s{QW0G{{8{x$IU@SU!gBuOT-eQ~GFWY@ahp`@%fh^m)Oa}D%U+71B`*+0!AHrJ9f
z`^Cm}ZK@TMHng2f!S{a<b&m?`5<_=2-JFog=Um5iBzHEFWg?O}F15iMuw%43ZftQE
z4Ocu9s9j5C;!gp?ZKzw!l0&J+g(kFCfs~}94*Czu2pqb`q#u<?8Ln?s@NMmf#2Yrf
zhVshF((#(z(?_zkh{q}vFK>6JOxJKA-L>YsM_s&UEDdnp3$gH)spC1cyG#8SP?q7R
z5?jfwPvQp*6om&*)|m;D2kxS@YFFm~3b$C8$ErHLPFR<~;@icxmNrvaT}f#K_swk=
znG~6Lo;iiCp(AZAfKp_SjCq9Q)!22f75Iz6nqIx8PkE^YhB=yRL3Md#B(q{3KQb%1
zAU|-15L!Fn?au7uBf}aFx8SW4#Uj!v^mNqi*7?@qWbj%%u`!R%n)gLnV079-mA64B
zA3Cy-Y70#t{u8f<Gu_?j7TzS2PredEHMO)JE7&HC8Ggw$Z>QWs7X+ClRh^F`%oQ%|
zZ9Unm;tv@%oAD~e+f}fRdyAN4k54n{vCSkifTwk@lW#hrXC$*rAi?=}fm^ovKB*sx
z?sR+kB(;59y_BD1wY#!gmydjrjrxox8-jjpJ6r@nNfDBAIA0LnU0!@B)1dJ#qHHaq
zd35WWO<PfmO^9tJq5l9w*KK8z?qyQBSuOzn?5qZA_N!?GX=CGCJ6YhlmIyB-2@bgv
z8Ex1x8iu2%O?{_F3xIb;<UD&%3`aG(*I}I=feqT|dWf{Li&M0L7U5-kuQoMtm6aM@
z9q+u>`=w)85DXq0oLti9vedjW6}5yC&vB(UmVdK%HOku0yUQ&jTxic~h{cf?$==0t
z^BkJ9{{RTZvwTB~#aeqxP0Oo8CAGea(*FQw-6EGr8&7*pMhMPEWpO@0`?<#4yDbC5
z8fS>^yfNY_ZLVRRrm$G=F0Zvu-!>Wvqk~<EmUmbA5Jhs)oyQB)8OmDOh}iKazoTie
z=^ie+yo$=|DFlCKzI!V@x0aaP_V8U=r0(oL<*QzxZRCb*f_fXxM@u@Qc%I+wI;V%V
zCEqNvonuh37PIALGPT-YS<2BqNRBs#JdR5YRvwdU;!g_MUTAP=cbZZZH!+uQ>=?w5
zC=Sw3r(9lJBtjxcjUtS*bygtl#IQaa@!y8oyc(9?A=GqfjMndNvG|fmgMY1#0cQGq
z@w99*&g+*g%Q+l1Qp^uX({#`HN4#Nq;U5p$e`ea<N8~$MwXKxvBK+{Xt(DEnTf`KQ
z#jKE=s3i2Pp9bDtw3mJfK2O?rwdI<|E-xE?Nx6p7I6twccX62vuNfI9=5B+}d`B;e
zZoD&ZJ@w=oJQ^W_3DaGY*G3HF28Ks{O3vbWWe1Vv&Of{75-X_I{8QpRS4Go&OR5|5
zdvvcP(ZvR{twbb@40+FGHO-B*a{-^0IRQrFoYLm%C#I((`(H`nj|~3AUln|H@h?b%
z_eAi=g*DNt#{{+)f_qi6keKcs_BXmWEX)z2S+WTOdy|U)04n`@S@fH`dn@Txr;gqr
z(&UozA}YBA^UH#H<oZ|oE&l+)W)fWw{t0RETg3kW4&#Q_-&WA<QduBvI^G#HyNyEH
zJN1GHj8|{6J?gC_Zb9l7lV9f-s_Ld@NHr6ba%3cp-@M5rXSZI1iu>*ZgKl$sA34M|
zA1qg!F}1Z_MU=nD>If`P7$>!P{D{ckAn0+Nf1b6}UtC*3AC>`>K6v!@=iiZB;9%qr
znQ{HnI(M(q;IwDX&}DMqE*Jnta&cN#mo}nE;=>nW7bpWa(MR{Q_|+0ruGo&?M{(cN
z{{XLFW`4#00JDy}`&ItY{tf+}d_8#{n=gztNVItGO{9{vK6ElXlkA8y{^}%l47tI>
zH_95h@mP;%2RrO^!k;{pJD<~c{2N>Q63qvQwLkbMhs3K3y&FXE%wO5w54*qeAW8KL
zu*r3(z_+N0JTOE>yi-9k1(sRYaTWcU&8S4P+jyHmw7AqQ@0F#J30qK>B1yxGmQU?#
zV6K07fFda1=Z-o500#JS*Ws3l;lB-hCALjVLh$~d4wo3Qv{a55E#gS0g=2>PHG7Em
z<Pl=PNKYKn-D=u*hqV>ZyiRn{X?W{!+pnXJ;1|!6b8r$pHN!-J?~KbMV<3IepT%=L
zbnz8kNi*#5xJc51giQ-5^zRKwZ2Uj}03fYZGG^1(&MS+U!yUUnvu-UeBMBoF-S%c|
zZUm0CV&_5ln`?6=sFKONwkwl!tuZ(_$v<Iy{dYEfPg>Bof?4!`_(wG(coybGYkfv*
zDW-wtY<Wow>JVSXuua{C$mg7m*{)_wm@Fh~8LzasUJ_$y%V`QwuLVdNf&q@03co?p
zyyrV^ZlZtx*8Ww0WB9(!@R6<U71{4K32r3G7~2}GVOQ0dFGI(A@gLfXeJbPPo`K>0
zF5o@QxsP(jzzCXIK>*=L%)kcg$8pHVZ>4-;u=r>2kHg;#z7mMFKNxCo10l7HNY;}`
zLv1W~29%OPQNY37fsFj|@o&Np@N>snCBKNLI;OD*O+!&~&Q?NY+=;o)?Cnyd{vy2W
zG$ksMsV_SpL5ao1VdG9Z?Q#DA7W_A$-{}wI$TcSt`M+g`)?f>|#Kl>>%;k=9dU8IM
z>K_TdANW4Q!P-BI^(`D-Tx!uup|1dVgDj;3B1pSW-Qj?4;=BvuJ@1OVdtiPl>f$(b
z`EHuV(%v(X7*JfUJ79HUa>v*T`xoI|h12{l(IN>iogJ>^SI#!Ovje#Bs&kdcP;1q~
zMcUGLI5Bl2Qm-;rx$H~vQ^!zPjWWXe*G+=ds-!lSkw%+34WnxT?oWTpv2@*A#@fE4
z1&@d)8jRCQ!^-<ajJq9)Qp4p?!y}>*>Dsc6pDWC=#-VYM=7YO&{{Vj-j~~*#ci?A+
zbp2D}#f8SAo0<^v4ZsjgYDc!*j&gIKt!bI!BTkI!HL_=RRfcu3Fr>P)VR)y&UM$sY
z?libGo12-foseY4%o$rdOEaM=M=D7<9Zh&oh&(CdZ824K9UfarSgs?L(7QHxz(V=U
zboqyB{Y{6(8YhQ7A^neE#8#K+A@dL1jzCC4+2}HHyQt4RRQ~`FJP0o>B$gD8<7osT
z0}cj0R^WoCxI7VGhyMU>UUrh){)?lKB^4;kRDRreH}-q@xBF=S0Kpt}{{VshD1s^c
zZKY|k>pCx$a3%?;>FOqmCXy2*DZDPnM3PPzgT;Re(rY{7mrT5f#TpVBPs-?{kgtpo
z$^2R5FgfH``Y3<FB0p`5FBSM+)4)D1mM7Ho=$77O!o?Z{7*pkuh|?XEDE|O@zmop|
z_%AQ)uc7|PpYTwR6iwl4ceU{Ej!}G7qR9+IK^VPaFCgSFB0HsLAOV3oj1H&v&j`4J
zH0L}VpSvwrulyg-{71!%f^{IVR`;W)s{a6o{LjU0ZDC8MFwf_L0Ni*bah`G1d-tj~
zQ+=9sY;W9o9f%a$om$%V6qZQ?%N}#Fc8n9i6<q29I0=p~oP`HDBw+K7-=9kUf>K=%
z!lOofysaB67M^a!#mbgZk{3ALfxyqddi1}ApKI|JyMM1s3X=u6h7~QeM;ee@8RLb=
z=UzD4im4AgdB^bj`)8bc@n58Wv5$aezqHl0twT>)B1o;G8^UAFl(ek4ehUQHNa{1s
zYVx!BsNp8xZ_Mq==}X(j>i+=M&n$;X)OE4s>6TA+aKM;iX;T^FbEw)6r+;%^&)`i9
zQSirx4xN2#Et|=6BZ%Y$TW-|=jFLb&I6qqZVjl#?q{m}p<cB#SS8jU_LBag1$Nn)|
z+jx538wkXo+5uK`yk~4oN{o^L`Hp*^yW5QZC5wvXx%xFPi6iH0;b_+1W@jqf2@F9v
z2RJ$J^sgM$;JdfAX0+iXBRfViM@~*_*fn`%lI!gz1S>3H72HP{BaSP{HJkMiIGiG!
zkWS*mJdE@liu0*A(Cw2)3E~X}yiwuSgpl`ED15abWWd=Z@8dpM3P$XnNE}zna7YdW
zM-9}G$I`yTx4YBy{VsVG!I#LDBEbup9x|xAj~ubUUZ<eVe47T9D72PXPtG=+0nihI
zIqoa=o)E>#czZvxd?s^F6zeyA>{!#ZtF3<8YeZ7>TQ22n#HtrOZh0AS2RI9oco^cj
z*IDgnF|hfR;Ep=_8teQgc69x6I5I!de{|W~-<A97$`0T$l{FWMwCj6aT1a6e@55l8
zRJS<jzo;Kd_mvAxtDGvmrONg`g8htsAp9@*ZTm)eXU5+a>~3!~dmDx_$7;+Z-6T&M
zI(cMBN;7WSnRAbqBw+r6d{zCJv~4@$73QbmEkJ92AJ>&NoflJkgK+m&7lSbwWsvWA
zBOt=Xn7I+F6P7snWA+Kv{Bz--iE~5XPlj>)N;fezrm15rMZeH)M%g22Sov@)iVh2v
zEW?JtBEPoJ*kk?)-}?vn)AoMw_lkZb%i<3TTv>^9{{Z+!H62RM2{hpxjO!9h1ai+Z
zw)}|<tXPxDub%M^T)AXw)K}$}>1wX6XVYK9=5}z^s%A2bU9TORTH9Nty5HuXk^GZs
zf3tS0cN&<|8BmP!6`KRL(mQ*8Rj+OPI@~qDvUuY%vBE(b@0GHDg%@!-^aDMIO8)%(
z8T%H0!8g1(xbVlrc>GT+Wb=6q_N>`chWYN?L!9==`eMGF@aOy>pAMn&J{SBrvhd_+
zKpRDdm{emtt-4JpK7iooiu?*$^dqETewY24yPv@a!r%BM&+Sd|Emq^epA39WsUt7}
zpG`JVkbC*}q6o<M41cYDf_N+b4d?x_HRAyB29x3M58JQ={{U#~k@<=^>m95Y19p0V
z-r(2u^K<b(R=m23(repGRCO%HzSXD<0l49sOL)NdJw|;i&NXiqc!Di<4OY*@_tvpA
zZ5P>NOFMfxS)1f6S~<vWFbc?|gN}F=$2|7C(Iksl8avzbKM8&v{{X?Ynt+imd~@*^
zMzV={Xmq_U;`Tw=g3C0~qi5bT`1bo_!Qb$2@9cx&1Y6G=c%#JHvg4I^)3mrq>DD+5
zpZNa(75Avud~L2Vigndz5+g>rzn_-mVM0u(c?9RO@zit0YhE1i?Unc2FT9&;p)uUj
zNRz%6JQ(-BOnmapNhFLPep;E0d3~beLMvo`H~#>^UH<^!oIkPW!SC2JR`K8L-=^8x
zc!R>4zMFk>Ji4s6_m>)fo8;X@rb%Q{RyjPtfmEHmSMkN-vvVb-rkE{EN|9zc!7Utt
zhBzIz9uI2%{(s=2z7y0uZ~Fv%R`9-#@<l56b5OinRYnlXEyB+WG+Z!6E6XS+x$Bz#
z4}5<u&7G7I!w5El)gBplgTI#Cq;*oiuN>Fz{uE<pQw1t>cWPgQNc^Y7TryQ7Q7u~h
zpZpW%-CEX5eMRlzK4O86hbIHC{{ULEFKig8MqS9m1mm1{^&+&jn|Wr{8Pa3rlbjRB
zAKk?|#(QLdEbq?j0(<^H{d)b0GxBLuyE@5J?VcUE*RMWlKo|$*#BqVR;A1=<o|Vk$
z8jhi?Jd!~k=7CN&1Aqq{o|WnT2h%Mzv3=qFL43$(wvonpV0^N_FV`dKipKC}uc5bv
zk!&F_F~%^zC}26=o=!S1=ie1x-pSayG&Sat4X2A^z3}qeTSw)}<)XOGe(>r*JceP%
z908G%O+jU+Uh5YrV`m=y<Zv^92e{~ct6xsgt~FU!%Gy6OI0GMefA#D7SpNWmK>q;2
z9Xv<z^{sw8{8Q2-9tO3SZNHs_{?)jM;gt^!_E^snx{sWVihlNfV~BJ58GQ*>s{UQs
z^_dPuQyo=7EjqKzKj4(#@J{_A_Ttmy&&C60;?_i$MbWQijyAcI@1^X?F3?~?yP-mV
zdg=)v1t<C&zww5wEhe{)^4jw5NN~35%PjKBvLPl7gM}FcDPH7ma5G<_+Slxfrfa%&
zwwK}!Kf<><U8{#nYpo~GSeZZ7x(DC$MnGja1QFJ|uMd0|@JEF15^YPwF8DZDbn95`
zR1UaTj4R*~>z`bT{#nnn{6=G4)~dZ1WPbIP<=A{3B}$voADG(CvEnAYeNxXwxVuM%
zT6wJDXl$c}V<p3HT*WiK0Aj%b&gMdEvGBd7uY0GlicLGit#q<nmAqBFxQX_v?SHeh
z(7a)C!cgIfIXu_tq%!<1)9$5faj9R*pvJ=P?n$;}@-Sb&e0IirQ*7=$8ErrOQ~ny$
zqEJptz)9NNu*+uv`d5wYD@k@c{k1#jneq39{vGId(Zj227Z>{bS=)JjW|?EL4+IA;
zuOy1j8=dT|#3|<)uT{~08+eW>Ep1}cG`|ek#Ssz7cQluG%z?LXes&)*B<?39_chb%
z9|-&>eR}$~i>1xstF{aNk)zM#t`uQ^cB5v|o{SApz4%@6Ud|)^kK$<Vik5X3uttC$
z#hC*ZJ#tj0bJ*0ZJd^jwD$(eTf$;0XT4n6F8uq2BYDX!!Mnn-X`@2HpETbg11%Ss>
z*Hcfv@HT}o(sVr`5oEzbahDFLdWDfzJ_sMcGuyp+JUYL`&kjv^JX7I=e-)5ERQ3}l
z$s+_Gkx!iQvu8MFP!2&j=Cd^~+5_SBpfYOr5@@gmNTz%Ej>U4@LYa_F7UpAu3w6N&
zj%g|>YSEjUXTP5r-s*CjB)N(>3OtDlLSsA-6rzPya570@!R?-vpC+qqac-|I;rU&P
zu2>Zyl^~T0#BTl^aNW&$Od8C3wqH%ShT<s|w~I*y!6O`y==oE(vjL3MtE$@G!4<1X
zaSUq8Si8Gtfz<|mvN8{T2Q{jT=w#>6?e8_cI@UI{)7h>Wott!E?_w7$6?T$JXO73U
zQq??Akld_-6$q$VH#;WaFmiMJWS&sq9-xkcjJUVE)Z~qA1=MVXveC@T9>oNMg&}$8
z895lQntnO{(SHGc2ir{_#m^mCXpQ&0kF-ZM;K(>p4Y4zFakTCF;2PGQ8Oid+HbOqD
ze-TfqmM?L%OO*;7NUqJ)as~+KHw^a`$7?!&gRiU^H4QE$mNK#|rrjrE+>%tO$sKZ~
z*S`Q);|GmD;ITgeyg47+{uOv%#2zWRxWF@BM{lItov3jo%SiIb*ldA_i}c(FIQVbI
z-|$!8+V{nAli&*tAHo)8ivwu`>a#957@Be-;B@`S1D?ITC}dUTy0@rH6&0n==@q;_
zG}{Tqz2aNM(s_vXsBJbN8QCW3RY>FIa&eA1JlFEE{{RJ>{il2%<FDESLDD=6<7hlZ
zqG-Axw3^RK)D6|OjrZClHw$vM?$H~G6vlGp*dpWP1cvzE;=k<=`#}72X?!K|GvXGj
zuTOckTSSvkD-??%DzUbkXasU@IaNa&4CD-&=sY9)6@Jk_616=e!$;w!y$avPWQOx!
zu+%hL6^wn%++4*7LAYaMl1~^@n)K-9k;1-ulhi$=>L#hhpP%w;UIU)ZVG&ydhvZ27
zqYyxIfB@Tp?ZEotz1Q}9@qg^+@b|~7;_r*z1G4yoVG@yTrO&C|SlYDgK=W=qoyOr&
zMivwMvdl|{+PM9J_$mJY1OoWW<85R|@w)EILa;}Sd43$8Eq+PPLm%EX#hJI*zuvZ$
zj&cCUKW+Fs{s>R|6!?F`cY246Zne#3cpb{z&#mgd6>eoK3@Z)fNn^i|gqLmq0C-@U
z%MqT^SBux=MI4rC^GTz^{uY11Z+r*fX{~$>;E#k_2ZoK%5ui<7?c-QgfF!Sx=Q0k2
zD=P91dspf|!r$8)$3L`Hifa0;v>pr7;*`Z<8k>y}tMKzkuc&<YB18ZzlOTpgAji8k
z>3;}+V*dcy)8Gfg>rV~*9q=`_od&ObE<DfdqpukzwitP(ztT)@E*l^Tq?<TWIqmcw
zo2O~^-aCuKJ{#5@{?D{tta|%9i8h9rPMN7C%#f8`xC=6F=ub-doK8EPIMaex@;%x(
z6&p8p*PAHoT6VSK=`_Ti&TUQ@<9Wcn(xTO35;+RKUCp$XzFTY=I9;SS8LofBJ}cDq
zi%n2?OH!E<BPWw-qw2`pv-`9sN!1}$h4>kTrT~%0UMJRP(=>QIL-7*k%F@?fSfu+L
znzorXj19!6$+j07m87>ypm03Ih%o?Q1JU|#{4L)Ud>^pUwaW(9?(bDvYpu|DhfZd<
zO{94j^G7N~(ww8@x!dz#*PY32&h-Je7C-Qg*jZXfr`hQ;-b%7aMxAq@Oj;khe$$~n
z-|qvQgmxRgaopppA-qfDMbNcdyNmlfRgNibrM=R1i*3jY%kp0b)kK&$F_p;xV{bLW
z>Hh%moZ5U(vhZ%Lr`ze)I$fegEP5^Wp{BHwV9!2mm8`8ckZ`9mZNUZFx(^P>vs?Iw
z;s&>-YFcYf9u$vJv#{1;R=GQ4=Shk0q=Rd2%S^-!<nTz^N$ygLwTvwvSkZKE2<o0K
zF+-y@!HxvE5Nf^^WjAtRwl=OOwTbWm!o(D}835Loi1eH97kFDi8kLgj@y9*I$e&Ts
zVDV%EKm<s_<4f`dyM-(V$Q6M(ZVr1}9Rf`!!<ITngbG?ub2ptTX%`D(>jXfeE82L3
zzUa#m0;;Y!#s^((Yr=LKkHi}tKVGx9GikQ)rOnQvrRoqk+I;DAsMxexc~Cu6g>jRd
z;1IhLO6M(Yt$)I6;t%*i?5`r7G=+*eBGEO2V>-Mrsd(kme8W6UxyO{Hff&ib0C_dn
zgDpHU;TxS^-thQx@@Zg+3MJ=(t{!=0&gQwgd0=-%4e|)Qw>bo0@$?$Ws%!cWiTps<
zH+qe%vC4}IKA!;nKmxzwOJ(~}5vT4nsM7tR+IL{e91Qc^VBA4v;V%#A8gGa73w<Vg
zyNPCapwv!@G?BuBG7YDR7VON5%rX!mUI=c-NUcRD)gE<y;g1%wcxo%w)Aid3p_W+V
zy72e*`#h4$Ge7p_vA9^D3U_abV<QK)DsKt=ckwmPi@ad^#)YXHdj-2&SUf$eH;Eyc
zVo?|)OLYluM<Bx@#({yy-pTf{;n|bpHMP#Qr$sZzYibtq^TXH9$g!!B!Pcx@EFBez
zBQU8($-&PYt)`?rb>S}(>ROH5TEE+^UIY`~T6o6MR^n}-3kwyuyOum3^=$jL<$D@E
zMR?ru?H9&g4)C|bjXp~g7lmfIy;hDFwY%_rz(}JfCOZ_pT=Fv%s;K<n0fAoedEoW&
zcf_p{e-UXzQx=wX!Ef)h>pfdxnT(CH`EIRmBj7H4%W@A4ppZb}^;xXE58you!*;Tb
zC2!`sxKpRK--DKO8mwD>$$FP5AUnS7jJ*Q@a4WZ);byNd#w#BYXnGa5`aD*M`m1PG
znvKvg$Cufw+h1GH{9Ar|UFvrfBrw9!vDA{bx)5mkr~D??9x&6s(z?VD!*;*fw)%<H
zclojy)f&TAw6j1PIP#k7U_UCh-<r9dOZ#8p*MKy6Z6%Atgz7S@M6%rYXlz(;a+Zm#
zK`G8Sl%U2+kU$59(R?rCzaRKJ#CCd@#5>Ozvqn)g@pWyeA~Cu718J95T2e8MaK2s4
z^W-nh<~PiG4-!Y>4~G5(@b-&+rD@hh?`D=)y1c#cqx`Y$CJ6LJ@>re2_ftuR><I#<
z7i-={PD(FLPKET{FH!j6rfRnuN!DbZ%TIUIg`Jhvz!G_YDqqEUYkRRt`C3aOk-}u|
ztcyY8e-QW=#Qq!Cgp<Q-46Pg*)#SQ}f3r?@sfS&$(;!{JMjA_&T=a6GUc2_yZuLKl
zdSr9xTC}jiX<(6GHlL&Fb_I_1e=hdsL8^vD0KV~z6*2tV@s;4e7igX@vhjVUfvY9R
zSZ`u@ZM7{%cNmbU{{TVp3}a7-?#K$xVQw%?XNpls$+y_dxY7Jqqxb_yxYnjR6E*zt
zh^=9~w1BLU<x33)<5jjy9GuUTC#KVk*3v!#_zz3?*QfZ)!QLE1)E>s&E;S7*4HhM3
zoDndUoZ4!`%mep_Y2W-LFg4KJ>FeQthq`UVwymNt)WP}Un?dEFV8QM@DsG|o{qmUD
z@xj__uDsK&^?!*v75utrzYy436}&duMy(o+><CNC>20-TKBUCMkXPo-ZmKk|6P9sr
zbH=<o@XJb`4-?s4`I@)blJCp0)b20ufs!dnL-v0YM6mgI7y#ZF3Bw}=!&X`NeRJ^d
z;l0hw*5g52?M4$6I$KSl6CjHX=1HQ<t6L(nf;bSyPv7bZ_njk9n)k(CEbz{qdvXg4
z^hg&|)hBZNk+Q>Ffa%CHz)>lKvf(q1Rx2p{De&<%A*YQRXm8?XFB52u``FkL()dxX
zzZQ`UN2&f2IwOs!ovw4w2?<@eo-;qgn7mQpD;cjeyA5wtwY-{N_?T(7n)UCMb;u*^
z)7msB2g)Y$gv>`FkIZsBLw~91z8%o?i*(eq<+-$LNs+b4^z;(Oa1t#$R!93;CjoxY
z>cnyHUrp-J4S&Si4!fpVro7SFL?n3a^u1rmbdkExt4V39DPVKEV=e|p8?2fY<>kl3
zEpx*2%7x^Xd|6!I>T5RXW8JkZwJ0UiPCFRoXfwdT$gZF59d<b-mBs3r^3RR@HK%F5
zEVuD9=^9?0cRiJ@)Rz-!TBVKOnHJaEcdl8@EwcU7m>F6z_fAmPZ4KXwuD&UYvbv_Z
zrp0j!c^8stI@D_n;PPMwJwnnwt-Ewgc;{;=#ddbS2-jfvY})LJsrX^Eq=drv9#)*G
z9Flzb{{Vz;YrA$IHzeAa$0q?t7~VMeS#|MN(@56zol1R9;%MZD%+u{Oonp*S2?b=E
z?TMvoOmY7JKJtNp+%83L9KxG9XO~TEbDjycZx49M{5_%1YokXr*A`JnqsM>Y<nts9
z@vIQ)23tF+$xt^%uz*XhMpWy=VdI|>L8;qKr`+8_*2T@vq-^yl_rObHTb&f7@(>Gc
zM^$jd?O=N8c)!9r--o^@*`z9DxVRR#5-aQag^kt26O$0rZ=kr+q>b51u#Vz66;3xR
zVT~<&NtfYo#XD~i!J}V8YiTygX0`Cqvq%zrtcwnzqRA%WppaVb79H8t;MYtm!R*dS
z(4SO!?}9a77WlhMzVQD5g#190OQ*>d*thWWrOoI<%#9D(d_YTDM0SD+W9BwM+E)j?
zxbWTnqv5#^k0!Z)?Cn5F5Y{g5yfDx#>+-BkV&d9aG6^yV@<}6bMjXc-)!oO$pZG-J
zk#(CH<(|s!%Jak;XNZNcxki;IzlPvJsl>SfQW#{JNpZah`G$YO`6Tdnjb!jV6Frs2
zw-wc-Eu-oBpN8&QYf@xYv$EBM_6#;|GF-<f+!O+gr{&%*+Zns9&3#AVk?}8sY%V-G
zef_U#8%u97)U+#46-k`#Lq4IVOt%4coGC)jv<6@sId_U~^+vhUW6|}^M(XPJ);DCb
z)?zl>?Hy8RZS<X1+BFf93b->xDubNv!&KfA(siF1>DtYYjx@`OB9b4sMJ~2%rj9F{
zcH1GE>%x}-r<ktYh|tF(h2XX@EqF@uKO6XaQt)1#JesZ5p3B>7TU3Wsypr9>Nl@GP
zk{GUFffxWptl1=llpmBDnfjR?Ch*Akaq$Av$37FV(7ZJ)*C~3U4L4TOh>iYBgL|k#
z*A_Q2Dm$`AaT!K%K6T;8p<H+~#MWOEA-~nvSn*Yj`ZNuBsQ&<DUaQ&N0@1ITrz{$s
ztO1I<1`;OG^M80jJo=Z1d=%Efq0y!A{N)L}pHT3Xw02h<szV*4-rHR=oQBw1FnTO!
z0N~!w;ZG9yQp*0uOMO=GvszqBXQ$e0mkk_wD{(#Dy!Lad6NLgDlCDN$9MHp**zmuM
z8%ps9{401bbX_G#lF4Gye$diIC>x+yblqkX4DTTuM3Fmn<Ppfr(|j>~6{e}-PZMeP
zS~J`!zqU*Gt~@j)xrYlZw|CkUvRgAcZNO0!g+cjb8QT8<8~j4PzVP;&b$vTnnLvO?
zcdf@}i!HX@rX4>}xAOOAmEAJSj1eItB6QQVjT^*~_`gE%WVY!$!F1O)uxe4DosZ17
zcXqPf+RB;bl)}hI@nhx%x(-Um;b;68ANKq3AHl!a!e7~c!l|ctkHnuA;=hJ_*1WXw
z6n0t?pn~#9FC>QE@;i??(ko#)85P;(CDt+r`T5`6%(wRt>Ocb0Il=&=c5{^+-~-d!
z*1u$b;I#h$wbj4vf%|)WLHLoRUOu6q>C=x4=#nst=F{|6k{#^OBx?R;)R$7DU}h$d
zIU^_Wn^L-H{PdeA%sAcGzCr4JtM)z)%T*jdJeIOPJ2$V-Q<Jfaa>stfZOA$tWAVo|
zNU;7O032j@qC($w&*CXUlEAh=J#p#Zt$k$XmWQ5^YA6|>843vtxbOye<nz+MvXA&R
zkM>^pNvZg&#=o^!jx?=b#2U|omJKULp3)O7jf|SK4kerSdv77SSb~V>jD$;hoE^Sl
zbNqSeF7RrRO}s2oA2v<hHb?U@!28DoAa^_r=N0~;fACI^g42G?fACKahJOY8d!^_a
zFN?GtEMDqNG}txEnXfe|n&x|D{?56M=j~Se!phEfZpPPrq>qu~9BQS8<i4!-vMMff
za<%Mz>8^Oc;q~sVapA8K_@hkBvZO4!g3ov4$+Yb96IoV>w5~*WNsjI?Nfq1az8mpv
zrK|XU&fiqiEm59Jc%qgaCLcM0G8x+0uaF^8@~MpmayIfSnm#$XzVPVOb>n{<>Fkk1
z6tWvjDIpvro<^$_@tFdQusOlw%wx@X{<o-nJGs>Dbtts0HVs^bTZ`LBjCa%ArpY5M
zb!0*l!FPyAI3olOzmj`beG&EikFo6<b;gUY$vI1{D(6>#1rtFmnx*8iF*&x6>{4m-
zt3(FiS{&eml0|wfJ~Q#nq)TgUpggg}0wd3+YMyH<@C=)*-0vfn%dyW^J!|LfQ^vk0
z@qM!Ex>mWa$#)L<?X4~*fnmCy1a0YT*9G1e125#XiMez0Y&btHOYmmXP?fL$0O2ll
z^U0HJw|gWTxx=KB2UZ#6Fbod|n!=@7-$;%$d$a%7{#^8b+14L|{sdncd_A{c5crZw
zHbHTE(8UZOk^{#c?a8;R43gZ8fOz;@Lhu&5<FAOit^WYTi@ny?7ltiP>_`Ur-O32z
zByz?6>V?1q7#sup3k9?Ih+F7-Y)^4>b2N7Lr2-E*ow*I1VB?Hurz}7f@Q=p*6HK%C
z)8Ws7z7S+)U03aTuahD=OK|gVEM!7*V?}Y-fsB*Eub#^B^Pe^K^FGfr%jv_F^j$lg
zhwUHm(@W6231NBR>z}dM>8`fpPcgP$S7NOz$VkZw0Q<hU#eKu@)8O{C<Ijd36!A>g
zdVPvbqSzp4p>H*WQSA>PQa^g%#U^sy>*vqf-VHlN_-S(-Wdq#Z!mG~X^1keD>c;?+
z&3=@83%b$t&wySChf#{=1YHWi1LesiL7p*|GNSCk?~*q3HSgrrx#7&uD>kH~h_n|&
z%<aEs9SOv8-)h&4;XpW8ku&^7GOWNJ`OSI<hCUB?FTi)>U((F-Uq-GLS*~Prh8QEu
z7>}R#eweSKVzkmO8B!<Rz{b(kA4+zor|584JUXQ7Zxo7Eo@vBkL0%8cK<nDOarkd*
zMsR&o9#vXYu@I{IG<*y3%T!T3o5@w#fKEp}fFtqzYo`65emzO5s(d-|+=K0Q!Bz`~
zAO{R~rt(g5M;YvK>s}r4Z^a%o(_wpCi#uIf4WkSg?{S<4$l&Lw`@{Lyws^Dt3ETTe
z_$T&S@b~T4sCaW%xA3Ql6HJcY=4kDqvWYcjRYnqd&pg58D6u+1tCktSB#*)A<r1w4
zHEj>+O8KlP&Jlab*?RUq(fyZvaj$$L{iw7noiRN4wHt-AmL?@ZE^>}oa0ouc`g32R
z{{ZlCzrk%2<NpBc3E|(`PfC&{@fX7T^tIG+5iZ(Zts>jWk-eEChJPkvTRGXtT=Dpq
z@c#f?@!q$gABY;1<|~~#c8=aFR6#K?;4F_cgazjqWdP&ezes;<zlh%uJWu}s1XuAF
z#2*w+w^u$PZ92l{NDC}u?HAC(#gvk+BOUse=jG@<o(IL%rH`i=_da)zu&}9sl;^dd
z`JcwrnsuVc>34MkG8_=6q4fk~@}dda&O#xc8-PyTkAhBk;Pw1!Nq)?iK0$~b?hBj@
zo_Y~omW^R=KCr*J32z_F<|P4{7nTI|=ng%2?O)jwb4u*~KC4+@k?Vg$>p$6t_E5C=
z)vwEU<9X!K^m{l(%+tiN?l~b=HIh;h8S+Ra8-Q>D=D&YF5_|)>T{6SL{{RVm8K~;o
zU8e~Sm1lQyUvcEM#4$=sx%rwx#FLV1`aJ&tf=m1h_!;{v{=}aSt+daFx^B7SJ%3Aw
zT-SBk;D&kRy}yW0g_c;0i+gm$Q7LW99AIF#U($d0Xm5(T+?O67&|c3*QqcXHYj_w(
zv4AW**;V36Hjq{~izH)_o<9}OxZ-uHx^Y@3r}>|v<=i<6P_y5?&*rn?zx)#e_N@4u
zV%GXk!i(J!X3pFFe^ZN2w*;Os6Gro~AN9+hP;2rp{t8L^JrCJ0_JqCo8S#qLU-**O
zLeceUX3{UnwTj;O+{Tu}&9zpNP}c0s{{SlOU;xfde|LIcjeaTJ$Sk}=;w?h)ls}kZ
z@}u5Vk+?OKF@yn>sq+cWa0##C6aEW#7Kv&900ju~g}hC2k;S2C7GQ1??L>xI7c9&f
zoEcv|j#r+w;Ze@&*Qv`SzT|bwCWIjEC-=(#0Db=eBl8Fk*|S-9T|(316}<Qxf3v0V
z?9d(uL3EMKS2^p*01mk|;yyU=r@&Y=okvmd-mBtenGnfmZ>w0?mzv?2he@Tdouh^z
zzc78QN%?W<)lChZv>$4Q<(zLLX+n$v9q>rcs1@d(E&*(@XE8D7nEL?zPuHj6#d>hY
zTixYH2h@^x_LBSm0M6!*!S5Yw9}V?;rSM&@k1YD!f7w#csp(K&+(8ZAVvt$MK7Pw2
zh~-{XLga118+rL#;%|kIf=g-Fc|R|gZoC#MoChRz7{?>;XEp7*09kxRrGd+>)GP=m
zc2(7fuckQYYp(sZd=GJ^d`h#|H3AKd&W&L_Oa{{JnG!+l!GO=y3j59n#$L0d-(R@-
z&M2WDcDH7Je5JS8;almBWX9wkgdB|5XRYa)W|^zoYJNeU846Ex0F;n&+sf}$O@Y&Z
zIV;a6w?A+^$qdti6;48fz#YAR8rs!$tF2GNmNrJ+*<b}c&G}uio&ZgwX&D^uIrOj7
zYtyu&B##a?Wi3zDkAYvdQfXc$(tIoMH^OmfNVZcMEUkhlo>eO&071-~lw=nHfz5ww
zKd~>0bT1J66}g*0m7aT>*r#=7Q!rPFGN~J6uo%e!81O*JIIr`~{g<cl7LDUAKUYWt
z*e;`PE)F=8enO#>s*G|wXBGYD{{X=(JV|NeEgw<vy}Cty*EUf~7Gzc%pm2BNE6U^(
zw1eqc@x2*h_-hdb_AMpyYxF#9f>6Tew4}P-Uj5PfRitZrq#Dh{+C|OE$$k}Nb#Ru^
zr$e@7RWOw!Ax`3R%78Iimil(9;yqpMZDTsT;lre%<pe_@WNpq;H5fQ%$6uFkx2{?E
zE5&+zaW0>CXQugs63GRo_mK2PLU$A@xC_H^oRh{q8%6j<;@xnYo83cHzD6oX42XCN
zLk+<QJ$M5duj7c&ljwg$%A^+T`ESG?5Y=yNCed|U6trh47@G1$jUfR^kgu2uF=iYM
z_&<BDLD15^A4#WAB>KJWlMq{(8RSWsdCbcYQOJGx1Z-toWN}|wN$@+u7OH>YDZ8~m
zbCsUyov;A}m5U^t9_QM+T|Y?pHQ~5pg2e^kRmYcWZLu&qb0Mvk3R{^xOf8}DoZk#I
zTP+mZ#dJQ?Df11@t-D-pm;z46k&xhl^9Fpk9G2wo-}q0!wwfT+JY8dS@gf;b&)K82
zQJfYfVnR8<EX0=MB=@he6ULeyj~XV5uz|>F<j5!e)y7R@+<Z{+J;-?U*_H)wlr6Fj
z+??*u=xMAI?q;!GN6X(4J^@~QNBBFhLEs$%(^7+3(X|wk?XK2eEA1ApxklfB#4-6m
z!1S;4GuBcl^lcL7<PR>F2KEyY#nnMRWMq7UB!wfW$Ri@Z)iz%XSoqD_?^m^wJBgxr
z&BdIu+T0N8bD1sK9lbtoJ+WWq)A46dxPtogMVv6VveflEILHb@HMQHu0d5#&Q||IO
z<Dt*&eiXM(RiWtr05kL6J!*8I<-Ona`5z?skuKx9GZiA;$vkkNmgs#+?T(etGcftE
zPS4@TUiIJH2Qj=?5(np}T;z_PoqzpxPAe;Q%MeKlGw6BEe(4$LelK2|x!-&jMU%z0
zx0fet1u>PuJjwE}^{x9a3dUvr$FPTBgb2cn@H%94&$%7_4;3%M+i1^<EM!nHCx~tB
zjE`>In*OmrVt@E0uk1nbtHQcRjP*OO5otavf>t_~lO@Hh@oK7&i;1s_{gfu2%ue4f
z(oLmEbNkjieshR8h8P(0%{F~M4dhbBH?6FElm7q&l>Y#NQ~v<NMfie0ia!?`O)uf@
zmieA#Qj=<OC*HKQ$p>#3mTcii%D*}Jf46NrUGU$AG)pfGcv{u$bgeQ3wY9UiK^zc6
z5`{?PSjGaXkLzDI=^9>>;Li?Nct65AaMSe7F5PWyV6;0{C}RKw2cYAV-11MYZd+=1
zR*|zu1fhH2Z^-O&Jx91T{N=<M<xIl6t5a@^vHN~mm(#;iRN%khp2shaY%ZTMiQ^k^
zRdJquc?a8$D!TZZ!2`mgOyGX<UX7kO$v@*>LVRK2yLnY^uI=sQW?+I@V^;aORoYu|
zC+VL`i&*%P;9UmR4O3dW@~y5Nqe(o8o(UaSC00U#GC$wz$0ojdX(QM6cV6l}LgQ1n
zlNRd$je_vO4<|g0+i-odYGu?lRfx%NE)Fm=jsf)R*Xj6In18~_yi1EaT`NG;ZxZr7
z(A-<360S}*hY`xs##nsAbYtb`0=y&RXUAWTdN+sl8UFxhUkK=*5Os|-4>G`N?`<-a
zVkX@TutHp?8$!NZ<NyaIp(N~^En%m9kF2h5bySdfvML1S-ZF%Mag3?$pVzfOE;ZYs
zi%CoO1=q|YJxSO>$G5oW0|)u9_=o#&{{X>WuKZHg5O^j}2;0h-iWKmb)&nTXAKEwb
z%L6y31E)j9e23%DiJ$OQUm9KB*?6w+;)T<)qe%^n7s3<|hD8abL2j5~(GkhVP;1wQ
zP^GJ>AH3$N&Y!~m<NE&AHT^%rP`<0;eMZAef)d2N{lr$gK^e|wb;oS*E8!1_fACZf
z_$PIYcb2-JkMw^S-D%9xwT6WQYj<8^ovj#Xk&zBT8;ppc_pj!MLjM4Qb$-}i7<|tf
z>7EOU^IL7~&8^;B*y~%6?QPNOZqtUxd6`(ROpI61DgOWjZT+cc@LXOi@t2A;Uk{>~
zl3h1gw7j`ta{PHoePq(bxkq({kmK))>4pmdO<uKI`hUQ=P^Dg93~YUK@#p>u&HFJy
zq$J+~JOQmmtuT!ums-5H(k$bRU*<biH5u8!IZzTcCynC1M)80A7033-)^v+#d@-n4
z_;1TX(_QKIg7KydFiDpE+(r%#RZwHGz{Pz%;Xn8ySB34oDP!WF9sEJ@MXkiXNc$g$
zA=58lc49+3cCtd3ixD7zUCW-y&PUps2mBLf_Al@rtD@;qcxO%3JY*z}=j^(+t*Gf&
z(5q+4c`co_2(B63N%G_YRB?`RP_rz)ieAn<-`AO<%d1P`c0ZhLd-j?Aq(5p85XYx#
zK0nv|dwkhXv1#}7ypAK_h12x7;((OS)BC;$-X^;bhrh88?Je;GRk_jhF9J=W+!73u
z>-KM<K_QU#xRw&qNIIQ?k0UtEe_%u5j)|i9rEOEgv1!_7hijXg%Z(dOyo@3bGDnK;
z84~2jld(sT2*yH;)}Ddm7_P0gKOO0;^B9PV*2_cIZXPh?2-V}$^&x9+p%dn00Iu&+
zdBUd@N$E-nFYD0gj#C}v?teEQ41eH=za4yOb9pbs-A7OGxwc1imrgPGg@T~TXYy|$
zl|qn5mmF^Gk&GOH^;dxZ0N{~dvxkN}2mPn<PhZqLN2|_O8)uqnyf)IvNOF<dYVm|^
zk%PHfLg0PYLxMkEJWb;d4CuOjuZC|VuwM~s#blN%#9bcw;zGN8yPYmX4t(BSeAWjT
z=xepSZyd*}#h|^OsijzHQF*Q>hCO1&Qa^bt%R7lC;ALES;kd%DLVS9ewj!pke|CqV
zM+Zs@>L<(EPr&^v;pc}uIpE(3_%};`APa^|zYhNZXhgAK#R-o3-Z|~n*bT&qH)9)#
z>OEgU@s^Eq;~U5z@^tMpMv0ZqkKzea&+-8?Zm@v)D=(S~jrcgnp%v6=dSiH!`&IGw
zm30r=es8i(;cMTr-A^NYu!M(GiU?LkLAb`!oB&rWI?dv530%L0EbRPgWcsb%sOs3)
zH2b!ZV}OQMTa6R#5yK-$K^bw7rvM7zoSS!<v}}27e;K|RL8)C___F%e&tBH&TPtX_
z>q{$phLYqn6gN6KYsF=V6-VlF4o_P3Tbmye+v!?YgmgJt!ET%FZX?wpzh_*S;Eqd8
zeEI66oPwQ5?Z#nG4qJG~UbOgiV<wrZSl9<QR?*$s>Qb%1VDh+z_1g6wAU2eIf<VU8
zn#GI2UKsF%`k%x}Eg|r|y`*UchxV46b)mPI*;o<hS#IMD8zj0~0CUjuQ7A`rS2Dek
z*h%1BFH!NoljEzn88j<#9M_Fusc3A8ZampZx{ZaCF5*f^4$;ncc8f{y%sT%7g|*KV
zqg?Azvc0TcX|(ZVQN7Cyua#u6PU?tw-!|Z<HH&8_jr={}nC^Ttsb5}AtIF(J%Tcwz
zSZ&q!lEYVPMcE{qm*lp5frZCW)9aRADAYAAKfwBo7PB^<t331SI%c5`CAdK&5p!uB
zt(a6_k&gFJM<+Ecb~Wa=Qzz_NPlB|~E5V)}xwFx)@1zsGowdyV7q}>-#R&T}>3U^D
z^I=I}@bnE^!L6(K)(g)PX+`Zc2mo8nUqrXP+OUHxj~=9xtf3jW{{U0C5uPfqguHpF
z_@Bm8YW^71r@hg1=$2H2O4Y2j7+NUMtYvKCiKjct@}}U7_w8IBgW^95_)Ek3hPA8>
zJ5AL!=Qi<4HI3hd?q`wP%$<e6Yo`(qy^x_<yYrD3LX@<+I<F1uI<@zNwViWIyPEdm
z<cN_pjb-&ELv;CL9j>^x_Nt+BOj$S?RUHALtLfTCgW;VQ!}7%igt~;2UFJ($oibmP
zh?Fe;90nYWwo#wv9RC0b#^$%Ac%#Ig6w>@E+8xHJ1>B<YNv?&DiEVc{*owybYgyxU
zA2=x)80pEyCXr{PYCb$35x3SXRWxL4cDK`R^-UUZuma8=$q2ICWG4^1Zqf!wt5&w8
zIoncq@U6d!{w8VKBTFsimXKnCNLGCtQGxupi!cK4NvcHqo96|IU<NUg)#v&({+;1V
z&k%UJ_fa}!)!&;HoOkhS9v`+_i<c`Ji8WbnY=ec!8({L}VUVDFwb8zm_C65Td}r|@
z#_etzHHgdNI}JYL24=zEaiDpZTR=E6?%)8#fC;ULVYyEM>DqUKf3!+!H%%<kXm_yP
zFp4zVJlOn9OFV2(1|-}t2sk-1&?#R-oR>@2FT50%+O3W5vmO1?&lSa;r`ltUpcn(~
zo*nxnv2JXg%@ZN#lh9R~`&(~`8gIj`KUuW4v(e$Vj^j;-QM0?cNhSUBv)SqvS6AxW
zS$6*X76g(92D={->DndFkF?DXTzhG*^!r$2W2xBcHrF7`#oHG;Zp}VGc*p|?e(}Kq
zw{(9HT-<BA--{r-*Cx~LR^nv0iS&(H(5elApoYn0)ZJK&`A09DuLl4dA^TT$c?FK4
zpm=v%@khje5L{kps3W_Q+x`*@JIxXx<atWM;V&hC0HhHzS%MelE4X0n>DE!}-w6^O
z3_;?1Tg%vEk!{Q#HMKraELud7Y-Ye<F(549;fOu3tn6*P9q{DK44PJ*HlcF_2_=hN
zcur?zCRg%?w9_GBw?0Tx2;4K)v^;U(sC;Rq_)^2fG0Uq!q3@OM^jUmI5;1L&w0ee_
zEu>Jk!o%i9Ql$1Ai+hSr`pBPByYTOTyltatb{F=(9>3Hy_{GJndez^Bi>I1Ido+2L
z^3n2lgCaUe4+n5L9eD8GoZlBUj~2g&*3CX<lT(|+(U~L=!L-f&vuAa_RUvqGgL>m`
zFa>j3Zoe$Q8(+g79`Q}JuAQYAtUs}AJVk90K1v2)`aR8zl0z<7sZn*cmjsY_9JQ{o
zVesbrR`{FaT_Z>E<XXhC#cW?oO&a~Dy2y=Z)UEY9m=W0EdFCa_!)+&ueBH_9>WjV{
z*I(iv!kte@)2|}&Y%&W~OI6fi@q#`i1P`)mao88Y1-@xK%nYe425$JK={_I$N5Z;(
zpw`|M6Hjug4x@YEwrM_5wJmK{_TGKK<Rr2N7zJ{~<CWJucYUvXD_aj0=^CD^X?b}B
zsWzi;AC2_$_GaEe8gJR;A29hO+!#0wjtH)r;Ay(9siJ%}({-I2Nw>F1E}Gjz)uYjF
z9!rPb1ll&C1>QpJ1}Ox-X6@M8Mol>;#{2X;k>JI=_}ORTdrbmsm6jVL{ibwXHvBdt
z10z*ih_6q%k{smxnHjG%)1>fkiFB_S_$vPZRkQIm#-NwbzK(V2b^C&><O_K8y>b{}
z+*vRonT&l<IYkw+J{@VAm&9#r#Xk`(jphBVyz#-Q>Ussvmv)x$qxo6apqRwr0nBp<
z^10jqH719z*!b(<&HQa7J}eLRDHn9``1u|<<QqtW)h#Y0RX8F{ms9iOAcHo(f^)X3
zV}hSe@TY^m9$0u^Pm1%xcZsR}qSiZvpTP0RAdIZhiS&^q5|5l8E>Km6E1iIkSl9dw
z@jt}=A@JSp_K5*)KGG<@-*=^3c#<hq$#s$)Rpg5DHXLvBBOv|dB$HHi&lcWzFT#Eq
zwb4z^iq|q+sJGLuqwu51R0awxb&)691~b5r6&&~DUs0CJSNOwY;v4NMGj}DujxH{|
zGpbK?<P0k|vtcQ+aD?<|!HbqTRuyn$bIr4q@F$2S*F1UReFjUYZfDK=%WdKB5l^Z~
zl?E^$M81ey!rcQxa}MwJNzXrfaq!c@KMF2yd{=E3gRU(uZ6%F$bRG<3Ea5QM8U&KI
z=Ezn7OitVt*<P#R&1YHEHQy0wdc61Ay_8F+E5bD`H(s{jK2a>~<BwBdI(ZIvuiP2n
z*C*jCT|&d))!6Wa3#UjXwTVWP4cCRH``Fr+{v%o7{{UynVUOU>aB38K6De!Vba&c3
z9zD~%GvbXOO}Fs?fi5E#R<PK3ltu$9E-tlCvtABK<}z0!<{c}&z15}g&&BvO{a0Cn
z$lu3pD6+ZNH49d4>9DG4j|A2~!_p~$&nyAt{MGSe;ZBFDXx<gnek5r2nuWwO-boC)
z_LDxVa}2MvZjSpxBHq^vl_BET;|rXQeInmZ@y?s^3f@l-YMR^Hn@d71ZFO5D(~>c}
zYaKdwg7F)(k(H2O72F67H?th+E8QBNAMiz|gS6ijCAN-qh}z!g%ejk8i$hoPShBg)
zv^nOPLl3&?3djaaChV!pdzro_{4$2-(i=Y%eUknLE4~jI1Xf1fh16G0nGOi$4)8k?
zNUV<yYBxR=_@m+ry;|GD%Xux$$Y-$8uQUty^9M%1xOBIjx#o124#U)7d1s1#H0jzm
z!MmG3+AqT1DAOaAtz%E^izz&JZ4|z65zpmWBRsLG!!(O2D7bbi21byK+p<SIxl>ov
z`WwdHEWPk;&xM~{)gbWooR*CMhJ9}L!z6i5302b)JG&`<QaZ}62g))!U(tLcZ3o4z
zQ(n^ak1{=2xm`-nK(~rlTZo2V`(sbJS<VUn09zz0E^>L`*NXTv;$7dwzl9cFEB%)>
z9T&t}7M*!LoY%e^)<5AMjyssf*`Sir<LyxyVtyosSrSOt@&T-06x!>hw10~pBZe;z
zYtky)OZLADNvqxlft*Jz)$W$*<tB2=D$3EE<Y9?g>y8#}>T}N*PiUQIhOab#82E1g
z07e5&@dm4-kisO?<MCDG65BaaBZpIl&QU1}Ll==>zT$9c-(b_N?w7=V6^38<No2ZN
zFDz~^?=)#HR1BQh%5@keIZy%+i-JgC1#^1s--|qVq-nl4x3|^&Q8nGXkv6O0&lAUG
zZ|B6tSld|K&algd3^vHpI-ixsdU0P7yh-r;!rB#%q2gxH^ya&XWVzGz-ww3be`tvp
zYu@TM&OXgH;g)PVgUaM!j;c6!9oflS7@o-MG~1c&{vzpG?vta*;k{|*XkIJN4lSPV
zH0))!*DP8aX}A9X0hu2y)B|1Bjg8NZroGerTdeELYT`?Ir2f*=HTbR6leuJl;_@7@
z+Q_@t1ginV4r^3j68Nz!ek6D+Me!`w+J%f)ORDJ_)wRuyz+?_q*24N^j(DGL14OxH
zIRrIlc<#=_NYtb8-m7WhJ6F4w(rZg=?K1xWPt;?$KRAuAAPp|@oc{3~4nvG{UCK%^
z_m4Tpnnss}JQd*|4r_-=u+&pUx4Dhrx06Y<xzVSVbZ{5Sw7D|c86+T+EM&h<2yQMX
zfbHd)>f6SrP?jsSS)e{8hTKAu+XBVsz0t~+QaD)UDBFQ5PH;JY5PU@N-H(l?)BH0o
zyQyuyh|V5my|)SxTm?zD1OSk(3#^eA4gnoG__cP^ykjidqIg%scfV^FcFAiU&8DF=
za^R{@XJv94;f{V|G*YV{n{9LbYAN?EVWjua^?!%D>fY#g+AoH+czm+Wc@*9pyN_9E
zS}X>)iXCB6XrlmUX)Kv147Krp{1hwW^k1?U>;>^B;^Z>PZQ@-T&{=q93(HI03TQP=
zb<L!08Mbw`xpld7G=dgY2pG6g^B;Mi$6Efeb8(~3;+NF!q-kEm$hCydW6mW=#HjOZ
zUAsb<Rf!Ff-^2W){{X?qAGD+2>t7E40A)P{$ZRw%IQXYhSpy`Eae5@R)8mkAjxZ7x
zyO4xKhh-&!9Qt`hDPl1Zr)}AWF4Ump+5EI?Fse?L2_s0M79GTb#dsT=rdgD7PjYy#
zD%S3!p88dfgjP7n!Q+qVU0$Q9N#z+-{O2SeUrhcSir{C)O8`JQ_OIWlr3GX2h}Cr@
z=E|oz_U<ZpOo6tkJn@Wwp7j}4Q}c`w{uQsKS~cC$`5@$W034I|Kp7mK-t^@9vuV2{
z^yB^sPx~P2AGR;;k>LLTgt0o>>2XZj&a-xr2Wwp~N-J?Zq-A+`F<Zy!B<T2MMhE>E
zSK=IgC)O_fJ*3~=OMhg_WU$eofZjARk>s`0TTG=GuMs<-+!VV8#@hTG{{Vw?{{UjI
z4E!ejov*)bFNqqQHn*NKl~x6uOK!Hh2AOd2rNch|04iVY3(+Ga5<@te7~*yE`Fj1i
z@dwABgF5b!sA;#0Cy4y@k|-tCQp;Grj7Z9%BDIxOrL$lI?DJXw0EGZ-0r>v_73U8T
zicn7RkLLG2_awl&G*f%Cg7Iv+Z-Vvq@YU{@s%Y2iW#`HN00{)qSlirN$mL^ka`Gj-
z?2pL-+0}??)D}@%ULrpfyd$LP+Qz%#8(D2Nw0K`vi&u&5R!db9q?aR4iKU8H<&n0!
zNck+=iVCr<{B6;u_-8+Yyb0o~eI{rmw9`T@y~Wm#1f=a-HMg@mebuD%^#I8rQZbzH
zdcA5th+h(PJI{!EAB68F*R)7p*6QO;w~>viqX^zOBuOnbBnJjT=iA+?HsUh8*M})~
zXQ3%4zK5UuK=EJg0c+vg&l%hJYr}W;Fg21&_TDMIHx~wJlq~Q-G~07CCPTADDd<b7
zWl(5O@ekrgp*!E*czfaelFr6QYmG-x6Bc8VWDnuCaOC~%#I|#iO=tL~+r{1h@C*2^
z*3!>d)33r^?zMYORuE^Ae93PuZDW$zw@llFvaBv&ka7qUC&B*!6ZnA!y+4a2N4_6u
zWs37%w?Jh1h*(47B^lud3OMahqt;AnPh_rt|Iqw>{hz)*d<^&%cd2|p)^2B;##WjZ
zqZW;5ut_9F@<^NatG{eTo0Nt^aHl1X+=~24{giagOT=FiZ@h1Dd~L>=ZqrXYVcni{
zf>^QY*kaAjNj|mrCcmwGIQSFruKxhQmRh{mI=o&VmN~U6xHpj@EhIK^$hnM6S-=UF
z+NUgf1NpJ=m*JO=e0H*F7E(5yqusJK&A|+!R7`-YkG?wKACw+RuNMo1r%sIdU9Z)j
zPm9M+rD$n;bUo+e=frytj(#xGz7O~U1950I2*OWnrM&x_qObuP0h6_y0h5+vfIHXv
zFZ?P00D>ca$6gBfZ=h+Kw}`w=cV}s7Z(?HeAk)?c3K5akI9_2Qw;N0D&u>rj$^DQ1
z8+<<ajr)CkGWcKM`>Dp1d_|<%&32GWa`U_w0^(^FJ8ZkFn1W?66>}#Fq}TdlUU*AG
zz3~pAb9i7;JmAdUU)m*>L@UD?6iCgLE4Z^TBRnw8bK@}*q03H-wueO@-Zwe#f9V<;
zC;Sta{t0F9yG@P@tpeXtNXQ$tjb{5(EbquBBRc|5piB<K74F{-yfga>{4RAL3O*g^
zmh(dFtSmH0Ba?a@uoB&>@<_ltuunr?5o@5YhcA{*E?HK<E@h7LP|_eN@(8AU%NP%k
zbGUzZ6|<u1zI2PL=`9u7K5cHTT4j^TDsdqaC<ar%k{b*MBhtKi;_Av*l$p~iYT6&e
z2mBOg;ceG|e`+s?o)?D8$Y}ggeRBd#z%pCkPH$oxRO5j@+z*sv3&0inx%*7~Uh(?>
z0KvF_1av)CV=a@P4cc2;#T-bJ8!O$&B#`cNv0@}+Xf2HA1Xr8?0Kr;+W`B&o7k_TH
z_<QhI!`GVDzv6ohJiFW5+%=`W*jI_=y0|Lo3~-_&%F;=YgClbgwd<eoT3-ff{{XXR
z>>Kby_Cxr7TJGA){=`JmtV-7~X|@xeIzKNiP~89v^SGQ6cL81<2sQ0FwoRX@Vynii
zu#J38seQ{=_x`8i7wq|}_+#ToitWA~c%I%{7$9c4xU-T_W0lCp$4HOP0sa>GdLGsH
z@5lcD62FSS;D#R(Z7tjV3qtXhm2GUhHYkBLXcOe_>Ad51HsoLviuuP(y-(SX_I{hi
zch=(1#$GRpbp19jI0++;KsP&u$v`q$j(+H`&(DZowa<XOC;K1xqxMnwZKvEi_^-uQ
zdd=3Qbjt5@ZKo<S&A1ZSp5{N@A;PRfaQTgPa6VI45s!rEM`noe2Q`H(x^(J2U-kN*
znvllNg6vBZ#(R_0@!!3DOZzT-9M!*QPmI1E_&1`Wt>20@OI;p4pkxg~Re|ILpZR8t
z(tQ+;E9Gk!WOVX?RvkV1@t=DBmVe;e4}g9b_@DcDTl_`w#Az;(@cTu(*1mUj#pI!F
zEWj!A40*Q%fO1F!pf&wd#5m8ZVW(MiNAi|QgZ9|S#qGKM#p!+!@b`keB)%2XZv~#6
zq1eZ#S;+uPkPVb#HQI=vxFtYfO9KA@FBl~1=$1OYwYvWRW@*}$=AO!uOCX8XdEM7(
zzyVcu0HCfiao2%flMjoc(+82@-6kc40!A7LWDm4@Jcz*Ha5BT|S_|S273%^QF{Dbv
z<_=3p4;jb{{ut;h`J0wa-D-Zu+KSZVrO|v<a{-#(()wG4AjS5{65XMYkV6oz7!@6I
z4(_<?pW%1@3n`{aYx{nDMAGi&68`{Z9V*478yEdvp9G*Hs;ccCZZnR#$<2Ry(@W&d
z=G`ORhaiP6%Bn}pk&L!+#|QDR#~<7C{s^_<FWZ~O_rDuH82E*}4dV?;7}E8wtls|s
zOTBneV~%;FSs<P{e56>*M=4SOB?(&Z!cmkebI8rsjFXM`KZZ8bt)<h<u*f)d01?-&
z?oD~OiLIj>vRQX9<BWWxB=$Hp^+)Yx@KePfv5)N=;_um$;sw>NyQ_F2?khX1{U|(E
z)5$%hz2Io0ocVwV?hp{naKX7F1pKe5>pEV$Byq;37YsKMf>e-COylwWE8K;&JgL)H
zvod@+7uft&rB52;W!<;W#&Bg&-s6IEUugdT!9lzcae44-z<xNmA#LrXxYH$20d3Mo
zB#7{EK@l8t-?nSy-8)ay*6;0+&oqr}jXv0;-0~QKaH<IdE<j#STK=WKY>)UPrn%vN
z_$0@SzBqV;;#HT9Zu~1_YvOx2JU^yKZKtF#2-;+td2ViIk<udIlraO06~=SzWI2kV
zj;8O|^U(9NY^l}5O3%~PAH&t`F%sKwfDOe*sOU4=x~~htYpM8qP}3M(%ku|RjzE$8
z%l@)Z%mE3rBdN*YRUL0jFiz-=pDCGG`kr!g{HlKn-RV~M*A|+&hwS$dg2sO{%MTL<
zLc%|oj!#d-V!xm(wJLfanPKODbkXo9i>~yISm}U)1<S?eZs6{XgCPWspo3rB5Bw1?
z;%%mt<IMw5yn-oWxQ1I|hC&g%)Yu7S83#DdGtGYqQQcWhsz}it*_4n#+7IE{zpEek
zBbUT|PRd^kTwTZ{lS{vVm0SV0a<DAF?i?Pq?O<TB7<$-AeYmyvs~#R?y^bQ5AuBkv
z&+hg=9{7Ms_B|Tb-%gRZ+YBnwj>8Q3IjqU&@vgaWKHW9k`<Iq?AP&8b6cgKu>h63~
z1XJv@i_QZqghUkvdUCxp_53QM_{&_1KlO0M+>sbK9rDMK>0ic9pDv94g;Gsj85Z6S
z@dU_^4Wkfu5L@Q!(EdHfewBQ9BJwmRSD7tbkOtx~PjVNp=UF%YE|J+{)o;bV<{0y(
zL_$YpRw0Q4oDBXI%J`4Pz7p`swU=3#!ycd;$dWiGkVwn-u*ju;nLPH+4JNI*aE#@$
zJuK+H7P4&IU-^b3hgf4RwEqAhpT?j4qu~2ce#d7e!><6!#0+|nIThvF*N86krnI)x
z^jqysuN8=R3=ia-0tBdLS5m<7fXA-wyl0q?#G03gJV3r4@C^DsvvC-7zJOiKlUmIg
z!B&sSaCY;*ESMvW+08?!k)$xQdf55`&&CtQbsUjeBoRhK5(jMj$3FG`X}`AD!x{b(
zd~^7-@ZV68;kfYkjJ0Cm50tK<cKU=F_cqs&m0`vS9eRJE{N5nV+}9eWr*+|-KF@SF
z66;n;X%v!|2!<<(B>)CIN7TMS;PGF_&-@pE;MS|Ae${{QwPdr7(@OZ0;kYM(p}aTI
zNqeD8ZLa3~M#WO{M>VJJ`hced;=b?0+<JyJ(!P>kivIwCbLM!*E~zXNl3QwjGnY_&
zrhNR)*#Mr{;-<AloHTu0fIay&M*eH49!PEm*&{eT{p&8q^7rjNTo^1t<n|ck{uTWZ
z2<UzZCVemPPer=bd}nQAX&;#&EK)JcNhZ=2ReO?8;CZj~D*ph2Y<w#4&xU>--P>!X
z_S?mg=)w!FR?;N7)2(c+yq_`;nU&1fP8A4HONIGx184Z*{{Vt#csobX^j{qOXV;<)
zeWz)Qr|CK6;h#`pZYBe1{p)X3jNp-$z~;ZE@7Oc`3N7$wNxQlIpME|3QPuR>{41#2
zYu0)cI!w~6_UOzav|E@|yo>grvotY)&BS@wSr5ecm6tE5LaevGo|^vvk@ub+VyE?*
zlwhx>zPdj%^iI<I#t>NxO@C3e)%9znSk0xZtD)V(Uvl}aZ+RrL24)zI4m**!3{@Rl
z!gmE>@Ls)pb|-|HwJG)cE16=23TF`NR=;GnMM2E67G(#Il#YAv9(bzXMDZI-sOvg*
zwc>q3D`%SDS+{E;1ebC7vcm+nma<Fc#_ku(X5A1!HX8)N7l*IBC~f>B;j4XfN61Ii
z^(bCFTTW>9w)FEgDQ374N03~kO3Zj0x>xfY<tW}V-2Q;27`UmVaHGSP`mT?2Wu?O<
z&xUl@j$5mnb+Pe3+T{gWHxTTS=_DuaAjpk=W4jrpwDFkGZ_kKz=na%%e624^vea%g
zxvnCK{z(p#eJ!*BRJI+!K5GIw7!|&!!@f1WX>{v*Jx@c>V-AN)y1mnN3$~F4<nk0*
z+B~v4;0BbUkM8qM)I3e9+1Olo$HWrd{L^_lUZ3I(HYc`Gw|ADeI&3#HDn_bQJe^+~
ziypZ%cAd_C=U1@OucnJ#w6`8H)ryHE*0jT=U8GV5Ld$=pLjM51BlwnIk$bNd*xXvp
ztJr_Szj*KNw0mfN)u`XBmR={Zm&;wl%ZBQC@5;tT6f8TL&Okg@D{tZd01()CAvF&U
zX_qnG>vEFgN7SRacp;FNJD}FtVPutt(u)vq4+;l0gD-(RD|0Qs!+jF|&rj66;QEra
zz2=E_CMvBMOT8hj;dtXxcM-ZWPu?3ytema5`CCVErTB`<OJm|BEn%fuDT2dKw7$OZ
z{Fj7b(0zwd`z5K9A2i1p$IF~xRlD2kof^TsQR4pqGULQr<ZQO{Uumq8CAd30!Kr9a
z%(2O_w!{0tKm?3+9FD2sO+_^cZEj}OZ9FyM<eF=SxEgl51;EBc@$MJ8h<C=-Un_Rr
z2x2o<{5Rr}c{R_DwJjPKj={`!_SyyY?WC7c#`%YJrPP*iWl^_E%@|&zJb_aiviVN(
z_6fB+2!0pYU*61S@}$0VJ+{4RIdDQ-6x1GTr3f(p0P05KbCZg~(%`<i_=z8bJSH@|
zO&dio6Q-T3>KZ-UA_X!@EtGcA*}Jr(sB*hV3*1#t_)B~@rD``C?zMGmapL_%6K4jw
zrojcoaTZa%uXK1PkqAcH8DpLS_pZu)Gg-ILE&dz9ZK`S?+9?>inpcm+T6v6;4Wz58
z%#*3c8Oe*#WRP)5G=(<oXGaF0JWGG^KjKt2`dVA(ZO4c-yHM~F#b7~uXSCrD+&kES
zLpRNui^94Gk8L~&aj)53>Mk`T`!rwJH?Ob8t<LFMJMk30O11~fAY;Jwrucq+FIw>=
z9t`+xe`{-|=|TS0HjjOEqRz|?E)3dw+K3o}p<*U)m>${YEn88yxVoR>XT?o6-EFkk
z{H-l~Q>I01@wB8EZKTyL=DcmJ;4?pzdE|<>6h+QX&*ATeJOOE^_*=qr>6#yiuB49Q
zds|7<!<UN-=gLEB(cZ^!Bw%-|IPHUxitYSO@b<v?y2{_gR#vfC=x{WXYI?4VD@~RH
zOP7yUwYY{c4gg=8ATqpyF<N>zioA0Vgyiu?mo~9H+MJHIzh#v8qffWV-0aa5w3o{~
z#<*-KJRU2P)6>E}0ulHtz-PnyM~H5A&3>9i^7wZ49oUjIYbloRayM2Dv=NV}maVC2
zwsgJ`_=T$KE2wzqL620D!o(zY)_NYHZ?0OSGBAonw`ibY8mJE<nStHMB<8Ua^TYlf
zj^9bs;?ZF7H;8j3!mKx58`OjiCR#||!F2}S^79}vE;I8So_Bm}tLeJ*mik|bV!6E1
z{5s-!=hgHpok<L>fYaOF+D#B~hA5?CVg^nzoKb16wbVW@)3mu-&14qVI)0m}+D@fY
zfht3&+uJ%Q8(LIJ@=3tlK&hu9m9KNPxqlF9J|Kg^DgCK;XJWhVWRbMJcG5{#=8@3d
z$tCKvV<>SF`wa6~8dr++ShX!j;w;kHTH9bPlrlE0;rDl8veqYC_ln6R9q}2@rFkva
z!wU}x=rQ<hFB`)8*1aQ3a3Qz9wOOEdB!r&DuZ(W*jlfO`T;l-dy)x&({x>@1pMZQV
zscKQ_vABE5qmsi`wVmAx%A0TJd(>F44>1?r(CztaVjVlTV{NW{L3!YrjnucA^m^0z
zEM~T~@fEj}pEQd<_FCEyAMS=SKRs&^HCqc!V$0#Lfp2unJNO&SyRx;_u6#LovrY!Z
zYa*8hRr2sbX#vkl=PW<7wXYc+U33jL<4n=vjt{rInvR!zL~n;lE#^x*b}Z*~V{rtr
z0CCS>r+h=z^y^(~#a<}5@fExdCl-sYT3KJ|(McgHimj!m+FlsJ2boK3>T}4J(gjT0
zytI8!#CIMr@wJ`KpKYNd6uI#RiDz{jF+eet)P8B&DG2ic#_^tZo+~fIG2LqZ5x?=T
zhTuB3qdNpyd?%~Te(OB!Oq0cLs)(&XRVB6%KpX%_0<!!r-W#|0bwB(oxb3aA3;EI=
z{t~%OD&`pAJEWBpT9acY;Gm#VFx@(u>b!ez9;YXVJQ3oU&Zly*o3eaIp<Qa=Jm+L)
zEk{f8Z6lEsFk#Qi;N%az&pk;=j`3yYjGiCTd_Uu)v^QFW&vI?NNov+pkqE*VrP2|j
zR}OQvn3fsEbQhX7xpm@AH^W{Ux7BR4+c=|!N78O|sr2JJ9r9%_i{C4#I6HB;9tL@;
zS{3cp-^2-YtrGfcdkr@*EE*QQZ*y-XcA)S70Eusw^CY|Stbw!87CkGAvX8@BRj-Nu
zFZi}A2reEOBo|uNhcAUCGf#+OS#?L=>dG*lY;o=!5zYlA7WN!gw=P*HgLO|H>c0^6
zFYHvCPTpg=yVGxUyTGs#kw+!v`8L@PfR3sc2jv@itLdxww%_69+_xuMk~`L0P?tn_
zzTHH*X_i}UKX&MfWdVK$;hYW)Z9l|%l-~-Zk3o|D`|X!7LRP}~c-kQXp<-oAvmfr<
zjii8B@JY{3U&WgL0EIP3^lt&!Nuz&kSQnP!)_eQE3E!*C0>&e@)4+yRXvxaFp+^Lq
z=N98)lv~{u{72$H33v-d(L58Q&*9Gx&8V|pn`>=ePX%8Mghv)E<AzBkjOBx*g9qi{
z^d5)eJr4f>#6CQ+02x8%zVOzwr`}BtoeV-Lb)60!V%^!7%xPfNCNasAxTAuE{G$L4
zvx{#U9c{HeZVwW8OGnZzfp)xyNWZXkwhjB#m<yZJ=Hz6S&d@kkCq8-MzYZsiZFRqh
z`dy}r;y(~R)Hj|CmTf;#Y30Is>HVWW*_F~Uos3(i-gpKQW3s-6*Tb)hJ{9pVk9Aw`
z3TyUyi>u1XZ>0E^@?uF=NRf2QrCU39J2A6(j4(XsCb_+8X#5l4d*#<{e$92RvRbVA
z-Gmw%yn%zvUi-tl<w-VVhYSNS3cQ+kkNh)Zd*C}?34B_eZVs<|=DnYetRvJCMYd2z
zCei$;pp{&!A!cuwWCCzUTQ7zDOX2+s!@d&uXqugcorE56pTqj4t+liH<S&<TZ+{`V
zV5$LDVC*x&&S@rFf^R~LX<raz@RpC^?KT_hXlEw&Tg?{Y&sw#Yf9}#b{{Z144RoLZ
zygW(|Vt<6BR-PQ!{x!+r?RM`(zPr=ByHxU}ztc59u*M_`@WiWR&K-$a6okR!np>&-
zFXI0Ij%4fB8a4gKhN*0~8n1_M(@{mW`J~3HD@AK0dx>OaB|~Q$j&ZePuXxi^yYUVD
zmmVb3?1i=L*7pg0rt5Yn7&nzHHn6MQFzCq}ZpYo^^>)x)-H}EZb-(yRd_#NjDt%Qg
zQqpG6j4d?zt>Y3Mp?=e(7r1D~{ky{#3)GX7ReUX?#-9tBei;j^p!cvU{{X@(s4lPN
z`B^MPJ|j^Nlm`qGE)?QC9&4QVabe-D6XCY4ci=cQ*e=<vtrlMmT0eyES&M@qL#m%A
zd0<$^KwRZVCymdEejT^*Cxr9_@sIjV<Tukz48AJTTf}6<vF-iT+ABnsu6KN{<+$9T
zNo;~D!6ffuZ;CSMR#JFY+s0QG7FwBxc0u9+cck8JcTxMfbRaF8?&0G-eq0_6Z|mO-
z?mSEJUe@nWvDatPBTGd|VTVK1bh65)%w?M8POBSWg_CjQ0kgTOFYfhU4r+QWmxJ{k
zMBB%wz$c4D)U^96AWV(-^zB7j<~_ssk@82&_k~f3bS*pffYdeZYRf~@=aTVAxSPY;
zjfL|Q5@XEO3mZFz=W5QFKrtRNq}AH`BRI<1vxx9LzKwt4-E&j$My+f$I~#kHOI;r8
zQL*MZ7^r&<R2v1Av$dqi3~+Y@0~`9jtKzFahc}XZPPe<Xv$>wtOj`B5y{oC^n{DTZ
zCz0cA$_SCZT>D^FZ-)LhXudRETj0O^Bvx;&G;`Z|8om9dyy+~B_kPc5dv835fbGYZ
z(~R}5Q$g0Rz8UJ4zYlKwA$#Fyjr>O2SI})6P1A236_lmGwx3Wj!6E8yL?LoH9jQ^1
zc1Y)`iiXl>rNcGniF_-f+IW9Znh0Iya~-_4dgOCC1BOj;1;E+{L&nRK*CQ3s>o$>S
z-w~kK9&1}zBZkCJD{8u~ktX4ixwEznr%RBh8%W6;PZ+P6G@pnbHTaw2csv_(Kg0h3
z9@%NSl+j&7_N2Piw6t(fn6X`3%96+!2;L+x<w+`d*nHCJ>&BWNjdcG24tUx>A858(
zo~qDV={n_&o#u~r0!YYG^2RwvnF&?QZ8gkUA!FECv0YTKP3b0cOE8Vwj8Cbpelhq1
zNBEhoz4iRJG08o|G0i5Er%M?V0u@tJ(<Sr5@&NO;&E0`D%XnYnKlYZE{{ReiT{`nj
zlT=iW)pd)VTU)l3p*yi0diA7ny0V7ct2;1K31DzX%s&qNAK?vq;su|GbgK`CTJ*Xt
z{IHEn!icfo>Bc2x3oLsN+9eN#lo^+jTV^t~-RQ~Uc>Hgoe`kNfai&`vtCgQk@jlzF
zD*1f3z-yFNHi^dg_FM(vAY77%r|L1brz^(0=zSgHO&i4e&Yx?d_*VAY!xq+FdnUQy
z-9Xw}B!)lvd9=2YOr68!h2xYnjBZjza~>2LKg4;*g}h^{X+AvE<I@~j+#4gMc#-9Y
z=52#fS!6`R7I{&V%VIuEay&o4ekNU8$M$|U@Co>P;wvj_`-^+)p9D?i>NWuo#>qXp
z`J(N?J8?6_Rla3iz*l!;;_JEmW8wb*1^A0k@!^M8yq?y^%f(R(yD7t=*vWqYklHIT
zJATzTEscb7E20pmv4u(0ZQY)S40?{MZK>%W5_Id>?Pk;2qL0Sr(_GTv`!UNqNu|oB
zR%O8QXJA+;WEl)iFN8-;*1S8eS^O#1?6kP=Y?65A_<eG*Ig$cYd3t`O8pmizY;M}>
z`2qR{uRr*C4}^4&9Q~W&diV;$<4>MTYsK*0*`9lN*>Sq=#nh|Hj+<A@lsd5|?v@A9
zd_Ok1tNco^9yYx3PO@crEtNb&pe2k~0hO5}w7<4N98r+DVI$$d$I8`qZ)2Y8?Hrt6
z3;a9d%@beKzBKrEOw}3f;J=-|A?ddE(MI5y%<rga$go{ABBngBvc-;0(lMLhPla0i
zJ{G<3ufqQTh}wpYrOR}63mLpEt{rwKd4}07;QrM~CAWisRv8_mLO_VBg0<>j4z)Wk
z0r;rf=+>HMlc&2}MIvcFB$r&%t(Yl0r_-m;l^`kth!mA`^I>vF8{uCN=o-Jp2_e_K
zM?KBm{k6`N^A8VA;oU}6KRU$)>_cS8N`@n7U`F*Iie%YzDQlk$K0l{|^^f>Z?ffO<
zeNxK&U06-y8)wl(7Ho*SUTbx^wfk1!#pj1;Im1SzbFHBG^Iq`J!nVBC?0i|_xO7{V
zRbL9Vw}@eyDRU#dQZ#bQHIgwZBWU+0L{K)0?mRK!DEvO(+1?@W?bWWC92Wq-rGIbY
z3ng{K8Kg;`8<^ac`A!UNk{gnwS?~;A2EWxWA<}i94#%l#)^7~AULUp^4z02;of1oE
z%(&V~Eg^Jd&T)*@a|zw<eDs>P!S9Nm6HQ!4;lC7W+D+`1w=(PPec_4hh1pplgxdg;
zTig^NgRw)NKwN=dr(=1k_-Dg*S^(AcjUL{_8%gYJVUNVJURxmnZYQ{%8heQF+XJ89
zZ8&8lf;zPLC*dtp;(asXMv<#(X>(~LLN668I@OYF0Er&%B3evf;wdB<=U^O~<~|<y
zAK`_aj<w;hhPSphaoxlvVc^Y4?IaSz@~XwA-1&=YSxL()lyBlvPVhFY9)|vj<C}T(
z%Uwgm+E$%3*3%npN=W6n@btc5!3iCs?nIelDp*KPNCX^X7&_*)qT5^P`tOa~T0mLh
z5Z=I=lP4?zX{;l3SmhYY0^5fVgOOWt_&zOS)c7;T)_0oJQ`_#fhsPRSw~!v(lOsLV
zvPBH5w1NQ34yssZ3*c+*8%of%JrlxL7P<s7?3u6p6{<F%5uzCTJXUu|-b*+b@}nM8
z9N_Ni;{=&*Z*#{#;T;;bgCC4^gQaS|9MWf=X|59WEPTH&b6&(ZG<M=h;@nut8OUO#
zRCWIVG{4(B_KTnPp8cnMW&1#w+ACia>Me1n#LAJqzL<!x>CrmJgx;2s#AVnOeAbYK
z8L#gP{tH$6WO!@fAN&)4#vUEibwjN9x8h{0;eQXVtEK&iR<JWh{{Y&TrIBMtk_$Cr
zlEx6MuBb~EQD5gN;%#9jc_xWcJ^<Rd0aTNP9ChdNufE{C6LNK0@;+-m#5E2>jo0ql
z8I7=DK5XP3xg7TWYnkP+z+fEUnz4Iv70mm>kfVSz+qF~*$^)s-^sm#Fi1}(Tv{EGF
zDgp0|<BVt4zM%b){{Uyd7yi_rAABS52f&$&Sn-~#ZKK)9-zrBf)SFD?lDHPp2`(69
zXUf_R;xqGAltxBX+@*SR*nghiO8&Wj;M?EWi^Uq>i1nY_w_Wh9$B1-a3cUUv(c`xW
z&UHJ8qif5pue7vw_Kq#pqdUCWr(ArbSB=CN{{X9DWj~SWW!QCAvWwXM!{+^(JWu-z
z>Q>hu1H2t+<4=cHIwh5X(S^6$FSLntyJfb9duvnk&1*6%Gb{n7jz%R_(T>g_{@Zf=
zV$!vL3-}-Y5$oMAZ`o(j1--VPsx8I?EK6^6@+7Vsl~T~UGK`Foj-SK76ufot`^|?!
z@f+xpTgm1vp0(!LK=BgXTfpZ2H`;NJFU!FD<Ql)@ZBOBk#$8M&$8Q1XUNgFaDCV`*
zbg(UTU9vKOAd<>SZqSX{DoS7idUX6El6=j{?tX&ev~rEw{=cnHjWn%y<4=Y>Z>K^v
zdE(T}5(z}`hPjRlg~@{E!%}GEk|}($KhZ8-H;gI9ao2cu;_}DDH$EM)(d?UCxd;6k
z(%yOA+5{i#4V}Ens#*zR7$Pw;E3e8noS#XX_ICIqtVs@o;BORo<HIX3S>H+2Bed}~
zl##52qO>;(_rZ5A<=Y}K#z9kE1-HWA9cZ^wXnr2}h2cG3OP4YxovmAHdNOCyIOaD~
z!~+b04Z<Rx0@q`zmgAL3Klo;R^ACn~g}#r+9uoUjr4_rfTFs}-*KHQy40FqKWG(e5
z5r*ZGE9*yGftDZ=YMW00XXp5U?t8S6=<+%DXKRIKW8I2^Pb3bN=$<F|dGVJ~zH4s~
z=<s-lP=-a4bE0eZy1`f^V}*)2O{Sx6g9OL2X#x?-k;PoK)BgZzSuLZI*Wm|>CW(|3
zkjbP<SxDiGlEdacM?0V9JzJdAeP$)b7wUii(f)6LYHt91F8FC_Yv5TtIccG3{sX&I
z)qcqlORYw0VB-_uv~w%Vu~tpX$-!I#MIVM*h1ZDu31Q+p`*gAX(vQt$Un~I=7HE@b
z7%C&jZh6XrYs~)u;H<js@_yU@01&<tcy2RqVPoQ3n9>y93&`xQsLK518cvK`lby$k
z^%-qb;jh7QZ+8B2=^A&J=D>bjq(rerJcS3j=Q$jXzcXD+*uph8XWY`2HClYTE&WfR
zKj47B4zK<#f5BUHe;4R>){@$IOzN7`M<mZ^7C7Q-I7B8jIh2W*M;QT6%vgdKKj>Qm
zYS&X;S@?NdN_eJYbip^Pz*G?+@}K6BK>)BPp(Gxa{5}5w!KV6khPnG@c+hI|Z1a35
z(r+*c^67F5Zrli5?&bI+BLov)-tM8`&xG3Q#U19Yd#U}BK{Rkfe|Hjwi<I5ux-$hl
zDwZIV$S0b|HIw%3E|xN&qN1By>Un*Jv*Oz=0t2sH+edK-@>Mo0X(X(2XEI8X%7Ck3
zRXwwwwa{w64!lpQU(2dnS<cca@<*BE#sU-tWHLC39|t>j;eb4b<R4SD)peC{z8lfx
zh#&~E&%+cQGb;vj)b(tR_^6}s@5Fx*TS%Jzr}i-N3@xmTT@%xCfODVri28J|JyUY%
zXr`8^^Qk@=>e61@-RqjPF+G8{lEqTlC1{y<8>TOa)HLCOk1uMVQGh`zf0obqE?189
z2K}ZyCGeZVx@&!#;jV((jQ(yTj!XSfnW9*cPRP8tp(TJBV=A2dwf%zI{670oOHEel
z=IsU)=0gx8p~+GhjCJR~<^Fyj@K<SnX%B`!7d|O`S@@CReM-wrz44^F9j>u)41&%{
zMYj8Edl@7kPGhi$F=&HF9v^!N0aMS4%PUuK!_kf0nn%>|jxP;LwDCBZq@f)z-S+RL
z&&0ou9~d=H68QPNN%1;WyMs?;kL)NmCdkQQY=D!*qYEcYsciMHio9#%ZxDP!@h+j`
z9}!58eW^@mn8u+|Nx)P=(NPctRqU!e=BDwMxp}UXTefD~EQJA5RYM${zCLE>lbro4
zglEQaU(viJ!j$sbU*Bs}@?I|Dxn`BQqofnjey2sE$ma1$%Bp3FUbz1N3jX=O;MH$~
z_Bs#j@$pOJCa<Q3yVf;LJ4Cc{2hVS3Y%Zk3a(JHQ!RQ7$cR#@|gzV$K)J!T^$oo+g
zE_o~zWcKS{>AU{`2LAjX@h5}7;Fvxf)$S15zle3sZ%~M_05!5*wXL(~IAHL?u0FNN
z$M~*HB8~TJ{LedvDc-c(=#Sa;YnV>bZS?)TgTHeEKf0qi$9_1f+Kv6a<|Nd$8>{AC
zeoP{_;&9l-OCN<U7an}sVm@%HSe$h@$3LA&G+SF)u^o#_NXnUb4e!qb*dA-~S5fYL
z)L@K=yiC?jyGO8$78qCgnZ3?PKaWiN)%E`Xgtq?xWRu7t9DK||9RC2o@IlW4wv$no
zDH0@cY#D-`iJWu&<AI;VSMj<300jsC0D{VX*>`^){72zWfj%;S0eDx!`nA@N1R7Kp
zQ)(A7S<KK$E%f(LT{9PW*sO6ZYZBlR=Ok4su2Qs3V~0}Rq<&lf0KsPCo`3i$&&OXg
z63#qJZjN|=xuR*k^V^L675QLdjtKyV1QE%`)0+2BjUFWNm&Wgiy3fVW8~B<{U&Nju
zyEj^u?fb_Z*HZau51Al|B9A*Fjc~D|;Xnele`Y_}zxI^<s{SRn!=HirO}43Uk$Lww
zQ(dLDpJfhCCcC<2aT>7&V^v3zM&VF^?4HabqYY0!yK<>$v(&$0FWK;Z(q9*CJR5Zm
z%@z;d>i0pg$!rGG3~SWOah-}s-CfU|s0aNMemefne-Az^{21{!fm+)K#2O5?PO+9)
z*u9vI6_zKAIN%Mhyb;w+ekgvx-|$L1PuXiodA=n0&dU1sc1dm{wQ$h}3-@DH`LGEf
zZjhS&n(?2H{vUif(vwxb@g=^KZt<Xr7U@mI`$m39qjKS&80fes72;OKUZRpmr5aaC
zDo6P-_`AaTuZ1=1j|=PMo9hW>wYmp6`&Fx(d6%3Y^^vg2>*-!|_GOb*i|+YNAO#Sz
zDGl<GmFJ=4^{>}|_$+tq>!^GN{kc44Zx{)t_^_vnH0O>Z5;S^|FDz=LurD0pyzDXg
z+%X`@f%yvIn&1>6gD7FoaC6?jsxo|Rad>FgkJ?A#xs3-y7g7tO8>whB=sM|!Sj=$9
z!N<uefC=s9s=EQ|K+j&4`-lGk1g-eBbD(&JEiYLm*{@^rh{;f*Fu1@VZvL3*iu`2p
zezrBKt*>lgk~l&g&i-?*=RByAT$9s)2vN`hiu$kiD)^gs;SY;;D2f^xo97Xdtim!e
z&pa+k!OnVjuYV)2$tcbAXOo>$bz$!x>G$Ek7wTI70K%O+#Pi&0o*J~ax3_DJM$S7e
zLK#6&25rHb>30$XD2y`WIoq1iz18phNovq))(NX<x^$vgZmciv?R86r5%a#$1-Qc!
zLgma%FnWscKiN0p4}iQ+@O#6W+?xKQq3Q<JpoRd_zMVAjawU=|qAnQjUod%*nE=9)
z21nG#!#B5jy^o6gbK$)&#oFcEK1cSppKEJjHMme(J*|5)O@K=j5xe<Z<X7@{7vW`x
z%<Is#l9T(dr{I43!`0ze14^pa@n3zlFs`*bEkRZML3d_ijap4B!`>vdx3wzhp-B5f
zi;0IkGwd>Rj1gT8`|JJ~x%*_XYWilasi|vJvlqJFm2AqYptLLG#Tt$Z#quc`BL=+c
z$HZDDoZn#Z=ZfyFTEXN^Qg0R7-CZgoXYO53_E_TpjwZ~4On{_=nz5iu;wu)^HLnEO
z%55xpn^n@UlTni8NZ!j9ogtA@NjVD$U~n^<`Dr(E-sRI{tkZNWDeo>J@Jw1>udnKU
zW8Z6D9-h-qx`I$ZkTiR)9J%C3?94~qBRtjSnS5(!CxpJ+_RS<??Zd?SedHG{JaPhp
z8;1KdYyn)xs+nRp0zu<G<5JLd{{RfhrudQ=w8-v%(iTg(WbodrcF?x-utFeaRV7uy
zkRdJe<QkUlS)tJ^;_>K<O7P6$GjFEr7E$XjEch(0ZlJih1QCoePBHQvnzX_%q0ryR
znk9m2x|P-c0ET=u0*GUQO`Y|n#HGjtvd3|9ti)l9GOB^t@_!FM;J!ZzHGd!e$KD<N
zq!KGdpTaurwXdC~{h-G7I-<Rw?;)Fr;ulW~v#RdOjm%VLziuq7HH%NP_=az{L<mUZ
z(>yJDMWU_=Ssu>qU}PWOSn$k9EDu`zgZ}`6-gx`NUk-m^PZ`N{`d+!?KNer;ejC0w
zR;z2MT3G5gh?2e{cg%tv!X^X=OK)CA+V;49w4sirC~wTa9S=J-qNRqZ2|kbVKZ8FV
zSgxgcHlu301p7${bAy0#J$d6lg;?;efu-3(HBD5iqedot9EFU0!*d*Cr#*#I)h^?P
z`Gg1}ibiv_SxStOaHUQ#Po;gg`x1O|{gHke>aC~#)1MBP#1j3bWw6(YlHyAP)k4{^
zF)59JWtkD2lZM(96a9mdQH^SmgyfQa&*ePLx?IggyLR04kAXfl@dl4!pnM|MJUx4B
zr+i59HjdV}(y4(O-$s}1MMA#UWuA3~GIpaQGX@|G{-^%UU+_`Ozu0^J3IpOT7ve98
zp3A`g9>21%n?<mK(XMqlrL&Gzji<ZwQNkIQ0xvF14DZHTyN`@N2s{n@QTQ9ce;K|A
zc$(Y9pYV)$n?}@@TNeiB?9pCB=d6lbD$$?~D&y{}U{@{sQvSvs7WkF%XHfXT;gNBo
z_?}DgCaq<W3_60w!BwS6RQWe)7#>vIEQ%Fn%ItLc&lssZB`S2L?xnNxN#F5j*?3J>
zIGU5G6>BD>p6Rx~M1M&C0JGQaKl^Ha-@g&>{B`h;M$vSCgi8eWeofjRv|HcqW=puQ
zBVxCc^b=ZyiZxa_pLiR(iT)eM;M=9}cZc*HJ-k78JEh&%hc6@0uB}~JTt(#h)442i
z&UfIB3gG6vGyVzn{{RIi_<!(=LehU{Z;0t{qUhRWV&1^{D``EtmdRV2f0RB+C(ny=
zvFC9d*XSq4>z{_2hmLH1Bzz;Z@b<HL;^^6DyOMviNitifmSu+KD|w4`RCe5eZ2&PN
zkLC>PFSHe8?tbr=;-wm{jH77VPxvR#cTxCn#6<i&zq<`#X>jsi9~Ws;T_L!Qw)v}h
zc&PzgoI|v>;&Pp9Wo(9%H2yNWvemRr2Smg$!J%IbM^AFEh}2kEL}dAk2b2XE1eWQV
z%GcrXo88Ny>9R+oXmRe7S8Kf?H7gn8MPHp~mhH(z<OAd@Ipn55t|r&SzYe@nf9A<;
zXKSMPf6b2B{5!AD1lMR4UCGmJKFu7L48!g(no)6v8QWhrp!&1u6;;&eZ5qznXZV%k
zOMee*o*}(tFfp}H4QfI)${U0?^2sZRh7|_o+Ik)_T^s)ZZ}@%{_<a_us;051M;F>)
z*X%C!>m{|5a{Zs}N#t7=a6yon7=_`+4r-;xi(s2nlf;_Nr)8+TXl2oKe-r6LMP`hg
zMvHwsa?E2x)z%_evA7)OtXNriuflq*@0X_Q`aZp`ER(@^X>)zzO*Yx*f1Bi(i*z{U
zW5jBRep~<rTY?8(EU#(cMwb4=!2Si&?QJy6LbKdzz7y5p(uBlrSxZ>jD;AC+!YOCT
z<S-_xeTzu=qpU%y>+;y@8V-Oq*xC52K$gn%IU9Vh?Hx>y-p;@h>jrVu90N`8&W~f_
z9cxhdb>VBT4Qmq5AUAiO8@ycuP=ewK3r!TUSS+%Tj56fSh9Ik^I_PS)7K)eJZ;17K
z>t6_IYSPaSjWn(B7mV!PCZl&R%p_t05gTj=Bhs8<sVcShC{28H3rnwv-YAD$(Wkm&
zZ(|0Zb#>xhI@aK(-OFuYxr*LBqvgzTmg9ol;AnmnxU=x|+J}TA({+7!U!Be5+B%;N
zYH=A5?~o<KUQOpn*gH!`z#Q)Ecl-gQ+fDYriQ0C6@moVAQN?NCeRA(svst!;R$CT^
z(%Z_7S966=nYyVY=f$GG_^;uAi9+MX_Z|wly4J1QQ8uy%hxPV|IE~eQ%M6nv$<<{A
z_9_$@EEr8h)3O!QJu6u8H;DX2rhmc!w@Y;$yple<ZQ}bG?w9uqxk}yLc@~8bs4B|g
zSe&T^MKeM1d^Wm7vuhegvEdC5K@%~P!}pHS-iIO4zQ=0}(D}1%AR(VB2GGa9u}|U8
z8+cnogTUHVr-&nMMmXMUwUBs@z(xrlWp>r35)HubW)ZI#<eb+cw*D0H&xowP7kCoy
zM8AVacar8!Gf~uZE7<O%EVlwneKt6tXq8Sjytplsx1p-#cQS87l)Kh^AE{cu#LtM@
zo{6jKY@cJ%hlnhPhpuF9WLW;z(oXErCR>O{&Cb=yHPy?cc#BE!CA@2Gt4wvIFh?T&
zr^Z%d+aEl03Cv5jQNU(CxjidV9V1S>)o%Pl<Bd01@cx6Ls2erAZ7TjHSewgMORH%v
zZ_3V2{JU-ex!cIDf5X~#m8(m6@wOd4*IvGjqqnviPNQ<NNMdcO(c9}UZ33(a!H5s@
zU<E9ADp7W@<LX)#ULDePEj!_FgC@}+)V##FytmRdL*czbDP=%ojjU~>n8*ZdNmp<I
zBZK#cQR2-%OVxZxwthK|Xml?QqZuyzOQ5af5u{^$w+pLWN=C=&xG!Pp#!~o?#J&pA
z<8K=3H`f}Lw-k$Ln)Qm^qC$)Wh3C<sXv4TWP&D}?qMRH}qv=DzUKX~p@FtZ!H#cP@
zxNi&IMobVVF-0U=l)^<v=OIuq0~}N+*ws7iZukSlm;NQY)xIQnWu??CY;w_B_*Y+-
zSAm&6NCIi{M+6FX0M8n@83*qkYm?SBe-C&gL4Or^p}aq)>%JkGtkO+((R?YWT>`ne
zk~^DUwM=K)Mn37!IZ^?wKNe}9@S0d@ei^sC(|k=N5_#7)de@ql@mv(xo>N(vHn37d
zhK+-k1Qi?`R$A57*NUzDF$CTz@MVsS62+}&wutFdY+_ByODq!;=4XstXB-t)$*mmq
z6Na}Z)wDfU*TGg^6|=I}uM<@(b8#s0{8y&U5Xg!rlU0=+K**DFpyUjb-WhH@4Xu1g
z(>@mXetjZE(p1{X{hO^{XxCBB*lVPpO|gw_nZN;*v*ZkqlpbjKcHcwsmxwj5irT-2
zJU^?=ZwZ|>PYY@iY8r*iaDujMEtUwummLth0De_1T2JCVPS?N}dXI{=#@8mfG3mDU
zzBz~f5w*B^LGwYLJ8=GQlp7l$<nT8A;T0uyp>f}s#qpJghCEAusOp~<lH$Wd(i!I;
z@Q~=%3vFo)xd1ozg1fkk?F7lo{MkH?BJgW#u(9~1;n;3<$gN%|TGzq){l=wi?m$Iz
zXQ(y3s-$c45R4e(IA-AW8g+^IeenL$KL*+Bnmz8PFp;LvMaPODRD%FPBVF$y7_mPp
zp}^sVCyuS4@l4uR!|<99if%3C65S@FsLP^imbbE^`9eE8IEg!>Vov8?P5>b0vC`$s
zvBK)wpNM=f;pA@@YPvzY@iJUnJ%+yw9v`}z75mQ(#+;L}mn05fAY_8AjC4@=S5xra
z=9g#TS^QV0+RX$~Tpd5l*L1s|GmswVQfcl1i>SblhU7PH-fcTtPaa3%-wogRpTin<
znHpNXs_BtWr5`A>$vk(mqsTWFVELDgydt(q<1{Y`*?d9xqp5iJ`wzo9rInxW?XPql
zYHOWB_6X1z8cRTl637^B0i|FM-EMeNSJ<e@TI70C{4MyK@u1u2(|9vnxYJMBnoB#`
z;nl)g5?L-Fw^47sCEiBnz$XL)n(cJY75JM-eS5|K01$O=6X-f!y3Hy@;&^naG`n_l
zwGh6Zt#D#eK~mC_j;va_TOSZ5mxMLVXUF=j$&KR>#Geo>;nHFgT(c@f*B0={y*Dt7
z5tkY2<kvUhp9gAQ0r+t~r|`Pg`%L>?>;a|l75i&|A_CZzHCXofAHr58ECCqCNe=zR
zWY&z_@Gpn7*ghX>dj9~!jT*x8d$}XG7d`;I`#r)3VDnE2)ZREiK-<cV+2jE2#b|s$
ziqSkHq-Z}9FQdD;zPo#+PaRq<>12RxUn*@VMGP`-V8}}|5s|kiBM;)2h-~K4JT;|w
z{OFp6)GKp$6kab!vDH<}1X(R&i^&7!C0$np0vA1vpBnsApTPbu((El$#eN;o;J3Al
z7Bgu>N|H8R=4FQEWxh>-;gkhzV*s9ONXF(8<xk#cp~azmO1DivOYq&5-G#I^>*d^d
zdin_T_wyTY64~84xNtGhwn4x-JaSf=e}=W6jrSLRBfIeat$l5Bu!(QHJ3Y3i9B?K?
zV)==Ql^Z1`83Q=vf@_A+elL6v_=WL)=fs{KveNuZuC#_&=CRYREwyj5LKn+3`QBWg
zyXR|&nLx(fy(>>f_@nV}MDd({8rJmvS4*<FSzTw<^(#$M$}mA@M^ugrpm0b;aQu*=
zv63y}DqCX*jDp#om7!bs$4!q}@ph>Wy=81IE^Z<dUyl&mWx+Xu#tqWSgdNJAaq=kW
zE6y|<e+otL_f;upqDgUbVT?YR1ilB7L=pnUW(;S@19s3yBW`&(@U151*TWt;gHQNv
zuj%o_eLRNaOw;^4G#mM?&~HCuk{5)yjF8OF42lMFbAwm3FAVB%__osH#C{6@0EB8e
z@8pzfDXxo%-J?cj{?fNeVs{b%Hs;aPIRkJ5C#pGeUlTcJny!fTO;6$v!{{_9ejm+o
zcc<%rZ4UODqz7J#Vicl8E_D`&JFq)|x0RcY2?T?=s_OnQj_Xggv$K~<)6gtYU)oRh
z2vKG^GhAunRdhwh2}PS|IU@v-$ar(c7TS-D?EEjGc;4pj-sVCi(ysKEvywoYn4K~}
zunp0i9KF25W`1GRJ52EQx8cu-kX~Q-CT#((H3xY0oikX8?Vlm})NP`<h2&XB%2ll-
z`N$-I3l50kAi5k=$JCYDF}1yCSk%06r`l@1F0hvUrx3$$KZn&X9x(g7t2^tJMt0bw
zp~S(C8>Ms_mxE`E#)DS2(KQVcIWOaBHA|gi_ich$z1@?%aF}M!*>*zh=zG@;pBHsI
zUmjcdI@jVg)#sabV3$m~(oMOMBFhML>zLXAWRDp_(9eJl7-w}qO}z1jh2n@IJ_%hQ
zUTWfYy@OeZMYw{?HluClTeHN#;nZ7AhHm)XT@ix&CoJko?#`QC)ULcm<C|S4SMjHY
zyg-(h@XKwa&!qjH<rFqlX_qEMSCTw@n_@Zcz|=GRH`Y8m@d6EdK=6(Iq111T%``gi
zpKmG=lGoaG#Jjw_96yr@DgYa{is!6;A#0lVj#ojj@!jU2Ce+2enl0Xzx^$Nca!fjP
z!;3>JDCRjliGff-JnkFNcwfbqKM<_7&1>PNmtz&p*Oc0mYX1OiaS%T=m(VoOI;j}m
zs~y6QyGR)Yq(W<EN2%(b8rME0Xxe_ct@wXezqZuS*x65_{fAJ3V7my@Zwo3*GASyq
zke$oBEm$&mE5#lU_^D-gp=sVT@a~!Yq|I`cn#6k6k*Nt0lgiXBE+u&_AuRrHnQs(i
zG6gbiB^$oK_|xENwejH{Z^rjcJ71)5>2m3dYi_a`Fp$_ZvA|_{2p(IiN=WIP=DAH?
zTTcmVLtVc3esuLZjBNUyuDa=P`?-0qH2(lP)un*}+bnAw?Sp`a85b1R<+&?+r<&=$
zD)?=#{A9G!yiMXi3V4HA({)euD`e51N!Bcx<9L7KUvSP%)WHdinB!2%yCmd;x1xMC
z(EKaodkt84f5w^@+BH4m;^SNz-j{M_3^v^)v$e&%S;PFXMzOF8TNwsTf8yZrH;b&S
zwC@~Cs0npg65mR@(o7a?g_TTtb>yvX?IzrWkz<(dz##KpfqC%WUkmGB+uk1V+vw80
z__%A^U2;Jq=1se<?0oxpq>pbiCzT<_cJ9SgY-g%C3r`Vg7ydM{g5$*A71kxw?#PNL
zG?Aog7OTuMtP;GkNi3sw!GsFno<Jiz8V`YWyB`&#)*3I1Gy!LEDUfQKj9QJ3q7L99
zmMPrJ5XlY%NfQD93{Wzj<HUawG#ft_T=-waJ~6Smjw|GywEag(k~q>uVdaZk(Dw1W
zfy`t={{S`tV_I6Z#O<s<h&(&tO>hYAqq@1ggHlC~KpZOzjW$UlC0Km2Y>k*H`{S_I
zp<{uA!~QVw2aNQ)&ll?+2iK+0^$#-2(COySRnvU3NqA(;q2-A|BOX|OrGTwHS4NKe
z$1A8yf8xCgSuO%B+N|>G8cpt8KbCeyb8l-DgMg_tOgD4{0akov<C|Mg6E2-Dwc$9e
z?Pp7<wCk%YgDedh-meCr3m}y+830_9fw*Ti)A*=r>1T7}4-DuYF}#LFGs}N(dWj1v
zfLVXD<n!MI54#k3>Q@Gpp5c2QePBK&>E1EZ^<NVBGs2!Ax3axZ*IpZVn*RVyiHR#K
zT1y#_`D2z<mveK3`MB=&UmkdWM7)Ae8Xp;3=ze-b6xx!P(&Y0F6c&WZHL)j%%+8>3
z^6*7o@lEx()FV2Ycs?uJSdwc!GV)!zlzZ^V$#i3!i8pe;D()j|9C9uA!Z+4$=hp2a
z@tx4})X8~k8qZ@H3%};GoKEhlMsXZq1IqfCP28oa#_2G4FGuk^UTAuLjSbzcz@G7R
z+xeoq+W!D9>zhHo34m7I=_$cHs_w;hy2pqhhhGwFzAD!*Em_rsclt)_Lky?OW`^?8
zFkryQR(37U8Avrl#P>RWqh^{gi^6wyx3=juotCR1O-WIgB*MifXwFF>vc}5C3`JG8
zy75kdtB)61Y8uw7sC}4hvXa8$^Fdio0W&R={iHG~vhIyh7`EnD6=;TT>7E79{3ouP
zpA2a~*$riN=DOJHGM1T0BmFB)xRxjxcCjTk6WwxgT;Gg5S0{x$RSo8|;|qJMT|QvU
zFZ5@#jwqyUlM8K9J+Z3@+ZbrDc@9A7)%;w!(|#nyrs|q6fczO1-1cGOxV*W0ElxlI
z1ME(*D=RM{e8L<byd%a>9eeR!Ng=SY*Zf7T=ywv?`FC1Qo2DkQW`;5sb>X#+XJXkO
zGP0`ylY^SMD{MvE-5R={g?->HT2B*rU&8v#8fsi4v0Yp3aoi`|#QJT{*?hLn@APm^
zK4Nj4%W!9h;$#zzW5JKArP9f16qb#qUdI&R#OB`kf|HXOU>9HvcxGOsE^iO`6XJf2
zrFhfBI$nk2DGHlgolehGz0&9VL@Z;JS)vWGIxr!YN!8JY2_R;?-}c)5qr7YT4t~a7
zF8!o*onBoEZwKiH(!)l-h7CaKTAj`<^!TT{futd&xO5FOOUceqo~|nGBuz~f{{XMl
z{uaOBzJInAuk9oId-#jOz7EvyH4g@SH=5(adN<mxp6olrC>pKQY~z7(dmoe(WmPSZ
zp(@y~z<p-n<hYTfX2gWJL&xRYrFzeeuXPPyS)W_g?%M9=?n!PgE}Ub}mPTo1m4<#(
zB#hE9>AA25F<u?2+_ck>qi7ssj+x_{{mUi5tUU<9BjB;som%pD(5ULU`HxJ0pZ@?|
zD35p{Po_Im#xv!KbDSQ%xT#=L(u}BV9I)q++;LvS@6hK`J+t6{!9N##WAWyX@b|$s
zPpRu#?d%$En{5KKneQ%0SdoGP<~1jL#YR>oX6;|<(fcm`$=(e8k$wbtJK+BS!5s=G
z(X>k#eA~v<<+N>H@nZ(&{&*duwYrw#ZS3WTIT*kLAIGo!8zcK7%kek%h}QoAYRzuj
zSdU2fJ*Gz{n)*BoCDUvAzncUGAu#e}Yg-?*OC)R`BH|V)keUAG^qZX<##$z$qgz|W
zuIpCVxIgflX|JceR?K+~h~q+X3G*OK9OZ{h{$It}gPm_<(H~WkVcco+%c)z%cRm@?
ztj({9H9Kauyg@2ymzr7BEu#<r04&~k9u!s`Ic7P>Ex|eS_)o%~Fw#=*!d?(MzLM%*
z9YasMg4%t+>~+R%pka}<g2>yHVY$ewo*mV^QKV@1x^MQRUL4cyCXRb&(QX%8^Vzv*
zU~7c)HYvyModLlcK2cL?dWVI6B?){z;#<pa7hk~~w-&aV#hd8&k>P-zNg1LIg)F#u
zRSF&(Jx9emNgnl@*`90TT_eFh4zbfmi9BI>;rnZaW`j?<&Hb&s+k;6R$=wiyw&H;e
z%MG~;z{%k){0Z?&?@YXX5^XcY+G8+tC6l$ilyR;Eoc{9GR$Z#08h@1Mg2dO*x(18l
zT^moI!M-21J{BHfo;^{n{{XhpHU(CS7P<3gRx8MjlrJQ!16fh&ULWy>oi2mojay6c
zTHF&ojlHyILBEpooz4%K&LnZqnGVLtB!Vf(wKjb3s_6O(+P<A};g_<Af29e6LT#at
zFDV=rPb;}_a;nMY@L8L2#bw*-p9Q9YCb_k<ibqgc29tEbSdKtqK{z~Qftvc0!aoo1
z^jDipYb|fWSC^kXo$j#qo*=ihF~_*1S2E2t!mIQ0NsZ0-cIO9xy!e|fz1*-|d|B{s
zn2yTcXNB+g<QyH_bp>4Kt^gV61z{+@hOVz;|I+?Te{VmBdQZT=_$bGVd>O84iF*!@
zuSWOR%vR&gnn>chxs{AShbBo*Fa|gT0;arg<A2028~kSQ#n*}Kqgzi3X*X#EK4A+j
z#Ep~>fTK84H!nrV>Uw=!`(6Ia`Zk~YZ2Um*SBb9@)*lb*b6DzEF)~LB>M}`?(IzsH
z$-HG-4qq*kyEXH_?L*=HdqnWYm8IG=Q0Q7?$847IsY23}KfE|NV0Q7w;BrZ>bgBDD
zr>jeI=rJ^^FKK-h+56xB00x`ssi=O~I{Ha>_H#Ccem4|HQermDqhpLQ4BT|bJlFTl
zd8Pbv@cShG8<WGjz-J92PA;_PWhCW<iT1?bj0G4~>(E#6x&HtLjQ+@a?}>Gf7Jk<U
zaIo;BOQOW3hTDtXLf#430n{uu<q0PMvyqRNC;O(4K`i@jCyoL!^6mw_#s^G(HS_qi
zoq0&^=d>ccj|_i_zAo_V{{Y2J;9XivRSbUDrnEQle7>lX3Gm&Bi1Uy@>r@-|wf&y-
z$>Ox}KZ&C7%<?wD7Pk!gX49MiWVwkV1&`g!{N1x&`EzgK`*#U8qI~Vc3LP-xrZ$}9
zb~S74QO5&$I&wsy<yvG?q@V8jr*D7fSlUZwPc&ZW$BW9=EgJVnk}K$$NmqhTG-K2i
z;Qed)SN{NmwypJu{{Ukzgwe=kFpn1Ml7Lu-St8JHS#Uc40C@D{@vq#!+6VTL{f2xi
zsl|2iqvAG?;ca6|-ENUVsVd&C);p1HteKqd<P0caKTqTv{tg@cwLSp;(xc%ggMI>d
zzgh8A9vN*~^5yj_D~oGnSzt?L@?La~ONk^5cM=ZO2Q8KW{VxgOD%8hAO%uKS4>vZP
zVTY8N{Cw-T{{U+-kk7lz2j<)lI3cibGJQpJfU|tO0gia-?_D2^mL<PQEzuP`qzF;>
zsa`<G82}E)n&Z)>!TF7T{<V$Ify2`G4`TRU_Zn`n+O45Sy@eQ9!ozTy<*=}z>DEG{
zlit79bKwuff7vtk4gHq>9DdEdI{1s>%@uqV;k`FW32~{x_K75d-3*Q7#lAw!`-#Hy
zU*w_i{UVdZmMtb_U$okwjYr>kCPl_M<N{7R*X`E1@sq&b3DlcR)o!h{ONYre(>=Yc
zz#gBwk>LkDiDUTJ=RA9XjY-qIx@>(n4N2N|T~F=1;*b0mtM(@FcbgA~H9dR9S2pF8
zMWkt_-AUsBPkPqTkTcX|SLaW}ulO&;l3GiB@b}@1NgPUdNv><gJOFuVBeS=ecpTtM
z_=@}%_;LF#e%PP1id}e<;BSC6zZBR&<))6_;?fPP8sw9ip=kyVO2+aQ#sZeWucv+&
zf598SY%d!@bK?(;`hJ=4KF$eZ38{Ft7^Q`bzaqIvuViHm%&I)^EwVrh#eQ!*9u}JS
z<@ldx1yg%ydauWS_%Dy`LF2s~cx&MJ(tHOqsm<<-44RGhTkiQ%-^VH@-lzQ?iOzQ@
z9RC11pAskd)#C3JU-;Kl)+g6BeP-rcySb-DTe)Vqa?(vG0S5PCS&FFJo&X$I^_B2@
z{tfWfyhCj_jXpm3_S3~S7U?D}d;@gSO(p>%DCRINyE_lz^1}ur_keZ!&*4w}5flCi
z_3*pIPp$aZP}KZcCECqBj)CzW-%qr)2&G7jN94r!9#JZ-Bbhqn0!?y98$y$A2D8Jt
zXxaQPcsoM)-{Q?y<HP<J(Dfe?>K3u?p4UjUy47WjH{EIDw2osI<HD9z4T3?=aqNBz
z_!IkhO|3zp_y@qgJksyx-l~?iI?j}wsoZ6rac6EesNtoNanVlV0sjC+4+4A&_y_P`
zN3n-V_<v>Kh&4am!k!9iySp$HXAG7WaBPEdA}sCz@HUFylU%p(UZgxTrEAunCDu%k
ziFAENXtc|y;FKMXV)A64b7TnB(RcDoXRke6@#>=z{{XYq(~10Td?^0_f?R*WX8c1v
zqj-;4)%-VOGNjVOs`#E(o62FdI{lCB$+)M?7wvJA{98#Tzj8li{{Yx)Mff{lmi|BS
zrkCRH9v}{}N-hLmVP(KJbKV){2j<%%TrN5t!!`QL;tz)!pNF+Zhr?bN)HI!MQIRg?
zys|^9*~KROy1$(wM2^_`$C4B&$ZYi2ywE&T<9#|03wUQ!(EL|zc?5$}m1cVvMQx+^
zA7Dw8$Aa6*bzpI{fnH5~MOwS)dQnc+Kb4>OI4|KupAb9=;XjF^N&6<T;ax&~F81-$
z?1?-Yf^Lo&?c|n8iv6Y}3nwUX@-`TQ{BcZ+9oFfT28{ACw1eFL0H4;s)3^5P{h0J$
z+7I?M@yEcg2_F!6XHbJrp5i%m6qsrESJnf}w#=G}$(Y(?R*2iklD8i>I3MP@;|n;h
z;)})*r;{F_t0bs+^5$`uL%_it{{X<VU%q%-naX%4hm+PXPe-rkbMk&V%l(~r){oj>
zk()lNrr!8k(!$}^PbC^Cp=nz!<-h#$3%4bDzDsoCzS{U3;r%~Mx$tkq4-fcW=Hl8$
zm1VxPx0Xd%!j&s<V?v6<v2LVw$gj`sH($E9(eJbvC1p**Uo81yTw^@$A&FKQ0Zvb$
zuYLFd`&fKf{hxIhf8htzWRp#k=50P!-3tdKzsfK&+2ow#(;OexGWL}DWc0c4nUyKZ
z7l-G${qcXnGJZMh`lrCyd_UpMakLBTyK83C((2AjyLq3?^5j>ySB6t4RoXEk6(kZ4
zF<+<JSHjH`!#3AG9gjh`eM0cOms+-f>7&Yw>|Q{uCToRYd3jaXzDk_)pTO_<BM0qg
zfAOD9lf-@)(=GJ-o41=uxV5~vWQ6&}N}n|W#^O04bIv$5`^lhqKf&#&CxLzzPp$Y8
z_QF#JrE_biOBI~LB_X2|YLUpM)ITx2F1wfxNZ|e(<4#`bX6q3jhNM&bm7nB(tKo(z
zRLfllq@gCC=Du2;pN2e3Y2&Q;f8h6u^!;N%`#T*#YPR$0GqWoN3}<QMMO+=CDIsE8
zE$di1uD9VUD~L7EiPk#5!_6kan$|NOp=)n#aVxh3!KceGb1vM6krblj5;`7>#(E!%
zyhyTXe-ZRM9dp7SA7#9cP+QBpy;f5Ud1=j+tVn**mSsp{cF4v#I1~6)FZ@GuF0JtY
z09@5H{Sp*WYouOj>tZ);++$g;q8C6&+{ndUkeu`wugK5Q7m<Bt*Y#fvMdN)(PtrVd
zX&j_!cD9x<*-FqeU`S@vu3kJum@ddv%)pfcpyn=oL*d^D>QmXjiY4&Zjx`VTt8FJ%
zylq-2W1aA%S;Z`CweZUnam++`7~la_HOVxc9{&LT7MI4q4-F4fzVcv(T`GM;Rzoyl
zwt0(gf+dLnAW0-4Sl}_q!M$(duZg-RhL^^gPOf}&CG5UZ+1^P8jw6hc9%GIBrQ_v7
zv6jww;*_M)C2Vfrcu&Rt9@j(>cv&^QYf@7z`sSEytX|!)Bif?o;qFAiK4Bv63&0p6
zzGVHWeiwK<_SX0bu71iIXN%KRiso2uCYtHLw5}}gbjjA@7a~b*7i=@f`@$TV22^&g
z`$X|4g?u$*ap4aH%`bwyZ97ELS~RbC#wnX}#~9RZg1X898=?bmKtZoU@jjRFm&AS_
zxcGhX2T6leic=AJ%RG{_s=<aLhUVHa<&YaO%=ln)oKZrvgw;qpHK~nQrmZcH^IQG4
ze`TK<e#yTbb-#h%6B^3TSF`f92x47AI4$1F@#lD@g@Oh}c%$<Q7H5p*T$~4N%{TTk
z{h&Ns;plu*;LnHpjrEDQR{Lw*3usxsUBz1N=HGDINy-AGfrDQ0{{RKP_>JK!@AxVI
z0Ex8!00run`n89KBGI%@w_2+zNhP(pYm%!ZlAOTzCME^j=0l#~`cJ?=h(0v&w~u1h
zrSaCg@gv5Uo*g&y=vqy>9SccRgt>=Mc6oltkQm%D!xG#yxZH&p3jMz<;@nfE2~_I5
z&&;uWJwi3*823MEzu<|Vu(!p(23_6!Qt@MHo)U`cEhr=2-F>;`!(B-nDlHo67FlEh
zG*y?)WoKQSE`Ok(i$4YY6Y*YC<FARDMdUiJy9jG-Yr>M=>Q?F_AG<zNtH!V}`BhpK
z!3A=REAl`72!G-a7JOR$pMEF!Pvb9xd_`q1i6yg|-fdS;w}vem?jZ76Pj3yej&--S
zc>{}rhG^y7?iEx4`yue}#dg-83pEcD_}1?F*IcvlES3g43u~*Ox3^Y8N1AImkpnEv
z7o1hlC!4#K-CrrjnazA`BC1Q^y}oZ#>M|UnmL5`_HSbE-`?Nj?*FRxDh}x#8o*U40
z{{RhY^Mat;TwTd&a|^KC5?fOg_>d_Dg8J9!Cx&!8{{RknHpAe3$A~o*O*YxBby;<t
z39htx;wipBv&rRKt+E0@VC=3qVUdBj@2|bBt=zUY9xc@MMpS1B4~OsVV<^k!6=_~(
zl1$(sbRc}ndJ3hfYeU1)TKqEbo}sAedee(|uHn`6>-~Pkt=N_OI^4-3LAw|-I?Ba<
z?1LQF=HA{<Ni*zY4J?gaC&4;m>JtwQ=rG#px_SFU>Yf_a<+gjEV+Gz@D;=!t#1R}h
zlxG_VCl#S@uUh!eSGb!008z5K(k)dU$4>Dsi7l1Dc0;xybAIb1yRapn$lRl@Le*=Z
z3tauS%fk9bi~f&mw&AsZ3u+eHLQOVVBr@AV!Ja75hSff5vFC=tsH`N=ek=Hpcy_~B
z()H~M$7vdGh%{T4)FW$lB35gQ$rU%d6R`Oi!2lOp%i6Akab#9bbUSDGh2zU@S4}r^
zBzEa%H2U6{vxxRD`VFt08bG^pM%0X)1GSE8p3uA%uXs~Le;4>``!@Ss)ILRRFFqWW
z);V`?xm!!yi@3bkZUk)<YI0Z}IqD$Pbp0UD<L@46`saXjjX6>lf-OoJY!F7}VpO)X
z6DpYtWy<+rj$at#6GgeT@vQe>85>LR*Tl=)Ki%3siKpA!-<3jqr8gJXEg$ZcvyU_a
zK?{uF4ydi%kHlJ!iS#`>FNa<xmGymRS%D<fAlEdz=^!vj%&8nYmXB_bi32ESQcEuY
zfCy^dk{jJ8Ueo*$;aK&L4%ylVn&R_DywmS&uMWT_c8c`fUhRMasufj<2RX>cFKy#=
z@I;eYYF;VSJR{;=O?>+sPaIw??WtCOnSxr%o4cy0oR!Ep$6kuxz`B=)tfq%f@MISg
z_<|>rZxDDTZ8T<yq+rE-$)<|q%yLV#i@Xu?oRi4r_F&>(x7Iv4@n^&<t6Tp7W9r%-
zj~G~9>J39p)CxFI@iRL^2b(LeE3hh@WkxGk{u8T@4hHexjAz&MEi^huZ>C7LTCJoq
z6bTp!r@=MKz&7RF%Y`}10Bg&&p9|?;HrDOF5NZB3vcH<rY~Ja<BU`K8L2rIiCAYeU
z=G)5=t1{#(2038Ep{*yuZ-}}dkL0!RJ@1G-Ii=dHfvzrRvDEarK#Vio2%hWvMR#C>
z7v328ah%iV=vsC=T^da%!@4~FGlm@!ePde_M{PERDA6zXNyW|716jCuivqxv1A=mQ
zcV7|Q_{YQk2ZO>orOu_PH;F^7=lmraMBXE`mdp<??9AFSq!5`4hTR}=;1CBH91nwh
zaq$b{McfuTn)qwQ+GduBP+Fu{6Mz>CK-AhfM6(QKScg-=-Hp}WX@3^J9oqQ1ZxQ(Y
z^`D2*TQALLsOlyiJ&m{us|A^NR#Lbuu&+Fp9qQEj3zef{)4)3SgtSdJ!ru(^C^WdD
zk*2zv!rGO#le%V55iV?QA&`{_+$nA9aly?y#@a@K<F6d)e-AG%tgjTEhdY~ZAH}uQ
z-g|4!)-1JWOYKd~7_~(jYLuweQhUZMYSmVw2(i`PwO8y|rA9&#gx{O@4{%+1BKQ4#
z$2p%P3gg2iJKz@fKI=AtGvI)n72^#su?Dlbcyt1Ek;i=z6;cL8W?zUU)H!U~vw9fe
z$9Gd%_JJyFah>#!S5iB>0pFc6zfsEaM3!-J-~`IesIkL*5wzKQnsUX2OPMv~?2stj
zpU1aS8rZTWQ7q9IL^HqsCrcad6nfQrWdd28Y?=MgNu)Ddc&0pC_E#$>xOrivgpQ3k
zFUECsjb|g_8Sev|(@2-8E)h)EDN@)QV==gI7@NOwl%o~#hGwXMd%0GOBRpl*CBcdJ
z8=qN(e)2E72hGZ4sHVYhA7<0LP~`qI>R<w13D2YpJm>VpPrT&fYY?f%Z7xOxh}EUM
zPw37<70q8N7xmX@7N_I5%d33J9@YGe;fvz)54^!Y&YeK)tP_((HZ_OPn4FBO@PBL@
z92kVH+si<v5!`F>OE1p*tPqs@-CQ>BSmNHgAj4by`aOMqlUFZ-u+nR@vZ+Q;Ay41S
z`Rqw<-<8Rsw??bN%J5uVV&NyeL^$4idDk`$Q<J$44kU%juY0zv{x*DdW+ocTCF$}q
zUEbAtP<zF03Nt#%PLZ+-B9&bQQ=tj=%d%kggw`$t=p04=O_-Z?JpIDN&*l>c@TnJq
z&Jua)j12vhzH$>lT4C{>oV!TTp*7`JYlq6VV+UClT&ToD{rdm#0tB@^Z+EV73=W&~
zt5(^%H}i^o)d0W}M5ZrmW(ff(J2)2et2_Q$lB&w(V{4<sCfLEg6Y#5=<Hf+o$kSN+
zd;Ue~wvVH#K*U0v1NF5a(-@NvI3>!6@(9P?VIG2t4b(;7GoX)`&>dOwgf+swdX^xW
zD|x?jakKc57tF$ajd(S*3HyR-j0CIhI=Zj*>Z$GNls;ocL{9qy4f2Za@(}~HOl{MO
zYLY^d#!lY3x}U$l67?M%{I%J_{-#Z%`>u04Pq*I`l)2cPBAhBxR{Fg(v0s63KDKU8
zd{_eu4k<ZbwMfB47-RajmUC|QHIw@@1E|~deaWRi^8XY#Nay@WlIuwsymaM<0CE4_
zmV$o<*Z3K-V7{*l3H?#CK|sRUa!VC{oh@jWeOu8m+V|5L*H(G{ix6)4Y(>LCu{TFy
z@_}v@My=-tXN~T7RRXeO`jFu0H%An^8Ls<XCL|lo2?+l@;xkDqO(koytzd_SM|X&$
zkmuHD_4TYOV3x&0#9@$?3u<7T?1``oh4=F`Us?7aWt3VD32)kJzpp=?{x?Cm*b`vh
z3<q_y^3GZTPJg|eZfNSLX$hJ6M83^kwFJ!h9s3BkJVr81e;|<==dw|sYa)!@@EG8~
zew#r6Sz^XD)9b5&3Sn+FJHG>Rq!DqF;Ls;_b$xXTo1-4`x%yACk59@X?2-=rk7#P<
zu0GSTkQ<;1QNG_6zhX89#W88U+BJ}Sp}Odt=xF0~y9otrZnnnM1H#+@zPu@;7R30i
zp-IX4;kkQ*ou!TCUuz*uWG#O{i@aXhTs0Ig_Pw)txX&)$+PO2Q@;m3V`VI9$j4Orm
zO208A$fP^fyg94ixO8{5qL4&HRhO@0$w<6~FoiNeS{+2L$bH#5srY&Wz&;dyvB7{@
zd7Zz0K3F{X(Z=Wq7OnppH%c?tN)@W4Ur&s}oz=5dS|1^qzBWea7Fm35Icf=2o!NXH
z23zYYc5nZB)EfSD{gTB+q@bPpaaeUSG_eA<^7oGMdT*8=Em~SJxnr{e@w?V=gdQbr
zA<V;HJ!TKC>wN$G__K|D)W18jo{##!%L_p?7|+9d)QZNs(1!5T#JjK3XuvAWR6f(>
zaN^0x2)RYMM`Dtk5@m7k!a}GlTDCP}pnO1l$=cAPZ1lHK;PLL)+CRJ*j4sr}<-&?F
zzhADlNHrBgIK`+ud@4}|m*A$R9}}0^b)jqTrqjaL-?*xuQ-A6)XZS$y?Jd*_o<kLX
zp`?t<+B#Q><1)5%;!#Zjbj~+mhi6zwCpd?M85k|LQ<jD)reF$Q1WPs`#+ZB7m_QoU
zuBR<I2g18=wZ-Eby4=1}a(rpve@VRj8)Taux750oOn-RK-_@jn#?_v2!r<wpWuP=#
z^=-;S8qM*zI18V=so<r3p11=2=pJjsSbL)dMSS4az?+QHZZ~oPBZ=@6g_rf>t3LTI
zT|p5GZA!TQ%szkL9L@Q?iyIVUF67pr2?q^-P2&~0EL5#ZXOkXv@?0^rrG1OaE4^>6
zU{REF0=<iuU33uxKS+DzVo~6yxB6Ct-<bea^&Y7GSVB<_xpA!YaZI}reY|!IBcI_=
zMm(M78BIw9^FEY1J6j659Ef>LNK~D<j*kmq0N0i?ees)+H<cU&49w-bWZOw-b->jg
z?(FYsGzKeEzEY^F87!&=-Ed=a`{cW_kuFJu)U_FIyG&N~U;B}cRm={t8}P1mS+qTs
z)!ISZ!2J)RNVZ>I4(w?j5|GTT6XBd^zn4yUAo&0{@F)wEca<KC8K$q6oCKn}%AG${
z1S?fQ*1-n6t}SW$AVyf`n&Wlwn7#0dC)qEzAUQ&n7;(a%_S&e0EF_sdwdN+&ZO^9b
zZ#>6Kjm9ecb6dm@)w3ufUlQRRyd;v%bc`2Ts9$Dp;3C9xXs`_!wRN<QI)){(<h?R}
zxMHKN)DTPE0E@Z1cfp6wV>Go;dGMI~N$;&Zi(cxXG8>(r9;QuuS+|`99dBf)z+|tr
z`aOpIJ%woS1!tMWKX0u;CVvbR0hLw4sCD0)Zyrdf(J|AXk@6KbWpmJnEQ6g_lE1pu
zDR)!U`q{_G$ZNp2Tv4%IX~zQQO&xRxwSQRRbvg3-$$3-I&B%c$gV{l$C5QQcDy(IB
zm3_5Km@eY!b(U%qG8e5K{qG9ev~G#!rf1E&CLdElqc8<7N(g8`nsB3cogejMm1T>1
zZB6Mi{g@RlBhfUz0F7jM_9^n~=ceRG3P}>SI-IPSrY-GYpvxv$XlNQzE9>l%^*U*4
zdA+^D$9n0Nx7R*cC~xBJM!RX$q|^ig!#b&p-py<%Aa+D`T(N#~n>%VUR%*;<=nkn|
z>c~8O`hIzGX$N7TMmOB;g7&!WUl*K}Jbr=HjK*4lofJCI2j-$#nFYa5o1oTOufMLa
zf1cOA{+ddx(^wj;h+2<Cg6!#JJ_iG~CbUnB&AU72%Gzg6I5ukL6HFDk`6<pD0fY2!
zGnvaa{FngT%~|NQ9;0BL=w6Eg8rbp)f48N*8cskP`+!`!G;%VRpoael>_9L&#7;M1
zgT}R?ue_?pO@Gn3qwVZpZ<{vHZ{NC_*j&%9=t|NO=a!5z+K&A)!38N|%8~T<Vz?5-
z%M6pdm1nP-w4<gRL6M^#<o@{+?GTUM0F67ZQRRJd>ryxgS;RP|vFFCNE}m<^juzvK
zj5$H}CnL!?TsEypQ)E^xtyfoKZ|)YFbN!Xmi{FMMo1q1U*p!Hj=M|-pVXOdmIv3L;
zTqc68jE)cGR9DDmlE4O5n?3Q|ujgPE16RK_+r6xG+wAc;C4S)%a8rKia-!<YJkY4d
zp78N0Fu<uQ>E0BrHgq$Q70WYyAr^a2HRGUF_+iTHUGRz(uMI;#)CR$*;oS}uT{wJU
z%h|p)++pRDFFd8pW)CUak2Tr0nz?v-RC2C*tU$WD%$P_?;H+~xNj4-kt{bOW1iBZU
z7w$zYLE80ZL|kDp+U3^njULj>EC1n%?8Xdm<IJ#`pG)8QoA&(3=R-A3CVIZR=zO7y
z7Kp{JJe|Hs<T1aW$W$tZGIY$W@YX*h<G)Ii+vjE7J#Fd?(wqJ#_fGKxRo}6}A;Fva
z4qR0*_DQ-pa9oc`Odh?L(dtk1I3X>Ubz(3>Ao86P+BK^ZYc!wUAv0tsM%}#6uN$P9
zEk<DQ+?#!-D~KjS9oAB9vlwg<Rt5>s3;z$#3TNhJ_(#E}UX8On1-xGxy0M~YV1eB2
zpX#)#;53Q?YG}Q#XZ5omI7BCH&>0)c3+tv^Bi8GKG+Z~Z=skP~E<dnv@h%VZgct!P
z!gM;A_zc2h_HzaSXpR~TqeJM-^p5W4&$!ppi1PXkzX=nudCDRxr-C!AYlJEV8(;)(
zA3{zC5z@uD#qb}uC=UJ*Lh~esTfbP2!NO7=xc*-@?U>TfjZay4!5`b+`}hMAM~7Ar
zozbzu`el~O>O@hSyjqO{@la2%t7wJd%q79EdE)br9UedUd{GSA>NH>JVYNXFHU*Xg
zmPZ#B7C7mlUsRW91B7La%SV!P$8KN9lMAL&f-q$mnOoa6%`H#}H}b@C9bwF0#_PYP
zG~N^A#Luw9Y!hw;mo_v4{VT@-q8M>XOg^AMq!%Yxqu0u8nft5AoF1MHVp2GORF++1
z*h%2FocE@wK?iD><=Yb#W{B_^0j}QXeE^H%_LcceX$JEmJm`M!Q5!o*<}~>7^;p-_
z=o6kqD+MaCy+fU=y?3s-@JI5@WnROFmWZ{7`jv(v!Q*nyw?cZUs^eN?k}l%O86UA+
zD4BawsawI&X~wJO{3mG2#*Y*3sY6b6z+@*@+8t;>5ZU@t^Hw+ufh=AsCFCY+lWSn|
zQ#YgAd>KZh3TQOoNRd7p21?Y`kNSYXsPT;vmk^JdQVX^Wa|jK66I9dYK_pu0x&k2)
zeFX$v&;QI$Y?I|0#*h(gfPZIsU#ig#l1a|8>_Vou<;Gy;f>b=bRJ+OdlzQmeTom9J
zZc>D6y$kScK+<gnoq++{pgRSNmZ0oH#;Qz4YPA>oqJPL%^?j(t6I~*0HBK}S>#+1;
z_oP6i;gSGSIT^LGO&LKIqxcAoZ#d_djWsL*yvrkwQzvac-0W!PgYGv$pIB{qOXap-
zr<9}la05b(yH>w~mFUYa%^3JrC*gUYxp^1I^gqeQ&TjcH%d^E_N7r3-zK==uCqRW-
zUYlJvjK^NEi)Fm|VJ9VWl5Y-9-YG$@cT!E>y@{{T;-PAP`s()^x>Q5Gk9Q<>qS=Ny
zL*I6`IZ)n{3vH$IiW5EQ<f5w)DU=~9r9Nk}VxRN72D@E!Mu+;1(`!$J@g6yS%U8CW
zzYI76-0}ni?|v#PK>(Xxy$U3h<wyn0TdRD5=PQ70YMXU^Sa@^uG(7jkuEoh9vo<$A
zdLW18l;<`6=|dlhmf_!TE;zq;PnF+O9Nc9eh0=u%KD%|paP=>=$s~meO@z2zCYtIn
zeGF-a7Td1^)Eyfc`!#^j6H(>2Jqhl=h(Fa4#k@$ang)AbDh1b(R?ROK-74JThxXf(
zcW>qukcfo26+{*+DGLFt_&A@S`AQm=|5{`P2=itJRXABW-XW@ZpI>Lk@v7V4Y{Ra5
zr@GDay!D;!XueCR=kY!O#5nT7V^|Yq)Azv7v`3+Yhy6Lrw!onLem{qyp1$M8)>V|E
zQ`@?V;Hg0ig|E+1cFHf@4d=AC*7SPxy?k7$3%V<e;o!0!618uM${TkLvN{%h{Mu5F
zcaT-xET5W~MN{HaAIo3+gdlAl1C!NTGa~v_=`D=Ie|W_H9bG&#*e8VtOhyu8><Il{
zYnzso3<nWdyNN1&az{V<%r~wWX>|nC4*^RRu!0tAcn9}~+kP@hTPo79PivI%pN$Oe
zId)o6$~6^XOjKyyFBek|5MD_qZ^hd7oGmS%{z?!?+kg60K05QcAx~14aB_m8SV=DM
z0*K|!@vAlhCtX@4<Z+lYwgkNT#z<Q%s_giPQn)kb-zkB6Gu+7<l^mW*_R^^}>aRh!
zu4^mVxg*3GBI0K9k&u^W?xCz(LWj`}WjSSiHKYxoWtr`OGqucs6pXgNCQM7}vKZ%W
zPda^GO!D<~nZg3W+*<ECLaK*8yKsDqHb@_WwlGTA+P)sW1Nan8Di{iAOoxgusf(tS
z@NImOqMcdg+bfp**dJ(yH^>(#TAE?$Q+eBrN89PGJv;qHpKTbnK`V}y3GYx8gZ<t3
zdYJQJl_ijFH!L%dr^%1#iB|SkzafTprnrBzwAm_6n~sD|-tH_^R|bm?(5bDjAL$ml
zd~~@;G1s+z1+n@34VZ|Gb8xj^MXpxX@yj%^yhr_KKQ~$*j*%8e@%|h#kn4D|oi}u}
z@c?V-G&!mnFD4FeR+%00a`;zD7V-m|Xm->1-|RjPlX5H;anFWgsOuGr>!O3hno|G6
zvuus}W3BTfRo(b9Vqdl7I=9^D^$?p?I3=K9cjGdDTC&DsbM1F4kPfy0e{X|VBB4o#
zEeU@yG%hz;$8cvG*5l#!|46H#P0?($<89yUpM1&;QNLtz8_&2y{}z}p@8XLiUSS^z
zid^rrhXHu{Vf-769Zqgr1<SjB_OufERfo?hl#%N^qk3`v!|O59Cw50I#{-aTGnOjJ
zwx-rAt8_&A>C$~p*k+^(%Cz8<eSI{RZcq##Xh)1DY)66t{fL_1-_iDfm8EvihilP!
z3T<FG&EUNaUZzQ?)5zTebTXD{W!na&OZBOX72~V<_65hpWpPjiEHt;s5^Owq2jkkp
z=7sezcd-V$-PKAJP=}7%6F#1;Q+!1)0f{$=Fzb?LJSO0mt;;&*)WbM$&{YxtJ|2hQ
zLGM`H!%*tUh>xQ|3RLk0)XJO?QPAePYM#!%X{zeib)H1<u}u2#TGOC}ylZEm!+Y<5
zs*8&|D%OO<Io%9Sm+fSX&?%N4e@I64aDVV}or~DA{E{=##nU3-C2vdIi4D2;`Tlwr
zJ34xRE2f)fFV_TJ7uPgNZKwMLnp7SV;9oVa%V=4ak)iDQzN(lV?@?&mp*>3LG;)Iw
z>syWqxXi|UM&{~EgI>4cYRFuj`e{FV3SHsStfQKcAGT{+X?X2F&14=vd?EcNGz$9=
zw~9Bx$@`=)?pVkA|HC7yJ5m-H`>43shNho6yzyH&q%>y>A~_bx=;5Kw@X=)MVg7BE
zPg(G*8^6Zo0<o7ib+6*(`A=WLI$2k@B>v4D%eX(3-Oy)LMo!mdJe68b;Z2Itk8P@z
zc>S)~YOIK8rCS9sYq{+iW3iL36L0f5{dfgjd~kxr{oab6-jQ-aaq;FoRvyELir;cA
z2-&oc+8{j+#s|@<AU;e|^*EL8$>J86?nwZv(suQCTp9O14=A4p{)eYfhmrHLX`1ie
zEWOz)FNBmpeyGV4MMveTtmv=S1HOt<r3q1!%8xqxvXMtZ4U|2uS`3vE^*nUst@2f<
zT{8Q$`9moo7dY+pE6y2*M6;GYHx`Aq@W4aae+&cM^<$h0^DC_h=dqXHesYE7%O2>|
z{t$PRW#7hzX58E<G$Ie|sEw7EabIR=u;_HCQ0Vdoi83oDTCZinZ_R$7&D6tRdg07g
zvDs)<WT4-Xxt=F8{FzyXfq$wdclVtAFD|k$w@DJ91hC+N--<mR#H0UtGwR5i;~P-&
zw{4CSeRJyiX__oFR!NrScUVj}MymW0jG`J;S!wtW4;h^ltWKF1xM@gbSPArZDU^}1
zfG52(+luo`dEONLTjIIxs6aya1G)P%toGKLNU)GsDb@{@lqVK_T>AhXp#g85%ih1v
z6pD^hkj;6KWM|*j`j``h%2ye8Q4B83hfduoL_Uv`wGZ+?f$)uVw4sXaA^W|Eve?oC
z^;*8PzSPwfD|JbLf1|nr!oVUwr7!JU^CJ(O002{0XgP-bBdLJ1ZD}!CMCe74?7{^j
zfD*R4m)TP(*7kg&d^TJ7?}b+WO$ZIhQ)c)g#i9}EDVDE$b;T%cOQfj@&CJ9}IzE3O
z9S!w46KXc}PH@1$jZt=`+idz4+y0T#1xS2QJaNtX&Djgq)+e^dy(_4FZkg5Nxx~&e
zm5k*J@lrPHA&RYn7%t*2o*}0G3H2rp&b<>}m^6YCUNyn0OPh6e;)ij9>zY3p;R1%s
zaeeYlQeyNX$K;4`PY&4e#c^>7r-pq8W?eR0zndN$+JzzlM;kT7KQXXic<C0hVzCt4
zfxI&p$<&_cy(%?zk|c;9*$)EoyawLpnZTsJlWSdW!GzS31PiXMM7lo4u4ipiihMO}
zUhGn1WZ7=bIfsX2pVY)}U)N@ydookJ7@FGA(wZ>wH`nk?wJ!5B3hS+#Q8e>)1Numc
zv98IF-q<5f#GIM}A71MTFYF(6KgT<c5lrgzwTrD8K;vsc|B2B6UqG6{229#wu)U_)
znQ5)3!z69DI_>ySZgw%|$Mc{>)1l_GHLL>KJgwp{)DDo@HqYPE-0<28Ul=M_I{d!S
zhc|JI9YrXViBg~Z(v%Txc=t8fsl1w`0DkvfD9>!Pu(u);0E0+Ne>_=(LI>WM{G4w~
z307)G-EB2B-Q_A8mm3Ul-M+*%d?4DRga<LT6g|tk%>gIoVnf`uIJSzQlC=Jd{v0sw
zxYP)XKIlL{>d2HggY9sHn+j{_PmNm=#Jy_g_3Seriu<4>daBpjfXM?^{P`%FAvo!a
zWSDcTZ}#TG!o@(4#_D%~htDjy)`@EDr@zmC0I_9af~pT#CnKLk>a0{71_knLi<TV%
zA_yj)aXtND^v!uYC+qEgd-uiFH$PU_;!5|n#Kh=Jl>|i^H-WF<#A1(+Uv{1bBwQD+
zjJ+S?S87*vb_gmsSHykN2rNGg^W@eEYl`8L&h;%h(63#!2QFl#T${cEh2mtFCn)Kd
zb!{FaylW%M`TNYPd>#xi2nk|9uOb%vaH*VMSAYRb(w9c7gGn-A_?I#I)MxKrRIWk}
z#q9^(u<QpYvcYxYyUJh=^liUmFTjw)UBrq0#@V!w8qBW&c|FD>?Gh9eB|zY;q0J$F
zwa)33rx@1Qm1>BZyXKTG+z(GrU63yrI}H!zP>H#Ja&S-5-LA`AcT!xRdZ@8No1N>S
z@SNai^`$KKX8Rx6<#*g8xncwE5+x_-wq>GDo}i;6%}kKnZ)Thv?(!tTt=~K1$6Lht
z<*cq?uiXN&u=d|_Ci>yV*W~_R2<TFMFD|(<LatEum;d42mEov_N)MkZb9!XfA0)>*
z|7^q2C&zz*QwE`5(i=aYOIBZ>luO-_MfUe01f&<sL$hoxCO#I#SIv8v!h~-(>LyLE
zitkB)Xh915%YgX~HDPF?cDb$AnCGur{H>QC@LWjGG!@!O@2i8QY9aebi|CqQvNFVh
z9nSt#UbeD&NKrL%xe~$K{g)PCdDL&G=ghzQQz2IIqHde)o&?8JfAnO&O99tKqrwJ7
z*!mFkuN>2EO%34y*&QIS^VzPdKjUxWo}Lj|T&(Zne|Rvl<44t4wMAuiNDgj<#DzL3
zcptt#+Gorf^1X*OS=1F|<peY_KL4~bBr8a~J%M%;ElL=BeqOHfQNrW$&q7zu(nW_t
zoheyzjgEJN$L&T_%|_*2*k5H~6n|pj2=YaxJ(eAn75z9BtaEw4PC=(`R9oSkcXBKZ
z`;=Ipo*_|=uFF}uT)T@66+Xzi=f*(M_*-=e9V#fSu8@AQ2NYyIoH$~cBV^u8D|}vs
zG~_Ed`T3~cejv1{PPb}hvefdgfN>;gi|$zbkHvGQVwr3np6B~c?=9-t7qcKy5Jxy5
zneLTTy7V?AH4q7VgP*#R5sOEu&A#0krX2R;=dFo~W2Vmy&#gS}Rf}cVzbDytL57%9
zP$3CBfuMKE(gkIZ<d>a4r*|OXg4P56!U=nd*s%<7pMvG*&$}P%u#DZ8OsKiGy5#B(
znL0a6(l)41CQ@X_4>;{lQeUC#=GFOJIxyv!mjYAwiwftZ?2*P*so%Svp#}@KS8!z7
zgix05SWgi#Pu5;<Mc(a?bt`(q#JhUaPll9R?ubxVSQ?A1jKSifRR|op!^*H%&58Vr
z3w0DmoV;cuI^mnz)taGs49R)&q-96`cjS8rS{7$-hONj07i;)Vg={W2=)!siyF{k3
zaw6ru-4E70+Tx{`UC_sOwK?BKO4>{0g>1qn@^w4j`X;bqaG&j-Y~xmAax<+6%Q}VI
z^qd`Po-Nu<d7fS%M_ZwVaN9RyKoW4bG{FRn2KIpqZYO{{TLHMolI(WrCR>KYZ^Oeo
zUesKBvxqjiED)wq#3ZWW(ozm{T3d58h{S(NNCpMG*P6`12I2m0GOS1Lo(?OM`zwqD
z3kpN(*67UW25u(5?p&0_Y-P&C3{aq@Q-plTwCTn^5kKB*m8(3}$@Q1F5X}l(+`i`8
zA3+x&0}}5gv8s#rPlL7QO6Rd^H5;pk7VyPK!GGg_WRr~u9hn(fZj%<7;StAGFlZk9
zhj&zjR1k~#C>p!T;q?Yh-|WxYZ-RiB{t|7LUueroi07SMUDxKH|LhDca(lqYXJY&L
z483m;b31Y=g0u~a#cnh-r7!x=_FTqyGA@{Y93i&H+|1gz)PiLn6syi?rbvse);+q5
zFJIWl3^<?;wN6e<3}LT6lv~;LmD_GCQ@gaya<^o&zw#DOU~Z@s-F3G3lExkSnOt44
z#qXdUP=sax>PY26?}{)lE*0;}Lg_Jsx0h8IukvMxnr=(%&fF;$w7n+suZBqTL2>eA
z)YIB+pgFIsn#YfpdQqEpi=%=g-|r)6nR}86Aaat00IgA8>A{WhQ07Y)JQVsa>EA3f
z-6jqd`Q5)FQS9PlW@bwtsubF*!Wqhj5xDg4!g!$+Hof|~<LwluE>_qeiUM2uqP#yF
zQ#XmXGS5v~l5P&qjUpMfJq@$K9Ib0)!wh<pw~?sXOI(Iycp=uJH5o}XaLNc#*!m|!
zCZzI3SP~RsFzAvJPG_{1<wn*=(BZc>Y=>9JCDCaqMIVH!V}7L#tG>DRYp$C<3bftm
z4eEZhG=_dqlxwh1SGu0njFw4o`rOMt`uehY5!(Cd0ZW{BQ}ZU6!0ePH_$6k(2ok!X
zi!%SN2=prx0-ku4e6U<C1U_2G6P9j#?Pem~F!_Eg#Y#)A&J|76W2H<ItlEUCZAG3_
z>=n^;%)<W095XH;wWb202%XDgiI;VmsobZ6&)BqWNOy`+slU#G0hsbl5!O>vg(sj5
z%2%T8A8o#|;43AV#Jm+yc?$mIcWj?GXOi&ErA;~W+qP__`q~SozQj`Z!LTTVTciMr
zE7k?FeA2<=#?Y4T)IMh3@)=redf!U^?!|TfAgIQ0h}IC*uwjq8fBHj6cg;??7sRO7
zh+;?HqpT6ybi6KRDFq@KQSXTvehGvh^Pw7-4Uw%EojP0AAQ6Ef^UDPqn4YTQcx5^7
zQIX}Bx6%7#De^h2I32?z4aUAV6CwHhaKZF%!X!0n)zkwKtP`na#h1EHR-u=8E|!k2
zo$?)g!KkKRldL`McP!9n{qH|KRP-7oV(T*5v4N~d<O`2p|LeW|V~be+slT6?b*kuC
z)TL&0%U2;Q{WFl_euQ#lEigytS~sl3L&huga$k(zb)9%CejIxJcyuf+W$9p-lW9KK
zstmZjbrp@ZFMJh1aIaBGS$OUtBVjPgD$BXBx2yl7?C2}@`pu3TVcUeRSz{NPGY@rk
z^>VJ7ufBy=?FaDcr~C7@(NS}+RkDh8cW8rRL&GyX3H%<xKA-0OS0xxUEU5Kj<&?n#
z;q0R|=2VKwL@W%BuS(pXEa^;<MZYGS8$P0EXOv|SjV>P|pbgeR6MZR^FZ(_adG)1M
zR7(2x6`OPGvar#U<pe_Fo#qE763=ej5+yfcLV1#VaTH1{pm5`WS_73QU|JvaV^W&Q
zS2FSa6<K2cTcX(dgebWIKaGV&BQ(WOjH1)lU0ClF5H+&DZV93uD7(uPhUY9Sz~7B)
zjf??`6OI)hsG2)@so`s&;}7ItTN73yM=q|V*fji_(9i3C0>R0{%Uayw>W-o2PAvE-
z7Wu-WpKxL5vWg0u6LjXNk}GuVPB$u8w*tUR^V}Kk8$uBC`4<IDRYJUez;-$~pcJ!j
z*D^m8gB3#NaW8*a$P9Z+21z-7@I)qy$&gNNXoF@5I$}IhtA=|nMn$5sL;0-Oi(D#t
z_r>>wZ8<Z#f4nvWGc?B-n!YX4WZ;o&l8}0z)gpbH<iY>Mf0&5?<hxl9t)mlQ0DFR1
zNqbJj3#w*oP?j#Zl5A>tx@zSWxG~tnH)2-;t{0J$DI^r)s>}6otnkoUDX-SVmd9wi
zv~6bhYl`xeXt)7&1v5E2`3Jj;eHE&EB?#BxO-E{@JI-!;EHbrDEEzB>#hmlDS1wPK
z74Su)2QkE>L^3E?9;Il8cIri>0T<vhR3%*EjEDNx`o<1Ma_2=|maYl;agM;Nj}=nY
z?|ssmhm`dE7%TpIDpNw-koK`6hLL+S|KT+txj}(`B0evVV!Au|$E|fAj^xW|@&*m!
z2QX-C*kO|2In45)DfZI9&f&~{$EMmKfp0?MG}VnEMOI5rkJ!siR4FwJfN8kiy%l+2
z(UUJY`>qL|?E9x-#d=7vid|>MQkSB0H7G{T;hBj~AYoIm#g;zze|XjrT4=*?@P}gw
zgmcvTAp#UM;%N0=FSSQ(nGYtuuW+n5{va*ELbazPW85WsLWu^k5&Q}j`eU2Sive@h
z7vSGM+DG%VbIzp&2lLpovI;9sV<AvDNum7x3t8)~!s68dtTseW64}6GHmypu-geE3
z6voLt*n8&b2y~9efs`ajUL@2>?SShrcBgj9J@%AXFlTJl0m-Ft>DQS(ptKAX_ix7z
zAIPKaZ{czTX*sRilN5IL!#^SLo~wIdOX7CmcPQ<fZw2ex3?*kPs}E&K(T2RanicyW
zA@U&8{4#l;sZ&Wqc1VG0+nkgy^VC}QiGS(cLOZ3)T4$lEi=UsP!DQq2NS?O{3SWe4
zcfhu-o`*GmooI6=s--pQsR+0{Zj-@X*U+=R<MCz`E#L)o^mZE{o$-CRix_u5#^GG~
zRCa1YV;p7QxlHC<Me!fgtZMNg3jFBP!MnaG>i${HGWk!YhjDSffk-(~UJ^(%<*hf%
z-O2;WF`*syV{<oyxS)mUxTMh`#VQ@ZH^Q{75YdgnnM1@?6pr%~NO{|Ont5CfZ+qF!
zYvImo2K^d*OutZ+%<IMu#IV_SE}Vkjbr5ZDA(bAHl};o`{}i4+CVJ<6&1@o*!6quw
zz$E85#C?|)_3xC@U5Nj4K=~iHH(zsQgZ1nVk<7DC|72e2Q_Pgz`{+Iw*yUxN@2p2l
z&6h5;R|8dVO;?*uY#^2mHipjc2enx`eq`Y7zXR^E?}U5g9;z>AR6$-C{KS08vhI%h
zU`TcNqCkQI=q1Xno2h=z;sy$QEto`KnY2f#N!)*2an$h&X-K0hhgytLR6=qH0)v0#
z2`acki@tQ9zRY1+<Q3D}i{9g<I3yYDj_hD5dR4ly0Wr0hd!miJWtYwuZD|vK<sUtM
z&C@0gHy9`0pb4-ES#@40%cV*LH^onQ4WZn#ETqkAaM?@*q*smA9g5zXibkVf++@!S
z0@Qy$^EvP{@t38dv#i1Ct{G~vFOd4Ywi66Z`AxtNyhb{KG=Y_5FyrsZ?Uymj8s2Sf
z3W=^XBD>L1A2ui^E@hi1N>?gda+5QzMsvgWQ*~>{^I8uy`^r&kLvf<uV5KTZ;$G9|
z#NTN(1JXLJ%5M@xi*GG5+1+ULrp1Tx9Lv#!<rS(Z9E5@zt5S4mzidHx`1{n*Jm-wW
zX-8&h7Y>M-<Pse6mVg)jH6;yDO+NzJjZ0$kxAlIarRzZtzur%m5AD4y&3MUAoUv@i
zQlI8&R-gCFe5cLr(zTc=GT4eKy1FcN*{X1!Rj9pnDxs3Gzip_)`57dJsHlz})r}Kr
zq6+{yUL=@VyN<2~Z;{{W<Eb!h0gAnqRqjd8qNwTf3OhW4q!3YC<+H=}4NbIES@Z`o
z{3cNW`Rs<X2w5kFabw9~yuyL@RN2iOlW0GwJ>$0co*cs{a5eQ`qk|k=ZaHj9dDb&C
zcZ`u!za{k<1H|(!q(`8z@*kk3v>{p(Ra#n#U18MpqJEk+si81CuIo%jvOLA6N@YR_
zik`)_Sr+|v!qMueu%xE;5LK)2=12w@b*yUhfqpgJwM-u=vzJA>=&O~4xW?^*DAtUj
zI0`HmnWRRXn^w_6S%=vIIK83n+bv=N(i_e(PNxUiVq*iDsW(;V=quzW`L)wIQARQ(
z6}zzi_AE6d2H1q8lEB5i#E-TOFCxgVn;nLSYcp>((VUSkpb8)&FEZ;g>dGFYg$w`q
z1MtMt>WDJIp>di+h7{6i?DV&(65(xPahl-(q!lZYhq+qh-FDRSn(4{ld1pIrLim--
z`_GGC9Af<>UReDSx(bZOzVT0+^fW+9ZbF86`YVd{DPnw~hL_7bxS98xqgdmRIGF~B
zJJ7@u7aF*(9pe2gf3a7vk{{D!XFUxT<*>qeaU7L=7Ya)Hf{Gy$e~nNahq~U1)wn@?
zO`ACE5y<T^K(C>Ae-E<rRD<#;!AIr>9##AkHj9hCMMX>Eb~+;R>k4U6Y{q;dtXXoC
zLOykWr%eB~13FFn8vno%dSNuLl7ogm?kRZ5Fw?0$+Q2Dn?OWNi;tn-rj^!-VMNg!7
zg6?VB*NF7H7qQ+Y`VJNLHn10(n?>(A|IzE|@xuXfioM;>*66fh_$}d&oFJrq=B=|$
zV|CH+0M<s9B3*zN%gPAb0qqg5rqI`S`zbol!@_W=dUD^mW0;7kCMxSQ&+J8D5eCeD
z)hIf`z=&k|&hwGj6&K8AAl{@tI3-@6P6NnEEFFr)s)Uq68id4RGSg&(f*$9q+G^0#
z)AmVb8I5qayaVS;DpJ#*oBp24=}JINi1p@+<A_C~t!OT_Sw9MO*iJZDv&V#Q_wKH(
z{u#A1{AY)T-igt@gUOH++?1&|sD|=<kcsggf8ip;5dh*5Muf!`-3m9qYhchFF$V+*
zE#jq?T5D%~w$Y+|@GqI@Ae0fuPqcM1Yk+lPKyK7=>yRdeykf&FW{rkhwT+hq-+sgZ
z97e-m;WPeI`hZm{w9~JHWKIs=*bdYKB%|i~c)B!9Kv1bUTFuATmes~*a>n`3WVpdj
ziKwhET_Sdvn?(yWLsrB;(1>H(tC~L=&*~U>S)Qw8dlB50n~ey)KTLSwGzd!eB6L?~
zL$5=>TY^|~4;NDn9A|^I8n3M@X|h%xt$L3sq~n76Y;{O|R<w9O!apmsVS@TBv~iBs
z2V-09@F;g$A+i{k*%3!yA%wcOq!>3egMXTt9lu9PB(wa3@MQw-=JJwKAa*6j%%&SM
zPnz(!7phW?njOzU^R<yMYl==k#rxY=m{wq|<+=w#CJGi$EO1`f`crzweo5Ltq_DV8
zsqfevyl%6V%L_KPyjeT#6QejBtMNc&#ewS{jY{Su6?N&7^rU4x7`RbQrKAr`QC_(A
zPw_s;QRzL!hXk0x(Nuk>59}OIjufri^o7mgbSEn43yy>_vREo|xG}f1vLmHX(?W2-
z_O)lNpDmX$>Zo}bDU`@RmENL3@UTG%7VuQ(A;9VT^C5C7DO#VkM@{v;kZ2ura!hS4
z>`r;Mm#NLWg~H3Ns{it;J`%CQXhnM)6med3wtb`_zd$t*60jBe895ez8pFEYUc52M
z7N2M?oiD=rhU^SC;$v%nI{p^BH5L3TZ4fke|0I|OgYV{D3Hi-I)PEygy))V+f~rGw
zv=ZBPIpe~OuH(KD0xH7U--dncJT+;&tK6FlgW=#h5ZCoyh_Q$yXiTLcb_;UD6nDJ$
zQ0@F7+ClraCgF|8e2>)&r~XiOocOlJLf@Vof@4q;MhAGrhfsnCVY+2xFBfY>(hvVe
z)DN_<r;10`8g9GAcH!aF$I6^@U5`QePf-BA%B1NqU!|JN8N8?y0^K}LrHCE2=Gy6)
z5qzFhOsrGUAtORQ*bpTX^C3~+K_ma_bxZbO?u%_d>aJWxi%DkQj8xe*t3W@ZT@KAJ
z7gS8{_7svpWpYfC7}dc9Z{~VHY)y8p=$saA={3=Lc_Ejaz7BCLXW@zexC)z3SlUJ}
zCf?Hlb8t*$$x|w<VN)O<pt7z!YIGFh==g(IT*B6}lAZ9Scc=F74y9cf1F(w=^W?4x
z*O7=tu)0Q8*t`@j4*&fDuD_De4<%a>YZ$j2VT(BX=glZxr->Y+5Z&(Mp4}$QtMXt?
z2q<YP|KjQCc;21p$^A7RIMsliWCwODk?l(%g2mC_1auZ*_Ky;ENRCRZiqZz-c~*gF
zog!lvv8{$o%dbCVM0mgKTz?7vj&QdKvADPk<P6x-7F8Av=4qYp5DF>__6@)BdFQlV
zZv`VS3Y!UT6|Lz&sX0Wb)|QAap|nw42^*w-hH(XrOi7`%hqy~6lm!vU2uCEvSH^?l
z$)cLm#&FdLcpz^AOGDl2CHU<7J!9%~?Yf_S6O6}AhI9vE)K8`**Ho+{d0XZcpPoLt
zEJ0xl_1VP{6ZA19*Ir$A67)NZ9H_KGPT~f%qkBGE)&SEWlI1NNbrp{Se00foFU=$t
zcw3pW+>)d84GPWa^b^aiviN%!*2lG<i%#3>j#nmu+~O9GB*7-*Vn=#`E(+?qZQ`jj
z2j0uSJeRBpDu)RQ#4#bY{ZcC|Vq=Pdqe+EyOYBtlO<|U}uG|zyG&|`=ZZqaqBM=9n
z&tTypxGbYDE?tvKjdX3lt&{^<85C$8#)@cGpUOS{507VE0jIrW+7gQeY@H4$F@o_e
zn-gS~Js+O<{o;H_`^0@e8XD{9YUiKI&cNlC>5A?*?SN&OZu!1T^())waJ*FR$E4i?
zAU_OHghi<6&6PeU7gAyb_SB*!<9x3qhR~4)RlS<UvShLAfD#)>j<XX)ugxMhgs(z5
z&Yg7qItNzIhsfQ35C}c>;uaaU6xNAr#l?(%YxO*V{m^XtnJ~t!Var3rHf$4lu!=7D
zcoT1pTI?fOnC<0LG~`<~vesv;DenPS_L`i`kVORWg#&69mmOa)q^QZIInpxMlZI4z
zhucipTw`>;XSE##kD)cUA6+GPaoOMoQ5;w`WM_cI%-b)RK+g~HxyQ=AzRzTY6s;rs
zC!4j1vRGFl6+R1VJ;v#gx&9@>pFcw!v|K#q^p5yf*MhTQo&LJ#PSa|SQvkKQq`Kq}
zdP$H~c-1V^o{)IQ)||YB=F1UEP^o`#v1h{}s{!gLgG4lwzOH3HQX7`1Wu?vmQ{9_4
z(Q<x1bXJnK(tJ(&i6!klsrF<|269Wg3Iq%#Qp?cB0*d!k_hfc_7xSaLrPyS?{n993
zoJ~fRyX`)H7Wy%H->4&I$zqk5c@n;5uP(SC87FlFTlPAA(ioEtiqe|9VSMbzJh?v+
zRuPS*7V1-0#Js{W{j*Sy(SAd{IMdu=K3`PO*WSj1k8A%Lt+YynzrW7GYe+05^?L9V
zgt5R4>qPGR%){XD<HoJ9sJ6)YuTwA!WnMG^6LjQp`!p;lSEHjLikD|R6YXaC{C5m@
zs)p;eYWIylMz>!+G_Q{MUnkpuwM*<kX<k`5o!ye?aXhoOgN0=(4UGG)<S|~<=0g?f
zZN-5%sYRU8(>pExX}K~E_7sphgO*uF3}#Rl@L4JDpiwEFhXJwVEgU6t81T$U(}s1r
zAp$8C3G3pV#z9@M%CixYrhotBRGUM433qfe0|SIE&epDWcBu#mrfL-}fJjq@TL{Rq
z4JPp`tZ`pjW?GG3arbV<peRbh=r=z48*AL&q7Evv_6+zQ(rp-r@Pn++|1QUWj5B?u
zEShL^Fz|hOC*coW=wjWUI;$-w`)>0J*?KBzYcZhAiMDNxv&T7PoU-4YzMg*2AOjEF
zv0x^bq012X^h$OCwU-rEG@6AYXw@97J6Nh7{=RDVAnr{?kLn0s@{qP(-y55Eg#9?U
z$uDxM1I=Pokwkv2KO@Y)^aQf;cqOTSBa8p^$3k#jF9?v3U;e90^nQ-(ks^Dsd4U<4
zz&df}`U+I)@i6Fhii4I4;-NRZMfx&^_)x(dHv5q~Lu<ez<e8ILlE?*aq^(;(`v-nS
zN={_pcdJnC`9O#(#fXzI^jye0Z5{Ui@I>`_jqJ@t!aZprrfjLE^8xUut*>nAuB0#e
zBmA{~3!(A1?XiqFAu|JNtspX(E3j<*9S<Nd=YH|{oJrV#c!gB+^CWdc#4o(J7TZ@t
zDj1RS!2)`~UA$T>SmbDmSA?Q}Vc{>$<U{eDGC8h~%JP&#aH`COic<!se8?!sKg>~C
z7E=^ZawvX?`-K_Ae+NWuFm&!#>5$>@ri!E82(!=l<cHM?t{o=ZmvwjFJUu!0-z@aB
zLgV#J6gs;c<iOn>1~0w^|M<rtguUy+DTaI0LPfA@=06vM-2#1TUrGDZTvsn|Q}L3v
zzruUlo|LB_Tq!nqN?lSN@Ae~wghc``jN0=v(O=v6Cs|hP-3Vg<&wq2bY4@ZI=q{B6
zr#=<JE|w)*2&m_tD$dfc0s3{;JZI&Oo%u`s{h?&CvZdlM$!|OsY#(M9cgDWl)pmP!
zf8l(D&Wcog%HM?2Tf7pl=>-5A4jC7Ji#o@Vu;1Tx{6YEwwQU~89ag`(Pr)%$s1j6A
z23|>A)QW6d$uVIJigNDxRP&D(zW-bmid}I24=-7+-+hcFkmf}@k^5uLq3M4Gm}gl>
z2V0ZL=fSKk9gS1L3=ZYVM-wJbOM`;qGiipQLthl=2gkXIDYfK=7|{P3<$snksIt}=
z&I)Zk8?(|py@#tzL|h6?tGF9}Qb8F%J-z1~s(^%9V!+-Nhj8f?^`^C^rnLKembXx!
z1M&BXbkD448Ymeo!%FLpptr7?w|2pdICs_6X3()fzdXTvp^ZSknaj}+CZ3N&q?tWA
zmYl9M<Sa+2MytFFMouvzgYa99;I|kvFLc%x!$jmpqUpqpl!!_10J4qIf+V9Q)gp;6
zN7qUfrnB4PM*RPmlvwxA|L~3zZ(rW`6fjkH31P)LTe@dzheLdI(gl}17{`~E91?>E
zKB)M*_SS01I9Fbv>F?XMEp)~=d#5Aif@CjNZm`M!3{miiU>0PahzOPjspR*kq2xz^
zQ=OX9ap$<t=i9Of%j9u0(*meZV4ojD&tER8d%9p{6dr0QzJm+ARYz=XGe9bu^`7r%
zI&b%%-;#gL$S5gEp4L~p{h)p%(6_;bQM-(qmgM3JevdKxfe8cTPYBG`Na>3Pmciq;
zK@A~A+(MK(KbY6j6CU=(UFND#KyW`$^s-FkMRu^gs18nv-qzfpRkLiFnC#-Z4tjzp
zvV6LdY6*=vm(W)>tv~&7-)Rt_F(aj`#Arwx{A?cEO{tN)HB$()Oqlt;^V!$$uVA(o
zsZ~Ukzbpe5_aEu$_3tKAej2)jyY!QNxB8nqVetk{?X-HF&U23&$)2Adf2*!|qao)g
z^NgKl@(QqR>$Qn10Zj+EXu6(Q=@w(sR2x$Fu1uqTpIH{&DzZVh^N}>5_eNkdM^evg
zgZJuT`S4?oO_g|+rlDglv?>*CUudsa!=dWl7U%kct;t1Rd0?&ov2zkXOOnJYsyM--
z2D(Q^Wo}?FGH~d<{j+P~8KCOEV{-5mm#IMxD@eFxM1*FQ+Hb54(cv>x&uC3^YxM-w
zKYY5#L6&hj5u#Qe)}t(PQj+9F=OI!)@QIv8N3`6GNOqmU!E`A~!s2l8OBbP4un5MN
zDgsNw1obKfypHGn!3tQ@0#Lpv5O)>HB424c1IRMlFJE1iv6(G{d1nK4FUx5NKbRa<
zyw}})Xt0Ws8x;JDiA-2v4sfZ<UEM9lg?g6?#+{-RHZXh}M^8{I7I*c^oK!@ZkEh0*
zOmk`0bDobM2F<!SC)lJOQL;Lb(onODGcQ?px86w@GA`xXTKsA|#q!Dcj&XNJ)%isn
z{r$aJ=jL&pDIuNmtHLPsUEDp6{<8V4peg!O=!4KX1l6ED^<g4#3oI|9L002X!<Rqt
z9g@RhMf>nveh}k0S_pm=^>X``b6U|5<%TnIIH2A7)LW+|!Imp)D;T(D)ab(RdnSd*
z@sF{zeNwQ}q2W<pr#^~RDj}NWAF;s2G%)8esnHiO@iN;Y*`_|Azb!HXn8hlVP_n{~
zn8;7pQRkn3CMmOM9z_x^N|epNOYoLF?id`l<$<v<(WRn-DGSCSWk8*3M(qIYqIW3_
zkHc5S{9H!dM7b0n4Y-23xNsQ6(upk!Zm__B9dqi#tbGd{F{;!@`$=SnBavz$IHBs>
z&i?E-R9Ea~NWg0tYQJx~HdrB?(5l1_c0Vp7A;`5RzlNi`P-+v?LlaJZRVQWsJA1Ck
z=7eep$>I9N@e-n7{6)cbgfefp1e)Ca05Jbha^0thwDI{(+|h;FwhHyq8is91{=vMW
z92pXXD-eWx_as-ILTixA+*+mDmc=K8B>eCX69WBLH+-kj9o{7e`GTkf{SK*~T%+!G
z%a{IC&YAgd8h?Zv^Z3Y9KVZ=9%V$Mhw)?wbyh17=y04pz5=&~nSO?Q;m89OAt);Zk
zK7TA{-uvk}kvCnj^*665MLD8aJ#j3@A}+|n-Q;zHp_6a9Bv9HXAhYwK_cN0R=1wqj
zFp=ab8^ZqZM%a9V;aF6%j_S`<)kr1Kx@mOe@pW;M8{idt=}N#P{ing~-=RjJ`i1>?
z)9LCavE+N&M#i7xjB`uZH~U$Nac?BPRu`x8z9k0Q;F0wF1+;}mBZEM4!P=XNK5ny9
zk~yA{0SuiP4Jhfpy=s1>tkq|}WtM9JUdN2Vf3jf@saPNZFAJ<tHP|lk8DxuBBk<N_
z!8}Q0m$$7YJ^MB2H}XO7+k8mxyrMd)NKxOr0`fzd8LeCdX0!e!kYh&1EW}<zP8R}Q
z*4iRHdHZ~o#x^>Z2Swh+-;CxO;$Y;!G0fp-HF``kG7dBRx3wr@<P)p=*TId>=!C_$
z!uJ9gd)=RN;M!eu|9K$rGB9+kM63R%N{3iG1^3p=<Q-<Y%>-i>Zn?~T>6@&<<VOc6
zI}cr4do-}NQtJdilPpV8%Kb9H*WwI~?LDGw8Ij#)z?k6_E`4{Y9Za{{q5X(UDC+l^
zaVKs;3)(`m=~E&=$ErKwGV6d>bh@&xIqRCg;N<x1<ada>Y#1u}3s%lIpai0PdD?R?
z`XauXCa8LVDeru^UU=s2YxbKAFTSW5EiNewOf1@~FO;-1dULUVg9Z{{97gkUq2{i#
zb_qx~wpT>^E7MCZm|%>q-QP#S!WExRP^#EGXZ{8G8{k~2py^?E9S=5Ll8X?tKVZk5
zx}iQTTAR7HF2|A5A2+<B<(l%;q&&*>T<meJ2GL6QBV2WfYdTSxb;yFa0E?T6i_Rl)
zDhiCpvUQ+ii(ss9&bLvtI(2X?Pn<w5zR%AC`w#ci)<ofwT#3pesIcA%)fF?;@9Zjl
z&g>u$A}BBE^4$to2ecm2(W~`7x94$$y*wsp+i-x21gi!|ogOWAU{d#(;Gkx_{tEwk
zR|$<nWB-U&i=-i?u=h3no<<4fB>_jF+EF7stf`R<{xFr|It>5fQ8upZX^OaI>nq??
zrh_;d(jGF7d4DJcfqju=V{TqhnzFePXER5V2jFeH5>X#e7p}e7!M&*D6va@pYSZ1I
z$>o0QKlyaHHJKhx+)<M|Rv*Ll4>a67TwhHSKHYX?R21Rai|iKq56>kmGOUTP25s7}
zLLVvw8S1lGv`+VLRQh)lesDmrP?9V}!6J%L+!X6tjk}A*_})5&&fGtk+Qe|76#6W>
zc%qT^D<42anVM)`=*qz{eSp`a>aO6oinVOR+$tGxqHTP%fgqZPhCB!Yv`flA&TKxv
zuMW-Y!#>eANhs@voCbAf*|&#5vE?3DAZ3*%$3PyK6FXddRg-#cLx}E#h)7llYUIxO
zxD&Nr#96*6Mk5kcRIVdhn6qYXwV9#p{QkUgke#LnN_;`sT|9|6y>yzxNp%aT!5wa>
z!yy|SC8xGei!p1R0nHzASKw3!SZbHaEn9od%?QVz@LF3Fs?H{5538>0nT!f+WE$j(
z=VC0u(3AmzrI@I}<D(1a3vJg1X&;SIK0s+h_@1A8UzAGQ<66q&61kgi$#KtH4mlSj
zv}+cfBE(089IAYzivFq){9kosr;Pc49#L^WjlJ<~M7s@UiVtz-R$?Oh5gB=j2^H0e
z;;>mX(D&>)%?grO&C@B`5tM)_!W}r=p$v}<2B0(kN6}gMHT7^|90dghM7l#5AdRH7
zfRvPibWEff1L+#w-5@Ou5|eI_21)6TQPLYZVDNkI`v)vOH_pB1JkR+)6A`?A9LD?C
zNfe1;vCxwJApSuYsE?|9^QQ&sY75^E{anop+B<Ro?l$04_4hPjY8VuibJ~|*(`e&I
zFG};IzRukF=K+avRuB3SY``YpL6m8n>%cLr3#r0~W`qB(G95%v_7R1zF$LZ1Fn-mf
zhJcqStTz4J)@>anZ1+Z3SVlGUohF2Lw*-wrRy$NH2c>eI<4Q>AmPCYGJUL){Fh^;f
zt@(bq85^<7tQfeS*ZP8WwhkWS8Qms$c{9#0YEHH+C8#(LJ0(-xGpuV+G>Q(fg?|ZQ
z!U@lQ(-cwm>X-7y9{u6H;KNHG0SjN6811NqQVQs#^Q1L^Y8dcZY7(J+H2<FP?zq$L
zW~yd|M}D_vdh>4k+q>#0e8)#<LW_pT6AX5Rot0`9R8af->VD$LtKo!&rT?RqE17Qa
zIV~(=UO+OO$e<4L{$<5H7c%3d8-wvMRish>mGoQW{pb~iZWEW}q%l-vDxcOOp(ljy
zh@Cq`0_!b|Gj9z}pnAvdH`Ds0DZX84^FJ(n&#=3l#}~b}{>&-8TuN>vMTOjg=Q!V#
zIPu`ino*2MWzB_P1bxH|aPe8o&bX<6-Ci+1%za`jDOy%k{a}&&!J>oBEwR?(-DqEe
zd(F0=Hp~X#PkMD(6OnjE?GgopsTv4L^+Bo(>4+>+zc0FuiOg+NnFF@w%ZVLJn%|*c
zH6W~+Q)%P<N(5C_-u}JEW|G)WW$e9DdLRE<&R#VfE{=JTYSzf{-aO-e_YsS>)jR5z
zXtV3s2gSJ2S(MqZ+xGKN#Hfy^eW?TUDS=2nQnT~vnx-A*VzO&v*+0(Pz2-g?CAftf
z)j1+C$kVYNw3mFO79-f`d8w{aEjfD`#~eUMnrPzKON17Uzw&QHw>fzr;7fe^D2?Qj
ziC;ENa(n6>()wHi>njTW46`bN4L|fFKR)Ar#yUG%JmNWl^xswE|C^GTq6fc-Kakms
zKYoS0zM4QY9ee$-O}{pT_P2FZ7e6;H*o;d1<kG6iU#$arP04<0F1(xG<VXMacn6gi
z2NymKYjtbw$7^WI(wG+do{?q$@)2={YFp<tb8WiR?em-9O-Eq&6p4QY`4zq4(UXT|
zmx&v0))D=gW-c7T!E7RTTs4K;(V22!b*1zsklG+7N{77l;y_qt>8X)S1Oz$XE#B~u
zLl;3YsD`2pKXrKV<9AJxk%@*;9-ExbGfU_Ke(qC9UpAM9@!8>yc?n6O%G<#csij^$
zR9Ib+XzV2#CX5oilkiyF_<OWTDHw}>%yC)@vH0@+YX$RDmYI1X53fxbBA)S<O1oBg
zZx=B{TT?ojGRjTf>nm@-$`sG{R-5-uX~uHNOoPN*<hxx|Jko6FJ>43VQmAVzubAtI
znhHMnK!nIC>?X$9K!vq6f51t&j-Ls$T7f;dCNRYflVJ?;6Er>iXsc)I0JOvP5cH9G
zwsWGt-2lz&K6`%Rp29bGMcF!)psE%kTH1f{`6n241R(f(I`ffuCJid0>aP!aAQMDN
zP#e^82yEQ4tyR%1CWu0PgGABE6xg?kTBAhC1Qk05(;PK=Od%G{Ta)kn-ljVzQUm7y
zN~*_2Pid9pG`Pgo*%7#blI)I_n~Ttf91XEGPfL_g`O`072%K2QVz3-Flm(1nBi*1N
zNE*s<5FEmQ-_SJYZ$l44%Y2?W+O5yit+ic;c5Wst^`}TM$2(UBq{Y)&#DCWV&$7^8
ziZO_2xkoOqqVEto1E~NM6ak#BOCBy=Py4amDCrSm1H2(0oi@_<ZE*$>OfNiMKqg)V
z53KoK!jCSuE~a^fO75hKOP=}HSLNC){^Bhm<yjFRIR2yY(IwRiYhHU3Uo~r$SCa-K
zG+&J|vvjd0YZX5f<sbeM`W>^SRT~J(WH&ZvmXm4ss$9T;3kS_);vYo*UC|H%{a=v^
z#TgNoc8pM4AVj4KA!??V>cTu2ps_P3T*)CTvCw-+n)Eld-RVBVyYZH<p9p8oGj~8e
zosx2j`GA6X<7WkV1Buj>dBIRXqu8M2p)CVBvLvzu9wbeLj@O*5{_@>eQbA8U)jThe
ztjEK4j#(^L>;3XFAjzZ6Wx`<KpF|`uZj{@6Wc@HzhPeUHX%$YEiY)z<)h>N0PFT`A
zN~YI{nit73(HNC0ndn^H>0{}URs{Wr0Uw_QrX*%M5R^vVhph4`g0Mx-XHV?kr_>An
zj`4~<K}eGyQM5A3By=#Ewf!90Knvv*QuPOky(v?Tq_LG%6Rfn}5nIm2{wzsvUi9zQ
zIFr3sBJv_S*6x*b9`vWNx)UePjar%^^de~Ig$5mI=qq=)&^^m1V5O+5uNDG+;m0gI
z<u&ARQL(Jg*T>>9PQvrc<hTB}T&o=%-yT9&!wS0x0aOA~vu_=jt+?oo8TnyHRv*>%
zcg>v%Z1@`ZmBoIl*yHSiYlU*wLf+vrPXzw6Q%OsExBX+PCHWVz_*sK-7Wkkn$5E|i
zQ3+G3?S!T$&KgVk$e+{QVLj)%$bsUY|K_@j8b!o0O~-T|gSHC%cKBpJm%qs=u&2m^
zNFdULF3KpJG;zM3b%tew0~$KE#fyKLJRfG41kV~qDb)#=NxWM}iRd*A4<xP2*CDO$
zd7ESY-M>70H6Wg2gA;aNNz6j381mdv0U_H#=|pUAyALe;FG<T9g~7Tg)&#&8On&6*
zYbeDOS;Z^#Z^__c0dIMG(Kv`XfsYI1!Kx%<xQC%-4;DTpBSUroD49y$m%_V+C3fo0
zzlQ05f5G<cWIrpgl9Z~<m&GCo98Cip!-Ozwhprd)FyJubHEjAfRVUL{&Gr=ihJu+f
zA9RK3NyI*LY<`$00!VoCx7Oi%ChT%8sP8E%WOGT$b}`w2PUKY*_&xV0D|Xydb-QvG
z80e4kDNFsla5(~b-M7lpD;^f=6yk(a4ocg6WU~Y@8rmTZTD1%_S$;Tsy`SafwdqfP
z_;pWV7A9YCDB!ox<Zc5kjUx>xn7hIaOvZ0+sN*6&cbe;b?zn_+2$+vjOZGcyrz9z_
z`p&B63``t|w<POzDWh3yoWE7;kcv^+f0?<GsmDE*DcHYu_Dlm_naE^`b?X}@j|<`u
zU;cdhTV>@Q`i^Q?ODCL;PWL~o&#Ca5q^haG{pt$H7WS^~l7F~s^fArXC<@!6=62fJ
z7JgHf-`#P7HOc?ft*Y~py8}M{!4%^6ry<qHCdbD|&~qF1RQ+a({W3Y|t^!U_qUdB?
z>diFr@ak9dUkgYcHcZ<084q>U>DO7B-LbD3fi~MBBoW7}>AA0-s2u2(Z^Ml4bRHHA
z<4RgN4`>tyvPAY%k9cCsBWF$&lIC0!{p>B;U5FFjUVQ4&P!Nye9lbZ2#qd>Br;>+9
zUd*EeWE(8wEE|@FTr#9brvqbrceMK4u!5s9gvN+A=Q1443J$!Lf?u_=*%Vs%M0?5p
zw$v|5H5JBX1d)_!NuPokd+E7)WvHazcosXj#go~sF`@`+D`O!$6Ao<eyT9^O%l9&y
zhb1i_1;Y$4#*_dBizqDa3?2Tlv1@wAiDBqevL&jCaL-7cc95B4goKVnoY#A%_7c)4
z98v4dShdDCk6}kRK9%2CC)uC(6Y?suY^k5JbbZOK#KG-nff_H2UH;;{UgA^<<#zoK
zD_q@UQ-&INdweBb?CxKe)n5#^ju~*z^33mivrfKo={zW=w{4EB8_28Q3v`ts8`&tH
zZ^-wdx#3^b&mb9Xlva<F9<ilLP9WR+0hg5)yD#vs`7s3(Lm~*BIW{cY89><|=mTgo
zxd?y8QCS?F<IXeD%pVy4ycX0kg2-RS1J^@H>z&%1H9F4>Xn>`5vUnQW4XGIS8{0nb
z%9fEO2`i2NdmpMyO*r(Z6RQgi+1#CH{|k4(u+{W6Uc2WqMIF#f59q#{vnlNS@@@-9
z{!L^!HaQwtn4@>Os+@wcn{B*qH!DJu**z+%Z)}LMO^O$860*P6BOMreCewyPoE#?(
z%R*^i$=r7~REW+AOUa$~T^&-}QqcZ=T>swe4gF}IRiaTgY2bj8a3dp+mfyvZ%WR*4
z>EH!^$-|-_4RC`*;)XtO!jzG`<>WtoOO`+VN_(GSY$;h>mt#qsuK3pTgwaFp2MwwV
z_hG85_M`#DIonQeiO4e1Rq_GkmEDe}X*a6E6}pfX0fWSI4z_0>^U|5_moTJA&7;W8
zQ+%}b14(?$q1%RQhnk8|p2d@QAeMO02;S<%ZO^mrx7gIT@J+VzJ5dbpbhVHpxvA<_
z>}w;UqxIVTX+u)B)9=Q{N<wK4ac|E1Nr+<_Pq5ZXj8tr&E|YUx?6t}`b#1yZlCCa!
ze)U!A0b=%wb68rZ^Lgl&ya$%k-jVb2RD)swUq)r%8PTr_X})=Ba`kFsJJH5m{-CQ(
z7lx8)JKd{fGT9(vvzEH#oncvlr!1w~@q_W<jPx+VjXauV&#p~)50t%|c%kpix5!wX
zwersa@o3`m2Q7maE-eKsMHVj=e6u!)mXrnnZV!2SR6EO7V`qbHjV}~p-^3<qapQj8
zyIuQ>iq<Mj<L&UFF*$#g1WT=;(!bpb_BiezcOJbyV0<GZ1w0blYu<e~(C;7*@cSmt
zPKV9DUvOiKs|`O+U?{yg5vI@>UuEo>dvo$Cj)Uzl&u$XFu;l`BnCGWj*-wq9UzY=u
z6rI2_hd@>K<A>>>)I|OGk*TwJS0UwehDW4aU+T>80pLs~mZHZ^LdrI5w|Ro{VK|TY
za?I~k0|_6Lx_0{T3i@=(kxjxY<t)~vw4q_ff)C8EdhWhQPWGeGz7!N+YL2oj4Q*#B
zg_z<et1e5mDL2uq4$J!z)9Mt)Jvr;Pr1~<~rb4|OlZmE9C>?)7@ICc(R~PJQ!w5S1
zcv>V)zdPqKDRx$E^S26>-E}vo)*T$>nvfRu>+{YT8ygj`lxCT$gwAGMj!i>Iep3cf
zS7jY1Zk#6-F~Z5u*P?+@#wB{uylQ_bJQQYP3BgH-%vW6~ZEepLaQ+dJeEeG9p8}xz
ztLEl>{x@y7vXi|xd0V>a5hcxu9+*2co;=+{@!b8AHZAuB5x<YXr#dlQqjE-%uO232
z-e1c2d9rNr42IULYn^Tpp2Thz+7i53Q!1{fOg1&bdM7eg^s6<o090+I^KB4BKB6~t
ztJ$3w+KL;(qqkKg9#%H3(Sw**Yi^#Idc?@N;2w6EZK=Z|zyUI=X})6&BKkdpTr0Ii
zlByf+7bYz8%r!Ec_)vVL-jMZVNfWF;A+FD=Riw4qqdsdqg5nmm>}56`mm^h`=1v+k
zLv9D!w%!)R=`T?ew!0{NL-(pXK^l))ws2kjzBq1yzIK{V$!rvX8QXPGQS(~B_5wp9
z=&^qOoGSiuPF(Yw39(e(Jnyq;ka`onY`?Dp;uH_!C!YQ(de9I5?`iY`RblH?YVOG?
z?oLePs-cKxN>cU5__iRf?b9cI<Kj)R4@~`l2!XBcRk9XQVqUO5=91xFGWT8HGf}1X
zRgjtoE5F7D#M`y}?cMTCsEY7UX$0E*PSu8y7^7}ehmmV(o-xm1I8|@f2bn!}VhZ@f
zb7~F>z_!m&x`wR5e9HE(4b|3|QMf&5zGJgD!X@Q6Lv9vYE_6vs?2C?ATim~dhTh!-
zZZpPT@GUBB?e%6Iv&f_22oq*0w((6~<~)^Lypu}Vq4Tl!N##Ksc4_t9Gg&%pJz;h5
zl^?(wqODT>JdXjJ`z7N*O?S7BmW=x|oF}vX@m9`S{Kkp=+=SdXH}%zr*PcLd77xLc
zGB$h>E}lRBNmHYP?_+<Cv5lCBpRKLd!ybj&EIFBr*$Nn0XxEJM7r9;(ZZbyF%!NYy
zt1x19=!oZv^Lma#Sd|^LNBi!RTx^1MloBalIHZW0JO{S6V!ZK1djU+26E|B3>p%_y
zH;yaPoT(yWC;j--P_gn-vJ#cpPKw(W3|x*DR7J*zv!LtB(edva<0kPXpcHf9x_!GS
z+{Mz|`SD-Nj0(1|Y<l8Tws1B&9=TeD<s*D$dKic&?cFrVO<`h9i`@MCwcT{JLp5*i
z`w!Kg?<jG!-U#3wCPp@>)Aj;|VR#y&T_BI5I729=^kNr%Y<~|+@^VpeR||nv>h3wb
zB`9coAYJ8)fRXX}y^zX_q7lo+zt^)zsZdKQ)eh^fF;|?`eSgL^Qmx44sD_+f4|7#_
zFwvUVKo%z(_j~zJ#7h!6a*w50D@<WB1S(>WQ2l>BoHXWE^cus(Hgg2FdKu{EE&z#X
ze+tIhq!WdBFnOn3@pMwhbli6BggNx{GZLPm7gRrM#7grQOKQ)$x8f-Ww@f&9AD#E(
zMEv=EqHk@LX(L(s=^PsQ;)n!`tro^t3X_?$?wpZi{Rt!iJ{D1mTQysy@4g9=Fc4fR
zcrx^5d4XVyt#yn=13gU{%U#8WtV$2g=lW)UsY(%~Z=N{KbCt}Yy6r)|MA*bLpr`;i
znH+>63;oEdrV!YxDx<?SY9w7Q5u`YC@zV*g3dT<IRhEf(ge`}(dW}9!RO>^G#a>6e
zE;<r!`>Rq~BG{;rL}Axp(8`LRiAkco=|3!`KiC1)8TLe3<#3$FNofX1CwsD9ExOJF
zF?`I<xFoJE)zJN35nt#vd#1!cTFLN4P|O!t$Ke8RJ)CsE(c_mVc(ZbSAwfXJvCLNE
zI{hT$g`s{4#A}*rIPOV~QQ#0rSHo_euD}bh+xtDoyhhQlWGWVKa%J%5C#<j)+j65;
z6#JD)X?=y5DP%6@M78jULg9ZVmYS|4C*5*Hh(ds!Qs8}x`*fp~P&&({Mel{|V<WG8
z7wJ5A^4iY=xf-I?>VC&|{v-_*MtA=BX!w9G#ck+pP42`87rJvOSBML=ad9TF`>}RC
z@{uIL-SiL7b0r1}R9*-V#?+Wo-Lb5akMs{^FkwaL6Cxd+Z!viL18N_VO)pF`Tx)oE
z4Jr!Jxc9)!awD;eT9USW;wKDurVwQr$+|TyOc^(*8}sF5;vXkVpX7uh;kHKs@+9go
zvkiS1coR;%<Vn=`*Y1G?Mcx<%<EdN{7%R2YZFT-IR(#+-d^YmB?mM$4w`B^m;7%b3
ze)|HZdY{}bRwcDtgB<Xbrj@lDfjSkUzn4uje9Vf&iDg~UWMT>iGzsa0J<x-f-z2z3
zDH7vW%op~+0}~4GzlD~Q8m;U*_m(SQL!s#uj-9lJUS!q~`I^Z+hKGKFvv!t|PbOXr
zRxF_2S=dY-*U`k*zh270dtQGmbhhEYyq6c)-+rAqa^goOE>>?+>457-_-)@(H|E6r
z4Qt5NiQgIHwK<|RL~En8#&@TBFwsy&HaXslyAdrz{E&EdK2i~eR}YP%HwIy2|6#S|
zG0JQtQOJ;BbbPk*0y>4;CfyK!heeVR5!E>5lEedP==S$fw~LL6GG0!Ey%%2wbJnxh
z>-m1?#jZcEVu`+*Kq^+%{t<ivkHNg1T<MuCA6Pv3M6;y)TMXZej*pseJCvGye^XFg
zSSY4z6p1pB@&>ZvWnRN<k$eczVBYzoIcK{}`wij7!cvx%C5@1T=aP2I`ozI>Stgn|
z9#YbwcM>r9)=Ap_P6>Xrk*Z@F$E6uaV1*wCv9`dGsp-D-6IV?50^s*XOVgv}Rqm{N
ze2w~12b6jrQ!)`gT&iN`Up!hUc#}uoe5BwN*{lA>HQ`pphp_4>H9=4Gr7gw&F@&G;
zxhZ<ikBrL&d+vk!;~z1v2rlT&ei}rGY3)jS&uV$I+^Pe!Q8P)t4NY7O7&QPlcZ4Dw
zUp59Lt^5paROi!(LOyAZJNQy*on*B(8AG9bg*6(Yce#(!+uG~Ve0CtJXE+gindKAd
z49ufRREmCaB?KRT`-vSGL}D}G(w04sECgOoTF~7ajElXS0K$e(!ThImSM{3w5AIfI
z-!JutNLo`thlrO65BKD?F;oFn<6K9Y6#m_^fDs^S{B=8Pg=}$2&s5v^bvh~C2JC<t
zuQ#E0*z9<&(}zAyr%%@fqgnWS%Zr28{MHWTc-(+I*PP;RFoF{Gw&vUTdpU8pnXO5m
zzX$1sR50G!cWXY0<2vWsqQp?NzRhp`3*%$GN}A)^ruA{z>8T74Qgag03jC|jPqkfh
z2o8AQLuvLAMR=&eKCzYha<i$#@T)T6H=lqM9Ee*E!{QI;>K|TW$WViWdBiFkd7+}J
zKOt5ETbgMKQTuuUL<u_9XM<wyAF*&jx);vkAKQPv8KLB8lVwzbSpo7xnP>9gwYKe2
zNtOL6x0mwDpo^G%Kp*JUO3om>Q;HC#0*ngdawSl$$}kB>fD%>2pO`u7y8N3{g`H6b
z|1=p~0)7Tmh15I}H^&HZj}Skh#aQ7}*q~7kiOnTWEVEpH^`>%u4*k#~6~TcDZB(_>
z^+agbMwWj~Q;6^g(G$;y^FOVbdQs#k%dyVvYf3!P8}~G=flmQi&+7#Q8GH$i2F%Kf
z3L1pMC@LQWZy-%m(mWVB0IWkPa<|xs=ZbK2hy-^uc_$}MhvG^p_@wtvpxN?{bx`Yl
zx>IQD&G4A&<J^x)2TP%uzCi-*E&OY1M$nJqwH(xvq~N9WQ2&kWTymsuNGm)%6Z(8)
z<g>sEzCY_GuC#W?g`SwAy_s1qNpA_)Tv#mPG&EB(^CZ&D5@KzaYbX-y&lYb-O81P%
z66!oS=DtnBvj8~E$@dTd*MOybQHd|gqXlz;5df}i&vx1BLvQF#S7d!ggO3roUbR3|
z^622^t$>0VtgNQFC+Ls^Cph<wY5FD{%^rW0=(9N{eU6~)hSS(AVdnlymzMTJT?7nG
z1+bkS|B3i>NS2i#UPJIymT9-EMDr<{z1L5)r4wcE|FWQd-WA^ye(I+AOyAJx!1R6O
zE?^BeTypXYWnTC@_?$Q{svip-4!-{(V_79{+5vbja@)z>K-VP7=ccyTs!l9|B&L?q
zRL&stk)W}#3HB<_20?rI)akpp7%B0Ot>3infV0i`-z)|RAO*l1*P*8c=;WV3M+_*^
z!mrcTluh+5MV(SUD|&)Slw%Xq)Ka%Mf&k1Ha@SY1kC6ag<tS98rf*11Gpz^3{gl-6
z$l-ToblH7EFV<IdWRb<;*$I~3#W~Xd3YZ!Mxx++fPlV!w*9kE68+lYl8fn)QOTtB9
zn<)JcwUKNe*?5b>2&l>=_r&1U%qYHy2l_SkFqk^RM50f3bO7(-&a0rY<@t?F=eeT+
z)eEvGF%(jvo~eQo|I)(Ov<gz}*GkXEkP}zp_r(AY2#&Xk25)KxV;kC~1@Rr<n^b+7
zMx<J-5UfF-Wik^DF^8#OO^gkZU;7^^0M+FCeYT7h5uFl>5y1nG{DSH+X{Wf&?xE#*
zzP6z}wreQM-Sl;Ho33!>=~CChR>TSUZNnBkF0ZyJpuuPv807)Eu8!dkOv++YZanT1
z`dgNAe}!j@T%bB)E8lb$y>nCl88Y_sh?>+k{6YcAMKDz|<bbaKi$#<5g|EtU`X<Fm
zY%$ys%gGKK;uKGtQB()D#ue|OIEa(9Jq2GEl(|}ar?`c?Gz)V3lVjSM?M}LOVi2Rq
z8yt$x_ic5dI%c`C!NynN$hz)__u_ipfa3%97V?a7JZwa@zMc}l>8VKE?%cb-kL9tS
zeQINTL#Ibrh0#HiZ#q&QFfbtF`%TDUn%t4}dBLZbInsYtd82-)I`VR<@Irgt7O)#N
zH6Sw>dE8JpM+)0H8G0Bg!O|$dP$n$x)@`neK!qg$Rdr^7hv5G6EczP=tIzyt`@Zb@
zr*i{4Sl*onIvAlB=KnP>;#Ma5sQ&8L3`@LPeP`TFQKplJ8{Heh<@+>Nm8Z@_m7j@w
z85%G@JO_2=g^gUNT!%rvRdpi-gE**Au$He(s=sU(Qcor(mj<nh#8yJ<`EG@xaBhK#
ziW$j%M5gzOZCYcwFv4rtisXGPJxi$S4|XOIBVjaAfiOJsluuH&P`S?P<h?>Xb)V<Q
z-|-0Z<cY6b+viau%Vq38n}8+r=al)!JcW*!IMt6xwFE=MMf7*p5q{A7KlIoG^2|{C
znC)-(@_?10r;`f}M)CFO8HPu+D;DhfT(;MoLB9(PfB6r~*Bllah86I*JUmIgisjoA
zzXTK8+nlv>y4y?@M@NUvC6%+{1>c!iO`hZt5q_+VB+nf;@>)tQW5WT-(zjo>cHAYM
zJMbpno_NoF=4!5A6gDpj-(~FW3dxiSvZzHd2B+<f{&he!*9RDniR6*@y#RgoG#mAJ
zV&VkCZ=p@`dj|g}aV2+OV|||}$p@b>-)PID!w{ph%B1G9Htrv<sT-d6G6-a(sdl{>
zA)jh1GK^UDu@)L8Zy``*;S}`~LZ2(u2KS#=heJdvKs7}aR~7aH_*Oup^)u(!`}oA<
zdO>qB%ij#^cYNqU#Pw16mKe-ygS=rHdb-_^r#+RQH+1K}U`?sJytMdS0VGh3E_#$H
zppT`qB04ofOpz?c!E03F?=XqBR+@9e;}cSs*G4|>hEhXu@FiX^)bM0{xf9Cx;_rT@
zc;{#Q>TP9?_ceeb3-Qp1ze+$>XLyxnOi5S(ghk9dEq|Uywf+0d5~{1<j0~lZKXxk4
z2Dc_Kl-O6iXqzSXnk^YTJK!m{sxii==Epdd^!g}u0kH<ju~_CvHIhi8_!68PJCetU
z+{4g`-EkVA-=WKe{OLtnS{5axDwIl<L9rfBlpF9Rmj}>TrAro{8Qmh@R=2*TQ$rNv
ziL@tbl9C-Q-c^`ytbWut@to-PE=DYe@|B>yuikPCT_lp)yi*8lZHkf~saeD16ylPH
zBlM8=*EE)UgFwimK5tR3$JLkVqiVO1kR3yldE!NmrWfv;`sE2R8^>EW@Gjsf6E6J}
zjE*-&N$nloNQE`{(%?&(avl2Q$R9r<fCx|e$U7La>i;44s*52G5Ikp(0@7#!<@A%U
zbswb66ITy8p8PfM0LnJiYeH8tanU3w@MrK8o9x@M{kPv=uI1VKnyhK5KMzbrw^?5)
znHR(4k<}@k%*d-!H-rVrNz-3A&4^mu>zrEVwMJBH<!gTr+JHeUiA(mrPCkt6eTFn3
zV=|Kchh-ZpFNcOA@c(V4x=AVOoD0UYv7blY2~BfgDG`mX5X8JBLIMW8t9tYz>b%dR
z^A)-RLHKdaWPC!1M%83VUr@rb$VdOmus+7imO-lTn*6uj11GB2l;xn4Wu_s_a*=Az
zO|>GZ<$+8|0E=IoSMZ{`6(+t6r1(+!+iEvV$<%-&WROOui|`GP(8AeHM$f#@=*8-F
zjkz^7-SQu-%?e+6Ez>rcRY(*+{xmb7Iw2@;0{JOJx{xN|=rnQZI-;J5;0Fe@7lLa!
zEK#@ua;#*eud_|`8lswIqzWWWU>?5du)7cZ^Cvt$sZWhHyJJ~03Ex$f(BuQ59%`na
zXwGNO<W8LsP7dt5*KrUuO()?UD5cbF#Ghwg*jmiIn%cu2Wo>=vl0RN`e0UBhI!|8D
zHb91}JH^mJHVv$=j*?8I$3d}mcg=`~8WK*-Z;H6j$=Iit6Tfe*Ltv~v72Gr>5s^+6
zrp)Urz8Sbns?96Y4LxZoHDC2>xcj!x)RlQI=AuMwGN(R6W9*?ZuRZ*|w&nB6g#X(7
zTC;8Ks5f;seaCB_Y`>VRhHL!tE!O$KQ$Z7#LOeO+==_v7BrfW;GSTb!7{`tHXeD)<
z1}W{{+n*KstfB2m{bZ2=$UkO^I>UR{Asok3ogHW%q#_ZP?L@_)6Z64snB->m_X5I1
zssY85P}G25>V<Ai8M?H4E?MabeA%AvbQDw>ASxL;{QCq?2CONd86oaA8p<5Dsq#Q#
zF5z;T;Qs-WPTQv+b&<+G?XhzE(-Zhpf0cgLQ=~)aT0@+Qvjt+aspdyz`Ua%hA|>e;
zC%o?&?&JL-hw#O=USP$${_2kH$2h#?!#@*!wY$<N)nI}=>u4F#ksu}P1g^6t9aMEr
zneDHA-5SY{-9d(O0((^3d|1}G8h)w&q$xXFnvwl&W5en0E7?f_NM9!~`&%(7O#@JB
zQT*YH>8oY*Gn9O<AwN3W+RMcWR_Dc_kTP9(W5M;|SEmCB^SZm%N7A6uV%47yqu#g?
zouZ2{NOJd*NJfQC0w18v9ybgRz}@VJM=1jgg05~PE3ZjkDk|bpJvc}|_q;Zo>}0j|
z24BTi6=(j4Qkvn(Js}G@)3Xrhel;|Nql`DPMt;|^af*K3bp%JsbW_|ilvWNBmgG@|
z0jLGZfokt3VRK?|-n{#L5FRcl^AA~tcAhZTdP|5oUWJ06yL7=khV!;~#*ZI8vPsM1
zey|8@GpJ{8ovCimprRj&Bml|L?)p|fEDBrAJ)FPK-F+DByG~p+j%2Hwyqsy8Hh<l&
z7#jMkjpA=M?>l$w>aBSMzy#W8l&Kppbe=P0jVsuGO+4cJ5RTs@`9vY}W8rKnR}Gp4
zxVoPr_l{{1Ge}I@Rcn&s=6eW%b3yW=>4u2RniXTHuaJvflxVgFYgpFxS0CQ|B2Rz0
zR-h{j+=xeK9>fu3#)V&vL8E^<fvRidHpvJR8+#NVBRSbnv%q5jMzzL1EvevA@lx)_
zu&QpU(ep|5lbn=fhs7kS0rY_JBSU{`KYUM#k8=gHKz5n!1m}jo^%}pC^`I<GB-1yS
zo}ti3`%!1QfC>}EeMuWWEzH9S2HkvGHc6{%4}Fdqy9&9JQ(-&0ijD(Hsb;!j8gqJm
zv}CrW!BigTTHNt5dT+BS$~8k$Hh;fyZhkrg1UY`XZNe=eqN-+)A50=hcjDQa_gz;e
z%#Q^Isp$YVW4^RPMfbGJZyNQOh1HJFx0HD@3^l^Ps)W6zx*Pn{ZoLH#za3}+&?&v(
znM*ujidHVWImD@ICL~n7`{-ouZDG4sKu}(XcHr5TaH-2C;IY^4Hna>6Hsm9<Ya|&4
z4faj(X1H(@ES}97LG+q*)dHxuOcsVMLCFV$_!_+X46q9IlOvbpMYN#yOwp|0(?eZT
znwg6|e*r0xw`u}yn9;h$<h@tyZ#n<wmSzL&!Uma_5M5jaR8ttQq~2ylM5@CYYg3DR
zN^Et!xu=T|C@x6J{=!ty$nZ3(U2M~{s$n9Af<+Cgg<Ge3W1ghc7?>^cw`|$V_R-rv
zVa+ks*x18;OCsUL2FqZG^kbApahcKT6Cai;v%-i%3;5Ee_P2i{sZV0U-*WzDaQl46
zgSUG!PNaeM`2myiS$_;8ndNDhE-~pDUXuuhQbiQd`WVf>8OZv*O5XX>**o)MjM5lI
zC-TwIGupkv+d=R@ERq{@{Y<GMuL-iz#cm0affx<XaY8Mhq2hWs)LcNFVfW5BTlnZK
zLaQh{U;q6iasAU#8@U8o$;_Flu9|k0GI)d}p?~>tLfvYSf<u)ED%)_P)yDV*xz1!9
zo>sju^i!ty-GE{|GOu@uw>}qy_L1}^=KsSICNNBtiRLyP%VZT~u?XDRan^)s_1Yr5
z#^y2*Id=2f5ejV__E#h;$DGU5tly0qHAl{&|L}%{o66VMM+)g>2E=*B`Y4}lC~t%x
zCqV5(1>Wn88;I|X=t}&;H)pGmiLk1vsh@`7!j+2E9Zp_N!=amLUIEn4k$)0b6#)iw
zEz`g|++YJm^?euJ)SHZL!@Zu<@ar`x;I3J9t>^%<2_&LN%1(KY+AnP1?5uccG}aB^
zaVqmQ6{J3Gi-5^*RpA2-_6o#XYAxN%rO`8u+I7noZ-t6lr!;Oa5o4-X?K7XhFVfV?
zx{d)ofTmBgjhBb!9lmE`JsP$-TA<#I$>y{tAzuwDO@qtKd_k*}+Me>9lv|ohEvOVh
zUhQZQM^g>OS*8*0xz8`t84Qkk5X3UC)Yk|mX=;yQz?(85(p)I@^ze3VON2V}AxU+z
zhpm^Btz+tozFyXt37q8s_K}p0V`{a)tjw-H3ZzJK>AI(c$t2EPVv#CEo$Hg;<yRvT
zb|M3Av5TI}swO`*RQ}<9_nhyh;cf9CoCwE2yefAhlw(i^9}*c%;uw!k6xWDzC4;Xk
zHu54Fu^z~6;a3x+Kmd1-z<FCQ-L;4AmD*9!{bX@L%2qZsQF+_C%6+Pbz0g|naC!7z
z9_819)YL}Kj(UiSindx6);<_jJ<45M<aJM=@fmp<_jUNsspnti3A;@*bm3-R_>%ox
zCQ$@z5vTi@w*koM88!Qco4hN#qY{Ao=a`_<1GX6f9~@Z^=^|okcdbDeSFDU|BdF{h
zK+_ukh8{_xpUVM}UaxS~u7CKA<x+ReSj{)g%<5hS2_+e?2&^cFV5VrlgGZcVEHa*L
zTX@h<j%?BMnsJ^rR>)uOY28;tU!^wOTj;BDE6<&;Eh^4e5b*VKX=tr^7TUYCzt+O7
zsh<AbMU8n@tv~p4|0_a*h341e1JygF)!~H5Y*i|jlaP$xQjZ3>&eD7R33ib>2kV}u
zx4oJo2h<F1DaMt~bR2hDmKrVt?hcX^r^bUZ_3^l1W20q^`rIk}RXi6&xGQ5jzz<~<
z?e4bHhpcrTL~C&AZ?a6rSAxs$3}lX3khxo<{*<dW=dpN$tQ~z?@*d*+PvpDFl&|qN
zohyHM;N%v0rp4YVV6ed?{Vp5e2+F170*zfL=l+z%%J$pO&4WwKHY+6Lv%dtIe^X&{
zW_SSp<mr=zWlaLqGoDAzZVxPpfqzm`pMTGyBY}SR0O`H@3G-{3t5R?3xfh=is^wb(
zO&2E}7n&?+3K$7T_FUtBlkyI*>#E&^q|$-k`#qEn5+j-?LNW52V+_;pXNEQF|NI^P
z8iMt)b&dUdQD83<_BS!?U{fa)-vEH)Z`b1)I|<xcsBHM2VV*SpBuQ0}1QSEEhEQ%K
z4Z`kksu4qUaR8c^%z$B!v1harihTN}5BdV`oOlG{7vPK}uy>i=w!ajkg8Kux7=~+y
z+-m}zal7g~H2xyvC)C@I-+j!oubk&pW_<e+F6pdbO-J_i8rS547xop^7+7kuveXs)
z3dI)mOzwDR<;6RkVO!qbhH;I5OU9Q&)ycrQhOurglWqX(YBZWbu~B)P;{v=MVYI0h
zjjxJ68*jS*!NXm6j*`EVz=)uVr!{R6&n}l04xc<6hBJytTRT6`M#{ez$z81&lJo*P
zL9iwg-O@Q-`j?qk$EwXy{BQRVmFJ%$Tx{A|NZ~?{QT9}oL+O584T@F)<sSmA=Oa@m
zil}B^OHbS{1_dzfKg3HG7+}ACltRI@7o!)wf2-Ns72Ybm*0oWkt4<@a)hJjFsv@jR
zB%wBM>_{P#^57(=a{@-Lk-(z(+Q6=q=;lKuQz(DG(8k%11iF|AKP#Ne`%{(%k2IN@
zra^T@oep$(^|FG+SgW~{2PsuFKl?q+i7o3#CEO7(Tx~9%kZ`37p2*)fR`LEeu*;V4
z@i36M(l0_Yd-Xk@K4r<m#o^<&qyF)>o_-{gwZ))^GZtJLnLZ#BoT(SdsE3@PSu$R6
zOhe2WHS&MZq*k?kU;Ywjo0%LVD?GXMFtT2!87AymF9QUK;;SopE0L@i8mn50!Jx_x
zcu}*%GQDImecR^DorNgPqs<~u$ZzES8VS-ZF5i7hETe&I(e+R(il5+lBuiWJ_%J=W
zhL{vY<VRZG{EB@?=^E_R9Q9|?P6Ua0H;s|LN>Xi9^m<aKz{n05xma}_p2Awh#@|uF
zp_Bf$@sGfsv0a<b^NgZ(bL9G2e?1=SG<I<;s~BXy8vRh(iBN~FZZSSaOLRZHsA~oC
z335r2_06#Ys~=goIw-e{Mg;~8eRDd0)W-f;74SR1JQ0G#8fn~VMj$c?79)!kwK?;e
zdB1Xsq;fjz#V~~YJ>pO|N#v}H8@kOKSa0$O(K>N_wm;|1n{UzcK6m-J#sn-cvRZ4k
zTIfmc@glTt8EbyHi>Ava{-rGqTXHFyuSc3CTyq+l#wCW4KD4#82|25R?2K2xqzm=2
z`h<B~nMVMln{6O;HTB%;Io!OvC#JbDUQwcJtgOL=C^=z2)+11T%JgKItwmi%0YyGn
zlsOm<bH7ckOxiVq*r4AC682y_$lmAysh8KK8Zo5JJD;kE%3<t?yvWIaSGS74T<KK}
z;@C4iFB`3Vz8gF!u0pBeq$<vCf>vk0TiaA;UTfdSnj;VUw|GQ&7<JlP1We?MGB9(g
z&IRU9_6dQLFZ-NdP|I$>0=ImLdRk{!YCS8u4dcqrpiS!E23bsMk@<bUnwtaoWC!sV
z2<EQ)_#UHg@c{A+?&q4R>dGn|l5zRH5hg}X!J$57=}#k^d8Qibq90D?1+OA`Dt!ev
zrIdcRR#lAwDFlw_4-8h1|Cp%o7$6=<>5>-uLQ|a1C5?LB*fVeIHi*Ki2BRE>!8H1Y
zXstW7I&L>A^~zx(ZN`kR%}xEi0q?kzlo(#%Z9Ac(af2}i8@r9|sJObaRg&#7XmN`x
zfdE;~4&CE+!WQ=Ze%}nFo?*v~dD8j2cK@S0gCOC7AIEkq7F67$f0CWr#8~3IfTZf~
z&Y1mP1WV2B>4ph=&lx(!P8_$-3uaVUA6L6@fNy_IOj7z)-kaVkHuy_wj^)q<*Rr+l
zRJHJ!o9hG}Of)Ye|6yWwwd$0Dr;^&BnmE6$@lBGb{mOUTT}xa>iUpWb{Zs>&Rrp{l
z$$Gy%s%kbr%C<1@wr3v8YdLZ!SmezFmR^;oc{feNb>#77l@Wq`?1J!a5qe35$PUHk
zeASjQJUo6R&@$j22N|qVG&DXb)#5WDoQPjqAHcu2I{g56RNo#6|I5&~^>7b57~x@f
z#6y|rMTyHA{o#?=k|NixW`sW$fKpX&Z|s_@Z@c#;!Ir%C_K6-@X3~2xOrTCU!$g;2
zqsri{2s!b8iJtGJnaf~H1*8|k<pbR+@#2mHY#0j+6C&jIc~ZiSiS6&uFnJ(~s4tHg
zW(3zP_H-P``wHwfTSY_!3B7$Q0kw$R;!D84DW&@=y)&I%W!d~eD&wZb<&K3ttevpX
zGhGoiHW2-lXGFmbVaw}ak%&#_RUujKXGz5(@DlT7j~bo_zyRZAktK=T43dNh8~c;?
zJQfv!^}*MV4A^v<BQ4$)CH|t|?0tlW!~H~IFJ>N?7i_NliQDPfV~Wl@CkGG;IcBNz
zv;_u4OU|0lKR=To);E25p9v(bn0M=`YygPOo>s_;$jF#&&Q44WDSmYUi5X4y%d+49
zVYz<oAlDVCALYJV>ATPDvdIfK+*>L@@}%WoHE(`wY&|fZpiikvs>O%&(j`XX(n=m@
zo8j$t{zHO~aS^c^5HKO2Mi~E%c>|#8>JK|=-{l%CN&o&VuEO>qsELGwif0Va;KTea
z;q>eO^crQT;XJ&Up}&*18dKe_aRJBr)g*Y7Z>h9j#Ux*cdjpnc&0zPXDtI79VzbI`
z?uOY3T4c8dt<)}fJbHyt5UEVeRh1QF!nv%rizAs@pC2vjIsAUm&Xw;s;_O*4sE;H+
z9uF;RKad{ZIl?(|YL+T0gn)jKzsM8i2^(hXh#z#k`@HyX`Y;#o7ZM0=Z|-t;Rq0#$
z45uZ1fR7sdXzBh<9jU2{b0LET10zL`n>HJKWi|;rLRwv$o(r0R(x!|8oCPCF8&d|e
z&8+0JzY)TMAt)Babs)yltIY3jYv@{5nQXR6W!*wJJFQ7Ifwul|%r}snQiE`CY71f{
z^?hn)%bo33+e8q>by{X#6c0?Dt&&NHrX-iIO6xEEQ?usW*_hYNW@l+?STBw&qOPhQ
zPi*m4Am`;#@!dS~awz)B1nT4JhPDhdpL#3qnAX@NuP>KRrdAUYUc7}5%>XJ+5*ogl
zmTzVa#JjUEO)b8W>aU-7QD@=1-DwNdXWQ_2boI4;o1ae41MWB5MF(@-tm5lilb(iO
z=;OD9^s@X2Y|LA$Py5Oi^77m1?>)lcdC`#EYUTMHq4=p)tIH|?Omf&&Ut|~-i)}hg
z-rtxkJYLAsDQ&RXJpJAoFJgEV#G3Nh;*+Tgav2f+yNyuEFnQBDLa+Z!F271oCyh3x
zHu<gRj>sFOH!n1eB1~rDHc&U~<ub>jD6n!G09TFB)`@eDceqX;`&rzqkNioq`ngP|
zceloOh2j{T>;Dp?d1nEmMrol-2Sn3vkJ3>B!;t(X1!u(DVSqglof<O+9llXX%u$i}
z>?SeYEoSTMxAkn+g!o<-&HfS4I>3z92=*}O1y^*A_%3#pttf?d&#N1YJH9MCp3{V;
zKf`ptE{#tK9!Yx?FT;pB0rCbo9Olbb@4BA~zwlMqY~~^%k?|1j<;};g^Cwm1mw5MV
z9C8zi21KeSDs#XN!H?mpf1=*q_1`01@9r(D1xfR@syrl#!QD(>sW{UWKLzQDF-)Vh
zAMo8!E(paONC8@D6CA{2Ikg*ySh_uUcDee2EwnFjDApN@DS!F1w(*Al_sbU?|6y6o
zb+v}mAdNbR{>dYD^Q)snTTvd}Ly}4bOD6p;wiWxomhHqtn--T{^+@DB=bDy#%Ot7@
zj&s%RVIOCC9NWRqX8btliNI}*ly7XEBq`I*2!G&;h_0z_<z*{zV%GaKHMhC8fQ*>J
zD<ryiOA#gAfx^~8j#7#o5>E@IG}Y9*4B5KBZO)d=xH*@8ODlJ#8DR1-m)F4Grmh4=
zM^_wtVtK`Xz(;<WT{9R{l-3%x(t~OZ0L=3EJqcb_<=Z+m*O@IrqZ}L#{tk)jYf76Y
zT&h!@4BaS(8)ocJA8VMsigM147EC1MYQ$Ktghuu5#sVOvQ>T)O(v&M~d1XYwOBB)H
z_MJ0hIEqy4&k%B-O_iLWLTcb`o9`vg`7=Qc7{4YAdHU5#4O*44+duq)Kd(nz^ZWFB
zm_*T%k)$e120e3gbDT|KXyn`XHz{;1ud#@@C;!88gfHi*Ot0|u<(RsrD8ng!{IYu$
zeAPdtN}+tboUKbTe6V<A)UQxQeV=N}@MaRjcy({yw<Zuj_$}Hkt!M8;)5Cbue!}*k
z)NJ3mk@U_I%NsK7aUDgjF@W%4d+1N#*)t9%LW=|4tDbkn9i5iCO)Nwrdq|~KA#+@8
z20QY_z!pvo6XQ;F4;ZP%7-@=QBJ&A(9VS#I+SjP-yliSGk~Xzeh0J=im)rA4q4s=y
zQW8bdyv?D*O%&+4chv>pwK?rb@?N5QKQ`CdpG4L?S`mOXi1dSPCZ5b>n}ZS!v_?4B
z&IBtWqI6g8Z|-YkAo18M?=vT&+qFv$I+^O7YTElcXTC;z@Plgbbd{&!=|W5v+v1mS
zJoFoY(Pq7+Qxv&@Uv|_$(wxg-T)x=0D`5D`(kafl^7EbEd35y&<<vpzS}wEgN}I{j
z<E)jv(?9ee_q|;4b7O|mYP&0%8B;bSMU9VR#RA70$#3mdZ6yR}^-v1`X!BH-pULxf
zi#%cjcgmF_wy&jiJEm`6qXC5lXW%~FkH=(ei)FJ#k{y8`d&<_f5uI4HqIR|iOIk8J
zF0$rUVPkgIl+1qkh|vT}AIJVD&%jF_2}H@yKlxE2Erro-0i|e`T#4^;NiqwAO>jXZ
z{NcI5oucQ9lQqVu1bQE}Sdpw8;pyW)vX5XxATF{%MUR&UgOVKm9@3(~7q)vU`ih&2
zWK||RkI~6F*?#?z7}R}Y{r>h#l0;m?uw18j^iHruh1oYZ-y4=|pKeB^I#Hlu9)|em
z^2Wr`L={kyo++fqxUTx>p-kJXpd`DuU(zTMOOH55$fK5-n&MyRhpdf(va$hB!33J+
zBxiF0(8j|;YHH>#T<mIPD{Q7s?AtT+Yu*D8hBc-D2LloV+3^)#?7V3(npG*p>Tj0?
z7$2r`UsN3E>K`G(qTPzji?Fb6ojP`5s<ViDl1W|ILd*MnC1N)c^!yJM8NFy9cxmh5
z**#M9W4b}Z-v*f%Duu?!5FelP<PXipsoKJ+#r^&HibIwpMt#79PPyOPRnYM2%F!j5
zSS~p&a{)7rwgsGu#CIa-FoE>UxtIgOA{v><ImE&6DV&~ynkiXZC3#HytnZiF=hIi_
z4$mKAfJIZ3<wJ(!Ry?(*e{UzKRxx{j1X@POryYg|9$6=B?}9ct<*Zp)ovgdBa3(l`
zQvmRl|3=BfV{|M6s=O~vAK&k;`8w&(^rxCPM*Yl;iM`!I5#36wJa!$<RC>StUf)-B
za@jF}phi8d45^zEfY38m;#+{9ZbAL-Y*~_78^Z~TQy6$;Y}J&;(4gb)a;M*alQ&}>
zBMe^D-r%isaV&u;qe=rC@XP#G+*t44FFh`om>F{8@;R20s9;K^<M>xfzKT(}FT-#k
zWUwP838Bc-fn1W=S1ESS%1nwovTHUf^GllJcK@C^S5_VmGaWzfN^``80D7O+dQ5VJ
zAMF@IqMUd%R&ulvFG%~k6R0`Xzj4f;C3y8@p4P9U*&H!s_=vlMV8mRW|C1t?@!UQ2
zOx1tY42lxz#7g!%R{=(@S`Lzgdr3ccV)^{Q^ZBz%q;-v5^P~3}Xu#g^g#A8&uimCz
z59K(J*%joLgQsH7kX2wutp4q9Z_|jUSxp*Z0Kq}#w=Gql6lyHMz6u`)11_`f-?|U<
z$h5Z2_#i{V>sUCugzLR^zio+aJbhb17^%Y77}ZxJl~tCsH4@Z1@63B)?7&UI0Ms#m
zFQTvp$Cx>3l9`jOPcPzqt(j&lK-PBh-f7w*w5L>se$C@v@F|%<;1Ik!4U~EA+U<1r
z4kji;#uqivwS;ZxS?EQU%A2WCwcY=6@NJZbS=@0ygg}Jk`K3vZR<gH0*b8$4lLvmS
z*uVR|KO_r&MC~SVZ1$rGA{^Y~EtXo<xsQ81=Ond4LSQB`_EK`^88st&tKXW#&Q2@(
z4^?);8G49c>b!ezu4~ezXZ?|kwd3M2Wj7-}Os5PjPD~OSW_72Sa`aXfZ{|mHMC~O9
zVITKX4RO8MxlU2^hqRg>Gc4Iput!bgOyGlSjO}y`1+{5TVI?<aD*95XDh~et&0#iC
zddE_CMlkIuhYQUp8IpELS+CFc5`jZK_m{1~e__$zqq#iZ;Yr~Qk|PZLgA1n{Y#oKf
zxR?GZwSuKpcAFi<`C~iH_S-JYt@4f<kp}46rNN`DCdNi%{1U$w%TJWrxzEhvKTJ(&
zt2f6Tx6?b%{e|KvITE}XY>vZnp=5zGW$TrsFvH1wMdu*Si^Jb<t%3{Mi@WL^c&e=u
zi!=4P-@nOVJQd9l@pIVer4U{kP4|9nP$kS2D|`Gms8@1(kmL$~hbX~&N5gC1xMQv*
zi_1uc#P(a(Yws2ChomQiYg}h}yIry>))h-Cu2+7~W+>L!V)LM>^{iMM=A(E@oiAJt
z1EYF$=F7xWX*))8X;1{Y&u5@8y^SxOH1l7Yy^c@oA*8$VLIJ0)8ON9|{uAg#!1^08
zobCHZWqx!2H^D4f+)5XsTn4<0Q-<*0t-We)(33=Vv%Yxq4-dClQtwYL2Z|_aUQS&c
zRT{QNE&3JV*+(My%>c2cG%E3v;~FknpQX~03qHyyY{-U>UL^_-Jd(^ga?W7M`#vvh
z_{;n3z)ibC!frfW4&@Q-ihtL^u8~XDHDe8l{yv$(ns_ZJQP(&PDyp#trGd7SG$3=5
zTqtv0B+qtwrdq5MByrC$xZ(So?k_|VC``p}j=5&r!x)9=)tSivEuZ8unKjPdHx^v3
zWo)VQTstBni24t^m-|an=-J~RI@UpFngTYzB@`D2j3k|Q9fl8-3^B_Q&346x6Ql}<
z3wN*znebn?ov&<H0F-Da%Obi|(?njQ)mGHp<<|(W*YD#&O}nPjgUMA>$?*qsImus?
zKZ9gKd@e!0TpOyIB#B<a|6v83q{*^iJ6XQAa2v$k*}|2gvS4VR&o{t)n-Tg~NJ*m_
zE}um4j&|YVrq!b#mRv5bnO3BcnE@8<P*`QOS$)!C9p?F=;-vwtJC!?*MV$CNAA6+h
zD!H*yr4w@!?N=xZU0xOr>e%!V(J{W=6~trbPr!LLao~Dzw#zzu=C&I=ZjFZ9I*xh=
zMEZ;HceX`d>r-`iGZfN(qdY~osmE7y!zX_6d@DWfVj>LuKLABRy1pHC%~Qi#4zF^S
zudP^Gi^*&ynE7zrZDf%`q>ML{8AVcBPmnPm2!7VTvoDQ*W8d0K#UHZw#mJ%l-tg@4
zOBSi6S(9z3Y4>VmvA%@5$+0Jl5XjA#<w+yl;X}XHKeA?(sD9BuAN)Pw+4P;dY}ZKl
zV9rt61Yqt4-GOp22?YBdE9rmuE|<VBj-M63;G|IMe+|41t@yUr#6AY_+;O&>V|8<B
z1lE&Zz#)?5B5P=v0~-+}ss`=MMsr_T!dz1yuRI4fjyLqN=4X62h=v(rTHV{v`rQ0G
zxQka4JaaUfoF#bkrH&i})NM%Du087?PyWe{>&?(+wX?YZhm8=-{<sWOoRiZdZGNVB
zSN;f_{{RIfztP{tULNpnm#4y;BWNx)dm(cfC*>v>yz;0zxdgJWDy(>~uRI0+00#E{
z*4`@6oBkJ1jl4bJ`Ji(my`o-gWt5CA$sjsng$Jl$K(Em&W*C3xRz6mq3a8pX5Mj8~
zZEf6K+b!DlFLN?&VbtO@Ku6#+^sUV{FAlWuCx+E6Zsi$}Si+1l2Rn-)I3A?e^mp*f
z{tejhkA&|=t?|d>8teA9(grZ-b{}JT3H}Cqn~T{10O7o_q;&?q`S@%900grC0D@)w
zExkS=@n^%?{Amj1yuEUHb!z|t`Ab{AAzXox<|Y)3lis|#nYAVG>UBd3{{Wc&I4)(M
zL(`{iSz?|D$=@y2!U9wb@{1T89>eQh$HD&q0(h79iPmB8&+OfyYF;VS-AM90F{hi+
zz~sD$hB${ozF84Qc{w%x+xU0(cm0pNE2@oe;E%$u1=z_HNU7v_cEct!h7tX&K_=0_
z1LfKWIpEi%+UvRpi7lT>_?h9YKf`TeJji02*;d^InHylcv}mJ{Hrz2Ptho7=LFbaD
zaP+hehf1Bgzw5F5h5SAL0D?V#!AU%CZy?sb9FGoZYbyD(_@ep*aGlI{wu1I~S#zDM
z8jNJ;j(<-+3jYAXzrPB!4O-j8{{XZn#X%%?AG{hrg)HOKVY+18%Cg*F2_<|H_o7IP
z5Oc>B`@65`n(nvZYkMskMYoCs%x?;b;AP`$G-_APUI)su0!J#@>yN5<ka#U8x=lAx
zFwGf-Z!GX2GD^Eb$rMTFDi$E`U{wd+VbuB6vGrx{>{6)|*DC(LcR!Sm9o+bPNb$C_
zqG+0pyV_Y_TtjZg;wc--M=Ks!5zgFX;AG~$eDQCJbUh!%9%iy_<&EMBjUkMnJx+1J
z{A=c4jQ2KIe-yk!HOAfl0NS_Z$>><z$)BzdLtZU)s%bV87}jJs#^9imIP08r?O%+`
z5iVzBezLMC^7A<#XUp*e;loNU1lDm8{3<d%dSH$#)O62@`Zlh7yL+p2c`%W=Wkpes
z;SGVGPkQ{ty4NkFlq@45x_=2L9kX2*g7n>A#&Ns&YSQOYk3L)dl_a}dlYx<LB+C*o
z1~(qUh}EgsnPhbL=05lFyz}Z`xw-p0#~=K(d1E|d`=s&yc&>8m$DS0@ty;zg`%CN}
zEFc8VImtK#`+;1?!|&NA_MGwM<aRz6_;KRf$)7u88Wy8$Bn#JU*Kk|Kjz>H3>0h8f
z3xD8}zqSvEV~bGnZ-;cx1n&We@gA#f70$*u-5tHDx@Y<`CvlwdT~yv8e(WIr=FH`m
z;c0&!rM#O<{tw`OZ$16~p!=*5;`1?p31&F%GlBY7y#CA{F7XF~J}BGS%{Hm3Jion7
zGfnd+xRHhcA{fDtuebq6eAn&|fd2sCl%E2A9oxaL{D1Lgt>Ps}_sji_Xx2J99F55>
z=4QFd{njC(9OsPSexm#-_&@NM;Kzq&(S8!>3*h@p;Ha}qf@?`7UXn;RTg@Z5;GZyq
z#{}1<hT(eE;{LHKF2C@{4Sp=bVYI@>nXi)kbv|kMar;AGc$-4F_)+n*!8aNWo!^&i
zmb#<ICC$vEYXtJG+HIK|N#4rCBaXQD4JYA^mxX*gb*A_^ZTu^!O)`isd_g3dyb(hn
z`5{;ySmuf|jDpVi_pZ-chV^_mczk;XoqeR*m7EJ38E@mbU^C|nR7G@=Paih+TyVy|
zc+-9vd?E3#jP3p>d>)fjwA5mBI)oOtH$T~zyyQiDr^hR8a1M7X#~{Ln1%6ZZSw>Yy
z2T#~x)}E)t=9#5TWmj6S<)P@>p0(p|0{Cj%Tk)Q?Hl(oJG*55g8!2^I7Xyi<w@8D)
zgk)sFAx?7SayVTBOz?M$FD?9c@Y2@xtS3q0nkx(2lc&f-6+UgX!C2I+fEHNU8#z;s
zMP&R*`2PSW?Bl3^!dLN&T+sX-;VEVd{izxVBDdX=5^185omic_eAv^U<Mq?9@qfY3
z+AmXs%F$=>J>(JzbonQ1faJ&vn~NL0HL$Th-@YbrLBr!XuU$zurstZV(z{1xrfB~F
z95knr&2Dr%`!f`d_ZAV&48@dl3Dait1Gxu{w+^QS5IC&MZCAn`G`oV`Y&FQdMW;pO
z=HA}w!ssFmvG1~wEKZ7gGeYP_FmYbSz7Fvc$7q^O<-VS6W68AETkRfWjIxik#>QC4
zVg~6Vn}9NNlTmo%#oB*{wDs`!#m!DpW2i=nB!o#Wo=NA)7bFOV8=eeo4m;qAbstj?
zLj%Q);+tE*`ZdOzV$HB7pMNN})T8-wcCmTkY#f}C2?LJ3d3)c8{t?rBNpIn=h_XG^
z_nqgbo_@z0K0LJ+w^2zKnpg}j)^ek&WD4zM_<5$squoW|Ei4vs6GI-b^IcdfsmX9%
z#KS6nP$Xpp0!OV~CtdMggP~sQUlAtKv|B4j1(QtMsKV+_R#lD^GUXY06Gyd4By`Ot
z`;IRA2BvJ2Nt6B&og&pQjLj@dsy)n+Y&`j9RASt=esdcr>Ot#R*Z%+%JaysE4q9qn
zF4XL_2$;(bZX=HF);t}7e%BI&j7gu}<>O`t1CVfN)?W&IeXTEyd=IbcZ1*yxmm^M)
zNoR7XOYCcA^F%E9KQv7V>$|2acEo&3vDe!~x$u>>u9>V#B98Lj^(3Asa87UFxm0`}
z-d~yqau>Kwue84L-$TK*kA@y7)D(D!!8+a5+FZuV942SJw^;$qZe(rqMu#W<TEDkS
z`R~U+1%4sxmX}t3KM$oPvJ2U-?dOW>*eW*Nq5gS879^PDg>o~I#%u1)OHS}Nh@p?c
zUI+0t&WksPmPKf^iD7|l-c~#O>q$^SG8~`32_TYD)YUt`4EWPT&@Ap{(PHsC!hl@f
z+uTQEFksn34WS|@+=q}S3|rf$R4Ut6V&QkW_`~Aw+3!}@p<|->>TOoqay-cG!MakI
zJGO{fBTdVYps2z65ngfNpV<D@b)jZ7?Qd1KzL~Ae>HGUEu{iUgQUpW}3lu7&__BHZ
zqSbA_8pR*>rl)Ndm#ynI_>5e|6{evYD;?Mnjr)NBf6GJed9MQ2d|{}3KDfBe{qCb{
z90lNlOLVunGG(y8X#^$;<ZfhF8ObMrJASh{E?AjLDQ;8n5A1vJmqCSmIpFKaG`&Ym
zmCTm5(M5fdzcZ|mvESw7@<YZ~ryVQNyj9_CJ3`TP=(Jx3+-ujDamn_!(X7hG6dpH2
zE6Bx2<7h3;er}cV{;T_B_~G$t-wy5Lju{eUlTgjeGeB~(EQ8C8GUtMgj9}#RTDmXo
zYw?RvmgiX1wWqXe>EqdH9BSzdOT#P%);P!@5^*aqBxJXw%7sR+aeGCxIzJQs%vz_4
zEhN@F3uhmPzqO)ejvKJ>e6hI$7IP3$(X;b;Y6$6(*W#ZPf5A3>FvT_X(@PRfGI@q=
zGTv)hr#Z+C9{rBpaKV7b8%J9GDDfBVPw=kV+C2y2o|$p3+JJnky+}qQ-rTu`LwU)M
z?;W|v2NiYy0Bw&4cxOSk@b|;{q_LLNNb$AGOL~`KzGaNfb0R*`(Lze(00%*e*AF`J
z_)(otX5FNITYNeH0D@FMjP<b(izS|YS_r<=JQLYZZFFO10G5_gyOaVHlq7SXdi@jl
zd;b6g>WAT3wY||a{SqsFH?*W$PNlJiS-*NDAQRP7rUB=Vq_p4L7JnRQU)d*5veoWn
zQj^-f!ALNAuI;XwBZ9I@qnu>c96ueP_-zC05=(2~`zz#@CA7McLPk^X{gesjRFOv^
zkdQKX9V>d3tIJ0tIH)CfqlWS4?DOE5Py8Z2Cl3VPZ|*Lp`$eQ}BbC}=yBi@n`nKY5
zLGSV3#J_-^6Y!UbR?hRqT1*<9v1XDRi?FvKoRAOMqw^84e*381!0XL=uZ}!*;(rue
z87%y3sq2>42wE$9xZ}EzF#yIEXo7&Fou9hhj!7r4hj?e;_r#xwUL_h|jWp}q!EhQ>
zH&BV88%B36&{9x=&ekj308dMVd3BQ_ZQ97Yb*x{{V+7h;>bm9R!J)Z=$H`lW<3KqR
zA1-FkVy;_`MR``C@Q+8=pgtlNw=afxQT4elC7v0$$R2vEgn|dkTON!>euC&<04CD}
zTIYwnL8e>8=oK{SlgzW7!j4VMIF>ih8O)%14z=zd670SRY1%cumE(^GUihNG+kK($
zQr=t5KH6qqnOH^sl8(6l09&vqQTK&Itdkm`<)YmD7V$2V@lV6ItsFXmju6>xjWwz;
z7{~gR8?%gUEwuLQRJ<GF4L`%)EP`!gOPVR}H%GF07(sN+l0ev!p13`CFyj^b4==-=
z5<di$_-O)Z)|V2b*0;CQ&2?^&$N(|Iw<JulwgDSR*~tL)ubc1w8eAmz_d1){OD&*T
z;~HF&UC%yuF64?;4u^~lrM+{C=~a1*WlBljCoSOn?~RuR)5E%kr(>k)7i?9Q1&Sny
z0l7=t&%Lpq<5nd}83QLBmx>R9ykp`!k~~|j{{X^Oy<+n%=38jwDe?f8R}19Iorjj7
zF*)ZZysN?%`UG0^fAFt#`_nzEdDpf=@;GE@$sqZ*(?rEf9*?<BdY@lVz1DwdiFLbM
zZw~32I$5p6QpW>Z$8m8P4V8A1c?Zsb=PH93Bm-DZ7u@NK`_E$3^<Rq`Oi{<+Zw141
zrle?-M|98&nKuHi5*bO2*B!SO=a4w0n@!O4KMrZW4e>6s55xA=<ZVI=Ej|crC*0WF
zHnAvq=0U(_&t8<vT?1Oxd|xJ;;%^!@o36WV@+WZ}q|TraBZ_jdHV08|+;zY`efwST
zSBfp6I%c2X%Wo5D*U*DAGevhJFb5#p+!)txIy7>IJ(PFmYpH44$(~=Kd@H`U@aCs&
zdo(^cy*T>>Z3wjw41fk%CMDt-Jm>hh80u@E@TbC02g~9+-w<kk44=U|=7|HP(`puf
zV^oe|hayP7b24QCF1&O*utt41QPDLhd@rVWC&7CCuY#=OW}e>K&HyEUw0`iy_Sa0!
zwKo!DOfV$wt}_1s#af?-{5g4T@fr#IS*gJOO5174Fk72^DxsDerwT~HB~DZTHmRnh
z_b*E`$}T<+>(^JysA;|`u-7#Cqy@~;hzmyQ!}l`6%^P6jfHREooL7=~gW)%Yulz_Y
z{w`TxS}n!Mf;~g*FL50FswQp~o<s!W8;1jvfyG1N-xXSG-Zs9}{uOw3&%@F{9@=|3
znp=IQKuBVMyiF!lu*775HslVydT1XS?seFPwc>~`beY_>)OK=9r^yPCaEl()SuyhC
zCBex#;}xVUTSjxbZtwmW&+*^vbKp;hC3R%+K9OM}Mt0k4Bkc_+&O!4cA;(NBA;3T0
z>t8i|OaB0bKK}qfi%hZ9#;<>H?6;OSw@r5eF|l3d-u<HzD=yHd1@WD{44+l_vEfez
zKB&#&H5#4tjHKR6J3Q_Rf}q|>v@)*T05YSM7_WgL_*mC+KBuK<vq^Yz(cD~zzJx0r
zk1ViNQ=DLwVUFjmby8|wPCBu1(HOcN)|KIZ6wPmM;o)m{Z<wQw80Cw|-O@(4If_m)
zG8qu}BntIge~7;t?KK-4NIY$E<S_tR+dyM`a8Da;;4H3AafW;W&33vJdWVPMZBOED
zsyH}>p7q{T+A;GacI-l9u_`g%y^}!keu1i5w4M>QpHi?JRw&vVc;fR1Z!>V0VCZ)y
zM_jix*HUZwNT(@vXItREioP%L?8)J&HJM)O)RQynf9U;k2FRi(VFy2bM;wFRzU1(4
z!!H{PNaeh;{@>H#j#hUOz5BuC_efDzP+P2R6T1PD!A=4E(1XYRFYs2S4yoeL39NA2
z&XU<Ws@^0_N$ACu&=ttW7tjM;aQ(YHAK_cO$=AiR>DNd&vHKU>p&${t3=sJ<MaN7^
zLh+HtYs{&JllW2TP^^}R?-rBro5ngng|y9MPx0aKuxoKFGsMx{Jh}Ueacw#oj&p(%
zWO2}()b?H|(=-nc&8K`ovtNie$vBnl;#H0*hTvhBW}z#AB61jcxg>yqbg#)h8~zHL
z;Tz(&9vATS?zt37!H7R(U^v_jsc2eN2Y>^yJYaHb=|6@40JW~Y;%^N>rg$p-Gz%S0
zR-bO85}ATC?v^wYF}eq~!@RBr1~Fb_@U;_eS{<>PYR^;a{{RJiM6d_Mll(65%>E73
z<#=Mdw7cCDI(&tgB(U0D7J@y^lP8b@$VOZaGoWw&Dp_kVS^QD)zL%`%?-TF2w1Rtk
zn2HV28DcFZyqlQqGb2V7dLhOSo9SLH_-xuHrFY|t$aVF%K#vqw-fP|APUQ)Ev3VF9
zWC3zIn&&(bulxX)##Sxx!^1Z^J@JX<78fmb1TwDD+m4+u`xCT42j2+e7$oG@5rc1C
zKd&*#Elww0_@VnYcw<(I!$i<^?E_JJ`*um~%=UH{vMZ=XK2&dH$#TuG$MVf8o=7BP
zxAE2A?M1I@7jk%WLeTB>i?t|pJNXTS?d6gW`b~(s3^$AqHUv2sCxf3#m&1P=biMbw
z#-ZW+`wN*B-qPg0n(;#`Wn>8hPYk9$aEHobFf)@}f5e;r0NH=TelNJxyia$o+un#@
zZoQ?o?wMknFjO_nUUUqgH{G0V1K%~QB&}pAZh6J`fIby?3q-N;uf>f6SJL&Tia+1!
zaa@RO!YC}0-`R;GTsCmbp&SgHjN{fk9cSXN5&Sw!zkwIF{xDc>r(f-R=7#1yvK_+Q
z+*+(qtD!qXd0X}nWDZC**XduhH;i=82<bZ4!P|{LREh0lSJt(4%j&GZAeAqoUoJLd
z#!?21lfsUb^4G<0+DlH=JRhuBd`MB@`&GVQG7TQ<&X(dy6d$z3Hk#2&%E#nl@rEUG
zS7-#>RGTGE9JYJ^0ADjt$6BtLV{ffD$H`koo9wZ*)aj{Om~Q0<YQT+PvE4Jof9Ir1
zaBzi*HTmP>Kiik~a`3l^6Gix0s(6#cqA1);X+MyVDIkStWSB>ErCaYSJCXndEqJHL
zFWL{lcamOd+DDDP*%Y>>IHSK2%Qdv102npAF<cO!a<cBhIV7IHn(%A-CX1?_cTBVX
z-@lG=Fug`;V~m{h<;xo2vB(8_c0AX+g1}$if8=oDF;TUT)h$cKJ~a5oS+(B-X!jZ=
z$CTe{j>^jJ?5;^JPNN)B90S%O*ypbm=N}S22L8vN4kMP&#J(oepuI!p%VL(I?%9!u
zEw&%rs3ReVl0g~d5!dsdUGdk%&lg>tIq&As)^c(nxjP*(jD4BjRZ;3A2oG?2*DT%!
z@xHi;W22j`Qc!mP0I62_yJ2N>oc{o_Mtv)~I4LFZ95Td3t629h+6MRbCD$~&JtyG?
zi?3VV!86Hmdt%UAM>>QdBXztp#vx{H{{XmDkQD&FHv{oa=9A$Y`__}eI$hj<yWBzl
z07)$4hAh$qhB2NnrB{rM*VEn={fa&%c;3=$s4PTKMC}tb{O@Xz;X^n2Ccsz$$$Sub
z!*;I)lS04n+_ySjfNUDu%rO}tCO9Qz%I?||FaF5jo_kkKDsi(>cQLB1Z4O>dH&VH_
zSTEwVL?iuM2X?~p0aZR;JMiMMf8v_cZB5PW@+emf`?p84uwAg66+LiCt>?7T5XEV%
zyv*KWhTEG!>KE>UTjnJ8;~*Y+s@Ara_g7myB+RkO#kQi5r7_;)Yp8BG$@<okqGcCm
zb8&c<0dp_*KG`kt#Ii!rg=5IZPER@cuzr=yYB$&S*D7vgg&Q~`0hZ~{?=#b!j11R#
zbEZc%#4~Fv1PdwL^0OPMw)?b70`2ZO`U>Z~Md7aq>1w*QuA>b8c|KZ7H#?GkP_T`s
zAAzWJY;?kRd!BiHaRc8x7q&A!#C;6grEDIAZwvzC(}V7Ku8J)e#y%sF4vlvd&cG;$
zAZJ!%g+)NilHC;K4)_&v>et315?jklM*yA7sJO_$3xenU-hUdcE}fxV+?gj5gjFI(
zfC%F`>_d$6>@kkDi=ek=w@X%iFX1oQ>-IC!JS;We+Are9uNJ*;A<mDWXoeP1^5z?-
z)MMW(h6gVJg;hxalZLOLJSY2S=pO}ii_Z-H$bSz!AE8{$x6jv`LN=PDsTl$@JKoKF
zvo<nIEy)C*x-tOxU%}cArQ&O~)4U(0Tx#+YwV{9+q!{EBjklf#3k6f(1F`ywKiPvo
zw$zS^tZKKqHT}Ry;x|tPp68RGM7{xJAo2$EKG?2TMk)Kov75Ik<eI0%?-h8TRhL!q
z_lQ%&5#CKC^50lmNu<MbF*so@)t`}PwRt4V8R?S5f@|;p0EEBrNZ;Cv;|GT{-;Ey+
zH7^R^X?m<8>rKDaZ={+l$lM>E8@naBa~m8FHaHnq{i1L_jlB5b`$qoDUk>z*FW_gx
z{Q?U{i|qQP?xA$C8;L+wQyGFcj#iiN5iP=z*-GZTQ^h~GAMIc92f;TU9M?1_wzagJ
zNgbV<uALk%a(vh>bZH=UQ2Fk8$qRx><a3k$8nM09qpLkifA}S*#4QWq;`pcIRlVJ|
zxF&cmZFFOEs=*veNRD_~)(Ees5)3m&EzqFI%N%E!_)+@~d??qvYZim>*W(?n?~E-i
zWWRk1^2wpSx3-G`=9f;?e4Dg}Ex}!+z*aaU8tlJkEd%!d0QlQsDe%vWbj?!U<q<4&
ztId3BlfYHU0yq0RTq{UU)>)QfFbeaW{b}Kk*`xjnRdn&*{Cn_=OQt~XuwLkz<+Q>8
zS8EcQtQI#xHtq#rCm?;&a4R_0s|NX+Diosbw)Fo1gZ^jGKMAzW7vTPv4xRf)d_>TO
zhk2E{n&#>?KtaOh&S>+swtzgD8wYDQ86)gJ2maYVu^)%8VzuzE#9Q}BrDj_zi{T!f
zGKIq;Ez-!_Sd5{HL}S?FgZTyVNB#-H@RLFD4dt(ZyiKnsie`XZ%Jx_4_R{1HjsE}>
z&$Tn59ZXQ5Am<?C9wXu3*oWf%=Zq}o)U=B^t!>eau<6rAH3^B@Ga;HaiGySN(SeYl
z;<=qD$zPb&$tIEgM(E$PH--KvEEZZsI)1CALo&QEGAe}$hlrUSCy#QK46<&EBxDeJ
z?D($#0O5VJ#pC@?RKL=7CZEfiEk1d*2S!nnw<!}%Y^r-m@rCJ=lZyQC_+R@Rd?C>M
z7@i{WKCiBPF#gJ!R!i&a(Q7TVjuE`1ie{R~+n2yighE&q1pL5z$HV^siXJ}juZ6F5
zzYgE{cgGvij*}j}s6nA$#?d<|dx`Y;bsITE>H{H0MnR3p2_bkVO}%3O08@7;^#1@O
z=-nH{N#cJ79W&tet!LtGUTJdAsx(4YRT)&pjDAu&jDp4%3^?1sstu!jXJ#!Y!@Dxa
zleS$uZhPZ)o*N#S0Q&P@ZlAR@k2IIwH1H0w;fQq<ODEN|)Uwnp*vTfvX>RO4ezx(G
zxulU-%O5e=MO+>m_!}@2Cy%cfKg=0CN2-+|_fwOR=yGeCv@Y-Z{{X->g}<$TQ~%fe
za)uue*jZX9hpt-o#Yg;m+uI~Ef!C8fz59$0>rc43(e;Fy@5M1LmE{ep(q0X~fz_ji
zTw#CS=hCrnG+j>DQI6w6ou+uk^0#+VfH}r?Muk{*=~Y+7Hb@!#LmYD6J8f68v}bkX
z05a*5^*G|Y<m|3}3Abc5ts2tKO%mb>>{u6Hu~@vDf#;plz6m7q1!iixhMnRmZl=_h
z?#1I$43BbPQgO-I6o7y`=Nab|%iS|pmi8O%7HRKgWj`d7h(hFl6j3VfARdjMrg^Mc
zd`aP3%|v)xP&Sh5va#~5tS!9lLD*#CD^Rk}GjMPb32wr;r1iTxAs4zu3q;m5%R5<Y
zZljXGVVPmKlI7$>&jp<0aQ-iw=}voXH^hl~HS8C<a%|zGo5(_O$q0?PK=1cMSF!2;
z0JFF4L#k>vui<Zo-w?GXDEniZ!uqY0ZGn<VlEy8=9XGJ{&3)VO*Zv5r`*i$$@a#S`
z&~&edcJFl%nh0+EQ4G3*?_J8X+gsUPMI5>LSxm&K;GQ_bq@uc=E)rI{wfpFPNZojM
zRMD(0zR2*)W}_rQ43|vtk&}W>-gxBh`c-%>Us4wmFuS&e2M@Jvi|4P(!^{{1o)r35
z>?V!>00cw-0D_BY-XyWJ@jr*gixH8Q0Y0UqMHH@}<q{}v+DR85HU>L%?XTiL_#tQf
z6b2jJLtOD6g*-2BV*n*Cul4&#CAbHWRtchX9+-JR?ntSOV=kmQCD-vk5H&3h+Dj{I
zX(U5v4i-@~@?5YTc1svnR`g)!=~q&J6WvJfqUuv5F$B-sZ4BXuZHyWh2eD_}^fmjH
z;Qs*lBlnDaEvDFbxAwaDyWziv8YT3`+RVWWTAi$~xa~yNVY^Etk=1|W+{eFmLYD(I
z@6-PP!8U*3k$(rR;@3ZD{{Y%{;_@ru`<q#Hof}SOB;*KUvWf0ow?#n3vBAkExG{K4
zHAVZxq;yfo&YOIaYtrZQYprU36yUa4^qo6Nx{VYcGU8dS_w$35Nag5#`L8Lyx&5GS
zbtQ&q^bI!Oub3y6QH=ApKP?@I>DUkF{VM!J_`ClA1QYmSqe-E7L*X6Y#hdGCj8FZU
zr=2tRU~h@#)HREU1<BqH4ZoSR^R;tdoj(;mKYqYp5WG!cap5o7qVqt}?eiVvHvT%*
zH2I}QBXaprSlmD)Pzer_4tU*yO=U-i@G{mkzW)IDb6VNnG5-L|#=hgF{e^U&*|6%M
zd}jEe@dDRhgJX*?0QfvhCDb5|@Tqfud_xSWnl!fv91wB=uk1_UU&rqf_}@#j(Yytr
z-f4OzltCcVHS0lRs9RgUOg?42a>!S9(~~LQ%n587{#L#m{{X>Mbr0F*$oOma4ERyu
z-vVhxR5<Z6Hm$4NNsKegdu?+Mng$h+vEE1D0OVB<5r4sRf8e2a+M<t$vv?0y(PWT3
znpNkA=U7{B04>VuLS%IWkm_&`RW-*x7hcoaQKpyOa_eVvoi!QFzn%X85BMkb-Qy{|
zV|{lYiTpirr)k%A@koN+Sthg>C!<9j%rh9!4!D*V3USEJMsJC{U2UUknq`-ZucflR
zyJ*rhCFQrcb{m36bvN!N&hNUXo=E37{w#05;HW>hCyabrJVl`VP}MXWMr=c*SzB3u
zWWt!omV#&|orZpP^JjKqbGVKM*1i7#1xfz^f~4v;QE7Td#f$9%$Z}xQ>~ux8k%7v{
z$u*71^Ed}^Va^Bu*K9H>t7{%@Ok{0z?tf&OSHt}}&hGD8(AxUQNUo`Es$4X>T1xoL
zo1B@VBq;z!?58;^fDLL`c&|~=d^xFjqs5P7;oTQWaSL48-@&O^seCw*rie45fx|TE
z4%XwRC;a<<C;UqBm&Uuxtz+Y#i1jUg_fc~#)VihZ#-R(ledZR|QoJw^_8~=#c3g2@
zQQ;Z91)#0M{4&(-Ba2YYz2a!M(OE@uqa|a!ir!e3;Xx-6&awbWDgiaW_AI}e#4Jtv
zT>jmDEB^q&Nk8D6pAV;tU%&X@Yc{c`23OO(J1gsq+aC<irdce25ZrL9+!NluPxzt#
z00r~?lKc@gr{G_PweKJOq1gG&9ma@|;Z$vzHAo_znTaGUF-;K08HIl^)|Q?j*PxdB
zPSCG)J47V}`b~xH=`Oq#&8!k3DU2`#k<|CDVSF*GYl(9D0$$uLp<z5}ZpzREA2*sp
zGe?i&GHo8XHPufjrk$k1b@kFZAGlM0!NGqTbp2XOUk!X1&~zO&<};We*XImd7zN^8
zH_9OJT~Mx1MhBYt1LEKO7Nh<OY4L6*wbOnfS@<H<yDV{dUr4sMk<r1-b6j41zDL54
zHvtxLoB(lO1^7q6-x0ibZE^nq2#<&L9}&Z1nV8z!&3YjKf6GR<Sqk*%YeLWAzl^n;
z_-!=r40xP7DOQT#!}^`Vw1A8xMk{PHAMT8{ImR=MCxD|Dq7-E(d!y&?5PU%Wsb#pE
zQD@QhLo}@;-Rd^QB$i1Ww65kE6$xe~iCDno;0~4K8t;vNYFo1H72c7isUzpKfp`Sq
zkYy5M^38qW;-7`z622N<jW5Rj8P>E3ozf*;UroKRGCbJWk*&qNVrDtop*J1hFHk_>
z{8^w}{5-u~C&yYIqv4C2wRtU9SJLkEx14R<Od|dmeC1JwW{9u@1mF-)5B4?|FPTzT
z^gAb+;-swSC-Y}L`!fF5KegZN+;45}{5|1M9_jjozIDVNE%4=@w2VT82$u@bT|pSy
zt+pu?1_glJPJes+G5-JuB6#n@eiVyH@bAG3T^jb+%2bZST}QN*B*x(PGTD8y88e-`
zVV|~GWRdtkXW_j^Qnk0#G|Tv8R{-sagShH5j{M|*k7%yEFA;YB(S}8t2h96I0CCr1
z_s?HiC6-dYkx0#A+xXi*t?OU-IE(fz)cilD9~|3!Kv{30Mb<4-PdB!<lR6JFFw)E#
z<}JjiYiN)6$N<;qXY6P3!}d`9ro1Pqc+d7q)!O0`=Fx5SSuQ4<Or9hKkZAgw+uTAO
z95C2SL=egcf8Yr`D?GC8lqgAgMnon@IP0{J*CxAv5BxaQZ~SMcT=*+Z)ULc#js=Cr
zlLW(6j!uegWVQz4HU+xI!x<!;X1OZmysLXNcvR;1R>%53*~#$(OVVzwyg*~S)1wNj
zJ)~>_+79C_xH39prZU;|BC>6?uMK#b?R-THamefmTgzmdZ1N`rG-38gi_w9@4#0Nv
z-`Vol_K?(m8~9Eii`r(NFNtondwDPJ^!dfRE!sw+NaeM<kh;jH`?JfqgUGK-*E|sh
zqo`Zh_=@W8%Tz-v!s6iRz=MX7ira^dW$eVO6Oc*gHReT0Gd^8ya-Ec(BGP<K_B&k_
zWrgBn74?*mJaGY%MCl_X#AmPoNDmx}<mT1<ALGg5e++n??B%wd+DFr6wi%S;f13=d
ztG!787eGca*1HRj4Blzt3oBo+>XR;2p7K?ST%4HPc|fN84nS1{zf4wiw;C3W;u{TH
z#Sf;~YEl6WwZ+U!1d<ZG#+ORVGXg$Ps^E@D^fk>JU4u`ddrQ@PdlkG;X%@E{tXrKf
zW(GTb+0NGcJnFGbm_IP{PESN5r_NgM?5Xf7O@CSO#qFKvf_2?<3q9_Ke<qPEud`wE
zH2YZOvboBD8E1i))Q$~(i+8QswUb1e6|@(jx0&s(CYnhYgT6JARd+-n^PYn|8soe-
z;=M-t_Txg<JS%&qOXalf4C@`mjPWjT$v9&GJ(ndPuHZ3RN;>LXCuMlE<ZljqB>kqo
z4QluI-vnT>_?M)4EB0#*PhD*@QH(LbKVxJt%BTm*7V04Q3aGWO@UQl*@ZX5F3;zHB
z{6Lpa@IQ()%VRbElX(>Sb^cwNJ+atbL@wu#EAmSSk|*Se4lC>rF7oE^Txr+w*uflS
zqk`TTrxQMRg=q#bpbQ+i2aIuCZ^S#_19-o|ZQvh{-Wam+XNUDT%3eWvrbVdfI4pLF
zlzEcI=K+EFagaguB;BkiD7&V<@9NL+I8A=v!d^YRPY~!@)#Zk?lcr{}Ef!2ca+fxD
zCRE@KF%q0{oE|!F6UpO!2KBXFBf@cN_NeM2mFE!Nf3kL5tWX>i)+Xu685O|zQ}$8Q
zd=PHDSMU$w7O&xrH&V7plFsTSxYHxHT(YIT*x9L|Qcsr6b3Vbsrq7nRuM2p);_t)z
zEqhY<$)M}LC9}{Z0u4geIIb)&m#aCHMsAY}joa;1@G?yilkR5Jc255Qf$ulEhli3|
zuL5|hSr(VqY?oJdnoNe;_2%1#ZSaVZvCwYZtT-aDw0#zR8&00zPD#8=c5eRw(T1e)
z+R82Q%x`xByiVc4+8fHq;fNfZZBOGz!Ot3LM*GHEWtNwvnIL#B?;UTfXC<4<`z6A*
z#(b*-9APAkg3gQb=d{v(Drr|fA$?=v{{V_ENG_@^F6|+n!<-h{=VZ}0pvw-KBQ>K<
ztEKl7DJ7@oK7SP1-FZGK_=}*Xg?FUfc@Ryj3v$aTQ?fW+BrJCWfKo;Tj+n11*020Q
zrFe$lSke4Pa?s8j?KZMPFAO=)HuK?G2W+}YfyYYqxqdPHMe*N>?tBg7FNfDA#^LS-
zo~>@ynx3A}s^t028mE%-CO0F-aB?z0&3G=Q;ctiDJJaT|_+jHKjRVP;$Pb5Zt>-~6
z3PkWe_~ZbMqA<#<$pbvr^r`h<ft2FYxBL`*t?@78M~<ypZ4+D48apY&;!RnN)u|aI
zH<nlA7zE=32lV-WOYyIWe19BTPk^;(+DJjnc93~-C{vs_oXsNx>M#I2n*Ay9K8xbb
zE5q7MdR2`6I=zAi`*qc?k*8dV6~0!2+GS|njx)4M7bBsrpTfQj_+tg7kB&86B0U1*
zT}Or^tU|V0sSTa+#t2ef3hrEP;|-3L*$T0>qq&@+Wp<Cv{ZGNa9OJN%>AF&DP%`qC
zw;^r`URVg^0SX)d26LaSVC&xk7f#hC@K2AtOCFo5U)!wG>F;osk}|mkKh@y3`=DjI
z;Eunfx<7|}GvMDA2sKY1-)kBoLnAeYt*4JZIl#<YFQM425IO$<SrB9LmXHC@hj`P*
zI&X>E4+ePK!SX7ci*>n)F70JZbBnmQgMdEqWk18|Tf-AJ>~qTx9*4nN&+NzGF9syS
zJzgD3?qHH6cR<PaMj0A+5)<mbAOQ1`S+MvsOVQ2DdXAeWn`;nRT3IeqYj#tQ;X~y(
z?~S1L&THv!75G*4k}foeUrDvJg>BI+AQyJ)<@6FD9&-`~GOd*Z8%KYad|RUGnl+r0
z>F~a%smNVsM2y-Mexym~uIzFN0GuA<rFF(lyS8!8524K8d`<XzZ{JI8V(K7(nG7ms
ziE;A`+Dbx&Bd?aqeT{oRhdg)i#Vkzz1F(<8x_S@ZNQ?x8G3U;)Q4<0W0215|wexp|
z{2TEj$MVB<dEnc5VO+2`uIA!4VnGGtX#ru>F4Cg|73sGB0I{!*d`+lY+sS!-XK5>8
zp}A)AmyyB^s2iT4n0;5Rb<IH}ulkts)Nf4>V({0-{RTTz;eQMGZeI+BxM`N+#t5UF
zu0Ce_J<7_&XZS*<NXTmU&kcN2@fvAUol{bt?pBc&+8Y})Wpg?>!xAQtN0m9;5r*!-
z=M~_-8u&l1_)El6d@b>K7P{;b`EgomrGsP**|xbyaDHEzS~*VxAdz1}-QW0|!=fEG
z!`2bR*2p6!_7=W3E&%zXnm1-coS&K_o}`Z46{4Q8I_bG5X&3wrFNJ(huAA*QO107T
zT{dvnAVD-YGlx<KpK7srQXKBXFklM(E4b8eK0MxdnhPB-T(df3%mEf}{gE}aY{7m&
zJjIo^=PJQ?86*>m$kcpwYZrwQKZ%AdKF3p5iby_dq#zuOv<ebDf&5IPoM)|Q=syXq
zT0iYy2wv&~O%S))?IyliZB_84O1|RYV~l0M2OwkvT&W|fqitQBKaKo1;LU5raCmp)
zZ;Woyte!--yw!!oQ7DiC-(|kou`uI1R#GxLabC?2?A@qno*Xyd4>c6jE~7aYI>R7|
z(T+kHW66z(!4I+e432o?d^zC{jCz#+0Pu@y)&|lUqGwt3+3mG0K2sP6W5aMaiAei^
z#!GfJ%j^FD4(|Rg-^f?R_p7Vh?TFjQDYu>>ouEsl$^cxE_m(vE=NYXcr1ZF)_P_iC
z)pZ{N$Dnu?<HX+>?(TGjSw6=wOPg!(;zb`cGT4J6z;p7mg(?R-d-zv{bgzM)8rCD$
zJQ=HMw^nVHYj~a;t9Np^5-YG14WqX506#E13bW%6gC81v32ASwczViBVi==Tmoxp2
z`bjbaJTW;Dy0QKp%EW&UL0A^|8cl|a3HXC}o)5Y45E~4lEjv?ph!Q|x6ts%GHxguH
zkyXnTbj)O)=;$?n9sEkT(NBi8FAHhcIxeb86`aL)Zv365Xm0$uRP+i~6OMr66~Jo$
z02Tfx{7Ufzw)$s?e$REKqT0;{k98S_5Tk{b$;Xmde-S%d801%=_$yV={0*yWqs9Is
z)O=NBmPmAqY4oPI)I9y{Ssv~eNaYeKRY!3euF_bX@$(nNe~sD&{{W5bH2(k?{3u-y
zU59PmmEFRhv?z^)gEw%P)PuK>?!beCoZ!_uS9Z3gG}i3&KNEP%;@+2{iFN+~4_x@B
z&@N~4ZQ_+MxCPoQJGssqY8-+5T`FAz#r`eVygO&8*xK6J=#v7r@X9VNql=PuM+BRk
z6(N9A&~(b+*Ta9bAMHcq)t>50PZ|v^+z3{|R8G+xa(v|rIB}A96VDg}7(bs{$Hl*i
z`o4#0Z>#ICujz0|(|w)fd+T^zi4MUhW%5e_hVqqL-n%K_9OC5kIp>Jw(Efm|_5EQM
zJIzB+w6nN|M-O<wTm!YX$K@^oA1V3w^PT|}L&ZN5ydU6e0jkM8-`MR&=C^`)R@y>A
z`BfT8ri_deg=O4E1}pO`;U9s1GW=BV?E2TkSYWk+`7vuf<@A?!(U`$k*&7YO0thG$
z0pW?oXjuNvAG9Ubxp6nfo2$EdG`I|r>biC9yIQ;|a>%H{JAhSwZH6`-kY|HS2TeW9
zrHGr-$J5>={j>Zf7o5Hq@U5Pq49%U%Z0PvsZ<`*XBL&YNbh33huN3j`?WN(pUj0{J
zw!hG4R9KQNI^`XhDE>QtDXnr(`==ZRAXkv+-?O*EpNN;n9S_E`T;0GGZ*4B65^8aY
zIYBM7(A!)<>z)H6<Y12V_dmja*pK1;?}aA&UxwtqF$NFzlrt&Xep0b-4hiFcxfwix
zT6-E0)EaHxN5WJ7*>9x8%c5x$YParq7tWTWZx{tFLn&qS%7S_NdS8J&ZTn07MzPdx
z?lj#i!B!Im6W=wwcG7Tz%V9g0jmZS<V!qrO`v=FLu-1saABFTw#PGzC4T#X%2OEZV
ztHp^W;~hgG_pg<u(!6`{6vcae;&1IW4q8hK8B#Wt2^#{X{@wT)1xq<o>rJ{%e(h`K
zWeeWS^qmj>3F+};#oB`Sr{X`0lf=4Z#3kVSSD75_0UHc534E*$M+&TS)DA1qJU{y#
z{3bfhzK`)U!TQdTb1mA#4A*v(8%d;Q9$%NJTS;*b&T)m3ME6l#U&6omDL=x$hu$F;
zejV^-)|af^F2f97V(u>adxnkBTO_J^4zUtJE0Dc@*RlP%uNkfNeRIXyJXX4hQE_YH
zNh7zri61{YC8>C3Dsl3W4_uR6wVokcOC7LK*_~uRvUi63J*-LM9VYumwuK+&v(+t=
zP>v?!<yoL2NEnfl*^mHuUO=x%@qUr;{_9Jyi&OB4*DoZAn(=h2Z@0r_;AaDYbl{Fv
zqlhubDz);z#$VbW_GE(bHE$7Uw-9P_ICHOQzGj@a2WT7C_RW<gU8fsgcs<7gyu)1o
z0D^@0ZX0Vw_*JXDoy~>1BixNWul&uUXPDF5kt)7<XV}Wblk$U#<>ae1qB>Pb^=H`L
z68J0NPab$yX+9Zh?QF5k=Hcabx`xtd!jo>$T{2A(3UeeS)TucD6I%9`@9_Tn?EW+H
zMx0~Q*Uq(`#_C|rDv%6D&R@6~0#u~(A^W6c=D#L9Y5QJ$b@7n6(aqh4ryRpFE!5)l
zNHOw}ZZ^xgPds6UYvo-_#Iov>jW@+t*Y>Ib-2+VV#zubZQC<0x3}YZ}+5q;g>EI^y
zZpIVDtLT2r`0w_`_(9+p?k{aL{YJx3xo40y)^x^yFy|!}Hi`H-&fYsVdi>k2f5Akx
z{eN1PPlpz;X>6(Fmw0BlG6orK_wcEO1~Ii{jDyJCo-5)%40wL`P>x+Y!NNP{XuQD#
zy9pU`2|irkxNP;zdwzzx)8Rc@<!z(*gKHJ6NCKnFaU?P#^&4WhSy8dydV)^`fn6}b
zLOM68jImO_h9{0cX+Mo#G_Y$c!Kc2PX#W5#FiR^uS>t>{)uRX%xjU4vpxw=Q<*$T1
zS@AmW?OI3n-l9MX!U>G=D;}i3%F!-IAf7laiu(uQ#D5F4d#4FwcdlNkD{d~V{JVac
z%QQ(g+~D$1a0gDc^dkPyTJMA)y3;Lw9mfh>qO_w++p(pL9kThYv>^bIxq{(OOxCa6
z_#^rp&S}c>XXiqE4EV1bZr1dRyXNyZtf;?iBaV_hhs{uX5XDDRT%Gs9{{R(7BfYhy
z&8*!DBmJU4T%Eh3B&b}2{9_-jewbQ*)zDnpBkJ-?XB?6#dv$p4CfkhT&9@4R$;jTt
zz0X?mkBL9DM4lwGlStCMJesY%hzn1BAf58Ojkd}}ih3R-U!gU<JWX3`6Dg?lKQa74
zWBr*Zi&#^9;lFtSM1=uSjlNrwPdMBW_j^@XekN<0LoT1;TbVT5g#H_QVJwQnwr*9G
zNXHz4IOe^J#kRLzB)NC{KG*xLab*gK4ha7MpP`U?{n<F@sIET$0O9_v2x#V(+Uf-$
zpWYeSy>`F`MmfmdYron>q~wfFU&MbGemr=$!dHF^@h-JJ&XIi>H*ifZ^FGorlSV|G
zFI}q2yx{s*h^y%~@hmgTEtI(|-cdHO$hgK2nYjlY)Pw1Y_0O{SNp_=M+}p~E#$<*;
zY6v8bW0NkUwpElL%CU573#GT7*F&~9_Q=9PD#&DZ$m}j%m4L@PWaHDC(lJSBij<q&
z^PMu_LoeBUHes1uZ7iFmJahNu-y3t>Fz7pUZl!0bO?tN;A(QN`GU~4);{;&g5E$}7
z$Ojp(KzZ&Z)eWrZx_#c@Pn&R_ZV1oI3apV5c*ribYVyxlNaFi^^In#9M7Btl0Q=Y~
zsN!d5Vn7NVcN2vi;+@2i<X4(x8dadxZ|^2#Kx6`G63QZ@ocV}YoOQ_~9XPG4pALA^
zb!)rb0O^p=63e{7_E{&3W>u2#mENunavN_ToOk^P{hYsJuZSKy_=_&7t@t)g2{hY?
z<DOk^7txF@v`DUtb!{n;FhTv?FB=iHj&dvd82B;!CF+xSng#gFsoHp(M3ik3L#9h>
zev@D_Aa;$dq>POI@nMe~VNQ7R@p+UW`42*l7IxJBTYe9C1HpGUk$98E7MiZFr{2P1
zdp$nRTay*eL5%&X&vb1T11kdPa@j3`gZ5{`pMYNnJaMQ7__^@!RMGVNRU}Dcr^|U7
zD>gSw)-biwDBu>8g$Fx`$sf|+gnwpF**C-9G_}@8gKxYOs99VKm6ql1tu1age69AA
z13sHFGL!O5GtWRrA6odM;2(`r)%8ydU0U7gEW%i{yOBPgfE*AbxVLFkj^MSoJ%|<J
z)XXocI~64tX&;0h0r(^EH{l<{c>W=L4ETeocnU32-dl@Z9`jCJMT33K*A{ot+g`>u
zDF!&M1id~`PAli1i+}J^8=1T$zYV?>_;w$O-Y9|<w$-jpgx1<@lY!;SBvuz@Qn5RN
zQann*P74#s{Z{>{z61WtH#XKjEcm_f)(uW!9Pam4_AjX$ZLX{H-Py$R#z|f2Ce_+U
z@U?s$r})$0?}Bu#Lr49cFYTp(X5td^Cb@HL@u?;$CA()3+mMHHN&_g}v}Bs+g=^~d
z9ZGAWKNuqL=f=N?S_Sr*;)vn+eQ9Ag+Z#@>(rz@EqkEYf1~BYkW1qfLYh>;!p!4-V
z?ECu${?hH@D11?Os$E{_tr3-;7B<tc0gPl%Z!4zKcp!jC<Y3q7Z^O^{C~SWZ-rq?0
zgQjRYpNHkPk>$M5E&kbg4ba+Sid#Eolrp{_E}8Pk`I9G)7V!uC6_4PIelL#u;a|fW
ze+%l1bgsINuOzxdPEceC;?wf7p$G0=N86E*E3INGOWlGdG&Q?N+W!CvJ`n4A4epiV
z&xt<{?#=%Ihop{s9b!8Ob?G90KzOw)Mw0FfcV>l73GKSR;BSUnw}dq_1N=dT()0$B
zD;<6~b*GJFC5F(g1==A$bgb?G;0`fgkA5iltN#E6L-^NmYpr+>#THs6rlO*IdqHh1
z(KHgS_}&?9LfmX+AgjovFg$Q;xbTPU{{Z_}>l#(IweiwBuM`QGrNyt272H<BH{s$?
zu-;+DGlUG8;Bmb0%7aelR8oIv`&;&i@hm685b1aR9=7pa{K}Ef8x&*`CRy4GE7KO}
z-Ht|BzTOEn_<!+dO8um~OEdTr;AWxXF9I!zUDonj%cP<t>~@`(kUKrOY=GA6$e?gQ
zz^~p<gx&>2u)pwc!kt{(YTAn%mxEIKRn^s)j4t(CO<Dfdmfbf1{#vmoAf9=@iduKa
z{{V-JXW@??&EaeP5?MA}Tv<%^SFuFnCEHJxXM%Md3}WeWdwOp{^1To^>!JMm_<!~h
z{{Vu4>o*_T*V^0P>8`~^@zf``cWiD|QqxQ3hUD^*sLx9EPYQm+`sR_T4-x!o*1Suj
z&1~`gqHQlqH;_QXBt6aUme*>KjC{uC6bsj;O=bSjzBtri@r}-v;dw4RB#^j~b%l=i
zPL1}CH(c2ydT~Z1@o*bGdW_fFpR<R9zu=;tF7W-Hz2HrA!}54qQYBk+Jn&mhoR2Ye
zI3;yez##c?I|IQ7kb9?Ee4Nb+G~M-Qn|QbOI{mYf>K$9*@5X8Gbo;^PSz1h1<;Aqf
zB#ol}$`-`NM<mM4>e<D3qkhL9@K&i9xY7LJ-1&n351T*5^INlX*OE`EHT#p{Pk<0=
z+9mgjziRIaLo?}&qSieaoqlVJS(QUgWpxx$T*n^#tEZ5XZUu=W2Dan3{f_*#&F{o3
zV}bjZ*1TgANB+T&_zLtZ+ogHS6%Cq4L}f4P-{z11(DIEB{s<}m00l*~zjxF88KCH~
zd10<EV!wv{#C?BssUp3@uTcqTLv-^2Ij^*J5BMQ3?B($P0O8Q_r|nVuQR+SpNEKT0
zd;Kp?(5wl@T@^3hTb245Sn<^N{0;cY`)PjI-?S|AFUJ1>i(VqWitXA#r`zfm78-sS
z@d{d4HN0L*jsi-u4WMo$@_u8t@c#hW??1HeU}-KJ1*Isho-u`TG8BLZ3_E%X+v>Q9
z+VV^K^FEzpsl{DCxqqGi03-TY@J5mU00!ay%eR8V#M;h-@!Z@^wk=yz(e=*}%8FG%
z^4iiFbjacaHd+*nAL1pHll1q9{{Y~wKk!Iz+0#gW0shS23}<~l%1G{^)czbTzLSX;
zBq5qfEN2Y4K5S=neB&+7Kaq&^TTMh8tzr}Bxdew|>T&EzD~xlBvf6g1W<=~_w6~P;
zAXYJi^fHhK(;~B3JX^fv%;lIlEt~oO0F{ybPk+Qu8rGFPy{Cab5o>o^Oq+$vYg+Vc
zsYD1N8WxTV+h%@;5>2<iwSIE^MgIVT>;C}3OMFwUO*ezQL!fwTOOcslL7_o4_m{Zs
zGu*t*6tfjLW=nXGk&u|;zb5<z;g24CRq_YJ4F_HEOftwLOP>#E7ut+x3{Zxi&M9IT
zVYHTD6!3Ykv2-8!CHL*+t=%C%3$A=Wrtetf*F0Bo7MG;J?7?=;J2dma+~l#g+Hr!w
z)k`nK(|4ERXYD4|kw!kh{{RIy{{VuC>-Trse~f-M>o?X{`-IwjmReDYByikY2<!yb
ztO3B12~tdB=QZ(OwWi#BK$dHdi04xAE-^B<i0>}-Mac&TcA+i9E&=MjGJQ>c^n5@6
z0E2!%Xg?IgZ>f0e;}?VU!!%ir9}nrb{vwRXz?BPjC)1;J=yD<ifN)1q^@qYQ_#kJ(
zKLqMlw!gHzek}N>V|BIVx$w5BE`t@Mn}W%^Pg&aXXpVRMw@<Nh6>>6jsf)tW_&)%I
zDmA(MscH5AN<p>0R(=}OKeO~WZ8U2!DU)TKeq2smV{wf!4&Vki?A*fuoB>#RPl<jQ
z&#0XfKzQfWEqD3xX$1_@HhB_34qUKrz4GTgdsp{iVgCRGj{g9HM0mqSJ|6IA!^>q|
zK4eRa+4W19^;I#pe3@?z;l2tPerU^K@yM^fejEPE-Vyi<VI-dftrc|J3s_>)bSv3y
zV@S5-FpB)f_c9?Ez?hS`f2_w&d1ka%y%cNgowbwnKhD|@hyMT)E%kdnF4w}^<)zlG
zv2CH$G~3GyiP?@oiYvHbc@zRZWjGv?KpC&mABKPMNI&=}=f&+N+fmT`AEfE_*CgcY
z`qiuq5S|?t#dQ;~4tXle{oLda?bAo`oELgB-gw5!Zw+dZ&TQTtT!eOFyS7`qw2N^Y
zDaw>)Q_e=<KyBZ{pAYM)7M-L?d!$DS2%#ENsj*$eF*E7N78WNbEwmk@gPa=YtDH;h
zqN&r0cWe6m59Fue$NUfr_K(y&PWGQ4wY@LH{vSt`KG&pO4Rg&{#^rMqsc6xwe8UDe
zV0QeZ5=Yu!3I71#gP*Z(wPMr5@oUBYBm|iJxNY=pIW1dnAj2()xI@!&$;so2{*L@Z
z;ja#OPy0QzXs#x<o&2kZw^m4l-~fD$s3TnU!yGBg0y(c6)&3m(GS>BL--v!1zFj|C
z)GW@QF0Y{}mgt~vh2mF<nFt`WeB&E;3g?bvUQb3ja$f0J{D{y$;DLX!ritKttpeIV
z6L|Mpl(W6wv#m{{7@&|~3pq6Fcx;5|MnRbnl15~}81+AgfAB_c_$McV^ceJC5&S;B
zTisq4Wsk)g?xlBs5nQQg@pNKAo>k!?Pu@~RedXW}4|w~-jd`GaT-L7qSh7hKuAe=%
znp)jTqvn!nA$cWo6|t6G&(wei73hEPi)#;Lbp0nmgHY1sEGK)3$z7!3$!8&BY;ll-
zZU!^RtR;=Dcg-T5B;PYWH~1s}00f`?gT4jb+g^M#@QsDU(YgCm_=Y9%BM`*pW4Y7}
zmv+Qpl~i_&bupaR($C;eg_hEt3&)=fbj>c(;u!#zJu=4QOqvMtNPCq<L_2UwOtG^M
zx*H9TN7a5Gc!uv-(?^25MQdvuail-lcX6bOsg1jq@&Gpwqab9KBa_b+^sk6;_%~LU
z!M|<4I*F5fk=&#(MJh6aOkQH2JpgVok`D*guytoHrrfFOO`v#l!TuP~+rys>ZKCjc
zmPw1~FhK-IXxo!$qsu73jFbw^*Ky{&KgT}-bgzh>AAKj{j5l8r?VfXUdM)RY7^8_C
zI>7ceq8FCfa3qZRo?s<hx|5%Bu<*}^8tYZmd^w>-;cKhNw+pEwCKbkfwvGlqQn5VA
zwR!2DhO(}8pC0&gO1sxSDzp~D#e`z#O`1a;)FD)xqNt^z>Ng{0h6hnmPI8NFI|=Er
zouT|8_+g>JZQ>sa_(#LK72JC+XP(~0bla6#IgAlxe$t_oWmZtRJy4#V9ksO9n(fY{
z{wvk>OBi8c_6yvp^MU^WmRIB^R|g-yP)0BtlZ?L;>Hh!;{wdm7c$-$YZCdffO>L@a
z^BAv!BZg43+YQc}!6h7#$pm22HT$25_BWR8;hQKfwArT$@!QTI)NLZ%0GOn#zHCd9
zUNA#+U>F=xI@0b>BxHwaJ}A1sS+r01N3XQ&y`E*%9wLHkxC}vx<z|qzvxZ~Ajo1J|
zBNdP0PYGIUS|z82HH}iwN4L<UCfd$eA-vNVj5;)yvcg$Pl5k;_c+LkLb{hVvp!nWf
z{{RDcwU<zYZGvq!<_*x@Dkwf<3z8N2$p$`zbr`OD!`})t?*!T2S@;5bg<Gl7qtmq+
zq|_{}kT35N5Lz}>ag2wR!XBM5O7G$;OKN=G@ps@4?1kf$OV5q}019*;7Fylfq`Ho|
zYopp;S$T@2NM?~s-YTMu0?~jJaC2W1_~-rz&HE1c-tOmJ(rq>057}HymrzHi>LDx^
zCso7{MRbnI8xNT6a7IoD9Y0od?R#AClrO6MLV<iQ4ZO_|FiR6#-0u5~l12~6ILLo2
zgOGF9yz9q46Y!Ucp#K1bmhtBrtN#4znndxzJcUS8x)NSFlrGQ`MLAvp1CiBB5m7xI
z!L=1-q44&P{{RHA{{Vt@{604f-wEw?h;5)r<C^DE)io(5W?|+;E$(g@WPRczV;STC
z0I#b44}2Q^kNy!)JioKI!`(Z>H_}Ft%O;6vntjY|jmo9qPc}6niQ4CBJoC+Bc*Ej1
zj5G_Gb!`VvgHy33B97n|8jNK~8=e<siPd)T<q`*6WLM2v-|b)Vdrs8uZS8M)+8~xZ
z7nf@13A!&YmE3lopy!^oQ*~;qw{dgZOP{EhmU@F)eWD*C)mAkubs>qJj(&BK9k+6M
z1~kd!9@TePe-3E+co%3bmRO3L$>J_wD!F~x+NHt5<$+#@k<a0-x%*T2uTR#^j;1vy
zhmD2Em3+s>?6hjqfI!ANah%s>qJGxj5qvRlG+SF6Mz+)!YeVNW{&+unHiB0y%op$c
zfB<<o;<@W!CigC$CJRJ<$y@375>GCr;hj})5(vXbX*`9M+#rpAdWkEb82OJm&R7g)
zxT}v5+Uqf2_-ErUg(tJM5H!;*^ftG;TShvwPNc`Tq08)H-D~4-5B||UE!Xtrj^^rp
z0V9Zh<4uhxx56k~JWm{Q07ewD&yQhU>-=ldv`rwv;yY`vvs^|Z7ZZgRGBI4?8Xqta
zMpw#_gMD#Uu=dkqIo5YQV*6gwZ7eO@;cm4Si*F19D|>SaU0BJ_%b442#{-2i%y0+Y
z=~geia3j;2U0yjgI5tN2O{c(SwpVgN4+<Z&h{oP`#zsiaLF4BgcR|x_V4C~E5!>h&
za^U^0&?$sCAM(;EcdMV_EQ%NoGn)DO^7F?w>2W`bHCd;QA{CoXmF{<pa^e+JBv?I0
z2vNv2q%h81NcN}bo``+}csk$y5-lqJ$3<(%8xcV}EI_*rk{cC$tizmODeaL}Z2tgg
zF9G;+8_hRV*1xo!Rj_OV>8~rE5pCAuVH|{vleve`*X5R>2gA=8yX%^D%3R8ac)N~A
zOR=<JQfWynM*sz7;~$?1ujoD~)O^VNH5_x>xC~-^nQ~NQhTLOj<G$05D}Sg(_5T1P
zH(kp^>yL_Gwx`4St{NRD!<v?xtyqQfq@LxL<uE=^-9*b7R&H>2j0}U?yvFPH&HbRf
zc|4ZC4CmCe1!UPHM6je&0r%VO5Te~Fa(6JvUQg1#Ub65WwW(^$;cZP~dE_WQ%XKJ?
zh;fh=0X%=Ycs2G1!~X!;_u_|ytVQmhJ4F~x$!_xg;5S^SJFvuc$sU5X`n@=OD8<xo
zSrPba!P4AnQQQ1q)Gih~vVrbz;wfVCP4~9k>||$b<K`(L#&chE+kVL!=9}P{^q+<L
z%o+f<l1U=Cjy1W8LnkCoB_)clq<cxoJ+WR*;QQZ;T4k;6w~XQc0EBkh7{rs@%pj7|
zLQd2xBW_kL*f<BTHP>pa(-=Hc{{RaHZ65wyB3#<f{*5$jrai3#Kae)$WS~-VGhCG-
z+SBkl)Y7%iw*LS^*Zvp$KZ{)W!5q5IrxnxMdEOefo=uQ^#buchRz*#@;Ba_cH&f1d
z8^K?*e~L9-KjP1Ww0%DQ{?(+3ZuF4$tn5>33zSw!-P9hEuH_^i4h?Ky{BoZ|x3#d-
z6Z>W>R33H2GOOM;0418=<U4XsJhqU5kCYKyFOGgPd==NcGyR+5*{(G7yqRZ^Ey=KQ
z`*5v@nI&VN;gK0~GI<p$GQah4DwbBYy$<WcJ{<UgXX4vyYn@|3@g9Mw&P~Ezqv`k7
zQIc2~{J%EZaI6C7avWzQo(>O>JX!Dq#@;7yg`Pgsp`TKT-WwZDY8fq-X;}02IVamJ
zo4Tt;eqsRt*O6#H8T4-nXqtpx7uW85Wq8wuvxicWD{`@I3h|qbl5ZoDH>$HA;{v@i
z!auZ)?y80#5omGg@M+GIn6(HJXkm~XtEAI@?;H+OZzn%dE}xi6YS;XYo3DhPAkw@S
zVc{=^DQ%-Yl=8DSw=9~XNf=_w8$Rgfi4>eE8}J4O0Oq6`LU@0{Q+U7PR+(?12=5xw
z<NG2TjZq7(-}Hdcp>YWrK4TyYj58clF8(WgHq(4jCygvVAl+zpw^s&Rn+4mg=~IKj
zU$fjd?gFnxf?%P!3E1>LG5xyy58;m!O{jQ3NsnC9?ZOZ38#$tqc#z{OC5&KC5YI#N
z1JvWT(2Ym%kmnoQ{v74}75gy!9r5;~Y2%ND@JBtQ6K=V?(eI&(34;ukngwGU9D4>m
zG1jHJ{g(V~qxha3M&nG;wapsh;UZP@e!-|(EQ|s>Lp-KA)dBgLC01Y#*vS|_HF($l
z3Pa(xgICe~KcbB;4PDl2tKB`K(JzdMKvxql&QBYDbZyJQC#86{o%>b8ad&$(9wpQ@
zTXP6ywY`Ek?;ZM>{P%dExIAH9V;;D!rB1H){Y;yK>VA}KUkX2EEmy>?@TbOikT$(!
zT&0ppHH^ySf2_B5^2~%BW#eWYiRQZ)JPCW@Ux!k7bKy<QTK2OY$t(W=302PJSY3FC
z$!``x82K5{j&jAZUzp4La`<D#J|2(Z$BBG573>+_mYUpO+CEz@Hnd8p79MauRvkTg
ztDh0SX@82|Exc`O!X7Py!j?%KP=96W2_3zRk|@C+X^joYF5P#G4g!&bn2j2Pa*g%;
zPth6TyzsAuC-HB_yC^&#Yoj_DrPMAhzQTe30M(mm)q)jfIL6g-#~X8BC~7)a!ux*^
zMdD9~+V-Vq6~w~k;wUE<_BVNK%l?mcM1vsbbTSS|;=WArhsTc({5HCV_r+SR*tfii
zB)q=UV3$zS(T^K0CC`xAIUhPO0~x_J#_1ol&%qr(`$@hLX))Ve>rkpK-ke$dsTV)L
zODS9IyRyy3)gGXbD@bAF^)hlvT>S*J*Su3}aXZD~i@j?|X&1`7(V1FE;%2}%HV&5a
zsOO(A&Owf~r5}Sn9LwV?pABffB8S5I<Wl*U8e|h%qok4n``57mx=8DTk>$Gr3C?q0
zn+M}J?IC_v9ZOKM)ih*DWLu|(TN~vmj4Rlok|_Zh<|FeSi(fVPxAwO1cZ{^@bYF=H
zW#S9lUCRZwxob6z{i);kkX*Lg*c+dfmB&$q0=pxGn~0TY-2R3%o2%~#X}4B)kXZP~
zQF)ZuwbkF)VKEK>kO-uIHE>TkQ_+a(dT$2!`&Iax<EbsRzXHeM-BZFbE#wWX*ds-1
z9JFR@O+j-TqbBe~Qf^dYTrNg`onHd})IYR8#0v{O8{nR$YvJK$6&f3>b9g6IB~^~1
z;z=VrKvpdgCpj;kYwan2XixY<J{d=>{?>P^Wu|K8Z8q{7nVVaIi3ck`+124&caJAB
zh}R4ixvqK8o$UVr%xa?9b^f+LLwr%;pB-6i@_6Ur&&7)?v3YbJ=S$VBKeX(`Wq@U~
zxwa6?3+>2I!O#(sdXwURwIA&h@HgS{x$y7AKLct$B=EGB%fDN{)6M3Kxw@;gA)Xz8
zXUvr&0R7fDCcaDXC&XXai{PJ(?7lmEGoIqg!f!F>)3n`hIwjO{#8gPSV>H&#uyedL
zYJ+*{$*-S0asL1Xbolu`tEk8D>gPe$bOAF9cr>UkEbb$Kk`_4<^hhSaz-NhqvB?2?
zRZ_xKZ6c?Lh4t6)XV`iNhCE3B00*B+{heUb{4=F%5+<c#s!2Thlq(eKt~|J<l(>b|
z0-;!dr{z!$e60_|{{Y%2&(|+LHeOpnW2D<}x4Y1!l4rY7yUY>ToVv-hDOHXZcP)-_
zlkmsH&)aLqKNz)*GS}jgPpAI?WTx9#tTkJUJF9%)<~M+>1=k!0jm|z&+iPb{{kU%a
z6?k~Ozi;tor5xbdH;Cr9w}~J)7-x&jX&EqZ5kYS3GhU4>B~`LHCt4CZuY|v`$H4yp
z+P}rp*?cwet%a_wY(&?ZLM*ZC>aB+@b!T+3OCABs0}$(+^P2kB^Zp6@`$zl*n)Af}
z01rG1Y2*DaILZ4xmaev%$pCd&F2r`Sk_QXtARP$rUld#a0Kr)PHR^sa(R_5eH-|>K
zrL30L7gA^`a>5D5*NHA(U$h9_Ko6Nh@IG4WuRm-}e(zD2##f&i^$0KSuHu^aN4v70
z#8xhbMKeclC88wOOh)BGa}<1hhZs7}jdr<z;FT|BcGukh0L@taV)%*hOZIs1pND)c
z@cZMB#3SIFj}tQLI!2l=;n1$<xn;|znGA}vGBcIf`=e$DXf;aH_8#%Sg8V0|4Hv~j
z;zp)d%+T#Mi-@gCFx<u&?`>n13b7%))wW`|z+Uz8SHy4lDF?%i1#Y|}qxdoYAZV9X
z%CpO>M!#d5dgYPqZdImrT<v1<LzA3w$@tRK{t8{<-vazMo8a&4@!>m9hFVwJq`8hy
z3`g@>G_B@I3^8A=&7z~R`GRa^<x_7_!}S{Se(L=VV~D1rzv2G?9nt#F@b}<WrQ`1&
z=~`#TpM~1*hWtmONcXx%r>NW5>iTwJj4i~LI-QT2U?fV&BbdP}rtC&QY<#QxL}_{t
zhV`rcU%;OqB93o0{{Z4&fA)P^#tn^!jbpWFW{iv!`^Ra)Dngw8L-@zzpY0Fv4^_6*
z^<Rj3q}L>G^Q6DLw3$lvR*u<~GTp#nq;S~>6~j+!uIiUl&*MZojm5?>aPdcK=Qtp=
zuqx-C2JD_WHRw{yB^_HiYU1Ml6n*F7Z;O5}v%N8VIq^O9`mAWqY-NuUXCSB9*omaa
zJo#kw+H2;o5Kc9Fi1p7H$qe5+?GCcW{{VZSie@A*Am`=C^sHSE;clmVt1Ye2L|0KB
z_E#J8#$+lsfP3x$cRlOquL^t(&@5q##Xl0RV}>h&7wrjg46+GOa&rgTWGFfr7^vq2
z*Hj!Kc5&3Sta(+hi|n4wq0ww4mK6mGzF~+1kU;qXZg@Bt$6AgpH^CRylUv2%&$G^q
z4lLA&e6ztNB@NDT%8`@L74}z$yfOPYcz@3?;>MEt<}#@hXJ+!*O|vvi4*YFm6yO|y
zaf<Z+0EX9J4D9TeRJ-tmTI8!BjqWWqXSp#JI8yOSsOY`U0UUI!Cx}VtI8kjMA9xSo
z&y21%zr#2@rICMlCW2k<)PSwHMW4%$TKYr7KeCs^Y3yxmymfVJX%3+Hh6{*<S28g<
zWKEJG%I7#6v-;QQPs5#W!x3Ler05zHml86EOHi@T6itppBw-~edy~H&mGz#9<2^4!
z@azo-fVC}V^9*LNvb2q&$v-l`o>Xk$fKYV%z%_7G#?M<F)bPtg^Y_5N@J*ivrLoyz
zadi_PG%f3F!N+&Y6~M;b(dX)G?jH*O0Kq(?)$MI9wO<Q7==?<2D3=zWE>7s~7vxX?
z{yl_|fVse~*FyOH@v2DfWB7mYwRG!ktU^aH7Z&WN<tr4RMg}?B8AD@&NUsq1kMXni
z`m<2lmGz~hWy#qr%><FANnex_j(Ftrk9y+vwP!8<_H;EEEsv>nAJ{M9e}uHdcRsD7
z**d9jvEBoB9!7ZGAC)TSxFNvw;=JeL7l;1<XYT=8Kl~!P5BwycATqVNh{q9B8Bqhg
zb1@xqu@F0uYx8g7AMFM4q9>UAU79PIZV*OpZ0z36*b-08ex@a2G0ya3>TAJU$JV;W
zvki`l&u6NRv)==#lGzv_ugs+OA~HWJ(ll!&cJwi+S`zqHr_&nm$Ik`cUeBTUbHi<9
zLY78^%#(si1w5HzYz{M*+P<E(^LLIeHM^U;M$x=SXQt0Gz7tcpds*$2@-r2?NRn<N
zf>}EB?Mr^&w0*72(F?fm?e>#9T+0-;gnx9TaT$Qe1w>$uIqzIO(|j_y3#HE2Hdl7V
zR{69@!`l#kY%1O5lmLI_nw`9X&raG<SKswGYf0Nv6U3IVMWh?Q8mzjl%#Nw{uPj)3
zL)C5|W|6~m0z;o)O7k@T0EANJ<)Zj<Vzaq$7tS{CeKz(uEcf5Mbqqe~U@$vZv3O9}
z$*WxWf8nLuUL)tugj_wu>l1O7w7J<CJ$~x_4RX4qghOd<ujzLdELf`CJfg&+{{Ral
z8NeWRXvR;qcEOp!D{6S|v!Qsh_TE@EsG+^LwJZy~zuGS%WOBCX2}RFBHj~uj70gQ)
zgYDnSj`CNujSxSTF|&is>cP@OE5sCxZ88JLTJ~LM!Dmmo@@;j?iC{nkWl?RI0-=F7
z3+66Ha!RP@j006Q3vEkMwT9os+DuxSLAhYQn%G^tF~<pXcVy$S!&Z(>grQ@^WwSb%
zjXXOYrm1fXzaWX0@zO^mDuXE}C!r`v?~pT&cTn)=v#IJbjZoZa(<>0`aVlIXJ4gUq
z?tP$tvdQ?@v};!SmEDZ3q!R_dm-8g*llg`=;FTFMDCeB7(AU;~v+wLh;-86{N_fBH
zHmi5w&jrK-L#d{kCbhUs5(-=fm_Uk73reaRw@g$^5gKajaG@zXBlBa!{{RcTckv^{
zw%!TQpr2Bj?G!W`ZK5y=hlh|%(#f@(8;bBfMSnqmu=ng6`zZV^HXc2{zPQ#rd0`|z
zWyYgt7_!o*!DosK9ZElw0OQSKBmn%5fY;EU2Y=w1nof`Kz6kytc>DW*N!3H%CaHTR
zsC%S#!i18^7AKA{Jh=Y=a9F6rF>JBqbwBteO^1l|>%aI&wf%h|hG)y(+#7|$ld?-`
znpS0qlk%eZdq*BvuQL;k=ekbF^r+B`cRyRa8?1O+R@831H{%iEt!BxsUA+A%-_MnS
z0!Zetm`NBoJb8B#?mPq;&0qL+C+yLpc#(9!h7J9Le6ojqC|u8_iC2-ew9BQ92q&({
zf$zG%7(6-u00g-B)1~TGx4r=QlXVV|LT!TbSgz3a-5a1s10CI;1Fe0H;Lm~o02}-(
z;Zvi0TGO>35!>mm3^VBs2CWn=3vQ0!K`c>9vJIev63D>vtU8|-aCgz%?wViBevEjV
z#(x%kD${BjWuBXTXCZx%L3RC|dJ(x)3v};qGoSByu><HU#J($hQ~j2_DQ^dkzBzb?
zPYd7A1YxGPx}FQD&Hz}ap59Y#tfcMvvV@Ka9M^>S-{4J?YL<Gf=fo{*!ne0bv;CSW
zqnTt3pkb`8^8y@@AIif9;E-}_%Dy1UFT<aP@2l!MBwjbxjl`iRh#fWwt=N*gt*$1O
zUBa9>cJkyrpi#h=O>J{NWfgO{*Z%-(Pl6g}ha}Mc8EUWMeP&iIYk8`O?wO-;kfH2j
zbzq$BWruO@#EjR(e-WYhKk<*m$4dR6JPsz8R*miMHK?zJ-LwrF?m=>}Y`=@A?$Pb=
zSbz$#$^3r!^W)!+XT^HHjo{A$>AnR`b|5at*}l#viV)6>v)ep&KPN5$LxM@##DIS|
zf8i?ewVtT!b*sJ1ai|g-hWkVTOMe7W>~KBGei^S?hFs;X{{T~(ScS4j?dOYrE&jrP
z19eHfDe!~h4y<qOWHQU4+CdJl9(NtcTJTA80gx$G&CE&<AxQ?guNr>az7*ANukJKo
zh2;2h+i<&0K~@JF*bTBZ!pj~*C|%!a49)y2(!NO4e`~+l#(fSi4(tB_53D>|01oF;
zvP-u@pkR-*Ixryo%F)Cz>&0^#&+SX_Csv0|(=@#*T`u27REi5W3wS~XEU~4X+%qYR
z5^=Pl{{U}*2I~hqYMCyqU60g%g1;ZXWbcT2Wv`31S@k~#TWMurj_oh*Y*q!30(^;J
zm5~uoDpFKj_C3E{J`;Y>dXIqgyX{xN`s@5bw0O+geEPJLBf$A8hFheLSf?dV1?9*c
z8z#RZe`O!rN8qQ0?QQ1xmoAk)i*;+fM{T0dVR(~ae7IzV*6P*b!EMhO4Z8p?2_vo5
z{{Y~qKd?`Lyk%{9;ZKBDz7o`I?iPRTDD5V<is6?#T1T^E1gLj0**F9rn4;pm>eMBB
zB+jZ_ty%v7nfk@A{@H&R;nD1Mzly#By=xd`SdO8j&ODfe<VFh#(lsfA^LbNA$MBvi
zmaU=w#M(}()|!{ZaiVJXd%UYnFH%-gWEsFq;U$}soZv>M7|#cvjJyr|Uq$;uYfa*B
zhW;jk+TKDGuB~J*tzc8hM3T_0+-lqn%w+4FV!ofWPXTzpz?-~(;QL)uRJf7SShQ!B
z?6U8~G5}+OLmu2SMnW(rZsr3u&Z8*#Sn5e>Z4apQ9U9u!%TBiVOK+!L-)z}5x`F|7
zb07c-4A${W99bNlv1|tbU{<ntV_NYwwAwd}d?@}Cjvcqg=-wn2jko=K!un*XFP?H-
zqX^Ga^KvV|{t|o;@O_Q0q2X_a7gyd1ZE|&Mn<%0-R|z<bD3;nA)Rh^E<Ptp8$UOJ2
zWwH1{`#^j#yo&o-zl+Bjd}bmy+y4N>-W4U3`F=^aMjLQJ*l@$9+>x7`y_n>Z(&g_9
zT>L!MCbzQihmWtkRTZ25{{Tuimd+TR%DleY=#G6^w{7X%TDb9rloPxW*=VY$#X_;T
zb^sh;w>yui@79yzFT_uTo*&dC@V~{chxh4aBdXf#THc=}#gn!-f2>7m;*m3*z$oCA
zd;)9bxxe7Azpy`tC2tQ8+7IFVxUeSQ$`izPd0!^qnnHeDW0Fl{8@*yegL@<Y(fG$j
z{{Vt7e%}^yT;Kd&@JIYBT@KO}Tb*-Ok{jrwb|FS#(k?EibOepe-ck$_TmhQ>G5AUU
z00!ylI;V#rzxa>w!shPca<f4vhIB|FwQ^I0cGRZ4GR2Nhm$i>kivE>68RJ`P$SpMw
z5-i$gx2Rfq?Wf#Ku-%46!<U0DcA?<1?q5bAjK{9{3Qc16*TfzY*Dt&^s@uXMhC4Pl
zdUUbmk|opFY)%-DG9r==eqqwQspoZ?KBwx`?vhqN6}}mN!MgtdvR0L(i@%NDAn`|z
zH3`p~<k?>h0yyw~U?H<H%+LUH%*^=eE9?&i{{X=#{{Y~a`Xn)5cz59!g>@+HE*BTq
zP|vE|w2^dMi-&h-Wh3P+CeT1VMSahAuXvi@#%<wm6nJv-3mbq9uA-79)wIf)U>SF#
zz~=<*lPY-m^Tm3WkE81s3*^rho8;^<FWKSwk>tq)G-?)19!NPE=b^4DnWcHFa~g7T
zyWY>p^Sv8LwD6Uy=w1QTFI^*!G_=s~B}+&^URpS=<3e`r`?1J(ard!W7Fy-7)ZbZ`
zO`l5CuAS|kE7XoRV1ON}42-jkHw_te+s-q^Wq8NpZinz+P13CXH@(DS;e4jnEiCRL
z)80i23r@}+3qs`KQb`K+8~SIf)OD>F#2Pu%-qO=rv2{rxhH|qM;1u$m1|wnA6yw{y
za>ci*cP3G`==1%1!`E6py^fvX&2ldbT<OTt$7gSBlIfGi?#{yI(5yr@<|Ii2rzh?(
z`Dwl|@yPJRg5&!t`%|~NMJs;?mmRTiGU}&rXnErk6dA|OTsE_y`2O!uio?L#g^Sp@
z$JlNQMSpA*V87ZGoJt2L3_gT(uME{6;rE8Mr)@)Cz58=+ON(ZfVH>FdNqBBp22xIP
zL00WfoG+vTZ7t7o)P5%X93CT!#r`6fPmcE9CV*U|h;=yCmjwio?^$-|q>SJZ$2hMu
zZ;ZN3T7B-Rp=y_&IEpY9DD5rdv(%Ld#@F*6IHXk>$&Uo!5QNvxP_MxqGgQ2T!B#f<
zE~7kB3s{3Q=?`(8!Q@B=>v<fFq^j*X$t*w>&uQK`w(!-uTi@uGejHeF`|mv#(9CjK
zqjp%z<o^J%llbwxY1^fr;6szW)~NcIO8uy;d~>3IW=-K=v}sS3lHXB+YorD;QGtqY
zDN;Z|=Zq1>a~jvi4-qbzXQO;H@dcNM<Fo}IN7Uv&W1U(4MHg|Fy0(*RU^Jd|cmQkz
z1bp-3OTP#B(mPY*%h^lYu#(n$IcJTdXB$b0R4TCJk;vmFyl>(bh2RY@!z-=a-b=68
z*~Z^&YfmX|lpL8G?9I1v!TGWC9(IG$w~ie)x)}R!GwpvE{@8yA{t#*};jbENlG|{R
z+qCm}cCzp{7;fchBw?PQjmIA<kz5^@?W6FP_VV{s@Q$B%YpUKuEx5h5Y3H-t_{8@b
za~pW)AgIA$i~&D4CqI`d@qhMI_-}m+9Z@wTNg7wv<cZnhKY3O(NXZ8TFeOF^878nb
zkK4cC#f|LNUk|k_n>#Dr#(RBI5ccUX1Sv^I^B!}Zu0nbQJXdsZQkID~=4UKKW3l?p
z;qTh-;*E}*Bm6{dIw&E^NqeI-t8a7(+6;D4$29RV`^=_C*faB-W~yo*wvT|U^!T-n
ze^sAR`wJGfm+d0c$vOFud5+#<AL5Esa8K}t!5@MCHT}0E(Qj8#w~3ZVK3sFypFK|1
z?2)pj&YTp-sV2T}pZ13yA-#~^XqQt-aNA|QmE(>=>Ns-|ZKorr%aAxMaf<DwlS*5y
z4o|Nn?te*9{{X>IJ`ULFpJubPw7Y0<)6aQ3BS|S@GY!53Wd?JRF~H{oyRH8K;H?&3
zOf!9_MTWvRD3Q!TDe6(-SCTdZI4VFrEBT|-&&3ZFPc@&1E@8NhS1zfr&IlhcWh$Ux
zk<eoto;Wr9JK<}K+xwP%R`TBQTrI(CS)~k58ze-H6amjHNFBK8v&f;<l=Ckm`USrK
z0D`gp&+o0R{f4)y+LEPYwKmfIo@tjL2(E5}JZsJvkVADC=DdGg{{Vuy{6o_`L@mA_
z_)<vWx*H<C`$OKvBIknTglK?w1xP)s^4`zEo)OXQjlIv=?X?+xZL`T6?qPxDg5~z^
z$K4pg;<s-+595Cg+5M|fnJi$+k1g5mB4YmlbxHYR1oS&e{OG5Y(1Nqu%u>fm>VBMP
zf45$p;>&w&BjOIZZ{VwjxqF3O4PsZ8cMN5D?5$OnU{Bt|4t)<b^hd-00NU%pL&Da+
zB-1rJj~%Q`$$j=X#j`-DNLQNDXE(c8a=*K9ah&5B{8ZAuANXHf)-6Tdjoy{0z~O`2
ztd~}s+_L`sMVGfZ-Ph&Daz_TbQ}BDmJ_*-;-=thwq>#p1JF5$s2bS1jouIR+Do<7!
z1Fb~z+CTE`*p-+|?P`BOJ{tYJbblMAr23wZYdwvWiFIc^;M?U)pC~INteYfIPdiB*
zf)7KvYx`UHF3VGn>rnWQY%K2NZ`^AFCzdwJ%G+MsEH?6Fl|@-p9+_^r{(CO|AnE#S
z$4~f$sl($LtwKnKNZQWo-+*!FN4iE_{{VV0Te<I4{>P$gx*}@68<xiVRVB;V-A635
z#<CJXj7=ue0NM)(&hiF!^IWsZ;+_8hBL2SF{RrzHx89p%8&9^-Z*8s^U@go_vCf#~
zirM+GN-@XZIPce=JJbF?+3S|qT2_^4d@OEU&R)eW)+U|!^BU2Kk#_(%R*#TRTKp){
z{C(ry3IlDa+L)q^mu04=JgZi2a!tCtYtV6p9P&N=c29_UKA~f8b^Wg<g*&J>3udnN
z#1Kx_&Lm8pjL6H5<a1S1EaiR23~q<%)~oR{{_{+d?_9aK)U6>7O!lZ^fmtwfCz{eu
zq~zn|DmlUR`FG+U#vKn-v!6%PE^XFS%Evsmtu(Ny0lryfloG&l2F<zTjB#Hgc$39m
zC(;!)Xg_}gh4OCgrfH=Ld0mDwqwCaQ;~nb>JYnL08O!!vTSd8^8IB~n^3v8|s&<l9
zK;O<VNL>E_39YGNG`ke>SJ>{S*W%W6xS_Pw?=LR`NDFF=A&js;C}fPs4&$Gf%1i(V
zDl4PYekfb`c2fqqX$8g7sUymP5-h0slt{-TJm7)}Jvpy4KL>R^KJHyg8D+bKKbz!*
zDKK0O%-ix@^c^}?`+peR=_s0Lu%A(8EE?3WpR)&O+`CYwa4=M_9r0K7Xv;{m2~DkT
zeL<oA)R0<5<>^{Y-MbeBB)G)ttFst8wzC2_$zpjuab4ZV?M?Arqm1a#$!`n(^Drz*
zyN@G!vcBWTLJuFO#dh8;u+-A(0So98g)JO6Dvu8F@_<AcWdq!22iBt0^p6!;+r{FW
z?N(cri9T7ZqS~mV_))M)9Czm(MO3gc*uSlxNcflHo}qs`Yn~~2?e6Z0^W?O5^5osu
z{T<}kqoF=l&!Np{Sa{L(y{AT(?FI~mD#S=O@^XU?IqnG`?N`o{c&_JAf+sp>_NL-h
zq+F{gBoa<a#>BUCf_e(+Z0)AJxKpI6MI-LqjKU(h;37v7u`QlX4;{`<X-f+ftdPCE
z_de0^{ojW#AU7T^pUawML*}>1Fej6TDx{Id3Ek;~-`u<v@h{<zhT^!exz?LhZ!Ae|
zYcv82hjE;PDJvQ6$p}xsLGV7Gq4?iZxR%4j0ZKj)mO~VUae{IfxyKm<a!*?5Y<>dj
z_jbV9Tg`H;g||$^NxL3|EPXo`<Lg{*lKV{G+e+Fk53qc7`&D>SOHroko)x#4NCsiM
zxAT=<dIbvHoZ|&s9q=(+CFkvxuWGWSnoRAXM;dto(NIZd>Z$=!ge>ZK?C<z=ubprF
z6E}ibTWXgnZy<+0MDlGyr1TN4^PgN`_s%Pfy3_nJ*2m7&e3w#OeUuhapKz>t^&}JR
zLc-H-<VzDJ(EA4W_JZ-4x?M&Y+C*?X*{#OKj{^$1!<-I!sM-&`a})eY)bFKh?GC~?
z+Hbt@;BrsjWB?}dfyqIiTKPLq(X|^Jv#RMAjdq_ZMq-_qhHUOE6cBjF%e8TWP6c&F
z_fWWzY&9#XW}GL_<w#>2Kn0J;3Y-JfueL$0ULG5fD)Q`l_37~^iY|~}>S9p9e2pVQ
zNnRL;&r{bJJf6b2JDcqW;G0WJi0&>eo690eGawxb5=%JbcLWZe)#Lso*R;JF$L*Ha
zQ%JkEh-8??RhOJ>FVp>?GCJ3qTl``1eVxpal!<M}mc#b~MF5Nv&fu^EuTW2OT@j+%
z(9hcIbLn|JP5qfV$)Q@uYU-QV%)V|ulI1o5*BeMa!o1&7@u$U0TZv+aQA1?dSqv^N
z5<<fuy5nIz$O8aiaof-1@y))Wd;P0>Iz7b0%Z523lHmwEfSyox+DIgvarjmJOXB^G
zlNwvJGRw1-*cBo!PH;1pDaqOnGwDLZ>#8Z$Z)S7XUM|)3+i<#-vaAaK05!xbBr4eX
zNp+2YeCKdd3IcP3+ng}zrq!YFye?!c305f_<#Uc^QW1x!`8dZMVyXC-;s&*-NMSlO
zKRFHNTSFw$BWIB4NkVbl5spSHht{urOZ}X(8KHQG?^Dk$9DslU`4%!sAZLOA>&13M
z4wBHB)xPG-YThXqk=kok7MAwb{Dp|-Y>t390yg!?&(^%pTEFmiuc#d!<5ar5x|&1&
zhjlnHlEnV$5dc;T#y2@{YQVkmJ-zg1Eq?6W+Lp|g?4e_J9N+~c`)=bOjd7EBlG{s?
zX*7E)dE!x$u&ae#-L}FoF`m1L&o#7YIGH)N^gWV4i+>dS1qsu<GB2#{Ol@tlXA#@9
zWQJ(fpXVqr4ig1Pz+gul1NfWGv@3rs+7-jh1IcFZBxQQ#Jk6sY?`{C(<oEN<Mt>A7
z=&;oF3w=H{V5K94?)HK+ktC%+9dZ<B+}3Z1?0h1YiEDQ^n{>zsW!~`|o^c8m8DZ46
z>{mo-CiNrQ$sKlq<6Ex@>Sx6Ie6wB)c5x%y&Scy_yDG+ZFl_zSTywy$f42CoapJuy
z*F_p-_K6*f36@Pd>2&**c|P;BQL72g4@r;!JC3#UhLx)LyHB!f{X0Xqg56<R1d+UO
ztZJWi<c(FN>&^nPJ;3Q*W{G2=c)|YwwlD59=`UL==V?A<GZx4r_n-oCpPO`i=bER5
zjJGXSR@nM4QTVa(14z-D(?{0zJ$~h8RJMWOhQ@Cxx&8EpM@L|KFi=mR70mczJ#XR$
zpu@&d$}e>HS!C0-8#bNBI!PR|DgD=6l{<e!UVo(cD(Zg{Ks+%Wo~tr487;Ld#xg(6
zmfI#8CC^MU44yXu&3#Wcu9^pgqKD#~M?%xJCHo|nI+f&pLm%Ub7B`(;M__=jr=?*e
zld=fC4s9-VZwx)wtD<<W>qco0nr!dVJyT7Wow<$}g3SRRbZsnyt_iH~8-CI{--aEe
z@YL<8NhC^I=E;&cK|`I4tXglB<8r)cq;?}UHj|@%&)yK!pr6C~ma7$mqnYe2=YrzV
zjH7N6E41?z#lcpHs`n^s=Ud$#(&xoD9wL)Mit(W=(OubHz1u||aGqo?ury~MeS~{S
z&$e=nEAE1I7Uz&^{{R*(b=^wx1=BQ}Yt2ZThFu=PqPb^61Io+0%MMEo@3j<e9Wzqt
zwmS66ZeqWM5^Rz$^X4ZVghhdGVsLAJ#_`yz!)vVhEgJ9IlE@LlvB5i364}NHBOF&e
zuWh%>((mSgs0y*|jYAxL?=Y)u8RN0zJ@H<IBDab#a&J~-E!$<E#I7Zb0;C&sjx(MC
zJTX6s$2`_#`hSG3?rqmgw^$5#8_YuT*_iXW#Gr*8zD58F)3%#f)1rHOkuXVFN&_2R
zhisCokDCLz!tHJ|@6y_7FRV}Ic%}*T(#HaH*s4M4h;!y~{>p&0VB*XTPy1@>DXig&
z&PZVjHbUihuTR~<owyzFdUOW3cGGmrd9$mBvUI_4S)dM?=teMom}K^^d(*xZUFzFz
zET)%O5y!q^5=m?kJzM2@209X<N4<Ry@ZaH|#Qy*t#{|9_(rvFTV$4ybfEgA@@wpMd
zc{cnU5<_5`!g$JYdg?!6J8XPW;ST}n_nMiy@R~Q;n|pntaU(V{$y>L>WOVDu;A0im
zLEz6F+grzBu11Lqsc$akXPf0_IXh!w0dA!31&33`ex+Id$i6bt?V#4J<<vAenq)6)
zs9VW#5CoETuubMX4y9L|SD?$`oe$x@yK8ge{UZBQ(w$1R<5;U{*(9k}XvDJs4^7Cp
z`tmuRV5~JowtN@hKiMC|UlP2yJT)Er$s#JXrH<(l*@i<(!3m8s!1>p&Bv;s<0l(mz
z-xO}VOK<S|$5tBGgqu-UkUQC}?VE_uz8>XG(yO*I6dr!*Ae#Mx_$T2OKMf9@@HOl-
zIdutz<TsY~?{#b=knVNz=aq?OVS>OCzug^c>TiYGXUBU#5M1bg749q{w1U;Ht@T|y
zP}$}(ADK<0tsC2wQ@E0iz`z;iysG(?NjohMLKGmQeb37nKj4vZ__oSTH$c{7)NgIw
z<G3#rOA;0P(M*v|xDm$%1_x1Hj*0&O1k=#I255GAmZ#xKwW;0}`+e_*Ad2#63N9Jm
zIVDL>a!5$yU<XWaE84yw_|x`omsPyfz8E4}YtWYmQPJ;b(XS+xi6&1ZLa<JR<&Nn7
zZ&GW?ym$Wq1vmJ`XJnoe_;G)ucw<xZJd<~-+co5F{{V4JG9yC*zDEJn`_@jiSt}KK
zX`|^c2>$@VIsX7=KZ!aW#ovSFyMs|kg|xC?+RX*syt1H{GWvbQNENm)b;^*+LCLP$
z;TP<W<3E7f)u)8@={zOkPY+#6@kywK{>;_wmuV@!7bYu=xK(BwN`ssnV!s<aOZ#E}
z0Kr5q@3o%|_@BhuhNq_Ad24eL$7N|~>&Pn8+gsbph*tv(F7mt(M+cwq{{ZbLu6Sn7
z-q%9c?>swuB&`L+7Rx@brj6Oj`PChMi__GKudCPS{@{3s>upclpNV=u>@9KP8N46y
zF2+40Qnq%1FQbm{O)WBw#KC{%#{|T5A1MbM5-ZAnC4a#}z6Sgy(zJg9{5kPewyk%j
zFWD~NQ8zboOd%g3d2CWOSsSanhs$&r$*;-F{{V{r03S7vJ5<rUO+Sikq(+8&d2UCP
z@#J-|WC(x|06FsqK-`-7_eAl&gDs`TpK+u@gD%e|k{a2}jDBJBl8oE4!DQRpnoz(y
zd(Py%POFt4s~_;)pBm;%>sWNFWV5**bW>?E6CAO&c%3Ea=lj?M_8G5+ejxtTFXO2S
zc;#iW+UI;W1*LaZ8U5nVw`&7~h3nTC;=Hdx@OF;AE1vtq-Y2vWPi&J)vPj8&y#3gj
zFvW_2*LTaFdgiWM{7JU(z0tSvUxwSnSCHJRTFI$N8W^^H!iFS~q}|kRaB;!z2I_<(
zvcKTSb(`GwZwx+;WEzKsZmri&yM)N{UtY`hr-@I_W3iA$9E=YbUCd9*&1UKsHoA;)
zTIo72r>AKa*^RXum$uOS(s?eBO8o%oxkDdp*OhpK#u}H!?N9qtOVnl4?wU1;;GQ_8
zhvg*gis~_xIVS*>9R@vo*8c#+-YvDbmqVFg)h%t@pgO$j(G97{h`#xkla1-g$I1vf
z7aCG)Q#~2!cAgjTjrWY^*R-D;#FE;gEN0jkCwVjXe$gwXvD^kZBph-(S4Xbu`t;FS
zTX^5X66&$WU7^%9Vz*Pt8UEz9N`aM!I5`A%ZY#j1eIc#i{T|{ANl*zRg^bV=yyclf
zTr#I5e7uec_2~R9<KG%uFW9^ZcDkO)Lj9Xe5#1;uM-oRbC;<NO;P)7<67GzvCAvLA
z+8A}Kb<^%IQ%AClGbO94!)&ZE@&${^kmMZYhJEu*f*bt?5MsP*i$YAERidTLOrU(Z
zX^WGQ$-o33dh@Lx#yXX>&{}GjKiSgVG?I}U{i1a$*bO9RKP>M9AS{RF7(AQ~l4-RK
zPAh38*Pixm=gdS;?DW7q;1icVgtr5yYJ2WuYZPugUEp+s`$e?-8#|LA3FnzE3E9RL
z+1M(R>J;=mdi8oUc&zEkt@v`*OVKEml`Z8<0!!ejFwM6q!N%0bZPm+bJ}c1lYu0ws
z%U!<D-$7~`<<xfbqbzo@=yJL5Suklg`t`Nmtr7mqzj-o=sIKWY7UyQo`*_I%hV{p1
zKO*B*qv-E|KMQ^p{7dm*Z`vQl+BbsqxF${DH2(l^xM2D6V2vXJV#DQT0{|0@;=iG<
z_-S7ZKZFgJ?BC%1TT<}<0Eg`aDQ^~;sOc{2AIf8ar?pE-Qv;-vf_)8tExLBE;-3oI
z&#G#-(`yg}WRf;Zce7l#42$K<a~zof?h-E1o}Fv1i}u9$lcL!};SE2<J|WUVugrAI
zm%er^a)INxSy>Yt1y&gA=tmAC4=Rb<W6+IA$8+{a#Xlc@FnmYwtln3GEW88Z{VwE4
zQ&`n+bUVp5<-@Dl{gDzPd1f*??#^RwwcB_L_TTW|fUTES@o&U^Gg6JL_coO#rw#m&
zN(kBH>M*6bnk~7&mLSBCOA*C?IsPN@e~!FKANIxF@$n7eC7SC}o?$FN94UBbFCw=)
zK*!S+#oBnJ-(G!^>S#^CEW7QPTejyIBpEj;<0GIstfQB!B#q~Zi&nAw1Mz?U3k&gv
z$5k)jUkYhDKiXe5nvSNUQIX=^^1N`v<VLF4B}Vt>sL9264e$IF>-LoKex!8I5na!$
zA;<1?t621?Rfrk=<nqR(C<KwYvz&8Zm3ps;G%pBWkFd>aac~(|Yq^r}h2tB*b{IYQ
z1J<he@5fpesbdrCx-5}iD+T*??Z=Rb=ux6B<y3lwC9}>ruIhPxB(+B?#5?GJNM8;=
zYR`jH=$AUj#B2L2Cy#>+8r(XVakP^o#L9^h^Npd2-;vN)k$i9X`S6>=HaEIQfc$6S
zzX8pAZjOJn^-zWsjU0&~g5prIs{#q~*+Y;zkSp**Sn$t|b)N*a-}dy<TLt^D=1Ang
z&OXtzdW;d31xfFYwczObI{BJ^hjiO$?v_Tln%>N-FlWvV7_^)df-}##rTv_ouW`>1
zebcD?8u*Xn{Vn`sul!@uyiubj*?@;xO*3k#KRH%kn`pry<p+$eax3P4iM|&7pS&4)
zcVVJyviQQ{bSf@vg1k|ZLCBsXgO0yE&Uxelc<@`#4{PFh^$!>6)|OEz-X*+v#mG=I
zx+PyQw*+BIk4)B0rKg8AyP0BHr;_1Vln&<7CQ`!~+qj=Vr)dMGYt^TRYj^h?RVR0#
z-7fRNFlwK^w3I>)_~V{n>&I0j7|vL6&Tvn9`VYf@6?`?SY0~Kl@aD=}epsW+=KBU^
zWL>*^5L?!~GI+dmZE+R4>DKo0GZ@=#zHp=NpEx$=EIJ&Fck5E<TB>ONEK8eP=|#|Q
zBPbf;BGPaKthfrf{v!DwP;*so^&%}Nsq7va*X%BJR2~t$PYtrLCr*ayNpiyn9#zlC
zs6hF=wd>C8*J<L94S3Amr;Ge$J+`f;so!q}-RoJ6-AI93F-rL1R4#GGd8nn+uk{;)
zseD4yZl6Y17?(`9j(Fn%f|rs>KYTeS?v8tcIIX>EPk~+>i8b$rUMj!SHFy*Ea9dk0
zq*y;bUBolM-d0E%`PG2vK(2eOj>t++W23S7;|GNF$ZvnM9vKxxaIL`d<BxbaBI?>@
zWIb|5))?oJUvYdp{{Vu4e$(C*w6xc}DQTo?7Itv?QbBuhKC^CR1$?=_(fg^FXa#n(
zvJac@17Dx^pAfz|_>)Cw?ffTV@*<M+O%#BX=NPwHU0WSN5&#bk!LKRs--i4xsa{Jz
zjrAF{o9XbbhS%&dsp<)w0Gn8FL2UXC^^EAL8!1XC{Y~+A{1)@}@P}Rg$h*|^?+nWe
z4Ys-+ou$MO5KaOt;%QXzf(CQ?*UWzszu=>Pwm-*hOUbwK)~(^@aL+Zqi*))ewAncG
zUe*~|%#1i<3~G9WQ=I&tB)$juTX^yKD^t>SsTh<N(L~obF~|YH^I;^Xd^7OJ>0H-}
zb**#71sD4o!X^v7Ww}0lyUD@X7TDVZIXQ5BD2@^fp)<tJ_lec`%Gbx9F=0QBwVg}E
z3k&XHdviR>r#qFIr+JvVo<Yj-(-p<NpNCP(eUSzZIw$`C7h2v8_-(EHQ<iND!0mV9
zYx_{`Ev<t$l7tVNd@mp>sy$ntop`TEPuRcqst5#s3+Hvm3~jB{k?K{hgADo*2<|IY
zMLmIHAKG?5|I+@pJWZr{2gafZ{vcVU#EMkGaR%sSv~@U1A$5N-Kik0@v4fGtb1-<f
z#=aM_)NlMzb8G#BWfHVH?W>fFZt$*?!a*?0o>g-3umy_`yI%}=U-rH5ABHtOR_nk%
zJ8u=}$qe@cM7xD<HHc^42uo|6qFlrQAP2)K11v^sh49Dx6(_)+Cba(9(dXZES(0l;
z5`CpHmGb7d3U+0F@-mQn5;?D#_A=fm`sVbrdLO8|X073W8R*g3YT-4VD(OSVAYeC!
z&Ll~*y9cMpFn*$-nr{&JLrsR$!l|fuuGZF8cZ5i>->d)(G)&`d*itY7b$!09IsC)X
ze`rf>cf<Fi;4Yu1cso+QxLdL=Vz_NS=Lc+&q<fKV9zm98j534sY$WsQ{u%hc;-zan
zE8-S39e-6<@-*14qAx33=X8+Ht{Oxu^9`Uj-dRQn7`kn@&@b~x+K=%cPVr}lr?u2=
zZZ34I<Ybo4<^YQ-Kg!DX_Y0G>f{qvi>BnD?eldJK{i2}pCXM4y*{j59Z>L2yy}i$b
z{6QExNwI`1avd&vWJzsjh!E(L8DnBLouGzaTe#Eo{{S4`r~D<?1{>Qr&{=ABlCo+L
zxI2t;$)7H0{Z>Fh8R~f*9p<;GXj+Cf*e-9hDZHp6ztR>N&zRUvw~#D;Y#^Vy;hHna
zW?FXsVM2EJb@e_R)IKoyTgJZ^@4gIcH@BV~@kA}=+ga*x8!L&{HaU{m1DUczV5V6>
z%K!)_$B+IUCy3*UA0O*iGF)2*5qWA1iIIXw$mcjcNey3nc+0|{2mDYikBqDzP&U&U
zZKsk@w-)CcTgsaum5=cu1xUy_ug|S_;YWx*0sXSmz{{!Y+6CRc_1sX$cGLMcK4+SW
z;(6{ap^s^0A7)8o2N;eez^=t5Z+Pc&wy@Co&s2)X!H{AZE;ZYGDDxci$kE(q0}JK3
z#^Oib8vx^uroI>Wk^6XD{5{nhMz+$gTV_&ADN9Qt=jLyb)wbs#ZXYXtwf0wwJ|*}!
zR<@e+QPFN;zk@9ynZ)+)+zs~gtGYPJ!Da}{(Soodz6{rVOQ3k)#P^yUIz@{_fd2a4
z<TdCgjl{wmaR;X1#{;c;*jj0=Rnf;%tG)W4BKWWNiui@%OGzQ{)sCa!-O|Y^lHHy-
zonM`}kRK<UoJI2FoDtH#H1R%x@h0~5_04-$)UG4n=LZ1BKsmp8?k_PSo*4lqINQId
z^{>&LU%>J<l`gSks@>gM2?`kERf23W+DnEE?A<^cFmOogTn?G=(^1l6d%XoFYerUY
zJ2I7J2kw!Lo4amKeNSrlu=A${?jy>n&fVGZ&6c;X>vr(?b5^-q^&spsNQpQkWI2%V
zPCGFi^fjbD53ao#o55)_T@aIfmi2PXySAAN%Z0#iT=8F9Tj-i$hABK1WNfZofEI{?
zSXxqXkmwPEHyJEKj^tN2Y2ZJI3$7-g<Gg5#aAa>ScD2Ngyy1R#K&Ls#ZU=6)*&2y!
z9SrsAc?XBI$-E<abnQm+*4FwkeCsQCB)Ev4q~i*J^N>Sr_ciE4!Cwz`?ME7uC578<
z*s;mw$1Ar#G=QC+oMWChaf<BqFCBPKN|`(<;<%DnVL|h=`IDXi%Oc})^~!)-+O_X|
zW8$k#E<4W*BsV&1bN>Jy%WjCcz$JFY`nMhHDb7jVAT#vOhdSqiwHB7kNRG}$0inDO
z-eRF7i5B76j!$!reKB69HEj-m4YGVlp3he;^CQ`bMc6IIWN?thpHgsob+13uymP5)
zx5I1NC5-8pf=MQtG8g!RDBPv7{4y2C09U7IR(}cg+xv|_M4nrlxmY{tv*O$^i~xSm
zIaVwQAQdd9j+q&*c{jX(<`?1CgQaK|z98_d6Y9wvs`nPsT%lhpZ`~plO{H^_mMlLS
z(D0wd{{Rw22iW{SqMOYe0+Q+RLiZNU-!e48ut^7Y7<9oMbJbdF@8IoDMACdSCYdQN
ziy+?MKLv{!SR|PM4CG_3PkSq^*!bEBE_`ERG}Z$#UTLxy-dGg@?3;980!HZ~l@D>~
zQg>FKp{GNoxV^vlxUuQcUyljQ>Zj~C*9&cC+lWviYhZrwP_iQA6N=$Aj}LgK;V!)J
z!#T3pz)sdhQZ@`Wk1)yRB!J`P%ws3-ZK`^&fp6^Z-&zp0+$jS^aV?BqNLC}}-mYbt
zTPnXZvJ3;tgNp7vEqANwx>Q#1=tlcZn{)k>Rso?5SO#QiN)60LSITD@=dCq$@allT
zNjw|l>$E!r&E_*L&Ad$_Z)^u?B350*?ZaSjKIpE~{uS4VbUS9$r;ktj9B;Zi$V<qo
zU%n%cF&@Wu0O)zHlJ;E#R+bA(E0}yWcRagfx46WxuNXhRRY-7f08+t$``mL}ca1b(
z8F)_O+gR1_wLt_+vfkneqK?#LgRz7=$OQEB9ER!0>oJw|0@eIp3PP~>uKp|Mj1eS>
zCzb-ASp#k=J7<GfdUu4r8tR@RTVDmNnzZN?hq-3l6bx)ub`degcBll8PW7W_e`Bie
z)bI2Oi^vsQP_?s5c8xj9KbTP;87C`-BQ*rx2D#PkU3@F6>H4LGpxpD@39c?wg>R6+
z9Z^>}JDIuZo(^4?+RzV9H~ts!1Q6Qm7V_y=(-I|Dc^S65e4<z)-4IX#>&`hi#w)ne
zJa_O)*8Uso`R;7pL63cy^I$w<W20oCC#Y5=4%PDpmEv132tvA6t#u}%B?@D()nncU
z<BZ1~Mdm;cK$2}IjCZd}hez;!r#L<iuze3?EakO3MvBfxA9#6^6EOTnG29Bt!o@|{
z^-WjC;`c?4{{X}G7TT0AkhgX+u~Mo}%<;~s@dd{!NF3yxSC&Vvd_mW>N#gMo_LurW
zkVdgY5Xhe|%-(9g9{><A8F7r`txe(&6>3^mo?(*a*36Uzjf7upVYdXdGrC0@;0!QV
zW&?wo=Ct36T2G4(ZZwOV$5r0<7V8{x$ellV<sU02(BPhgip^1bq;935r*rV*!joA%
zo*aUBO~Q?~_YMSnayES5DQ=s0C_eRjO7J&{{3WVOai`ea*++G>A2>%GK(;<W8NYkL
z>KC4wuB%M7@n)}Ya(pt-+yvU~4Z`_y#;QJ6f17yPyzuOYsjZDCUA$<P!Yli2PS|cU
zt3tBdhQ<dn<dVIJ1J}MON~2mZ<x5kG@iXaHmdkhIxV(bDyp8ST1S`kD+Z>01kM6L~
zAPS}7{W=R4ZDYeQuBEUOIhI2cMUq(m0Hde{GIBuNPrrKUHLnNwXT)-?x{FIo-Twe8
z-0wE$9Ds~N6<~T78+!~_CF1)}7<gAtd#l(d(;~HOd6zTAZwCO7QbUNP2d~N)<Djh|
z?u6s^k6F=wXfGXTP@De%6hmy5jut55zAGHN3E;%&T5-YSYBOho4KnZJMwjC4c3nS6
z)Mv10)m|oYKYHvrT+6kTFYuBSo^qgy_;*(LyWt&Dchi0#OJy{Wuur#X(aL2}*vNde
zfQ7)pz&vL>*Od6j$6pV$jhc^yE$)0%yaMx?*_$Kpd66A}DB}SG9svfbI2A2+WWx~8
zyL?6QU&lH;^4RN_cS&oxM%_TI%y$6e43G>*#yBCA_swt@o-ei5G-A4xQ|W-SH`<}Z
zaJO7<M>~*b`=y6^`BO~&p?phyZmpnct7B~z*u)YxARvq#zG(nA`$_n7lT{`0&bh03
z%Kk-#%P*G9<?bVJt(>b!S83~xNEz-pJrKcZsS~Zt&#EqD*7TX1QPXt<wSsbrvf4`j
z0K5t~b{{II9eXhYj&oeDt?_==TV$JD`#sWz1W5D!mg^)A9V1m$ZV4gIdUKP<lW8})
z%#iu_vED~+zj9@9_IEiTgfQTfo(i0f)z~kF*H^niX=rWkTWp_ej@%=If;TadcCgQ<
zKKZLuA@;@2%FpBL3+tJ+9Ret>q-a?R%AmWjY^e`1V$L~GH*NN;Jv+qG>l)))&u6k*
zqA;?^Ws}e%k+nGFoSb@Bx9A@N{7)5)&bz7Fjbcc4`Dv%xxw#7caR&oF;re9azLEG>
z@KfOjk8H~Lq)0B|$Dd~!2yU(2PB2Qk%^A)KB#&&@HA=9Kh}~i2)z2L8Uw~fMN}pS`
z)l7F7LM`WG1bdD_4J2zMiaFqg<2><R)8ROLA*V|<r;EHHb*EgxwnvetI*o*}p#&K2
zLwRSAcy&Y6?E<~OQTP~qH1DbSDqTA5B8cy`)*^V-`2+;MRwXzbmQ&Y**1TimAH<&t
zcyilLu+}UsJU4Nz*@Gy$oLuSRV0IK23zcGXxC{bEIUOsD+cwUHM#$%Ub9?Ys3z>EQ
z01Rtax;4~+Pzzg#?jw|S#Fnyou?+XxLB~8A`8VQ^jM8SeVv=0Ik%0FadPfmi2<QDB
z+25b`K^=LnU&KELeji>mmtXLa*xC8a%vVl@gdw}ecgXqqyRI?pIIlbKuYt6^7XCS>
z(=Gf&75-_h?%CyyLBT#$gaNemDo@hA96cK=z0N9@WH;L1g)eQ)cCfCXk@7>p?>Im1
zw<<y83=Vn4Wog<@qo|2i*5XT4n~j&TiCuDY^0Z3(3iZn`wrjER7O~)4>!GII>4q1D
zu*z>tZ69DqluMF-x<*Iy(Syd8ng)X<hlK8~W)it&^H~(&gSiCWTQMI|_}8IEn=?Gs
ztSxMBMUJ~Y%EH8a{y>g0NWjFdSwZR7YkO9`_kyk9NSsJrMieTb-Ou;d1ptx#@-y6l
zR^j-+Z>GsK(?f8Rr~*N91fwU84q7+kuw44$x$Ey8c&k~x`&E#;(=DVZWoaZ4#ULkc
z1+gWE9Wk^M*P7_H-lz`a!q(QhW|D5LrMx$2?yUi|`!GNbG9+g!Ajct-c5}#Hm6xk)
zUKSUAefEQAE9}cjv65T?(V7zwZls)s9=WeIyiIP&g~7j+!y|5yt!>gdQzty5GvJlu
z<p(3LzcH%#d%;?cvvIAw(_hOr$1yaLJStZQdfN;lxyL+XslX)WW#zd^C%%VC9;1BG
zG#($nV-#SNx7so}<SBuDIsyiJn&%h9J|NI!meNV4w2g*jjyxF8BRP$KcEsb7K_i@3
zK|h4NRdF4<*x64FjmmCImR4BNdE5e?xIF;C$?L}$BTCY|KjI%F#CndSI>*#au-lZ$
z{{WU_amG37K<S#vF2vlSbFArFOy6y@yn@zO!9y4vKUQHIZ^`@s9+fl}zBJckOU*SK
zR!1e0NhS~!9orHWz#f1B=y6sqQ^H!E-roe<v{#JH^Xc|tK_kC+a0w@_H#R!pS9z!W
zKKQ{p!nU^7^2VyW=83l|ft&}3o#Pn!unrGwQBkDru+lgU0^ZZa`r_Jnw(iF=6^)Sj
z+qVIXwbN}vG3pyQ;=aDoe_-2<cHd6E@T``4@?Dm9wbU;f2!d|;RwEj$Wrrk*GR^CO
zgUEP);pL@-kALF}Wbp*!CMj5blW9}CAg(1j$3|uY(!S}?{AsF7s@rIu2-hui=GY=d
z(;aR~%d;e0T`I_>{Zu-Ez~JV*++Aregz1ke*!pAOSL{3R=F7l$^88%zY~K&<{5dmQ
z-Az8&VU-H2{h|xDWVbfb6Y>^2ut?gcf$y3Z{1XTEYi)MN#@-6?9qyfGvqL<Q`H*VX
zcS*fTSKO+|jnm|jyVu3O4DpZcN2AAcZLM8PccbL3!p-I1#dHD2O|IEh*Bpf-<<AGb
zRq!|MCGeNS9}ul%(>xWbTHhpw8`aSzOB-1XfGA|Jo#bR<$0Tn~e&Xcfyo!;nDP24I
z9hBt+uDAQo)~#Q_C*a?R?w3vQME)Z1eVXh|N5eNUF}GGxlP;SI!{x`<<qY^7vt;0V
zKE3ew_J8=D@WR=ypp!<@brpv7rnD027a@T8Jo!|{6!FSP&zuZ{iu~$_;;-!i<9M#M
zuY}sy_G&<k@xf(i%Y7a*wWN}K$&=G^;2&<@lco3<#=au5gH8RVyjOLs#*wwe7FWAP
z!ifM@Xro~A4s-JbV0(AZ53`l7<i2~G%1PNXz0y2c@VDW<zWPS5@m39gM4Bcr!K%Vd
z#19h!xw?e;5~B__vnuBq#twdM__6y(_`q4;Yd#$C{{WUzTpzR;<lLAi%yAG@B%B;9
zj-Yyq_q_|?ufX39iPulNI>r2vskDMyR16#``3%yZE;b||nUQ%I1J}hoed9Oyd8W%J
ziu5a+J%cjHV_T?+CkwZ7l{<;raG^oRt#3^x(tnAJ)|($SFYQn98^>N7wD@%T9p;T}
zk`nWHdRc51H9cNP(UdUc;RBWGO4Z5qAB<xDH}J2DBfE>q-}Z~K=3a+FG2}#}YcU6s
z7#^H=u0ve-<>B8D-9;yltYxuFnAQ}O%9h}wj4s<YbDh0&4hifJ0=|2Lz@8BCzPWcF
zg#2eE^FuLfYXx_P=#VnN8-+#~Ame6R7266+StVuYb4pJ3J@;PtgW_8oNvynk6uR7*
zE%u#qHG*iBIX+C5_>o6)9orp1uO*+yKMuTeuEU|}$NM7wMcuN}2DpP5;iR}9ypJc6
zOM&Z-m5HtVNbx6xEmOi?IML*~vF0#!Gxn1qZm@|Fyv7*dU<URz&}lkvgnVxdt$PLM
zf*us}6YX$4y_AK4JJWDhzzRbKUI6RXwuE_A-`-%;ZJfFA_r-k*{%f5+NbRCixL>{C
zxrN4dlF-IvZrH?%8-hp6f_F7<5BPh;+EuhZEE9dICl5XTl2#ux`@o}?`AFpYbpThJ
zX<AQ>f8ip(m&4Z<x_8)J<2QDQ*9j^vIW6Wyg?r;;`e!^>pu=I|--y%LUHFpj2ro3i
z(XGI?aF-G}+RoxR7A=d6?c@@A05Mv--uE<&dbCBOct=9D)b1wuM{x<hw@=>~n7*MJ
zHg<_OF*s}-908HQ;;^i~A$XTlj9Kg2GHbSlu^d`~TV_x`@e8q}k%wX-&PONHvHt*s
zR!<JY9p;T}m)23rV>4*v&kM5?ly$em0)L1%9`)JScymtiCERxYEYhsB=p<xcwOh{(
zuAnl0P%Q0QQ6WEf4vCKKn#I)W#~odd7u0+?H;AFRx%f3}do*hpZ?j4Ebh$0}SSh)8
zxMUr+KyXGwV*;q!c$Rql-3!H=<<k?HE$1igo74fs*IUs(U`r1u4@_6Cj{tZtR%ian
z*Di1FnV3av=^mEr8lFCPGP}M2<~L8LrdG4#Zy0z+dplisM~W%Xv{vHk)vqOg;yzWw
zG_n@QMn=f=#c2lQ#@&&Zap6A;c&EeOM~CM&HnHtKP5PU3<C1*X*X;6eaG(?{PBGrM
zt)Ikx2(X63T)2V@M2JTXtd{=(Y#Ui|gqV3t2`X?^XU01kqZRsUpKEUz+YJKl<|5I)
zu#0w&yQh?azSkS~3?k@A1db}5hlc!J;oG~dM?%!@HEG>PnHHX#?Uhao2Nw@4g}B-?
z3T+=wYFc};{=Q^7dg#u5ZoV1Z8E?MFcV^7wM3*v)yEO=>cJxCGq-T+raHEcTRxZ8Z
z9~OA2<J7b*BEwR(R#dmS(nNOR9pDnB$CWT2Rz8IK?YE3P8y=@~KZ`s+VQqNMp(M9w
zj^;K87)Yf_V`IihSkRM$k~&AOXnLQC^wX_rS94!OxFlm*FQ?5L=L%zy$wpPq2|_(F
z+M9pVCDXRIDaWSTX_vEGYnqLXwdS1}c%XtqG4nD$LegZ1>+-C-v+dWC9vtwk)Dqra
zTM1Ppm4uSKmuvF^K}b%`gpzk{Svq6hyF0yCS@8Y*E8_J2-_zpr72~^&+A!GZ4b-E|
z_Y4_I;9z4FjjZ_J!I~?@2nR&JEF|BlV*6trO5$Q2LuV?=gn@&OYE)$OPeG=os|ybi
zYgQ0Nq4;RNr5BdpEv?Ed5hz^Zb&#)=pmYpB-5#}VHOYKK1;>Y{w2Mr;8C~{U?q$X}
zk<vs#jB|wDk<Kdv#IXE8gH>H>`DMADI6#i_S$wvJJO%~UbVpUj82~~GoTxqW{6XUX
z01WuL+IcnNn!Uq?WA->6IZyx>i;0X!JPZ{<nmwE7SF=~SpM0s|twP@QwOOwvLaK%C
zg|K2Vv<R1KI3L~Qu;Aje^^b`wZT7oq?R6(}nHbtzED(9FM%8IqqeTQ~1QsJbIn8<A
zt>G;LM!juoM2#%I&OT+oMV5CmjBaV&^PYc$I47lJU3kaFa+$Q>?6G)|BAFWQ@e<V(
z`#$F$%CVgKirrIPNt)(5jYCtqy3>5^2H`a6v-69X{?ruYk>&Yp6`MHfa5*QXa8me+
z;>FBfG?P)(VRR72*HI^vv3mTr$}x=KGXi<ZW7er@nk>4On9m*jntlB8Z&lMs@}r0k
zxwhkbWam4AjC2CIi?0nypm?4e+sjLhPIfqoNp%O7akzZDVUd<R@J|XWM3Ngx?rXn@
z{64Z=4+PI7va!e6wCgi*4&l%V01Ahk63^E;t*6zzW_0hK%G`eK4(CRmLP<G8Y{d`}
z-!d@t6#aHh65<GME-dc8(IT!0KWBKHpSn)`3?5Df4O`LlFC1Ix@Y_#2EzQQ|Q#X}4
z1D&mu8@U{ek_U61C^NE1lT5JimZ_yrYpz{QEzFJQNd?NA1!5QOnB($efA|q|j-=pM
zo9Xjd&uI3^bL88CLM&F`L<bqm$Fp(A9Ona)Nv~eg?DY*MLuum`yl5SjJjql|8v&9)
zP@#`=ghn8G*O2(S-oia(+<02v>hcF=Rgo0hB7wmMIYN?i+#t;>^e)Y-vog<0xq@ky
z39)G|@R6zsQ0zIuNrP?AP8UA?>xS2L?++%X_Zo(iX>BAcv?&gxo(AQM0Wv!y4ZK#K
zsixfCUYESTXrTk=h6ut)PdNrw$U)HKXeZQHIjQQh!=S*Hu!$hDkh{xvjeOo;Oa_0I
zNbGlGHQ5N?SE!{=OOW5(>mDPuYs8vj%1DFlC@teqqjuC~#Cx&)InFwolGYtgSRJnB
z4G`P=mI*jR)R8Kb+6eV6j=ihfbT5Keo;~n1emL=Fr(xmU6U;3O-@XeS+fL}W{_mhU
zEHjP+3|Akkd@}fX;k1tL!oDuF)vj1SpZ%U$P#(#NRxm>h9Q@?<7!{JQ4Ps*$H?i*D
z4SpX>@sq=Lrfpeu2e&V7Y;_m8Fz|7JV+J9B0U3$Ab6=)@75@N&ciZ^y!^++(hCMpf
zqDdi^D|dMDj0E%ARO$%8*%{7zSLOcz?AhYIF3ZKsq0i;%t#r|#xZWYSExXHS1&N7@
z2FOyUDi2;O^;bstm+`m3lYeITKgAkXimc#>x>{<+ODT_bQGITbKrlG~+YfVICN8AY
zv`<nIRxtcc`vmyY!;rMU1iX8wJP8XVvFb@{d2I-6{{X0T2IY4ye*B=WILH<8AB(?d
z?SH{~`_J(*=UDL~L=?vMmw93f5<q~)h!l1TeR`8$sXr7yX>SgAI(u7Rh&Hz{HPk_c
z-<3OCsVDB6h)^Pt+mK1>0L6T<;=hPGUCh&XyTN`W@a5bvLXs14JcXBWARxF6u~@b_
zU^051;;2@e(Thu;HYbGs5W_q(cr!-v3>uc5wpWTM<g*bD?#AJaE(UOZRve$DePi(R
z;^&9H7+J+HizB<cu#tEDnJkjpX{5#wo2xY{@%1f;k&jS7ubdC<hoShQ8FWjHEb6l%
z*!w?uYW}+=$Cg(;K|K8{$n~Eb>-x({YcpE-eIm(*EiU2RkP-<Dj18&D=jDq(?N?_k
zo{vCkDQbNi<8RxyTziza@PC6XH0ILo+Um~o^42*eif|4k4Q@Q(!>(RHMo%3@e5G~!
zO?b}w=1bene@-(@#oU`xa?EmhVoB$@B>I}i)U|=8NV=8GMt6{TjV0Z~LKy!5c~&*p
z0VAB86V!oL6XR{cKzx`JkGteR*!It#&OK^nLJ8`KjaShB)BMA;@Sns>!!y8|m)fml
z3?h{zEAoySKP5oO>{pI4n)dr!{{W6K7_O!8#;Y9iBDvO9bEioO0AZRbWoYIYA9a)#
z1J=Ij_@nzq{5jX5m&3C7ay>@IS9v1HmOn2C1f;taquNG8DJMNE<qsHqU)AD<EjPjs
zH1^C%-8`f1C^L{%HsWPdk+=YTa%;Li{*#H<EJI%j%dhQe`$c>{FQ#f&=HdkhFC;~o
zz+u50C)bmXwe0$T{1lJk+StpXc$&u3#TsSG2<5fZu_Qx~L5WnUiGjfkqi`c5-{jdf
z-wA!a@2_vJubr6AVT#^q_uzGJnPcyQI3V?^4X!Qrw*<NjZ>C8fK3&4Y<#I<QV<f4^
zB$gtbOcgn+G!Gd*hw4v;zi&?xT-oW?UIE!9rJ|UhM%8@eaj*~g_P&{!CJcBA%8l*-
z=i4;D_$dyH;c}}Et!biN*f2L?B@J|D<1rHwzQj?Fz4EuGWB9#srZo33$F6E?D(+&~
zUpZI@&&XY{#CiZT?OKp(egM+0%yQ}jQxX@CWR~R}BhOZN0~|MW1oOweajd4D^ja15
z>049v%3s^#;m)D1N2z#z*HY8(W_g}=(_;qC;fN&3a{<Ulc00W5U>p0usl|ES-|f-y
z2U;sN&YIDyOx{y{t(iw)!wC`EM?b=SM|%A0wu?;GH2J6Sm6~1MuMzEOEre>M?k^m;
z!u7|>Po-~KYf{{#QQNJZz0@F?fiqkzs?CA6H}d0C#yBi9>6)luDaS~m&l=w6(ifi@
zd>^j(g5u-EF*n*J!(7_IZq03TAUqqWBvAy6N{^o+PzFPHti1;7;1;u~P2x`s>G0_u
zA&+yzrOPG67VX>2jhiaLfzBf@jNpO69yzbKhi~m5(dE<^PP-Wm2inEAnArJ-LbJv?
z5EP7kDQx^P;UTC*pV*#l@gL~-6UQyWAp;<_)V^YZaq^y9rUnLUp<$!bMr5%L+Md~O
z@&5o;@FbsO@c#gWEo9Zpt4wU-m?&PLGmb$dbyfQD*6yeA{{TwyZK`SBH`A9wXeKQk
z#ht<!<MTdd^C0=$o^o-AC$)Hvhp+gC{(mdQkeh2!oLb8!Zb3|Z%8?aSTpo^9xa4zE
z{{X@Z;9nF=d8+8T_B9*ndDCtjzy!NU7*GpHP8$xV1Gh}otTiP4<?|v{k6n{mf*Uh;
zrID&Zo!@J=f;Wmr-S<eJaRqvupyYM0F~9hUG^;k33@@wL&o|8+@JT<EfF2_Vpd)9v
z<0HL!=AUWf9|d2{W1;EtTHQe)NoI?5@Gt>*GEbClIO~-^m3I+eYCb1xn{8ALBT!gM
zH1WtxML{I1E-;>l2aMLrlu?wMdW^Kwq=}jI>rtoN#Bd|K#3h4~oT`F*^<W9<UMa3=
z`nHX(Z=Y1UNl@=dql!(60~5pDF$}z8g~ks;IInlP_$z653QOX>QfpY;gKXAOMq#)F
zXDM`Dfx!L~^KsA|3hA^j0eml-JADsZmh)Y=-Im<)KbAUu^jAM!*Z}ZA0=I=ky4;?J
z%X)8)z7}6ze`omWL#I!ZvUtln7g7K+Ll(k8>T!YXUeRy%p9|V0^p<*jnr_cD-lIit
zYa~sbubg?YzDL|D+@7bceY5bp;LpQ78(WSq25UMtqZme%*xbBOY7nyEjp+(H&c7};
zsw-!xH9LHE_+@8*bEVtK<y~6BcSkLkkQ^_{19{&+T>Q>}0nbh=il!xB-HFhtcRXjo
z`YxxdX%?{ft8a)j%jDd!J||e>CxDaW6f687sBSVq&TF!VP4J$8k?DU7B3b2mU+o%p
zwRz=BBIkv)crc}x_(a$w<0N9W4yW+@#F1SugJ9D1+xxK`lFtg6;2Ghbdsvwv4nV<~
zLHR}qIN}*T1^Idj*EM(3ZM5rn!%cr{F!DE&HnW9<Ixf%Q!ye?|3g>lJ@-^L9&9l}Y
z!B0M^Hk#T^)Q-kWi^*b&Spx7DKQJki7#p@30}Qu(Rt~N46T`kXMz+`VsO~ixG8*#0
zh+L3xrIE~N<PHHs8>TQT)UEsx@ZKF77_YCb^*bLYa>C5hM(fl(S1%@1o_R!2M*wlp
z33cF~g}VKc+V}>0STzY5m2I!Co>!R&0ahtQh!wNIGDh5ba%lFE>Wo!4(VkIt;KjM$
zsQ5DI_=?3teWUl@b0eMrn%)M6NV&?8<$><TtLff5@#c-BT2Ezaz8+{yk=v}P6{0TV
zw}q1?Pcs3qySfj@tJE|f?E9C{wI~jib8mp7&sg0;oy@q5?_u1Lyk`U&+0nI60i8lk
zU&i;++(_uLi@h~Wazt~FGGQVplLHwc7>=N1n(R+aRm}NyvnpyD*Mz)(2mDQL;?gw+
zkom4d%WAS7n3d5E<^Yu?LaF0ExEhV5ejh7;YjZBGHNTV=TWJzPrywbqq>5E~45%Rg
z0C-n_s=?q(Z9LrQ)4z!<+lHN8r<k%H1o0=7RQBaaKBBy5Q1L~L)$yCd-WF@?MpGGz
zOGb_-DoJGy#Z<EUxl!p(3GE$(<89AezxdDMTh@O)16i3`F?9q&+ILj|va7|On}$`G
z{ZCrQ)HE$lT_WOLE^CkMtx7yM+O46IY=i!>9h=QS4o2<4Gsy>xaQe*ic!x~2n#)VL
z(PUiij6yD>Wh8^Q?BxSzKOiivob|2;;r{@KwQnDIg*-9g4SP}2wFG&wZ>lW%OShIX
z=H4k0Jix#cjqQcYFyfqGlHSAQd!x`SWYe@clnHhut`$|~dxwy*`FA16=lzA+qP^Qn
z_+4}2wp;AQ8Iv0t{e&qeP0JIIp+<NCxIJqlTK$xMEBLAiV({mSUr*FxQY5&vu?-}F
z5t$dvi428uI0^TdjFFQ}(mnzFW%zI5d(RO3LNBR^RaQH@TWj0frig;h@>(yMGB7{F
ztVRbICl!rWw@lJB^ttOAR+aGM;a7=t{{Rbk{`MUgRJk5?qsa3xW@C_JyJi;q^Ty9P
zn`jtN0LRmFcuV2VuX`tmHMrJ$&86DmC3F)zjv7@!sUc!A3Be>}Fza6lXcyiax6!1B
zMe&t}yQ5qjU1_tzl39izos!zj?IJKE{+YIV=DBT8$Coo$X`USTZ{jF?Ef$>%Lmi4(
z7O<NHU^T!~aRUR8Hp{RM#~kr;Htuz&6{XL8hR5QziLV<?Qo~QybZg06N2zE<Y$dis
zxP`g2oy$1eg=dOaC63|%74qN2FBkX+#kSWz6SUPJ)Gh7qAIz~^)toC54ki2KGWv$x
zJ!!rr_}k(S4R~q^{vci3>6h2cRpvLpXpPG8h~|n1$m4Ktm9fD9gO8j1ajg75@txai
zo-KP#M)%~DT-z44yI9Eqb8xIfZ{s2TdBt|np!a4qWS#Ay;NCm%Cx@(z@%Up<!>(9D
z^ZBrx9BuO(5&{oUS+S04uYvp_;^<<NQMl3m%+Tb$;wmgI8;m8>5Q?gJA>17H=Dia|
zpFmF%NvZrk(scg-63T$)+TsQpoD0+yxRPmOp9eVG<@yCV=j%TV{?I=aXT2W}E$pme
zkYF{8tsj}PKsl1sETpL)FDa9ZWY?yrD61olo>SrP*ze-s#XAPqwRO|9_*f{4@>_!?
z!BS2Fi(u&40GvF8e=6F${fvBj;f+QM{{Zb3@lBj8tu>{k=+o{&2c&UaDT&DGwWVFd
zC3_0@czz#4;d|%SJUge`_*(6ijMnxSQpcw|za`$x??iBUCOwBd70)BeptSMIYv$j_
zHuGvW*K=);Qql;$flKg;@xJSrd-BLv{jpr~ttas4UW-I~@59NyAH$=F{G01PEv16u
z4N*SEEu~Tsqw?h28|^tJKtiy?DI=Qo$UJrXId~rCE6pETlT5ldJEi+2yWi>Tcvlj~
zDG01b8{v=~k<<$L3smse!wqZ;4;5WQez5W)zP>U^8)pY#Mv_Dz4oVo$7~>VqKZkrJ
zq*%|U{65s?zh!;a*0<8IwL-v#RJll{kw-g}$b_ElgIrUfr7OvrDcO6c-(EWXx;`5C
zO6B12b(EL($O5eJNgD4eIrAZ1vn~!s<B)Nh`PWnb0D_8mv&1t^7lV8{UP<FHiKUE3
zAxz+TcSx-wls`Aj{d!`)aMJYqD0PO>HO&THH&T+_+s~2O>NyIKsL{%$mC$YgD8cE)
zcGsQ@_-%BG-Z8yvGieYXXlITcvKGfN7C9Ypl?OdWD&dBvz9n(0?QCZ0x{t^265PqE
zF1>MW4*vk&EzE*xqQepx%(1rf^JC`PPjD-}(R52aZsYzDkBR;^y|B8HZKlTV*eYEq
z+mjPc%?!*z=gZE~&fM3``t8=A9h}y>4~SO$MJWMokv#W}hT!s+$jSSmLLX6#;<)&J
zENZam(%4&S_m>v(w#jXE2T4mhblV%DSeOot8ivn8E34UQ?*2tOm(ic2n(yrY0PqGo
zF{StmS+>$O7>GOMh+U=zcNSJFh5rC`m#+tk<Y(~rfV7P|^}J<ap=uFW1z~rl+%?ja
z&H;O3hG<TCAgf?<4godrb-tV9-xu2>_;NecwQdY@`KxQY8^6{t3OK<z2h{r3?Z3m{
zh*npTKZ^ATygg=c(cSq{UBaXOx{a|0Jn+QhJq<)C-QM;xZ%Z9-iZqXd`qkTN6W-W}
z&=!sK?=|L-j-WQ+pn<>`<MXedb?rC8EvPDKk<EJnUEWRPr5GN0Sk;7Wfz)lu&r@GO
z>z@k#5NM)J`jncr)x=^(yFOfK#lhS$2vuRv0H3aV`E+69xNSefQd(czsKno6Pa<f>
zcC33iM!*;(HhpW*q|(ynXFq1XBhs-BpQBtw6B0jqvD-w%jzMWyWOn&gy(_HnN5OxH
z{v}D5O1FmDC2T^G%5I}Z2b|>-X~D<~kUQ~P-VpH?pQ-C{_*+=DvPG4IK`va}$PPF!
z5}Yp?97w*k`lI_bd@t~9dL7I@1e#biIY9DLRFYY2hSGO@v6FQY$=Oxh1A;Sx4>l(k
z%dLy03(Cjki~i5Q61*XG2BGl-N7bUUTo1PGGuwi4KtE<xC_Ch#7#(}px?ldz9~39i
zmfyo7eQ{)rvVUb;ObJuU29PQ*PP^L&(3<`D_)~9xr}(E$@c#geJ{V17e>a-Ts@UBw
zr=!TRf=L&v`}mjz<tKp~Ckwj-*Kgy$+4JCEj&()xPPnt#_=JTJYJM2IlG5c8EzXE%
zh4C_`SmtCZ-N$P4<(f&WSoA)p6ztFC_g(#({{U&<2>4p_Rq;epY1T4Gh2fgvGUYcI
z!^In{GCFgO+>UWxIi?LdAsvs246=>DZn|G2bivz&*~dKYBh=UL$L%rUjcGm*&bF_0
z;!SGOH(BmvvbDC<=Z`018DUQ-xJ+OH8nMG2xy^nBj}mxy!@Aq)TD12zvq^FL=<iY5
zP<LYnGGqq_gXN49n)I+W{iI(p#ZsRu(E5YI{u}V;i-dM}5!}lJMV>d0D<2>!2=VM?
zCyagduTio16RG(^>%tn$zDl>2w&(X(K&Z)CC6ox%l1?_~BL^b8e}tNyhluppo^3Ny
zvxK8<yV{Wfw}F_ZVJXKPDyZ%&)$DvTdv_DQi*j$C+vaHPKX&0W^A<9z64=H-PQCcA
zHnm2jrhy3GR(KWn{3IS8OMMH*z8<vHt(H}lQ&w{%k|;lYrHq6)!P}K(KBm39OtSE%
zv*BxtnVL@zTw9_Gdo4yFmXa*Z^LbAvmkOeV2X@sbBO8dW?@sYN)*e;L+dAG{NYTY*
zc2@H6n7|J3GN@?71N<?ngTToKnd1+JejV0qWbp;IpZ@>|?DuLSbE(Ry9N57OL;05g
zukf9?JxCpE2~>;H);6Y@b`1ws@GhBcu1s1v1b%M)1~Dv00|8o7`<6W5<T=MdNu>Dm
z;kS=<`#n>}8V$6U5T+u#ic#l|;ocSsj#ZcC`Il+P$2G%Cq<GumET>(vORY-IKi*Gq
zV=QT=WO7Z!XtPLEj^;GT=Wrsl{4eoiOTN^u^$4_4V}E?Z&%V&%^Cv~e0}`x+ApmaK
zwD&ybvy>g2mZQ5;KSKT+`~&gT-m7FZ8?Wu%9`<O^%Cieu?Z!7Q>v824!*^VgPY;fr
zckK`HtM)bcEemLWv=VAQCe~RR2;tK$rIzI+w*xVqLNJiWFlHYt*C!sF8vLm7Z-zWu
ztX}E2$*La{+FZF?ai}%Ho)_W5vhYx^-pb>rBfWGN9y{?jfn4}|;s&wy>vUa@X@3N!
z0%Z9>Gs?l(4B<kzC#u&g!|iu-p;lcFa<KmZf{^?*m%**zj{|Ai_l9oW<q_(BD3a4q
zmN?nVB1+Z|xa|jO25}mW=bHIH;tsp}N@@DMTIQeP+q?T4_Ah93rHDYS)Ni#=@vv^~
zx$u7WIH^1{;Qs&yv^SRCAU3wmaXUIrk(GiJY+x{XBw`i2lY#x*16_BB^dE{EQPM8_
z5u511Xzg_!IIG0NtMeYzLBPwg+teRJvQdQYm*1(B>ho@J7yc@~)ilFx@y^cHSfXMD
z&9NVE5&$=RiSlk>c^i=TBNfGXZ{hEUd}F4QZ*gIJsxwI%*j&slXOh^GSBTa>F~H;?
zn*@$X&TG-N87%c3GFd)1TUuN;{l0FOGRb~sJOc5<y4xc-+)5G99@XYnzYhE<Fk3qv
zU+wbbf1}?g*;zvqg&tn<A;7@`T;rXiIIg(P%X>e-%1c|Dm)<JWJRPps=pG=kzn1RF
zWLsD@I2B=G(5e^%Pb7-C=g%Q{0G_qIs`zKZz9=$yv&B}U!n4U6Kb?0jZRRYv<s@Tw
z8uQ&5aopE4Ka4&l_;PWjURqACZx+~K5=Sg$atkaQGdKib2H=C7^u;$uwbC^U%Z*RO
zYMvUBU7$?BO7hFjO9dWo2VKmho<?X?+E+v`dFpE0d^#Q(vya6(2CXlM7hzKRD#0bP
zHr>k~oijVDo|!RcZy<K8ulP=-M@!kXn=4tIa}=egm3wuV0nT~Mc+Wvv*Ip0Q^ryAg
z{6BRrq*+#R_BR&DRe|I&%#MBVp!DrpaeQRfVz|1ozO;ngJWH8lwJ~21qlnSeG>3v)
zAPk(G_oB~z%S|tIoSzeG*6Dj?b#-qElMy}ZwUkVwqbm)Iw0f!>bfW&xUAvB0yj6E&
zs4JI7nPFij183yAR)i72IV$<%HOzlyMX6d%t!WZZWi`$gNcF)YmRIL`PdRxu@^S#c
z9l5I-u9>WOVUjrnx2I?lExARuVyB>aw>K(zDwy;lsl7BCPUkT-mx1)#ud&_QE~e`3
z=02rx!qPQPfJTiRP6zj#IS1Oh5BN#7ttD->4+z-3$$j2Hv$Tz^He(D`<8vHf;~S0+
zF_J4P9~1aO&UZx8(@maMX%^)jB$hTEN`0kWLmt}@R?YSIi7vFeFZe|)WRlSlzSVs9
z1sZo!#5*j?zEHsdk|65DZUA(mT3X{$Oyn(_!&kSn-*}rzO(J<<A~OVn=PYtFBuEN@
z(-H}H52q&z%fou<xVG2ytywiEhy7aHN&TNGEIwkX8CSxdKh~V}HER3BR+pBB+r(Dy
zb9zv!y`*N|Sl6(UX*LD`^&U$G9SE;0*P!r(u-jZmVGQnsqc*WWn9YHomo4NV2PX*_
z_chT3nj&+yhp`We-Z#^(q;C|nO*ETr-X*no?wTGzWS%eHs2vM5gmlh&S0j6>=$G0p
z!wKin?&d0{8{)U9Msg)B0W#%AaIcK@1XrEwUOm*K)Beq?eX#kV0$Qvj+cZNzIJst9
zbpz!A3EXl>$OgD;jdJq(5{M&$IFNuMl`e7zIml23J7BQIIAPZ26P4NO^Z16_Nq8-^
z*)DGF<HqR{IAXMC=MK=1J;*&zn9JMJxZPjJ9v6#Hl1mxmx4sSYOJ+RD<s{%S`5n*8
zg#a+X00V#pc?;?;(HnhnwOOErxt=uN6lnhd-Vl`jBm8F><AKFy-|L!v;9EGRl*|cb
zTPSwR#{@_bKp>9Jc<Y+kQi|MMjPwnE#TwP*lD)eN*%`{Lm%eNgY(s#=A2IMizyvAm
zKmxewHP_Uh81?&<o!||&0HPwHhBC5}({1DX--R;H%UYjgerbn2KGhgFTyjfBK;w?T
zoktd@e;ft1s|JH^M*Ev}b!?N$G0Ld^>Bl3UO-!2T2|MUB%e1kXF0_`8-S&`t!RIjt
z0G;kki=M=OwRtC=OF5>xvJ<Re;X|y_G3kJ%dCxz@E0OUxi2NmMYnywIv)w9TR?^tc
zjNo--UJ1bD?osVpw#UZ0j*kqwOjhuR1-IO*nS$-kRs{a>>GKSC6s&I;z1bD5--dN-
zmxD)mE$4vkDp5qk1Cg=7WGn1J9-Psnj|=G2K9!)}MRBOP4J0t-r;wA9U85LL&vFNB
z=9{I(Yd@U_iZvN8Uh#i<9PmX9YJF2`1|9ilX6N#@SHs#=M%Ti(%L}MfOKV7l$4uZb
zjT;2#sbSojMID!!ENM2McMM`B$C$G@RXG{P&<^gNxIVRKN7D3p?g6q5YV0yr&R2k_
z$2<bWj`_em)?K~lj$+cKyS0YFe6-yp%jZhKF*pX@6ddvY06hrLYIcn_kFRVu8i11K
zb!93c7A+iuf~yw<uYB?tp0pFoZH>t^y*I-5X{c&(*vTyTMHdq+R}y6WpER4D!QdQz
z2B>^WhfmZdwz(G3+8CE?zG+lkZNS^KxqP0S41tn!T~+RdsOU(qq`V?`;cX>H^R7WS
z0u+WekhgLRcjCT~@Zap|@jK!dhn?oo=kWFF4>~CwK1Ub_cHAtB^8Ww<8;L(IdRB9*
z81BuZNxNu%cxzrB@N5PcZlu1tYzC5BTtgcSAMZ0TQVs|Ylk1A7a})__zv1)Q*?<T{
zglwJ20J3eLadyTy$*-w=Vek&l!%mjdLc6)tFA?)A!6Ku)q~|_LAPNEOQ+_&%`Dapw
z9|=hMZG*+6-7#QZSj$Nn2Lzeha8}6Zar6~1s->{1#iN7NY&>1!;*)E-c%B$`#3j^&
zTe9Palg)N2g?$w{?TV{Ef_@fTUdINntlZqhS9r8jx+au@r#Cn;D8Rr03->1&t$kBW
z@%-uK-rQVIZd1%zC3A6Z;kXPQM<5RSRE%~Q#ay@3d_APf*EhEe*MkV>PG69R`^R*<
zK|k(gv(mb$$?S8+o%Cq0pzHTu7S-Upv(TZNPKrSCBr==UApjT->+%vgAyo9^HT1WR
zJV)WL3~RsI{{XZ90F8V}sp?a@jh|+D?4mpe@~*CcRti8+u&2xXL|1`DK8K@Ro8J!k
zS66Pq)u)lt;4TQk5@Abw1Jj!K?JrpHFN{1lr?#zUtlfC7(lH;GrbOaJ3IeN%<&kZW
zxX$i=Va6*Ov)5E~Q>Sgt<HlY&{j_{d;de{-NOZ#ymFLs+qW4oPf}8PkBcdw;L3K<M
zf}~?L<K7YQKfqmEO1Qr9=D9Vtr3(#%RJD#dORyof%;RAz?!5`=Us3!x_<j3x>-rO2
zcx-AKECwBrHR@W=bsQi976~LPh8P>SBd8e1IIk46@P3`)4;)-c`%YT;r7kaI`L1M0
z@9nNm<K`D=w!YP0nM7lLIxkA+PAzE7p$i^DJZ)|8^HehYGVuuUG;y;;@jZ*WAbby&
zW%9@;7yx99oD5Y@9cv#E?yRAoSkW!KKWEGN@xe5b70ArFbQlY}oaFWyuKUKC_rsk#
zQ@6YLE#h5JYnC#y#+Gn_35i!Lz8R1@o^gYbgM*$bmZRgJkNVDoZELAsLuSsdUR%3z
zw|wM`oz9J%oE#1?Itt!0Z(A5kO-!8@<KbWSLh3q)iLHD^aH`4>zSt19Nnr$`Lc0tG
z`7k}Xt{uKD{5pw@e{Hx;ryEgW+A-O1ae><vQZEMha%tFjs(-a!J`sf0!BZTZD`7|j
zxCfqbir6dRm`{|NC5a2bAkENyTQ#bu7rP_cHMXb!)cnx+g`@bl!1|PWCyn(4y0S>5
zDQTsnSO`vXe|IGFF;Tz+a4I_-*AZvpKL#X*PYd{RZCc_I16&B@aHNh`%$=2TPj%q_
zb?<&P_~+nD8+jw}M}hpeAh67KvHZ{3nopSL__8zfubH1x)^4>~ucWa}Hc3Xpw)YP>
zVmbMNL|&Y6l09qaX~VeXJGY_U>E0l_ySaOtdlR8Eg5}9ajmqF+L_x4I>`BiU6%-o1
z{lx2Ou4)r1%;qrhq)?#^&UcXQj@T>>d8`Qfh4R_>iS9?6jCqW<u$RW*cOWOWerCz(
zUB#|}Wn&}R>3Ut&;!29#!#vxE9EO+W=eIcY=|rHS^d{$br+A;hI(CmPgU+`XJFV3u
zzva0gv}#o|+_MZ<OQg-J>Q++C;iQ%sEw(z_T!U}1U!mHA1#!lCCm5`KE<Y7Dgvq49
z*4t1g+3t}`C~W-8<(CoxwEUyy7(F?r_<O@1B=Hs0iEFGSiL)y#hsbE9k8jEVNlcP+
zoUh5{_x7%5Bs6X4`VYh{ZuO+mbqiZr-NN~HQ2B*jPDybf9$#*}5$n>sd2M_)khPzV
z{6nTie*iAdBzU8FQ}||v7DD}bP(W^_am7Wh+4y2j9Qb?0TGUs%ilJEq8|9qt`=VsE
zR6~vk$lAw@XBC^G>R%9i8KbP%8Wp^j*5t6gSWcZ24nnkpV39VH{5cFp4PhyoI3})+
z>{)n2!a4(MF!**G=8;25b!hhRTf9u!4sK`0)F0hDiS3@-79K0{C!6+vCrH!na2+0d
z=ax*jPb{o)C}K0**DIrVOXFvWt)uY{qps;z)|ZUS{)`RU%m~bk>c$`dAKl5^4>;?Q
z;{N~u_;$&yt(RW4ot%e;(8~64%6{$_WQ663z*5Hts5#=2)7}={PN!JC@XoV8*)O%*
zh$Y9EmT1wVT@c?eTc%duCOA>Xdy&?m(=N1a3FWoZbX%*N%zyx9^B@hKtkTJZ+@r7~
zaqW&q7l%9{;q4OYDKES((Ot+HNSWaU*mAy9uPM)dtO5Ghy6L(uqp!4f+U0~JOjlPi
zPj(jJN32Z>N%JW`cX-cC;<Q#vLQQ`PUiibtI!E?*#7hSjmcXU8+~pQxcsUISDBz9>
zJu%2U8tJWm4o3tN>pyL{)vPCsys+4`e`!TO!dK?=0PljQr_1TpUVJLlW(h5o)y}DI
z>K03DCyE&Y1M;Yi_q4w49@D|&BD~<6PYPO3sd!UI`z7F#RGM=$iPLEdws)ASBL4so
zQy>HkuocYT@(A;-0&f&SXFb<~BD)Yvg>5|BH1SHizJ1F0OmoQu9mB6<u`a7&eS10a
zBfgh=_u_|BfAm)R`E1V!9Aswzbgpk+_{-q!b$-p`eL@(>P{G#iXS@<41x65{bVVTK
zD`9(rE6My(@k_wo8}S%|Jx=EIN00RDc&*;k0GzMN&z8mu1}o2~uBgSngIcSex2yOn
z9U^#S@u9dPSY>NjEhI=R<eiRH#ENH-lpK78K3)m$TY6uNrxuplcB7|T__7!sNb@su
zaHQZ5Dnv(SVT=WJARKye<9;9gt^5Pwvic<6ZnbB8!QLXTvJuV}IHOQE4oNG54^|_m
zphf#hL1}$7pAKi1<}&AXp18u^MqKbAmJr`6e|AXAU<@9#=SodlNJ>XpsOj4LcMxlO
z6JB|Db20wU)K$F23BU^+Yq69*(}heE#tuoTv`>vc5i}VNqv7uo{gUJlnk!p)ts`QD
zi4~BKo=o6jhDqu;uadl1@w4J~z8czl+4L0L&u;{F6T)8ulNHs<s>m_ODi61%dA6tV
zb4*Cu!^c;vcE}Yz)bT|X%Mf}>p;ye?oTzmJzd5bpf^BLZ*Im!h4R7O~l{#Fvh=!Tr
z-CjlBw-DRF@y^8LdC`Un8MBijuLq0{{y(n#Oz}b_+Lwrgm!uG5dpTnk+ef6E<3c|S
z=drJo?VraQwwf+93r5v#OpJ*nQ2mn)j*hG%zyp@X?Bk4{E1I#J$9lb#noY2`vW7+i
zMYnf--IzBBi-LLk$DG!&z`{DjC0gg#Px0@?lIcI#db<6$PggruOPMCPgyWwoUAvUy
zw&K67d54L7Q)x8N>K5re>oco7GR}}r0AJu#Wmosw!x{UzHRhN429cxN$!h*(t-}DS
z&vPn5<R6=K$l_H4t`)Ee<YKV&D@#iaO|33;=nR<#Q)pwHtZme+ySDEqub9ZhV3CT}
zG$OtddC#T%8{>Q7Hv3H}w6=k^Ni+)9uEDZYJnlm?2Eikedjbw?)PLbB@GaH+dhWBS
z>Nc9X;ze~&w%PfIwZ)W!$tq7RBu<i%-o8s3Hm$17<!X9(lG@y486{CPDoH9s4p#%P
zZ_>IuFNd1GrwqUFjoeRi+sYebDn#-Oe5FX;xPj0Dg!=QE%B2MNH0NjNbAHu&FN8G+
zbu9*Fy0nerd2Y1zNtN9}^CJ5{%_IXHZzQo90IoA$o235$!A*4CHP+)r@SJ+=cI-+l
zu>%@o<=!Qb5rfxoVZp%WzdL>%e$OxByT;aJ6KVG`mWp(Ax%*NuAYr`KXCb&LgN7I?
zK<oD>hks#T4|vW5y1qJ@c!RTEpp5M)kVLlZcI0P(>ZBekg1ss>vv)P6&2gG1?aktS
zTVIyz!V~Jy+3Hgr`gPftQ&<K|N%kwTnGkMomKhn<RBZqNE0pm+$M1=LG1i8cr(R#^
zw<8M#w`i6@pRdTvy@5Cc1t6Y<dW!q=!2bZVHih6n3tB~~rOvf$ZlYVOjS}8D3^?h!
z#adaE5uf#Ow<D9rYv`*lf?u=ui@ZN2w6^~M+cq|Uf^K4tRbr&FfMZY<!=IR+nNJ58
z0D1o2oL{<*y0LrM{1WlzmEy_dy73Q)uc4att<+p<A7_l*We#6+JY`#H=vg`KUpwD;
zcjGOTcNfnD`h|?8q>kqGXN?^|KQbe6^khsE(~AA*_@CjcPlqwfuXrZ@D`^RmRj}3M
zgY1JUKX)6bS)wZ32Klj*m0(6bEcl)A!qOWRxYq9cn~5M`%WG`cYDW&pW{fOfcn_G9
z(~<$M>@|D)(MK&>cXmH1BGvWzbk??mR+QS~%X=GGORFoML#u(f_2|3DQ(U?y!{uMI
z-@yg7>gCUy8(cyek3$$a1p6rf^#E7Dc-m_p5ziK_{hlO7j1Mwrh6z<0oPOhIZ&Q-Q
z`q!2>gtYRP68LH2yp34P<--t!j1J5Q51yN{IL8(2({XEE&NiB7eWrX{*8CG_i>K(;
zzCwYC?c6MEqZn3FxChsxS6e6T1>tWJSzE>9e-Bz}-cw>Iqbw$XV?Jb83{qIhIKwF<
z5C|3XK!?N@*M`nGt*pc&bFA-{<Z>Q03ZRkvMUHxV*8uQ955H0W00_pF6{5+inC;v?
z{{TKBVU3CCy9|W!*MpzJrc{&M9J-$GsD98g+gVy!cvjv!eUXcB+LVnf(v<_0k&2_g
zW9BAF?rW2{_`l+~FQk^|OS@Ta5GR`)?QFz>!2vjC_5iLrfnGbKO{Qq`&;5;I71Ze8
zEycKLg7c0x<%3}V023Z_$gYW|)%9yJ72ca|2b545X1G(_<atqU!EwhVVD}W27$I}9
zZmo4s6klA=uh>Cr=P`7+w_zC!2_(uwtWWa&=G&a(lTjN>%^{$k#LF~fF?MT-OSvFz
zVH%ZQI%NZ7brof_REF>S9(iwm+YlQgg@INL*fMXFDCvT8^c6{L?=&0JZuWaFOKnu0
zU(Za8<u|K2IU|MZRTmYpaZl9rBjXPdNu$|YX)@{;0yQZuszEFk_WOGz&9WH_jGvW(
zToAw>E0DXk(;1^=WV4nq35{d(Rx-exZY6N*+$#`s*S&jRhregfj~^B+t?sP6AL0jB
z{{T~eC~G8BgN=gWm7Pf-5EP8^Ytv`_jsE~??F&i%(D4<Y+aM|yb<^X8uC@R&p{Lms
zuswE#$mv-*(~h?_ROQh4_UBB6u2D5>o42(f5c~YKW<SG-7pNKG-vYgl!~P=hZQOHP
z$1%LP2g@SWWDWovFPj+3kU$wMIX;5DH$eDR;0;RV<4w`^3)R)^m5t4{z<92$ReoH}
z1;U_2X2>i7Q-QFOYlHD8!#@%0+MISC61LTEu6(_)!xgbGl?}@vJ3;!OV0q^`6*8!#
zN>27@(zf`Cu2|g1_FY<IXm<dzG;bml0e1fA{{VLbkfpsytJYr_)nb=Q)h_3^wU~&V
zB}9(h!QkdGyq?4y;Cok*__N`6#7_yq8fu9pqyjM_%N!3Pgd>vDC<wXjl6lDbb$%Q0
z2A?j3x}*4rUNqaIk~tA1h(=C!0D)JxJI3HTQgM#yi0C{?sQ4#RvHrvG{Hv#3#ga|3
z#_9`okVW&djPr%T=CPj7Ua`|&>giJI(5Q8iHwPoH?-7BKanyXI<3CEJrlx?`X2-#^
zq_9X?S|xy+RO1-)A_HR+&)(xdbmukdHcw%sL1>zVt+Wkt7j&e_G()${<VK6r3eM_3
z9<ub<XOrnGW#c_h%+(FF@CjFUmP*P(@<^NSecpcWUwZvS_*?N8SJ1pOVWIpkyV7i@
zv5(7=J$e}?Tc6>Ki`6)Zf#Wh;kbAeUfp}BF{{RiOKPy+%?d+Vzm-FM1QQ2{i-T4?Y
z0k{&cxDMDgJ9uBjT4tdpqu`61O<Lav{Rvpv-o~WvW=WmeDH|9VK3f6mYljw;k<mff
zpRJw@{h+m<3V3lmNAX4E@I;9++PTy(qFZ?jfw02x$hOj~nc+I;BVey7_>JRVfW}$1
z-v!uT>H4r?yHxPtj>I^~EM$W*THFkQ^CEee7$kvTpC;$S-XGRh%II1hV(u|7_HE7Q
zkR^zoRpE_Y*#O|m*g522@Olpmd^YeVkY&8mHB`_`E<Vp{(>0;p(S!`{P7gwxdi2e3
z{aWtm?Do9}{B!uT<Np8_YV%v^_P1Bs9)Ex3+-<sYN8f1BBK_{^ER1^l4>Is~!96DK
z+-p$jw`~%kc8d}XuIJ_j+W~#dj0<Os^slviCGh_M!MaV9nvR<dhluqH6~i^8gtSc>
z<;<xl^J2m4g(YwXYn>kw{v^qpeJ;{drZkB13&~NUMq`Cwg_>WPkIGj7dh`{&I_@ga
zIb~*0(IW6NXmhWMbyw15C=%XFBy0BM<1gif*vskWHhN$h={!N;yKn5c?)(jNFN<ve
zXN}>wi6j$k0gGEkBb81@0C@(}_~#B=F9-O(=GRZOxQk2F8hHe^hE;_oWZ?O3S0RgV
zyVM?|J?gdAi~j%$`6Sk6M$mOTXjsQQL8X;KfHy}hr)JkYF;zScaw{%<bl<Q?L_b9M
z$MHMFGRvrajwxiffLY2VhwP6SLA8+G#u7-`c_fx#!#M}7WnXE&2h??F?ZwyjezJ=k
zMi`{Gx`CYYwJ!Ipa&mrhtV;4Rnww4Wr-!~J*^M*BULU#D1afZv)6y*D0G{tTl>L@X
z-0pEA6O3*2uVdhw@i&?9?^x3#irK{L5CZP*1<1fQhA|lm00(nAXV(-hHQ07Hp6>VI
z(>(Uj-u<OWSGtwOv`vy(f-Fq?!04t<Hj+p*o*DRo;9L7<&^%3}#P?S_nhTvaV6s3M
z{EW8Ig^$cq4t`De!8y%gXnNka;kLbxRTsB<bdQrZtdKRB2S0M&)npJaJ>=tzaf&ow
z7igNb%lK=<c3;^n$kB;3U9V}ix-kF=x&HuY5Ds!hWhkqA%jQ<EbFA?n!VOzp7WWzs
zvG$btnb%UClHw7=WXF~}vNQ64LH4XD{CBE+JP+YN5Xp1mEzz+sYEh-UG49}q?rvS@
zZa!`^-vCz$FT;-%TVGE#y4eeKb0pVnSlzKIe})p%l14HygN*T2Ciu5^rg(bez*>t-
z;z$Clc-10E)fA853?6KpU^B9iamndgDs8S?^C3Soy0`H^!W+#pFYLo@pz2OzZ?@jX
z_pKQ}!5os7jwQ+9>;!SsCp@;kzZ|r!dPx>*>+5-gJXcn8hPG%_3^AGW0;ta^-|JI&
zcz7ShbHx{g?pwmTqy!Obe2Z}$%*O<I?U!~Wi~!?-_j^-y&j5U5@Mfzu+?s1yMys>!
zW_^%O<-u3p&Ua(3(zzV~z^a9!+WgGs+tD07=fp(4^0dzzMGmI8Wk%BoGb<br>|11H
z4!<vcob{Vau<$mfEv$SYc5iNh-!-nQyvSIQxW^D^;m&`EES-oo)9RPr71uQRw10?p
z@LgXcZa11_Ed$%BBYck1;yC~u@CZ1_8Q@1Rg#00SromzG;_kxgbAl6Cfu8C4I91+6
zSvceOOgeK~Mp5af<O#_=M@{2Th@Kw4Z5r~@Tf2zY<+E7H@|Si~XOWOmM;I&(Js{F<
zv}wikPodmKf#V-7$PDd_nBvT;M<)%D(1THF9y0ioWG{R(sM_A@S1_M8Rk?v$(mVl}
zq?z700LLJq$T$EIny;(s{vFgTMb@o(7l$<u`DD;<)Gg5zg6`f(!gn8d<JWCJBxhHn
z9WR5m=%$Or`X-{<-`Uh6&ub^y6%2eKmM8#nIO`!NJe<`_KZ!SAYq*bBva-0o+_1<k
z72vt@mpoxZNri0VcU+Qda^FtV^oXPJKASz)iJsj|cGn{K{^UP9mKZ=>2IQe6k&Lje
zKT`O?6s<0mtm5;{xWw_<T9%t?^&{;2OBKPua=`S+#%aMhZ>e>4S4GWZO1Cget7)@E
zqutKyi+xV%W8NPbVgr&DRCZjSU~2|jeM7<et6plC7gvZ~W=nX4aN0=UdxFa=I%Dq!
z+mXN==DBYa&Hb$ufAEamL#EwK>$cxjQ-(qJoa}bN$96yLkPkKHZLjJc47uB=-p?{C
zkl{S5dlwJRRwWWS8RO@W4^C@%#>&QScRiN>0OB`-1hPu9+G$c;v39w(fsu|0`8f?C
z4UNCM#yz>N3iDO*CFQ{JZj`U7%Pqmkna#9`ka3^10Ol;??gPQ-YtQd~A^1|-VE5)7
zD*8k7O{b>G7%<$pOuL>k1_&PY%4)aTm8GldI(6~9n<om!OM9V%pP5(}Ba@xE&q`j&
z?uu7SL$tW@7QG&^EBMytJ6Qo$`!%ElNAoYtL&y^g=n)Q2Ip>Zu#2z5B(RApWMv5yr
z7!V#zNi$;@cA8Mn$mA6vbK1Gtyg>S(7J8iCdM;Kt=R$;W!2(d^;NXBU`PVHirH+|*
z2K&fT?8qb{QY4m5px^<AaHBceqiE}l)xsUfTEBSd7soN(+{I!fmV4{SQ!zy!?wBq~
zX=HzuSP{`wmg+DoIt?vu)=6%Gv65bKXh18^&g@-wk}?j^pdOi|n^4yp!+pM*ClZ!+
z8~nJ!kVnpryO%%R37@5F=$G22sRxs&y_AuxI1yVbd8l*VLnd*Yf%2N$pRuLVc8SMa
z{5!n!jq=NNtwq0dY}W=C^0?uxmuzkG_fmRrwPq_sKWnnH(yrd&3W8vaLFKz173Gww
z?l|M-uS}G9Wpt4>o|YlLiGfR*<`SZ>JJ)T%`CA;RToKO)tzq127n=2g+naf{drbL&
zDhXl8<g&>7QFi+0Bdtx`o}!)iW(Jw0_?d0wQ>rz(3~gDFFC9S{VYym03{OH!4{FL-
z?X7O2{@jaGpKfy`vKdi_sg517ARe1fsU+817J+|q=1W`Ar8DeAMgs9p2P0zbP)AN2
z{x#0e;k5qJj(uiLQte}vn9Q@WhylhL2)v~P9y!T5#apssgta2nHQ$Hn8$)L_hUr*^
zx6_rRb$o99<VpgK!1{tfJu9=*bf1X+Bek}$)2%J6re#PY4+d@@B<*7qF2YGpar2eV
zFnVOtxYhg_b8ebdr=2XY$YmDR5U`b>1Q(D3p?L27cpJH|Tky`GVQXg$nzx9)!xJtI
zjr?)TbgIk7(-S`4NF+Bwk%7UiYE5o$6{d%VYCa6RONO!W)%K@s<mH<3(d}Tja7ZCa
z0)rUIVo4d>p4I76{3$t0JvUu=BxDjqiy)hNu^jnmieyuff--&0bn^Jp_rg9Yj`sIc
z)UI@d!TUl$s{;doa!GQk4*<5@^O0WdXXC$zF!*tGf*{asqWR*~G`obgkTbCW<gBYM
zNhf0_3F<2@ci6QRb35Rd?5q1lc#Bn*+f~!;29m43E0Sc6Rtti008=g*Gr<|%#~n}9
zo(T8{`!8DEN8zuJ9wO51^|>V54xM?Yof_+Ga^*`4#4jla46?^5UP0rU`D*_F_MiBT
z9-gDY`rKY9)7&n}FKy+qxj=aNq>nJo+>(gA9s%e+eDN>FuZVsl*KK?!@ms|*={8e3
zvT5>KD6*6`LgDUXk^XESm~0Ktv92lmNpGRFTD6iteY`WHe#-v<4ZKZhfAIUnv1q!z
z$S|=GTI!bD@>v;@L>Dc*j(n-X>zwdw^dI4MuZ%Ul9{%UV_F7c&7?N0TG;=$(z*2V?
zwvsfOCdlD&Ht~(5kzdZ&!5@b|v-iUI;_-fy;v?a0O-OTlWNc@*m@Wtp4a9P0J_b@b
zBV+yGPHXg+;iv8Osafi9Sa`2f@Xozw%1M2twEAr1XDaV$dAW9f2{ByCRN;c-r;~_;
z)Avo&PAb}--SI2J{{XXJ#o45^)F#rV)GY^@C8IUYpQ+loQVfqAs}<6@T;t?L1OhXP
z{9OI0{x5tF(e-B1wZwu;{W-qOjdNtT@jOu|SjxgYsUv)S=ZRUE<mI|o-ruw@?fLs2
zc<p5HZ;mXjwe?91Z4Jeox0?v$2ySk~D1`Lg5;yzR`K$56;s@-}aMnI4_;2C)G)L0o
zXr!Lz80L~e!p6HNk>!1=K2sB^1e}5is==wYu9+??bLQ`e`bWhtiV)dcd@Aso-#Csa
zklMiLSUJYwy`sPa_*m}kf@)uezp-cS74bVzpGwvs((I>z6u3ik8s1wHIWk0_yi9j2
zrFb}FUZ3FK+kfKcf;1oOzYAH|+*-WB%+r}5lc+Gt=`hAqs0s>#Fn3p_=)blPjs7$1
zHvSa&vjke3i6b`tL`83`<Wfr9T3>B~XjxRA5twZxD)G;%r&1BnhZNn}kKiBpCO?dB
zwRF=wF#1=D<h3BRz2wqa$uY>!lOc`bVsJuviWHN{#eS>&F8!50883#R_*e0p;QigD
z>Rb8u3#n;Vw-8DL1;iItQe9e?LUI9k+Zk=3FC5pwZ;U<z_($Mti<`|-TfJ7~hLcd&
zyzB2V*9*RAQbi?-{p>P~@)Y#1oxUdj0Krss?GIHx8PlM7?4ys&lxcGlXvj-07Tu$U
zNVCZ*@%IDf#!nSVR;w!(<pi`omAd!>{u673{h#&iQ^Hn3f%3+q9;IkxUJPw*arT(v
zjE<%WVsLrqjDB?dYxqy9%i`P1-;R-Lz9qAQL>BF*T}0__tU;8$uw;;cpacrcz+~qK
z2j-dlf8)Q3Ul8Tje`cQzYQ7h~xl;3s8>F#fkA-;+ygOssK;8S;_~hq|hI~)(@9hC(
zXNSj{-lwYDvxL91vziojK*Mp6#-&-+hBJ(GB;vZT_&Fzb%&JvKN#fz~8YqRPfva96
z+CpVmm1K(QA~=k?ItIb-f>yqMfA~qYaWoopOC)6&H22o~RhSY0-UwzNPMtHwcM)rU
z3v4uq{5fSFqol9_<b6%vSpg#?34v(9>(d-#0CQerHnpnjv&E$N4(9&u!E&*kyP-vH
zWXPB0;jl><$j5s0(y`AZwnjarjG{!p@eSmqF}$P*iym-tj&jU#{{VdY6IuzS_-<7a
zjXubR8UFxT7k~R~DYu>v@eDp;@eTc?QSMXaT1L+-n|*RZs2xZLlhckWfztGq`C97u
zk;Y7MXYtAt`I;_6SKR;A{Ec6Po+GxlZF^IKD@-=f_N~37E0eX*h5Q>F`&HinXkHD|
zwTFY^m-da8nsX$6d$O<1$qun?RL@+M>Con}yhZUZT)sCDYq#xittpT)Nr=j0KYdkq
zo;fF+_QiQ*+RuoV=RO->^mkGvfT%%^d1BiS0QDcQf1`wDC8mKbH$LF-map)p+Ua!9
z2tU~Er(#T!hKeFfa0JtS^s()<H}tPo@FlN;{5Rq=b>Y7hM{?jflTFltyCj^D_Oo!y
zlg7p%5s`(j&RYv#6W!^n9)Waiwq{77Y{(Ib1ngiy!=9Y+*NWEA{1vTu%UFFV$*BFJ
z*dyG>3Gx{tm9S+yPIeQ<<!-(6oGH<Zcew1&(96HttHakYNu@pg)`f8khUVJZ9lJhJ
znF7xyHsmhXRrjt*e`pWci%o{^%~s<2?&ao?Y6jTeT_ao_<gV!5SR-@|!mmX*uN8~n
zSBo{vNOYT9f9+#$l#Q(f+N{U{#!I5f*ST_k3f;B+ntnI<V@$c%Z+tyF+D9Jec{d|Q
z5aai@%eqz1Tm<RXx!pKzCM6fp@3imQKgV7c@a65ir%Tmzc~(EN>ON2QRnnraOjE#$
z!LiN?C?~E3cK#Ch(eV$(R#w`+kEz)kdG`_)Cb?BrJ6H#l?IS%`1d8!14}&_3=;K|~
zd`G7xmCB6Ar$8iOjQoo%<fuEiKPclPf-92Ld=v1*Kl~&5McBH#Vyw{o&a%tL%`LQ8
zM`8v61B`UVOraf-H|~4ai!~pIx2<?*mK`@y54od);K2m)Fblp&p^+Fd9ZLMT&P7?#
zV$*y8Vh6+a&odx+WU%`$*(Auwm9AWZz>dV0`h#8*Wu;5u-81YuZHz4h<&NcKg;Y58
zB~E=*<cjVz4+v|wf*m(V`yG^R7z=J*S%EFde=jkn?tX4gPAf+RZ3da?(ELo+ZZz*N
zQL)o6^tNr%M<#AJqc%uMQ_2yM_kW9N93Cso^^c8OUWX0Kd_U7}C6?v9w6nRMMYjYW
zz2>9FW$reXP(k3=v*^FG(D7!Q4TQHS^2Qh?i`})P3_;0JB7j4Ze(Mq|=`V->00Djz
zS_v$F;Rs7x`*M+7HQFg)WC}`ecX-$`<f-#8di5BrU21XPQj}ZR{NJ(oh4J6Va~qEc
z+R3NQY{f~kwu;}#zyzw#CgxM$a>>tgT~??2KmOC79PTvOyjfsx-qkpo{`x6y0yAJb
z#(<AOlahL~6UBbdY2Fmm(dD$%^gACWP0JO;i5J?ffcb!k1biL10ZCDgMrxJ!hi!Zx
z;X6G;!Z2KTqS84oJm<BF!W~i=zHP}gOrz}^GC(Q=V+7=qYHDUS(lN1Whja1QT>XbW
zGFieG#Fx%A=o|N~rKpwR$iXa#jUfXV4H+bLAXiJHe#Y7|Xz{~muik3b_pt+;WRl?@
zY2Y!-`C~nQcC34f`@SEIo&vcqb)y@JZ{V5HqPlq%p(sY}@w0AM0P?F40QdFsj~V#a
z#2z(@IIQ5*w5!!(u-)nZ0BK8Ljmc|>j>~y@#z|6pZW*m3nANqU4wqxVtp5OIZ3jWt
zE^n@4)Q6U+6ko=%TRevWLZoG7B<F#!06y_G;C?aDw7(8`&Ac-W+0kw$B{waQ@}*VD
z0vn0gAtR<dvGwU*webT|_?6&$b-3|z&9*>8YEW9dkokH3H3w<}267dE$1R%j4Qk`W
z*II115qOT;<4?R&S~=n}Svo!r<qd@m(C`C#<X2TH&6w1KMJ-cF@a%TuN!GQ0wg|~|
ziu&Xc2q1j%tV)Qb@<Rm~BaE8ntTd||1eo{`SzIJhE48~?eUae=a8Zh?%69{TK;yaV
zR$j-)-XWE2d@l{mmhh<0*sc7lL9hUScoYR0=ay`qhqZKC7lgIlM_Y?S)g+27PFTFZ
zv(6=FIl%*Q5u+S)joHU))1Rv$({{PcSa^fQ`o-c|CZlI-IXk8j1}7bih}&0=o3oC3
z@^hsX?Y5~SN#Yx5tzL2?lKRYjk9Y8oI|PEGuIz@#O8W1@AF|hrJYMHf@g9x#*wI2q
zD*1MjBV+(W?hdMQKphWU8uhIY_9gM&pQuUVO%Fq}*KFACXe1H;0BJ%L5=35mymK6V
z-<~u0))U7<FWxQ`B`s0;m#6qZMXO6A+u3V2fri=aNta^)a9thVOymK(b1$wcVWw;G
z*@(1@IIm*dqCqYswn5Q@EMh=O_s32>zo3mT_IdFC0El%vtus!B-0HefM!mIbi&&a8
z##GA=)|EE~AM(jgdmgpJc+2)e@D<G8+J9n$Nz{%cmU|Fmc|5%BGKR!*5Jv#0Ae@f$
zLokbDof|td@Urj0@?CGR(&L)SNSR%twaY+^at2GQm_f!k$n*l1%IjY6{H!lD)s0n-
z-NtD*FdxGp-lU$&5l^*!LGhEo7hVU}bsOIr+MCGPyvS}MmF7t!LH__Pt<RRoP;jSX
zqXC`V@!?J5>s>C{M}{<+<%9yRjDprD-Omohe57&msV6;gU5Z@F=?eBe)4_kVPm8|K
zZQ$=2>Cs+jip*t8#+DgIbNk4qiT=?OsUvH~gJ{MuPakjmJpHHq8{umygLsot)ZhrR
zrje+uaY`7SijnF!D;mzBMi+Q8o~-9J_`!Pj{{Y$&N~qdg?3+Y!mb;7+0o{O6RB?=C
zs6Fe5nmZ_NUSAWwp>(o<u@{sGa5-(^2pdmj4Z-W2*F9VXIcu{vjwZ+S5P#sM-U`ug
z8%(*jpGcnDIZKenP5cp`Es{3`lk+C;U~^t=@dN$}0e$0Sx3aT_@+5`YMYz%>mdGnI
z;E6@X$Zoe2%E=RfjH$>1zaH&;O4@uDx@U(bOY3<cAL?V7q(aO~Cz#3|Wbe5csO(A2
zbb57<jOBKhPL?u&D-nL#lOXpYT$~QXXWFq@T{Oyg#(kgTFNt0#*IwsYpH(`Qy}4;b
zc9ta0rN-xWMty<uIg@(=%udh^cyoMR(aqdf*Cp<4RBdK?5g&0RlnWebjCI2k?UBWK
z1aQT9a<Sa&ZZ2UYn|SSh%*a?B%pT`>Aa->FZg2%!@e_D5*fjdcx3#!HBTI>$C7p@m
za_<-?p5u<)Yo-`Ttqi9&{pNLx@dLt|mYTYLg>OBT%yQ&Q3~|n^7-WfFC1wkbHsx{n
z)E+AE@5IN`2DNjiAMD$Gq+XU&0;_${LI)r(OupW|O>&l6=ZFoPLl&Icnug*_br2@r
z{$el#pz5dBAm*xRlHOn58>?2aL_(>ULtHwM&}DX})f{Ih^sb0fOJg2w2=BD%Qr;Lf
zc@t2KpOr*xcVmos%<V2lc*ZkWI)t7YgIh6ef?0^>JIS2Ruh0||u|i3}ASfNUuRzuH
z9}3%DHKwm@>xE_WV`(1M+yRL^xb~J`QM>95RMNGC&>9Eut(-S9+`00S&IHVbNe38T
zFl{{Ya1S}FwYMhSPV3?S0EKlw63%qktgaxIM+_QtTV((bn{MV%!F@nD75WR{FZd_+
zjpCVL@dt^n2Adge%+_wwxndQRx){P>XK@+H=nhSMHQ^r^c<SnSygjIRYfsf}9n?s=
zlPt`+>cUvO$s>_{QPYq!j92P^?A_sS9LJ&DYu^tpCe^HMrD<)n+s#3c2~P~R_qPc=
zi~^JLzHmrT;YE0u{8ZzrJFt}Q^xXG-6ZRy~JRhkg{;T0j?-lqZE%7z~0Eh2dTi7Jd
z(<Hi7aYrnOq%memrgBC$9!UL0_&xh5{0RR5glA6iPr}Ut%;`6f`H{ET*fhb1$n1`$
zMUak4orE@X&lTnW0JAT|8T?PGH-%eH)w~(6!VSdwcByVse=j>(;ksia6CflI&`5ES
zoD+)u3Gtu6&jb8T(X{)Yh>xgg+OCwx>{``@^!9g<Z|cEVtZkFk86;L55snYc)y2=N
zJzhwsu7}F{-|UZ}Tk28k9|kU0!xNdIO+{R{*(ODke6jf%c*975g_s198w^VhE0_3`
zzYqK!;ycYh<F=iw_;<swsb$w9NMB5sZZYQFK-V%`fsxI}mBG$1YwT?s!+tFITi^{!
z%fvIw@j^>$&Gs?r(7|hd_S;t`cxIjpd8JI9&k+Ha0b||4;Jh*WPk3X;hgH+Q9}8_Z
z<4+qd^ts~l^%zyYP}A5-V=4<|G4h-N$vHT#U#v@Lv!PSw_pNk~D8K!Z{s(xs!;xxQ
zO_N;3b8cQeL+u6UXr{vlhUu8d%FBWtJ~M(iuaPxx+0Rh;8LR1bQ+WE*U+}U@#M=0+
zRWGfB@w&%Rg%VfVaq?Ym-JTc`&!m3Sn(vDB-7Y22^{c-P-q@zdE_BIRZCW6?*>k5A
zYgZiOI7eJ?!=-)|{BiOB0LMwK<<q=hd2euST%=bP0%FED=gepUW(;`@fs_pW;w#d^
z#&deRBbuz#RkuFt`0w%a;g*AWH-)X?n@+fh7^3@qsq$wyAH0V0?M!ZioRnVuJJ;q%
z#E<w_I+9)MH<mD2O*vH;k%(iFuyPy*4GfMtE@LNeO8L>gC~B5gr^8lSkM^80jncz-
z0@|+J?E)OT1_wPEbKF#(9kuv{<NKm?0QzFWRah?eS8QM&H&44902^o=kzYZF!#Z)i
zk1nN~v{9FGo-Dk-31zCTrC}KgUP3M91fEERu^9&g=0Vf7bhiHh5&RLO#+F*_(_FeQ
z&LWMRray>E%>toQoNZFRym4PqFYLdg_+UXNh!u4^X|}W9NRM!0cKJ+b>GKdVl0aW}
z2a4_VUkrRF@OO(6=Icka)>_%Im$w$-RHxmInV72#<D8H04r@u*g|7`lG}_epJHwj%
zR%>(r00>r^^T()2Wrgm1xg?30byQC--H8}D!eF1gd;0$XfjklMOU5xs-XMvEsy@eQ
z*ut%jK?=ieN#krq*WW!pxjJWr{8a-d!rO=}FGDjuwxI!<P1wjt*_f`tGybO>amFxt
zIBz~QMXFAgFwJ9aX66RV2raTtPcm?-sKAUW=dW{$;&t0iEj>+ax3LwbjiYD_X%4@l
zBPE$o?7;b8f?IHT93A-_nDPMZPHR&C0O9`tgnUwD)MmQV^j&K4!ojCp89{UN6lHhv
z;hI(hJ1`DAlS6ptO4qFJ{5RuCAk(hZOi~*)a|*JsRs=cW)ZmbZk_b4apN4)JyV1Vc
z;6ZKTDPud^`$}hoJ~Q(yHu+KQ<`(tOYUkB&p`(2f<(?+9_=oW4Thp$!YgdV)$$+O3
z?k6fdrBE4&JF&6HLC6)>f5KaL<EC8;;=Y1iF0j$vfgDqws!K&9A#gE}RZ#j>?F-_s
z#4Q(5ZwW(d_M;GMW2UTGWDV2HD6&kwM%|gn?^k?Br+7zFvUvPTkE7}jgo$pPvEDKe
z??BR`0!Vd{0{1-hxnE9Y_ZdQ64t~$!Hji{0SMc@pm)=7-iq#lI!*4j6R`ZAqdX<Rd
zJ$u&XmE(&qhuT_Mc!O-(e7N(i^<<jnAtH>8kjv((qA(nxiI@!R1Fi}9f34_N7TU$M
z$5@l^ytYy#5U9up5`iSFLGFQjVS1XcY4I9cw2JS=mNqx0%1L1IBw3bdu%Ud<wabyc
z&Uk3@02w^dB<F6Ze$$m$^vnDI01JF>(%VtiEu^uyS2DDl<+;-tLh#7582ppnf`<dI
z70FuoZ(q^0A$6ka7R{&IlO3w*MP+FNV|aGT#}@<p%v+`fYU$db@ivD%dJr<)qO@R1
zZbN2Jxlt=9Ndqc?3LFfQde<WQe~xr3@AybOMJUr4#eo)|8{VCOkT-x<1<!nz9mqJW
zqkWg$7k0UppB3iw8^fB#hxV<quz7#A7%a^mN6Cmns6cx*{DH`&mhVOJmZ2rTgs)DK
zc|2k-AcQf5LQW%%2E`{Genu<mIIf#c@ehK0Q>a59iS)=~R{sD~ERqFRbHhBa#Gy#X
zPEOvWdT(2JH$&F6EkjE1%%=O!juQfxAt4IHoW~Lk?Tm!U%ADl3a4t&ERbw?Sr;Nei
z9~O90;yr#_nKX-gLCwve{p8EI<i`{OM`R}enFs?sab3Ocx2NkGD7@G7yRBv`NjEL=
zD`h_;D-wkzxd#|#0G_<_TZ2aNpMzuj5?os8izWz;VA3?09FYK0N4kO-<2+Sg6~Dvj
zwDs1t9}Q1;GBPZ)TFV`rayyf_vNJT>MhO@sW2qIQcY5kyLZzL)k#^Bb@Y_{eMl!Km
zA_cYH?YM2S49g}#?pb)?j-sumsp1a|*m=`h&t)n38huV?NSZ}B$PVYtB=p=E`toZ~
zXfxXA7nj}|yMjv@A(Y$4q$E*1YS>}tmJcIs{w<|)r+^K4rN*b@TOHT8ixTPJ2UDnR
zjwJ`2sFA$V2<lW3QuSt2PWm3VES?<kG;;p{!dk5r$|{ev=<(r-4oWgG+Q9V6uLC&6
zVCx<p)3o9*ejmkcdSlpJu@dSLfTt!n?mksv)HHZ*2SHv#s_K3l)u*<;Y2VLv%<$N^
z?wI2shnQ|v1F7=z++&L7?={ik`G2)ETM1@sa$Y-yaWlt|cM-gNr1xb|J*o0Of`pdL
z^r?O~{6L>gZ5ixub-Ph11vNfnh-3g-X;nfuUBDOH_}3$Iec^pl;A(BCCXambGTbab
z>4>VsYk?qDRV79jKQ2hka2Njo7d4G`-6Xk%^~+eofg7lFUB5BJ?5ne$NZfOb0p7Wf
z5Y6!5=yn>8kFMWGs$LtEzS5E?p5EOfd_wWw$OLZEjIj!iP>s0+Wa~~XX>I!#IIfKD
zE_CtXsYbEkyAyqIK=N-Txp{V+{HM#e^5W<}<)M&zW4|AH@oG|&>Du5~?gYopg3T3f
z2_rv#AKkGz$IgFB@*Nk)R~{eK9sE5kmaQI7n<d1z8=H0*klSJagV06*?agLuK0DKO
zJKs5t)c1;~$rce3r!0Gov1dG!!0v0cQFqr;XEkd?^*g(*K5ZPwrD{oUcz3$mUBq3X
zJPoR1e=9xlyOW&ax!oUI)FRZ9*8c8UCzuFhisNsV%y<LJ{{U16I8e-au0G&+s%TBb
zH@2#{3_Rdvom_PrQMR!JcO#y@@LIK|v2g{qqj^2^GnIJme6)?12Xd@nE_xm_{w2zl
zj8W8T-XZXFT{KrZf?D3I2H9mF4I$~e7()im4?iw>;9{O{JX<E26xLR@lE78U-b#-Q
zz=OLF7vFa2v~kDhT$9V;9}Vh|wuOCZVR3Kst&YJi?&^G{R%hHgj(-koX*G`+#ik|n
z7DDHE^9+pU-2%7GzF66O&=2tJ$UQq%+o7bTrIE3s>dSd*w*Di!8j3FPZ3vDCw>R;C
z%F+@$;rjN?Ue@e<HQ>3;#))@nqqMfjW&mN4&T@uHcFfPvkc`Woo$G|Qg8Rm|Epe)~
zy~mV{#@^D<DJq>yyO)u$58mSguWIUbzlZvlfWlnGXu2H!NVwf{tGVNqcPpEgXE<TV
zIT-JQ(Q@=`%+0pe{7SlN8yz)u7@dvFPnB4*R|VOn9%_8Ou-W8~dKyr+*JoSZd2J39
zD?wtCE3R?MTr(#lvh2o3y=JF~wcD9uy0fu;MJC-GbK1(S6Knwd^2k?c{{VZA*(SC$
zT{}YYwDF%B-&$CR#!y&!mp2=;j2Qt)(Dlh1y@ed9ElX0;#T(y-+DvXQt>F7w!sV7-
zL-&t@dhaBpWRb{G{OaY#uXCz4`LwBIg^-2&JYHlhBO6?nL$!U&?dKV<sck$3@G596
z8^h^iu1c6QT6muJ;@#YgZStN7{>_fR>wx*Ok}KWe{j5J{p8)7l_!nOA0I<DC%tG2Y
zp}LA@IVu(H{KakHj!EYpwU@VDig1@*PtF}XK=Ezd(cb7V3rkqrbcR_C$qINIf`YM-
zdEw4_W3_eKR*!S1YI82DV=lD-$rAaECc~Zzz=AKPPJP90c)!G&M~QVmKf#_Ee+${o
zH=O3$=12sEctR~=^JB{7;Jygtde;ea;ja>1?!(<{CQP7;X_gWPvP2imAayLmo<}sL
zE1KCO=-ns78gIlaNiB`z!3@r^x+dt~AfCGbY_9`p1aV&N;BVOlptxKA01s;57`C^S
zu3KgYk8omPnO!6WvT*GisOKx5pBd=i5oGXHyjC{1H@+9Z1#O+)J?y}V9xa>_{Ez|M
zaqC`-;fOqYuEGa{tTmZbNUpM7I7>`8JDEk>i9q9xpDuHrwS`J@-7`qbvGk|JuMlZ}
z3uL;{^@wg3z&Qr;#?C1$*pZSN<z7j^7{UG2VB)?(@us)%pIDkra?bAF(Wd~*b#LXu
z$lb_i1f9dxa>wzndy~UI7_IcPd#P!uC92>``fO`*c9YeV10g-KsKdFh0lv|^9Lsfc
zrAKZqKy()<k*u(|B$8RzF|zZJ*dyy%(kezrhP(~&W5#*aycc&4w_wZ}WxrRoLmIF-
z6D(+q+kd(+PhnoIt`CU15;ukXU;Ulos{|5myt%iMTX)FFN4|K<DZt=hjPa9RFQ@!o
z@qdJ#C^TOY+xU_zW3b0GGDyq2EKIj?DL_!10$7}2Z8g?vKeWfhsUur|6q|h$OmIdX
z2EOx$Lz3!|DCZ!sZaS?M6r0$a88#mcyfXS@$)Mj@*v@}@{h<ez(ev{uDo8~Kpukg_
zgGu<asrWxx`v#AzX#O%)OvQ0xB!!UYr<`K)nENR?$6nRn_%q>W!H<YmYdk9?@=Bq^
z_C8#Vymn~*RK|JQQzO>8+s_Yc-vOtJ^G}z<ULdh{>O$FSs&E)Qsy87V?NYpPhR1nS
z?WK*QC3_xit9(rG7mBqzYwwHku8XoA*7gxaEzRt)ecjSaDl7nJBLFrB9kX4l_=omI
z()4?&^gCORHe@nKCO+2j$-!ohJAl!r95yxs*ox+UHvZ6hpT!+2+rx?A+l7KO+Shu$
z%q<d@A1~S3HhB~)AG!*Ila)Pd=Y2E6J{vZ3MXEWwyMYVH_RMYKV}dXOjI$GfI(F$*
z>@TY(TWg`&>)tK!--)&H2ZwBQ%|;+I9f*akrI|{fnc$X57D6{<g_|3IBhs|AKZ>3s
z&@GHUGSjRqG_+u0w7R#9iDLr{3dqkXZgN^I5PyhQlSv-8r$_cr4Z<yAnRxp$?UT$M
zn*_TMI-HD}&9?Brk346oLiT=b;7!5ArQNq71BGxv&wP*%Z1&wyPBvyPeJp$DjsE~>
zp9T1DTD^zBHZsm7*pXd9bv&sWs-50QxCY^4%auR8Ob~XA0iTw2JyTuRbup@1-o-Oq
zH<*bDWq5;az#DSy(BLzYN&G9@Aov}v+=(AuNo;3<48|27!U!LG?&m+k82(kJeieAL
zPSeJ#;Qa<W+e>1So2;z2F@eZ(xIrFI1LZ!Wo+-kWHSq2Z4V+`^_WmNYw~xc#6V%tm
zi!bhVD;aKV{%!`(DNycq1oUNLk^t>rTKH@BUj4N1yePVdjW6!B1$KCn)_a>dF62Ez
zh4Um~xp~WuI&}mHJ_dMiO8AxG%~DSq8*8|%Wl1D!tCx=I*UVGpsc@*^u>>GRB;fVO
z7IfQx+7m|BZag{g@N180Z@^7VeWu-GY;dy77FfXwd1H)n2NX@T?GmnzQ^Vg0yfNSn
zJ~8n^$6dGAr41bKbW-BT<hJ4#+j-i{x0w_GN#t~|JJ;>R_b>kd2>sQ?<VvP8mdrNn
zT$EjkcKQGclis~MUGYx0;a?Nm+<alR)~B^lBT3;KW86S|AW~hxQ;-xsM{HH^8+>Z`
zTPt~f7Q0&r0K*al6Sh8W`v6%1?eg_Ks(tqFVc76x@c#hBZC_7Yt6OO8QIy7h*$c-q
zV?Q$N-mF3F00;Y~veUvoI|u-uQ^r4oO_Oi@2a(66eTU#{yYGk^RQisMc(y)Vd%|ie
zpgIBkGUhXaMsPu5Nw0UbgTQ}fkL^Aqia9ne^;qQ~HaP<)I0m`hSA9xQx&PMrOW|ki
z2k~3P+8BpQ(luLEFZ=K;#uavgo4)7{<DBo#-ng%?ye0nt1efvmgY{T^P4-6d1%%2b
zmq2z!)FowBEU`^CAdQ#+qj?}?e((}2^?`J~SN37>PP4A~TTt-_ihM0>klfh#aiJF)
zy_WD<)Xg;NZXhZ{MjLSo4$a_!S^oeJ{x8q*-$R?m{{Rf{q)TOJ)#9Cu62Nhn^HH`*
z47ktA#~2@XwP*dQIY)EbSS1I{wmxw9aqvU-T-Icp!rDHH{uc2DpA;85hM#swxwndS
zA~ljSvXWa2M48xjkO(6cx#Rx;g&(psT5M)LGwiWk+Di-H!8eg4GC2y(43ZG)d#kR@
z;~g<x+vD#6_}k*Hji`8L=fyK=dgH=UEniQLPqic}PnLpYh1u}<+(12Zf!4lUwEdX=
zGx#6CSJywa^4eW#79LCg0BwBHeWb|b6Dq1oRgi7-2?&lzJaQ|UVx7I|8oV{t;Lj9`
z_Mp=~0oXr;rSTr0<4YYD-7VnMfH3QO(MRqsA+Ur&bA`h@#v<qM$B&%&B%ifU#gB~F
zLd)UJrNm}O!#r_Dgl;`Nznre#2`t$iz^~VBH}*2{r^PP?X?m`&eWPkRC8eN>$U-A{
zqln?~jLNK}{{R;|xC1;^UcdV;_#eVLUFNay_8VI*YVs)JmsYg4f#ul=$c@tGUoLRi
z0D|buhvbkj7111Oio4Y1od`YmKQ^v^VlNo{P1Q}ujkRk_d%Z>hEVmHF6PJ-l$ht__
zeCxZ3HiB0;uS@uK`vz#90MVBB<0;ZKjS|J!N2z_HJ9}va!{ym4C}Qs8Yez64ayFjz
z^{<9LHa~*&*S_(Vm#1m(XF9@XR|#o5Oah^J?tF`jdD%t`Ga{92fX<s;xo;Ex+0Wt0
zwF`S|C}-T6xwl}mLeb=X^pnfC8683A9Vtf{Rj+i<>hNC@IUBFoXTcI_%cP5Y8xRy-
zEzF3;og4<-NNCa3RD!G==RNa^@r^_F8`E^j-s9oUrD1!jiA-x0@=G0)kU!;{KzBy{
zzVT4m+zA}$x9tPq>9h&7?}GYWmW8WLC!cGk>MbeKmANwuUnrHfX#oL{e(W4D4b6Ei
z_w8Bn16x@%tGznwLcNG2S5}urV1gp~D<m^Qph&DTQN+X^Hv!7mRWEBT^f0MTG1VQk
z{s7Z7IPPt=e+<dtchlNGwJxbC-d)syZKp!wSe){wc*Au7*M;l<02;3Cv}55v5$RU`
zEzy-&d0K_at3>E_hk|dKbe9K$*#{hLubzG{d}*@r7Kbmx{ajn?dLS7~2aY*nSy72H
zd6E3_zW)H3O5l_8SIXC^CGD}l(r>PA;*v!x1laQ;RRC>CpCOe`@Ri&%jMrrxFE_?=
zx|VlH`qx?b&*KZ5DX%;msa;)15k*@&n}wG8ILF95$!8@b1AwF{Za8Csk1x}{Jx_C~
zuAwydLs+#Sg}9P)a;%N=l?p=S1Kn^`V;t9t=(@#@p>&5?Y2^L(Bul9nVMqHXX3{#2
z*yq~4`#`_YJVS1DeSglku;E4gC1983APh?QMg?*Tu{p=Rb^92@rNtVJyEC}5)qF|u
zjn9XCM!Jj__p&UJ-D#1mGPI?c)<!Zg-Y^2PuLOQo^xubk0sBLEC*k$Kh<r(BcYUTs
zKE}DzbmyLbCHl#6ZXB>5-aDKO<S6Yoz|Bj-KMOPsN5tAcitRjOr`Y*LZM4f_{h$;N
zm|ViGg2;Yd>fTugl&`Y>9e=?<z6t4fklkq)qTXpDbdjWRw-N0mtZXrXg2yP#FsFmh
z9#$f=yW~fs7)D7c9T)8R`we(E<3@!C#N8vt@oLs`ksR^c${~oVjBIflD}sk1k&fj#
zTpIN65P!ik^!+j=kKlH{rsx{VnOsXXlipeR>;aA5+$x8NH{S+CBpfRS`K!(}AKRDU
zcDZ4H;cpCH$>2?ER=!*Lb$<=oK+iqIU@x10XK@^h<hW3hJSADa_CX=5rI-E+DdR7P
z{vPuFCu(|0x7;AL)vWF%lTW=44@jL^?c@YuqGoVAF|R-CHQ&3j(d;1&V9#XLJPCR5
zXTY`>zqCe`qv><YJ6at=!|j(gk{555LK5CZMPY)iEQnN{o|)x*U;8I~2>9FJw2Q>L
zg@eJUp}LMuJ{bJr^8BSIe>5wB!yZB7g(ALQ{{V-Q>DM=M9WPk7Z7{!)cM8Mi!7AJX
zlF;5dd4qS}Av$y18u`l8<IlqgFRt`&1o<8heN$1A^8OomWw^K8@$Dwv9_Aqe$s&(6
zV^sjLWsH)<++$roc@8{@X`%Wv55u@T5ha$L;9XBc)a-P$jeoPX*ya0d@+m+iNtntN
z<BSurk>isYQ5oydpW0Kv8vg)>^xqOe6^@;6_KTP|%F)DL=H1#UMZ78#%}~qtkz8%S
zCpGyctp3#(b6AT%5ovmsovGU^iS6ZrHrpUSD=S09@sWauA-e7v;C#p8ZAQ=HcBwV(
zjkVU9dvz+4cWb?7l0*uD-Yh(FHqZwAq@j4<fCY3%2T{AWVJfQnpRZpOe`?=?9wfP0
zb?ZO2-RY?(*>9|;DX79v0ie2#k$`@tCd%M^!x*oLzAgUNI_9ei>7E*ywY@pxWu1ll
zTk2kD0|r<TRU`#LE#<aY{oW1-=hm;J{Cv`N7(6w7VXIzSM*dB_`bsmzA$KjAP$+RH
zB=p!bgC%>f!0*`-e~Z_W>pDcNf3qYoP38iV+RifgWSizmI`hCdINU3`mL3q+Ov-J&
z61qHR#6K52FRa{8CW9QT_%X>1owKydznsX*tW=Tx_6MG8&gIedeRo|;ohL(|NAt)n
zJdX<(JOyWjJLG2>-L#Khxc!T^{{Vt)-fQ|40_y(rPP~Vdnk18PBp;qkszTYw`F>z)
zss8|mJd5D(fmc)bmR9oKD}W=p(rl)=b%20lxwy1UNRFo=gl@xb2wY?irJ2)?h{0iG
z&%}LK;r{@OuCC19I=Q&Dv_Q)p&9qVM=bf)7?;q-RsOf`S_Pz|!{4?RW^)r7R!pyFQ
zIYZ7Ee+~q=gezqI&V8%)-@;$BN5O9vh`dRn>u;=SOdoa4hm_FZWEGRj%z*C%5L<BP
zfr{t#f7yS+kj`J>%#dgovAe1{w~qSCMjS7j6u6ymKe-~~uUb*f5|*WXO`nbydOowO
zGPj0Sd65szZ8Tn70OO#M7ijE8ayxNXHFVc4^)%6S3GHlWk+&#q(nz^otU*8&6OPTA
z{WjJWz82_`OYvUD$483RUoJbNJTGr>xZYX@alLwxheAOFbiuEXe0%Y8!WV1yH?&<|
zCMup>cEUpHa@&N`ZQ8gwI|t#K>iW+&!gETOE3-TcQ}DzZEa5eXpH{UPTX`lwXOoY=
zu~RaE$QgDy#s^+G_Ryu%uBE#0bP-2xjg|7F8^JvZGKO*wAo|y1b>S#Ak1prKRuamN
zPTOng-Gpd9ZGo}@1QJH<oN<cv?}a)AmbInJrCqJeEvLvywUu3nk+MRgt6^6oAm@&l
zrS-m4S1y-6Ru{fEHy>uYvX)7*6LixUVOHY}vkc4!7{Yez>DI^KzY<M&()h9?VRBJj
z8q}C%0Q7Yd5L^++%5CGVeNn0Scf&1mVevhN$Yw?@GP(OeL4Zoh7I$qUjmJ3ZdsdXm
z@b<?=j_bnl-uRB{2idam5*ww6a-hi~NcTH(c96@3;+w^{&|c2S_`dJqb=`&U+n}(x
z)U3p~dAGFrPN%R6dC$s(dRFy>dX0=}Y2i%{Yp4RqOTh$_A>GuOGa7Fh>%WgqwduEC
z8KcrKg~pk09+!Cwmyob%ypTp0FDV?8-FO3x*9YP+jlL%Fn~8N>12m({kL~cGfUw5V
z=9#2epRZhV*FBAUSv9I5Ld04n)~#!G4c@YUv892-J3#9GVN;OOs*@P+kf)xR75YEm
z58A@l;h6r}mq@wQE#hz_yN2On^1_UbwzkNQhjtGxK+oR6IsCiT?{)99M3;J`Qd)5S
zZL~t-LJ1=TIY`2e%nJiu-@{*rpA-Hdc!Jwk@OPi6JCciYJh6zEXz1}qv8e!hmM7QJ
zF*sPwS-TxnDk!_N`Xu-({{RI`v+>pYcwb0@OZSu*Rs#W#2>4P&>gHqDmW`E{f*9A^
z-wk|Yd!hLc;13-g78zwmz3}gd?-x`+jOTk=-^se}7CljJH^-5;03E~m^6-D`Z}CIK
zI$T0+a>K*kQndG8T#auEI*hQC2T?H3Jdut-Vb;Fp_)GA!N$}T%AinXxinP667j-6o
z4tbJWKEQD8G4jz_h#&@F5Ad_*zEc&4rk#_q>(j4j-*fg);vel%@NeOcu=-EL=x;P(
zD<HSjbqE>_HsrCu7S~E7iI@|RFs%Oo!VU?n-EZRWhCElQ4SP<rwAC*X*5M<)iWe6#
z!py4C!*pYICCZ_|1qo1acILl2CiuYq1n^9HXM*%db)7n5?=`NYy614*c#_$p@|V;Q
z&U4!WxE*ifZ;L)7X;JulN4vc6bnrxFT{hMe6`2egG0ZC)KPPt8C{*KuwZ|MgUlJRr
zx*eCrOAn2D71PV%y=A;t73auw-F!n1s~k>Fe22G2is6u8E+9!TIegdUAI9Gcd_&Uw
zO!m5@qr>*{1re&lGn8Cy!m_fW&Z;x8^PjDD-X!>0<Lwge;$2#Hc<tkh?HZ1tLM)PC
zo%XUJ6Q&e_kX^R|J*$7ipA{W+iTpe97WRJ^Y1dyOy~0SFJgy2P(u9&sslZl@wt3Du
zuWE%ZO<?(tHmzQHc0PRY2Y`MI+TTU0d|gdPS5gl9t5X*Ba&Q`G<6oQ(2^rnjIp{u=
z)VvyPJUtGr@VZ-lZ$|Tj%Wr71!<3V1tS*+jTWX)17)Ka6VmPX{J`nh6;@uM3KZhGM
zsT8SrwW$8lav4D(B6(ThjE%!D8n?<ZjP&yzLr(aQp?JaU;Y;(V+Le`l%`}*J`iCMt
zv7}{zTo9^8ayi9xIrG1ER(+X`<sElBTWxE^Uk~o0(zR_`*G=;n$Zc)}mrm)ClJ?P;
z3%ff*mQH{Z*F6lrH27EJ4MNSe<hjx=764E_*dd#94l<@mS7{$}ILGmEO#c9dg{SIp
zK85jgSlmY_R8@#aE$EXu*!J*mP6^0h$&NP+nz5vOE%4r>rd;d35!BAVzvQ?^o=Yh3
z31y09i*(0ke&e>>iiYCV=B)gUAvDQ6L*btjcooNstS+si($EmI+QS>aE<R&$#JB^d
z1L29o0649kJK`_JJtkQ$?<R*<(4RKxajnJnNfr=6M~-RSv`h#AOk0Ol2L`gdC$IQ}
z;kKg{w99Q{6xMP~bjTx-V>3uuV>8Q=-fFT2#`g`oEPDvwRMLJVv>))av@xbjDxJE7
zjIizbaBw8sCPoP!SD3%8N}n?KmHfn;PUVeaPlUcK)*_DIP;DaUt9k1P9z>4kE4JZ>
zlpN%eNCmPw)tyIAkHHt;+ZLK;-z05@=703biiH3+{H#%iVtPg~$2EbZd?$lK)9<y<
z30}kE2<K9&_8wH%3Y&pDWuI!m`+io~jO9sQb6A=mkAL9`(<IWq%$8QyWu8%aD_n@S
zf?Xy_0;p*L&g4}X80R9cEw%2uuEjTVywiRmc%xgK=__k>s)r$rc5xMz6m!4LjAL+Y
z1uSvz*BZVv@Wzwkd&^1m8~8NY{E-0rKm@-G_VcpEDg&0o`Fn%8&m@z()Mm4E&ll<5
zKLbopwpmEQOmf*PJ-l&%Hg1gx2pd0nf}RdajAo{<;2#uQ=T?Q`x3aYJJj;u9lI}~b
z#C`Z;a-(3#19G0El0c}mZ*`*uE>&wBy{@-?@aE}Yn#TE0nvn02qO`Y|FI*KfGYkUT
zTL&JMZN4acGu3ar?-yy-%W-%J7q*ybqfj=eC78KjpkTyvj&WLACypX*25k*&?lr`f
zq`|&;(lu2iGQyFTm2;nz%Pv922N<cegW#*54UI#>*OB;3QJPP)2xVn?yw5FLV3?mf
zV-vS>;1=U)H1@la)RzX%hfMJ1wW3%)r{I~U*DW;wN-f^q@tour7X~>QR1!A~IL;15
zaS-YrB+|7Atm413w-E$av$utuxEyaUF2q(n*>X7hz3I357sW3R&o#D_Yb>)$5ofwU
zCRQrj)SJ125Jw;?va!w?NFu5?#N9zHXVJW8abbVt@7#+le`yM<hYK#`Mw52|c_8Et
z^hPdD>rmT9X=*3o&ZntdzO`uZNeevSK4yVp1Qu|LKwq2h0vw*W;L>=LLh+85rls6h
zCjJ2<G;gQOOkF-${J77`bAm`b=Nmxgxm38(yki7y;eAD<xVIicuCfe<FvPG}kQ9XT
z(*gMzImK`q-;aJFcvD{%db?eDqz5T(7A28^+kq9bA}|Aj+jER&sy9x^iKT0!+dM7f
z?-c1a(dhcL(71UC7Pp9JoczNDb~${IaJl+ovb<5LcoW2Wgt1;laP#cn4YkzeZQ@iI
zV}xSh1Jyy}*R^?U-xIXmUgkNxM`qS4S?5NG0W?ewBLX!H@*cd9jo${iT}|#a6Fl}h
zt6!V2f#8jj-HMKXdVvg$+XOO!@7bzq_h^_YZhBs$;)U>>?{aL8kR?rq<4ZVDO5kOj
zi8&|upC658N#g$i5%`KPJ6W(zLfuC<7e!&8r#NN96Oqs%$mccV1IFXSw*F)nQCY!;
zj%emzHCU-RIC4~Tzyk-;xofW-T59pA(%y7wp8{_!<F-<GExJqsGuIo4#dbO^?2C0H
zt<RygdkZGhByR}bNFXq%`!vfPw57-2`Pp1B!N6cLeJjaryho_o+|Oo=boqcOFO|7v
z*gkA|jBr$RAOH_1-n?4(Qt>P{rf1YlsRmW$vQr@Wn+I`mu?9KeefZ63T1%|l*%h>o
zJzm~MJHFd5+8vb#AO{Md4?&#$0IT*5J?>*EE9hx>i^UoriqMNVUFQ-Xp3W0AO^yNF
zKXuf4;1kxbMewWQMD`HsdL5VA5TJNui!$6WMj+w@&jEo4t9mIIHO6WlFpyp?gf}S_
z)WiX8hAF`8v8mhnVz(gikBj^#t$)HrYYm2#bmf(<&zB*P$f`1_9C^qJFh<-CneC@5
zTMGBw`)lC0>^1P`;y`UjT=<&0iH0>>`$#Rm#r8&*sG2*ylOaaPV#(iwUgP6W_$Oz>
z--ocKvEbhk+fOCA{{W9&S~%{kB~@T|r<Aa|7T^QD@sdK2E8?3^+8b1#`#ST)*3kHa
zP_;;&+fcdzXNX58;Je{=osL(S=93sat_}}7@dx9_#6J|w`h=RwY1W@Q3uqWx#=D0*
zoF6ra9A%GAg1O~Nv)td^THL?!AH)&p6Sa&wb&Z6|zE75nCV&v62a6G;kIr$B2;)6L
zubr*z?=^OL^^3&5k;c;-#*nC7{{RtH-dh}JaO+yytdArl+G)2J6UqZLhDe3G5B8;U
z0rdoA^y09z-2+$E<ei=EG}}~9y$sS%DBa59LI5Q5oudm~aZN2wcWdZObiFsiDA#&4
z_8MGDOm`8;=@F62<StwHjKxQ;<JP2;#@egeCbJEt#-|C1BL!S62?Bl9GD_bnCu9nF
z=mm4r_%P_tX>giqT}0!8e9MPyo<{fGo(i6v4!G-G6n-_)wCg{#eUa{N7?2=`%V!-F
z`G-4HdJ<_V-PqC#$mldrv-q|d3u!j8$GhkL%4d$@izxv_+r|btB~v|edFQOu%!zKF
z@P^pKKHLXgNO{t3z&VOyRy6lMUP;L$X1u~#d_m$!Jfo&t=@20VvdGe0NWFmwqBJ1m
zC!FzF*FO(+ElH!k){^5~iZi*OmVMFyq;R&t6(bqORr8FIRn*O^8>7c>s0hsZJD~)k
zMQEYX+#Ya1$0yg1Ox5iN!a7HcZ%NhK9}n80Q2Sk`yBv~yw1fo&jGXQRJYd#r+P}m7
z7BZ2^C6&7F2qcfnah?K|QH{qO3=n;5jfQpArJ1}H4xw!Wlk*9Dm7A}~V?R3%`03uW
zo!BR1?#~A4{{RZ~&kJdhX{9_*tE7@eacit<FQuzO3EJ^GTgeR4GUF*Mu_<AI-Rsz7
z{iHu-?}iV1;pF&#ZD8`RlW`U8tP(L8#^Ed}BDPN|>c`T*FYfg35y5DeOMQDU?*a&5
zRg7(JAIx=DnTFi(n8j{r+NXgcNbGb^CeZE6!dSBxQJD_s1(*}jv)8{B&nRDWZ)%;D
zk96_RiaZVDJLt6!hdv%28raxbV@T{^kg+9;MprVBI8anq3#jNi{E}gHIWHk|%yw#)
zhiLx%fRYJ43KhVv3jY96@V1w#NqM7cHw%3LAs0>Absk9T<}nI#J=^F=tplxi($7vy
z_yI^pGcdPjl;@^nW3Xen#ytg6M(rKHhJ0V(%@*}ziXS3VmN8xzGDtu;23IUg4!v@5
zUc>O)<A=kK1nbbvX?dtx+)Bhd*loVEk);?0TU)=~WqRcq7<3E?&3yOaKkWYi5?#EL
z>a%NdM*~kR47=VaV<XIF`3AumVY!C`aQU&-{yewv&Wx?Dcyq-t>Gvv5bo+u!ANFHq
z-Z~C<W7yWd$w^pBO7=fs^zYh(K)Udkp4t?CCe>}Ro39O7TtK@{K7X;?I=*wu1(HPv
zfw<S3Sa=8ac>S(*Ynx9K_>#u=#0?lX7A&#pm-edUZS$a&R#?LnAQHPv0s%NV_zU5m
z#=nT34Yyrd-pbxsHi;Whnf$dt8?STk@{U)rue6u;r|=)fKML7Dk91ul#8<X*nQd;2
z;v36pP-RM80+$9p18ws0lZx`^Mo@m~s^w{s{9*lpd{6MBN?#xN55+dxhMgR2VzSla
z8~0>w7WWbPXvc5NxJ>%yz7@OpspEYcPM1cx@XFsLh|0-$==M9G+ivMbKZk+SkzY*w
zZ1~^tXUDqC-Xiekt)|=A!UXfeLYtz)i2%B~BYsA9q<&alyyCuX(mpn7a$1cY^f~oG
zb0FK~1(_#opOmrVAQD^W_4ER|X!Bd%B3f#WW5FK;ue?!kb-hY!Z9Y4kNf^?aOLn(r
z#x@Aum@2k-Eyp<RU2VU?UmN@zo?nRX;jJUZ+C`vtlu38y$!tq)^CykkHp`N%yF9=_
z8SV$6crW2U#BYd~cG{POygvtrOtLqbExr7ndnq3(ylUbohyx_3W+32$fm_}-{gnJs
zeP?N^YFaejGG&p#iq8K4&zur6Om^}G0N|VzLUF(x;;M62(UTe3?o!sjX)l7hufxlK
z3F;mJp8HU7GeZPcv9rb>3<^z+h^oMUt7R+>4<f#K@OF>k8|x`9JVkRShaOOjs|(3-
zA;(O@oCE6Hl#ccG7KyI@$QC{ry3lpaE=>U~@Uug#381}<qU~k2Xju{_-H_;@`W4Pi
zd@pg~-4j>Wu4njNZFOy<#_x&dXDN;TvK3MXOq@Fpyag!5SZ~n!s?%QhV+WB2ji*84
zD+^_5CxUClveXrU3S3#rv6&QO@2sv)P6v9(@#pPX@T%iS9t_faEZ=3fBYaoL%m^6-
z806#y9HXh{*Vn-{e+?V`5<LUN7pZ^cT$v57muqa&vjy9|<RBbv$H}>ufWdbR*E_5D
zw#!e33maJ0D=Tt9mrzEYWf;H#+a&?+s4-OvN$9mFn%@!F%kewK8q}8>KZRcNO3{wx
zg}mpU+(ZY;QEpI88uj^Aii~uvPY8I&!@dw`b-fA3qp3?EfAj)2hmZKot_$ZpovFw0
ziuuo5@h69TO{qtx>Spup3gRf*4b#Kzn6tbo$R}=bjGEoi{uTI@@6DTPQO|0aJx2FV
zGxBUQ1IO@?Pp%0S)Tl)-dDvdlvGirX?K|-=#2Wtqo#Sbt(RAY^R@ayJ2q5w!nTn*6
z-#+<ObDR)xJqL6C7H+u?vfdE*OYs9z)hwo&BZ+5e?<~k9g#*qK;Q?&sJPZ@qn)&+c
z#$F$^HyQ=qoyMsQa)ppxg^3p=9H>BMIPa1(jD3B7M)7q15P~ls_!m{O(n}`Ax4O5t
znk*7H3c*|hfJsLVMn>Q>QBt2Ox<zxV@}t>4Cdu&%%fpuIu3xT+1;ak;J0jO)D>e%w
z1X2*3{McL*w+9u(cyq&F3H7UWwD9fs{3IIW4kbx00$cfhS{9QrT<s;kUC2Xq1YnXX
z=D+dR#(p61{k@!?AGg%+Cw36c9l&cKyLsDc;J9!`NiuCByu-r&4No8arf(A7X_3Jj
zv`uXTFPk3is_hon-iJMMKnJ0yzLqI6wyUgo$^~z;YmC;DNb!WYRgf`kv0c%C`*{Fz
zK<qkHQFwde$c;hLEtueP7##cLus@g;w6?ZB1&(9jN#TksH6}xFs?rq%fW^-s?c)F(
z`kKrhEAjN>&xZEQqx{Nz^%)0|#wj|I=#XEz|JVM3{vGK)9=VP`6=|L$hVomBa^PAB
zV}*ej46n9MFhJ)Z5z?XYzkoakf2Znc@Y+o`;rEL58>p|Yb&s+~cLn>#0xI6ANZrFA
z2+p`T{w#I*&&3yatMJ~(L;aMrJ1-6DI(tto{*`x`6H%6Vcavz(F57krTW$gL`9S9v
z!k-c~F{WF|<GTsGH+3^KenzA%Qb9ClY>K3i><%)l0b)7LcyV0*O!|i|S9rUhP54ve
zkBfW(;GeSo(hZ_`V^J3=Yh!T*+DB)0?176wr{+9o<Xn--K9%WuZ^hkK!Ar#=-bZm7
ztkKB6Y!b#n1g=7>44(d(KHd#2*M$BlczOIk<I4#3{XRmdw)cvPqEJ3ph2u|^faGAD
zb?aR1uYj)p5_~87KfoJnpBY7KbtLzCb;aTPb+xmRzAIID^Ea2y(Yy}45^+~+d}awL
zYaPivU~PO4;mvbd{hKtMBG+2fU+p&*7uOQ4k!8rtYKIXS2_%9D0FF4td^4>4cld+j
z>n%lYGz;$w>Y8MWX?tNR32o$-Kp3<VC<yU3?ZAv<ps&zBgPtb%fAPn{!^9pK)2G<X
z@LYYi)<~`)o-zKaMVA?5Bz@3SagN|%d|CaTei{DJ9tIu@_={y7+!pdVh+AemxGqyF
z9uTE4>VE5VC%!uEOO_;5cXpnK;wO)^{{V`*?xCpNzJVl54ZM&`b2K|Hl~^1si?PI!
zFgfyMR*ASc$Qby?Scg>jGowwa-q_!unS_@2F7v~rLf|oTGX<7QAVx@e7~Aj^N`!%5
zzgmaD;rl=QKGf#dH9cG6rj4ZEEEZ312yIJG)8kbPlLwb^*x<g>UHBnzIIl1t5WWuh
z&r1>bH&M2l)<~Hye$-kiBaMb6f>^s8aLMx%oM6{wD(O88Cr--Nx<3{*T~EiluA8$>
zw7t^q5XLS8A}C)t9fV6Fvogqj?2)mI_TA1r&s;wclSq@p{x;Q)wWhR;l3Go0CNN`y
z6sgKE#{isXur>DwjivZK;7wBR;n#(tzR<in%^E(DraY^s$FOaVTUaM3Y{oKkXwjf2
zb4K|f{1@ZDh;m1Nspx(bS#=m=kz-5aYNd+Cn@^naBymk3#&;rtkC$dedlV`;Zh6&d
z+hQ9p2MFvQ<3zZ7*)3TVK=GiR4^X^57y*r^86&k>wejwlAUc1IwF{_4yu~3#az1`{
zhEcRA$-vGsPJJuOtb8wTt3sY4n^l70)aMei#^`%(;ZL_5gO9^{NxUfx@XO*IMs>MB
zOjAbc#d4qpWC%;+)V@V}aD|nO8oATzpA_`V>u1xV)7}V*l!oTlB5<cTZ!nH_p1_|@
zYtQwx_>Xm`rTCiaYe@0?$B3Zgfx0$Q20D_X-`2Gx@ofGcwhM1-1?*sNONkEFRcvkh
z#Y&QXq#sK4e+=m#9d+=R-WIa7x3`@J*<TWFRv7?0uo9ep2RNcyJA#e2JReT*CbMy9
zy3N0d8e91fnugjb1c|r!#L=({a1ICJeYAB;eKywr0PTJ!)uMexVq8qjxzGD-yploW
zu+D4folo{%`1|5{o6XRo(sdUHbVVey^ARw2`5<7N9mD45J^EKU;a`I`o)Pg&=sy#5
zOUr#iEJ+%!JgGvQ7fE*K0Da{nImSTiQ!GS2)6}@rowV5TX?1;C+QMJAwaxzkm<z08
z<M#{)Of!(9C;gCXtnkl-{{U!T5XS|-f^<iQ&U9k&xi1vT+!i_7ocf0M8Ly@E-wF6i
zA24cu8n^o#EZ7>U9$@YWObHvm`n5cD^{=LW3iz|(UW0dasC+oque6JMn>UR3X6%^l
zZsje$Giz~kg9%-%869zg4&If=Qya*wYn?RdyI$wTnkVdU`$zbO*vp~#dg9jQf-IKH
zFj&h0!HKZ!!1@NSp#BQ}$Di<&>dW9iAKB`fCa-I3X1cSygoc#^1v0@ZowKU5D&-#_
zpP6zoUtIWa{t6%AJ6L4U{AHltXnMRmnCY`fl7?ImB#F`EhEb7`v~}y#72Rn+w}<>J
z1-bBq{udgzhwq`56AzgswbzvEx!OCMLXQ-He{_W$bCt>S=a^P{Bz3}__alS;3HRWg
zZpOz#)a+)JS$3!){LRCS>Su6s-~C<z=qu=-0Di%jKMb^uO5?-tbK<Kfj7e{!h^<ZB
zQXxKIx0+^)%vK-5<dEG79W=fNd^^^E;VOqz@Q;hG@4O#1pOo5mw*LUy8ttEws#X|v
z0?#$<O2Z)~Eh3YU$ACV^_;2yE;7^IXN2qvLOPz+hr$&6+9b?Uc{wZ2a1#4+@Dx|pc
zBXr!k&qCGZ*2Ycg7Ii{~y6TTN_#5!M;8%#XD~%q|UoNqy?w0FGyC+Y*wSG93+TY7A
zGJg1GL!KL&_n#1a4)F8o(>$haF6Q_TI_pR#JGmVW5IBWP?Ovso)xgMOjDz%rhmAZP
z;+;t~9dATYd1-5L6~3$GDAb^hiiQzP@w`EPQMp`|Vxx{L$D)_xpMbn&ZQ+|;e$(PN
zhc2cqCB@;6*I3hFkd`vt#-3CY!hmfIimX5f4f7i0`qbW%HgL7vPXN&T3Gu(fI?G!4
z`deLNL5drTfvMb?AiqUcLvI|=nAgk_N56cE5tN0(NFRFE@XoWOd`KFWx$xy+ySufN
z#L!z44EB>S3aN1ns<SI70PUVI*dT@?zSZ!r#y^KXFtm~{0qgp9uRW8z2H#D1r@;)!
zL+mWkVZq&(##M#@;AVJ}!QKM#KZ~^g03O|Vf63G|#87XnriM9QAG)x+{rOS4802S+
z511;j1X8N^4n*{7%>4E72kiBGe){IG;L96L2gR4Dt97Zx2)Vc27y7v_t>Kb5q?0YT
zelys&0=x@G_(SpewU78jel%%5ak+_>EmK2{j*&jqCBxg~wYxI&wqGzD;bbjesMo$F
z@s5XgJ?Du0FK<4E@)m~cOY<%#SpIB0wlX5f;xo&b8f<katCk+Mpm<xvT8*vE-L0Cf
zgpo9Hwa&?4kxmP&k)YbkAR}mC2pI>HRSZ+z1gX1PNAvsRuh{2b))shtDW<K>v#tmY
z6cIi<CQC6n1Q3dS&o%Jxh`(YV8F+5~`&01lnn=?(BU;%w2|S6N#ujA38Q_&sk}?H<
zNZOz5lkn%mej>Kjz7K2H9tpgXRFSMLPW?7-oHU|1TXBJku~5-S3gvPLTvwiaXSwj7
zfP6<4zr<ZTP|-Bl8JKIc+j*LM?*}-!Mw7~Ne~w+BPDOQ6%<SyUYT-GwNAkbool5({
zQqQC7dL)`H^fM%Emu&3m-vfWkxaS}oa56Jo9*6NG;s(7u-W${<eN#=FaGUL%M;v`V
z_E820A&E8pAN*4I6XA~#-CSzwAk@Cnt+q?ZqPR&AE>y-}C5vN#r{>2_EAn^Z$Lxvm
zQ^tNQ`)9-b8X4fh<^pY^Mi?6v7z8ALc@9o_73|T*!LC^&f>>vJz~H_c>0S@9yMw~^
zzCE+Iwv#O$mv<qZiR6`na#kS3@?zhgania?bHqOmv}^HW;!As-GI&P!H;$H=RBjwJ
z4B__%#^CG+0k{>N;UD-X*TruYYV-JW#@BIaHxYmy2L;%Ufn$w|35XdxgWz??13zZ`
zIQ@r)gQH6ajdjU2Eh(GqiRUtJ4uG?&fU-^H<BZ@8^gfPNAhnFHN3-|6^{Ma;=Zmym
zUev>HYL`+3!p{tHw2H3eC;Cc;*!Ua=V1xp5fNRDq{u=8(DZ0DU{55*ohuFw3Y>H;Q
zWhan6QoBd+yRxXS({C7l&U$x+yf=OS00>l#bzt&&q8m$xitBHyu0u+T(C)!KyNdX8
z#6BO_ycyyfJx<_DqeQH}UEJ3~2_qcf4e#b0a5#*E>62Pg#WtTKGp$Lcu6ZS{k*9b@
z>|1KORPx=cDx%&>skdtoHX;__?#m3Q=qvO);Md0Qg|>58=zkNhPJ;&TF5Z16$QZa@
z2Bt`PcJY;xF&e2DVsZ)ccJbDM;=LB*P56!*Q(1?U*Y*~OuDHksLhgn_4^6TB$G2+i
zG~a>~$7Y(Z!^?B2+s1*~Thx|m<J@zUR@)E<IVuKt;;_V3=2okql_r(rsrGiKb$j6E
zkHwk?*!*c>B(RtyvyvHMTp!&tTe8lFZwG3|a7N>jE3dTir-yV~RFlX0?Ut6&hjoT|
zJo~5v9sdBjZe;6|v_Z6k_W<kj*TWBmo-5Z99cRK9S3-Eo0W5FjLy*N-ED**+f(axz
zz!=5|Ccdcg2f<GRTw70N@fzYAJA#aGP)Ih86^v{9>~qQaPh5J}oh22cXIvwFj5xj}
zcoRo5Tg`5=+v+i)`+OVh)v(2}C8{`3rX~Z-ibUQ){m8}+Cbz7#-W-<Z#`<Q`$so(5
zfhv&SbT;qbBX-*$40;ar>)tQ;KcsjoPPKV-xpiGF(hzT<Mf(am0IILFNgz;v*;DVD
z@l8!_{6B3S^{O2i)Cpv`v~;_Sl?UaIa;&=tTm~4&LsJPy?CM0DwT}kVyiel~3&}JS
z+`Xl*E|%BwCeQ{6QxMCpN&XNIbCbnexw!a$<F~hx_fdT!-~+uPkccEQpSq1N-1&xg
zYyjrAhk*Pk@mlu!e-P;c++0Wh03q>ewp_+{D#;^*6XcRpr+l2(k{^INb-tes#5#nU
zys;NUZ>1PoX#BinH<=)29XA+blNtM_x*<{zcV=ekw61P=r@>m+gviuwty1C?m-lRk
z?J^W6B1AGKz~dM=PzxRoDV`korQ_i1Wp8fYAk(B9nm3Df2<Wcr3WLX1`9~lx70c<~
zDe+H+ujlaJg{%a2=HX#5-7L3pxpf^@e<&z9`G}2IBc6D#cGKk1ekCFB{pFp`gMDrL
zr7;(4WI4tPM};2Yfm~xOc&n7HAAMbSAx6*LJhxczpM!jJG#6eAhSN{fZsqdl((W!}
zf-ReOd4Qpi5*!VIR55PDnr6S?i*JW71^%UJdv!EQh$WKXTEM%(E%QPPlwL{RR1h(d
zoDEHD;0KEI0X5D1uqK@e^FG?!T_jdKqC$b)f$7z7dUUR*z@9&gRZr|0H734?3VfYi
zyrf}+yUK+`@(?!its<V76;4*SE4nsO>d}d!{C3o>^ynn<#)2ldmJt`)tz&TP8zT`-
zIU$wQ{HO~1F$Xofu6#7Q@ur&(h`tSrm>egR_S%_}3GO8GH|{NV!PLZzLaH~GRCHs_
zduM_?C*Vy=SmW?@^5{B<VHk!?BV2_Y66!^j!g4UAAss#I&^#UcGt70Hy+g$sZ;>QY
zB+q|x<wpyjF`i~2&@c=!FDIxttX?7!mE)mGGTEOHO{Fix{aW7R#dnkGS5N~o{{UsA
z+e0o%N4TAuCJo#-nxi9tI(1iH7c>oa?@!b`UEw&jbU;K`!dPzQg^9y%jx-46d#(mM
z4^O`(@TbE&gp0%ahM=0vbLKR*u}8U9$5ZCW3{A-x%eT{mUSF<!5cqv2t$dyh)NNk+
z?c!UVGg4)?L*##}j6rT<wi2j6FPf$D*&(yTmL)%l3z79cTk$u7d|Tpw4_ry`^IwZx
zirybF^vGTZnn1&pV-R2t4&9htxWO6bxhSo5&xEYE{xQ@oyemABv%?INIA>JaOC_DN
zO7D&a9Y8%9Mr*I}SAo7K9da)YTv=VDD|XVuX<!}@$PPbuCAutrVlVq7jDmBD==6Ov
z;@#`Mf$_6SvefjIKO}mc%ulIAyRxJ_DoZc}8Ei2lBCp%>#@9`LBzq?JIBykr-@$`a
zOAm;)nu6XdsJOYbwrxBTM&ahdvI#%{f>dGo2N*ayP%nuff=?0rCVeAPQJCa9bQ>=M
zj>pZB+_)VB74-z?70dXy;eUoByq90_y}iz_sVOQgZ*QK`ON0k*=am=Cn4)}&avNyn
zjs`w?)IKtJgTdOL_G;Ma{vBBfXSBA8NYS>EyKZMfC6^>;FEIxIGM+_JN=x^DiAol_
zlRK?5$38yN@9s5-XPiTD9oPFwfQCs-gFaxDi{%Ctngu5~&t55b&%|C8@rCurl@VE{
zfq&98!6QbpWSLS}=ZPedR1AlWIVX^M*Om{9ntzWK;PFnEajQveyCJ{RAS;5b2G%RK
z6<^{cGL8mEHOgxCemB0jO=H4Zy_A+#aG?`NZcW<-W4HG)5tqkVT;;kku9Zt&bbdt2
z%Tu?#w!VtiIdnFI#I_30iOlVAkT3C*0{KEV2PYm`IrpwM-{V}e*~y?ys107!5UUK!
zv@iq!Ayi*A09;{P13gA^PnS20FD3DeUMH~C@2>S2nnN^qL|TtD@$<t8&I0Elo4$Jr
zhU>(hWu?vTr9HNRB&FTOwk_I89AvYQ8AxuYCpqojx+6-<-bNK2-iNj8vv_|}(2k?v
z*lx6o(4~!@u2rpHE%Q1!!y)bl(d&S7UOA|x*M@Z{<<##U0u)D^2>htoi92yLh0Xyz
zkbP^2w!XT12(=vwDYZCmL+p|><?bj-lPHyxcHo8}jAMga-W$8|OX@1AE}i8R#E`Q2
z_zT&Ln<E|bhR%2ft}seFib(c957>CW#&JflY5sJvg0Nlreq^HqJjnjXIU_t~y%7G+
zK0dR)H=3W7;){4fv!oL}z3UI-NS09BPEI}WcJ&p`_+Q3a=8>V#{{RZQ#@5zHm3Nzz
zd4VKlnN$=Q7{(orGr%>)YF`+BCml)K#rmD?y`wRYbP=eC7XA>3yAbEO2d*>HqVniC
z!5)X=UkvDe3)H5!yVY&9>&ucQlF_6FbPPUU-6zbW8NraQeJh2yu=s4ZA+9Z^zPeUC
z#uhYUdNW3n0pA$k$Q<)o7uui1ZyxEwD~o%LQpzmiTkt+#_M;m-+!ND0VzBgG7eVmb
zOBTNO@l1`yk`1tyP%yrHqjY?AJ2Cjyu&DZzQWi9|%{RuH45>AqnQt|Ne8M|uTHkUL
zpO`Ba8?bYZd*-?S0PL?3Urim}ho(ts=H-NMAy|+xBm&Z$kiGMkHQdedZtBVZ0Mc}5
z^t3%LVPh&|JTR5RIB#4a^{h#LA=-G+ypv|y<3fWE3J}o{NEx`uQb^<;htrCvxjVZV
z7WAKl_d2{%Y4<k?Ydq|xL1X~VdFAB7zT&tWM-?OdC%mz{X>_e9Y6u(UnmI(*34xrt
z$~eIO>ibrG&X?jXNmyw2Lf3xWLv}^Z6}prvGERDoj1gUqg|29tCa978K}+<C8I+fH
zXn|3H8aR=ca3p^d<DPiyF`G!PQwqw{P1N+qfhW0^`+mc2A`QUKOAov;fr2_5<aDlA
zQ1FfK+EPtAX10x#k1|I_XL3o}B8U>*kIl!ueTi|cd>YhrAMEcNYACT^$gLYiH<2L?
zpWX(Em6)jG9D;h{v9A0tFNeInPvOsr?X^87d@aO!sTOl=;{rLt6_Ysmdy>ACr8M1*
zJ(EoM-&XMMsc5_PX)bQ<cMvuc6gm6cEPR32IbojpBDZ`$p?FJB(k|Z0-qs|vXxWt9
z2%HxuAwg~Oa4>KV-ZCrJ{v~*q!#*C?qwwX0@oSi6BJf+H5O*lrt8mE5$DT@MeR&*b
zX&xZ(s%iHYG3oHY@3$AQ5jDV2Io#MQ)aRx>J(`bO5ajJ-dCUAW@kPQzu6P30@>3+7
zA~Gsq9z3Rz)JdKJ+!P!io71D$yeX{cjc;Y~67N~Ew=jV3rzCd&05cK_`Rc^T$Nh%q
zfr2ZwxAE7CybG&tu-0unLM2V972w$*Rv;)6#&)UW?)5%{im9yr(VisM5`PZ(cSc*g
zf<$wytP(bDfR$q7VNP%ZADgFYmgLrjrrxaQ^!+#CXNQr$v2P}|S3YA4(&FJyc?p$4
zQgfZT$R`BXkzQ)P6Vr_M{u|b3BH4+MIB^>8`{dlI2%$MAa6EUdPZIbu#y&B!noUaP
z+ROr~QUGpU5xG@QJz6N#9+(e|02BdOx_5!J?+I#9>Q@$jZ6%gFd2f+!88gEO<$T5+
zvG-6%&<s|wPSz$-R@~nI0ELNVrQ64CY)rDYLQez_FPpS(CMilP5CQDOp4qO7d#??6
zk6Do~^%cLEl@B31vPj`WvgePwzzz;ZPAiJnyho<W-`MxMaJ`y9%`Lp@e2tt1-7hJU
z0U$3cjFK}`*?36!n%YZCkrZhhIcBzzi^4JpD<hngQ^rWi^r0<m%*$HhXub<F>NZ-;
zcA?IG%QGk>k-$uK2h)RF$HqSqv<n!e&~3!l*YT{4Fn=lq8R;u93_WlN&%I@6z6+bf
zS6371I#s@<3k{}x`I7`V$=-6ozu-Kc;<xYqC-`GbM$@&Zrjeuyq7xd*&a4Ir87si&
zsQl^L+Z)9@YK$u%4&V64P`JGD43<+tBJ7jwcK$%#-9LDTC9%}8%V2TEbed1X{aZk}
z7e5ayZ8a#vZjvG~a!)0hnpVl<y0(8h#Ik}v6W_yk;XN+*L$`2qKc0jZ1NdVZ@6X;N
znxU_F6IYJhzl+V^i0zYXsR)q4YzmBg+jF?*rf?2%#we3^)Y-dkbZ6r9I%E<ZLdNz<
z+=$^zbXgWtk{kkCBWN599P`f=&s|#TUM|0B<?!rUWD0p{=0Q7?f~U)eg~zeZbI8X%
z9)seahk8A~_Fb-@Z>ET{3^MM49YEc~sW@dB8CLi0T%NOk;Hh=Ry!dH(cL|$ul~fr~
zB<CR{Bj!*s)Mx8SM(XS$bo$T2Jy|@<?NZj`#3I^7+Y3py7?Azk!V5}ShZ*I1=bUG_
z@Q21f2>3e3`!Ter^rgX58wC&@*$;#Z&u_hgF<hRz;-8Fqj+<d^e|VZ@hMJA#U0GU)
zuI3IyA2Z7=(>NoCZMYpOpM~M@Mz*uq-d#_vTwQ;!is@X+WIUF`FI@D%`kGEETZ&V$
zp{;yG_<eh<MgIT_zSmW>zbb+5G-8okI|IuQ;xx$4P5}oeoL8gxg7fx(w(y$j7uwy$
z&6L9^x_zN*<|^BYzm}t5Q_kRh!y5AM6r>&!j@w%Be~F^D5I4(ZdmMc12O)N$QaSCl
zj~OPn^ncnv;;xFe^XR&4Q%LN)=eM1b7Gxb<K6;LDq<frJZW`GcNvGy|7r^fh{>~mG
z)n}K-TE*4wt1^k?x702qS=g!CcNv(p?7uDtnhEMpYUY1v-v)RO;id3T4tR#*=H7VG
zQpV;)W+9mG5P3r)H3Ord40r^dw7flY<KK>Y`dWDFQPCuVF_*Q1B#lP=3=)9K%%_i(
z;C0-1&sE~j+2+r{iZ$;6+-b9%W?!_#?{Vf6fE3FiX$N1MDtqFy<=0Z@Hn(TY%cJ;;
z^TW3HS`r&z(wFn@Bo?TMN6UrBndWDsA@$;>vC?d;?Iy7C4e8a)s;FWrRaKY}aVzE9
z>c3v5o8rw!UbxbulK%ifhIfWWV|{Nd&R7GL47-^LQNY3iGtaG1(X?+8Et$I2e7z>t
zMPjKs{qPP>6mmv5ECKohU5P$h+`>-o<d;4q@Kv-?>0TKx;ru6-4Y(6>Ft5H~zG>WZ
zoxQlv9O7y|AMswDr*81vuc<V=E8A?DaVK`<$c}N>Ac4mQw>0JWH*0q?>6Y{A62M24
z(xj2u#v1{c#-(K`xa6rldChcD=|2)}tuE$~pHI_BD3WOCVL+-$7<K*Nkbe-9a6K|A
zu9y50qaAcPIW8u(*gh%T!3<a~)`By0bmc%&*iuL&j+tOTI`4G92Y5E`Mz_~I6KxdI
zOuuRJZ=D`rC5ZuAC4JDG@KvxzI%cg~cvnN$E#Q~LHlJ*Wg(Q`4F<7oi{m}>J$03^s
z@~qtx;njhX4MX8>uJYa%X&xlRZ3_c{+sXNu;N?(Y4i6+&Q)#UZg&VWhv_Fm!*(`np
z*8DANqeTmT{!4pwkz`=Ich2vbQ#){3fCJvVUsGrJiK@u{8t~o4&|<r8C1S3OIV3*a
z`*FY-#xc%o-n=p4FM=KxSD(aF>J#g3#ieaQ*&qx_R@||Wgb;EI7CGyK(}MVebMU`K
z)Dr8%TA8=Lft6xQV$zVHZNlsvVYwT(jPdlrAZHt_{4&?<oN5|^i-))4?9VxH<R9<G
z8FTJ))3tL;d8S(dZ7zd+tslxl&ujoAgMe^x^#J=;t-p)DCF(Xu>~kc5<}lLR`D8{i
zGIpp^bDZ}ib6i=L<q1dDFE<VjE!(f+`KrHiEc&zm(DGl1pR|X>uM{#qmo?SnIQhS_
z(pbW_dKqF^)DSw2!20qlx=)LKEck)pt1S!mh0_iFq)Z;mTUmnZdU!$x==_9`w*xuI
zVz~!7&3xti7i$;4wEqCX)zqxKN&SQIbHF;1=(p>r#TCYttiq}$x4U~zAIy>m0opBq
zNHesq+V(FN>Rt-dwOvENekSof$nh?dwXSU9v1nl3BCGC(YtJlC78@RHNKsBul0zuB
zN-kWITBFldoOWl?_x}L2f%q5j?!l(i@BDA0#~bd|ty&n81vx5biDP+{kq8ZlhH!Zq
zIO!~Z;H0`<pJQ#PS?dd8(qcPQv5d`d#EkAtmLxU?K#z{~`OU6)v%{YZ<d<9U_N9HP
zMB9|deQ>P^EDl%f{#<c41oc)ul#2M*#Xl7x)b0#l4(=?pnIaM_mKHX!z_JNW=?Rh)
z<<3qHbM&q0<%zv^B3PX?(Ef%zYySWR1@Q01Uklji-xwcT@MOr+Txs4Vv2@c%n#;6H
zac4OZ+<PA_hkiQO&t5hE0D_Kbz6a9u{U^m9ApZb_rOHbhUFo)G{W36f8?s3%K^)2m
z2NFmQ3EBr0{P)A+uM*y0HI|iU_BqQ1l53}2$Tx7m^U#iYY-iAl^zRLLBg9wlE8a>6
z+GN8;9jP$vJh3w~w1aMNxL%)mt7VbWhVl}}Nvkw|llX`J3UT9~4^Q^b1K2gIJR5DU
z?{7CgGm_tDffWwyWr21aah|pFkB<KUZ9j`&81(jUw8x=pmkfsP`$vu7YmJ<K@kn;t
zgMv~;KZj2_(|={(82GZnT~ESVOn33do1I&8O5fd8$oU312b_1seRuml{>WE8HqfEH
ze-2&gu-dsv<Gr_gX^g`q!$#^AlcpbXh8(G<H-)9sP)@7WpPx6LIQWLc`zCEccR3Al
zJG+N{q;20UtkPkJVb`JKiuCUdd?)zL;te%CPc+u>+GEOqMIyA4qTsUf2Gw2NM(<;u
zEB4>P{{XPJ!~5b!v!lnT#;dWUw}~SPPgZ8mTZ4iN9^ZDpj__CPArHcz3hO$L!HqI+
z7HV!_p5I5my7D82H+E^`hU7&vMIsZGiNIM13bKV9Wmh<+m69$v4sC9JA!+{rv7f{r
z5v&P$Xtvi=z_Z)jPY6gza9FPIFakzC`w-33AlJG4CjE*0Lt?kuN5nr5Uf9nG61J-d
zf?ErS6|uc$m5V~dAT&~<=lB`dCckq&23hzM#-1FO=D<y&YW5ci9qo<WEVs7BcbA4y
zagZ`W*&>EhfJR0M`d;6{o(OLYU3fFac4Ju4E(sSYsg-!zCm14Ab`PASf6Fo*2<$qJ
zDw)KsqB>)Rg3+x{$zK8f#hx9vi8Q3pt?q5)+a!@(1XU%J^vPxgfahy-fC$Db-~Jo^
z#C{a;ifUdb_*-pubv23p&*AIaksXJgNO2@mG;Si__Xu3@4pe5o#`tsar{RBswHxR7
zYvN12W5brVOz~(92)uZnF}waH@=GE-QRgv;i@mxHzF(H32dVJi?Mv{x#9GXjJ{AK_
z)qJ5W`bF?aHC0kJq=pE?d9k?!M>J0)ZG*MW4m|pp$5GicqBJ>nS4YO)1JZO)h#n>X
z0E8dn28F2TzAj679kdNXCsZLDY4WZEEEg#r1e?%|0=WPjA7}9w>`m~G#ab2ThdfE5
zMR#pE5?vXbnMVOe-KPu30B!(|-RtW;BgeXixYznuinRBTT*2kq-b4~Ri+JT2aUI4<
z5@2zL$RrZnSAuG7@oU0*>>6i-b+~oU4N3|y)xKR*OO40Ri6m(a+7rnyB09IsjKhJ?
zJY3@WY!aatsy{lkANVHLvGDK4&1>-cUb)nKF$bG0+8ykEY~hL@DPfrhn8*$@7|UlF
zIP2uk`#O9s_@k}g_$~ZF{{RS{w`@$eIy|~lY1gR{=vdu?(}T3_c-7Q&CnGib4XOUv
z9}E?4JUYH2I`*NY%jMnujELlo&l_C3BPIq55DqxTYsmf}e$w6o@vn=t$UJAES$LFa
zmkBM7pqEBlxJV!gZRPUNlmPt7#X%Vj@6`-VOA$ITw!5Doc-Qtc_;KNDG6a`8uA-Z~
ziFHh}$2P)4vdGaEU8j*42e>A_au%LB_*-pjtN0r9>$-iyM%UUM`mNR0nR3T$$){>?
z#TmS^L57RZw~B4K5`ubunCkk6#amnXyg<>f#194;joU|}ta@&(V-7$N$zV~I@*)d~
zB}vj`02GQ+a=xK9pWr<f{vC4v0Q);nXoAG8s7kU<R#Ba+lFp8xw$rnZQIl8oi|Uz|
zvE|=W^7Fx;6n-*%N7pCPJR>q2+dK~{2Usqkch1(@Jh?LXKR3#N17D_EAAo#k<0<q#
zOZJS=?e$xa4m?uWYIkLSwBs&9{{W-Qu^q=aW!;ud*#sVZW8+`NFWA0VEp-owv0t0r
z9!Fa}e@l)_JKHzMPqw?q=dKr+O1jC=p%vghH~#>FwOjaV@?AUjdD3h(tt#5xM0$XC
zH_G@Ri<>zX6hrcpo$s6;0mgBu&rvHx=%Z+B7JjT__KNss^ZZS_jvp8JX<k_sd^Kd&
zI;D{64EEO&Ts6T9fJ$x73mkpg`$NNeM~3`4EtUMbhuQAl2A}ux#PV;EGrB=3D~^Ni
zoHub_$j^&^;I97wwa$@aZ>VWreEO`iM(Xz05m;&Vs^<b**GQx(7&r%TV81bP6cb!;
z$Isf2_MP~T;>{PuUlDvE;JXhJNe#SLo;L8-zjGzxK^q;mmsZfFymxG;E}>4)q_UMP
zL5GH^8FI|kxXL`+AJrek{{V*n00KTHYBu`Dp*8N0;wxK)k}YpXxsJ|A<b_>Tq~bVc
zRzk}Af!w?fMR1=H{{U%iSHSwRU#EtfUhoZ!QSH_ATf?YbTU?#qaJkarg=LN`Dq=w_
zrJ1tGfMovwJN_~Fm+@D_+C8n`#cf*eQ3XrKac@792Eoj1K$3QdGM)ib$>SC1zYjlX
zpNhU8zO~f6C#^o8Dnqo-8nw)hnJ*lEWW|dk0y0`WgU<j~s|PD+$ylY=Q~E3LN5&ry
z`0q`%)jSIw)7omVd9hq76@z4lhJDS2kPvbUZeL?s{v(INI_=aK{vq*9Hu|=jrq<SL
zJw%yWHO}bXITmYoVBBrFfR0#iLx&%f@wbZpHfZsG!ZE7q8Xmn0`O%xpneOZ+mPo*F
z+yb#+{KtAKNVzNxdl!VXABr{_A-?#X9k++#g?`IEqj7NyTN0&2az!Jsk%1>FvLiUj
z6~{U$yFD4L-skC5{w>o!A9!lQ*W$JPm8|n-REJJQ0d1XvBgu*7NSurz3o9!*+JS{w
z*1jotV&6qgH6mkWa!tL=7m~_^2gp$y5ahW*$Xu$N0tI|^q<Gulzk$qFzAe<}@eSqJ
z7Rdxq`4HfdyX^Db2nbenUHA^IkO*O1cA@bX!F~|XTGzljU5=BeO+2nwS&&Z8xyTD_
zu}HC;VU<;g#~V<CnqJNQtw@tvG<w&IG)SPG8}@wFVYkz4ph#Q7xA3e6C5b|$mY0a4
zQ;w{%Gvwn1I#<q~J@|>KS!prN@fo7f;gaRvSY?;Xb#(a&h;EyHNCf#xat}aj$hE(X
z{{R^EK;9L<g8uU2Qu0Y{rofhw?Pl7A8Zx2OjOQOVat?T}F!4?A#0!}wi^f`Apwja1
zCBCP0vPzjCC|TSqpa6WTL-+Z(uIf}APHK}<-4#4h`(XSnn!;}cc(&H>#+FfM09yoT
zMhDLo)bA7LCxW4veJdAH_|E#qj|H#6Yb}$lu$AG}8dlVka{PsmksE>m3UJEU;GVTp
zPyLnC#9EET{{V*X=XAG-NHmLa5x5(^W982?B9$QE5D6XgU9FFY>@06!@TQkxZD*@T
z9@wq*c`n}JW>9gvatIxm50s%QM{;<srR>tQUZ*vl?D-c>zxc)R4)*Fl72Mv%cNM`|
z<F`kTXF{P-Hln(blay?Z=Q*m=cmmSi((W&c62Wo^1YDN#Cvk#vw0z80z7!tVHT3?Y
z;%|t$_L(<^d}n5EET?phg`+jC@}UG5Cfu&=r=Ki<0-g!R56`|X_#LlBG-;&W+ud0#
zZX}BLF-WL$lH(sf<;dIybNJ(TQZ3p}-h^s+9+Tid1l?a>_?yFefz|hbt8WNc=Li>O
zNtDJ0IU%+jjz&#bi}sAyd<%OM==MvZTt*TT_J)$>_X1Tyf>IVwP+|ZRpL+416HBG|
ze(r5P!(F?zn|40OV1*sR9sqd`{i<`hg6+ZR)o#zn4dS^i(^%0Z)fU&~GC40Sau7pE
z@y4jFg*<?x8O}3ZzgAMSmZ*+(@SkOPTlUA%z98ud;O`#6cc)JY4F%4F7z-(Jw8wF7
zg<@<BzT(5UQMlmxrj6qN02gVpNpYml3u)Ghu9s;NMJoRQ79QPv`5A~9<v_<fv(w_u
zFX4}lHOo0QjT$L6T{_)=cWG?urX9=W<I0O4DC>jC$9mM${t$TQ!?!DI;Y~_?BU%ny
zCS+MkZQYX+F8#U2OQr(;nEhIse&exfZq||Y@_y8R@QTUyp9x-G%XKhjE^boIB*)Ds
z$o^v$&p2qoJY%h5+<wwpea-sX`0^bd$?uUaR`Ww<nV}Mn7Il<-vnc-nS>=7sxhu%>
z-xYi=@js08!KVC9I%ctc7=Nbe-{{j4F_z9Ylb`MkXSQpP9{~Jeq+C7cgmitdLJ?%0
zAr}|1$iKqIV%&O#MJJ_1DATo`=1O*Y8vZ2FHC=K@^{)-;^7zwBytr;r{?O!%s<O)~
zx_<2Uz}t?Mb4%4B@Q${(9xK!=ti0I~64K!o{!r=za6<%E`F`+~aCpsgT5g}?l)q^-
zoBc;pln~Ipy0Ku{DmNfjL@UlvW78Gt`cH|z82E!uZ3p8u{e`^h<V5yDNiL38mS}C1
z=V|-I5HX%O=c29DY}L_<lfCYG-mm*c{4((-oeVxa(x;6;3va64!xg|;JAARUm{X7W
zX}kfFP6lg<@gA4r4O2jUZS|P7Jstj1*3)fIm~)6C*&Yv1myC{pgH)H`4~Lt>FzX%@
znm-=3v|;0lOOs-Xjlj$it4Mca1I;n?>)O1;d`0n|mv3{VXwzGGb>NaAHLbi6$15_n
z0v|nOmCA9KBya)8YUZa#AM)$*{;p{%jjc~i@YMeR5j-UmY8p<jWus~NE+M;k(ic|%
zo%XA}ncD+t3K*Q=*L!8-ui3*;*DN*tQK!*$Xk1LU)>iUbTS;&ffT7qKkRE<z10bE<
zYn9M^VWfD&O^JRu_+^oyh%#%4;@0uV$t|^l?q%R)We7OhG0hu)0_iY#dh1ouZ(m%u
zvU7iD6@at*OS@xl+GLw>RRjzTg-6YfxTR9pwDe}Nc3K|ibK>6}_+w4}-S~Z_+C`+e
z5=W@%ESK`0GI!4~cLW}Gs&IOam7m}*+C$=P-PP1>X?@}yBKIvUTF~F8tfOvNO>)u4
z5&jZXrZR9d#e9dMd`j^zf;CM-<HCD9IV^v_o(Xp}vbOF~;*<!EPdQXVS2%u^x#Ir-
z9(*qN?ji910E}U~d#--RcVxE>0CEQAdu`GrStEt{(*u$zN`p(^j-C3HrrX^6GJlL8
z1UyZqoij+);qXSG9LTp;V){F+HQbg`EsfH7VY$I6xmUj!&nMy^7wI1jW1i0Q!tx^&
z-Dj*`N;NBKpN8M$N995W00FbX=dFH!>c0iNQJ`vf_Zr3hvD59qiDzFjcJgo^0^Ts~
z<_?S(<>+z&AbR(}qi1Vjc)E7Ed3|C62DY9>w~I1l21|C`CKnhjxp~HOQ93Y$eb;kX
z%gFalANHg1YeM!q<;{+%Wp^2lXcs0S7*aMyZQeJGGh;22jB=*A%|pZ&+Kefv{3Dj{
zNw~HiY!;WU^G1>mJiB>L1E@L1;gAU!#eG$xe#~(AjtH&(8eLg<e^-nb1+AmI)2?J*
z6g|XB?7N8{GPc#uI@i~~1AG^)Y0|fV{wsVtJ{;FH_!4VfQCMnPUD~^H&|G8846ngS
z2H>YVvD2DWDaGrdQKdU~KMu94ABbAcw{L0UO;B2WrOLqtq;e`Ta(NdMkf+^a>5Kth
z%{T1vt>4?nr1;Ll%Jn0dNetKGOSzg;%7~&n2_zGNw4S-gTK&8DhvGlkhU3B7hll<!
zriZNQ*3mJ%x0PbJQb*pAQXTG+DI{Zf3)Eu2F|YpsYJb^x;m3wGZx8;@mzTFU3p3nV
zS!=S~Lu9`o1~?~xO)EwYSz<1Lu{dGSX-^X6q*cqQM#(mOv*KUb>*C*q^!4!#joezC
z68y`iN@KQdt(<vi#dsY6Wd!iKC$E=X3%xHzwS7ZGcbfHZ_V<pqCJc<Il(r=#AG{QB
zI1OBnj{g8_pNSqQ@eDd&i><9RWSE6jvWen>-Ix&GW=zeyg&~-pdh=gzd?ol>;eUx*
zOr9V3n{WRB2_#UtVvlDmn-PIHOQx9~2S)q5U6nw|KArs1gl^7slX{;xL;E!Ni^sN~
zXYpmOpCs`NDbr(dcZ1It3~=4R4hDJvYPFaA6Wijqg`NCUr2IaA7irF-Mi$b^E!DdL
zz5K{zcUg!S+#&?$fS_0E=fNL^9}T_&c=P@#-x|+#pxoO^lW2O|+f6)IN~&NM_c6*D
z@-v90VUj`KI2F^+{{RIx@E?XX<@k5vEg!@l0=a3*#x<*PWp63lxlO$G4JDk#jydz>
zC!NIftYM9BNG2&$P2Hard>Z|fz8QRH@O{<yk^P?9eB#Fb(n~j6xMvC&#B98?DFQcB
zkhtVzgVV+SG=9W?26TB-O!#LmuVJdT(Ij#dnighZjkd1xT*6!K?GlL8AGmRm_kYKK
z+K0gZ02MqVf8nniYgY@S>T3(lb7Ok?W2r(1$t|0t!`M5tXVb1fEp_i5-uPpB{4DXA
z@nwW<{{SAE+!A@hAlrb3^zDv*Fd0~a!@peJCstn;hBYFTebd2yA$&5M!8(ymerx-y
zbl$G95o-#vaLXp$>`2c$wkhZ7TAvDTyc1=7+H?rEse$r^VI+7Yt1_IIQcejifKKCH
zZ}Cs!4~u+3t4MWSRdj`vyO^wCmRz%w_oQ~&7{g;~@Du^gGHYnMg{Our{@>ws`&_7B
z{VL!I#v~YGdLRM6hXHfz*1bqVPB*>GWfh}7z_R!sp!kj_@jrvLPxwc5rcLq5Z*c7f
z?&jeYUOXOz6P|wPuIpLwb>5xei|G|zg+HBdA3ipn!*ut4V!FGTVY<7!`(T)EhUpom
znQo?=>F%672jk#4-sk-b?$3Qc&$qAdbxFK4(|6MIjd;%&&(hg;{UI^wPehlsbqj{<
z?-57XC%6_Y-N*WPFpJv}pZAMGn!@^<&CfrOZ7_KP=y`;v<%7|7%exf!Y6#V!b}=?j
zH0$7cr0mS`X+bj93SM4bYM3qqOWc88dsSJ{xU?I@_i@Roo5l!rk1++^#*OWD{_**t
z4id6^N#-rlD1h^pN?Y@vt`bNatWa-MA|PgW$CAA_a;IvqD|?T?g6WyI18l!B4Qs}#
zM=Y6l*I!ffg|V6X3`|6K)k$aQ+a<{X-kl4XV|~cKo@6iE@|puR>!iOLxRehG2Ds8=
zjODLsvHz{A7bW~%*BbS{UA`4RL@6E0WpK^5zMhsQ<Dd*P!J~zs&rnsxElJQhK(3m!
z7`NP~`@<|n)uCeTqjx&x{M%GufknRTy3&S%t$%79VzHKOx}s6=QLk?9d$AT$N&mez
z6Tv}l|D+3-tJ@)?x7qY*ezrI68)QTZf7X#0;j8<Y%C#|l-PSf!E{Sco-8_d=!&x@O
z*}^tH8D6xs3Gi^sK1DH?Q2-V&WeV(u;XC9SC%$)~MJdbNQaVKM%1Fl-CKWz@ov>GF
z<p2I?`beeQbLFf<ms-dr^G;u^`gp?b`cLCdD3WDadkr3rzwE#j_T1`<(L;wlfvtkl
zp#4bZe{^dBCnKrzy(0DnVLiuuh4|@1f3QqwWK=fN7;+BUR@9-sYwd^X*%8A?e?KL^
zf>oXl{)cb);7ZByr6}Q>CPhH%Tk{<kOeLHtKN8KAvz%`c1C~zR^48kiYp4ahE1d$E
z?nwI(>gF2XoaZmx#>(XeBd;l&Qt5IIza=yvkB5y=9=8=|pJS}t0Cb%zFwue5PpVXT
ze@v`L8#b$iH<VetxG0Zd8B)Ke{6q?45mc~(3x)-z&h8$M&dGVbDPONN<fL=DKEzF$
z;;))SVh*0Y;|mf36Gtx*WVXPAN;Yo{v<>MqgqZHoQSx{F%TC0+1eN`RW}hZfmzC`n
zW(9IMNL;Gqa1j^h#(2-01`n*&F=rR8l<Ja+!APw$Hzc+$klw+pYkvGXlCxF3e(bnV
zVeW!+89|8AjN$gS3T+|R0p!^!6GlKC^h$v{)yxbm0GWvey5Nl)W{PfA4&P~R*9mY3
zY1mMebJ!*C{dnq%DswKYiX7Jz?}Xas4wDuaOOoCi{T=YSZc5md8bMJ&DBo3^IJqX~
zxm8?m$HKWSkd-SpCY|YGvh;3{zGN#>?0OyaT&_@bhGR^5_%5wI@1&`S(lq}jbUfu6
z9wSUcVi@zi;b|MQwx#+#6)ax^<NV!$i1zW@b$P$8*3me)ld`2gIV2_LTy6A?(meQ5
zbQ!J0Y!goak8ow`T{AjH6Bb*A<e(K!dlnhvyRq9Ex&u|AGAeb-1!wPkg<Z=oVA(vu
z!X{aLD_npry<7hweue8DT8N0=FZ(sUaE^=2nSo^v%1^XkKF<G_f%}KDBux9WvJjQj
zsTx}iRQ_jf1#P1D*A(QT?xDXbwz0+l>4c=KgvO;m(IEu<U&N;z#_j@f1Eq<f|NOzz
zZK(DT6OYy3_s%*WOpw3kbXqY+e1zN<fl>B2o766?(#9I;Fh$sim?-?zKHM1HQwzgp
zY><DQYObB&^WtqOC5koVxrl0!_L*I|u0QAr7H^pP^ZdO)O{dN${t%NX$)TftDCZe|
zx_Z?-HsYpMs~(4-!Jy9fD-$0a1pOiH`t5bXh1vQfb?|RUHqA~YazX+PVw+VX*DAr;
zrH((q{?nyLvx?2yo$NzK-@)hazI)xBny}zKJe>8hy(=_F5uf~Oq!oQt*Q#rlt&N8X
zfk2!Q@v7f0^li)79i=UWERhGV1rUHJwrju(NdF5+8=|&f5LDpkqTxeDe!BSYLcrw%
zKS<quo}s~_LEzm3#k!ZZ$Cbecj(RWgTJON<;j0)8)%WQRyQ}Z(IQ7{W1#uWP-~3KH
zc!z{U`#I$Mfu3NgKjBahf49NEr(mA>D}okJ9)N5lbSY~$=0OJ92H|q*o=332xspG+
zNa$NNBqH%J9*<#{)$Y`M4(*PJyM9(QgL!aFYJpizKCs1FKOD|4jDbu&N!wS$l0(#_
zFVvP!1QNGlb^^1^ChF3S5vJ{*$aOMh8FM>dwP8wKa!H8?>ghQ_S$6NEYkH>k6EVE~
z<=n8?A;CYk**%8@Y+l<Xw15ucZe|F9xdWl*lF5f--Hzmsepobj-p=WwNa0w!3W3Ks
z(?T_FQGfhVnVooj@6~;`Ts8>nZ*WCW2m$gwhLn;**$?;I8e3<wU!bbT;c%;<yTS+r
zQ8y0@#gan!<|lL1=+K$Y=c2~4*OYUPq1eq&`C^V+V$1v#PoO^HDQ1o|-s^|LGYVgH
zGVyM<b+FNHywiV|a8=G&7w;f{B8`xB-=!ptVc*o&F<RWbgyWwIc=-SU*g$92z+{d>
zmQ%%%1|pk6Ou}qjj~9i>|5T|@%p=KhVY6B;{UpHou?|jKdE+mr6pX?I;=Sbk0Q;MH
zsECG~dNxDf$WLWCGU(>GEZvN86h`eJ^KFx?0o*mf;P#tA4Ey>++^O>im7u#9kcdjV
zwMGxJ4t_x(io5=Q!k|3wsvqe5@7C7FR~*ttKRjd(OQ_si(Epq-)E((|!*a7KDDm0Y
z8Hu6~Wfm^+#+XSP5C$DelaY={vANC<Ef>(Vr196IUsh9GpbSe*gWkEfO)F9bl7}Qa
z)tqWhu(P-NLJ89N8~6uDf4`CRYNOWoT>r&ekndji9gtB;f9_@{)|hB&Fy_ozH!5E%
ziAZ0uqFyZiV5l@D>ddqpzt=YJ`~qq*R<?1W-u#ksxjLSvV)4z2jG>@QcPqj@bxWXm
zhdKMoN;{3##s{BrceSOK44w9kyE}It`FKZe|J*d@dUieexqm~w^Ff|`%EXN|b-TEF
zU>g5I^TZ9G%+mE7(fInBQtDTQVVU7#r08J8#**ic4tqbXTtnU!KGhE|prOagb+9y)
z(jFReB($F-sCgKT)r9mO?PEvSy!%P8)?gtz{PlOnz~s+YrgH}kZEZpRi`KSdcGy_R
z51&b?`owQc1)s}`%~q)J1`yQkODs)1jQ8w`F6basYs)_U9gj9_JJP+@TlEOUyG5`_
zV#t6>>&ACk{>fDKLF<cny3HisJo<{Wj)t#9lXbzL&bDJjE^1che4OGrY;{P9Q;C|h
z!V*_LGPvx19ua?bn#>(s>*RKWDgHy95x%w*286oKI%C$rVmBB6%&-kh2Pdg&Kl665
z`Mjq2Z}cBi+uxiDmZ2IHMr&1BS^^~EX`x4=QMf~p#89Q*(#Xp!oEq3bk{m9?tn;}d
zvLB<gGwhLz`RvQODo=Xz)`dZIdV^ZR@KIC)S~nt@R8I=_vJ{i{on&n7ZjZHSi!GU%
ztZrk)nC7ZVE%<KPle>sOvG)z3Z<^<;`qnfNOh_P*lWRPg@Xda4GwVK1!Ox~)@W3i(
z3E1BC+eKNtEH3){Nc7y(h%CLftZCC^uPebN(6VazkmTz&;q9zfA*O9pZRJ&=mF{{x
z+*;VUJT$=uEr;z7EUTA{_m#9Y#Fk~db7yT;dlc@0c6?s-EJHZqg#Fh?>Mb)?<@{X+
zPWDG@mhSG-UlFIgWHVw>;#_Pe0K%-0RDu!arCFa}Lq~icSxccF&YzMdAw`+`_3>&(
z1|?WtGP0S55|%2#0w#lMBgmHOtnE3wBx{H}T04;cqeD;Ue*QDj<YIhXEKEt%NS>-|
z$l$0C5J(4=0$>2nTlE<7b%~mTzW}{a_$d?mV5Ee$5_U{wP(T7|h;z;(&()oD)|~;w
zH_`)&Cf%{@&F1s!eoz2|Ce`UCw5~lmAg{vIP!5HJaz}5z18oGD`jL~wFhf{k#5B|V
zBR;6!`x3(vnB94jX%m@78A6tvt*u|l2h;6btz`{t;dCHoX6c@EN+&Mu-+#%Hk=j1P
z8zp_cjuv()RL6^-T*W5TS&)HV^)z}Y@fMB_j4pGHBq{x=T;4b3mJIscsZyr3Nk`h`
z7$+2zBm|-m-4b^KvVNkl&fUIJ_y?5>_P!1mL9K?2?**tJ^aED(B!$;FH^s%?*0n~)
zQ1w{;88nCEJLB$pNXEacd`1!M6eB8;E3eB}7UUQ|CXxiWjJY|;h$?pLDE(hRdra|8
zG;e6l&`<C2_|$)@S$-b9+bI^WHwoLfx^b0Kn-d8~37D&3O?sk|m`L?vaWCARjtAz2
zd?rTw5<OdVvylTs)D=z^V$k3?d78h1Q0XIQYchg{UGxDLQ>h7P^aUXV@iy3M_hPZO
z%t<JrW~#c5v_o!sS+f)~Y`H20iE?qhjsO<lcOx`=Wf~Nssp73yuvzjBLm{DD6Nb1`
z-yI6^11rF^s!xA8rhs3~djpj5{>i!-oR`(_@#p3YNZ)P}^y@MeXrnP&+o7c7%&%_m
ztxS0~hm`$<8v^sOWH@hq8#N`YB_|>`o8bmfruJ_kQTxT^@umY=i9u+Ug#y|cE&~3q
z4h)7hR>P`vp+TqpH~o$`>Q?2KUpY!Rm=9XopJe$ONUhAHEYhC*-e3#`)J2D&z_y3B
zIC>#7F<pXw#b?ACZfPV2;lj@4Tw{mqn*Xt+Rdd6o$R8DV{rd7lcdKtqPb-j;*0@*_
zbM#V3ej8Y8uz${wd^hM+5G_<Yy8CxTpO;_fd`1(-ju3_VW;^V2yuZ>|u0Hs>u?~=U
z4CCB@WQ&LWgNrfG@jysZA>k*1Bhg~gd%@(#BLceWp%#=?E<vpFUW^>fyYEuuWXgq^
z4ic)Y;U|j^SG(#ca7;*H@-bBXGpFk<8%(8oi8x(M#O3yyn^nppGDSk|qFDIQu$<-M
z^*$BvVEm3Sn8s!I`GXx-bt`Z84SxQ>xvkQY;6}TpSV@SG@wG7PoMw=t!wlO~^)vqB
zC4&1T@MNB|mKiFM<wdXT;8XfTnzi4I+AQN$wIHq4eI&W?o(x%$IhL+%D`b99f({yI
z_*a)^^)YvpE@^G+qPY7jGLyF86=TK%cpdvA_iTM0bWQ&1;@yu4U2g*y>lT%$aEp#H
zOYet|xi<R6A?T#9q!&^RC79;B(Dqs)j3G%iE<a!`b}{K?#$AbCtyl3e6N*%)<rJ?E
z-!n*gFkG{-jf+tHEUehsCYH2%7TiOWqBcS`$5m7<H-=o-x(I?ZJvFYO?K+x6pUthj
zS%r7>`0>vF0Sn#pCa_|y`8^35Jtj9@opuibfOp<9c35Gb{1O}8JaD-dtPUX8AjJyF
zs!;w5L|a0LKL@f3QVPV1uqz>0SvCz#h#ztv+v}YC#-BtpHG~9arPkCET*I!V%D7A@
z&k8^LTv@IUFSg9wA?zFSnb#_W{1Y~6seZIUaQyWY4eiJCV#mQAP5nT>ewYpjNL5+u
zAyW<5?%)AbMgc5CMs8^S9fv-3z?z#a%*zOaQ5Qj{eBr|B%AHoh(Z*zp?XKjmP3<ql
ze`DQC1GLQSu>@Km1+BqFrmUp@mz?;<5H9u#-HZVl=*&n99}`{E*2Ai33QHVkap*U#
zatN6g`s7B9jyH#`6)f^gRjiNsm$5nSXNwDb0yOOIKErUJNh1pLd(bZz;$3AyCWaYt
zywNi=zb1Pu&=^wt#O~@cd?X{c-a%B>{G;W&e<iUcb1~MV6&&IQeyAOc5)vm;rrhf}
zhu{sxZ%3|K8@f!_K5k`mtv(lIPB3-3Y(F#mzT!=i0wv&*EceWk?7nY)+c7hsLcz4e
zDB;k&h!p&7x9cm%Va9O4r-8L@O#O=aWcGcZjiax^JtS7UCb9$6EYQ>1^zZl{OpWhs
z8+niz>t?QsQ<98Yl=kC}{?V-J?Q@jEGv`i-YZxrRcU@6JeO{mOD$p`-;k;%Jr`z~&
z@LHw6<`J~U&1Llmam$~MVfwFVTUBpFC-afi6t<+U%F18^dwSvMy-={gu}X$m1^t4x
z67zUMCibx>bahy~!AWVak~5M++1qmMBWz+fD_qQN2dguc>0gt81B1+6>T5n*c?$jE
zktC5<-O^~OW{zOgh(1FH1Gt2DJdWj&fsMY8PWFD9R#*!oW-5cwt&q5H`j8jfE)YKv
z3=3KYv;QPnr?pcH#<w#G8nKCRWrn%Xg+PK^XhZ|sjsg-Si?|t;{!U}8T+y2Csmrd?
zdh3`aE)n6N)YucLGYt)epYaM3c2s0{&od*1Yi#lWFzVFT)1eQ;J~CGSVuO1a{|Bhv
zw30Nm3old)!g7HIJ=^X6ved(-e+B2R;C=8Fsfg0g<cUL1p7i1ZRg7V@a*XfwU_r8m
zdSed8ekcb#w>l13R!bX7Ne=|Lklip)^#&BI(0ZAMc|1wX>}|u!L#X)fTDJw*>qxIW
zg+tzx^5l8b#oeP3jfnBNjq$t5I(qpYDK1M;!;&FC?)5U=upBEKECQ+5Ot{YF?2tuE
zls#)lzq^aoe7>V{niBJX?wdd^YQ_M*Z>thn&P#$v1H+5q4bW6Z64js`=s$+nf6e}L
zS_4==yEU3<Vq5}(J%{;}_?|Rk<0S;xt7UjyffkRX;jO}R=`CKg$VZP2`#&bgolhcv
z?*%KwFPb!tJu-=9H12nhvNSfMiJUOTmzm2eblrmSip7ZbY1Vj+8ao%gTY8q+-L%(8
zx7N?=X=RGRE~J3Wli)l2Dy!vEA4y0lKdBqvIvdu)+;Fjo_+sfo(R;DqUm6q{TrIWz
z%tsQ!avoX@V9#FAG<3HR3jej!H955DSsT<1I;?~y_s?izXd9=Y<kxKK<Y2>D+qCPu
z%jxOY-4gSGpC<)&2nlxZ>!Zj2-cYyG?!-m7{Sy9LbRRqt+d~dBGfkrMGF)u#gdJ(T
z)vX_`IKst!&v?D^naA^WIBL+*uV%^h+`a~<yG#TNWHE2T^|!Q_pU;sg9=E`iR+B94
zddfIuo>zL#gH?YhQJ2=9B<{rSg_hbPILP+=Pk+QmpRbKnUks<-#U3WKV}hH^N%#FZ
z;%;Y9;G&S*7LPT5wti3bN=0|8j{2q2+zWww{DjFw7cx29PeQs3XysEZGBnqB2VTm~
z-Vze&d&xuPmtD$`x<Nrdf!O~zZ3q=@hXkG%F;lKahyOfm;L1`Xm}<Zju#r7+neD;A
z1{KO4HTr-9CD%V~$nZ&e=l8ga+IPYSg>z=%YsB?X>MbX9a~IY%GP$@8u*F9kjks7_
z3jKFrV&rRuxw4wzc$+5<I45+tKz*1m4y#1xn*a8-dZ&VH8`b#^Pw{R;T@>PkNYe05
zMdL}RwF2f~17X<XjJs93ogp$ZGG)A+a(l;Pv~fUq!zQsHGy@9q8Lf^1oHAZK0(I`9
zSrXIV_Vh|k*EZlNNo69+_pAZw%L$KyV4>Q-XPlEBvQC)#4wc?8;hC2IH4+=URsZZ|
zjyD4iBT!1(<5#z%d7<e~qYk3>XhK;o{_U9H4fs(D!OXr7*>+~mDfSxZo=vS7jR*NJ
z@%zcs2;b1O35$D{CA%rH<t!9am&1;CM$Vt0Xv10#9c7XHtIedy*G4nQ_2OT-8U#i(
z$VaHHWAdkSjp?2Sso5@E^zMituH9k{XGb^^2+A?HQ1cSwV%!RbH1bbEw(Q@;f7j)E
zhprcE!LkqSsrly_n^h|0XS*TQX{%eZT*!27F*NUO%q7k;HbA2+M7MsC-l3$VmeBXv
zdqT||sHBJOnGatLPJJ(0y|CJ1vE6yYKVPel2WA+S<ki)SRkdq|hOOcCyS;Ykh>q6;
zs>1&16SBIdb(ElZ{VnMh2MfGT#{**T#IH2pb{%r^w(<Cb-<uJFd6tH|-x_5^7NwTP
zeR@(#<83|CTKs60I?T2JCfVy2)Xx^v+F|Pqebc1DCO#%wu<&Z-MzBfl7ukahB`#*V
zY1p0_E?g*j;9f#(;Yaw)px;s&V@_tO6U7*^d>=u_$g#psN>>+yTkuNx-E~h#x(K)9
zruw8h)tY~V4)kN7>SY!?@%)AU`}4Al_mf4^H>O(~<DFq-mgsB+?*4UIVmeQpaM>sI
zyQ{Ef0TEZfh7YABamElsCS(EOF>9e2+S|INDGh`$?ESFY8(5H9^sph{I%8ar7NwpB
zc4bt~wk6LfmMeS3uX1*xK<Y}5?{KaF{u$C!-9YU|a2+l~oRrkV7x}M~=Sb6X{=?iu
z-m^p3r`dTY9E6Iy>d_%2{!a?a)@}8fUgZX(C8m7Sxt@Yt76gOS5t6L<jrAa?*+&Nw
z#Je2j%Py}n#cIAN74JoFZ2%xI=1xU=Y3%y6Q!%Y%%67>~>_4+37`NX76|omw-d^!|
zZZJ_%j$-sp)K{3{Az)1P^8j>V;|Yorl9PM*!JnWDYhNC-1_Jo*|5&C^Cf&^wPGRAF
zE$yF3M<pr0)=?yLT(o2ol^@=+R>SfdZcYv}+{&*W*>gjYeQpwnX*FZp=-j!@QC7d=
zU5Iu*>dO7J1Sod(zL5_01JGs`r@B~(RF{&gf&hvll(!kQx9gqeWS49TcyIjchI^P*
z6$UhW+w)Wpx{7{UlK7IAeB9xplG)+>2sO=+>|1{Ukr_<U3^pfWea+;iF7M-DO4P>B
zFUq28+x)EN{&ue;;E;;>7Oot4-Yhovw0|`KAcBnh*MP8V2&ra|_w)QU#pu%JGF3^~
zjp~(n5H(Gbvj^9**e{=dGTr`^t2JATWE9#cmBLytCZj>jCE~(ZVG)+1#Q&FM`*l-Y
zB)Ls=T=Vt?-dm3I3-n-od^slB7TXPK=dTnEsjNG1jD+fDIU_nk`wC+M#r#ZB3jW)Z
zO5M0hvg-*q$KsiK8!?GpM%s^k@J8Gt!+r#2Q|VIY4?lxhLC%J9eCtt*oLrYv4%g&R
zWvw?ANWqa=J$lEC*w`MX*){O@kb~BG*wGfDn~(G9^xf_k9-f_4iGNZ&3TlgER8_Ym
zgN2QD5pe1FPXDsG=F+vhz_<;ihGJ}y>R5`9JNB?1`fmppD;o<-5}4f(!GV0Bb#wQ*
zU|iINsH^Wz*=!<1(B;NAX6;i0_J1awUwvqAjGLXjL>ql@_#_3yWS@ND(l8Tn4>5!~
z!orTJ60v((nt8)rE_wQgo%>tg!7IG^W{p3Rj#ulgd$|+O>3fBO((Ri#LtT)5=K`Lx
zdld{FnJ<EqZ(aL_PoD&yG+?ix407qJa|QFd^UQe+>+cdX-%MS{N6-c&p}EWAFB6SB
z8j=jS;r`{s8+djBbMv)jPP<4<Q>@GR{(hy@(ltT&Yh%RUwU_Hy5CyrmIMhVO^S-qn
z;xckxwig^IT-PP+<Mu<?O~Bfod|S;9r;ocajM?~gqymGm5E;WfSbaB`cc&%2q-+qY
zieIHX+}PB>A=!^o5hU6@!d=7&!Q@_F2{QzE(&nKQzt<ih+c8F}O9rJ#{7&xV!m>rQ
zq+d!bqDfKogXhmo0eHGRY(jeBcy_1oyw^_pspYdWq0xsScv%#8i*(9HCkb_1ZKY=}
zb6~gH+LC%is4aO^R%LCc7b}D8+gwhf@B*&yoLLcxwb~*2wSL3D{3ix`)T(~^=W0Tp
z7{hdjA2pcs=~z%0!hBQzc9M}jZJvd}l=o>?d)%lB-}nzxJhM7|wLfleiV~_`jd0WD
zcIEl0Kypjn{O`<v{N}e|{&W|D<QFtL!d1hnaf$C!V{nFV?Qxr?bt;oCG7Vq3+A5!p
zXN2+(%iH>$z|h#9cQ7lt+)q$v1~q%*%XWhJAU)krM1yG+V%GwPu?OL7ihA*Pu>h;k
zx8}CJ`7W(p(F*X-R{b=@rh%tYhH>G$G#*?ji==;#oe%|1kpF;k3-qmsF~lJ!ykuVd
zFG-p@b~%-FxcJ=}u^Q0^8`4V7aL03AuT3%zT(${-LaI~aA;Er9#E_rjyg#&QZI89a
z{wrRMD(gm(I6A3BYV}*Fnwo8^lhVQW4_vP8Ia|^}{moyMV94?S$*bwfhd1jA>)9k}
z^+sfUm{kP~<NM!#54nPQVTw={?WOeHs}TxSy8%J7p3KE77iO-`-w}a5dmmk^<|$ge
z&D>6+_l}3u(ct_`6edujs2ZPLp$KJ<YI|zA9Bm|#u0IB%Cco4YjH7N%oBzOtVVe*q
zvpI_{m>z#&%ms^Q_))(BrqU|i;$Y>lps8mAkp*CdN$H&`GG$RsK9aAxq@QTu%1~!s
zhXQ=aQc>kqe{RM4xqAd$=)E6-kXV8h*<RPW7SQ(afvZD8qe`HD@s~|!70!p(2lM6&
zVm}fjypB_TNac!fB|9*XA;&#mL6iF=BiC@EYM^+#y7j?3cyD-AB%U~wYj0P7Zf23_
zCLSw<wNG#DgD_z;Bik*^RXccC>#ajnM#>A#7=!gdw=H__Ni{oG`FcD&o`Bn|`z{(J
zpyP?+ph6++K=si^zKZvztgoUBOmCFiOAJ$P(#JP2(`{CM@ABsdnb>mM$^pRV^KDn#
zb4Z>4Rxh@P%wf3$)6_rw6wvK#xglOckDQ#B+ZM3?TwJ6_*5@-L<~8M?S^Q+!dzbDQ
zg4aUmiW^x=szNxz>{o2G9<yuX9^x~>=8?B!)ztw@1Q>)2_2A4JMq3V&cGmId>_xXn
zGTGRv4b{J(_fdPoqx@B6lFdb5e-zY9_(NI3LTLRN?nBVSFD@uN8UJG!T5mF+aJWmW
zf3rP=FZ!DzMK9VIP6yp8lU(ca^L_;5(R~cSqgMg|3Nz*tuF+%^R4O+Mevh7^v1V_a
zUCQ*u-a(7$23HkYJo4HNq>()4?-TGAbcv#e@rX}|C%5>Ul2nX}hq}uNno<e`vK}lc
z+J}{2w~3>E-DP~<RQ6Ke7p{^FL*OQ%A1}b4YBFCy)_R%B+~frX`Z)DiKB78aSL#_i
zQJv!Ti(oQv&SrPPVkSk}7|ZKOgU_sRnhvEAFTL%3o7&_bn+~Q}ki(4ZfRCAtTSZ>P
z`)y&!HnhQIVe_OXUZxIJaA|03Jo6K0Y*|NJ+?%0d){}&6$_I}~HT3ZeQ*o!N%rX<~
zJihKr%hTTVHGTkb<+3fk+qVCe-D5q%!~57_1xa)d`JN^05jSp46?1Q#^Wt09r{KZZ
zD>~hLgWh<2R%SFvf?b)Iu3ARrRE+||e3SCOT-kQ9)&2qJ60ga0n`BGOV#_9y-JbZ$
z{$%Q!@{>vuXNZAwkPgSFPFpG}s@Lf23MwZx?SEDW!5D|FP=Q$Mefh<UItwwTyzfR5
zW_iQq<GjCjBGOPimPG&@*bd7R&A?jTO|eT}faynjk3VB{_!;-c6==2oH34AJpD_BJ
zZCG-@Q>YD=joT#?iJdFn^oJX2-oiHjQ+KCsAkatbKAj29!%Y}HS2~^T0-}aM02%(H
zd5~^itKP=6Ku;O+7WsmYncyd=Z=r2kC30-_L56j_`{|_-MU=?9*IRW)VAhT~M)ISu
zvP5^Ii+}<>huUuiessb8+?})P(x#22U}lkX)k-*jXIp(M0qSbS@E?Q8_%#-v8|e|U
zkL9-)Mr%>2-~DC$Yr5<zw~UO5-xsca>dM^Z{cL#tbAfH!mq&QyL*Igm+>~wgtzwek
zpuL!QdzT4ghl=Y%+COV414T$ZWu8am%v}4F`VfG--pJg->db#_?#QI2ZeESV*}m{W
z0j&rv0UGxdG(bXw-E4wO+VtNNVrw%d_VT^NA0p@g8Ow&Od7)ZQ#(}8_#Mn@Nat#q#
z3%^HW9=^93rHjJ&bWUSVv*9X=?O`xnsjf}vs3LppqVk)3t1~m+biu9Z-wQ~`$`#u8
zPMox<TJB3ygazo|uw!B5xwjkAZ;Pe|#9)syIdjHJb=}FZ<zPEY=5dYR{TkY!(_q0P
z2lI$pIR9j;r!h%0I`>VKOSQ*hRvKQ7<zL-?Wu~5<g$uAk=PN!L6n&5w-rX2Oaj3|N
zR|l_NbM_1@*$jeP23AaP%~93Vm7?A>4N6Ty#h2yYxuwx$Wy292BGG6#AxXqic#?5U
z;d47o2@R|y6=DPl{5o6bKgl$d)63MbH^coBh_jX^$2EYu`ngZC%bbFAnrmFW)+wbO
z&?4ORVBew-SBYVA9`mr5{g2hXGfT8@hV<F-{gt)rTyy46u*XXG!(5kJh1o{Gzx@%l
zYB9?0=P1sMPReop+d2(u3dr-S?X3KCUU~)xy<~Q`)UgKx<-gJOBn5Z2uw2vSE@kJX
zmdCf;13cKq+vAoQN@4*HG}9t>N67f=-9F^%5#BMM`i+Z*O)*$(ngfJ~4`eV7(vVz(
z3KqY@`#EYjtqK;>^&!h~TFQ`rhb{FKGEAwOp(6V0j67ZRy!C24)r{cV-<9Oiu@Vf9
zjSm{et1!>yuXfrh@v$l%kqPkfvhq=u-ts!-S@t@xcp}TE+5N_tdiJ|i?COwGqLyb2
z7NN78vy%B9sxx}^3+rSpo(hxtTBaEtda2RWHi_z2_vJcT3TY9}P%4_;q<BvTw>O&t
zm3@Oz$_xpwNK#5kUXvX}z|VZTnD)+i){>)LYkWb{;h&Hl+ebkOJjpVvN8Qo=G!0oJ
zIKFqsT9Ed*`49g0(q0uCvcMpmQg$)Q<EDK7Xk#M|sFHCJ!;St_y{$mK+~#An)QYrQ
zsNi4gtaB})Y@TfM`y+v%i)X-i*bQZw>3_zhYO1SE;Pw)@@`4z5*?7)yp%3Hycb(Q)
zx%zR!!;MDDA6CLFwEL{QbM@;xfG+P<tjxyHcZWy*pZ!*XxHpqCd6)e}m>}Wb3=)fv
z_1|G6I|}*5@_1j)Z-x2#BM$5>&@0gtHn6ZcKMgQYu^onzotk0Y=9?bf>@2KZ=0PVl
zHC(8w?+9sWiKDjmRA=iv^1mc~8=X`rS73dlVKxbwGJO77f!q<2OcF=Dcq5+I(Bvnd
z#4|?7WywAKwg*jz|C9%8`hSLTtM85?9LG@y3Ccu6-&$}mduewDORhBTW$6K3Z(YB^
z_`=wnL7O@s!G`&(UjyfvQx;xg4r3?>Hf!4Z-wtRCqH8z@%+SFct!)Oy9R-K$1je!f
ze5uBr;ez2d%*F-B1$jQT$r{Z+%O*uKTFNR+r}$g)iF)$!hcBeDu>&@!r0ABz3Xl$N
ziSnxr!Q$-;rYb>I6BS=VeNqSMJ|DJX_lRU}aGyFYNw7FjziM2(<jZz-r4YtB_)x8t
zT9_TfF1?S1;6FCZ>L24*WftAWGZ|py*?lwq^FLHI{dQN3Q3Uq!T*qJS<TYPmDuMhT
zwU$o6zAklEX_#~P*4RSr8R(;|xOz4P0p0>aXG(q_$4V=FYkGCMjfI)pft~Kq0134F
z;Csh-d&%ZFpgiA0xlPr$<@gwZe<)4(tw_%u3kCVY87U9tVxE6x`z-X0&Ae-K{1g(q
z_e0i9=FzfE*Ld{vv7~W+wy<z*fzO=}ovc}qY-T5<HVu&ShBB=}s-(cfQFaD8^?8x6
zzY8H~rO8IG<Z{fSyC_`5x1(;25`9nYTd~T2ChAyAx<A;DqmK!rwBkSLux+EB0vsj5
zaR}e^$#Ek`2SzKmC+q?2GAb$BTjru!fNqmu`4e8{2fkd7_SM-hF7><#NNG}_)ES9<
zRzlq+GX}MuQ;|YExcXc(EUO=YVto8nyZ<hez|xzHc2{Zbcft-AtH-qCT~?icri<^s
zGEAr1bkpG;yPvaVojB|_=@=v89GXz{N%8w$M?5F$(0(`1^yw-?clxvj)y6El&9_^<
zgbND)<DWtjKf23|e?jdAI530F1|Cf-%9RO6-0mb<hn2D^%TpNdF5doO2mji{{<80S
zo^G7MDleXBrS{0;3*O!X)|@()wJe|!8d++;{Pei~a)~8a&fw$`aObu7QQ~U|Mu&ig
zhxwpH!z5vdWWRL?&3HG-VDDR|HkB&9SvR@sD%x<E8=1N1_-+=Hx|)KB`E4DUlO$Qu
zf7H>g+U^(~F_gahVtR7cUTT`{FLO^pA7M<pCRp+!i2TauQvN~vf>UAqLFgpXdgS%5
zT#w;7k3UCUjUzN@A#W9t=lsLBhMGkQm>Rm$wnUTZ{!n}NnJD0@_4C3F>f9hB@KiU9
zV2&5i?FYSNu=&$k^s`6q3rLDTgUM?)Z_V!LK0buWziu~(1{0RU=AuB+zFOncO_vPt
zXE6?mXAT^g@32+ZqEE{#CoAu5$8;=bd+c<Rd-%CecCNln4NDnU_8UKL5vKIsFM|Oa
z!nFCKCr-0HcrTz)h56@)(3IMLHn`S_=9kUloWBc^fDyPSxl7>)?9ju4p29>y(57HB
zUqLDZUuwgnjXK!NtO$VuDFo!(E6%(0to%@O%SMnn{2AKtJ3f*IB-1OT{9unOx)Z$^
zwPi~~of+tTAUb*h)y4GY2h%}|5lVtFq37h1x1P(fCY#JnqUBfPejzB3%#45%hmMvE
zI|tW4qscU1saip=N!A+)+|U@VUY~7sQvgG8oE|E$>g?A1-r~2Mx!Khk&IJ{h@^w+F
zF-F|BObKZr<2ND)x{`g#4@6?3FCf!jFQAjJbsu3xz>WWgZY2W`8n{>4iA!WdrEzn3
z7hel!f~h-|JFfNALtlT0I~i{E{Zu^Rfcl3a=W>mwWUMe#FNq*vOG81`P9GM%dz{Dz
zC>w?pW6yt>Ji1oi%^^ylb4%mXHyPha!@At3kPqsO>^;~LlScrOACEX8nurO>Yo?Q4
zqvU5oCV8?>UNhUA_PgPlT`HB40;*2Pb}W6@vY2RKsr;;@4cRD)R}Vw0`}k+0+dgPL
zgv12qL$+k3uX2UHRub8>(9m_~P?(RG8JEr?#%r;>7`A`Oi4{7A*YE<WEqu~!<BZ+D
zb`1e`ed>&Q5B~e0%9omdTYn=F4Jnj{{!Ao?DJ(6i{%5e4jjiH9K@YMbo^$bW&LbwU
zYYn`oP{)H=$s4%{8ix_3GPGje<E#51CAz=&oc&__3Pgqy2wxqtMogPsD>zG@HHI=)
zZi&5s(!$C^mjw|T%SPc&TA4bA;PM-Fl4MF4rxuB=KUk;O<kHA#C_8bGNe|<AoiWI|
zZ)Q>oZ6)1|9jpRt4x!7EohO(hvq%ZRKjOFdBQT&s#mZdI*!uo@zBCwM0J;88_679%
z1@tE|L<_D2oK{v9y1dwXo!K;y<0Vk*lS4Cz_x5k5pdn}6o71J7CJI}XZF;{|3L-4d
zOhf172U{ivdr7)AN2jY*yZ*JzxU2$DJ$dn{ARq4J{cKZ&yM3`Iy+sn}op`+8ULisj
z2;`S6H$;ypPZEGh?4mt;Hot&oZJYDj`C}veHsDiGw<xg2UN_IcfTyt&zN*{1B<*<)
zcyppg+_$N&PeU|0Amp@?B*l-*1&*e)(Bm%$#0dWRODid=FX@en9?e|s*fNdgl-@We
zL3$@>5ig*FAE%*rB%Qzo*LrN8>m?6_(VjgzfHUJwSoJaze%#uPwQl2jkJcQjqG@-l
z^5>H^l^<9hnYO3e1b?pe6jU%#+`KULApXhjL;P#rIm2{zCS|#_)MoS{u8N0t6mg}s
zl4|;F@d9GdEq(!+S-pVdO8s#G;xPvA!su(qTYCwopC04IDzYnJerVNTN1n#t0+v>z
zaveEpmnQnP9feQ;(BDql=aN(duUvcq{k~wjC^Uq`v@X+k1}9}D$<3zWzRrF%mT}5E
zc9w3c1>`NT7f=NJuC5l21|Z=D3xQ0W2JzWRr2fwHo=>nyP<)zD1#;M3+GvcyzA}cl
z>dKF$|Fb{|{=0g1glT-RUc{W%+qjl1Njok0Nebc|!k+;EF9`oe=rkqHDJ@-UJ4Lhl
zp{~7AAR!$a-cv(W^*;)G0WnShP5WQj2$`OCm<@0_qTc7Ax@*JZ^qw;1eN$nW1C)0_
z1l%zk&7fNR%j@o)fYAe6>NVm}Hp5IN&?D};n`MV&h=zD;qQ)UmyCpT^i2d@=S{oC|
zjeFEw`l0df?|*f(Zls~3vB57O<66m5Uj)(%D3#|7(Paeq62mzEsC1cnC}Sv6myclN
zd%i+4<2A?3O6k-b5(nQ`JV>N~o(rpN#OT=X>Kc|ilI~d-4!A|pia=}Gu-KUA({VJ*
z;kq+u6m<L^>2gqSbD8Fv6;Q2SR)5aviH1qPfarBA057)v^ig}fsko89RE;OFFu&mK
za}HlGjg-;unQ7~4ygUyn@uqpIK0bv~C(m@(F^b2`B#+Z_>2q=uhoBlK&^yn3Hx?)C
zN<;8nqtn9|zc``*^SDgQOaU<(dW{7&dyWLE>sg`|#1hRl(+J`UG0z|Q@ne%r6$+Vs
zNWj?(2y_AGbqT8cTfmlUI(Pe<0Lw(=@6@0&Yo-r3Z)ALsCus|J-YYey!x;j^QYhr7
zbI~mLb<senF`aj_6XZHlElQqv=u^F0c1Gb5Wm-U8GZ+i_Kd1#>K)&<98`cePuel*)
z*3_Q?i~Hl$irii782C+lj-&XpF1iq+0Vp%fS1*~e&7L2$=D*IJBFj?g!0!7bB2Pb_
z<cXDLttn#eVG0;dlg>zjw^l7IelS8mYH@<;YeIwZ$RF(3xT_3h+KZJ0E{uQh6iDG?
zmD}S^;plP&jONM=cxu2fib_c*De2pbioDszO1=J?gx=LGi?LL395!!GXYtP~Gb*aY
z?iR?$9OfAOD)002?2JnaQw^B9x)9w>jx`ld!z1~dxlCsM0&+_<+-#MQdB`krv1~)i
zR+^yB*fS&UT|P1U_qQ^XuMYI5_rN3cN9f7;-=gSfR^NqaUCs3Pm1jF@6j<u+3|=y^
zzM(|v?!<R+J0E0>l5r<-g4}glGIE*hMDbP61_T#SYoMkuagvtGLfxbsqf~Vtqtod0
zdI*1aAS`6-S#o^1kA!&r0!o*Z{I?i-i&9gF8af&oiZ}>;B-ASm8XL+{k&C0|f|P}a
za5}y@z56ravPVjm?-PpG&^(()myI&1A!nY>D$sgG_U#&dM=u9%1gqP-`qGi>s7p<l
z`{~cmYxuL}e=QGs6#fnu=Gt_G$^U9)aZ9k5s}VqKzJA*V1fSfQ=bU!QH3o$0%`lBN
z@JU(ilv%92*9{AKX%Zxf!75_Qg*aUrB7H9Jl8Je0zQy)em1mugjXgy1m;^@XKi)?H
zjw7BV+5}ebL>buJ_GzuQKtNeSk$zVj#g}v@rzFr^FDqn%<{Amg`TS)c_;vA@mjw#1
zIX407<<MI~6As4AXpwZ6;-g@@0pD$GxTItZ+$9*b(T%T$QtNNR+@vOVIHuei*R7CH
z?(hmB<n&1zTs!qRl7=%0%wGinCz9o$aR9c&X#_iZX?Q(t-X(TOdnG~~2toWb&wdM%
zx20^McPLLi%)n*&fa7PE>Jt}NO^3z0M&?~0Qn0#y413}m)sD72x#b*WOMZi|I8&Z0
zWFPUr?j#g&o3ISvh4qq)k?l_j_WNbdI+4pV_NaCK>^xWf-Y~-YN~4g{bv%6Y^HERr
z{~ZA13+NNz;7XSfaY@}bJ7w^gN4saA^auU`SjDwT@dtO~>W4yw1+eHYtn5#1mvqT!
z{l@3v=?iPoJ<Zy*0sHT$s=JMRkzu<*IZ#oz1e(VCFK~M?D~sJRIw(fe5pU({B)uO2
z7g7OwsjhvA&6xY)u+XW~F&;|j=<MFi6V9pRxX3k?B0@na^qjQtk-N&6nVLuKV}Gdw
z8)HyX=aV90VU5qrKT61@ORuOYN;?$ySF=DRZ$?Lb=(d<M8aru<G;OQlo{u{9nFKv#
z-#@EQYrBu>6e}x7m{}K#cES}~E(qgXNixz`5(Nl~3cxo7AcD$H(><i2W8`j6$nr0s
z@6B$k9x8Hnx{Y?DrW`Gh!`e=P<~>!V6_dBRG?p?A%IRU<7K8Saij&&A(D4*r18PQC
zvtP*>zM+FI&^K(oP6sc0@}-6I&b@<F28AE9h>Hi*#rIxQWg*&(LQgdHP%43#?|Ai>
z=9=haKD_>e>ZLKD+Vre@bo^v%l#ZA6E;5#$F-a3cULS(xYU&qhQBZ<!%r3)8COYM2
z;lWnynr0sPrqRdN!N5}y94^k51d9gp&5GW0I=2_lkHjFi0ka3<Iz;cTiB_Bu1GO1%
z;-VPIo{@@fPfxpCbAf6Y$3E`{e(HT!<6+n`nxER@1r4g0uNa|&mlx#eQ;@0y{vMFO
zGwFwGd}oqn<3tm_9Rl#b2grq2$%m$7kaffd=BgKv3H49->6~z0o{jfRWmhnCUk@4@
zxi{a#0Sgb3wqaCpaVx7{x|^4Kz@9<IIl!mUWR%SV{pd>9f+i2TkSIkM&-%cQ=gMqX
zPPeTxl!P`;30X+T=y(RsQV)B{LidNa5$!BDj*Czlc$&E28IwvWDg52`nlNMbRVW6~
z2DzdDi!PQzQL<v*mv*HQ%#AkGba`Iv$n^N-9<?Lynu>8D1LN`4<+}>VQE}z=DK*W!
zbC+PXqp4hLU{bz)lHHR~KUTc$D<*KGMX?TAc_05n9Sc07I`r%$l%;lLAoQBD2gr0C
zR8GGhUhx@MwpB5l_fmj0p~s1@js4S9@@<#oQ|bL{k24o}JgN2LEtFV_q|j>Afy5-L
zRpOmRaHXX&kHWA4x8obZjWk8pFa>20VM2OR^EiwGp?rA%-1Gukbvj7~y@1BvErg!c
zm!}`j((wlyoEKt;+NiHOsb<a(wmz<}8drZFZQ*&Y#PD?QThk9Wr^&@H;9iJ(oPGiA
zTt$oVaQc`L`)i(Q|Ec-FUt9lk^05+qAslC_LcgTNr7J&mjFjx5JA@fR0#9G3xi3K|
z^g8j;JP6Vdg)XPRfd29a=r}5iZfvD}d^lEt`2F4{IEk<F*Su1Pa+DOkRVkyoOE3~n
z9JNte^?Vy;`Yc6OmoEmGi9e^_f-9#4g-PP8^LlQqPdBS6N~1Z<qB^ba;1<RmF9RBg
z+RTFh5OjZqA#8gU#8`kB+)8uRiimobA0WGHGyb0mO~&K>dA8(0A}$^wTyDOk2Y1`9
zs{?YE%Q2hWn#)tq%;<X6AXQeSyB*nUGZRTI(4=bDFDURhhm%M()V;j6#eYELU!u*e
zG?IX#iB5aet1spScrd4-(0_-(x|80KAe=B6Auq0i=wSfJZDZLS{bRdV6Sh0OlY)lL
zewE(!mW%}BEZ*gcUCQD3VZ`-QeGV@GXH)o(v6Is6=p8F2BG3U%!J$8C!Cb1yc>%+|
zNn4uVaGFQ&M@4y)6r3KjU^BpZ)FX%v6QJ%>=%wwE2ptocliUh@MseIV{h<3^doFQi
z{Gbzx&EpIWsq^qT6j3C~DD6@p($BIi-q=W|#q51gf+_V>9Jkb=jx^$R2*XoJmg~;@
zm4;xmH*`M;dun9)R@puFo29izV>xtx?-<cj__#=c2YXh3JaL-O@?sz{s)uez|8uZ`
z@=n#9%WT`nQX8a1<OP2tVWiQY4sNSSq}UTow1|Ha{5XHm7VbZi{rtmpnjJslso|%2
z*Y(P4u^ZEg|2w30!Dmmz&#q-4OGyEsJ#`H5A&a1su>{SPu~rCNpnqO}VPpNd1nA{&
zQ)=So`Uz2+YyAe>Rg6yAIZD1I88A#Ua@rzpQW5L&G*)C!n+WHstsEEpx*JB&f{0Y$
z3fgo-$Q5D(DNyzHBTtv$-aS0PFjx^0&RP<U`9amV7j3Yc^-ZIRBk+`I1@dF;L%*b-
z*TH?gtFL?K+JkwO{`hqENklpX+o!#n2<2tBkY=PRtK!tG^b8DkI+}U=JmL2E=yt?*
z?gpGO8de4z#Qp48DD{<KmeRI$w}MbbA1)v4S81g1VF;z|je@pc#^{737*|oKw)1!E
z7Fir~E9BhiXOzxXoFE~Kugg>$L|F2}pQYXdW3$IA7DSk-$qvl}*3_-rp`32Xu%0-l
zh6EA7Vb)CK?}|aUMMg8l&fS0U5d8;&ar`<iQ;2^s*87=xmtMNndHKK2apaqJ!YtQ8
zcQnU6pf!=Y`T{y@DtzJy{2F>a{|tqn8lwGpS9doZE9Qp~$=ut+z#VlxCp(BFtau(|
zBLg9&=Wn_@ZNMd=csmkVyH<8!?<w2<zc(B;YkXJqVK?=yD0zjt7ypQkJ7(Z9#D&VC
zx0o=u0m*A}z{}JH)jeYt&BgyGa2_%O(}APA;Fdw62iKDOef_&&KNc~asHxikwdnav
zYn3PG<n}v19a09+@}JPR0ISdu1U2@jlWtW|&0oXBc3u;hFG|{`KpxK&<J4VsE98qt
z0(j60?Pg?n`<m4O$UD&xU;bSJ{+YSP265i|NU@xBxtS}@H{U$V9zqM#fliP6!?|mN
zGoQ3JE_=K)??WsP&c8}5StVc9&M7keVmnTbbq6{h?)oJ9zZUulh{sRZNxo1c;ZW}c
zd+I0_)zLqH>piHWdA#Dh4m=HYl6+tr11hEY2h7tSHATY*&t)99f^aJ6+L=zhlZ)tw
zjzZ0L+XPuZP6~fyw{-X24$sy7Kl^9fuMktcq!L0O5$~V_E9<KtF~99Zs<zQ$Q|$t&
zecNYZ_}NY8ZW%mLH}v0P?=834Y}xrTVC%XxK;9`+o9uY0qc~B2jS6(kkf&$gTgO@~
zU)-KO&~v_7U_Z?HFM<GfRcwYEX=G~v6hwaa%!$AV+gUf^SRPr^z82Oo6H|XKEhC=B
zVv~=x+$SYa_{MlGAKYFSIvO+(dWR<oq&*i{p%09}iNK({K~I8(P-skFdz)tg-m(CA
z{j36{cr{~#-w=gTn+7?aScy+>v%h^$sMBaFa5_w;2^j|nWJ7Q{7VioPE7u3le^teA
zR(o7aGoD^i5Pn`^M{~wR#L*z6TP35f>xPoov=CyPl4ni5Q%;$r*<+oJ%JNKB4=<qS
zA~B8q<%NP!T>DQeM$Qkl-~k`6UpxP8z!>r>kc7mN*pBe<;PT7o{ED5=hlt;!=6RP%
z%6M!UHtf9+0&(=ZHVIB(Yp8VOISB8WeDUG<N9d>}V52nSJyq{NXs_AdaN`UI^4@O$
zrlx=e?{lL5tf}Nfpf8qvOegABDZB0!Wt}<9upD6IT+X?rA@E=BBhK`7a4MhLbFyC(
zqH1b?+hn0Ia4a_6$R+etiRzD4(7f{)4Nu#Yd|s8z2$<>Td_X&;`S(PFh*~^SBXJS@
zA!>tSwE|b)-;N+p%JTZ|uogVkv>tb?5nz>)l%PTS&eWq7C3hj`VFO073vguh24HaB
tP=2vWpJ7Z<U-+!51*-un{t3Xb$O1(id4Ke?<}-@7Oq$Y^a^cJB{{SFl2mb&7

diff --git a/yolov5-6.2/data/images/zidane.jpg b/yolov5-6.2/data/images/zidane.jpg
deleted file mode 100644
index 92d72ea124760ce5dbf9425e3aa8f371e7481328..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 168949
zcmbTcXH*ki_&pj35IRzVK>|{u2mz!BCNwEZlMV@8kt$Un(go=%hR_5NLj>uB-Vsp{
zN$4PiB26TL&{3)=`d)tj+t#|D?!C{P`7~$FI(z2Koc%m||2OmB65yP%zL7qFfdK$u
zI6DCU%>ncPKt{&@X=lN7)|gqDnVFcF*+C!{R!(+KP7Zbs4lZuKb6niK+#DR|1kdsE
z3xL63PM-4+K>-M#09fFE24Mi6-NVGp#>~tnz{SBO@c%jf>jLnyGLA6=fD94<MqUOW
zFT;PI0T<8a$;|M-0`PwX1LN5oSwO68>>Otun$H0k8Gt}WCgA_f`mA^K*>wODFEgLG
zq7Dnc<vox@kbqKLMj@-DZhbe{>dOz9vTJZW8@u3nh|q;gm!+;q%Un}Yy^cVt>D|1g
zZ(wL-Y;A)=+uGSXxVd|HdfoT-!8{BJ4GWKmOh`;he)9BLN@muJ?3|amukzj&6_=Ej
zl~+_YG&VK2w6?Xs`_%KfmqhOC9~hsYOioSDe4YKiOr@=?(%05Ee(vob93CD2I{E!S
zxERiG{-5!`1N(pA;yuH~$ixI>0{ssz2F9?n6UfWNEUw7Hr(+4a7sM~26vrx{n^9Qb
z%_gaA^#kl0{DoZ*cJ2G6pZ^2xe<AyS2Q2>o7qb5g*#C`d7QhK)ID2_OUce2&ufHzx
z8zAKNG&q3O-qlkByS+Jl8{E+lu-6qZe@LvGD?F)>Z-Z!V_8W{{iZ*`6!3U`s<3?&w
zh<<j26S`*QxMN+$GeE5+N#@~mH?9+oQDBXXM``&uyztFR9G=gx3&8FD&8>TY=CY^h
zYgye50f8>2szScn`j(oPMzYf|q3_fL{M{|1_`V?nbf`hJC~Nm-vG2C9Ll_-gCJ|uE
zU?5qdKh`QI;V!S`A@bACtSX0&lJU+xKQ%8ng6SUi=q$QyG{V}Y)jV<MCNYbWkzd+)
zDOQQMHC8#z+WwP&K<M6OtZJOmJPX_5VF~WK-V4bz>(feFUG^-CjwI~DQ~j?re?;GK
zRFkkjq@T58temM{O6=le<Ls9{r|q62JQ_AKtniLYPa^R*Lx1+L^h<R{JzSbaLYwOv
z42^TXW3WMeh0kUS(gT$<6|MaCS<xi5@iyjgAaZy7-HBgN|JRwcd$u<eMgC=rc}hjh
z53s2HFsSA|-B6w`<QThPqdyz^(X0skJk&sLuJai`azty_!!IRYOaD(12p{bO8I!5}
z+hr~ue(Do$nEgT-(1V1msoR20jZ;3X%s4WbF}RUI;NWYaE(T^gm7#0Z@_`7kmS}ZU
z?j9|eVZ;cO762crxa@Rqz8%;o=1i*z)<>#H@`XF8svWEFd4K~M=t5-U#*Y3#lpcTA
za70$lJCTf(4YRD%Vn%Q*D5diI>zCcYkJFuo?p8~U0D8fQ8Vdd5rC392xmNaYNa$O?
zsh6&JNd*fIz6jv1HT3<QVR{9q04$YR)tMc+?SN)fLTq*k?V?wr^>Sv}VD_T#{TI?k
zUU+1XSm*ZAEUgkfxsyJaY2A%X4hj6a5_#IbZdui2GH^e5U?V|{VM3~)RHHOlh~^1T
zawZp+Tp7NQEdIo*w7`?;+_QKdpX4l0-&>w~K}zzhNG6xxQ>fESMpjHbfIePhvPE;J
zMMhp2?8v3zsTae5B_Y;mM~Inz^x&H}6@QiOTFpl=*ds6z^NMF^-tBUuC%lPJ{1bP$
zrlWp8V$%6bwuXW54@H#r)ys-$h1EvlvL6cAYg%Xs|Bk75%j5N=Ltzk893k=#x|v{m
ziDy8cRU<EDc8*=$>wwtLP6RO6pKlD(%Lq!C@9;fmV2$6_;Q815Fo)X~a4%?d00ADg
zKaEpR-gE|M@kjwh6GTi^<V@Qi)_?R6-}{u)!~d=MfxYt{8<PS=9fvroaTvGI=MMzz
zMZ?jv>oysLO13-AV<i~Xy!rL*ohTxp>oj-$P$hElu!XjC*k9woG1Tx;7ty!-3)MtX
z<(f}&iv`gBfvbm_4fL;4_9PKd;O1dz=j>ar8&OEfx+=w}L~2lf_v+isA2%Sb%D7H%
zzbA#wN6V6+vX&^6`tv1$Oe3j6G85YAI6S)#p_f|8{g{)&zo5z{DQh69`NyW|RmpGg
zp@Dty+%pkX!sN&hEg7_vkXC)S{hd;UaKG$4|5y|{dORZbNB9k;6nbWRm3)(@=D1|b
z_u~%tA2O^|NhD-8d=#Wo>K~t#Zgk^Ql#SI~a(bpvTIiMx^r4zS_Mr?DH<=R^9l4tK
zqk{!0*YPXb$BozXQ#k-g2-1#oc7$W`hnr60&*l0`2lNFLX6LEDt@Mk*>Q9COQJpeJ
zpV4VP2Tn@_H42}SSIoCuXdqmO?95W)Z|^FhuWdSm?53*J`WdALr8A5~b9s=A<Q<tu
zfz6JsA-3~u`yi3<;YWwz>Mf&IFIw)e`S<;)ni~abR(^eXAF!$wvqry>>ei#~2l`V$
z^Qt(i(4yRyatTMMEZLOKr#bM?uHv(jC9kI21~Pe-Sm)80`Yx+@jDk|)Y9bIMBpJ$H
zGwt~NJV4=&Do)v!Jv1_3V}Z@H&3W_N${}6FbUwALa8&H*)Z0DxTxC}d6ndb-#=f19
zTI|9w+sSS-{)JcC-p;61P%38YXRjVC!qa)FZFkJGx(WDe2CT^{!mI`l?%CO)<CO2L
zUdV6Ocz4LR;gPP>-&daZwS{_7{NE+S>N|!qprDZXP@qy!p4~OK%Vy!Aouk^qGA{Y>
zkjlGmjBsRVsrBjz3z7&l|6I`_-X%tjOY>P@8h>SPBQ1+0g{w$^d9D^99!iLDBKXW(
zdCBDCwCz3eBV^3~?#W!;Dur!JJuqQ#?)q|6Ct|n(*pL>!b#m+{qhQF`zQVEQD>PTp
zqnfuVCRuo~T5WMSy+hp{x0wA^<YHu5e?t7XB<n2W`=Tb~y*km8i^ltvJ%!U|VU!-<
z5DWIyt%xqokEG<pn}EF;PB-MP<MYzk6R0F-vKAqm=|}z-qWHyaTYmGc#uB4%)*@6z
z`u$63ut_)8#d>_YtvV*bA#1MDD4C`>I^1iOBhEQ<^89+ma+7(%@l5$SeUzTd<IYjA
zRL*#Z^115_vFcG11Qq5K0PC(*Zj4hv7i1%%^4%hBGx(aPV$yslPI=>&0W6n^(PB?=
z+gf3!KyZC562)ehF%8`(99ButhUTlP`sQn<E~S|zblRX@Bg8Nxi-9uUMj0(XlOXd&
zLX|snI`G)CLhv_MymgkjPDz}wE;jVI7)Tq$tPiUgGI;^qTAjvYwXDtq8?qK#RyI7#
z%DXN~eLzyN6S;~OI^>#2%3E1g<v!?7g7-~5DJepm!14U#?c1FE7cVso@%RuV7_rzE
zOv34UeL42LY#?Gp?Lu1}zo@<8!M(*MT-WNB?s@u&kyUhfIjzM-UkTAYYW!aI*Jb@4
z-c2*X?zDl9-+{jM$~o4CeZG1L{c;54x{Xw9Qv)Y2PSII-PI@-<V#T^mjek&TY%6pL
zT~5m~S*fXJeGbd-Nx$W`;OO<Y=Iy&buU*)zSo`{`UO&I_9vtJ~JG7Eh1`gpTedg`j
zMYSk%(>2oJMIRa@v;?>(pUc&o@c=0(%^EM7t<Bts`FPbW;cL0FhFVSapSgKpk(0k9
zPQnC)*2mku<haK95TWNDYx`_jz66M}t&d0_{dmAWcpOBK+0d;lKGsCkc)=c$u1na+
z1akY#8=DUq32hTz)PIKLp8&YocG2RoOHfQgT8Zn*%o<kqns|3W^uGR913n!=+GxrM
zux>gR7@?_b>_5uT!DBr5>MlB@{76E3haAAIuA<)^OPY5H+2Jy?#wLkzpOoIv*~|Yp
z(nQzKNd0O*X%5XqG98XqOEyY_7;-s7%8XMgjd%Jr(v0I~WD{MIcQmCdoVj{4&r1PX
z#?;v}uY-U^VXGBQM1oq}sED-HchsIC2*E^XZkTimqfFjTPU?dxN{YTm_3dzv8Nm+0
zDVgajt?qP4MNV{ah1QZ+iSK!T6UQ(W2b$D^7+<jI&49s#HX1#>v|RYDE^X=I2=cd$
zc_7eT!EJrr)}uYK)S<17n;QYy@u_;5i{&nws??wcZvUe2E%4-eVKH$w*{w(~)Pa<5
zybY9(%Q}aaqnWIvJWnyb&isOk<Fd@zXOHMVC>?sSUFd2*hnyGS9pSQx&=WNR)>rO1
zb%a6=$~k9fG1)I_aBV0`%ft&LAYFaTtDn=c+FCv=cs|m4O8f50w$p?`y>ZD_mR!^8
zHc-~|wO{y(ZX~d<@^z1*WCavx-7DN!ez5Dbhc+OZl{`1T9Y_wFZZ@q0FHynH2&Cxy
z$s~ZZSf=>{<8Gp8v5ZrouwvZdXe37Yfzv;sQm}d;8M$r+Kxw;;?dJ^_Rhaq#GY2Ap
zzb6Ls<DLy(G@BG<KUgzmS`wur1oDS9D-Z~haN4E`w>r*-;*nb+++ctZ@#bJ40JhAl
zRXCnBe@Ix=Wq>7v4$4~vX`+9n6^!8IUzD3$esS>#jVXMKK7X~py>c5w95XYa=K|#u
zo=~wHU{J^GNPh??hm2wzibvG4Gw$sOCp0les4%6qL0bhrQKg``Ne2852>>duUVgQL
zB0e;OEf%}SMp?n#w_O=liSR8UCV!S<zE|8jw3z0125D&T9I7kprFt|~3=kIdZLx9t
zpKI4|YW1BY)Dx4q*$UtGu2rX`XNLf4hV6ED2F@%BN_bo8D7KJ&ha2hhrTIw*L)?Ub
zWa_}mFL6)nKK6wt4ztbA*`KTi%Vc9gD`LPnTojs=&x*ZAxo4npP^s)U*_;SyhxGM{
zX2(FDbAtP&kPiM>DIaDNclW5N&*vBw+UFTYZuz#qRLuJU(!*1MX?j)=fpRA*Ha+UX
zhZetIXeY0aKB?P%u4cBs!Znt&-@Vq^@RF6ayCG{XG-_g<c=5gLaFeR?W=fMdYiQ~2
z>&6g)ewR<2&~!CkqY__2iBzH0vVbduu_uN>vvX7QXdwZ5J*Hq<N1`@xX3L=3b>V7u
zR$RXZkZ|8f)7&cWt8&)I*mug(`vL^Ef2iRNG#%!S|4DY(4q@uk;2j-^hUb5H5?KfM
z*{72D4byJ*p{!``t(a?1-~uIt<;?{l4lZIHpAC*xh25~=jcj~nWCrCwK+<jKe}MOM
zbuED5h<<xfbCu^7H*HRrt_z85%z|A)2{Qnk0TqQdeZq8_NV_6(<3hueKXi5$o#PsZ
zw7v~&%?_-x@F_y-K9e+^aM1gd$Y{i5)1a^qImh7^228#-0b%%H@vXOe$@W_D6x{}O
zBz(?R$-{1?zV1JO+67q!t3LvNm&}d9n0?-CKqd%M!3%z|V*h%VTa%b+)u^`A)Sff;
zj9^+E7+4iKX(V}7{E>Sc_UBYHT_4cq4!K8?$s$!k{GpS&r=(W>Yh6Wr+GICeww_By
zoqb(CvU)K0gA?|E#yi_UYk@+UscF`Cb&}sjz8Y9y|D<rD-q@6_*=Q}1YXOCNl?#>6
zpSM!p=j7ImUf*Cm@nN~4oOfI>s#TR~^2oexKV!{s(<J?sWh|n9bG*bQ_{kfm3s3VC
zn6UJWb;o^ClhU0lPnR%RGoE-{p!owI&*e5qmn1e!pjURctwpg5%;#QuBquIQdj@nX
zB;8=I!<N6fVU4e?k%?#4s?wq7y-WIFNs2rqF-IKceW080&wqL9LS$%n1g&gNbUNV>
z3w9arsqu&^iUc27sIP0z!E#9Q7J?lx7dITCa;bWx&7j?bEd<%`@==il`fi-*rq0$4
z>E1pp=Pc$bSm}^HC^ZTU?xk>M9EUT$uS_j!P;|b1@&0IE=+Z+iO00o6_kiPri&yAi
zs2>pFX|TJ`oiLv0S_Q^5Y8>788#$u2&PQqFbVWJw@z<~Upk}+fNdm{Taea{RQTd-P
z70v8;o-8RL7@kUav2s;{FOqY1fIV4<aIz+y<eb|PT-Jg?Qy1GfD~q52HHtYui}+pG
z0SG8iMB9<}v+>|VTH>=uqRvtxt1mcxDAtAj{ke2*_RI*UkmJJdSU?+6gU7)P?J2(w
zd8xp}gstCUs2a@uc}`!*b4M+2P5z$!`IYp{a7oeZmtlgWOKoBdZQO4=q!-Z-+~UK+
zkYC4Sw!5h~Q!7J3lOI4}+^*w!)*5FsmKgue%Er$%OY#E1zFHmC355HreA@Z+jO^{E
zak5VoJwQp5csF3G&m`U(4Y1jE`7oqrLH7uVUon~=xouIA-hm4r6;MlzuI|4#sxg)H
z+0G9`V4a&sc^A!`+@l2gWKH)i+;ogMA6&!o4=)<uTwQ#nvmQ^2L^~<w7iU{V#&g|w
z9C}nYq=cbZ<S!=8wKw{zbK=^Cm=1gI*z4(+$=Y!yTVtm*q#H~(c+3n{!qsyBdGsMS
zg65hZlAK2(<X02V_d);)Wq?feKd88JnR6Y-F8jl75j|I4MR!MvzHxACmo<X95#WV}
z^hn_%8&0wibNC2iHB<e|RUxMM7!M7!%mSb&usguG)hAOu8wCy9Bq%z3)3r97zODxl
zO=zt~X9+(=4Ybp|5S2m3wIrj_Tie$1c6_e@zc0M<gD<2;2*oX`ZmAozZCk;d&At!@
z)KD)H-!U4(aHVB?PX;rZeiUtP+6T{nvAI8zL#gQ3j^dn@mYo+D5B$0@Ij++BTFfQC
zEnwb8&ZT$chcO+&l7}AiDJ@f*a?z)8G7JVS5>I&ccHmi~gN|8_h{crm30VXsO&K=X
z)3y<t0J88c&t;!V``mGfDsS?mc$xR<I5s94ebZqyppyH1#z?eG{->m1Ab4RUXsW%0
z@5MlcB4^|wS+nvpWMMBIutll_d$_Vfe=w-P0=Jo5UTX4K-Z7JSiTP57p3O@i(Bq6X
zM4rm%ze0ToxPAjTOPm!GV#>lHRf5D^=eb!}<)%Ia+eB}h-^q6*)^oaCmvTXpRro((
zUi6b#9={^KmG}>E^<~HXg;A67=c@S2lFUCx!Y}5VTxpi~46RtROnpQ~(Y&Th92}iQ
z23VAkhs3EP;amcgUQb;|FW1?)e6Y8w#&yCci*DyHND@jsM1~HVA<^GdBh!pKSYE?Y
zQogvC3X8=w6S;FZIOVkh$~t}K)_tCj=zy>n$2&I!wleFNr-{R%ZaQVVPT5Re?B-&q
z@`F;1v{yPCo$!D~ii|$s%E^d<WST=WSF(ZZx!|DPyd&vqp37D($v4$PcWxS7Ts&0q
z5mCui+M2PMnyks?KK$Csv^{%P)7iQZ{5geNd*u6nfaz+y33M(J`p4UcH<VGg#c`!L
zvzz}og?nT^tftU!)<QKFdGd5e-O997!4s<V@Sv;4TN{a!H<im3RRAGH$emU%%@tM6
z=zf9bC85)3<AT^SpR}d5nC4WBcU#iv&;pPfG}Ttdk#AFq;kU0Bj|Yn+xMkV5szyOx
zE@UbukS3f}mbbHCO5)N^Rno3`(5xJJGtHdnQliZ(?@XNz@1dXvQ#*Ei1=|o9CS{;g
zPjtD`K3u%s8NBDIt)L&#r%9Cm$p#Gu84uT#9`AUtu-bP}A)5cPC1dvVx=6}dW|@3A
zGP}-B)CISCkG`&X#e~@=taZ%#8`T`Y3RtDviN#XZ=wYSO%5Q0C5ITU(31GzJrO66r
zdZo!KH-~HfYIbG0{IK29StwWu!bzVZHts-fT)9|n9u&_8C>IGrJ>Rxaea5h!&{tDj
zT`{r}&6cCI^q3cjAThIk?UHnhO!54ZsdJ*quv%gi<3FQ;cfsV9REQ>iDTl4tU;_<)
zM*ECw+nW#egp|KE;nSXthU>E)OC*q@L=R1yQcQPrxZagHDM)1#1Lv@D9ifjCA6ASr
zxfIst?54Cn@T=4<hh5p+-88B3t!9lGPFJLe0?IDEau<^yHxSw}h@5O`^b~W;`ZoUN
z2ml%)$J^Gx@5`B7k~0yKoyl*zV*sJ&5ib>5oIW}geN*!At_K^h$BEHD@zV{q0+JIx
z5^HM{GPax*hEyj4Q%B>q|8(|xEO=9WsA7@S%N;^nQ@Yw9rXQ@U<>vQUmUYP501`aB
z#1~(K_TqS4#+b<6c2E<uYu05kWXBy*d-L7IUYU?&jW6SGvTwTnRv6j%$>VebTTB{`
zs~xdE!!5J&-ico0v-wpZIH+4wIz!*&sUg6N<^4&gS>J}KUoP;*6_MDp@^EH%*TP}x
z+-H%5U<Q>k&YQ}Nx(VG(wlG@QCy@*ABrn-ePWK?|2uThcgGRK^-prNfVmq+C^UV&o
zuR%_NHGfZEE5)sKFZQx-w_usONXyEUiKGt}iq>SGDZ#{8?YT6EyY(l2PIy8a@J12_
zSv@i{G1hyZg-tAD+s5PB8+IcLt@Xp|lebFl+n;bn;5VA>s4EPd82oXeX_I4_Kh`%}
zGNJqK@~A_Z0!JT2lU(iNd{cL+VACE`*nbjp=kxDr52PPvI5;~`51(~Lt<Qtr;?(n!
zgL$7GT$2xGWy;%4=s?g0CEQlU`nuQS#*=gTDZklk8q!P5w0CiosdU!9MZoF4V=pu-
zJLAE&Tt=VJMwAV|v;Vvr9Xn|cQ)i529Y$xOp`zpxpNwAV4Lk4HG^Wg+PVHk(9{)D#
zCTh|1Qv1MBWkb6MbSekwG{_UShv$2Iq3lw(2U3WvD=qT04;qi$ws<K@y}xTQV76pO
z3=>FtDg~;&XW33t&eYx>fBi8w5M$pMzShrC2cz*kvi^e85%J;8apAdPoXrw!4r+lD
z3<{0?1-}?=bZD=mm(+D@lrZ_9h&`Ve`d6DIEEJ-SYeG8+lQJ*smBi+<cc)72esFMR
z1504q4e^-ib#%e=A{Od+I{`;8V^3r)BL<N$=5{|K1?d$;Pk;@7)9*i)M<GH1MM9hQ
zi*ysusTKXFv=s~?ygVNO<-BOz_VWkgdqg?m@;-+b)HOK;1J9w=t4BX^xQ9TFidT#S
zMw6+){mMO&*li75#5y{w{ROcYJ{;f2z!{ZSD_I^0<;N-KrOxkKl}U9Ptn%Uyg-(5A
z95;dndB+}Ro}-2hsCmB4e%ilalIc(NW_hdZuXnb^DLeGqt>i~F7`*o3#Bx&PwCu9d
z0({s4uK!7(Tu3&UjdT}1e3$&>HTvUCr~Tld8JoHfTag!y3u^lTgvbjWe%D3YG>Oh>
zN+HOWYlYT$9P|CzLcS|fVksjnoI&gBj)Gq@2m88iqzdX^zb0p~4Q1*63)g3|PSYc6
zxDp+&=o&#loqi6V3m9$JEgRdj!q9Sdk8p)CXKd?R-AzgH>o<-YGfvQ^#o9(WKpbJR
z)3w8~)KLfl_ViqQ^8l6@|CLz>0wKX&CxPb-nGFXqDg6zBENnsIlJ`d;l4Z@lT^q##
zz%qykmr7~3FNnAH9!{4%-u;_6iKkG-qr|`PITsnpgbGP_*Kkia=QIF2C>6nZl~~VK
zsMgQQJ@@>!fw=sIRP$9Y8b=yt#HZujh+bd<{$RE7!COr=u9lRnN7VaHt;dbyjR8eG
zP0|3&82UvY7*#(Klu{IGuTOzOshzs3ju-XxuRG+Pzh{#JRoI@byUGHkdDWUtjxBt`
z?4Q%r79k2-JO^x(#v@b`-(V&Z9VzRQZJckUSM+uBn!%)F7-JDGxqY&Y9k38LmQ74w
zkZ=*CA~(m|!C&^Oi%JXzvIvR^W+@i!8*CbcnW~5HPmoki){P+R*CqGo9*h{SaRrUO
zx}REfrPQb7le}?e%{(LMV!n#|eJVtZip`p8EXv)6$HiiX?Tl_qbFz%zxHH*fwShL-
zEz<G`y<aM#hv)`DG`ZC5-#4lE(OfvGU{eoafYj<8gMw}I6b}ODX>A*g$HewpUi(__
z0tY<6BB-sleA^`N5;k?gToOtd{`2X4{0zxJ==ZpSX?q{wP%HbridzoJf8xUwtG<C4
zczp}5<}Q~R0guDG03D{!lH<p$8z7d(fJ*>wv#sdx+Jc@fjL~}VYaYd~=iHB|S!Orq
z0dfgAR-x5A+Z^#U5k)jVtNt>o6Hx1^E{d{mZa;^8+QY|oaez4Q!qxk}%Rn1B?0m0D
zesWeJV)Smcb-Q(2g(R?C<d*+X#O|VpS74zI6Vwe^nh8|e0ZAgSm9ZvzXpb@-9aUBf
zyNQWr<5%1tKpbzHbL_aVE#Y0zSTSiD%`L;;u$T!nRr|RM!2}j9Bf$Hr<;%CrF1Agy
zs_U-&y4aKQ4jUG|q&QD_V?3JrPiG&1`8Hm<uMpu!#O$W|>{S}mOIUm1f}<nFd}@D9
zk#x^c3xTVkRXP?W@*kjG*p3*`1q=O+s#oMqXY~~0Y!1GwcgLB7w?+F7<N#_@-zO4>
z$scTr#G>wZd8@gBuz?s{v%kd2tLLZh84Zl1@Y^aC!C#HA@;YP<N}EUeIm7-n_0_j&
zKB*nLEjs--#!GoczDcV;)v%a55h~xm9yBOAK8RnU$_DEcFne$gXHCa-SFoIw4jur-
z!b%}DrYwl{al57u)Jn9aUMS<v<=|p~GTGtvfECX`cl|`COruB_HV^^KGELX;tHyd=
zR6weDJI{RbH8q(_#!V_Q^q(z!mWF^EkH|En$fz#d^RG#!(0NXV?$!Dlu&oTj@1e?9
zv+E9$L*+XMN?&zCyVl2+--gEo4<;Yp`48aGDK88IulF+&V=Y=W4vxVK0Z(AB1g8Sd
zPjj`|ybk-!W;ICogcrcOWvcz5e35!}c`7|t6G{GVAfKeOaL%8)YJuqnVWVaE0VpJM
zLri=1WrjYP>wq);i2?@=8EKbQc&J>}3u$*)6fJsySQ4G|RGF=UaPr>_P<wcM@y?5`
zRpr*4S<GmO`)fzx1EVYvvMkba8fr7OSLGWU2>Q|LQ;Ho|gn2xp5^l&mTb&70c6qqk
zn)oX5rJGS13h?AlPrAX4e9_2sgmuD*8KUafsxY7*zO6R|Zs69`sYyIUloiH!gK3s=
z6ZQW><j+_=$6P&7g>cCVl9t`Qj(cOAHMGwN4isK&dH#W}{3TE8{=gC)n05AREOF0$
zlnlAo1@Aws%4G<w9B#Jz50K@|^2Y!DHh^2_644jKzS0q8Ew4PSAr0lJ_PLy&X((Ro
z!o9LiF43C$CZrfEEHWB7oiaFN0b&wq)7;2xpxEkrbf)ES_*=1dcaKO9mtC<6OD%fy
zvc7tzN{Q;{_SlKH_cm8f*MOv477i5oT8@lK@0iF_J&C)A&7PzD^;KQ&mjvPh4W$Z>
zYG(J%Ik&j~E<6?4R9)?VPY?iu5WRwJmxICtleB^bYHmDfiS|`;*3uQR$zgK$?67Yd
zRWz=<p*SCm0GpZ0TL=UADSz0zKh37)E-!Wg{>1qOv)=JBl#9Lb@OuOaS(D>`)t7}K
z*Q+&>-=s?&73)VM6xf1&d>oWZ!9p1i{5acWRH@8%A=S4go@%R}_k*UbTa&$47)4lO
z)*-Yg%8yKFg<O2lz<$b4nK5Hq!^5@7@u8}m!gT)u`agTZ+hW|b`0`2ok_)}lY$HW4
z67xpSswY2p_BI2#jA~I)CW4!`FB^Ee)TAzAC|svd88qzE%^-t4V;>&Cr1EousRH6B
zLHp?ZD&v959-!Dil?}@>3YBPG7(7mf!R6U8<j9X)Z~IDYvR!Xn@E~H}<Zg{zXBhUG
zW2}wC64>rhBB$%kE)Z<!!7pcSgwFAt^?oJB(%;pu)f{>yypKFQ5oX-UT<~f#*I&eJ
z@o>IyX8A=*x*Z(Qn<fS0R@`<tw|-luWo3|x*gQd36LQ&;$OGn!(5c><Y}xQ09#6~J
zmcX(8q17xi?)EE=KpaBAw5%xupd4QqgmZXDnE+TQ81-+?R^E1JQY6v}E*jH=E@XV}
zFBL$})wKdd+p2DF%4N2>lbFM<A3avb@n{54!J|HwexAa1EQk?IhSNmcdoQ;q6uB2a
zjGXYXkr#U2rM?VR2*h+Pg)Vn+{0T{?doGuK{E_C<^*&adCj%F(3CCHaR)vtlHiBOU
zz6`Yc`z1-MIqjitEf-<#DeW)3gres+`jdA;5>gYeZf|8;27vyYZ7TtN5lJt1pLYWJ
zF&a~u(~PUOI#O10Be|uIWiM!V+`dAGEd7~`kO#Ife4@V5_Pr$<yPBKXS1j!^NSaUR
z13MUqxq%YK{$<N1R$^n#op_8BVw}VvRCVIRs(Vt=BvnQ)$iJVJHBX-;b!%>T8^r*@
zcRpJIAXfqaORCBavm2||cXaE^J;dl>*>m`GV1N{`zLX~3&y+<TMHlMN1RC{^+#kPm
z%PB{saMBUViP>~S2eM$A_?rN1>-H8pq*ar0P37T-4v*Q3ISIKUw{C4!Js2Z!NL0ny
zAw=}TSemN0QQGrB!A+c^wY_5@$ETMXf!qdD&2m)@`ufX76Ihf1+T+R*TrVJvm4kBH
zb=C5))CiCi3$3RG;is0nFTRS6b5zf*HOpt#J@T;+ZM95~)=Yf>^27{#yK#qq8h}Xb
z&)~GOnJKb;-_5>HheL#_k(R-OJ&H7DO+}j;i^oyw`r6$!ZH<{mkcnISw0eYP0`@|M
zX1nQJ!(fLxX0~aC)$Y6#XJFJM+tbTBtB;CsYW&XZ&fK;lCQ*GOfq~^w+{yJ<UHcxq
zE5Q7+)x!vxc3pAh!E~vlg~sw`&(dfKqnq~q#ZI;uLLP-+bYg%28@V!JLy>*eQL$ZZ
zR;+(-+3?2dxW!FN*4MD9=Lba=8~7xCn8+;njc%^{lnl!O#on?^R*1~B<II?CmZe|?
zyAF4qRD?FHCxZVrclgZ*#YgfkR<pL|_8~l}-s_gL#=^hM3rE4hD%O8KE&U{YnI>e@
zjZewdX2YEK`(}yB!u6xDv8nG7h*2Fvv->^J0w{ICyI}zMs2Dh(NB8dEczF43(-l*}
zRT%}q?u3f&vdW?%lj3gPRH(37DD7v0&8n5<iLiN@Pt$MiV_W3r(*`qbKRyND%d3|x
zbVjrf*PZ2tBoxeo0i%*<6?t9lZ%v9Cc{{iPGV~jU(FTcxCY(@A><whKN5T)P9djAm
zf$%ru<+(p-3hUpdI;c`(`#usKBBw_O<!qM>11n|bpJD0o>Nb28h=HHZmKpSZ`|MnX
zk#H~&A6z7~!M0lVN?R9n=M%B7s!s_?MjX~8;*92#4F&_1WG;h30g}L!spc>8DuNan
zncNESvG?#F=Ra#nWVv4m`P{(!4rbTCZ_p|NH+V~-;oI-NqKyXhUFVAsTDN!|${uz`
zgEQgVqlp*mws$JZ^%qt0=6VE!ajn`-2@^EvzmVBGF<o~AMI~EO279f11eMHNytVpt
z6GsCu_WSyOo;1A(vAm%MTdAL{_~4ky!n!;Df%-G-l>Z}YBE)gD(N|D$ZdXg!tQ#hc
zkGIvz9>4#sZa3lD0z|caxxcK#g+s5@d)$!tO?XtOJS%=7kJSA8;+q(gr#1qTVR|^3
z``?i?QTTSJ+mY^%k){m25+Ah}chD%Vg|<QL4{jdt>LTKA%6sqcu&544%g64W7ZIU5
z2u--U^ds4gWC_KXqbH+*5_o8^%&D<cEQ^BL<mNZlZ}*SQnTJ@U&+lG+^xK-birAX^
z;k_+vS{{4kjWYl4UiZ1%04ai5N55q`W76{GPS&nZpx8g`&FnOnkmDMo6VVqknk<l9
zs#Gw2;)D_pV-IX|QPNbj5+f-D8_}%ar*9a-@PVxB_WtdY+f|1$P4{v$mA7Q1CHm=c
z+rv)XH^p#jg5{TIl^D9Ez-Y<Y>Y=aM7A`HA5t$c#BCTBAaEE0LMToG$BNUr0PpkrR
zyY~UtHHCb~9Z%zKGXt&V3grq2oidd)rJFya@$jgMWTA{pC;)!}NAqZf`1R#Q_h8@D
zIwZ}>8VzfCIJxujI8=?;L6_(yewp<{8!cQ{EOekY9?zkS0<Ouf!|@DVo0hRWNTK6u
z%YJF6MqXKcgyd{fbr*ywVcWi?Q|DhuwYMmBns6{X*7c<kkTLycq_x^j{3X1fMlErl
z(Y+)SVZ}pt24np*)~%-EDV<)T%K}%e9Tjwi2IA7+A8c;hR8ci~EW&&J$N{>vv_LkJ
z&jVM-de8AWUw@B&Ng=3f)3!}!r4hNd`W7QxTsN`y-c*x#TDu8%!q`M-zt5lZVgpQ0
z0V27_Diyv#P4`}FxC4}jJ@timYb@wu2OL{6TfD_V6&`zgL4E7HC_Z})T)}0)9i^_w
z$*5<*04LrxX86FDEMdQN={{;o^|dPPKOJ!+S2|PldhY#Tm}g<F#ID+Y$7w3=ntC&?
zJQFwC{OkR}XMjQ0GJ?G;D9?1}pl-9xcwlHWb?7}nKgj+#^~oJp7@k=J)egDl!#4YC
ziGKE^_UgRY>A3bCE=+4o8O36}zesh7d0>Z$5U7r3-Z)JWh*t_fto}36Ec8SyjZ{~g
zbt#ZrG2H;16-GIf$ef~?iZN>gSC=S1&69<nTH>B`dcLZ&p(75#{7x%z8l2G+i}kiz
z(gSo;kMQD0!z6Q&-n%W?l1LbSe>fQZ@*X2LGjiXy_eAJ~q~?EEt5&PpnJTeORMSD^
zNEjhB$w7amV<@4uIVCSM4FgPFxC|4;pwxuCX0Fv0>5ltM(CL>~oEJn>rD94C&L=BX
zV({Bg_oaO_=j#^-3)7l#QRGlbj34hbVKP7vkRHZ}biy@XTiS^XdMVR*Ele=fzxYF-
zLiq2Ak_=nf5e713Jue<9sQs~vhxzznVG*~0S1Vd1CVSm7^;n{~LoxGS9f-51e7T|@
znkpp~w}%f(nP6Mxc^BN&@5+Cf=iW5Mw)s}@T9DaW2cgsl?K)7mOr!0a;mX%xIct&s
z&ZHFPSaw}e<oY<i-W^^(m%ZfG8JXc*K{s<6ZqW<6ki={oOhul3PSu@rVhL+3GL$d)
z@BjQbv4m`6tGT_qAV~kZL#w}u8x57sn9%+dK;v}3P(v3&(ta3}+zCIH32^&Zpn@vW
z3hJBvwg?`yauCTdN!5uiTe)jY(Ch+cj`QQ1x?bmpzDegKsO8l?qXbA1SZgmdHMg%>
zIq>N&y5r2bvdBJlS%R|AKs9J+IRiv2dIKK<WWok5w$XMgzOp)6d0g4fpAmDR*_8k3
z+gHP}m_y3Zs=93_$@3ZCuKgk{eUlbxoK7L@J2l<<)jBNEfcHw+MZdfs{sqs-CYLeQ
zc&}eZ%db}IZ0|4f>774)opMl2t$CuJJyn_*Atn4N;}o$WL(`64VThx{_GGY(dQDkm
zO|{9%&(GR*3uo2cO59+xb#PT<H~*3%K;33Wmw*BHs(P9k&!ayR7CENHjogXL#i#+S
z0x1vx=_-Evg^Rde7pLvP5Nx+C6&mvbm&nr*A3j=wxRM5Y=r(4fY*u3juzdM*xfPp#
zV4!iR@BC?{eNa?esMpi%q#q@;!%9Op_b`dK@(qqe?c2X(U33e8RS3a??o`Y1$iG!C
zW$2NQ(HWu6z9oPyig)f&IKzkmuLbJ6oenfNq~p#sD@LRR##tHzZ7`BEPT3TSF|OY+
z^SKX;h^GN8LU#{KvxU>3VN6~s*R;6`RqM6#H)hvdYnpGxj-=>ccjsfHf*tIcUWZFg
z{|Bf=!#tn906^1v)-AHqBf2+0wau=}xbpsLeO)E2q0k7!VX6M$g`K4k0Kb(iOtc_?
z=5kQ({`7@<eaDS3$S|g{L^0Wqu^SSJ%RL^p$v)0XMoPilRNP6bj|M4$?VBi=6}L{;
zh$2cv<)*n6OPiSL!eRm*_4M+7Eb>p$go?4<vwLj;p!PK`$0qFOj!?oG>2|jC#-pyu
zCP%<dy2wo6&Ag8f82s~D4<zvvbX|Z(yx|hV%oIL|Unb<nR@}G6cM?HHIooni8REF3
zg@4<kN@mXAvMRaxCQPcVy{cNiSC2c0q{pW=ZCW}9T=_nEgpG~l@masEr@H06-Xd<G
zlhG}SpL#E-<M_}EiDdfmn8(3cOT33!(uKrhO=zqB;}}j7I-jo8`LEe`Xt-}Q`Ev#O
z<e5ltP_Nm$2)hyGZmHnB*?0;<$ho_X6hY**iwJ5l7$#6toGPB@uGCz6kAREQWp9hp
z&`vp*#T2x5b?~bl@O;fzCwI6RDz9HSGc3NXyOYQrWH!vdef2Hk#80*GBuwfCJVfZA
zvcZl>$Hskqa<@8U!aheE0?^hppvffu4nlEdv;hKToGeb78<0r9uvnXHi!<SGE1`BE
z*uXMxZKYXVM9U>|e+<PYK8vfTwN{99`eqiJ<tnq=e9fK>{ucfpfcLk}12(kqGh0it
zTgsOxmmu-)jo9l#<x)&5X&`ld?pqO)V%vr5*4Zf^J<(Pi?h0GsFsmzjDH8G5G5IqB
ze^Qgeol9_rB3JCY{jQ%fUDUBB<sYjd{|HJZuIMargEXdIs3+#$VaJs=Ry*4P=5Za3
z1VVGbtScMm=Xm|`sMU@NgWJ%_OG5!)v$Yj;JZW*Kn-1Sr)$>~kJtEBaX3Iv{SL_~&
zzHO=cfx2L_BUP||P^)`|niZxh=O&D*n}L>-3|5>kRTpS;TpgzHtlK+0j0&2*rwOlU
zh--lh42JZCFm_BdAYog_ax?a|Ic-kv?r)6enkO2b1|?|#Ex-1BP#AjRlV5N(a{A_X
z1Kl#D<Qvj!$_jnj>djY;PLfjYtiE|<S&--R{a6L{km|2sTOsn0l5n%fH+>=QFX`21
z1?t*J((QV0d`k(-iDF$HAmp&d&EjeOda|nxJ-)O<ME~-$H!CM`O!%Xk2R2VTlxUef
zh+a&;(;BuW=w-U{6DDT(-k+F|;SE9jIdUYftT{Antm*;w^fRB%L5;8V^C7u*+?Z;{
zDJ(L<Y46z=p}W>;6#p+&7k*B)P?dp=zyYC{oha<T=Gn!Y_LN$&N0p>@5i9Et29n+Z
z0L$Og>Z!P=qwRyvf<nS(E1<m6s+yUL5Ajf(5pmk*Qv{MK#L_5~92jFw!5&mq;hulH
zY3Q++1})!Csg^wPS{34&Es<wck2)B2NH$Uk7sI-wBY&fx-L-Ob)(=4Ui9`YfUwypP
zb53#Ws?M3pSt4u0XUnsR53&?=B80ikR!%9ti{uZmZpE-{g|WBt4k&gp#bHqpmW84R
zgVP}VWRfHd>n~ZbZGDL{e%>)Jl<u3}0}>$xIkw2vTdUu8t39iowGT!-j)>Qx;*YC2
zd^1@bIY!s*RoqIno;)ZWsw{5gd`L~$b_}&vcq#>;=7_*kCw98nG41Dfb~Jr`rcUcE
zRBL#UyJi=dUX8;OXHk0R6nYILrwSu3hKu=&goACISWwK*f<{4czpS2PYs?IWfVR4n
z)hv_hD;DHI0G6)F<+;#u`-)$h^<tC!f}!>M8UzUZMq$1kauN<8G>^X`!#vCuod#Q1
zq^3(OL+yp)EEtfIQ%zT6)9aw+LTJl3pBgV?1DGx^ejTlTc=^@H!F*w8Q3UdE*nQz*
zCxK-#ch_N>^;{n!AaY9M`zv>i0I75t;j!|?Rp&ltJ)YbnatR6mUJ8uLYm}&9wl^ey
z08~zZEdXLys3OFi=!^+rr-yeX-G47dP0rA-e0aaVZNCyvDk~7_l-`t|LTdbBr@law
zLy*Fu(=z&D(8vp&BA?#5wAkLba)+%7a{0`FWPP}a7H?bp^Lk~gnJnX5xMp2`bRGBz
ztH&AFv{P`q39!UxFv9GqGWUoasyNYU3?&!{iI_W0$*Zbbchq0Y#9fzX2`Brwy~oa=
zAOM`9(5ZCciRJsVJfAX*`%J?{03NESI_6bqW>~E&0nh13ZKnAQwY6GAAi(u7kH=|R
z&H9Gj!5#X-*t|tGN$I(YG!15*5f(L+y#&{qc||ocn-#`qU{0#cy{`T^N`wslYPM?~
zUx@!9Jz|7duDs1l*94hNb@Vhx@*nKl%09XpMx578|FpdtJ$7DY@}lHO#araV`po6P
z45FZ0tbk|d#M1e#*4jsRr>M=zmvLWNmFIK&XF6jn7dnYw{{wh_o7poL^l6bR?}gVt
zCTJ#K)0vhfQzC8GuRhTd^<Lz!b3Wf=>9B@=#@fm^C$($zPinN{u(||w>wZLIfO+4q
zKVAO;8p4uJMM7BH8VS1=1{};U>P{NkMQ+Rd_?Q|s@4!q?esIUSLg)L*_&f}aMz2jU
z1I3sv3}Mqj%hhr*!uKolP@f~+l?VR=@N-3;92*no4G6a{>{I?0T+_T^G<CjvHmZfl
zo}Txi?7<slk-H*>H4&(eMwx5dm5SGD1$aP%5f$M?qr8)yh<Liwi<?83F)8a4Tg$iq
zChoHNHEF-R;pu#<pU2<LXGrqiO!K2@;x9MnUxn4B#F~w;3(d5(+Y4%{V521o9N@Rj
z`EN{V@rSQDUi>&B*4WFiiK@Qd`sep*{f#-@Zm<7i$PAIB{zlv9P1B9!%kSe45B+(o
zNN%QTQ7$EB;aB0@zPUfmal2Oux9TYe&pSBYtIgS^f6_RD+2;RBxFsq-;XtB(KTJ;J
zP+GQs@Mz(~g4*O?_!6nUBs_F+WAdS${}SdMTvh$(sK0!&q&&~D(Y#0S&eg{Ee<HnG
zjulz{&Sxly{XWzBD0bml4lUkg(~r)F5WD4<k2#uOKPU%c+4uk4eHtcu@v2+-NLy+H
zk>8!uwk#Y-4SP~cOTI+#0RHt++6F_{xw@P35ToFKqj%XqsFzHz(#Arby@d-bD?>9r
zAQpa2_x`)_H~Tc|$EbZCDO#j?kdNF)k^7R;mq6sl!4EdkKd;A~>P5Dw{!YryDJ^@H
z_;0KBUe20f&GViQkg03cTHbPxP~1e(c|B;C*7x;MNcAM@lDB$6BHeT?MsbtCqKY2W
z@P=8#1#)Ixf$|^=wdHnHlFbi2+s%*U8wrchpR1`Fc^{IzOMONXFPFK1m9*EiH+=US
zsTaHZ9`VMEuOB~;VC?NIlH`-#O_z~^G>11%_E6<d+#}eYl(Keh#tqAS)_#=GPo659
zg<vnM<0;SBoUSwBCdn;Nh%v53((EjY=H=zs8<$nF3De+5L;&RBFbWS2^$Qq18NQ$8
zj=5C-S}Ch7d;OcHuhvqaus75VToG893<4rXe3ic28}4W|H=)ZkR*#jWPH;vf1UYgT
zujm1RAlGM`%B=BeBaKoEO<4CxTPMpN<cAXb(4{krW6f|s^^Fg~LP04KmksoAjB_l;
zv{vv!&eSm*F!|9znW{NR>Vu|qU)e{8rf2P%ZS!3@>+23v74ZsiRb~z>&q&kud1#$_
z{S0NsWUfKo81E*U{bfe!9ZUBDfv2_8#XenI^!*!$g*vAzbKQO28k8Mj;T8a!Di)eC
z-R##@w3EEl3PsDkk~f;?(S-ZV9mkei<9`rd)cPCUpK3|9lLp-|{>Z2pG$xaYGI(6=
zHCr~M^w|xM`Xx+sZxw=KtfMkwddrvD!xU+R`Jd>UugxNVD6}mX;80>%{w?XDMN2V&
zz@C{;0_FCzk5eoR!JP(sy<Wr3Zq8L?=z|?oQ-y9WEG<~()z$o-`<ki=!#s7%iJ7{+
zuaeEJ*G(df0byQvhG`b!Le>{|=0FaHxmlue>Z^Xqg4HZ<LbkxmicrT`!-Z#zt!36W
z$IKViIkURSK1s#)3a`4j@E0BvOx)W}jJhCa-uh@kQD>n$RL;4$u2H$|HDA#aJpe#m
z=hWvfrQoxnYh~nWL#-4%gA%5aXL2a<TNzy1E$J;;H>^FLq^Tb@-U2*VjSnGL>#08!
zsh<X4x7E6yeE^kbOrOt`8444RWlr80QL0%ong!j{77DbfBWs8@^I`2PZB=@|ARtIB
z{8Zv~AV*dcp7F--$x+g0W423C*b8TFMzpBQd}Kh4_n7H|@We~_b!rD|SN&HUg052b
zAgGOn57TuD$G4^{6F7LjtCVr<l~MjGz^}UI%;j5F%+JTgGQTpConbmyuIUkHj`G4E
zcJ107eSc*KKMa68takMDuT*zqVsI8%e)n={yU^QCoY@AC54gK&eeGt2y7s;Pd+R2#
zOM+C<L<&yG{^_V09cx==YPa%&u$5wgN@k^I<;5E@-5>cTaqKq!%>9I;-eSNww$mrE
z;gECYPOi!<4yhRe84s8b6I}Q``AAXjI5=DY8n>7IJI&a+FDM~l6TN-!GC+Q^du~pu
zPzC%+Cc7Vyk(FTbsgbueGlJ<~v$B3BrpKSEmEEH`(r46M;cN&J`t4SNkbz%SH@f&R
z?<O!D0t=;9^TdC4gRj8{%bUjzDh6-Q5R@KOajWh0(<pyb6X6}DtlK9PUh=VyZaC@I
z9UCq&Gh6n^{{S+}uhHtRf1ZglfTU`fF1*kOJ{mC;u{$oo`rmyMcClLBD~AClx}c7>
zb!KQXw0YWPLJYheiXgIfEhzx#uv%T2E4=x({~`{Bwyi5u+hGY4XToX#UHzTod4JMv
zMX3Ni9+TgbzhGXj=EC74a4jVPQl-M;s|~mgY<{RHGZMNdt^Uo$0iFZyso87eAWyGb
zHk_QxPN#(k>mv?`?2Pe1rSEaG3zcjvPDDY;+RG*CYo_hZAQypibK1gBck?P9ZuIJ=
z5^=`d81sSrZEQ`TqJ<F~V7ot9LG?hT`H~k#EsxYk)Pf23GjY1-#oM@wBx~}-$gHCQ
zZ(||yF#%6BH?F4^fmT6bP+OweE;^zaoR8hVP{$OPW-=N2EL4?c5knx=_QjEQ{(Z=;
z%(}fQW^>ZArvs+o>~+`5C1x%BS3dIIK8N<JVDbu}l4e<jpMd~Be@*a?=;DF+Oy4`n
z@~V`4s)cI2*<%NDn7@^<7AY4yczNCn8gBraEsf=4$Gaa?(ehK0aYNRC4A!|g3OiBe
zv7r90mCqhuis6b8S;YYbNTREdLtnQ~_@|f#EJ^q6C`3pu7G=(RJ<yK2FosiZ3xLoI
zgoY8icC7>KSAjUi+ttr~Z@(hCr8D}^Wd<&M$PS+E)?>hD#J>;rS&Ic`YW<>0s{7C^
z{O6K1li?mA^}Uu($y1+upSai^LZ~cFvfF^iuO-9os9A4UlMGQO$>vg6bW)Rei-(aV
zNeTIT+V7gi2{FLFDT#v!s3MZ0T;DlsDF_HGiH6g`Z~Pf+7$1E}f>Jep+v=2cy)J@x
zNxq5Pa)esPcrHBk?+KK>9+bDXRfMuCH1vxOuZl)6->0;&X>fl$Gr&##eEMy-#W|>r
z^Nh3lZ`mbJqC&4&{SpfJMa*5e&@yJWP$rpHJM|iBlrdeSgy<tGiP`mo#DZFg`j;*@
z`}Mnfaq50=Bt@%dp*)%y@JTRtFA-+n_rfHArcy-Z?uE41L-35OU*j`DVUfAE=t}y|
znJqr6yAtEbY$DEHr8r$S)sn|WyLyYBHUE1mWc=D=rTijL*@OQvT9F-d&nujsZo@(l
zT}Qp1<`3{oK=A{rN@v8A)ZogF#^hd)`CI9F@{4N3nC4N*(#s+gWIs?Yf!yh7%0~n!
zgzl$3iplQ8KyTTHsiiBi{~RsxyrYNBN{T5{>6fhJDiRrk?|e6+GdCK$aI%j4h=m@5
zJspE!{RHjxxRj@5nSo*MKjYR9tBxG<r5o%Fo!%CR9YGm3e8SmZ!m>I7ED}a!GG6z&
z1hPs2k?W@CW3w-DYpwmZy`}l=1ukV=yQcDXfLxboc84nw7N>opNUpE38n`8OwnN=%
zCxgFu+g^Gyq@al9Ze9Sn2j8}Csdr8g{txg(2s~jAeX9%zR=OUlbx2-6&(;)RWwy{J
zB~+6$vi9x)YzO8gndO|(h(?r#s`Ax8<9LK?cj@}+@YC4SioAMaBn!`p-&09CCsOhZ
zIqE}c{(!=|VEw!LiROiUr>X9)S}p?yi`@sm(IKn-*SShM@S(#-M};dyNoI9JNlMgI
z^iYqt#muO-jQ`A|DSgjkw8YFjOJo4O1oP5NV`XILNxB+(<$nXuKrp}AbGR<u-S_%>
zip9M=Hy|h+gWnzN86#*joWI6ND$2RQZs#@4UqTu;LUIpd>s>~qRnhQy3y{RuH+oh^
z-Ha2DyVAMZI@GLknu_g0q@CY*ZR85%wTM9{AP{&J*XmKr<`qyAExU0&vC_GnRT+?w
zioE*wtR)_%(PtT`ZVneDw{R;C;IWXLZDZ<dqtp;8vji&3{6O@sa&R5KX5{0XS36I!
z(HF3SP*|6Kag2YS^vQ@~2qY-yKD5){132S2>rEiCU~mUO1xnLmo~&fAxUNP)IM1ax
z;aK2&yzU3n+L#kOkDKY<qyh3+a0$rCt!`wy1Z;j%6y%P8Rlx{3U4xbS=A%!Uve^eY
z3@Xe(EMc*e*BQlSE1SU~$rCbQkh{36P!A(3jl>LOj?~C_JOTjZk<D8G2>{*H0s-hv
zVA<BAb#l$5`*x^9(BnO;Ue@JPA2vx)K_0b^jpY@|!=7*tPg<VdQRWPsXOL@1HGK@_
zey2$V+HC_PC#;_JXi1(_9iRf-=DGNtix%C6ZaVS#R)iM|ATCH@80^^R-nUPwlS@?1
zH!AE&Y^PLi{{TWNmD7Oa0lOdFrAe8$WES+}6$IO21d!fgIUL{*V^*hQnX8p<pE2Sx
zRAU(Fk7~xdXI5n=s2L-XpRH)l&nD(2LlKTgLs@rRlN%5^_2RYWv6n5%6Uq_Tae^>8
zted%rX4r5s)OywH(5h6AloQl*SyQR<&ryTUJ5=)~3ME^KvM>S9eD$hs+qSP5&wpBc
zrI_-2bCFcq<8KE5dit7%%@Jg>Y|q{&j2}@$zsZJRF^pi<FFd#^$8S7-G@fSD*ahrs
zoyT1cl`Sl4thsVP!ydm%o)hwuk&O54S#ex)32gJtS%T!QKp{qQIO|zX4CsXP)YA+`
z0X%`*y<0}}6q0zxFe^GMg3+It6Vk0Ls!(D0UPwN*jFrx)zQv?PzyxkAZ~*K0)S^J!
zc-q~;{u-|p!$=4Os-EJe`Pc!&5OG+v@2RqtmV|D*<Uc<hs)fh}u)vTyVy;WOAZ*SL
zARd(k)MO~yagKl*xT{$Z_0*;1<+%kx?8m)Cuz7^5a6Yv=ChwHDBcFQJ(7ZWus?8c(
z#$B0!#@zMxuBa_eI*!P1hkQBxr*#x<@|Iz@Ae`6SzW_c8+1cA!y`G;H)}qpa&pK}-
zj?3D(e}Ml03vINma?WXBd#T{hn8Gk)R`mBZ_7}q|$$T*^_PQRCH2SsFo@AF-L<pfw
z`u_kEW1tnJr)`fSr0(o{SAn#NG|d(PsY4VOnAo^Lxjw*Cd|~6?4fqF7`&PMs7?BUl
z1Z%n7y8xrTS<wcs4W!aYkxg>LaGvF`3m)FUSBLye_<bg*w~ejpu-r7~bZ}UsWMJ}h
z*biF8&FO87td3ve{{Y5Y{{V<ud=Th5I<s6!<*c_O&z1p>sTlcHz0XRy@R#;=xVqEY
z>s;|0+Pr`XZQ3C2NBhT)eXCdDFM_Nzy-q7lItPx{A?A6qIca2b*Bz_q%{M_?Yh&{H
zPQyN9V3GOOkat=GcR4%l9^1iw7+pV3vQ{?e2)wwBc8+`3ka(u%{{UFqDyrYJ4B$(E
zG3j2X<4H8TD``%ntG1~lxnHvxcCJ9+5IX%U=8uT_q;OAdaMzl2Z7JHZ!7kQO@6V+~
zrrRf$`<UJ;llu-6b9Z4pJzvR;Z$D54QPaLBXu7P8X>EA+EJzOoidBj3D;|H2_g)%l
zZFD_8(-JNOx{4W?;Bs?ZPMzWF-yU2|aVD$%oFtUU(XFtKGRLV6*A<oAwSl6wtj@Q`
zUkh|uS@kPRxun)6!E1FtAzwm$Y2OKB9vAUUV(-FFEu%0pT-;5#@!TjMrDk}4!nRsw
zxfP_k`^|A0=OaE?9{KO@S{^2SQ%Al_tv6KFCWQzdWu=$O2eJMyty6Mp%!_MucfKIF
zzVUXoEYSE$&MRRcm2NdCaI22N2d}+skBpkPfS~iW33MGn7EFDP-LO<2;R-rcPY!<4
zmi`#Dv4>XC^*v4k!_2w5jSwC&(2Uc3L*S2wKO8kr?GFb_C62cj&vR*L<R!`Oq#iTx
z+M%^2%Pkppad$^WKkXsmFB>E}Uah3ImeQ`}nI!ph>?_6oH+(MAd`D?>t?0K=-WXtU
zi1=q1=-#~dtNN$I&kyML5?X7T-jAVbakkadh3B0zj@idU?M$-pz4n@t%x;?h08gGm
z1gJ0o9R@y?DY$8SvRl8rm5+k2ZQd)FNteoCa8M7reJO@9!iUHmtL)zv{>ZWT&h7Ob
zBK{a9oA1C*2t9L*dRNcC5Pk^iz5|j-<O?taoygfde>&IMwz-k(QN_YZMV?~OkeTQ~
zHAZwKb;02J)|`<I+gOqG^{SUD0$~Uvxjwa&UA@+Kw4SKRx&vzu$Brv1=}TnfZ0svi
zf17YTR&~Oa3{D9-;CfeFZtQVQ+hZ2s5;_sw5n0oPT!WmR{*|wAzH1TDy*(=~br?B0
zKDE^z#|)dfoZus4?-t|QtFX%vyPRgHm*gb%6&PMJ4o7^}*VM#`GBKWW)YOQ)j1IJ$
zGH?j?r^X0AxIJm?E0!(CBp*&IPTU4hL+j~T(JFz1oR0OQYRqwtJ!uTvv3xKcdSsg0
zwQNW>E`85x!L=-0;j&1rt46|(NIkJq$Em++$2|xKjP^CRXu!r5&f(jfV!5kXys{4N
z2*Dj|TGn9b3aBm*T1{!GEa>gz$m_HYm^GnqH(j7_>OBo}@Z1nVY%YJh(zGqES9k%(
z)bt{eHZ<aL9T<}##@)EZOTDCGc*^p34iDj3!tIq6Kqnsf+e&8=Fx!kCG7fQ6-(sv-
zySM;jBphcwt2S$fRV8=~ah2^&nsOKBIT+6dv*)@jaz=5`W}}+>4HC;SL5{nRIpYGU
zn}N6m9Q7FKRVI`$IN*25{#8|^*nsai1Fu?7W3H3d=8?Dvcv3T*<Y$VCOTwcA<^Xf(
zYLi@o0){vP0Mi;m1E@Iz(AF<kW7(%R?P5!b%!+apA?;cBGJsfPD!_4?S!N7`9-o#f
zg~iS?c);U|I-Zi7-IYls<PL)bR8Clo9AtWWQn5KW$6oauna}mC+UR)DrpT3dyMIcW
zAY1|l4}W@Pxll3z7&y&O3Y9n+$vtZ(>~$&x(16OM47X2eyBuJR%bnh=YP?{U85usp
zuf#F9a>RO8O^ewwdtK+|18C0~6{7@xUm%_b89i#OF?^+t2qPa#yA*tnEN=jFxYm1<
zWR<L5vy_AKf<fTtp!ThcH4YAb@b6gmvovEn1F0D#{*|d~DviK`4guixt>Cr2h`LDA
zNmuVWp1=@!C)S?twie@%P6+g>5H{_^gS5Ba>Cd%2<s|G=kUL_#p{AxXmr}LE$XA|n
zKI!9{&v3+^H;++Qu2q@Xf>e%i>s4h@&<um#yA-XfGHpEyp*IE`u+LtZrVYazGB7zE
zYI6}n3Ft>!gKpMcndhgyHq+3-D+&lX3xIv8Rg~d+gV!DDL_{&l<Gy-|azIf>I3)3f
z;<;wiI%87AZkYS0X~r^5NQg@1PS*Z@wDpA>7%b#;z~ZKgAfTuOu{?i<E6b?tdUU0A
zbS=CJqj*3w$$a&z5yW5bZqFDUu~Um?R4S^cj)S17*3b|G<T2!d+PvvIyPfN65P4*D
z%IEI`PE_1-e!jx2`5-GWZR|T9)bAlqcrBI5#~7)0dKGdcLISh!TkhwzOo|%}GB9zI
z(w!6x%0XSoI$(6E%Is3Ag@7G#*YT=~ZP^$~Ni9MW#lUU3+<sy^Rp_@eZ8*>OfW=f&
zyEt5eGsqx{vuxzQQc!dR^H<BIjJf>Fr+LD=fHDq9$v71i%XdFH9SWLoA2;sQlbVc1
z0op<1H7Xk<S3Z|3$m*`39&yhfr7#ks0rub@m)517NsJCk9>DWd+Xr?t^9*6DrV#QX
zQhf=siwZa1Dsz@Upr~2=;DvbWij4_7LlA*_FQKIK0l*B+lZ>#%cg1u$8s^lBe1OVO
zWqanRNEaJ<40@WmaHDol7#YAdLgn`cBjo_#kZYkL97@j29Y@N3W6AH2N<${%4mN}O
zQ)C0?Cm<dJ6W8fTfn*^Y1Oc2?*%&o#39WE)2^-n7fO}Q46gC$*9Z3~g08ONVNa?n%
zN6N7y2RQ)Na%6JqIud=!!2}Wd)0IoM;(k-cJ?Wq7i*nySJJo~%!6W6*83Uzo)MrFf
z=rRa4GdHgwb;VkOGb8O*B;$4fsL==kK{x}JVb|WQBZR{41mgz+r(MS1Vlfya8RQ)C
zQz%%^R^uG^G{%uZ10<Yv0)rx9epW0w$jxsRbBd?Ec3Ft3schvt`qquR##HW)KkX6F
zcC5Hq`P(^<BRR(gw5?nM3F8MJH*@J-@K-$9-5m{(0U{-i(mG=q71HU-yAg*S2qTPF
zEn_E?6Dxqcj(N>=I&8s_aUMxM6xVE3)z3Pmu5~t2h1v@TVo%Dw{<Y9sHed&UFb`aQ
zRm)h*=3$0O=m$(z^}PE}EEp&m1ZSGF9nOX+UBJm3F}oebS$S~ef(Re2X2Eh(As=s<
z_scH_=~JZ2K>>h33CnR)a+Ep~G1%NMY>}F$IaWJ}<Iwi08dN)-asrI*J;$w6lIb3F
z1P!DX1aq3n%-%HnkzAe2xmS3>027MIxP&Tg+Kqve&m-yWSEZABH?cSdvt@M(K;=gO
zXQgK;8>lo<xJ~Q5n~aPCI(`+Mb;Oxtk^yWA(w&aewZakCj+KpjEK!EfCp`hIoUUx5
z`jJbJM&%_>RU@JGtoe~;2L!Mu7=G0)<@sc04anmySob=H#btI33CJCVbIIRhRJt&n
zk+cFbqjpF5)_v{5N55+oKA5W4x}!%CDa&WE;;?lMV631iTmX2_Q(0f3(-!P$OQ;24
zTRTTjbL&+`pbKDSn4Sr)eqB*X+&)$u_2V@JdZRRh<{*z=_0vrmP2BISue_iR^&k!h
zTI#fm#&rq^5_;E~={k=iYjd7>uER>W7y+LQMoILp$h+=yOUU$FE3{3Z?TnBJZne=^
zUlu6k$j8fodi&P}VL2}wBLk6-t#r0mA=f(<N#i8qyOTKQ+Q(mQsA53;0i0m-TM=B9
zQOc^GmC4#%FO<JKF$4q0QCn6G&Ku?g9(v=wXqvx~%_NPrnnHz3XFW(1<w+F=N;eoI
z-k^zci}T??1mJ_sOqh8%!js3%PRN#?g&Wmf>KOq8xI7xg)LZ2UFvkRzKj)=yU1Yf=
zV*@zvSQo0Qn8^#%cS0)}XlRaaQE?z*asg5T<M~%LbN~Shou@b$>0K_QS8?+22sk;e
zb5dkd6J}dE2e}@#gLY?PXFaOKl14&hlr95jlU&vOOk+lkv$G?f)zn=D4S)&*k%8ao
zSXYq%nG961=tmf=S~ZEr>Jb@{fF#CFO4mPgX^q@%9WZOQx`9)6NXu{t?N~a6m@?tM
zY;<p0<d&yQdz{<E0+t@5+loSkenJ-`kaJoO0cXhQI*eoyOj}iEW-E_h@UC|H8ri*y
z3kwomw<zt7^wAz)Ad`dnRrziDkgPfD?Ny9hTx1-U$Ue2E>p?YZ3lZ4k3%CQFrl&~`
z{{SowF_5(AqXBYG<Lp05mIAHw0gy=taIEFn+BZm+HFLLU$Rnw%2sW@#IRlbA8dzdt
zrA|N}bY`b(V1N=yjE?<5sat4ocXA>`0G1~>=OZ;{Ad2X$69XLo0EH?e1|*UR?mJQl
z$Qv7idEJhlly9(_u_8#S+zvrF$?5M_Vci}_1bg~=)CNB-;|B}~9QvAkUpbR3!GR+u
zj-9IcpF=ja)Y4m}G4ILT4o==qDmktJcMG|PKpXj*t(J`K`<WTY=tV-;JCN<&yVIp7
zGL=5U&o0hFu1{LZzhZYVZ<iSW`qi1P_5xJnk($oDxbqQ!$<IJKRH?h%he;G?ke26x
z-1=5U)9*aEBh%KdPcG0i^Bj8c4N#p}ft+WlBCSsELOq?CPUUkU$j4ww>r`gJJpdhv
z6>d?x7{hvTRc8l+$AQ|dK4M%-@-ZBO3j2zQt_Cxaoc>hVh{FNfoK;7Cq$wFaO<L||
z^kvxYFxbXD>hun!)v?IV1!1g%w<o_nYTdNN63xLq^F)*AX$J0YtiY)2$mfc?45fy7
z_N+*zBz^ut?^=*fSYsJneKB0JS7&@SH6WAZRXGIp1HD`WJm+ceS(fY-KJg?D^?VX=
z*xXyMJ*%2Z(mJB9kn4=@Y#vYXRcAohEI~cUt8BYe5IF;%OjBckK6-ld#ZpSwB5Ll%
zXf0kw#xUJ7J6Es#7w}G}t?H3OV->^CaD1p@kE@>Kp2E350eE^1M^uF`IEkbSCdJDr
z&u>#-dHf#m)E*1ebZB(jUAo=h?<0gLCf*WwEPE5z7113P+2mrT*Se2b_$%;jwBNH^
zYQU?+s@_x)?ZNMsHSc#mAGfrV&$YF*M;Kq;e4r?)<ehZuJ8;)l&`1LLuQ3BYwcx)P
zZM6vXvvX&z>Kcr5l8b3?7GsQ&$m%mna^?7SJoObHi1h7b+{-G(XR2Dp&&gPina6%V
zO7VXZ{6fFIzPQq?Og6$dDLm2@cU8||GmO`r-haZ!vb|Mr54E&vqA_uEID|UqfE9VJ
z_rjhQ9vZfP5qPz<{SMCDw8GsSAefHipPkKNCA*R<bh%FR!1tP8!~H3>eP-g;#1$bP
z>5E)R>E*}Y@D)qNpBr_H%Q@21M}03&Sej3_>ocvpPCIN)xczI+b?=E#>Q8&(Z7WK%
zBHVeg>bl8qEk{5j-TDO;<C;%}^{<cKJf8bj@eJCeS>JIii?Jg>KI)E$DtXmaZib0+
zp`If6uj2mzi8{@$k>R^_o*^Mu7Mb$n&sTXmpU$N52ZAiTHDNNx9j2kHMIQUx>6n<~
z80I*}d2IJJ?iN=*2=LaM2ZB5+d#6~$ZQA2i)LuZZ0uD}Fu*Q1V%D)#sX`c-0H=3S_
z;Egz4X%-C84OV5!+_~VDUagb-Myi~t$4Kf!jQ5dGPma%4yl1$(^KIY?BZ?9i&2~Fg
z7rExWX2u^6*k4}hclzC)l^&S^ZBl5P%rJ4EDLWYm<J!J#_)DbgSDO4jAk@Rz=@uLB
zrJmwFtGp@L0qKnP70Jh`MWOk(x~`xuUh?JcrFk>5W+b1+l;>nrVxFhJ>VFd+Z7{!v
zbVbp8GYb_umFfn%x;g950Aiqv#~v!Scy%bXd+YcR{{Y9dY`bxe0a4Ib1E+jwwecLb
z_V=v>Rw$T3Dt_#Lz-!d}F>QM#h`#W;=~rd2l3SvW-kfI`>(a7SVJCK9BiS9VfW9+b
z>-Scc8up!N*79+(ctbN}<E}WbYt?)wq-Z`FySMPqm7r=jjvo5!PugXObrBEl=lHQ+
z3-GJr--j(cWpiiajRHLu=EyS%W64Os>A~yI@~)pq)DMUJO{`yNI?TGBld8L1G`B!*
zJGz6Op4F7=I5v~}%T&3yM<4Oiz|!4WL91+qZ*=k&<6s-63_eyT6-&Y1AiA}+x3-y{
zNKeeDPYcI-($+4oC$PRtnTvV3U!AfFgTVYNjFwxgO+CXDLI>U+mCZa)Gg=)H!!;Lk
z*}N&^sI9dXjpN$R`Q8`+7rs4z8ub4Fh~EUX&xk$+o>}yym4caKyNXOW$o8*`F173H
z8`x!vRGF4AilunQa%<@CfnOYFghywpN>GkVkU{`^W74}JUy&(pjv3PLq4AH#?}1ld
z1Zi$!o++6KRanUxAB}ia(~dw~Wd6SO`pNN|;bpJHn+Y!Le5;r*AS&w$Zt|FOzuLbl
zJa3~-;m;K6dR&Uz?WQ2J<Ps~k-qCX-rwdw3+?M7Q!wizxY;nhW&bSyEJF<HF)!C$O
zc*^w1?NnTFM=j`mt61K~@@7@R!7a3sc;MrT&YS{y;0|j_VYskS&(^c&QrSItuBfze
z$j_bm=zRdFHsb{FGt#WcI2@7fP`F+Q=j&Q4vm1~yWQ^wqripf*Iu4ZFV<#E*^r;Y>
zk(#kvp<*7H&U<rLt=Mh^bM4xxM5h3D6?QNbuF=LZL$d{RYT6%|;d*p6uWm>RKf73Q
zJ8)FsbjB-A-f<=|k;i(LR_67q5`dGytth7Qn}hYNI2hmna0g#{(1KEOqy`^amwkck
zZraMAboofeb5{~$xNRGO90S_1QNCO$12twdAV4#N`igrIxw5ya6vkAyuQ(MG-71zl
zP5|gR6+p?iZ&GoBDkJg|%2*IOdeD}GxoTPPfpR(yqcuk2VkBU!tCC0^sU?)R%yXWg
z`qe2Jfn{O{$Lm5&XeM?F0el~BYPpnxSbW6hlXAOtH~^2vtCu(dTb}r&(X@MyXDT+6
z*V3BO0N?_8bDCt2y9BT;+t#Yi!T8QW^sJh(-%6#diKLLA!6AX<W~ogmX2BtI-?b9B
z7&sXnvrtI;l!5>Q)1_yw=cuYDr((m#4?)dCg5(Thu1LFi+t;wF?3i7^VTU6%&fbSy
zDGUgE44*+#jm*7pM{!9Q1QJ^q^c5s)#~2_D*gRG(+hftEM(Cax%$x$to@)KOj1@Tm
zow@X?(E=kGAaT%Dm{C~<Mm>#VboU~)8*GcV{{ZU>oE04H2d!wMAOV75x*tl<whW2`
z5zSkKg=XVu#~9|S$nlzSEkNOzrro*z=&R66vnWUloC4iNW+VA!x)Iw4ny|6)obBh=
zy=@Kd&Sq>!K0aJ-+T9kPEZ7eq`El8KJk=-=;QYkn)4fj_CpZU#*EQP<SmtT<86%?t
zgqG*%YOMHgyVp4iI2CS4{{W1Pl{o-&x}&&^yozuD$lzB(mX{%>%G=57g+E^OBqM?j
z+;9a-W5bu)SRQjp3}HS}aNR+nzUF(e?1e~HJ4pi=rx^B(k+VEuy=lTi`N%l^YR8rs
zFU%z*Zoxf1waZd=HiEfXBIE=+J;1A0;Xo!+^An8w(6JLT?F63S9xCinFefd`ACzLe
zdXjC}^=QV*<KcjSq~V;M*m|)bVUx5m9X9r)SeyvgcKmhYrCEk41U&QVF^pF$Z=u~6
zuBB8%xRQZ^;L@rE`JXxH2WpiQYwb>0jDSs8TW#^S2E`{QJx|iAF;ZmCe5+EtD(uR{
zfSm~LDs@32Di>)4@&{k7S%xjl3Xl~>7%=42$s1(gsTlO+S7d3l>~T(_waQXP=@<ZD
zuUzsmQ(MKnC_IpIa4>4%iN0*-1P!MgRPouFPUMSuaq~8DTe@A&e{0nhL~cujArv<3
zXMieIwv?~jB^2;|v6|G1$jcX&ykSN?ewBP_tsH6s;1Se}kz0Eux<q?h?sBr*Glsz7
zcq{iv{{R}HJ&<`r1pt*lDeYaW>8O5E7lF>+wMuIM#fVS<Ba_Ek)l)T$?5xf}+c6`0
zs*%p&%`vSEzF7wiox~4X-<MC2sSLSJau=zn{>8KcR30!C)~Yso7PUt;cWy|=c<6m=
zI$hB&RYwQr2D(eTCutXW#~iZutc#e?vnvdYj-!%l?Qq)mGA3oqH{HkZ^~G1h2PK>3
z?m_9rUcG=sq?Q9L2OUjjG>l0|#xuw`$j5qDxs;X5V+FtjfJO;Zz^NU~Q4ze3eq4;z
z7$t4PkWP6XwO}y{PScWl=clz~*K-{bCuy(|hynT^fAFhO-ZBvwd^qjv_|{>$&eBFk
zazGtDs$`i;k^$i39ffjAD*BeC)f#O!BL$o0W$V`zeWA9TfxG*l{{UK~W!f;KC;;ou
z1p;PvBml*_p4Bl-mh4>fi!kZNa!2y3R_~M!TaR;DuuHfR!u~xCT(?mBI&Q(h_pZ2l
zoKto*;si693hm<<`c<1%JIO1MK3;k+y=O-IR1MkBRqvl#(Tgsnix%V#1~XmM(dX1@
z?rmFOl^NvlGsSM%$RcG5-*|OAS3PNll~kXYaJlbSZRZ>Y3ykBQYqc#8I&G(OuCurz
zFu>y+WcRLy!gf&4oGW9te+uHPZpW3Av;`m^U&^;Euayf7ump0#hP1IAZgpvTR#Y5d
zbsyHQ3)KK%tcR}L^{!eCLODo{%MuioAaVHA@mzwdleCYOu~<p;I$;)X{iAB_Vn-bX
zQkq4P0Kp}Cs65p+y9%L@k~(CLDx=;gU=DXM-Msequ6ao6j7<xfRSJ`y25<#tUEVWg
z6zyE~QNXG)U$YFCECD-D_|-Y}4Tz*1k-+C4ona|7Y@u>{i{CLB0mgC<9Ou@tudi2W
zkAgaT@H*5tce$06uwMMvKYwx#;H<1c`Mz#zE@N&+O?#-QUAb)MC*HZuLsekJVMqH}
z>+MUZTnlv^9OHmb8LoQv^CyfBIi}boCGN2Q05}AW!1p!JU+Sc>W`0MZ&M9>Zpt#6x
z`8ndTX5_XyW1jh_ie{S=$*L&?DJLzToBCC&E2AW&ILThkSPjgfwuUHhGuT$GjBJ5M
z0U6F%R>`7VZ>id8b26fpJoV{ahLv)|80C&K4RHEUV9|n3Ta$rZhMKP$mcSU`5`Ok;
zq7O?P(p^sbPH=`IN`QC)SRcl>t!4|j5xWiC*C${QELcH|^c)=5N2d_s7=8ZYx|3%-
zk<?kruN-89=s@Jw{iK0F86cm|xr--PP`iL5k&#>0l4e9DbB^ijT`F9sER$zPZ7|w8
zMsa|Dy^64^7ly!gIo;fv&9u2#*J~ZX<d0GH6+2x>SLJQQjGT^ZWum${^&NQrTdwBX
zLC$;o*EfB11dO|e!pD=zHKTiV$jQsEHO^k$Fk(z+0CgRWX7@B&85)er-zu)ntO0Cw
ztQ)yJ=2zSZ#sM91S~rrJ+_Cvaagr+@=0+s&HZUh~JrAXG%FUfI>}OrhNx>{xKo}iA
z3dX%%yQE;Hm-xEY%<Ils*K=^Ep{#r8_LX-dEC>~hjn`u$<}e~sQ~~SM{VOK%2g<=q
zIX#aCweAm^kGl#mIbUB)R(0phz>YhE&<f$6hfFnQG?51-c5=N)98^&tRy%tBb!GDG
z#{e&_BB4{rJ9-oCTy1N1b;a94gz;h`+~oJDl0Ar^sURNpr6Pp|M?Jx+(x`9=+m!@k
z(ycod^&nrEaui_Hu*0@Y;1GKrMKft#tjmMf9<^>6Ga~SzLC3ynHp_}uEJiqG3Q6^=
zEeSt3JPZOG2lS|I!Ei?7)SsAks|rNG5^&^p9cd`L=sV~kU9HNNUVZ7y5O!9<BzDg<
z{{Stpq@e)+01-TqPs=$4NCPK;IU<Lqz>|BGb{*e3F$bKUqNl-p5%XYjxWM{Ul0tmK
zPT)KH3U5=CA(V_9pVq4VNs44MNJ14O<{be!AXN*KzB7}!9;eo{_HB0Dq<W6#v+k2D
z%D*V|^{giCv9xtYJ<)bjs&YZ-8-rA3^9JT*3ObOdHFoM9k~0uNQI0B<kmQ#wjxa#t
zl6~1_E0)MBg&nc&RoO^5&OsG*kV>F%qo#eT7lX@28QqSV6;YZ*N}b)&n{slBqi!+6
z<KL}Qm~JITGoEWg<wzM{VS`j842t8U6P){3Tv|xvoNmn7f-7ft&EJa8xN?~aIqpqp
zPT_LgemzZQ+_INEeQTm8JeH(o)ej|!HEJmxn<U`$#wwF?#DYGRJ-U+k1mdZyl#Ppb
z`8YWsaBE7{_bx$f_2#oIS8+JTduFz*?bxmu;1kqV5{-`NY+kdCah|y6{EE_!IVE&p
zPQpH4mla;t73cs5vFTd2iMOj19RTZ!!TFtWPeEdgF$zf_9&#%~P1Ba@>&sN$#C*d&
zy=fwWhDLLYagO!1q*)m+5CzNj$86SIspxAY(z)!P1bicH4fxb<SIk&QV7Sgm99P(X
z2=oWjCb{ty<3!h&C-*q{n{GHHb`|0uv#*1m^2)}{$1wBcEi*Fx)$h-xeO0O7S$H=}
zl4z~gU$dsmXh^`3j|-Y_O&RjFrsp<mcy`UNMa;V7_V;oYE{gI00IFW2KjT;*6#gh^
z-X619VAP?$k+HE}4d8n1Bl*`Es`$TKeJ<w0D-?qA?5kbfyLD1N;)>urOX2H_rIPvM
zYwL(0AS)26qxk_`ZOy04pyLSNQ_p@Re$hJQHw|?6-efR27PfH=uqXJ5JlB)z{{R+l
z^*Q0y{6QqM0NGe4kdWTkC#TY*@wMdt0NOWkSxALgY?4G=jQ0vnd1kX?Hmj*bW|5_a
z6#*6dpQU4HuT#Dho6#PNfAM3)zZEr`Jt?J@-%5>qrHv46f-m+*Ku@Wz-^ZU8FFZ4$
zLE&!(+&z*7K`O?e%QKI>@=59KUR|NZFNgH>v9#K^mpN%B=v8|PCb1UK{hHr0Pb(Li
zeB_g!05tU3KVLHamE~(0J|fgLuMla^qCjLzNo3!7BqaH_j(@&-l^ro%UxhperhGNi
zbnR2cU^G)nzS~VwH%b?teHY%ktvgt;_-)|1btx@upuYipxvx2CAF{?f``6AsFY!LN
z<NaOrU1L#~P`GeWKY<m0x~ez=wC7tz0;4IvBzN9B`0uQEs{2uvYl~qEA&S>awOzKh
z>7FtN-Z-xwxVxWIx$|`y)tGU(4itI;*jAmFhi5;#2oyIs#xYkQ@I>Zaq!#C(6gj5u
z+0wADYYx$@T4<JQOZeG9z)ijDxbU0nDR~r{e8$T1B`dxLBXR6cr8~hN4ouTP^F+xR
zVUe71^slab0r00x{?12|HC4v%m;g_?_OCj%NH(I*>NpuR+2vjp@OAfy{#{vq*>%^>
zcHG3Cqv>BjcvHZU$EHS(I*u0{5IE`STmB#LjkcMnnIM5e9B>7CcAW$f`A{{w6kakH
z2M6A{r6k?@9kIcvBgS=a0ZVrYjV-txz~l0+17Gl~X#|-ecLlbBsb648rQ6%a9dI%`
zR~_RY0@`?r$)i;A$R&=`$^2_MB-njk>Dc&#UC?EQPcjrNnE>xR<2CGm0VB~bH8hU?
z{M)nOd1ZHCR38w$4EijgRak+R;AB<bfw5Y@iS4cK5fSBJ5sLEu-qqDcdh%TP{7oKP
zw0hsfsBgRtXqvZ&nbHMDS#6N*S(NoW*Ta9c<%N%oFV|nTw2w``5H9$mTzR9{KDGK$
z@l)Zo#<$?zs~{dg^A*(RD~^W0JU?ko4Xr#cd3tb?K_Es~9Fgr_!c8?LqC9$1wCwjj
zGYU@NNiCcl)D0VKE1YfgtMU-Xuw&Yybpg5qj;6gBwPVqe(8!V<xxmId<E>`T5hnwT
zS3@FiIKavE^sM`vZMi#nJ%wo()fhPTIr-NI2hywgd$Y$LwXHRvW*;cxsz{h5e+_Dz
zW-VBtxELMjRd$bY+*Hn;@q?bUo><R4MQd^r9~eAjoSL|Y1A~Ank{)r_im@AIfa8x^
z5d90*vTYy}$*n7LO999%dWy%05_b+8IK^sPzS0Rj1s1r?n{cIw=N;=-CJL$s6z76E
z)+M+vwC*7Fz^w=+DoN^3>q}yK8t}`P*c9M<b5_yRqc9jfFx(oU3EIFM?p~s;M$5tH
zB<Jf!<g(mLv<&h{&VR;+4Yh+D9-^4CZ`?RS2>Ef^hi{OmIXL8#R+myYD@>$+5de&F
z+Nnwg*HQ~{!Okk|*eprTe~T4bROf+}_3u^C6SFhfhT<EJ)e9#l83Vp*<cX317$U03
zLhdbr&*xdR&0<11A#;E_Q(Of*N$03jN(n+nGBeVnX30Ev<eHZgq7voQsWTpP#~JBR
z7D7llJ*rv0>Bu=JJesQ`b<h6*uBP1%)l}Y;H<&OmbIn(LD<NP>&uY6oYz9tA2N}gd
zCQ0BEk;V;q9Lr<wY16XQg>qSm1D=?vQ9x0<f%T>k7a(xmhow3<JM+soPAVH`WMGkU
z9J2sd9{$y7P%s(k(B`S6!AR$EJanr_+gm3rG1{<qy~wKzs}_)!L4kk=ty)s3yRdQJ
zKE9Qo<{!RK<x)i;#{6WH$R{6-Zxr6=%~y{rcQjRiJPvzt)~>}Nkx@u*o8|``R!lO3
z{CPRRtw>y=p<&SEX12NJSiF;NPzmRu3ToUzPBN!rjF3;|S<p7(LI5+>mZw)F?qXDd
z{5<E_*6@>R#5A`pGoP2`J5MK?W6q=zv;uRJRo>-@+QbZTkMO9^CmX-uCbqc^Us6?K
zqzqwk#WWBYXP(E>p$;D}gVU!@lnL+y07rZ`PH9S3B}T>A6(r=Hr1P}Y$~WhLFnP~<
zq>`v*8@B*CIq%-B23J)i;IBUQ#ZpbQZwMrd(8A8^kCl1oJJtJm_Ku{5_3KpaZUM_P
z7s=x%2c=m{mB;{r>N=75*9@=CW4bbmj*Pt;?K^{Hp1(H~*`3gBURNVM$)-g!oQx3e
zq;NY@?kvlZwZOo0QyAJ>oAX7)k|rY#0_Qz@0au}j%H4Mod-fGt0p~J+3Ml7j<29`c
zM#HDi#&(<<?Wav{jw+RHqS$OUyYYqDhVA@SI$CXF8HfX&xan4*xAPR1=sCxwT8a;y
zSraJ7u6kE=DV}_)B9GY~L<INgT6WfjBS!MuW^f9e)yr!zfs~!f4_xOJsi$d%H0h9A
zu5n!|n(B^eP2WPLuAPh!#g&@_+v{3!SO!3Z?9bgkrnT*~#8~6O-Q0@MwzA)ogbn;S
z=WS@<Pqb@8m7hxqv4UXd?+VVl(+QBS-Q&3;yO*%Uj0oOOT%Ib0{+qT`Ve*nXdeEU`
zquTa3Ijj!ju@RL($T`ZI%AU}yMVSb}>DN5hq0OfikL64rcYm}!>lSS_N*2Zm$t#LE
z5z`u%Ryd2>Wp=>mGm<+F)z0cR+ZdC`Jbf#?y3?cB#|A$@MROXhuu+0`>^NNa0;QyD
z&T;p#<xVlzIU=#7f8K@0+#W`2cT`L^RhTz#O6Kmz%1%Z{B-T8lazY7~6Og|$oMdyF
zQFOtGW6x}!qO*+ak~eYraZ#JGB%F5YYAtgYD;nuK?f`V|YDBnf5yI!MHH#JST<0uv
z+NKvFN8b5J<n_p`?C)}UtgLH!;Zz|c9A_e&Za89CkUnGDvVPhdp~H1vDW7aCI__i1
z#WfW6G3U_TTa}JI<d;?>fGXNt7vOFf9F^!Rn~LxN6dWf}pIWsI(Gn_?xm$uWirNsi
z$1LZ4j;`A0fJr2eewD8U%H}?PQ`)&pIhSrpUBLCtUxM&&;f_xuHQyAHIHb;)UNWO(
zh8V)*u5(t!+Qf~AS7FlwzH6CV{{SQ`Lp*bzTA6P)g#hFej!sT%V~wYKou$5@X2IMJ
zI+MrgSK_}-q=vyKBpmQ-i?!5407iF?I&`fFFM}1&ET?xSrM{)W?9%y)WpXlcgU)!X
zk!mZGmctxmXRp31k+i-!0a$>2PfD`)!5NM-g~m^M=9I0u+ZY`?>RX5bnF#y9o&l;d
z>Ms)&Y_olM#bAv~Dxe0!{{SkEOSURT<=O^tPb60q=8@S7ZJQEmhZx}Q=sl}C<5kRV
z0)fv2@@pbXwlU<8a7jG&^s3TNjzg6Ps+#6?F84asHl5LKYo?KRDZpcl_32qRcVal*
ziXFWRFH`jPsLaf=5{-o!;d&a(zL}URu_`mh59v{U#;P4zTK@5mR^84sSXVb?mGB7t
zb64)z$;cQ0)=c}O$t}A)l@+3Qc4l0b)T41HnxGO``c*Wxb}fPrzo)fblMdZ6j(YW{
zMHwlA2^s1KTCQs#QPiTAq_OPY)umx*#fasPN_<x2=YTWnD@xwo0wx#RCWy^kxl=WC
zxN>j-QWOk&*IQv3jx1$Dry!{4Yn{_A!2=}jJzG8Nrm#S82i+WG9&=rAXB6XPbed>V
zs=jC$`LacH7GuehFgg*~S36)<HO6u=)OW>g!!OD?We1#&--UI>yBxBK(ppY1plt;9
z?^_mkDpX*yp4{U#%358k#v30mJeB7)rE7K+Dkvv!LOTlSO6Mewx+#oDkB~nZ9gR5M
z><;Sa8F=^Ru;aW87Y@fgiS(z7;k%a@Zg6X%Y;xOO3zu^P83!MSdcwSwV-Lt}-0iCp
z&E^8k`2!@9c>e(PRxS0|ExQV%Z*h~FhFVOcaOF=p13W0tO3S%#UA&UaD%HgKV4;h1
z*F8S9pC-UE#H4`Za6N09US~pX+7vDrxeXyW3)N5EHIaF8thp?B8(ScbYW?ixX2Y;-
zak)<e(=~yqUKNZkcaRUrPfXSxhSBSCCty|foMWLqGg()2sbjf{lfVOzX(qhM##x6_
zK+Y<pw+ik?RAaqy)M`7OFt)-gvl0UDP&v;WRIQ8y!uP=GRMtRP<bV%vdbtq};1jzG
zj03>;t~qO|){+wezE$P1RrxAO3Nm=W$;C|UrDWJkDxTbCqAIFS&O4KiwGr!cRj7-!
zp~2jv)ODm-h+(-|K{?BIsjZ>}p5I!PKuI__4c9-!Yee1jG_}^Gkbsaj&{;vr%}EN3
z;GLk1jidCYM!8INBer;}3lfm3eozNE>qj+#MX_VrEzto4_1edrRIBq$sw2V1Hv`(6
z2uS&00UzESL8+G@N3dge8|qWu#apQpm0bPp-93#k#0s_)bNoFjc_Z9L+=lDH;QP~L
zO{%A$9Ag>AXiUz{vL%aZtZaMt;}uTvFnI$%(yx=qZ<x62fsjYNQl2(f&m~74Fe@25
z-7}&IEeuPWa=9E0#~D20sk~vy!NC6U>6+NPgfDNURCt$h2&8AQ^{lzl)aX>(Ga4)c
z3Je~(?^UJ9V5IFQpsg1u7<{|?5!`)iKIM^DDo7)d-l`7L*iIHj3y`c^<@tv^cC4F{
zLon<)#cEu?85qguBl^}&+?+RJM+Ee)>SrwCWlfUVBQ-)oMn*dKJ*wrvATtBF4%zQi
zr6qD(xUSgiq36mvkq??d&N0W~SFIQ393D8uQ%%mxfC(LOTJ~{%P3>D-K!R<WR*-J?
zAo4R?mNvpn9k~GG2D7Z-Rvh;@2D%#?Z~-G5h{a(p%=BRweM#+Y!xqCR=L0^qw{2!)
zRpY40$j&OhogToY!jL%0t=J(9SgVEu9c!LR?srBpX(UH!YrGJsa#yJJuFt?)K)coA
zN!)>vnL1!r6|_EFj6)SabaBRO)BX_nQs-XPZQ9Zmx&emeCmiSXq^!`Zq^Y)j>F|@n
zkoafAI&!9GxVeNFgARc5a%%Rl$6eQzqCs(Grj4=37~*S#-MyB%-vId5_WuA<eH~*d
zC8PxjAM(s&2Oj3VbHchsm9Ci_Q7Z2YUE8TAsWr^~=XQK_uC8(xKMiI?6W%$VTr{^X
ze&AwwRnK8wNAYt;)F<Dhz$0h@1?}y@+L=6WVfTsj>0aIO3&k?uTE(Vmes`SDwE07T
zI%N8q<32L@n#<vzg<^)>M0LXu3Yp#Hu?H?kcJ%b6c&NU{^q~2bw>~cMr-qJ`b0xjN
zj%)Ls$e12d`+>kd)#dtsg{ND{i{>!T`@-CiJ*(AVzqq>&ZZNXU<(#m|Irpr|Q_h_&
zkm60*b|a_KyjfLUkE^AGaD~~->N+{OyOwl~VvR6^)UG)-Np&c+%bm{zY_alVZZdJj
zc9X1D8fK@tNtICGp6Ae4pIz8$8pWKKDFVdKKIv?lBQAYWlquNrj~VKE$Bni5bqm%E
z6zqZ_#BiwWqqcjRqiLgFDMPaW9^;Db?0gfd%8b%RtFf?mH$z*Hd^*-lNbx`}Gn|Ou
zILB(~oa~jEy(&&xvj;%XZZeY?npe*ONayQaHm3}Bku2ib<8U(B9X}eIP0}@c3$3qV
zENY|f?a$?1CaryF+FmY!iLf_EAjUIZeMzgHq$#Ui8QvY&?V;MPLasr<{+0D7!mHt_
zLk+xSs;~gGm^^l`mnQJ-h3%v>+sFaVN0-q3E8hMKU$VfV8*?r`_`&*DHAb{(?53Me
zEgwcTy^fU^pK$*GFyN3gx~I`K7(7F%n|M*mrUA&u(w6-FyG6Ho+Aoj-*f=E8csfgK
zJwYx!_>%yzQr)YeN-NOhnrbbjsp)a}NZebiV*?xt$<}-^EsSXRARZ1Ysn9j}@6-V_
zWkJ9KuIoExh;%F7y%$c6N_^2iayYz2D%`R@bNH9x(|2I!XDFnG{{R~CuLAv>Pw{2B
zxcLgpg>l&CzO2@CsI_hJNVvv&b+0edeh@(xv2w1mOAE=lB*r$J@GF9nN?IG^?I@`q
zLb4(7&)Ke|5~Q%<WE}{_es+G=J{-5b{@JyVx>(xVyrGnznqH_6wSD=ctN43Dn@_*p
zIw9K|4o2Kp$v?Iqg_>^!>sNLz%@W7v9j7hVo-5i<RTJeT*FDe6F(&Ps@#YbRKJ?rT
zxH#RO)p~n>D=J1Clhd5$p*F>_jD#ngj%&R&9U1CtBvO-WoMRtO)lOJIS0EC4j%!h(
z8-_4F$fzZVWP(5k__0ki4mRA!c(;ZG40{@*acr^Yzdijcb?vqxTyjTHDwLMY6y-_h
z6{KX|rV?EYNh4KacK7K}NUN4Otx0Y2a8FJ#ROCRU=O9+;+{VQ+yySH6QpdZfAbL>X
zXCM-KVw)J}9V+(`I!H@($gL}BHth}3t1UWr1RA?;#EcSsg#$M1<p&@f9>=|D#~}<C
z7|&Y5wSO)0Iju-vaRl+6r_z?8YqMe*hTIXz;Pcc~$Ry(dM+d!S#_No6l6d#4)~;BP
zcLScZ(_5Le%?QuSmLDkKH+qevV#I;RT#?k%Lmk6|yC0P+NPcDIMtgJ3TGbisD?2if
zGk`jQ{OTr9ai7MdQpAzN3}<h1PEnp0<))p*Zlx!UV;KX2dv~gmqUDK29+jmuU_=f8
z$jHS~lyEVUI?`;lV>Uztl0RChD{cqx2-J+9TGN&?0X+fd+Oy@4aBlwqN>{n6b}3Bx
z=Q%j463d=W8HcB(UAR!7?a0RmjAPofXBccL!S$)Kxux0NO&6Bg8Dt!0sk~vy#sKYF
zQbqvX$s8^ZYJkM7y@q`SeEWS*)zZGj1%Q$moPpM)5e8yaNF$yqV+r1I&rWIE843-g
zu_P1PvgWzEvP3|X3Jx%TT6}I*js^hr=M<xM-atR+tv4X$e~Z?d*G6*HYT6Q{j#uSn
z+k=l&Q>Gd+fR^v?imIo}KQ}r3DoCd>9FxHQFG}fKSsyiswe>E<%7bVG_UTvc!DQrT
z)0|d(PI3-M)K!S?8*^c>7+?@Mts2uq%6c<O*@puGPI)7}NFAA6?in5b0K7e_q<<_u
zPV8hHb*lhvOtbdn5mcSECfx@k1x5-8Ty!R(X*pfTCp=S|Ic<a?J&jjw%*;a!ZNWoZ
zU#XiWlHfCKCkNZ0sD#Ti0fITe`M9V_!!Q6S1Co2wR$-i-yNKZQ6_a-wG(6EC$_V*S
z0FI`uTgk}fNcJ3x$`hFxK>#*6Dr#8WLjp2RGm~8I_VYGcdK<RS^L)%W^{b0=z?=cQ
z89A)0Q-RlUJ#so#)Fb%1=Q*xx-QAlc(lp|nY#7`##^KxPQwI*CXgf#Co!x!vluQ?#
z1A&DjB;u?g7#WO?!<=Tfgl_dFQb`&Xgt%7R3oZvec&+;g!-hLgnVvD|YoE3}fD|rI
z1P&{t)5iAN0ahSqZF*Frq2^VSPR6yJv0`#h91=QKwWX#CHa4jl_BC3<EXJFL3V(Fg
z!~hZx${2BgYq}{dj#)~@i%Sj(TqtgHfm=4Zf0V=J4odJd(vwYtYLHcU94YE+YS!7L
zJA#D(V2afwj5&r{S}J1-8$B>{&wA8NJZ@d63u7uz7^^m@suYFGk3q@xtI7!ZcCc-~
zbc%KkYZ((+4>7Vf`tey;_WLFZ+;8U|wbV(Cps+01IrOYs=#dx<61dJ!N}i?O<^|Lt
zGr91)cYFOS67f~!GHv-l`B?S*YoWP>hEO?;k1PdZY6?S~XDz`erxaQ4Zx?2BH|iZY
zTmn1sn&UOKNR^os5xbmMZG2Kq#zJtU^U}CoV1D(1Am_J1Qte|{$((Mmt>y5_InNz&
zT+RDuE4vB?eznnRvI#ff{J<RJn&S0IPU17oVP_*pQCm`l)!*L7QO6ZROR(zCyJ^ld
znuhjcyCWY_S(03w;GUke?bzm>PGoOIeT;25Va|J0hW96fkLz6IcVuK|gWT1a?l&GA
zZaL<cDl_M1>Ac1WIV4f%4hZYt2C;?C(0_{*;W%dCpIQ>LA<4ZBsOG~KQ}d1vdsWEp
za#hJ0AB|u`bft5j$KI^Na?C~!-($vWM71+Ii+j=vw^8Yeyl;1|cal1E#tn0DTpR$$
z<~-H7?%R=^FRgBjcRDEb68Of_K;)i+o;4AZkGwjMPkO>jhFmE87<8%Bjy5*a+<J<?
zLoQRKwY+9ftl3gAfx-ILj5nt$xn}R`J*%04_W(?Xb}&ikD@p~CQA#%akVzx8bIMjX
zgjYkRhV528<Cg9RIH|?+G6v<j$JaH71g@WObr~de{HoknDyRrJkGVdz!%|jPJql2}
zwT%h20H<o_3&B0=yqAV0$!rEa53Nx%Z++m6xg#F686lx$Z<HzH9<}GrrP1nBrKxxA
zCT#B*+roj+{c0n0&5hXO*Z6<NtBFZaKpR2%hqX24+(NG-92{3PWOS%5gPKz!I}&*q
z;<F|@j^0x~yz^GxN7_>$Dd<mnp)vU}k_qEJ)vRUBqB4{c+^2Jt`FmvWPeD{ASCfFG
zsO{X<xnxp{pP!s_P)Rse+N-eR2R^mYc9qeEwJG@-Bmskraw>RuPt%HMe7PJxM?iTM
zA`={goMWX+cF=K&W+1s82iC3I{H!z3RScG57<BzBLc(FUY2M*;lEbYDHK}cLXl>X?
zHh@7S9OQJZ+X;^HM=W{_aa`53fl7jK2R`+&1<A-6VEkaI9V@<^wK!)TEOl0Fo>?H4
z$-qt63-4NX*DRzy?Zgg;y>m9VJCv~`FvrS9e+tpJmuMg`$3E5985~lDj)E(#(EZ|=
zI3b6BYQGiKh@wc?vkn*)z!lCV)(|%YuLKjEeQ9C6V&w1VfJv^nzUL(4bF58GP@qyl
zAf5+WMb!Mylo9hD-Nkb!QZW`(Ja;Gg3S(-@FgF!Z(-qRJ_Bk3!oh#odk9v{^BWJy3
z-d|w`cqIMcd8~KUF_Rx0;FfL$Qf*O6ICdUjI3uyClD2}?>S)V&8+J0lV?L+ev#&1<
zdvZqq0OG;p6_+lmv6evU820a3bLveZlaK<APHUb@??Y(44IAA-VObckB~N44xt&7!
zncQcL<T2+tsIPTU+lymy<dIlcnvP#+#@?fzMRLor(5%flFH#iF{lxzO2>z8uYrVu{
z9GcC0oU)zS9)_WL31U>Q%zEazWVyFDOxuoL17s3?IH}^fE6#SFx%Cx=9m53!Zh7OH
zk*=CNg4n>%J#$>nHd-A~lG5g*T?ba`NjN#<igb4%jlmb5!}``yykm?oUEGY*lJJ&7
z1{ih8z%`STw#QUmo~Ha)48xTRlgS-w;!KLbft-FdhXwNP1i0Ey-N!X#USU|^06HI9
zm3C}vD-Fm1Cys~Gtzh}9kGqbU<R4nhhUa!NMgZiRwFT12Cd?HiaB<U$2DRM0n>L)4
z83O^isggZ_C?T*2BON}KLNm8&@J9!cnz~3u!3P7A&mPoEO@yO;#A{_6Uy;smO#~7M
zBoetf1E{5U5|S4xpnTl)rzB!EZPFDaagX7sl<c)GG~M*rhiarucDN_CM=I}J5_sby
zkWE=>8fefAkOns%G4EAnCvMfqQOF?vb;l{W9nhwtX3rU8^Dzp%U~^PuQnELFzjq(j
zwVgsUN%w{^$9l`Ujf!O85=KYAYLz8>Hg-mx*2Yc5j9Bmx0zp32n=|ZS2^l^6R;|ou
z4l(m*9QLf6r3bDT9B0<LpwLQ^+|9g@uqe1tPb8kTn{kp3NXX+os`b+RqYc0~2hy{r
zD}kO{p*^d*8k`kqyXa@ma1PY@M+B`?m;ycfRp%sb#x{}CsXC3>J&#K5iahzzvl7`b
zPTU@PR^5bT<PygNjyej?w?d>62TpNYdVG0OOA;~ZTc@cimZqhgdjf;=6VsaMEMpFY
z;~44%W9jj>6pRda#dNkY6St;){{Wp#-j_S+K{EBNx@|$(mpCJlTUM5=gyaC_KpMXQ
z9DVQURBV7UDxvv^!994byBJ+d1|^6i1bSC1yE`e<MTnu=+cGhnZ3m3~Yt_CGY9~b2
zEoD{n<llu}fqm=Ep^7;QvMx#W{&m~@K3RsZ35yIj0g|Tx<Wx&Saa8X~qwWt2Y4$n}
ziGQlV`MtX>ERq$#0QMfHx;-mdy3_QgxbqHLFsg)ef;lzHTI+WfdMZPBv6*Hup*Z<M
zp12;BUsLe{8<}nGrB+pan-KE6R~)5%4~$XwwIb9!baWfEn%R8aKuN#OcKKsaKfB!5
z&7TtfAl>+u>g!TzUQ*MvyO{m%+}C;Io9Q8+QFg$N7{~*6-Z<w5yeGsHeXVVxRVcrG
zK<SF&trf2`J$xKgq>2f9dpom-Vh<z}(>;Z1!6S!@Dl(w_z}0O&4bh@w<@Owk==41m
zq`8eFj5-sOyRYG1M5;#GA6*!`YGvv(&vpz^K*lFIES#Fk9tqdAC>6}hr`u<VW(02?
z>)YnhG*1oaQfnHt%WZ7{+{@I+dn(tTYaTJb@ny1K+`$f!;pp6~K4`?VFVeNc)QU|r
zlC38lR)?Buz8HqZ76|-RB$Jf|fl>h^{{Sy~lSI*VOD9oft-$KXfh46#KSFAbyW$TI
zq|z0E6a$7}=W`F~S##@}9n@?s_d_ENK5XKOoULeSNw~gddW<*v-kB=3<(Ziff?6(e
zJDk?7-OZnfbcxu-46)=4O1O3W>(2Zo<JoN{SQ`E3D4-8F1M;r7PVtVPcC%YtMv|kp
zM1z7oYk}S`L)L_&IGS32hHSpY8$=|7Y5787l$z{3KWR6IZXud0nInYYU@s(-Shf~g
ze33?MW|k#m_XFpi{CZbYsp>}0PP2{f*I}1xfSmO8sc!F4rOMA+(sdhKtvOO>mE}MJ
zhHvLx7l*8b_Xxwv3g;t{kUi_md^uwU+(K5B<w+Mmc#N9#uZMOvl0NO*lxHSJ<kLyF
zWD~NBJ&!;TMQWx%tib%d;<YdDB#zz8ZG~^|cCK>R>CzO9S~X?hg?eVA=RpJgmVM-8
zg^=VQYV@4B6_1>i6;h`&{7EftyxXS=ax;TnFNR=Ci>ZU6vVp({y>K>{E*P|ovB)`L
zU6+J4A|?ZZ9P&kTQL3Xf-q#*sLHj3TOIooJTFQf+xyE~n`0w_h@f=<j@a^PxZ06ei
zObN4}y~ckIwf2{Z%O#UKF6P=s2c|3YgZA0+kK5*pLTE&gq+7hzIAHs_epU25p7XQN
z__ZEsq<lrG>B7qLOL*VRjZOru)rC`ga&V;l)ww;EB_O`-y!w&tPzzNE4mccS4%NRs
zv^~f{Bw{>Uen6)tt2Lm(908sMZ?&En?gXjhIO$M5rsgAP3cLyww6Y&1%n1>b<pdCV
z0xGP~9!MD;hPS1)K5sl6XKp%GE1Ph74mz6JGT7&I(z|CjcK}@FLHDe=A>iP1?_DM2
z2nG%}5OOOP;w1%#AP)Yu(H3(_E~Z@lFhB>f6$e5yoOY{nu10ax<2~xDC{_c|*2$S{
z>^)x}De2ayjDX9}T7?H*hNOvrZ18<5(+e8b?URGpb@i+E?VNFu@6xdmx*pljUbUrc
z`*!olIj5*t*^W+I<|=yC=p`g>1Oj^>TEs~REtA)!Xxqp^9Wl@hRJ}-O+D6_3W3~<{
z{4#Je`1Gm~%m^otqp7PZ;EXBTk(|{feT<qW1a8Z5o(F1>5wIxESFU-@K^r#ApP9O3
zb52GikDH8R>+e-#KOxT^6@Fka4l~o~RAp1Q9AmF1ty`LA2k#6Hpw&6XUpYDb0H#q=
zQW$^-$_M9FB~Y)m2Vc^!TsO_h<JfalB{}Q&&%bJvXpHO7;{$@Z^~tQ8oQ|DI{wmhE
zVxabJyp9cJT_-|M;Zo6P^m!uQ#YbO%T8kel0)G%H@P{%S0!BKTR@$SH^Bw`mdij^B
z`mGsV8OAUO$mO}(2U>5G91Wqps_bgO{NYdPaY;NITOn`&$n8^fjX8|t7|SWj=k=(W
z4gmfTa5<}!LzCa|s0hbZAoVq^%qvM)fuzPkI3(cEA8FgOBOOWNqm(KfhRCRt;h2IL
zb<d}@bj4ZfeC{GwG~knau2_HvLDH@y#iJ??-+uLxZpQ%kHF^?oc4IxsHKIvs&ndTa
zV$wz|M+?{!{OZJ?dA9<m01wWy7ViKf1#ECJR#xHNH(&wNtx9hCiM!}paKASKLVDnI
z#a8l_!;z3W3?8&S!BpVn6O04Wk#@Kw91+r<yMxxiK*>2Jhfu@4Rw{>cpO|Nkb5l-8
zV8yp*xTwT@6SM+*9w{cneTY_k0;B*z&myhEI3SXscHBGE3m)<^Gm+ChDn`lx0pqR(
z4JV-0&3kDJ50q~tdg88$Jg|0<N$uEHExfpQ0Z9O4=e20Vf~%G|UZ=fe;jX6q+E~_x
zWlxv_2Tm&BlrUJ-79)|0&44tV01B1J<B`p2+q7z+3^q9!?OR4RcQbF9Sr_e@fGoqD
zfG|2&L8eTDc5>Mm$*db(s{P%}216c(wzSssFw6=8*bcSn(uw5Mz0Rt^%!n{maB{$O
zHMwCD9KK7T=NJGA=51U=5q5-9G6Cf0wQpI<#o~P6^&>q`(z@dwrz>Y)r>^~k9-{zy
z*F$X*ov1!h!N47Bo73dl7nL|UAx{FjjXe2_^KC9b1g|82g<4iZ^fj#E*%s0PVoy$(
zsoY~2Y>+#iY9x6gLC$@;jMUA73EQ;e<|K8gx?@PMa028KGI5M_HI1k!iE!kCTO*E!
zweB#hxb8XSR~;)p=#@?eNnG>JD>m#}MjhZ1m-$3%o&g`{n&<Drwit8Q9M<*fW<sRz
z8QqoZ(~9S{22>4`&P#GJpT?r*isvb;OSL3pjhM~{QCudvcPUf=D9KaYel^@`ueoxI
zjE+F)Yl+q)Ra1l^`Q4MjslQffw#N;sjf}u&EHVZ<*B7cF2d)U@jC8KURQZ{J1QEf>
zt~*d)^_z}yoDTG_*okU#+KZ5{jCJZO9pw4&dC2Cq^#H^8ai2=Un0aLLxxFhzW?<Ec
z<C_G6G6h?W^1K{>TFFMsZ5&m&<|+W=81GimDVLI9a=9S;Q`TZh!RmUCN~)6j_o;K9
zgz<`xP`fTcE;jAwj1Wa#g@T1*103|M$mIZr$Qj^z)z}GMxa9CfG$xHpX*L2dI(Id4
z46^qbIT`I)_Tf%9ci@`83;B*WFl_PZ(vDzJF2>ur&Oq(!R$_~L?mPwVf2CH1c)-ev
zxf<<d?4a>Y&vrEu{kUMLzrc9UdeXNnilZRo(Ek8B&xht-4npuit4ibzppI}xO>xS7
zPN-A4ryauyLu76o=QyeS&@;I2Zo|^Efg@`IJvijmoy_2s#{>XRaa<K-dX!+xLQW84
z0P~VNQb^ckQIg!80mVRsoxuF9js|H2tsn<EVlr!jR&qTEt1AzY*-lq#?gO0gY6&O(
z+cLK7@zR-aaywv-pm(a0Ty9V!Q;zGNp7i4O@*7rUrs(z<0CggwW(FJrP6rvLNr37X
z9{Du{%)k=B;0{RUwpPA|O<fVYV6Nkq{_kq7I;*o1P6y?hlV_L#Ry=YKdWKjE$OZ`=
zNUh!WIoxzBH)bTR4%1SjFa&NS4m0agO#yM7Z3D3so?9-^G1t?IEp&ydB!K`t9o*!B
zo_@7*AcufT0oeNeYNpnWiC#0tM@pV19#|WgKPM-pE7+usD@%eoZ@vc~jcQxTvuI{H
zZ$Zv03O8u_Hy~tZy<CpqNMc|aSGWhQbj94o!ESVxw`S3lFa$9pp4Fl+asdu9-rcK^
zO+*p{0!TkD2THh_!ynzV0tZ8mb6t>UB}k@@q+g(XBQY)Q)|zh$s}}pAv4QDa^m>qX
zTs8>KPB;|T)W9Dzag)Y+n(K==B@?8$ye_zoQMaxIQ+-4Cgpu;DGgyOBgt!MGPgc+L
zsGCtLa4_Zac=YX>)k@nl7f$A++LG>*=FU&AK~(3|-N6O6_fwDOSu<)pkV2PVL)Nn{
zH6T7*u}?unrn(XA>}p)<rx^qSIU^j_eb%Bj6jlW1kiDxG<5I%lkU%&j)fsO#f}rE*
zYZoVS)jMooyVMy*(#JlaewCRe#z_Hy8Q^C%1KgIt&m*y@9m?~@39KgDFP6oDJMAP8
zN$2ZMS39%0c;siLP!kZPw{h)Ed!k6e<nVD=@1a{7vRttNxb*8s+FJvVrMnu-Y4?tJ
z$3st98*uxl-1Rk!eGQYbq_-uQ5<XBlsSLY`!s7$E&TBbl3<8zs>xz;&cv08X=Cf+Y
zTx6M~mktW>3XXSwO22P(ag1Zps})B%86&9XtU*2r%N}|t?O3$VgwBc!gPexo4nQ@l
zX5=7pdag2i*Ewf%k^wj%@y2Ub+UI^(U^qLEYR$H37~I#2U8})3Q^t8UZDu=%A1OHJ
z`PO_g3Cw(|J8(z8)~zFMDx?F?KU&WAG)cY7TbnDKHr}VcX~Ef5n*n!@{i*}=6bFX-
zaaI;FfI;AqipFob*$CZ|Our%_`>Y0iDyt(0akK?ff$566(3t_q;2ey9DvaZNd0qj-
zWY;s5`ks_2c^UIYa#2pwM*cbxS=S5#u^1f*3VNE>o-#{dWkJFB6-Mv`!t5gefw!;H
zi0F4lK1K!dyPm89o=;AHtz=!Dr(*)R?_0M}<+qcZ4WJQ_YZ~Wrl3N9RE2<XUzh$9|
zJ{XWNMsdYZm3p7MiqyM6r`YkdRT&{Uf0Td+73kA;S2<@!$jF)zA#65Iaz2#`!TZ)H
z@T>0*N%?zprSkTsPCbq*sY#_{&y^K>v6k?MJPZNXJ?m!7F;S2do(UD50uTo$IrQSS
z?H6dk8PC6J(MrZ{m5psVN6LpJcgK3^tfTWb5D8@fV2+<k=d4(Qq$pEeHkeB?_hak8
zrrpt`Ad}OnwP6SVl~#6D$P0m6)~efLU@_c-+Oq5bWmR3I4CS-lx2$0=8l9sflY^Yp
zKJ4s_QEJjQF>;%f^T%(ccRvrwhgY^6caqDuaO?AQu38urL%SQ8ACsH_Yo_p|Y?`!f
z5<1G*0|%+~u3ECSIY`<xy|Yx`Q|zx3X^R(zB-XU+>wAqyPmK#(G2Ejb-Tsy0o(u6c
z&x^I2=+Lv?$n7(%YmAb50bf7qpAvjcqIj=d5!}f35!^AEA0#h0#eEg<hsD}cTw3bZ
zs-M~-RdA&+7}v~T@r|bHY<c;vPYgBvo4Z<+el7SzS<<Gmj^@&45^`9Nl}Q~9c>J1F
zpKp<7P>B!9zh6rI9`Rz^>iQS<j;U`0#9+b#INnEZQ(qtaNAR_sj0@!Ml17oFU>B$3
zU0H=#D5V|Q<7G6bI*(0{F}4X9P#0sfV;JdOR+Xw)SRw-IC1d-rM^ztrkFc%-Rl1fZ
zSkX_KIx)`!*0}E#_|j_|YujsACRx+$?I=8|cgNPeD5oc7x%L$rrmT+7$KMt#yici3
zb95PeIis(aZ)^_JbuNDS9+?&MPmlg9YMw3B<Y$&hZDGp661NIFaZ>n`S6hoUvx$7T
zv(Gss`kM2*n}Z|Ds5dhA^{-nEhe@>02Nzk%Su!jC02yCzD#Y#j=kca#-ZzpNa?Wyi
zBQ>9KZ0a{inBC3^suNl(4dVd&SFajW`FUEg;JMUJ_dP#F@q1i2e>ZU*KtI;I9V^6*
zJcWdfjE|Q!;1<s<vjUFG^flOM9wm|uxnu91^}|;V)!a`{4U20@p5G6|>z@tWz`^Da
zCRm_3<kx-Tzl!4O-^1kqM0rEAZaB#uG3#GBzNj@TgormCa1Chqk6SkOx>OtFCI>QO
zcYJph!R(fnJ%x*IFPQt=;a`lc?`_B0n+Uw0n~}$A^&boPhfcIVZk{xIagZ3k6dL^0
z(|$Hy=r(MY^APRSo^$I_#rs3}m_v1K1^j|JMpZ&*6`G@0XrQZ$rjOL^JL4CFW7L|?
zNn?&?f8CbG6nnLHHl8BWH57R?>$qJ<ClYQI_|v9%x5YZm>0@_uJIdd62j(m4e}i8W
z^$!lD78-<8#)oJ=Y7kH3S<aPeYnpauSZqZqva`_pjqiTb5P!JD@-g1JKLctknvU1N
zAn*lwj)USf)+`cqV8O;iEp@&WyL8m!Do9{*Nann+XwyyiJzP~aDiU5tt9a*AI%bad
zPU0vGWILXN(!UzMI{30r8T?AuwE=l0#Ab60YFp({rw3@S(x2M*;#lyP!bx*B$?n_8
zhaY&HazOU4%85eU+$+laq})ky#_XPd8vEK!PAW|N_Ju!v$j?h<WBf#(e;Rz2ud@uf
z9SL5Qek(D##@~>fg4J>>RbP~$IT_!Ia+fPTXv3K2&9ex;L=L^Zs;rjBZtQ&7`@Z$o
z7y^^>jlGAZP`S5Q&Pf3EKT6NqU1~pMlR4XqRx6eSu<kq6DQ%fa2O+&du7*GZ5wNf)
z9-ob6Ud4_1`AFz-n%**JJfgdtz0IZzmKi+Y_pD2+L4Z#OwRP7v>d4r^J<Va?Lyi8P
zmDdZLH5HxCR^}E~C$Bw4Qe@b8CnmP<BgZ9io&{uFCf6P7qoIz)aCWdDh4wW30C*f9
zdSb8y1C{3-)4>_ZBN@d#kxI>6u#b)h&5reYDahaePpPc9obmw#dm6Hm?Z<4@14$bY
z%y2japVF^e$W@7Mdk$+FIj{!P+dP`PZz&v><EaLMB@=cTyPR?{wEqA)vXX90g534z
z`BpS@fJ1KG+N{So$ODhBYIp2&$r{TlfDY297#z^klD!BdebZUu<3D(hm(ql~T&~m5
zVY$v~_cG-!GYsQ6z{YdMMAHyd_NwOSu^?>&`?#o@=nzQ3?TpgDV&aLWl~`w<m>sHv
z%gD&*-@PQ04(F+=jXvjMPI%^xcP(l%?p49dW%~X#l{*$<PFp=H)bbY@$m6l^RGG3*
zB!5cHvel1WRU-kp&!sBI=RXP%07>1{nwM_VwEf`O&U%j3H<lGwJu-N&o05G`&?#1H
zLYkq+C*}tj9sZRa#6gtvl1>S3wW9D9WKy67IRI1-ZW)LJp2D$5S3S07MDer8{eT~x
zR+c8*0T{^72DK%HnT`{$ap_spC@s4j4h3{1b5xt$&zd5k@s36gMO0-Wim({18CPnY
zuO5c0$r%lupf)=C3h#yNcsPl3F_z7OIXFJmp>7%Wj-IC#UKqf^Jb{DHYQGBLbvZri
z+vPZxtVKfPY-6|_X09$%lB}n=Z|O}~_H+w?aqdlAw}Dg>oad5B=CX1rBtx@t2Wcmt
zml&x8E(R17Uc6P9q9I5Hfgdm!&ot<fe8O9BEI<R^mHQQIl_pg#q>P;79rIDln+GaR
zJL8jA-X`St-PgTEDwaSUzG8W7^r`AnOsVCnfX9wA@ANdP127=2;lTh@(yrh#+-DgA
zpm1RwI6dj5eMX5xkbYcaJo?qxix%Mj0KiWbK@=UFbJ+AXp=~DABpjdij&W9(V72!&
z?S@nZ$ZYa4+O};;%7B?9<AI9j?A$wU$sl$;t8(6W)DM}kdXU`Wx?>l+F};m=fQ`2?
z3cZ2v+O#cXXk4q0lW5M~$FQvHHjY_v*kAy{nzy({<%50haCrS|t_>Vj8okboPhic7
z816%~u06QLbQTho+M$pfckB39C1)c>;DhEyPe6Ot&Yw7CJxrO&&ls+iE{7zM+-b7!
zY(8+uZ(c@gsIt2e6;u2p0~``Zt#CSR-U|)D9ycD9(^+5O;Hb#wCy;2lDmFViNeBzm
z1Z0wO1zNVBF@^w>w=6TjIj(xz=@JpOlmX}uKZRVjx(aYM`-9fAax_T4F%5-Q$sC;X
zn$Eb&q1l1YMX3$(F`(YtpLR$cF<G~_il}!Dp#K0CYc6!lP<Pa?bU<g$M;PObS2e1*
zF#hZVjxc%86|a4Au?AAdap!h=S2=xl2J|bt9T@aAjHZr`UWYTPH|~m)v}1vemBed~
zyI-BY_^!WExRB)Ger_?_6~t?#`94`(9FTEBsIFfxbBxt@JDd^-{vtUw%iqGx&fEH)
zxa50RPpSOQ2|36=c=9Wk)SG7RNnzL;6t%INj)yg<1oE31I6bSKxQr6VpK9rEvg8Ad
z^{i{S#_gowdJ5hS+8mQcKOm9NQ==`G<eoig)2I!Q2=u6fuppHTM{io*{me^=F9hSD
zsnNb&*)8;{NaW-IGuMvQY9b2o4oT_hP}Pbq!o!1}-9=xv$z{mL6-EV6xCbNG(zGB4
zATa<Mo@*APa{L>ZuHqGkO45L<b>QQI1!qK?i0V1WJ$S7Pc)n0ZKp%S|vXskEvoF98
zTo1;y?Sr!9U;;9Is->VfUUsQGan`Oxg@I9%yS-s5t7de<lP6e0fZMR2%+<(8m5|CA
zNXhl3f(^j|!5z7&hzS1xC=Y|_Ty-j>ta=ckYca8}lvilMCj)OaGP&E5R{-QNG%}Np
z4({3S^rx&Oe54({$6Df)+>%FpA#H#Xk@YQ;ka64mDTyg=HjTZ?^r>Y+%0l3Ci~-1{
z5ClRIhUV$VTE(NOM#Tnj&9RecISY?kfXquTW#kizvexARCExwi+M;-5#?1BT*~V+9
zLl+x8H!FZcj2!WfKb<|4ToMQ&v)lElg}zwu7~|%}J{Suq2nfbAj!CUlZc9!(l-dQ$
zF4Cs}0tOG@YE-r=#~>avlh^523?IKc)P~2*zMhz=1+Zq$NY6u>*O0-bt1>2w5w>y(
z8RM{~3sE7A{JW3gT2Ba)KrxIQWPe&oVaq88Xa|xy8qr3}Ln&Rdn%k9SRwq46D99ev
zOKpReVpwnoV_E?+epblr!kcw!LwScBuLnPO@T{8Imle>@*ti9c&5Vpx#$ymxC#C_w
z{#6|0f)rx_V3X<XRV9$PRse(p7!{&@0&!cS^IQTL1}Z_%G{JnQEI#ud{dlSqO0GUa
zNm0#3B;^-?LZ0>42d1Y4;ndY@)AzT0*yTW|P5%HGF5gVnLtGF>)5$&RKeP}@CxOZ0
zx}xv7gQd->xVN7%Jn@Wzc%_>65%=WuQ;vVavDSA3A%M*iT(-;;&tfXMk~W4Nv{|^g
z+_)LR?mcTh;^mP>I+KEPie#4sg7bq^q$RVvC+qy`Iqn};<<`SyxL`*(B=f~pdCQPM
zC3*u^3i*wKMsZM>FoUldtfeyE8Si4hn8~}IPfU)K838%={u5G&ak!8PKBkz^6-<Hc
z$4|zvbM9p-EQmK8X9uwUw9o->PBHbV7BZ})@Cd<bQ^4SJ^rM>l9L}Adq-qMW=)j(o
zZaa>7rxe|fOmIao@)Q)>PkLM2&evna<xVll?^DM*s)f!!tyIB@w+1IP<a92i<BkS<
zR7q*6q+OYz6rh{{YR#)Exgg<BJPM&4n^+QZf1Oy3$<A?s>0J7?so4ow+O~2ZA%F~d
z6|D?}4dVcG#&KNiEwuv%;PuUFLn%033aHOK=B4d(rYz`fW;@iL2V5;_L$o*pr(Q=&
z!_#N=1&>YzZCj}-!S`+?V~(P^DmQbkl1&!8hC(tnhxwNWty>WZ8+OyP0D^lOiWu=A
zW;q~Z2cW9~RmySqPSKOrux{^D(xn?{iGr%J0JaVR2fq|FOUYawoO{&E8n9jDs0WO5
z%`cVaE*KIy<OABUOI;6Ij10-`N}fXibHbbq)eF_alG$u?j)d0ish40fAshlnQ&~3%
z8CYbJ-ln%lTxqME-Prrbkr){`8OOC`T*ZaS!E9p#rYoV;EZi<I2t42(Ybxf~E4Tur
zjo9?9;`B#armW6-RST8Kb{wB-sPQh*f^(daoYuw6YE`*VSZAjusffT_{oD+6uE<|b
z#uKKQl_WWnIL7nZqiBxo4B+-7iqL4nk++`y^vC23DPz+fmD>iFL&~cJiqWGe;}|`S
zUxVg2Dh4}_m0gr8k{c(W^{2tZk~;d1wXZ|YlS^}RPsacp`<m%&CM;E5f+s*i*DYlz
z-d6=!@sZS4^^D{a8H;0#XRTGPwIy~(TVXV6?HZ8Vjx&yHcTb#{wq$MtgeMvIu13!2
zrqBn>IXEAsZdl4s&RaP-+ni>x=CRQUSy=3CCMwFz6-ur#*EQStF6kiD1kdvb<7OBh
z++*In-pcDG9hfg-E3fd=ytfj>fH`F)O8qO&#<u85F2{Zq-n?1Z_)EjOJ>P*YC)C(m
zO|9w#8;gelwyEkpDo+5~X!<9`h_sy}Q%zFAN}R@Ws@dsYJ@Mzn2TjpDJ*8V*Y;?CW
zuuP4+k39O<rGCL53*_-PjP5mihG(<1j7uqF(;Sb?*T&(aQ<JgVn>b0iv+rMv46yh*
z)?%$3NfM}4{u7G%N5uNE)u)<iPs+S26M#-T`&ZKc02n-J9GYBK3mW~NFnD3q<BIsJ
z#hS#D>hpZtW86VdFa>mCDk_aAv&hP*I#k@It#ex9%GUBM%CWL4^2_qEKVJ3X9})aN
z3{Xro_YZLL5Z+{1<Ji}&_<K^fy^$iEGC>(3_8wdFt<6`!5crPJ$!h|^5&}cH&g#58
zlXj7&F<Vr82jWD#wvIsR$m4^NTr{^AmXW>#0Nq;^_7<)1zS?a{bi4A~Vd0yn73Cg0
z@O*aSQ*CM)Kf8{CzKai58#H{iYE>q$6TzapxVw{S`J3LfZ#1imNR{w9bgfgQTH0JJ
zh_0lQ@|8SOHB0uIKPUl!xXvrKr0&#Wk2W->z9w@<>&zQ+0Uc`Ymdz}iM+c^Av>I`m
zemMkZfnCRiJS8lyvJ^NyF;O=dqM)TI9Y@1&3O=)}!D?e*WII*ykUi_a_~Y;^RQPk@
z+kJla28&IV)-{?!K4v`t?_DRtJrL=7&8*W#xCC-|CccRMw)`1$@fY@L(66i)%%4fU
zN#w(FS8mdA?O#7RIag77CVexbY%e<0{MNm`hTR782c~OJ!(JxQ?5-nwh?ZgxOyeWg
zur<F2>PdHrt>g%J1*+GD{vTcH8j?g|U>NdGO7@-}pC#oh9vrL6GEOkL_CLWbQ^1}r
zF`YKz3oS)XJej}+z3b`td^@J=npfEGE#sErB-*ls0E}0_{vG|E{6;PzyzuF0=0Y7n
zJfHGw>wkq8o-($(w$nUEVD?uE05YlKLEo=>`P@}G!E-`aN6_KrPP}bWJhDA2!5V$m
zjU2Z7*xT>GEP7X__&WVRwV}u?H{gsK%!@>gErh#BS0J2>l4|dQwYW5&6n~|lYe*61
zc_hHv6cd{96eBv3Pr5s1xp30-K0*Ds{x4hj@5fgD8`Cb@TWtZ^B`J`6=KJ4Va4Y9a
zc-7_H7j`&ojPqOmGq@Vxj(kCSr0lrVCzTn8EUd(iew9``P(UQ$XOKJB=#heiR98dg
z=u^CIFk6MdE4X7JLEsv+umO-aeF>?dhht-5Voge@OXOrJ>bU7yPhAg6FtX7Uq==Zo
zDmLSu^+s!Kh7F8$1PmJ5bSl7S<>`aov##R~Ng#v$-1Ml2W<;TNrsq9z4hd|K-9=~W
z3PX-gFfwslcQIhG9Wj!70a;gDyuwQs0AMaFqAOc7&yv$a0`4Vk_~4VCD-!w)l6#&x
zuAbr^U!sc2xVGTuj>5X)tZ>df&Qk6KRmLkC`q(R$UzfH&!n(`bP7ene@7}R4ZApB7
zHPp2^UXJHAE>(ye{uLRQZyoCG>@1SxV{K7khRGQ@#TM=)(?gZ;`A{%>Vy8*E<ctcd
zf}@T{u4z(Ea957iHt1IGQ%VVk85tSR6=+=K9i$W6j@6KlwQ{GE*i@?_3_!?Q9`_}?
zn^4@B!l)VPnw#zAKn;VAD-9-P`2oS|aZWSfae{qKJKJL^9RgmBm?RQ?C^uL@7aa3g
zBI_%)m-00tT$0>20UavaGqJR8#z!~@tvAmI$8Ip*rn6S(dj%j8Io(nMSdG}mdsMbG
zwa~Qh^ENPf=M@nrXE+Vl*wT#jBLlW++Z%IXcXr7YJjJ9{ae<S7f0ab>D`UQWD*phH
zv<~DRqrD-Apx_?-cC7h}O52{iup-Dy4cOz3^(2vQLA7y=<0Gw23aK0^J%@8v1Ykr0
zoOdAq0807UJ#{|DCV!R@RfbgOoEl?Bid&LbIm>kwc1StKNM13X^#rScppn$@d(<^^
zRZ_-Xzzkb-g?Yyuiq4$}@G0PTt(jp1Y1+Y$8OB9Ynj#&E8+q@|ZyijfE3HgfqHX63
zxZ|d37K!6vNEjV!N<{`nJp8TLaZ&jtw+xe>;=5rd%Vc?V756E_8S_3+AD*VPppExn
zXC8o3+SvjbhSl}&T9$UBAm9LfDavLrhjIvD#6ij)PB3cB7Rtc=dY+YOVGIhcTrVJ=
zm2L}087GCtKt1axE>vq6tCWfaDpYJeI^<NbtCrpdTz?f`lGAb8Mm<2M{hI?|2Mg2d
zS-D*rsOn|4usH<%eQJ}T-N?&l?vq;gap8)E1%c;1Dx8pz+%^g7qmU}$d1@)EEedT9
zm{{SsA9Q~@iS5Sl#1>KOR@s3?ZOj{|A6je6%MMujcCBM|pq09mm3N#4+B3mDjZ7Td
zh2&?U1Emg%xoi=+dBFWCyGGRryNdEN+P9C94?@CRg=O3b-Oejk(&PZS`Ac!lbLltD
zoSny@J!<W>#>mt*NglkK=}jEXKBrM_K7Lhjn@AvMlUiPJ&&v2-p-ppE_hb%)jA!39
zsc&$lfZy|x#zucy+6^rZd8EzDORz|0%C11l9Fbc#mv~*EHv@uCYUJ&%)d^ly9tZ=a
zYFk~ZbS&U5G1UENy_v|<*z6(Hn3V;C5(3~J4R7iCi@Z#O=TpHWsINbc;EXWZ2>{_c
zR>iKMVZ#!<@-x@zQ#shu5xMA*>Zlw2VP*hum2m2askvVgcV6|v+G-8*vk)+O_p6Jj
z61jE&=K%MvXIG)rsdYzKbz_6Q_Xaos)MHQ|bhD@($9m?H{{ZG2akr@4dQ;n1BY(F!
z>?;>lJ&uUbwye<9ulF-<8CK-(>T93W@77rg;}Nb7(0MeM8jzA)mH~G1$DEqQy}S$@
zkC(pT*06PLp|`OqY8On%Km|j8jdD8F?96gVAm`;ZuX%O1cFdOk@NO%aylv-m;m@h#
z6e^mM>F8l<l9pYJ31wroPfmN+FMYYgHr!<5x~)PcoPeYk$429d#h%=3!Nv$bjcFR1
znL2tLt;|JKkem}(_eqA^)Zm|`bysoY<>{V56@zyP`H50M@6$EePIo-|k!a`TjDSxh
zRZ|f`#{|}#(G|uA2CGQ{$RPKw)hisfxluE?o^U$iuEu!C<a>3f)dXx#-ZNI>QrO$u
z)}_AX#y2OoQMdz>o}(3|3}yIb`7_RHtP9_7UbsCgM$|R{UUB-?4ocb`5rQql8QNQE
zVmZcZQU%_J<U2?Nsj61!066625zT5^BNk9jIl%<iEarB`nlvonAS&Ptbmy&TTgQ{Q
zsZzWTPr{pJZWWX<B$L4=we6wZ0M8jbcOd<1gWBEL^dU<@mhk`&%eBY(;;jpDj#rW@
zSRe=)`N88SjMb%pHckj&E0$BUJ0VY-a*&4@Cx!3LO0lpcZ9ngJHF2ViRSC%BoKrlu
zR8k3ENZNm$W}eL(s9QoGDUZ#arvn7i3v}8E?sy}vYS2Q-FU&T!KMImKSyyVWCyozV
z(#`Htid&h|TE{CAF|>TYjYQgd;1>k2>JO)C+50gCP<3;h{{VN|k?hZyS+GVnkF9mW
zIs;1D7}45@+l-dv5PMY7TL7DazDGqJPrYfrn5qHJGuH<-EOv<)&gO0Ff=^oPj1{yw
z-(wZ6j|0p&$5-UkK0z2_eq}iC*Veij?a;hsc{uE9yw<9#f)3z&n%kDgGmiH%Je4Xz
z1a9Q8^{D)j3S~y+CkNWK8VL6StQa1dJu0k_5O{uZ&U;bI(8kTPJwR`|a=`QhwGyYw
zdiCTJ$F*78v4AHXy{WRqBmk)Zp0y2Fn;7?TZ99nhk5FqaXFJFDK+ZANwl0yQ8Qe+E
z10L0jbPi7A&Uy;w*xPhQ)3GIY1t;FA&u~E_KQFFo#>0RLVD_rBL&*$BUX`RC<j$Lx
z#A^G(l6M6@ooS|0KK4mH2dzqBXut&s4eD`GJVPLb$F**!eG#=RHS`qDTX#P;F`8>T
zU<T(M^GL&QBn_jW#YS=S6&UY=dQ)?D(DkX|G)Om%;OFT|esPjmlic*EhDx2p?mY+`
zVywX#!G3Yj)H$TCSJg%cN}O;r>S^t6NaSF9cdHS{yr{!x*k?6nJ7#dqbA=zBV(NL1
z>Xt@hSOyD|w4R63n)bm#!Q(uiTHl7)%0BKm2cBvPtiWKZpd90+VeM1VoVBpJXkope
z1FjD4N3}%Ie9R9x;8x6#1blFKKS5Fbm}C-04;4|Ums7*7Nv2}S30=5eIvgAfQ+%Zg
z1_}1fYBUNTrqPe$=~0_-ISfh9euA}g(DUU?%zJa5nFqFMf*i;&JNB&^pvxTaJ!&aX
zfB?exrFWpcpK`jP>ZI{jRauyvg(TzK6&fe6I6ZS$BV01B0playp2)Z+iEY7BqaAvR
z(zYZ5yLiaQxT+}@7+_$N*0inA?H?!^;2xEZ$5b@f*0cw^F<kx8#w&i_CC1^9*}=)k
z$gE2-pDe14xx;Sst?PAV00X#Zl6sPBno8{Mr7I&!7&G$YJq}u~MG_O&cH!TpLui|0
z3_w5LtM<{UZMX$`C<FAYB^w>|=iCHJ+fWi;Bjp{9PSHC2tIi202CQ4FqwR1HpvNMl
zMBN^9oF1J&3Q>c(-3hesb1MLa3XLL@)EdjahkCIpzMFg3MR2FfWB?yvF<EyIDMil&
z41H@}TOOS`^*O89&f?_&LC0R^vnPc7%gbkt!=SC()e50W037uC@mW`F6cTdzBfmA#
z7&{&6qA+e^c!2>y1mmSpxKF*2h8;z0%k#T&k8I|%ZURU0?I%2QT?#F96sHtr$THa(
z4n_r4Dr4+elY{G5r;BL-4X4tokT6{Qq;&(mbwyb4aT3167<qZf&U=ouM7~_P0H1M7
zxa}DjW7>twmMg&T?_CL99z5q_{i^Pe4cG+oPg>fuW4~}a7<D7PVZj!AVTj-kr{1;g
zP_8-J-3bSgQ!BE4rH%Vpv5lj?Ng}pwCo3Q?k76sGw*_&6Nc7GLty@Pj0010d4tdRU
zN$75>u7^=$aftwbmB$K4AlG^D{`_0&dzrad*abZw<v11Qc2ef)ax%%lZ2ooFct&t_
zXxEU^9lnOR@ey;R(ba~l$x%p?#Xk@4z9Cpxn-y8E;RY`$PVO_1E9igN_e<0~6XCsf
z8;fg;X_`ch(fH#%y@hH1&fW|E0E92aAKG{Jjd5WH>w-tk&}O|~!u~w)UyUc!Kd`N(
zeOls1FAQo%+#XANSIf_pLzV7&Ri!CZZ<g`uVEj(LVYn7%D5E5F=Duv#;DxW}Ic&Rc
zV%&f|tK0q|-+8ZajUz?0kN`X!SCfr6UE7wCa#;QTm_JJ4OOWYWBZsrQi%+_5E=>Ob
z69dx~*=XKBiYT2WxOKGy7-sM7>0FnKJUMe@<dtk6m<1cNn(~hmzNu-bz)%pov*<V-
z#dX4;GrBn{&I?JN@vE(trx%%JWhBAWlPPhxAB}lOjU&`-#_#NPk}idi0z%`A*BAc)
z36{Fe{<;24<(05Ln5!}P=fo0Q?P4AhafwF^E4fCbT5TSC_A<Im;(S5k4L0HzR@2H#
znH=$44ctQdZI<wyWMx;H^qp@^i&(m8CxK87@%O0gbelUx+K4cRB%Y+#eL4F*Th#L^
z(sdq)!|=C&Ugl+a)Zm_b3|Fyf-WiH3WDuwu2Py|z#Iw1H6hwg(uRsqby$`|*9rRvY
zj#gZJrA9MaPQN+|cy3Kr=KlbOE#QYqTbTqZ(G|{5%yNH*zODFoq}zDY;idMOd%dk?
zjHyC08`Jf#n-jn?CZ2Dd{J2m8RPX`MO8PtCbhop3ckK32`LPuRj(AlS<l+^j7JImL
z%|>yN@$bi<f-`(L@mz9hHqP1={yd4t0UOe<_;=tmnvK1^-idymQ!=-f*ldy1SKU7l
z{1K;oLhvNoW~ULGYPXiea)kG<iQmEgFZd(kRf{I`MOh0)Dw0Z$!||(>+oq=tTHPE}
z>Bco3IsBRQSHiD{x|WeVQr@WYQAXW}0nd8&Jzmnnb84p9T3x{v*nGeqPc`HI3i!=-
zG|0{Ektoa9;j7TRIjGI9TthK(pyaG<e(0}1+DYHLJ1S6XZH|*)jvX$+NC#kCsXfhj
zH;=WcEc_|r+qk6I-`Vp<j8FH5Gws&BTgTeoR9hF@v~I%x04nisicFUO017-$bnJZA
zg(3(C3|;Y$%DL$-Y)n#HGig)h!%5Gv@%5dH0HK_@*f&37eQQz+MJN?m1<u?N!8IgN
z2;2fe1J~BB+Qz{A!#(gnoqmAT)zR~Gw9t(#B;FVm45yR_2N<WtZpax}C~`U))K(1J
znK<BN_5A8dZ2*m!5HZLAbmqC`7WX^jqB+T;Z!v-u1Y``ZO=mruhGr*!a6Rj&ySEJ^
zIr&+>=*9(5n#E%zg>#-s^rMyD!6cr?D}83_NM$SE0OVq@=e9h^GDdPev0cU8uyoy(
z36G&aTF1N7cP`Eg4x}~!_O6Jek20)v(Bp0+VqCLyKXd`e`qowC860vm&$V?E*tAG-
zj1l<ORn@3ctN~@}Q$4GyEgo#uv^i_I*apDK9nVU}o(wk}gVa}3eQrqL9Ak_R(y^{0
zB;Y8)<eKP;>~KkMW0TZvlbkoV0<kWWs0uo9&MU6Fw+u1HI%Epxui-sN01o|gLsm0e
z8EcmBP6uXkGAXjI(~JT1sKGmZjYW#)B}T)1yq>^!sYHZ<#yxOzP{v5l)}9!t<LSjd
zg61ak8Mc9rf0Z}pIPH#<iyJl@Zb;)bWg!>@<bEA0e2m(;3IahpvNMXa6i&<!3@Ugm
z!yMxxv>>%7fV`2~n_@*c(_kED>r=%ET%LnD&vETq5!i#Y?8ztct1(#Z8R|*>D>mC^
zkzGniif~GvIK@jGZJxNu#xq(`*k!rO<D42A%%f)?iL6_((HQd?#uiRGk7_`N0dNn0
zn~KpkyGBhW-<T5^8RMSSnv*Y(^>Ju-xKcML$N*HrBN#XU4WQujlULr?_l$TfgOi@7
zm}A3W-~o<(Ysi#reH?Y%&XPA}RaOdm=dDzDlZ6U0asea0d)Bn}`{Ya@9YG}YH3ZQN
zg}^-I0(q?UIvQ3orHO*$s*lvw8--FwCzGB#R;|+R&K!-Sx2;i?L%&YhBONPMqtxb=
z?9rCVx_mLf9COm6XpAQWmL&A66EE)w+A*9FO&Id|{{UOtK9$ve%X5*dj<$_qi*oam
zoB_>g+9ETn1!4ilI#n1$DH!HG+0T4dy`!qixCdw(y}ufl?&>J6XJX~8r<zb>3VVNz
zUKZs}K3sGItuits17HUu<{dbzk*H9+Q~)qJ?eAQ!S4UckLq)J|cJtUCGf|sy96{HN
zpI-H3$AxX@b_m7~YOiuK<RQYIi|Is1B)b`RXXie+=xaQ_LyT--IupfPy(-e}U|4M#
zAl7{D%t^>qJQ1Fi)dzhJX*&&)PdqYiIP5^hK`zm>5?>(l1~6%@D@eo)k7LC)O}oe4
zV~z+tD|Bb2uE~pUjAghTx_&iC<T1e`JOF)aceu(ZJwfDpRe9zLtVtsSuTpDxC(zDa
z$fd+@xrZQiG)FPR9sd9*!On0+Rhjp<QVu)Qk(NV-0k+`dwR9-7b4lFZNy`-|;k`0H
zom#fLDY*tz6Vn`n?O2xgJA-aq4CG>`TY>`;PUFUL$gOW<nCPLoLP_1npyIDZcv3~$
z#~J-Am`lD!2m^0GI#sBzzI9d^L&!O)W?fFY(@@)=n1D$c9qRJloJW={`P@M0MRD-m
zus}H^9D<{trD)n+Dq+;I9Wr|6xavC{w30f-)WeXf$JgoYS7W`AK`uE5Bm<mRF9gBH
za2V%5jbDoMC5q&6_YVi&xF<Iqk5-%$M@1f_#ef7U#yO-n;UX#tal0hvgIxPwvUF0v
zE=M_~H~V8?Ltydj4Pe}~NZQdz)0*@<xl@yz064&``>Ub1<prbzlKg{J-sm6-NjdH+
zv6-;S++gP;(xJAu5=z7~Ncl$p09%2Mc&w}CC69l?u3Y651SGdyb~Qp*U=JkVWC7Uv
zR*5#QVJRr98JAc<NF*`&Kr8&KCiy{-xdav+G3{G7Y%qB}hEJ_zT}i)qD~?GS?Ojmr
zbI#VWg?knhe1(bRXP~Tmq}dr!^~G*o62y$1r`MXvxQHlh@^gSaMRvzUp~on57<0k_
z<LQrTr19a2!2bYu*0p9-Mg$UDJbfyp(SlACZTIV49L&MfOwVt;IU}u43Wg_kK^+fj
zQiPC3JurWrIS{!Sz~{9#%8Uz8WR)w>btk=QKz8jbf!NgukYk?R>q^yComD&XK^<!c
zB#qR18n);g7yuG`){TlWeZ+L*6++H7`^|&T0D4xvq6`Kg`eL}JGp;eYs|M67&hFUs
z`qsUmByKrSy^nu-$hLCLxE-V)n<K4iL{9Ux?kAic)yXc$Y<$b{s6<A{Wd|7U2d!Ez
zqiz+P=b+-MSxLZWY&YG*j<sb@VRZmyxWjW;J@q=`)vk$58QMu3yAXLE)gs2jV-N%S
zV>tTMSp}1hM}KchmJU?;W4}!Hsc|)raZ)ccc6sBF1_fJ*6t5~nV++S3nQIELS0sk}
zz#en>RrsT3P+1s%4oK_oU2sY47jJU9TkK^R1@q9Jl{|K&le_{zBxjnr6kC{J1}CTk
z^{JwSIr9-pl6VAHZ8)c(-iWN0XjC$&Rz3QRQa!3C%GeSffDUVBI{`Eyc8#R<JYtqh
zASF=DI$!`g{x#H<wmI!{0$VVuFaRTw$6A4{Sb|#)oMnLOaa{-5Gbs+aTzcS|t8-^0
zXfUcb9!FzZ^f8od^f{@m6FdMI<P~bCbr}jb9mIAVes$4Y+K@?5+eh&+9V(60mK1^e
z!q^IU<a*RK%c;vNCv;$W3%N!x`Q+y{844sM;xOF(1!+CL(m*7WgZFSVRi(8#J5+A!
z#Ph{-xocrba_Y=`=ywc+10(Ma^@S`ftW>UYc**NsecUSG422yAd)5B{1$-p&SH!(h
zE&My7UFvL3!qFiL2<}+$1!VPC1yM!&%=4F0SObyB019!kVmB(}6V|@c@NfJRk6V&B
zu6$wQD@_(Q$!j}d=gJ4va4XgH@7N#VC5j-ry4N)~AZ5(LF`r;NR}ArVX=y1M!OB}j
zv-4(4Mv&owByva<R%k~UVfkY<`hh3xG4OS`{?64S$UnRn<ed7~BdveIJ^TT9PxgO^
zHOmF*wf0CW6`0}w0GRaX)Ny*npPVy78JV2zIPQDXKFxuir1Q;vq2llOCpNuiuP=tY
zRj2Dw54#Sah8aop<BIwF$6vG8#7~C}DAznObsRCb{CwH3oe^JLt#&L$Is7s`%2<js
z-%nG^gajTjkELCL+vZR>40s*tSmFygfDbLlRB%E3s_Yi{BP`yzHBypmQ_`nO6IVkL
z*tA5PZqM+JhOQ;CRRxr&BO{8kw&@TU9JfqolUCzbP*s@Z_U($~l&)N;+eT-tsAm{o
zsP(Akk1ox;fCoS`&uY;St2Ws%FnZ^jt2AJ62Os@<hVFTlsadv+X`;(#0Oa#gOBf_`
zgWCeMBpZu#7(C!q41tN+@{eBCQI~V(F%<fgOhJGrar`?`<tYFTxHY1%nE(SI^vLLG
z#>@^!%tvb3)a6R&mZ7PTAjl7Zdt)7as;t(Wu~j(fir(@GQWbjShV-g4Tk-|~W7LYM
zRJ+t2Bx0;%Yi9+!FR80A+qn!0QPU&6IiV2D2s=)C8h%s~z>?>jR??Q58OAE(qWk4Q
zKF2kqV*wzjDoE~sol}4olXEFRc^p=~ji_{GU>gTM#*=o`yIk1Qtu`nG9Fd%g-Lkjb
z6fqq4AI`JvVh#WpKPdy80BcgqbRd>bnQ%8_h83DgyQ01V{k&lYcZ`FA2+nHsF@kVI
zV0Il1MFdQNTO;P_fmb#d_7XOdaB_J1(aQRpMx;v%YRteMK_C!MPs*%D4hohGs&F>0
zKRSpIGEg5<pVp_^6+z)tb*&={Xm&=TT}UR4V#dN)F(iyuRpM<7r8vfUJ?nAdW_`ss
zDCZ}PR$iqC%nv)0^1-T6TOHKvSscymOC(-kQMG;gRt@0T3Wrt)kZYyA0yx`Zg1mw{
zel^KzGJr~ff;tTFYoeTPc1ICyQAT~Z>6~Mo-Rh*rs}Ynuden_3)3rh4uJ1~L*p?Ur
zo=?)cqfHr9#Wb!}kQ^VIB%j8qPtmcH@9S44ak-C7_o{O-DYd@n&q~!o$nt996^in{
zR08<H>*_rz@Ht*F$6!0vSshrMcI<moqL8^zrw6eVG><LS*K=ywSx+hk1_wE<i(FxM
zZTYy)d)6J4fRC6G<GyQN2}8)cfCCu-)-rtx_P5m8fZ!0Isa`qlS8d9M05B{%)=Cnp
z2*aMEo|SsmWjR&=FgYU}*F25mI~)3D;Mom~bluKHb)FuETdhVGh+;%=>Z84JP|i$h
z7oVkfUIf*l({=l4r8^*286<Tb>nY!s$Q@*z(f2Ncs@_=qGPkf@J?-x`7`&yOhu-4{
zZ|7WwhpI#HXT(-M2C-Nt@dmKUbqT=B#Tn!-duP3R7m2<rcwfbz2sGr<Cm-5+c#ZAV
zmuqfbxUUR@;jfB(H}SVa@yCfLPbXM?@Phl8s9)3CzHb#u-t{-r?mc|J7Yf&nWv_1U
zp|kNAw3>y=@$yN4qqnVc+I@uAlCDN0UUB?}E2H>;%J-K}3G)kXVbJZ)Y99!pzY;Q`
zP^+AE{Oie+(D$PrV_M5du!#-L>`^nkMOCEezTkS-i}>5Yu-$6He<9u{a;l+nK+hHI
zx`w@DqFpRf0e09WfLw&Ga(!YO!2bZdMm)A#qF1Aae(tB4ijAdYc^%Kf>sxhqk|aT%
zbM*DEE%9ZQu8_<GpLaPR@%UGzd`t1HmJthRBX>v1+*^wI)5Ln*v)q)Bk{FZ8$jy2R
zQfouc<&8aL$gg#r%zU!Qfc8DBHeGR|I1ETU44TQhzua9&&%I&Id}MV19faWL`PR{g
zwCHlqx{l2Dzl7ctzwvd`P8I&i4-Y3npG?=gXdVudEkY-Vouq}qU)H>H!v6rY6|cgd
z2<g^3Sc+MEqxOkjF#E~+)~w&PR9dErB!QAUvDeF799J~&eIR-i`69KNx%3y0^+fRH
zmA;<$Mn|6vpl}s^NUwPPman6`&}X(xdCwUNQSumb&3<7&#jEXGS2wq}bKFerg3~_)
zb{Max{{UyNjgO*B41#|!79S{V06U80t0_}zQd=9+aH|<pgVmo>>Yo>M{R6}oItARq
zDazqXw?UkAu2WOiVDTlR*vP_5V0dCVW7yZ0{?s?tSH2e>Hq+%;H4AB%%u)B94^S)5
zej9vFmr{};B+^SEATVRW`d2QkbH(V-S`^^brnNoCz@HCq#<tCGG?Jj39$WOsVb5yz
z*{>(lblBjM*<+lHxr|_r+*MzMUuV9tigrL8oRX*K&#A7L#-b2NSkDSa2a{Dalp9-|
z6Kz#dJjYm_u4eu4FOKHC$Kzh1C7;8mMPDx7@^p;@E_X0Jv*}*5saqwjmzuzg^=^cF
zSI=J^wTU$?Lrv11neDAm&H_GEGY&ZQrIu6nn55rAvDG<fG`gNq6`YtqGJ*zvVOOn?
zovMfD+t(k~ooy3F>AAjAa7Y~Dtt5Gr9z4R{y{qpUPebP^tu-WyH4(AK!a4c-)xjAU
z2dNzGJXC23+DmO!Cxy*jf*kyyj&Le@7UyDi(4%u|r!3f0+@60Lp>b?T+!?ob9f$t_
zTDlLiorQTqI4XIl-o=bzytByeI5lyN-i9t+4n|ubQI6D*aNL}eS$FmxVK0!M-u~@&
zQ`su=zc68d02PmMVYvtifH^y=;~u9SN$7BQ)(oVw<LAdY&MOk~B7uM>Ju-S%cYk75
z7k#({=NQ2s{c7i~tcoAFFiuL3O4>0@0Q^7$zu=TkM()>Y9;B%1PjgszcDo!8yTKX7
zc6WAT3<=$n!kWdrvo22nHts7$=5S3U&MxxY6+JoXF<j=MX|azdZFg6eq=(!y)EtiW
z&FXf9;O;o=4H8BU`y6f5J6|{lH4;Qv6Vnx`cW6|ckTb{?U2O?CJaN{d*3?CGfVO$Z
zy-tx7WhXr_1zv*9vNny&?^oc{#H2F<zS!wgZ8RyFQCc%L22MLw^sr{YUY)_Mi)}Oz
z3h<zDS8a6C<s5v(b>gbr+7q#n4UXImq<hwkc6i1(KBlzBpS3b@-;YYNx@&I08<2k(
zJZ7QZz>L@;bPMus$2c{iZ2)1CGEXBNs@yg*ZouFkySe-;O4~~y0#oPiJ626IXp|$d
zGBA)2ls9TwY|9q;aqZf=7&P;RY+xrQt$${r>%+Gok4nN`XG~q5hZQBFx5`rouQgSy
zvc!@Ge(4>nues9l&Bj|DPfE?X)5Kv^F5{o2Lf=DV)6n#lMJx+rBckJv#-frl=Hn{J
zM<jKv7Kq0d@VH<|8~ciff6T0_w~U@MTuukkq-RKiHY(f}<Y09k=BivkH-dyH#&X@O
zX5uj*$c&J~C+k#hB0`~gEIVVh4mQ;aPRPi+R#jme4_uCOSyQOSH*$KZt%)JX$paX`
z&m2}ZprR63e4w77Qsima=9HIGjmz|G?$1-{Rm`8mxE%MVT)tS9A0|1?LlM|MVz|Ho
zK<V#VC1a7hzav5t#YZ^<&~~j0auG5KTwsEF)-uhLw2lGnd96D^=AEEtzTw`pnz9@k
zX7#kdqPsRSc9yG&aG!UU3!XYwJS<TZFAIWk>S}Q^WXZJeJxHu=uBP{9huSiP1R;Rw
z>+e;jknPK5heEYZOO_-O!47a#pURoNfh^21$i{ja5@T|G2(Jn{H#lL)6^>*Cft|0O
zok6Qta;`{kn4Yzlb1%z)M%-kNdg-TRjyjFDI^sY<-MFwljZ~iSV2Fqd>)x3q!hlEs
zG3%3A(_M@M>(aYaE^|7L)-+?eGGLyg)1juxI_@95W<5ykwUU>GT#etmCj-)~OK`4$
zu0rFbZxv%FI~N{NB8=lW>JL*)Sy@2{cHrQH-l!$cByZwV>UvX!%W}EO`jJ}M*yfb(
z?r8}DY;+y6YEe56lpUwmvKn(2`$x7#Iyv_S^(XPB-$6NP=4~y{BoZ4vYH03DmgH?t
zfL1z5xZsjUcInMqhH}R_7$X@KjGHxG&Dbt-!w=MPjw<!7)-VBVj&cVTf-VF|gCqL;
zRqI)p43-BR@H%?eG>({Vbg|trMfpHpxKo2y1@2?qWXU7~#Cumc4bsR6-GD#5YEyJd
zsSHUx;dol}=dP!t30WNgy1-Wh=OFS;HLkfNzV4fVtdV|FAH9OZZ}~LwcFGU?Lv961
ziz-q^u#mG5NyGG@OB#We`GDjo&1XkBDgi7AIQPe`J~;%8dEcCZ_{Kn~<tLeJPV$L^
zGchQA1}idh%%PB#>IgoyqlI(_ISM}RdWx+yWl@R2Q;(H;)g^5K>SSEJrF^sVHhOzj
zJ;Z#-8IA@B2fcI?p+mcCV2-}^m3?j*uvb3dR`8NqBL@rW%u9%hHWZfk?TXF0;FiZD
zfN{lb-Nm;(Fgn&%+kh~71I|0v>Q`W?-B`q)Hpx8?U`158jFmX$vz}{Cal80<Kc!K)
zfUrD}I@d~i8OoiE_XSw`QpFilmKe`9F2Hl1d(?{-P6^y`#Z~NO$oD0;2c4jU>UvhS
ztU@Uh1D=GAl~URun|CP(8T!_}ss>(E9P}htEar`42Xghg0kn+gr?zWa6=f@u17oNa
zp8!z1dFQ4(R)j0T1&eOyK9$DzyGK%1*uMxWyf<FtcdORpApE<LM<jaHNDE1^Mh*rz
z?^j?1{D&CmL9E--=F3vr1BOz&i8!kc7^*PFdSg8(h;73%@wDMobrkD(v5*w?>T3;m
ziMESI$)Vj4QUK05&ow+CxmH26<K|Ww6v$DK5>zm3^*_q5+QF6t6SQHDI}b{<^=CrA
zE`_UDisK5qdNJwwR-L`D1Lhq#<I<tBwrIc%`;#QLMsh1wC_}I+0|er`BDA_AW>;7X
zIKcbdb60HbK3;mBgE+=2ac&m_A&BUxG7Vpb9k?tG?@V|8mC%}q+ij5jn{)#h3xkk*
zQ{%MH%DCH%<oecxcH8$ebW_0{&!#GNUol4fD8S%~=~j~)(Q0H19Lb&u;~DEv+*#p(
zAb=0dPaxMukf)efN9Hn|93J%9Z3%KmP&g#<_|>f$oZgz8UCx|5#=ziq9{$ytJ-*B%
z5g5nI#den#8&%{Z+~9T3eAXVJV;eU;58cIMQcGizG}*~qTOG)%069E$&%H^fczWwr
zy-QnUGRZO78b+myx26Sc*yuBBSCLvlZ6uS(L};<DS&23J8~ZPQ%=TXmw99>KS&1&S
z`4loMDBElZ=s()`u4MV7qKvE8jVQLyDgB@S0AR~`Y@pUWex-w|v|3^u61_(A+v#6d
z#h_{44bs<5(X{)0Gf!2*!)X{nk8|F;VxS7-yk~y4a1zG@zrACauVqK`JbDwATFaQ@
zb({2yA#)}_yI4)ADI<Zj^Vb+PM^*7Hv}{yLnIQbEaa_}C>2)ZR&e)*i0Pt(zs&b}&
zg@>aB9a-4TsV>2>@^SZlD7V$2WmI-3#F5WR;%+s+^k>@W#IVGG<N;N!^=aYxCfk*6
zu^tHRSo2w39m@{}w>=U^RdVC^kNhD`FWX0y=;|F?jf^r6;A_s{*RHha?q;6j?NO^`
zQZ>UM&rf>MkHqaVx!OQ0@-aPrl~I$io5QE0cPsec;D5uPhy_34An?_xx++jz*^eeb
z52;?JzH{-%>>Y1sGf&{Z614G<c35i5gPy=R{${=Y_r*ppCm_zv!!B?~_|%EwHn$Rn
zb#+uEY;2HgvX)_57me;jDLPM@oSJ`u`Ss&(g<dN7Zs@)t(dV*U?GvEi3otnQ!;0o)
zk2qCeM{}NnzfKogw%2V&ovFbE<&1;(*7GQ2aroEH{{S0*WW7G>2|Ppa+G7X+wAu~a
zncwT=xBkj&*`bT4U)_33vDXa3OWm%t?!Qyy*?vX?<scJ+djA0Wt3GhD9OMihYe!SJ
zpH9D;&iV-~ZsBdRTh5zaGwv%sTzRYy%6p#G)z-vUsTu1Rp+}6cMI)S(jN+HbaQI>Y
z1J{FAqFt&+Fh@h{QV7GoK{)pnN!hC(Jz6~1L|<p;0WrHA(ui_|jsV~Vt7!{h5}`oO
zImtA!p;C6Q4fAu?G&js}a;0N7cs8ps&T)V%I^rUuIKdswZq1PADak)t%eam~aOVq*
zjC1<ds@Kq-T?~m2orVB<<c>+G0_C~;!;(EJ<krSUXWh<w{{Tv^ZP^&M0~YD&TPZ8q
zocyeODrS%pPs&CBHPc!~1|I<K80NX_NQ%g$t{8P%>2#>_cb;%Q>F8@j^w3(G_K^Ta
zNl-W>)~%o{512=m4$vQvN3};|Zm;vR5u6>k>sr?E7GIbzm`@9i-qlFwl6#@i0;O}g
zmjf(4eJb6mvxQa39Fv~h(p$mhuq>nyaDByFjTxV40EFd=oaEN(E$WQ<`B0%4N=|ux
zrN5O<rCmcP0lDe^6y!jSxr6lM11B`=NHE4gK5pRlt5MS6s*RCMk&UcdsK7m|KKeG;
z#F9@yK<QeugBk+cSNp1>vh_DG#>W5w&O6qs2SUVZa=NGnCn3oh$EHnjTCAa^<PZVD
zQQEsLTy94S7jWkTpsp)b$tAi2$>Wl1cqEOMBFf0knX)n%qi3G=5tQT}gSn_=mBTQ`
zan#gJxP#6ITmxGz5zSW;+ZI_c#Db(}t!Lc6=G~GGJ$R{Skg&iwC!xhsoSp`A>yGtp
z98;}*2t(~|a7TKU)_gfU{{V$ll!hQ=4`E9TgMplL)7GJ@oc`6{Lu%RZ!~#xx9@VRF
zaur5-^{#p;Laq-^pGwoTljho5uxi&eg-+(}yo!yL{A)%j{Kwo_k~;ChtO#c1esDqK
z+O*)gJC~4hE1FBG*9pCjhfkZ#UBrdwpzB(&-T7<?ELRu@(z%;?Tjl$pZ{>l(ABAc`
zbO|8ie`asxQDke)bz|8+5o*6_@ePfw&EDu5;Z&eFPPO;n#vcz_UTHc-<V2CBM20p8
zg#~N#Gr*TFn&d4Sw({s#zd7nXEA%78de!ys!p$!F_9+Bck%$nUK4lz#D)TXvr^|S&
zqpt^24y;t2ozD^R&Z@uKKoZXK<Dt$gZ^3ZIZv+1H9m$dbuR8HQtZmq_C8aC_J03<4
zO6dG6tc24%)<GJORFZM{*UCw|So?Ten#{=ffv-iSU4ayt-uplc>)yGzykP~UyU8fp
zinu<nT=$Q>Sl@1%SD70!5Th6*4)x@E-;A6SvD<hg=Qsm3-$o9}Ba0IycFW%qJYcu8
zJML$}J7ejvSBUC*gH0<o@8To_+O|ALuFG~CdovPwZ1t`x{`(Sb7|%iPUcETo*!f&d
zdp=Ta&vzh=Hx?%uuJglQ0*2-R_N+w5oz2J<gP_N6X$*7CBKeKm(z?4{Sa}Q<O^cjl
zb*{%HA9g#OkX+B2W^ajp553i?lFH#99Z*-B$>6P1O_=`ahzA6&O?$SRtRx7eOio82
z^vztc)Ggz@k91MUr;<qQIW<wlIIA>gQx2so#h!WKABP&pitm=v(#m^_ggl^LN53`g
zfAG&g5xh4Aymr<PVs4In;zMA42TJsB*>}gbH@_DznskX{k|7!r00RTkzSg+A)29*7
zaETyS`4n^m>s&Rl6r9?WO=$Z{ZAmlWuO9pw@m-g~=C_kjlJ%IZw>z>}sOX}+Q^8uS
z+6JhRHt3{{z~r6>(!W%^e`#f^X#PdKD6vR4Fj1WPX1_SUX%7vr!|#Z&T*n!T+VPG+
zA1GiwYnzr1Jdr(!;^w5L-;wr5?Ee7cBXes4Z`&q5@o&9~_N`Y?k5c{XfUHhK9)i9i
z{hs_{w{03_Re{<VH#PNrmFsyi$0qgKp#0qpc`opajE{1g_LJu)@nbAj5u+W^a$5sG
zkgtukjYTz`e^9wHZrw8~l6VR@0=}j3-mY!*3%TTMM+7e54hiG6e1oUXS{T)`uK8id
zsn0d;Wb~49ndRm+7c^jLLRF9u0}?P;bQL@i7~E|E&#rjIM;xT>Z0<SE(fsQDoO#CP
z>NC^yuc)#-=t)~vT7uur!vaPKJvcROEyEUIz~?7DKPqj!MT2~~JP@Su^sNY?U`_|$
z`EUnMrB$>o&ibx|P}-iag;T&EPW3ZepL2nX59wCzpc3JqiBEEKfmUOTv}K6M?UB~B
zidz};X?Anh8hWuINJ4S9BcG*Y-096Ak#=Vu_14R5WNs5Edgq)9u5{K{8$gT>Mk<tc
zF_XIVJo@ua$z|xoV+XOU8|^cw17ic}jMt`I=|yC7gYuk)9qS6~NfI+DiJ7ywG3{DK
zYI*aK=XaV$RHy?D+*SqdlvU0KFgZWrUYl{J6O;_OQgQ;C#?&-ckPHG_8@BfqrLKAN
zl5F!k{U{V|q=^aRisdyuCkHOX=cogU^{dS#f`P%v#ytnUa@wYpggGgY#*<nYT=HE)
z%$Gf}+Z9$jM#vxnef=xD)bwxxa0vFSQ>3_V2Jd58G&_`Stk{A$=e=!O*a3n-2N>e5
zSy(X~rac91S?Q#($jXkZS?cs1%6583$_n90HKw{6BV=KKUT`@TwPmKFgOz4)O!TcN
ztW>xJG84&F>s4zq4qbF?f+HDRXC!k{!=^Se7mk<%y>>C_zGyps>afokCay=LnFj!m
zY+wp3n44!KZ=xPJJBB{#&TC%VOaS9<Sa1VZS8d_%EQS#tdb#I5_^bB15Hh<lIO)pu
zJ*pf{6q-3}eIVp9jE*sZ(yTUy{$?BH2aKMAy7kdSp-0^+dIMJ?(Blda#!8XY)-sDW
zQbz%Eq7WNmhZ}MN_ad>b{5|p=!+Z5U)$0=INrz&p8CQZwBC{`aHDcU>xMPLred=6p
zXr<V~Ktg~H4o*uR1xDG6XbHGEKQf*_8XiL%_b5RFJqM*!lHuDp2O#s$O60Rg)-L3V
zyWA6u<dQ+CZlPVDd>}r*(xq8R++*0Sjy|7SWRj`e&Vf!q$T`J6TWnONrJ0j+2`JeL
zRE%@m-nsom0<r^-P0Q(BEbLk)5#w>rH*_Mo?NI~dY`_Pe-&|C391~X5=B`fG#z_<_
zp~tUId(zy6T(DxLxgScc=M1P`8~fPlP}R|e`kGKM!N==b79^`5;a;OPk!<BcsbP;(
z)~`b-Vi`#z2ZK?|rlL;n=C_~29C44vrVLpK`=f7D&}Ore;awRspO-lF{AuYbp$VP<
z$0s#BuGX<pm7U3CV;cP9c02z7TB&h6EF>w(10y|8y-Pf~8*#=!1e&FG#7M^&QZbQK
zlf8v0b}C%m?_vid9epb<X;oBg1Y?ZmtzAACg>R7Xe+taGaQVXg-ErtEtw%$Ry>%<g
zc6`93f_+6(xSwbvImZ<o^6X|g$E8r3=x3J06W+RFaZYw7mf$WhNM5+jN|*a%037>{
zhO%DdWRrjaq>gdP-Jeh^MdoA7_cs#cGXkVGe@c_>ISi+v<381kYT03ff;~-NSqB4?
z#a_&t+`Z>-Ae`iN=9MI8^%>yRWFvNeg!k`OA`OBw)}gV-eG8DW@7J~}#8T~EIQI0a
zXyq6yboK34VmatZ9V<4wol#v)B#=2=;Xv*^YSc5~$2<UXGr_FL_yDs7Qh2LkY~*Av
zdJgrANa~H&rj$~V3XpQ=IOFs+JU0L)1~cC|BC-7TT=9(a%})i#3JDw>g|11XrV>{*
zgoW`N<&<>5{VK?l_ln86Pf&51%UKvNEJ*LoTS-U&oa4A11w&5S7b_ZVD-F2F1-@cO
zTAn5j*ibus%luVB7Y{Oq49a;Gb|hs5m*r9U=Cf&AaNU+d?@R(02dMR;WWm@8*u-NT
z^Gm-ms3i3Hi*PBx$Uwj<K;w*zdS;?mS{o}piW3GI+S~R50qt405r#$~&OjuJ*|>vX
ze=lfHMdzB#mLq_!J@^=;mr~42n8-#2K$khobjB+ZXo`|sn(4I|h&WM}#~zi5EJfLh
zsBHDe0=gqDE;g;Pg?STX07xBi=~U%Rlg>}AYE1{4<Q?30s3f;Ozd>CQm9#Ro%)cmd
z2SeQTs}MoTWOM0Ln8rZBBy-5CFhkg!f-|2=QlDa@1h*x&fCHVtzolP=2H;c?pI+4z
zFe>aja@_$O)#Zf6ka~6eYmu~Q;)&yrEDkWkjyu)cbSnFlXD0`aDhS3KAmlLb&0c{>
zJe)TeQAO;uFt(+ec%M9HuN?HPSX6mqIV0|jj&oEk)6Brj1#YL(v>_o>pku%TaOa<`
zbG=@M@zTt<Y>XL0V}M6IRm^<BM<c#FdsTQB&0ts(&N*Yy{VPThl{|rk#t6nwrA6$G
zknM`h4l+n26WCSDQ~{8#NXG=8KN_tW1OTeR`{$)-Sw{0RNTUF706Yq)rMa&&=xW;)
zX#Q*zJvP>@t+&dgV{06r@TwMZ2UQF?CpjmN!nSQ8-c$^A<oefTH+>A8u8FPf0wZlw
z2{{KHD&%TI0tR@`N_DzAC|s7n!KoS$tCr3W3%9*(8<iOkw|;Sg4`x%vJ#rl2ow&im
z=kuteh18RixOc}NO1o<lq7$9q4tT~ZbnU3y>MB9JZqHtTjAPcNjsv%l19j)US&G=m
zFzloNKJNt7?;q~*otgY|TBgy2wMGrvD=;sNDLGTm(y(r=yw>vA7F>dOuCD4eXrDhI
zBe2bMKMTAhHC<Th7cs{rqGQSuAG}9jsIE*+NYjg)j&!*Z>)*2f0KxclMqd%@2@`4(
zWLrkq{nBHp9;Uvy)AcAV;zW_c40R`p`L^H2vFV?>g_F!Fw`u4PZ_=`Le~VLLr2(P?
z_iDmSf<Wv$SIt8gQC0SlIIG1~Ni*w-Z{dy)G`QK>v&DF?#h(;O4XyElRKgsbo`SrL
ze0;oH2rZ?!2(I`n-7r6hd*-;$i5@&UmWcOu?q`xW**uQ?xIW#5dNr#&WL3^eaa3i@
zbGrWkjwF`pz@N<AF_FkT^v`2i@p$4`WB&kH>g~`DL9aH~d_fFn$Vp4cPVBEw!l~PM
zg`kILov;Ig-oAcVX*Xnj9vc|qw>`T~@za>`JB3_)tJ6O9B;F%^Nm?kbJgxx*^%de)
z{wZ15qp4O=!<GY)Th_iMT|p7e&{rVt!RG^|a8#n;dyvM*l=b@$5F}BwGTm?I=Hv9K
zBk?3~W;o?<FLqFqjC)s-{{U@E989q|8}suXdG@N8ej>cGw?|usah=;7W1fcwvi41_
z1?~BsjP>iE6s5zd4Y`o<>G;q*NeogeN5=92!Rwypyo%q%%XCz%g;)%@9A>n%`}rm4
zGRO$tI30K<p;Oe|ROXMF>=v5r0ls%J$QTm&&*5EGnc@hCltCo1I~Wnu*1S^RRVb;r
zj1z_kJNniAA6$`OaEHrX$7VmfQz&bAob#Ht$6fJ{;Gc$mIO*}DIMO^=0sA(tploB=
zCG`i_wR|PxPX_CM4?IP2p!kx-tTh{VDh7U8hi60lN_}hYD7;hV!xH(8<zuceew7cz
zuMBA)89WsFKCp}ZrEG<?txbpTZQOqeZlzD5ucN_ZC2wV4<jw^-Qg^4fW8l?8fH9NX
znzIlAN|TT}gWKA!>s}tc@Yb<)rfLz0uAq>i>=<@o^{TN94tWEwdh{ixgK|^V5`xTt
zZpR>xdRVgTS=VR{v}Tq+kTF*vx3+Op>{W~?8-eF1wF%iA?G)x^MI}M{9<`r5c~>j)
z<FOrURG|cCZo|$6RhHar0A~fc1GQc3(HfYq2Ep7D&d@kDU&$=Hw&3%|dRD}c?p_86
z?dwp>YE^n15%;T3ZEj`CtWmXv*bRh+ZvDk{I$RAKs^>WV@T}{5W08j2*;ou8t!&xA
zRDi_gvCq=FY1y208&^6=5OJ2?03Uan+KBmcec{01f!e5P=&p(plLX`{j{WOWDE|O<
z10D(EBbw}tQ#hwS#PLL}mv+j5kf*IZBl!xT01?Os2A7b)V+4#6M<0j1Iyknr6kr38
zPgC`+(z4Lyl(iim*ZZev#sK8w=~EmCh(-BxgOks;YBHsm0H*_tgH{XyTzuP?`=^T1
z=1N6Ng%V>9!{x?13ZXi*s&YwPxzA&Y)|DE6m2yh;+&fl$;kJMZ?NNi8qLkl5lhwx6
zA<oiQt#JCJTch0>1p&w;p0(ZU3>_7Mj!Egr&#iHqlAJJ;VQ#-K02*mK6sjDY;hDHO
z2lO=*t%U@x7<D4ATosI-26N6TnE}fH*$2O+Z?=IcyBW_RWj*;ABy`18ol5+{c_y`G
zv)sTO;EZCcOJ+bI1Hs06fll_&=4L~ayKXbwQlZH>8-eZbR^_uHz~u3YV%uPq$6n%;
zmtt0ft=kR@9AngVtr#T;%HP9|qqo+nZ3BV{BehQ-0D+(Oaal<lMVgSY#!d*vLe<En
z+`Qxl7_7TyF<>(h*ygWCjii!$U{?)G>~_KFp`!)cqbbKh)OM{~SM$^}WPm}(^{g~j
zVUT%Vm^Iq?Bg5~i+!9ogox8}vtf|MD*ttzoi)`8O?br4_^_}d5t4APWbC5-Tn0zkP
zEj~5;1iH}RmpZ1Jq2Sy;eg@=W_2gIQ&y0LG4wI!UDnncq<w4E{D_8bx{iLtH40zJg
zYnddH$s5U<DG5Go1pMEK>OPg~`#7lC9ulo7Rp+_Y{7196iLN7f+B=w^47uf7zG-|T
z=f0ORF!MfL%5%uT=DkbyqOsC%ykBGDtqORj(ELMcw+SMB-T35j-n`?()?pGzeBH4W
zI|o6GbUwB4c<LU;ql(!5KLv^U#TeA<)cMQeSBa7xYUxQJ#N{@y=Oe9oKB2Dp?&Ln=
zNjc4SUml^COz|Dk0&wk-lhoIat;ye#NMYO7y*xD-xF&e`>`bFK1615Ju1U@Z>sY#^
ztd}8x?ZK;-*Bi(U^LtfoWM^k#(>2!x%RNt?sVl7+6j$>}wMRJQ*GZ+`mnyF=&#P7*
zn`paoKKE~W>U8T{8~urK7(zJSI3l`VD@`;yQIp-BPLpw9$Qn!Z0YKoMPqli_g1jN4
zc$Y?+<uwT2<y3@4<mcYJ8&UXq4xo4Gv#|hVuKK;<FNa<>Td*|8a$7js_|7@$Tyvz}
zwB~yBlD90N{ZDH6ZQx6rKN_r-^B|Tc`^E8}U@PkAu62tI9b=YeB#=bAw_?5*(R?TI
zBIe;_wp)alu|n$DC9}|1(Ov?&_@SgmuwJA$(Z)n;6plBOj<w}tC{Fy(Q?4{=xY=DZ
z+u`_@(OdZ!MVdrRV>qvs{{U{ide2$#&Vh4jFcQOd0gsKxJxzKK#rxe;OYo(|`@9zS
zh`wWmeZ^0vYvHYX#9F6}@6q)ehPm3=RLLqU3>_)Ds-u4DJo>Mb+?MS1ui5j(kEiRg
zM$(AYn=Hqj-rrjL+rwJBTv)>>-q1Q{4au+0--Vh~_WISU0h~BEBc*-i;3?1cTm+UV
zhz7&l*Dfute{-qyIeeOh<Y)fSej<-b@G-T8ztV4HSPL=xh<P|3y{qTz0;9^o8UFDd
z1$I9jyiRrB7p0U08#@&J;5}MGc*oFJAz*|RE4PE3wSA6VN7>L<>UcQX-qyUDH*N4#
z1v|ELyB$Sp*~R8zh$^Fy0p!+wkMQM`xA9}4_N|*VRA54{CzD>nS{!Pvv}OBcXwG&P
zayEc_)~qN%10NwAcfqQ5@ovNX*~UQ~1#CfRp+Hl?<dN%D81*&wub{+_$(S9Wh8PS^
zG5A%rh`eQh!Qn|#2kA<d;zH&A^0yUwD}8}Lj~K=<Dy;5Isx*o%X(GCw2Gh^dqWczj
zWn|iN2waA()U^f2$(AFiAFWth6Y{S7s`Sr#+A+}Ql~(pSYn?kSBcl0xj@)DQted?t
zvg}3}WOM6X{MvfDs+A>&@RP}^GHGPCT#eZ$rZH8@a?Wj@Z*ilP8@BBXer8dOn#{h^
z3hr>lf#9he{uSu+>E(B4x!{r7v9Gl3?l>TW*A=CkvS$>fspXe?Sdqy9ry1MRHO}g~
zF6DIvQ@(MU^((z39$87_8><fUM=}DTRl?<fIsEBzr=b^no<*o=jAFwOSy+#ic_X%K
z8chhqOL=6R1L!N&?=)uJ@~cUo_BrCRZoE2@uniGH4(w#+vTDO`vBTSGOtN4pW*7ux
zrEck(YE0pu2)yuXehm}_<TmcO#xquJ^t44dQcpO?ddAi*GL$-aRbP}4PXr3ow$at)
zR{$$#X?9-KdeX_G+p{DPFsGodiqB6c3JSUoOAfiI^%H2qi%ua|3Dvs)04mtA(Sz;E
z@~14UI{r1gZ>9iLI<C>kLHz4p&q!7cv~>WIY4VWWj0m($L^mAspO?S2T#rdrBlmmp
z)vKeouqP}4<ELts?JyLL+f;49=xBD>7ny+`j;I?EqshBD=~pAORwsZFM?=MF$!5|F
zk({5_og^WK7y^3%=~+E>HB82PG<0Bu7Gd00MdqHO4i_DF4_fM)J&*E%j)3F&)^?)^
zb|8*}0FHSzHtJo^1iZchN}}f<DCeN{rpF{?uM5v5y=yRC9D>JlfsdDpmNz4iSw~e|
zcCJLV)cc2IX}gpFte8?WjDD2KRdQ8^SMOwZ_Nv>-ae;tFIX&qa+{y_f<@KcWVv~wP
z*<<8#tOr6X15}Kab0ZMV$jRtED{|sNxG8*r)Q+`{tV$Uif*C+6GC8Sw9(`9GQON2X
zfJZ70Gm4<nWU0muago}r>JHm74p{X9swq+qN!^NzbU5V8kQ8IMeB=&AX-6w0V`v*&
z^A(?Ehh+h>d+}PaL(F`Z{3&U$t)<DM3KI;6ZUN$?WihDAl|N2t)@ZThk+p%z=Yv*c
zIA4)|Y-cC6RjkLW)TUc^EXqOXNa<CsRY6c2a`!!|?9wU%!FL}{l}_M-s=#d^XCjh7
z?7EqEpEn>A-!+GNtW=Os2O!q<;}S*z!RTui`GZH2F^;@fTy#ey-OhI9-;hWmv*eSK
za0sjS*bdu!)^U#;h|Whitrn=`l!%%4V;qA_kLGN5^r<|P+wsLo3_D3~K^*cb*Hb$-
z$HET$u;#R3Y_=G4k6Nu93?FbjH)B_$flG1MKYF3NmZHhx8@BcXAc~zhAhvP_DX~T6
zft)iF&0JJaLmkIC91bd5MzMp~M2xZi_pqx7g#f~2wm1~^iM+65z<vi#zO`mJ4t{)c
zFfeN;G<B+D1Yjn4$vwpi*pQQ-myD58wYkqibDZ-^sI40H#{)H+mCaOJVvpV^+;V=k
zG-Di(n{R4J;s9Ysem$!67M@-X0m$aLoUC;yHbrg;8RMrydeztoXF2XVj?~!U04W&?
zc>2}IBg)~M-vhlzINd#qFbp<Vl|L&1*XvfnC`QoEqpuh_sO_V|fB*;etLYioFvF5f
zXSYG}Hagf09mhGzApZa=olbFqfr5DLOXUTO9AxIE2n2gous}HXHH@9jqXx7n%?h3l
zNIloJRJnjiaKCpr$?scj127l_h5&KTYNsN+h#Pk~{D`UMvbnN>&)!6E#Ex@}0nRHf
z=FqQU$m-S7%?M$%fX6(X)_ue|AQ8atR;QrcTGbr1)@2y8jlhiNqI*B$Dg$FGJ!^92
z-)RFOf&T9~s13LX$^Zq1ao)9azT;H%Irg<IrSq_!<aDVav~9!_yXjhuW(WswPCzui
zN(AH(;Bo~uJwd@~VhE!M0A5!(IH?kB<NzBP!6KwFg}_ib<gxGVQ8OyIBozmN-lb~p
z(T!a;EJeBgO~7-VpmjBR*lq)IVCRxgHBKY6h6g0%;~gs054+|Kw3gtJ{OFTz=^X1z
zGg{ab1TP8>I`LQS)W$NH<%V|ED?|^F>%6xBuNeF){kn#6`u4}xxtq49Qe6!Q2bPL{
zQU-DlU#P2A#~Vu$OLfgujx3$3GoR9~MmG{%kjIafvv$8Rs=Lt_V~Rc7iOvpjo_?Q7
zwPpLik(lo5(*TN~vA*w>fma;!^HuvWBiX!^AMG6A)~SMe*yt@|Q-&BDdB>%1S)p}8
zq@g1pUwX>ZSygcRN#h)ITb7o}lB|K*SPWws2Q}3V45aU=ZXCwT&gDNY5A&&*7T8xf
z3xJh1x+{>ONj-Dx?N$;KwSXAKbj4~b+jdfd7Av@N$DtLX(U{a7#4sR|De+kp$^h9U
zeFaW!%0@~MM^o=xrFKh_ute^KPDW2VNXa6c#9%g9s094oGHMAC;4IQB?!el>@IIoe
zYMP9CJ&Rn;nIj)6#GP5Y3{q~|mXcetwC=iwr){So2hCyTg+DT<ax2i&RkhP>ZQ`=Z
z8+6zc8~_e0hVW{sf?Y~b@ai+M4I7MYjC2FiscYKnM{y?BK4H$?rvtAw^LWX+^W|G3
zfz-aJ>h-@I{gV^<yBqH8JcI9Ceea7)Trw6c#fbqATz9S;QrD%vnrD+M7gY>#T=t=_
zyeM~l_2>cbSkt1>&gATOmtHM+6<XqL>lr&=2Xg1qvakGFF5_ldofWxcC+0Qh&*G+*
zRz{O{>|`J1Syy-KBk;vWPtBf1cfu`cYa^OX8<!fnySd&KmDsX!e($AMI-K^(Hh|Ir
zoVR-CZuNB`fL>P|_hV2UW#!s;0(uqxlsbDgxp9?_g>}4=&cL%VImaW~v@ASaQC1_e
z6(A|w&wqO2-t02%L5<yW*w7u}``A2iMRQb#bEQ<2b-C)=XNc9*M;p6giD3P`2=x`X
zbs4TgMKD>EebT&R{{XFCMPYp~X#2mfQcZVSJ^b@cmv5AE0X-|stsY5S_Av8vR=Kwd
z$qmK=k&}=+AE~aYIEAr|7tE3e1Lkw<)DOm~>CnY<8njWBz#Gf=KDE@trIxnd7kFF^
zsx!CVxi1#2-1MVPT?H1RGNLxvMgSenZrdu`B7|jApW_?>ilZIBm2tfglp_JU^!BY7
z^!V?so6crz9zZxF6h&LzGOf&u)@ZZChZq?J$QT&*t5Mp_XJZ>-c`B#x3X@B-S#IIC
z$(^K+a)2^G9YL<LEe06`TN*+X5JoUEeQT*va@OaUI?g_)&Hn%%JRx_fSqs!fmgdlJ
z+*jt2f4iS<wcrS$7^>uuYww>Ecr<EOlG{oJ!m{H5eq>tshsRzKpTK@PyV53BOL>^j
zXgyT&Mr+WaRm$|_wk8!hUY$w^-~d?gI^wL2iohKD@l@d;$e<5h)oB>8A1HIvX&5!p
zd+2th)N{kUh51yjI3028QT?6M8H}E|Bcb=JgUjEv42*TfH5U$d6Uv_1#UzR|Wwgu4
zGtY7=Hnt22EJ-5@4?~K-BCvENvVV&_W{`p9jmkp~<aGQicCV?0(z%-q1>fdUpmwc0
zC><u;?h3CI$j6wB6}N6Yu{C<qH&<0vW&@6#8t$Z-=T&KLbUJ8Ih!+Y<^S7z3SO6=(
z2Z9bytzufK2&@SV8?G^0%a=k60qf2)?_DYfoi}@zA_<mbv_5xXyXKxE@>Brqpn<pp
znuQJ-11?V9tLf@$#9LNY!NQ(*1J<>@^f|XBR#ZGL{(6Iq98}B>(%aQrZ$rt?)}f6G
z2PKcpGm(mL0yQLtagIUiD%7>HHW129x}!G(oaen|UCh!WVL{2j=lRv!jFkm?W0f6E
zXI(P5Dn=OdkZSHLYI9n+#!C`0`3mE8MFcs{bAerz_%FN>kVnmv&2tx)-eVMX+qaB&
z_NwM7D;%Vjrbb|(mM0YGY>KJMZO0rA^}4nN<Y1f?<0p*N>!tx75E9+ZXqq1_%m%Or
zr#rjVX0jV_2JU|DIr`UJnpd2woS_4t6sJo7AD1BTGAggp3Bj|7I(8&{t|SAU-j!Bc
zCQvYNap_&t=!_d{50v_hel=3(N#08NWCi1=S}xHJHr<?DcBO#_mhMeCEwFQp;9vn=
z6~>AaEQ2HUs)F1`04i96#wkiJ&c#PVI7PH{B(UH&K~pYsfyrL|jc!=@Uhh+o{hbRi
z843kr$!R5|j*@~f*dqrco@<rCvsG0`skh<HHT5gifOT>(qrH1~g|x)bBv+FjLXX}y
zaseFInfMP;(d_lhFte$d*a5g>2fl04ek|(IX?`2Jx3rrVGa-*?Z@ZEAt7>%lb$gsu
z>q<`D4>s|C#UVe4u6&Dyk~MO?p0&(sI^XumHz>-JDacXCz!l`z@jjn&+vna}Il;|s
z=(jSgd*W@_80%YgIjqll@F&L${X4_M!n&M`E|`*e){;tcZP@iup4IAF2a5#KKuIiw
z0!MGHd~2v*7A=v;uR!>B@d!9J^GL}u4of!&74!L?7uqE_pI4LPRVVCa)am~KX)74+
zwZnA~VzMrJa1JZy$!#P?B>r{oemwCkI{l<lO771e1fFs`3iGpX1<pWq8S8;um^nDp
zQE2MN(^IJ0XCkV|bNbUKA83#u0OPKE*7fF*<S;5a=e0p^rFo|(@~-&3j~A7#8XIX2
z*wh68_V%XFBSu?mV2avHBOG86mmFl&QE0;Aa1KHB>&-i>-09`IvM^xQFD&2Wo<;uv
zWlvh|yeaWlSkZ1Hk|sD_17`;v>b;kOqQAIU%ZR}1xb^&N-#!_B&6*ys_E){RW?2T}
z6l5-Y*ELyFdPwV`3{+j<^cnEm<7!W-!xiKX31U|b-`c*8(7aD?s-j68O#=na{-FC-
zex3U&>7F07No=JOstw`ZFi$n9r}#_kb2JEyo?bFY<M6Kw61DeUhtN=!S+Cw6QTt75
zOQ-xg)n+l0BpXvb3HGm$ybYn7xeF1yIAUw`8{+4~Kln~O7jt2=<|~xR>U!~CD|lz&
zrT+kj<-3aRH;tp<XOelTqgpiR$|>r3IJ$CGla|KUfV3T#(Js}>kV|uc_}9H_zBZ4-
z9u{fAU$kur7(>y>z&P};Kk%NLCZBKitA+B>er9vn59eHei2O${iS=0}az(lwkfNM!
z9;8;-Oh49V%=!^5L#I!cJC%~+Y3`<)=2JY=67J`zbJW(ogulE1$(F`I$4bhyw^VF`
z*atlGirKPN$Rp(nI%AS+?V)6>j}fk?L28P?lAtN%@yR~b&{@R$)v=TVCnK-5VOftb
z0M1wribqd+=`7X3`J502M;vClW2!T|>TT(ff^tYiJb=fF+O>rzMc{1*A&IQ5FamHJ
zEWa_wTIj76q*IWqoMRnxTI?L}p!BmSp-Ehye${dtVIL?_(bu3IDp;W|QTBvU&Iso<
zWe_3U+dv%gS`Evw1Q3NQ@}4@MTF{QsB-+6cp2Ix-X<>u+oQ??@0<S}CSb#_XbUpD+
zGbYFlqA*|-As=@<)hV>#OBUy~bc<{!i{)H^a1BQGN_V+H-!=nQvC!pmIIGPyaB?@O
z91iu5b*6$jBy?_i{x#m-*bFxV*bXZq>d57HF7DYqt6N<h*Vj|e?(7co0U&S=2U^9t
z(<Cl;Wkw4IQGh<8y$=4sk%dw@z$8{>#+c=f0AbVLG_7ri%z5SBmJ>J!7~|fk&7y-M
z;45t#w=aMH09ASo#*_%#oveB3S<>ljnIHlI#~ju(O2bUz{{XUflaL5JhNgdKsEoR(
z+IR=jyBTazL*aIgr`**;rkL<{s0@Cf8s}=}iCbe5(!{DU0Z!%U#~jx~W2fy2g#<UJ
zttG99^RmiVaCZCF^_931DQ4S`;q6ey^%-fW?EsVv2k?Q`wV~4q^2i+UNYCk3Y@$|H
z0OWGpNAQ}}w6rq1o)tJHPrV3-c2G?;fB*!O=s2ZoA1!zUw<838wZ9Fv6?XC$q4c5Q
z2X^zp@9JqwxF_7_n%ipNs~n7T$<O#zNn-Mj2?P<1xbIun7V5E%PV#UUvHWV3wyI`j
z+8FXS`}<Z;QjviqJ68>a$<A@p-l*J06cDi%U^BY9X|(ns3V;VfGsvnFT7{S^4aj*U
z9)gpRXUC}J##e^V$|`t?UznWZ_z5{Rmju#8SdWvs<E>eOLpcQCFyl3Y?tQDMoNmkD
z%0l2_y9PWOf1aogGF!OLYA8YTH>+fkw<nxa*#u>NQ<K1KVx?H+olC6(Pn;Iufz;-(
zby>(R>T!+$HK}til*b!gM<s`^y>t45?<BuM4oK}#*~fQ#m{%p=pcp>1me8LxD}&b_
z^zj=u*3L&9`c|c#vgaiO6WI3rYZmMgT-uJdwM1n^Qb6aP^{oZD3^F)8jQY`OYRbg(
zjB}2)sF9-$gkUi1+)`H5e5EqG0UI-(;8Xm+F+eC=9B^^@)SQM3#y536eT7FLc@{!c
z9jET&HC(!A9L>E-Q%0bU!16_B+<d|Dl6wl#mnBZ%(FGhSUX@m6RfxD7vBw6gH(C(V
zenutp3}YF`aai|?N)Sm3JJzlHoE-Dqn#q`#-Ht{xgVMU9taDAIbGK+o`@|l+_p07Y
z5~m#FoK}s*f4n(39*3nxj)yqMdbV;&Hdjco)q2%|9`Bd0tt!L4$8(->R^U;B!=N}k
zR9xN=B1o_}8LQAh_(DKX4nZEi^(1krAPj9@q*cX$kho)xGg(SjH&kC?k=l{Y0XfMv
zVmov!dgB~suEPmu8%NORtx7GvT$8lty<+8ct2T`%bVUq*FvswZ^O}E@rO=$Q>UN$7
zwLC(_v4FVlJJpEbEOIu1>+4+ZO>B1iHGPQI1t&i?SEy={A_~~shCM;6NSg$B%N~T|
zIjNR4B0a~4?s}XW=W~5dn9}OX=>mi#FX8?*VIXpTVaOT4^s7r28wa-_RfsLw$t471
z9YrTS4OKl#(Z&}ej4xdFs|jzl*K2QK$pBQQ1y|bKwh0;O#ap%mW3d5T9jl(T9PZZ%
zQ@(@k;6T6wl2?<CMOwDDC5o^ZJYf0{>qJl$3xcPBJ<0W}@Tp)FDuOe(p0yI4p5g4+
zkwO%O+mKHgsYSaZGdh(GlA@%JEud}(@a<BPLa$aJU^Qmtu7;eJNUH0CjDY7E1RkQQ
zzEFX*FI?nSgr$72s&<9+ADu&W30T7%<EWuKm1koTbY*r6w{Yiy+OwuZBNFT8735@a
zewDv>Y_f)6bCJOuR!zhvLz98%GgqNDXvdN;#OzR|ze<Wl2WVh&q_0l3r7TK~Cj1OA
zIbTX?hE2SU!#Txi&7lvmn6R;C=!!df@l6U!upE#uO=zr2QJ-)<a-*QAl|Tmy06j^e
zE~GhhGi6=Fj4O1-S1BU`2--&j-n3?j#(I17s7zs{R_aK`K<Qg2Zif_|-I)|ov23^m
z_dNj>rDq9wGk~B1diJQS&@sj_j@ZsCLfQgcWaI#PclW51v(Xb3ec3&tmwc7M>6+Jq
z6*(+as}2u5nynh5;~=w-m;udb+b&BkR1D+{S3T~o&bX^e!`9sGP@gVwobiF)tt2d}
zRY?juXQ?$ZD((4sVmVSXx~#3cJ7;c31LhqoK4#8@mGmHrCT9+KY;--VQqln+1dQ{X
z;+Y+|bqIF0e>&2&v@!+xh|7J`+O2D1T5GAJX&SNIIw#A=sr9aw&MczmB#t?(TU&7-
z&4Og-f&9g8>8Z6<Nn)oNJ^8NsO6cU9ab}D$N`&oP9=nL>Ju3aZw&q=-j#sGY)g`QW
zh>T<&K5q4=V{GxpsQ4SON$4@{U66~|<#Q@SYbMf8G5kPus|#$YkG&&u4{T<&A+-l`
zjua8s(yXSM9oRU|akWSDu8V3)n|d7lwxQ!H<gjiJx3zQEI$_lHkF&=*DnLUR-?{Dd
zuJ={3HrjQ|WfXyhX8!TuRy-aaO$s<?xE@u<+>kK`dCy(lab9jVqNfXYDy2sK!#7@)
zVzDHMpqn8<PNetxde@d-%Oc*&^2xoi!6$_tmD2dS8DY7-iHfw2*v{<!Ij%lfo^Y1&
zA!jOcyP!F*3Yu?Ynd_mGt-&M0tctrrmiEuBar(pULdyA@13rSgtz1cEYaO(YxGBgA
zyq-E{xmonLzT5ZHamEPX{cCthC*%@Ms~oCZ29#t1$ak|7(A8U+%#(&e$K5Bn_pY?~
zdFF^HATc-@IOpHms9e~=XsaCZ#pj&vW&R&(?@kSzvWrONbr@DAL%F0<GnF{SQwm~N
zJI>&9f@^aAIHF}a-VY@9$F*WzTr7?9g>OTiMN4U!>V@AszXvGT$2``poEJ=|A2`n$
z9jhwV;wLyQht6<##dKDeq!l4T#(nFSw7F6`Df`cI<&58Da(+=ZF@`(}>a;uN3=83<
zI2Z%<tQeXLj4HHw`@pxYTeZ7uY4*IxRgduYuO_2YZs*Zqea5bOewnGXN=yCRe8aXq
zYtj5At-*a}WBD9oJCCh+Od5eB<(%MxIrOfF!+PYJWQ!U~AYH?p@N-^uOGiWLVK}F5
z=eVteYy+x?E1YdO6$@F#Wp@m!q{heO+{BhW&$z6;16lK}F)WIu7>o`x??Kf=&K28o
z#!lW(=}Hr`)Vb1AJ=a3ftuJmNySI!b!$uUcovNe171qb$<yCbNHVMEvADwvj!@m<n
zbE@0M@;OX!uhCESucx$oTT9J7O}hDv6n^xa1Nc{|LUNkCS@SsjDvP@~8T>Ssva6)1
z&UkUu;~for`TJS?6_dnT47!e$3ftY-ui6nvC73A50QwsGr(e^p^ziQLBOv7M;5QYI
zb8~HfXe7FfT*ChVxY|xf%m~S?9Zp&EUt`aW7T1yaI~Bt`F}ua(GpNr!4PK3iT&m&J
z0C#ogy>@>ZJQCgt_=$gI<dbD5?;)5EmAN^^a#6RJ_eKY7*K}phlU+{u-o&3f5DCb}
zGmg}(&V|{N_gKQXILW0~B!oMI5s{9Dn<j7zugZTx?^?xbQ<5T)18znejx&;b(rwtl
zmLO-GnvJDzF^E3HcfA=`k&uvCdG@X1p2swr+<FJvr9j`vBOF$(lILm351(EK6`K&=
z_)v3?rEFR#4YeczhYU#TUDVZ%DwfgQ(X(K(>}>7;a(WS3O9G;NsvQ079%_}o7y+HQ
z>JLL&aGyO@SOK@VI3!ld^*H3WOcb`%EW~7ixO5+dSdKioNj~u>80bKzhzxC&Y!kt5
z*rkdle0371-5Kl6U6R=6YT6ef3Jc*>0l){GdeRaZ%YaVaFnST|N-^duY{%4erWtnt
zI<|RH#yvT#oz}%$LcG{mNf<BAJ-sU$>m`pZgN*GJtP{*90B66cs+SO~L><^pgnQPD
zL_S;eIm^31t0@4MAH|MMV_n0vlDJ}i_o({URe2Yb!9m^c^{PK&-60`B2d)QGO+9R1
zv%bb1o|MuIwsJWDe-&(5Xre`3h|U}DXN-H+{-37q3ZyplBLFY+u9DA3BqL!+&vDLc
zq6<>JowPXkv=uO}W8e<`NzDht<m2~wRXGh_gt{=1`9dUC=V<HnrI$lU*D4wJH$&RC
z(kxCdspk^u92GI;4^leTRmPGc-U1RajQag6)Zar`p~EN-lkbYnztIF+oT?Sa-t_kr
zu9=gKmD%MpX!r$LKYQ2ZKczQL@Y7vgtYHj=h*b(Qa(h=}du+3eTF2%PaPoFh>T1QF
zwPE3?vuK}c)OO%bqYD}7#a)tGoE2&)>{?43Ux&Ia%19LIvw$53{IgF(?_MY3eNiR3
znb0RafbU(8h-JRj?hKN<ZO%)vIbwR(D}QBe8UWG)eZ?E<&P%q=4&|kJ1dx_jQ;~t*
zuiyB;P``v*T}dRa7ltRbO{!la6Xhr%HUR_mu5#~CD%d#BwN16TYUeGjtgSID`5^bJ
zJ{r|t0?6NVoP5<Dw0zb$!5GNJV?`sO$T(nn=BarN`JI*VLaady2+1{<1<To838OgU
z<^c7mtaT$Sdl>RN(oBGY+!4}-l(b-^;_i;l^H80%=;k9f?~k9}vMsfVB9#5zr>7O!
z{0Y^xeMb6E3V4DvO*d4;DR%z=dfrlgRvy)r@t@%)vG8NX(&>7cGulXe%UiS`B*=OY
zYl?VC*~$p-hBjAR%&q;VCyA65B=tD{RW6%!5>XyO7~qkb<Pz=F02@8|tJc?~zT@(d
z+coC6a^17GHE!<C#_~jHfFJ?f{{Sj&mB>cl!sCuBntfX!A>;L=O+=#Oq0UD=Y9mdx
zW2f82v$eLrib<80O_B!Z(AUx52>fOCc&#l<2g9k{Ivn<|ku=>&q@U+u^Bm_D?SBn5
zCx%OZEr$#TCmed$4k9frPg@6CGj_T9G2yQeL8@3ayv&ROf`>Rb^sLLYf-OPGLFG3)
zn}83cc$b7cRPZ{MkjW9q!nO$>wcP3cB$HFNKfN-<A15dI*N0Z7j_0`;!8@jH-s;h{
z&s9jl`A&aY^8Wx8>G5hB;CR4TTOpWZBz<e4@nyZ`&9M6~%Fn<f^~G|RG0&vwcQ;y$
zo?1m2!j4I9#=NK}DcyBE%tVx>YaVOyL&Y&WrjushEJHFdai8~it~S9FX=wosk;m4l
zOLE$U?31=P$WC%QX0&ZlBz7`4m(U9R6A4Z<V3$+Dtt-mrg{&T1;jzL006DFDWW!)C
z??5}6&bNr|$C;Jx3F}(cphRN>4l%<6(ATRQGtX?@($$w{REFDvU5Dvi4WVQhT&n^y
zPaultZKgqj12FCm20oRq1>yxDXCb{fu9)qigK3>MoZF>R%be$N&j90!+puPm1aq{r
zcRtn2TV4QmmH-@JcP6(j?v#PF{oYTZtrNJlM^9}bQH9zEOoP-_xEMPfpl=7}4b5TO
z-4B;1p1jr6oJPh)BWMFBJk{(?-*ajf+JG#BEZm;8rEj&>fD8#IXdT62L2$&4r7%AC
z9E#Ypx=>Vu!8J(EPockQwc}oJz;dIws}d;M3aA)40CQBW<wbv$hEF{?0<HOrkaLWT
z;}xpf=R44&b8Ygoa9EC~rDt4Ov1W{vX9_cqdeWABNa~Cj4hpd7YP76y&G$*bC3;q{
z(86tWF>Y-<!pp!5$2~=7+-cw^Wx&Qj<onk~@rERf5C>0FRHe3%{lqP}@}%?>-oj5)
zl%CC9oD@GMGnL?qsd1->$pSU!sV9-`iU7_)F~8}Y1>P~8y^ngUbpUafUzqcfYo2ED
zXDM^1#;VGL3_H~s;oQ4-Hy9g8u7dV3cNI8c>D*Ra+fbY_a0fWzxtXT>6>aUlRSSUK
z*!9h9+FR`kNXNE+oo5Ldl}ds(@#sx#Y2{>G4eOs#!8IC)zh`VhsM;5EU?1;Rg5f|M
zug!y=DPU01hTFRs1DqOHk8@?V6~{R}4L+Kgx7eK~9%c?Uj;g$7hmaWx;{!d8MNwOj
ztW<L$<O9}}+=%nY2hyTWz&_z!ShDTG8N(i))lPhpN&p#%+H=#?)2F&td<NjI0bn_(
zQTLSKdVqUWy>=}!St4gULEY-j-k~~pWn#xC9Xe*TZKGyYG5`VOkZM_NcLpG29+^EW
zHjNSa^AzGjr+3YafNK03Qv`BPIjo2QR!z#I9DP0OQrwa<4l~I5*B>$TvZ&q5sUd<@
z&In`l=hCEiX;*NScXRTws0_>r+rzF2`ufyUOSEs`u{j6R)|{kdqjH_x$7|t>HvU2F
z?O8VtPVPt_P6cUPmUqZwm(PAGkxm#dB#ivs39R|<wJAWW3<0?V*dJQeu}!k5Yyvw}
z5XP{Q8yV~LH9fl_1e}g?2<=(iYRcC&p^svg2ZBCgI^v~_sl(ugUf9J$Z2Oe4<0Ba~
z^C(;c&PFnQeXCT3CXfeZIW9J_zzn>KV-{h7!6O8pN=I;mb_W<FXY{5tpnw@cSL6=(
zt6Jz{*#*WVUz_IR0o2xA+bk$m6m;j<)!F3%iiP<=;|Hx{-Ak6i!6%$!tz1%D6DDWe
z%1JzQ6_+%f3lgV1dew`kDIrkAf^*MrYR$U2C9rT#J9n*?sN|DRLY>Nu%=yne)F5Gj
z11m$4%v9$C@}&hv(YNubDl4Nbq&eC^3ObSNR$z@!A27(r9jdf01CH6~D*dkHIl&`8
zjb|ow(~XNzpow;ZGmh1M2+7)6K*`1c{c5~8`@Ij+wJoAx-zX=H<kuwSZCU8Xo%Sum
z1~Gtt0aHD)?FC25PCaq&PO^&`!*o1@*0c-+s11U1f=_zqb30unYZ*-j*BeR67^Q|S
zu0ZS5sU3amQb<C$KYMQjCZTA+BP-XQ1z{;_N`k%0@QgCDgOV|x)p95@<f;?MIW*O_
zz{5ThI8r;+m1SMZqY81f6VkJCzK2{Ow__S2vJJ%b?cS|K7!Q?!1E}<<gi72oB|+`$
zQm8wQ8$4sCDLHgC<?|#1%N;kV>EG*Cp=DVY0CXJ(TBx#~H?YS*1zfjqO5h$2Ngb(N
zu0?%|(MF(+s?v|;R^TCBcBwe_s?hBx3fsBPSG8Y5<)ZF<eFr$GT7!cguE*T&IRs!2
zOjFw=C_*p>2>!GxjoHWy5A>ngQI66}40Yn4!ez^G&f6F{RXhQ-eeC<x7hil2FC~UZ
z>?!g-+_GSjIV5D7go4Me2YtgdYBH+_@_@jNf%$+L<F#j8TW-$M6oPU{`@`C{8YX4~
zfH9o)&!t7>NxnnVKQ|}&R<YM(7VV*fBq{+>xPWtm%{BMLxMB*oUjG1<Yfo#H<PELP
zbJnRnpi#i@laAt=No;e@OwBO3L4Y~VK&tXZw2-4GsomK7R+~a(Bq<7@?)Ueoe71Q4
zh4mbd*0fuk(rv8@0We4`r_}cbndPhDl!kuZ^>LzXxZ0-&9QCMkgN9J0eqqIEuY0ow
z$n9ZhcWnR$U%Gk&T2SIL2j1W*Va-&6G-hT1DC%n6v|(KGcl17lR&^E4De7q;5wT-}
zNB|6DHG18EU@*Dup7lZ{EOxgG(S1j~Xrw#9&ngHfJOFXpxn1qC(;dwSLrfO~C5{gq
zX0%ZVIXr(+-l;>CQgebjW2S3D!Ib2DtPcR5)GJ=rI=Wo7ZxXY7tHI}RJYu!&qK%kH
z1~I_E<kdTCZ!C-r%iLq2t$R2`K}J{reqL*$5$cR*q9=|sp27PcL0h_bP{?zW&pk0z
z?Ld9|fnlGUBLvo^j19*l3dcDd<F$G;m9#jjH*1?(b8liYxb8Zit!%<Fgs{NQ6k|E8
zO+86=VUg;89+kap!*FFM1FGV?;;eAC?#&x@ESs>P4y1RjOLR^_$=|}ZFhx|eDJ!V}
zN~4Sc!Odw~MofGVN8PP$pm`#msirQX_LlfNM1n^_&hR~J8^+N~bA2l$ahPIJx3LGX
zuCo4bBHeQ6hB(Ux+m=yWKB;vz)vz<7u$jPST#g5N`CP_N+gqVAZcgW&Yua;O-$`(v
zC<F#jdK`7ECesWP85K6W@XQbET{f?7$50XZf;a<Y<YP5Y!~n;cVg(myMgHk;>0WYt
zt3vr-G0bZ4J;1kxMo||fv5cPl)<yM<7IH-VmCjvU@JR1ldcOO6W_4}D01^E0T$T0H
zEN!@gJ8tCCjI_Da8f@qF+wzxe;z1zY^6fkUT&$DJb9&6*K01Na)vaDc%aU=7<$8+e
zC)I>YvNCc2B(L7C$Vw@BoOL4EYgCkn`O2cYf&(6F8sM2H0S@ju0aPZwd1P(Qc8)+a
zkm@D~!31YLd)D#MSm%;YQPMMsm9hip1of*kYY!4K2FidrJY(rqJmi$CtAWo$)ccxS
z>r|33+kwxZ{&fv0C3Z|xT8_8ZXJfcXRfkL-D`!sEC0Ue6yMqI{nDnk)V=%4)0tY!1
zqfwGEz&sueb54X_sU1+N;?>#eb{hWxl>sj>A1*#c+()HuXxiiCN*M~04(Sg=>5B3D
zZDgFGU<vPzE1}Z$IDo?zW<3UeTHvWl+OyxIi%l(0pfpbwLp-4xTsyBu?~h9B8(ZF}
zB}n57{6E(<;r<rZqLNs|(?E>8Ba@T(*QM!NWL_kdL*4Ch_e^cU9<}CFR(I%q4LY9E
zH;%`ocpJs`mYS+Y>P`*|5s(M1eRJV0YfU<Jh09&5oa_j#f%G-;jgNyT@V=n)Vp+&Q
zR|j!!_4J>^4MR=w28VANZHDqOw8TaT{{ZXLg;h&M)aS1#)s30zUL}xUgB%5AjAZ1u
z0=(x~GTX^-Yvq(I%0N(d*F`RgHk~Z98^&Z)jh#WyTDNUy4yProjDOX?&;HW-Qk{Q)
z-Z<xnUd=eYkC4A?{{RZ5gJ?RmahREAXjrM-3oy<NeA>Z&V8?d=b-*UR!u`2z%>EF9
z<T*u)QHhlmeq3OJYvaXa3BvWSe*-RhSMxclMbmcjBw0BNfUXA}@I5NL(iS7-&UnZ<
zAB`;Qf*licV;Rm3M=YLNoPE>Qy)=$S^b?JMjDys%>r-1M=55Cy_5T10uN#?h(1YL7
zu0a`)smN97(~8y!qX{xwNQA8Hpp%{lrE9?o?ral}am`kSA%)K;2aTj0`&OO3qb}Yu
zJxzB-XmZQYlG~LT^~h7fts7<`#s+=QCZM-X%bnRHJxA+Ol42-9${yIQY+)|N?Zkqh
zhEu}|9YK%)`+@8SdaRP7F)Q-($v(9pkc@O-2h3Nws<oYnYUQ}4F|j;n7|A`VIRO&1
zZSzNw)p_abP(8p#2&XDK6IKK6MJ{p)9OsPGa_UN2j3^KsWpXkHtyXQaA#^wgrhRI5
zxZKV*<c@f%qI|a84T;VVKq^~lYHJ8{Jqq$DBLN0M$ZYqkc2*BOie&)v{5?sg+Q4Ly
zSgzCuj2=yOnjV+C8Dd8}Lv_tu70%U1l`9izx=7A&yz<SCPoS;)O*N$lBmzd^f&A*;
zm8I~mLaq+s{uREq8>1xvLcQ_Yx|6cdmmbCx7AncPM+|*2pT?g)o{&erP!$t{Avnce
z)x1Ne={BrceAiKupl~b7wf_Jb-D;AQP-Rv)NYG#b??P_&NaC+v6qTDb^?wstTQrFh
zHO!#r3cbB^Tz0kMR=bsBnO<1f5|BVL0rV!F=195wRI6?3iOD|IN^Nr2PF>dO7EVBX
zb6Uk7HC#;PqAo`)^PqES4Wt?W09W@*4*9Ix*{tCiQ65{6$DO#Yb5`+`jvYor0DgYi
zt}jsWMa9IKFP`0cRovrCyE;vCTuG&MN8OGXpXupbb^Xxf<bXO1RSC6ck?`Du-@nw=
z3GUro^OAcS9;S<3%DRBd7E{6Gs1<>IZ<C$dNIffZOPq$>eT8J)J2Amv4?s;V%1q_8
z0`Zg1Dx2ZKU<e)Sa{AR|QaIqAzO{?6#LR?op17eEas`!@_&LX=Xj|Qb^0y%M6_qG3
z$%4CisbiEY=QyWfZfQL4XF5!b;Hd{Ha7Q)v=fb^HN&Tw64&3-ZTbU1ubcD@}r2OtN
z$6jmU!8n#aTbk>B5qwF%_*>(P9b-?pc*-~u1^zY9D@{qo-4NoQgS=<p4OhUr_1>9%
zZz9P9kXsxdaad7481Ds0;=e+^B=|o^_~+njFBWMjADu0zl5K;dcL&^8#hxYje{rQ<
zy2}>U4S-Z}_}4vpNv>$E3#VU|@=tS(W4jIaPCFWKV89mRj<s@a8f$lO%1F;jh*})s
zmA0OoSDDJz$DpQ~x@D^<hE(p)(!1XY>Ni?xLOx-;IL~U~tSp)CPylw4I#<v?3UqBX
z1P^y=l0M*f6Pz6SeJh6-H3-_<otRZQOWb;$hk*5~`|GG+NL&X@sXTS#iuY{_(p@ga
z46<@C9Py9FurysJ87{@lI~puyKp5h+?isF_q)OPv2*(xjmE@<Q(E5sQQIEdv&d$<#
zwIZ?Gs>pGSo_`Tu75hf`s%<{v*TddSwvt>ZxozrInE}Q})YsJ?0Q?B|I>n{Nq`NK1
z<~JPuDu?_Oli^HP{sz%Jcc<H+mqd_TT$Eg9-TEFo176Nmm%?q-Z*7s}V{vn(B^zkZ
z&-f+^aB!o!+sPHPW78PRdIOMtrm$d~$f35KxZshD)}5T-6(&aK0|0cdqNc2JP2Adx
zF$E-i*(R@BTms4*gyfOfR$Z}nlRNh?C!AG=n5zx!Fi1IJ#dk+t4?b?kLv1oJ#?8zz
z->qs}T)&pfxk>0ftB<w6F*|2&4;Uw{XhC@+7TW&+hI$I=O2<Dno~L7Ls4}XvmD|wn
zAFXWLUKNdSN`@Riy>PHzfsk;dlaPCg+0*aciZcem94mTy)uj53OGCV|)I8D2TxTCz
zzXih;%VQk|*6Un_o#E=l4Y}G$$ib~EeL)7+3^p$$uOhVAm#Npobff@;;PpApYFb^Q
z73ITZa0W-#xT`%)T0&K@n|Z<Jw5@dsIu`^Ugf<DPPg5rJx!&4e0)UL}=ufp@7onp7
zxCOY!eEU}yZK+7z!Cs|Ow3ks*NysD|Ans4UrD~a!mCgH^$zW6##|I{v!5{*5o`cr2
z2B43(Jc3XE0IH^YuPHD>u?HgtubCN2Iv27JJPyErTB~|OpdgM11Rm8F+dQyPkU_xR
zRqn5YE1)W%{GrEso?)o<E8WbcPu?U94Wp;lv*wx9<2ycFZuO@<&zL@JjyYg*Pqk;<
zTyBH|fWYG-vTV^VrEA%X?J5q@*J;IL+*}MY@Nw6UwPyNeh&D1ZM*w!NcJ}Ayc*a#v
zLZ=3?Y}UrKS3HI4dk}c7tu|fjgCM~jGs&(lJEdH0DoYN=we<VL2mxGRj+o>c%J&;P
zYfFqN2up2jVxJ_3Vg-HbPds!!^???o!AQtX`-Lo;(&T)_bH@UkeF@OemiIDb3=mEU
z?d?=$)D%cd9uGn9>sgXsl-!}Vvz&~cqt>$LzsJkw{D5^QB-BbnOH-kJMLMb3jCZS0
z-kD2{!*SqawQzH4*l(1L$BY5T)~xAT+cyMmlyQ?;w{hE3)2$~_7tG4aIKv)IST}xP
z#tP(Q4%N#+stt<m&U$m#+Mjc(GHfJ(xXv?B*;dr}X2cN|3X-_TCbZ#U<tlu;Pi)m#
zZT6P=i5+o{m0}fQa=U@a$Un}!w^LmYr;HLL%K{5`;C(77Sug_a&r&MPah6}3mg|vG
z$pF~I6(r;nid^@1FOtOui9&)1B!60tIC)}EUfpq4%q#%t4^jZ6F}4X&lgB5&tvlUn
zB%flQP!JAS^c?gw_1dn0@<$oZT3eWm9Ag;mR3w`S*vZMkt>ToeW1dZ?W{o&*Sp0)3
zIU~}o`PmpFA$>bmG#49`eB3Qsg6+3%UzZ~s_pMh}%-*)KaIj_FoM7^C{V9s!Q00i{
zimUd5kDb60zcDoo*FI>-<N?NMq-N!)T-`4`?LM`SeRH_w4;?d8+{#qs5%Ug4Ybx(M
zn5h7sob;_yxz8zTRJgef!5H<&ddZsLu_S&ZcdK_fZ0#JJWYr%e?H~;Ej=k!(Fk0%!
zcX^wF{IxtPz%TcE(!p=Fh&-|M9cpy8WqkD=X+8HkVznO<D>g7r4+phhg&X_83{_-|
z#&AY*axgnpu%rwDyPn;v8Cf0F;%HhG>NAd<iqy7!q?KX;9E0An?VE4}41#b6rD@wC
zW$pR(t|^{{ILX?^y`f+cP-i~9hHFkW3gdAtjz&dg+LF6?+Ht@&bV><~Fx<KBakjXn
z-0i<cK5*Vq7yvoydYXyQpdfU{Mty0<WjP-+sN;^tqvv=7?&GLD)IC<>S`IS12*@C9
z82tU}R8W}R_s%+siBmFXx1sf`NTuAn0lT0b!0(ES*wrhsh>Af9q<q|g)||P14&Z8K
z9e^1@j!p@uBn4Cgq-U?LX{UB*m7T^z7UD3V013%FnzstGFi-&uI%mBqz(Wp49D|N(
z#8G_Xp#z+r=hB{sOf@D$<)RJ6a(Tykxo;pvTpZxw=aOo%U6?L2^BnnOJXEo<K%@+3
zr>-d^TiVRHlOg5L1ad_+_5{Fxn4SsgQN*Q)Abg<l=qkifB)s4fPkixKlD?)Ak3uDk
zvV>oooO8ewsR$BA%;j0L&Nw_(hKuAWg=3A`^!BNvg=BISF|~N^F++M-#!>E8+FmiW
zLcVfCb;UeH+f?VCfC2i|u@G`b?Bf{r9+a}C=geS+=zGzk(HKb?#?TZ}PT~$vwN$yc
z+UF~{k9yj8ixoVm-S<G^t6au5w$GLNliTT4qR|}B%)ye+dgL9OxW{^mTYZcIjDR}&
z)}+W41h2_na642+F(dQUe(IBgc&B}JF_LyM<+dcL0Y^NH^Yy4&)OjkTlEu1h$^7eK
zV-qN5TmU}c<M5<(B;Y1W@xkp{-$apxuI`L=jgyreo(=~G>r=-Q1sTsyJ!?bAE3|?0
zo}QTZrMHQrRVjiAAfCWfyFEe|S`pg75g#O=QHs>HKmw@w_YQDrw&{_AIX?V@>sPJD
z*vhc?+&k7S+1%`ebtJYVjlg3kspv&(*+dzD%7Vj;<BU~Uz*yr_xll5L6>{82eq~i&
zgDNmZW}V&9*p-&0=)*bt%m_Fwj+L)yf+hfSj(2y@xT+TIm5g*G<oo;9oxF-15<$-c
z9A>*9b51%N7RbR%h0aIoSMAFAWlIJmjIXUyw2%ZVwUjZyJw`=cw>w=!e8)NIz^_J{
zIHv5jHLL<lC(ZI983P`bscRY_8$l{M^Uf<a#xSP<931T?we1y@0mEc*gUxp>4k@cM
zV#0Dm0NYT4Mh7F(wb6<V&48qW2pJ^z&2jqIigYgqTFG;+>h@YRN;fOsTr6b$7pblu
z*Y>;kd#QMe+d%OB#;M}HTIs}a+i5n1mPS5>u}R9x=5BCHR(js4BWjaOBAMh!Wb(F{
z_Nw4=Gv2um7T>L%v`M%l<AhV!+>X`P_<GXr4-DMNb8jpc*Ef<hwsRkv1~>r;^{)^3
zpM7_w>en;*MN}rn1o9i&zDpB7Z8>s^8b4C5sp4B`r!qW_N#R!<=DEwi90~1YgClCN
z+<52luQt`ZOLeK;k1=)t#X##<^h;wk)KKg!@?jAba$UOsJ!^^(x5n*b(xVqWj`qeu
zcWX0TFc7#KS&29wO5wHn?IH7$*5FEtalt<;cLu(=u+)AAd=JoUY<?h0y8i%+CWU5u
z7?hZ;$r%XSP674Jc}I)>D0n}`%`6&chBRO7sap}pXAa2}dY0;I8nr1>N=e<mi1u)p
z3e~UeBg-C*_4Gbn@eRW;I~Z}vBzCSg{^QG&E66=aHSNAL_-dCLUEZtV!8P5qAkA|D
z8F*LQxfS6T(gPtNaNH0^F<zDyajdzK;p6b~!%o7Rg>@%61azkPBWNJw2Z2#W-e}5z
za60F$Iyt3cV<0MLA*-@WO%Ee|StKe`InO;Rc<<aDt$>{>tAa`Sw*$s0=;-^Dsri42
zd)6&<DK@kxoHVhiPnXvf4EC!lva7NUxx)I^wwn){iVS;~sQOg58bXk}eom(~9LYNu
z$tSVR!3!=oG2NQbYrTx16W1SwGV0G@%C>XcrA?<t8nU}6bAym-B$Ssiv?Al7rKC!r
zZ!G*A1Dg6D;P|~)Ni8({nL_}ivS0(#f@{Y-J8>{*#2R6oCp&gzAE`C;ufo3+>lSwq
z{h|%F`*6VEZEnLA;Nqm(c1O|Ro7(5A$KyX0XqORvufwoQX(EWl!E`bN9Z6dCUj^!#
zM!N&t8&9#{0GQkI^PaVHz+M>Az9Z;u4dgcW^Mw1Q@ae~Fbj5MLDDdKZE!Cou8Ffu2
z*`!nrcs|o^+3C+!0=eT!$~@87+ErIOr!CKDOW3Vol`fTco_7qIj?VhnF%hyV<0O;T
zsOa<GYq~OA+iDs%tq33%hC-}3=OFbpBHBb5x7kItvC59rP6;&@j><NaTIzWR?Ny>5
z9QXrKj?UmlEMgY{k#e#!oZ`L~f;N#C1cxiTYY$&a{WJK%;ilHU8|$`~Htiezf<gpX
z8=D*o{NuH<#Brk!-X>F#f-%%rxtIJhT@N=GD7PL|Wi`1fati02q*O_7`^77`HV+lM
zb8F@&$_~-X9N^V4ZdHa`1rOfFe_HhxnzM<dQi{khRp{MAdXGxI1)<4I1Dp;9aZ|#M
z+qUEmnf0w3SOIbtED_T^ezn~j+f$Ldu=@yCP`im-9!KUX`fl72MpTTE=}v+N<yA{F
zj19;2sUv_At+eC~xjhASK_eMH#BmL(zyhZvZ8azk;N`ae0I~*iN@Cl%jBWb!NL7(Z
zJBtkU?V8;rV=LH!h7{z3&*6_+W>HseK2eMiYB|6=Fg{WT1J<H>212krj=tilqdy|r
z&eD*0Z<~>v3bb4_JGugR$gIS64gf$`8<_VMJIIRyZf&^E257dH6_At8Wn}=a!ZXc8
z*CtmA#JR=-j+v@2aKVdo{_=yGvuf;5DVFqJzgo$rcT$PdX(MXnVoYO<WQy)|TUFh;
zvcQ9YM<CY?rkt2T90R+bYV2Xu#gtxSmdP0bT8P>wW0sa@YZS0rK#0Ln@wh8-n#t6B
zV4_n8ny|&m2R(k3=bkC}ffk!#Ec4yR2vi|_(~^G*@oiJ%8c96<Q<>iz1h2sNz^#(M
zyw3*}jd$gx_nyJy9~XVKr_;2MZYNdC9Dg%jb9b!YTdbeDAc2-*bIxmmm*R!hv@^wG
zOfpZ8GEhEaS+`y~mN-LACUe&v>vXJ-5#CzJ?QS*ez*rT0H_l6co|Tz@;w|xvxeh^W
z4_e^wejvT%hiTZOjyuv@c$F^X%)o8#4|-Q@YAn~EUJ^4SHtZbj^v!2Ybgs>o+s|WF
zu9^vyG;%8Qou;v-n4@hOBzN_z8qu0_UX8_%Ur|+Lyeu1&yBNtms)v}tNo*Q75JCIg
zXK13sxipsm42*p<)|g1(jy(k%S9URz)EY)3%^-~N)OV(=E8j*_nliu+q~@|OqF~$%
z9PmYNk+hOd4{TLSn_}fhcK7K*)J84cvRy9aAe9*)de&r-x{w)2HK%o9C9|0$9S%tK
zt2S}LsxH&=&FSwz%tdBW1`pPl?#keUf<5b@o5R}yY?a4)&6`ai<a6&un6GwyLHike
zYkdb%e+z0?3~X<kY)vC&RgY{RTJ|rA{tC6!?xh||f?KE<{Hx%d9jDT-pt^@UqHyB}
zoQnGk;rGPP_)Ih_V{?|ci2}$sWwY;^Ik{Dtg=nc+^*9|*z)z)1Dg-SPcWzJr09vi+
z9}45~3nXh4i0pQpukm|Vzj#+q)AgIkqPj@JGh~C$74~nz?}NV$C9t=+c-H3hjo&!h
z0rsqYioNfloN7+?N5HyQ>|NpwP6fNOwrRsD+N;M(?Ct&n-1sj^jkOzjEu=sRV!Uqj
z&qH6SnlFYljV9PfV{066{{XYjX`UqTR*mA#9^*^Y^!RQp=3T6Xa7Va3jYVuVD$(U<
zeF~MS%bMu??eLF>2ieh*;dYX78EoL!sQ6dG)|T=at`~n91J<@YS^G2G{4&-J=71&C
zbZJ|5*$HQdo`=`#Q`n&p1(W1u2dT!<UjdE6RKnHedZ)8LL(09LE*$sObSvNZ$^1F0
z+Q(`_oCY8_J9=?m$>Jev@u%Q-iZnrkCDxlPTN{#(u$9l^1$?V%e0*Q8T}^2IbO|Sv
zyLt_$2lcP4J`w0I;g1LE7dMKqLa;NFpWzBgCpGjLTqO%w;Lg39i%)a$w#nKkHb_sM
z8!|8--cnSL%vPPWggTZuEIafSmuY<!-QJ}%GKnLS`gvmGs<e!1`bN*VnGV6o9jn=D
z(r1GgcqVGWd6i&EL;NQk8n}|>2yBy#)*7)<^ADAJFzhPYT(ES=%CN^?-K(M<j!C0U
zB|^mQIV=1_xT)Z}FiNESxi}<>%NH0KXAzEpaZ$&53bPVhur<=OMlQ!s9q!4AE;`_2
zn$WY<e3lAboG~B}I(=)8iu|i`R23QZ$@CRJ_L+ns-oOF=uh5?LT`q`TXP{f^>YEfe
zP<g=|RoHa_3ObHd<m1qKSDoAID$TsGT#j;UMjdWORv?6DKQR9F9;ICG<J4nAylmJ&
z`=7|xmA0^ipw2<$;=Jf<fGTHzc;IjiS%+EMjf~kGkUyn9YY=**8lodB2}nEu523AS
zFT*R~fZe-SnAz(=xDKRr>&P{=X{u%sl1V3_Jt=c^3p3DS)RdJ+ZgZbnvu~)97z30!
z1XmSlf3cQL<F7pDHGlh1<yn~I=V<_AH2H<gea@ZlwkZjee0A$gmi2Z88Q^kr(z*21
z%V#8W`Wj<js^gMRQO0?s=W^p4BT8$t8#4vUvE)@LuSVhyU3wgLs&9CA5F`MSOB4Jx
zN^6-EZ{U;881)sKkzAv%=G+M<b`Ky{72J^!TnwD`6=M4D3P@nQ;NWmipsahFljH(P
zAzN=eU?1mD<X0$?OjX&`gS6)zv+Y_o*TN&5Z6u5?bNSaa)4!UCrvZT@cM3qM<J2%$
zaaCi+>Xg?|vpZDO1d$Qu4w*b;8jkApe5ZP;7~Sn$<aesbp<4tF2&(rQkqQeOlgB)o
zX^~@Q=T=mkA@IsT&N<uY4N$$l3{{ZfdJx92t~Eor{p|WLb6In0JBcjB0y+aw^%}9M
zHl#O5LF93eY4%#vD=UTo9E^J6xm%0D%B$f?$sIFM+TMngF(rL7T<%skQC7M=S4;5<
zAG<COUQZQi^)@3L_x1sedG3>Yg-}Q*oSfG5Hvq-Md4s;*GxV(P)vP~fWp;RC+wJ*+
zkj!{2F;4q2W4L|u$0x06$!uAlfZvZwQ4UTqli!Y&<8#>ho=cSy(_%OWpy|-(>rpg8
z!6kO@>sreLNx>(cea%$4w*-!GdK^=XwA9nt-qtakZ6|K!40%4LnYFO&OJla<(yv`a
z2p?RKPkPV0k#}_=xWF8ad)Gu~bPko4g=@3EGswW_1FdCCHY6t`WMoy_#xcZqXCtWx
zt!7N%<7otAn(L+5;;RP5SK6Q+PIK0*LvqRj^b5!YX0ln%?Zf3imTE<lVHgB=B%Ie%
zM+;Uonr->{v6_MI20l}s-D<l?9n<F9gY+VsCIW!Kb<T6t)VE_fMcYtw<}p?{EyvQS
zPIJ?@Ow`iKRQ$lUeX15;GnG)l^VXYvOdNG7yhPx9*gd`IiqXj{v;*84(}vVBUBe?h
zW~@hJxPz4kum+{d-9;3e)X##~Y5+#kPZeZo&7YL@6|ZezHmbPCw|rKDX~js!Hl8|G
zE~Sq`oHl1PEF2)*x#uCfigZ@Fz!}DJan#pEEr*f{xZTGEY9VB&ka!~_HJ3H_JEE1$
zh#_PLw_ry#r)L{(Q=T~Jahi}>AdDy^@(5gFt;GsPiU=fk&uYR_y1Cm9qQ*l7Y_`GB
z_o+p}ErM~J9z{j9V|MwD!g$Y6F-Oc4f_HI`#<^|WZcCv#k-WwPa7Q>jO*vJL0O~m;
zo+_r|j56K20oJBfSyyuqqXRiTY8vVaSJ1MHi2?H#G281_@Cq&%1}6=UwN@nE9__;!
z;~lEV$2e`kcckQR5_Cin_1<%znx=_M4uxDEq~rlmD~THo$s7agRulzX1_l2B+V-TG
zs=Im?Ae2bC01c-<H&a$g4BJi#BX$7kRO8H}enA6*D#77*1tBq<cQt8ib9lRIPKAO#
zNRJ~Y(A29Z0l6pck?BxHnNy9wF#Iu7rM^^gf^q>J>f*H2)$6Jyk0LP4TRA;FD%30c
zjF-+jo|&dwL`-UU&qAJtr-yO_xrWkmR~4*ao`x<~V5_<U=ZuWt9GvE@+YgWwZJhJB
zr@b*ma)X?JIOO%E^8`dFBLTfS(wrYeX6Bl^WraoZ$mO{0)Kd$OF&qQ9^TFdj^s6GD
zlybwd;-ZzxF;ae3=yTGs<Y}g0<eJfsC3DH#NaP*`SC%r$%tjL#tEz;ial0M*)DMFT
zXBYznG3`}mjycIEsh=ne25=i3h3G|8c=xK1i@8YW)K-hbj2x-S#uQUp1(AtXUD*m$
zbrfohZke8mzhF?yp3HI2_*2px7U&K-`kJ>STV&V=1Y|o3u>@zU>{Z>$<FC@SZN7$j
zCu1k<?uf3A3lqrCL+?+D)65$i<;cg&)9^K}mVuRmb;&&XRO@Dpr)Ell)6${I*wQf9
zQjN4BQyWQR!6b4j`b0<{Db6sh#~+1F6k8QQ<&Og+txC2#c_1?>Amf}?HgY=S%MpnY
z^1{0k19Z(@5xlq=C<g$M$Ta9+$^gMZ#y~wyO3Go4L3KGhuniHXCo5Rh)r3~EM2i?j
zQIM^-?+(98y=%&aJCya$dZ-{Wfw+YSqaRwo6UPi}?>ZkXHxs+BwR&{vO>{VFV=(JS
zE1I@QR#2tOWDl3Q_pOUITVNt~<PH^%O>-%6a01UI%Gg>k$afz*eFtj2CZ`>oFC;OP
za=0@Qx!%1MPF+t5wqqStG;dGhYb_St?x!!YcwoZ-ekY}Twegqs-PSE$_eAhZL1z$s
zuc-wN`0fyq$JV(|+FRpw)RVV{beW0(Gk0*OmOtDdO8KDkTBuy}-D;B6vrk>|9;xD;
zNw0N%Lg!PvbC#OsLhbt3=#Tsoi{V5c+M4ggO-9{Y`#pZerxs87YUAf{eTD^odU#jE
z8i$H?m^AG+)?3TTm@IKbyyWyX`@Qfx;Z#2dehc_(!j{pjH#YW*J>0+Z(&5*0=jeF+
zE6L3(`x;!a-JMt}UfQm^BHxLutf0NRdDjw7-eFLAC)E4b&Yu>%4JG-xo)Sz+E=K%i
z)w`V6uz1^ExV3p2_T3_5_tkP$$4<57TF;Mk`w7F}OoldH&acS|y)j=K3XUr0vFy~P
zW5l1~MZKiL>7s4Kmyj_#MtUFqwRAoR(d@hzr0ZTWzKlsGiyIp?kp|N{0wdu1b*%3f
zd{mC}P?{(Tv<kUaQ<4UFuRi#h<7<nrgj#)pnar2ko68_Qf-V3!`t+hwsaD+GPo>N7
z(2Uc1*z$Sx9ZTXbiSF+%WowD&k))ndGJct=H*I&}$1MZ81vm_(f)Ay4{s7W{u)H)0
zM0@MvTXOXZJ63;>wf#F!wHC{547YA_z;aM}n&{?=lBX4PcjEC9NzJmy!~Xz`R|#~m
zPR1EgNGt~usp_V=kBGWur}mm%S|W(2JOpfo&nCF#)LKnINRg~c5AfCPPf&Y{WL?>e
zbB{{hQI#sHRP;}De4Zy0?c&t+B|1p6OceyM&pm}!lH7TQG3k&y(QSM7t5ST@tq|Zb
z&hKiuWiXN<AsdfFo}kxql)lm9I%?|0DD>%EhC%Y<y;)5@NaQ50RO2}5TlQBm2!22d
z<0p#Iw?&arqybor?OxS{s(Z}or$+4*bemR%M&<ciryZ*Nw&;)*!hq)^Ba!P?K?@*M
zJoGrH$`)I0PB7f<J?nyP-szsNB7(X(skHw9GE%Cf$DC%a+34`u#3mpTIw|DT+r&=F
z!A9@9&su`vq)-9i6M>HPyQ<=>x|}jf_b$h%Upui|rnR>W4#XG?dsfby<9q!kDG**u
zD>2Slx)JGF77^}*EX(_#Hy%1w-}p^DBjLCeH9)SyP*no%W?uEilAO6zZ|GEIDt`Ah
zjmsa6`u>2?-Pmi=Sl#D1f<mN_crDt#sQ6j?ZcndhlK6YZ)|S2@ideb0I7vS)mGDoC
zyjS4Q5^Zf9%LA()l&0Pf_*XWvU)kIw_IGRw9IiY1SAW%PwD(_`A6lD!{{Xy?*Utm|
zN%(yfvqfbb_7@WnVT_O6;~g?Mt@~dV2(_3Y#`}AW?T~aF^smeBgg+AePcEkn6J04l
z+m7L#tKR~?=J-Y8So}*Ab6w5=wqM<xoU<Ql^6O#TCa(29uLW8aAm4uHss7U66!iZ9
zg<lOMl4+FQYQN~Vs>kJKJ<rm<0iC34lOe*hHcrfeUZ4A1c;3_Ecf}ni!`8Aq+82f3
z4K&I39_hI%4}5g5D>9PBx*kZu&THMm(&df&o*hXpdv+zt$Uy|LJ;COyG7aPdf*U1G
z2<1YSCnuf0l_M3EIsn}de0>deB%8I&TkB$Y;YLtc6jRVIHK%J68L$D`2PL|J>sj{E
z?Njp(2ORbK*5#;Kn63z5ypvrq@-dMjtFAVNE6}!i9+f|kQ3xyZDd%-bZ3C%Xl~4iT
ze-&9sN0dMX%AT3sU9s54*E85GYqXu*@LHg_&i6eZ(><!=46#!AAxI!&ty8->$!rwB
z8P7`SNXhG?D9R4tNl>722V+&G3-aWL2aY>c`P>k}v&hKE=~UeUC}zVFbMl|(TS6(A
zw`~YZ6x)DLW0O^$W?*`dJ072fO?5KFbDio2cCQ51E!66x01_3rIpkKnx71wr*qNqg
zk+!zbPXyJgNdg=@<epfAT=GnJ1uc>X=T{)S0!0enF*p^JqkT=3^xW<A`{j-m0Fn;?
z*E!;^A10A*(2PqU=jJ%ay<+&2#PR76kQ}_9z!Rl-*NJ>ZEb_BV<j8$ZN`?9yIGkPA
zvxm%|#eOWGQl0nAT)FB`YUd-I#~V3e>x#>JpR`QHn3J4<DQ+hV9^Ko0vs);nd3G(f
zpm#AO<Gu}M-QP`fAj4%Bjw&xPSvl|0qf!(%JZ7Je?oa0VX_7EMogvhWISO`+eSZq4
zb#}Pw1~~dwbd#4E<da3v>~wbeyEAPhk&gXqQYnSXZX^yk=aXDaQXRncA6~V$q~2wK
zW5+?B-qk7gBh=nh-}8)|oM6(3@DE)5YDj@4Pw<}Jl{3Y$f`ENNswZto0_|Mjjos<e
zu1-iNj<svaI2rnNrkHZaDsVehB$^JTSmP`+fC=tuR<$_E0AS{=TEUZ^qd6lLww5aK
z58VUbii9@KP3=Q27=U}$E#{l$u$B+q$UO~q8ikOAuow(GS0{0HP5%Jd-0cIOtyZCX
z?pf1rr=AZgWEsv2p7ggidpZ6Q-`1{1v4sE=>4E&}Nt8Z&(?T-hL7oSvYUsQ<;z@in
zs6%j!-)D9SEMVgU*0BU2k~7Ub##$pA5P0wW>Q=0oM(Fzs!CLe)TElk)!IXehp0)IM
z!(WIk8G$_CEW`%{<0ij9{s{QYEX|}(H}4naP3PsseJA1j+4RZL!;+^51B%j7)7?Dg
z+Lf92MuqW;`@@n(%&m2&%0X<Llqav@Uc=#!iJCu&A|74BM=$qFSH>O?*UqhP<-7jq
zj57E7R%W5B>OKVVAbUw1+dJ<AIO|w9ZBB?(aM1fh<4=n&d?ny%HG2z$Nuiz~5wJv{
zwhEE&Un2Ow;yZZjQq?THISd(^Lk!bK-y}I0Vo&FQD(8>9cdGnNO$WjHE%n&(1hN~s
zjkBu=;@h+Wzuv}iUL*0x<2{e;Wv5&Ca@R+<)jU^nrdX`*vV6Rs^|IrhPeEKbj5pS8
z&9XiG207teq_=4L!{BGbjSs^b1Kw)aDQl-$jLUgD1VY{NO>>{LzwK>lru;7Pou`Hh
zLt!3^JV|`x5<ILnCzig4C$C!gZ{R1!4<7!}pA!^#$6l7^$#7xP;a@7w9JV-&edF$P
zUY-8{1upn`H^Tih;krR^@1^Rp&Gyw%g?W`!#t*Or@m+MN@@S4+P9k-sc6@8$-9fb5
zNFZh)05kRPUW21*t9XVpfZn6Md7QkQrb#^Jv^33C;bl@v;B^P3RO$0CGHKOx?4HM`
zd6?P;N}i{u6v-v>hyd~3M_+2dv)7_vkj&%FP)uwaf)8rZmV7AWa57GFQ5_D)D9v4L
zSQjiGEW}~D=k%vZd%-G49C~qB*Ea#3TX|dz=hmq{rO(QH{MEXV$kol&zmg^+j=g;;
z<4`VDnStklo-3Re${eoa^9%xd(;HCv!3qkf?r}qs+?1?!E2%U{ca<xg{MBe{WdJx*
z7<31NTv61SvB?WfT}Z|N+&2T$H9Y0no$_l(_+%rF{RLXH*7izRx!S}Xx!~8IuCI{K
zxZv@&tw*Z6unOuF9(d=aM>y13>9#t|PFIb{Pf~vEbozd@BwyW<ppXd1U!{32pL@4y
zZLCPhBm66@)3rjSGQ~&U3J*hBx|h`&C^ORG)FgI5t&Vs`>yGBG#i-^@+qQ*nLE~`m
zTt%Lu@AGdC-Ff2`cxvq7TOd9;!Qj#DIvOf%>UIl%u&{{d2a!!}O;<QPbSFIKxrWw8
zFbaahsi^+|wl{*S77jTyok6N@=TQ2qBd9N&jOW&(eNmVK2rJ0Xy>jvDOxqd2L!6Sl
z@l$=VvUagioZ}o;POhf@%KDl&S7Q<ar1!w}_N=>^3mFM4HVo|?nq;?b_-+V4Fg=A)
zxtOsh%p;yqb{@4p(Y=av(nF<{Lq<n+`^5C-sJ5Y!!#z5a-iw)cD`zUC@!yPAT<35t
zjrbho;F{7hFqJjAwz`ySwV3mbyS|+&Hq}J#KwxqYAlEW)z-8kBTQ~>X)}j8=AY^17
z=QU<rrsVpHvV~K)^yAXA=Dbnz05)y)=~+#GxeG?yyA#~iN4*9zKyRTGF(hA-`F?Jr
z=FT(xsbIRsMoCua)qyq1kR90vuf1Bgm7P)k;OGH7pL)V-=R{7^PPhP|Bm>4PemPcl
z-MxtD0-RSBWpG4C=If8W(zfkq+5+IH0DRqzWSUxB*+a52O`9nr0PXLdzmIwfh~z31
zGh>sUm7>udpfTuix4jZZ<ybBY4lC#RuetSch0Jm`HV|h$a(NY6W!hPX$_eN@n$eyh
zq~MZB7_7;p>dZ+X<S46By3p*6Ei7eD!OI32th<n*zGJXfjna@v4naKgS=T_ZEy!WW
z9gTFs=x_CXG)8>qDy$CX?#HEN+=%|}c9Y(;CEo9Y(4K;*+#RE7!8z^TyJ1sfj;<Bj
z<pY-9NFxWW1<UUFHmC#fG^CJ02X|A0=}8iX+D0%&Pd>HQrmT2%XgIRcAY|v0?aej0
z+@yU4KHWUCfWeo)y-v_|Dh>y?O3qR_IUCWG9y|bdbDo2}ShBV_IOE$DVmm+?SRcm~
zcG}$}1OiKrPZ+6k^Eu@aBC-I3!+X`ZEP-qy1@$=VR&A_#+~au913fEB*4VfJ4ZNHW
zK~r?}Gq=5FQ-;L`NIkF{(ya&!NUGTiah4US6^a78kYTvTsi~gZZUV$SymYLkC9&BC
z(U#W#03cEO!ZUz-)mbeFkd#0WADchYw~ec^kg<WsRq91X)+9m?mKXuThU8W<e5Yhx
z_c0#d%wP&O3FtbEcc@G(2GBU}NXf2&EeVZ=##IA%PSp&y<H}{{Z(I?MD>mN7(e7Z$
z5Ov%!l6uq(ODeZa^&K%<(m)v)?D=~h^_wNTdMR=<v>v?FUrQI}F)$d0Y%v+nQYuJ}
z@)Y9)WFDC`c{xS>-q#(+y-Klc+mpG^N?IaQWU!;NAm9vVj@4~ZlmsAc9FhlmY%mg3
z@z1Xnptj_$0-WcAo`cq~aysMOfIuB{ij{F8SjkW`%O2De&T+$Z$mo8xJWvd)s38gH
z!>v-ZtZNoY0{o?v0(xyc3{}`il1s+9>ON7NA4)A^Rsg9W9?UC77!)$F0eR&5QFd;n
z%dtiU`S?Hx=Q+(>F_Dd=v0?Xs;2z?h@PTr`1I8QW9jb?owZY-P56Ly5GG4jD06s{^
za((N%l{r*u$380+3^hJ!J$oHBhKTbj`LaiBt;lIxX~sP&*zm!U7h7#c)_Ig=BWA$%
zubUIb`i;%|%O%vT@?bvZ$-wPe_8vLDigkGI8C_0r8`8aK(2RN?8;H#7)s^Dxk45pG
ztFL%z40l>}x<l7>u_q_$d)E&yilvevGF^eR^M>i|T^yb<9wpE&Z1n@Vq`^X`ED!$x
zUc572ntcycAsnKv;L#3*S3-j5k2Te)CwWPo?Z?Dh`)iCP>wbM|B>10tNZoPrXCY5o
z;qGoN7AWOIy<J0s-9hdvE?rtO>^3eljOL##dks{my0h04;$6ZhB7UO<N&RX_z9vf{
z087X`jP>@f9E($hn+HDJ^r?TeAwiw(oYMAidbA$aqw0GN&%`UHQRT|2af}ZB=ANGr
z?#d#G2;-BUbL(C?CaSxGdBpLIdQld*MnlM~x#FKBdLeVoFNpS|@d|frHNy}SfO)~G
zzu`ZX*b^eYc^Uq-<7upu+#kk+tjajw#ZR(Zq#n|L%+F?r;u|3$=g#lpUWTki<Np9K
zsEYKV108eCcw6f-6T5kC-%4-x%Ag~79P|R0vy0Zl=cvBZJ<{XG_n2Upf=6MFPBZUJ
z9yPhQ8>X4j+o@SQdsl`xh_HE(;Bm(os9(jb2GJ%#9<^MFYhqNUx}Qba`1aC3Rkb4z
z00SxHA57PGq)Bam6mr9L71l-zBkuZF#WU;vXa{iw9_PJm_*=y~t)<e7JGo(T-57v9
z@mFTHGi#ex&$MqZ?X4p~CHcU>k3CPIs5L(s>0StdE+;YG>Tab{*o>ljXWqVikKz^V
zo?Me%8Ks3bq4hn@S8Z-hYf%j>gr27-H7T~q<+9xO&kXDL-YwLA(SAhml{kcOtK4F$
zd|~*Qo*3}8!&_XRJjJ#!2N~(t+PU2aS6fXXWQtZ!2e&ohpBy}0F1M=-VpK;E+p&M0
zTUOX2`JK-$x{`fTc`m1sq?%SP?%a}1cHam73HX!aAB*igKjG~@YwOwFSNCa^jY;L3
z&<e@$=818yYBqX(jj_6(cUY1zKKUo5e#QJI_)nw$!Jo2Mi9R4|Fv8w2{>y2eVmVnH
zVknp2BxbdYZ60ZC6P@I#$A8H3KiRYPW$@0E@o~HhqO#s6g_UnSQ>>hBxw_z`x*p08
zTzXgA`m#eWoC65TbRhSynEwFanl`MT2sK|4>ZOje;!DXd?q`(bxGr(erF{Y7eL^_Q
zk|`3#!0mP9d)L8cmHn+(<b9T3L)k-K$0y?`Vfzs`0vX8%A-|n`xA8;4>2q*zZ37QC
zDA6eeP<smWuNipKX|8T9;+0Bo!6&E#rYp{MPY^?S5Q14&EEBb}f=zhzq~7fGRVB@L
zx%2j?;R~xNZZ2+~RZ!Voqa8a`TC@$Ud^xa&P3P>|xB^KRA0sb4E57k|vkVryB%ke$
z*#rUi7<VK3*BcJDZ~Qf>M=VOKZ!C8T6#8+}y5%X#JjnI1a!{z0jlTz*Yp)S%7KS`E
zy_0zaaszGP*UmcJvP~n&GwztPZgP6_(!PiAeY~xIs_J%fmV0|vkRT&1k<%UP<~?Up
zXP!ZTs#%WS;OCJ~1s6HVnPv?rSZo&-_L3w?^UEu3+<R5cN(Qlu2PAj;`c`&>1T*Va
z#%@rb!y~0__^pI-f}m~PjMuMGT5*SS<z=dElq_>JOh5=b16J(BkS6jQVeOiOMnYm!
z#u)dlnPCi>+!PLj6y<xe9<f?#LvN`V9G=IHyw;2wyRO_ZBN)qe6@_q{q$4B)gOOTR
z$(}}iN40UyEzKy+sc7^%oicwk9l68&+}65j@=BT7MmY$)eszPQ@N#fSAdJ_k_-@uM
zMnq*J0E{61wdPirE4k~hekT{Ecv<yLKt`k$IV0=sR&`$p$*1ZuTDc_`=XUFX?TYnN
zqCue%cy`9ol2sIX(c$Y0ZCk`;i=xaM0%>{$^{z!$?)?s5V)yEKKAqtCyl>)|^cb!m
zOM-M8CY<?sC!s#o+Iar}_DBB!g=gWk)UT&#^;MG)-NZcDHkJF?InO7heGebOIQ(8C
zyR|V3_}4MKhbTzt&ua7s_$A`4OGr&WR=6hB7b9%ss+@2Vy?j0`)3Sp3n9mOi%G1%G
zkoOuh=@<7F#x`joVy;;V{NA`ewXJ6>ECYEw41Fu^Pm7<kRhE|a%0AJmYFGD=z$Bjq
z_m=0UV71JC(I2yBjo`amxb#A;HMCKM#u=EAmagiUs&zg#Vf9Ls-y~0*JP_Krym>U3
z9^u(a9iyG6wS5ur`^6q5@LrDh(pt#`?-`B=*|GBxjGX#ZpRsm_rKYy=YVdi=()ndu
zk1UbY*T4SQKM$ht*M|H#tZ4CW(_?0~yD{{Pw<_)IdRGF9ty`4!qY2^Zsb6#DnA6A-
zd9rzvNX;a&6OztONi?2dkdOvPKuGF+Y5XSa5E0Mb1FyY87Ys)%Nd6l4+)`FJ)3dmN
znB%EnFh(lGJNA`G%PRH)ltQc(80788PIFVo3t;jvcq~s}rE{%UnX9<_FP(!IP!A+y
zk?matsOCM`IV7AK$<yriIVDk-Cy;vmYj)m0?g6_PZNJjG>8@QF$vsO}$R1Z5Z6mLG
zv>#+_yoMYA02%eoHW9Kdz%B{E#YSh_87{2AoNXBSYq}S)7fW_kyTgUslpy5s)K+w}
zF=j@>=LJe&kH)laz;Jf9&wO>Pxue26?&x{rt#v^qxtr5eR%y30s<MOA7^*T5s?YN0
zpi#+cxA#|RQbTjN^fjL|mqsms18~^j*IG))9M#pzQ#&f1shpe>o<(C`$PVIiz<c8+
zv~KR3%Pez%2p|q?nwoEwm<(j~^{Q&?Lz&9%<7An@Ro{g<C)?Vt*~+m4EWdR|OAqB)
zNETKh6o5u|d*-pcQ{ot+A7+8LjGgVC3H7XJ*ur%*DR{G8ig~7)TWM}^IRoilTdeAy
ze9SXi8uqW|J^{}du3AQEroaH?^`prgwy`?h6&c(>9+e_)W8Va4)~spzOp^{5aAS(u
zIxAbM?p$LWRajR>5~oa@@x?(qkjFSt)1LLKdJ-a3eeSr&O3S$c`haoQH7upMpDtLQ
z!1t&?Juov?if4W}%|o+=;~DC6N1<B`-`k&FD%F&QUxUErpnezhq>P@UoPRnt5#4B$
zHQK74Sn<ilbk^E9nMms1{i}k}FFcu1iR5CvA4$0qL>W#)3}kbPX^|y#P@c%ZRSp}T
z-Kk=;e1gN|=NYXA8|67tp;+YOsi_tuBw!Jb){V6@PQ@!&_DlD74D_v-0oVY-r>Lre
z91t;(4{r5jH<KC9(u-JcT~W{LQwwR^1BPspYmV_HgLz4F3HgRe#dQ8GQyfvSa>F}~
zVp`pcxZW&+4`v+&7PBoj(N{y%#pD}H{`p5kTOmsZ9eBwCxI3{XhpRTwRA)H$uHQ+y
zTj*9`dUY73<PW&4nQ@Po1F5LE3_q1$nl-@y9<@=_00D2C)~PTcitY40TGIL!*|EVd
zUt@eU@kBl=(QT#$UD*L+xOE+?<T)*4yMdu350vA+O?o%%=i;Z)yh@rS<epSBKGY}s
z$EW98!RT<-r+tsJyeWG&mwd7i1bc?!eLXAG@3h@NU;87=EM<3qO7g&ZewDy!x?_Ee
zM8}}u9@R(3cbcz(z7_b##F3=3e`jgZn6M5!#v2o-0PR2$zov6UsrES`E52DD4fxOF
zezAA)v&9}G@cy-XqB*^Ldr2&1F|tCRBJ=oX@vJRtR=x3#sV1qe-`wk3jHBnhzLd!+
z1E9(NRpqcd##PJZzVk8aN#xgCq3VKUL}mo^u6C^MdtAC%9?$zfc$fYVuZVh0#i&Tt
z<qIKhxb6Da-QVz3=&k%?`yqHw#gLV0EHztMRmW}WRfpyUerxGh1`Eh0M+)(<V8^J%
zeevTD6i4w>{t3t9Jq~$R?^4n&*7iJden$<T%QVw*nr2s8#Qgcv<`=dq>O*09!NoOQ
zp?{PX$;K<1@NTLEi5cKvaNRktR`B1$tyji(DISq%_mfNaVug1%N{2NSc{5iRvN`r~
zEIW{{;qTJ6^bKfU#pFAU=y*Nb+OVe6r_!$GwY!Q)CXJaHB~q*yb;zu5ww*IpUD*i4
zVEfeQ)zMVs)3-y=uJ*cy13aEH(z0g+w(P46=N;=-$wl>|&Yegk?Z*bH$!5F4sU>+V
zao^U5D`<6cC#jvhmnC-r+i}fBxtHbY3CSeYwz1om8DKdEqL$NWW+%&RbMH{t)H{`o
zgf}@Lcg;m4rcKxYWAv*A+>ww8=N!{g$%Kah?L6ldle$+lQM(x&vJ}G(I}uuz&H~1y
z6VD`ds_@&L%yG3q{LNd2ClUo8QV*qJChT-ZDA~7|u)xS3o$*_Cm!B+UNnCy5-nrXU
zZ!BPPeesIhvH8aJ1gEYrc&=GblT)rVlRA4#{K=ioyQWCywPU#`dJw2M+%gSwG0JyF
z+qhAR(v8e<<UZvmzkJs_tkXK<htSuK>77B~k^D!u;Zhrs9$GeM?di=>iT1hPcN5>z
ztlOw^j80erPDd0<zN1)n)ys<Dg<uJB$pNuMa+2)HxGzRNw6Q|CR$fUMIqE6xZq0%+
z8G8=n-m-P|HTu4SdAZsNz+;bU92rI(@KhX*m>#sR6B!)_6>*<${{USv(1%^4_(;nR
zewCyq<<yB&No-f1Hru?MbCL%+6_IlpD9p;aU_by?>%vhRX~7314#uiWY_cI@4_}+N
z71>T!TC;|5zK1VymB0v~<D(8MKHwOo-O7SN<G0efE2|Whm<`y@dFfS6kV3g!gV!92
z?owNva;MzDlm>`0j*o!A<23`X&PdKrQVng(rYfo3^0s)-b5&-5+l|WEU;^Zf=iaXO
zGxl!!8EF7O02{Y)&0K&502Kj;%bfJ58*{ymbCZl>rGgFu0rK?(jMg(Yj4bR}id<k7
z&N`{ibDG<;nL^_^IUh3`#EA-mH(|KWPfy0QEu=px6S#r$lhfL`+18@gtlp6@L+u-Z
z$jGYF%ku(pyST+`O>RPxz%lKC&{YeYbqnS(3b^Zz_4EBtu!LQ-F{Jt91eGLrJPOIX
z`IxXc0Of|>Ptexo>c$Qgat}Ce^_z6A>yi#Y$Uu0lW1;BMrE{O2d~h2qynq(7=gB7+
z1pC&l+&?P?%H(o$(y3f3upz>d00oCy(lX`H^=aYnxruWV7X%PldJ3a*hap&nBy{gv
zS0XeU_Z_*&P%;H&&a3x!lEnS&bgr0A;;V*MGhPA|jDW!4W|)z)9fV|pImKFF5Mw+q
zKBqM3pxO=r$nJaBd}n2;^BBB6t~%Zv#yICccQt-HH<3o(amLo~Ot*{$O~WnM*0kdr
z*>iwMBacs7Ii2)AcBDB`1U99%khoPOW4NsgXj{vC5IG!TrH(Q|Q_2o^4&tuc4fqO6
zMg~dSiqFlQ6Sq);*<FH?Jj{JFT6XrO(}iVhVCS)=irrizEM8+SKK3*2D_c&1Ll2aU
z=Q$lIb3M$Wxt^p6Z@G|d1dgYrTQLPgn8Nd%=dZA<k-{Sk0;`tccN%-b3Fi#JoN>Uc
z9JRUC2&Jkq&9eeAfd2r*bIA1Km&*A}OaneM$6?;IUeVkJ11E2;4_X$`hx@xgAd}Pq
z?^53~vo?ogE6MW8y7b2&R97(W+<dk6!RkG0Sz-jS3<45(9OvGkk_BKHP8Imc<0tx7
zE$Vf~?Pzn;TNW=P9D;GrPCcrl!N}QyquRPDY>$`#+n(T_1y%bjVG8Zb79ch`rS9JS
z3u;YR#1L=bsZcs&oY57p-pUe3W7id`ZB&OUO5>@=T8=ndc-xG7j=t2JR|J_HQ8ANg
zCj$+G&086E01Tdbe=1asqU0x2lkO_VlrpSN;16H%td5kLAxm|L;Ejiz_vuqXAMbZ6
z^cf!crZh!lFR->r00W%W>m>6^WNrWuPI><TBAi=GeGA>#y=7(?Dgr>pYf>FNy0(7k
z9sARC_*F;E(DWqs?N;?s_G=kkNn_bp)}1uxH56+)k);PYJrT(Gm&R~u7j0)8izVX_
zLT%<T=zZyYPjzRgY0+AU6%5JGm_A|0QC>CT<9*@(02CcU@mLujED1cH{{U5X{v+`e
zQ`qTRl1P$8B6I-ZJ7T_~l_f?tTc4lfF%repb8k+EmTNkDY1)jjf>-9?`%=Rv?!g~;
za2wXQylWJ5?7e`3vMzWT3Vkb@hC?6+g2S-ly1dRC=xynD>>Ma;9OoqTu7BbhE69?e
zIc}phZ6+4vuml`>^sJu|NG_qtegMZOnwO~7r!xi9pb@#;y|YkE0c@!t9%)?pP6!zk
z$z%+;3*V`yYiMYl#u*A{4T>7&f{f&hcJENI1Y`r&n8zca$n~eP4N3gMq-P`n-i5l!
z8R^tjQ!W7quc)RMBm>_$q&ryA8i3DSFdZq6d`KZ&k4mAu^(UWSS`>qVa&b?fSh}}T
z44ucGywkqg!AH%z9nDc^IW&2MCu2xfWyZdFSmfj$)eN!&fwe_eW+VfgQf}aIPADCT
zizZZbu7=WY?5#91w&`vGP=C6;&2yH~?wNCw>zcPc$-0zrgi*CddsBN^irSq8mGck@
zIRmA4UJ+llTn)n@^!Kkd(~)I$8Nl|hOYr6`?Z(~+9Fy9fiCoS{ajR=74xUhg5;Ver
z$3Nj;J?pnGsOz%Ho!gtBuTAluu(rBeD#*aFBOcY}dK67_sTK-djyS2+$ZFA7XWk$1
zOOM(9A0PZnJ}T8MeEl~>Rhdz_Up)QK%NehwKj5+cHj_d9o-_{*Lgfy>tfEL2vHQ4`
zz6kWrE7<=4;Ge$=7vZPCJsw$L@^7_e7jteOF$eC~$zSkVyYkxK!ksy?(QUi9E896y
zTh?~>S43xqPD#!6W~b~|@m?(#;NFpCa;#D$5s1)Ws08Dl=Dmww@!hVYr!>~Li7DhX
zQT(NSh_4U*ko*s6sC+Q7wYemTHps5Y_X#}nUb*8h+1l$$)2=lQCsZ-X{<mc0Y$N^Z
z{L2udDzcJ4NQ3348}>Y##hxsJ;iO+IERIQ&a`eZcuOrv>Cs`S7=2=xTSSxY`T=7)8
z-kGahTU}Ys0Uvz^QGxCop{_D(3(LnP$&YyIBP9Mb>C)2Xoarw!nehjS8dhcVS7Mxu
zb@~%f=uIW$>`9PAD&j>0KQFkhxO_KTh7(9uRdK*5S2a@OMY_>iNZ|xR20@Gy)7H9d
zqJ*6HISD4!v|HmXmBYkiKPJ}3MPOWLHXb39$h?g$FWrgrmw<EABD?KK{{U-S<{)16
zM&u)m<FOUU>lV>Xr!DMK0Xi{RBRmy9N{VuH+vU*Swd$>PI88^vx|WlyeT?8b5LQh5
zq#lNk6gt~O6b$Io0y0qNHDg)TZZ1%nC1+(E5_?xOVp~zX4D1Ri&&(^<r_EN=pF`$r
zTASouPP0phMW@8Wu_S}k)!8pdP?$n7^5?BoTo~|jaxsq7^|l*V<vCHsVK$SwlhZ^?
z_Fp+ej!$q0O1lJGG1uEZwNef6?%;(aVCSi=1YkCkjpwfJwar#q8&PQ%ZEj<?ae?zO
z=O?9lM}YN}jnH|4j_j2@X1tDDl3X!dk=%M!?I&9{bED%7r;W#o;HgSei)inoS}}T`
zRxGh=R@+%n24B7D=}Y172z{F7Pc7PEkXt=J3i1yM{6lh)Bgv8vE7;ewcq7H|0Uq+t
zo?9o8pK9~kX<Aw%+=L-lQ|Ld0dS;?p7^00_vCLrSfnMOF#FE-Y3oH??3X;6z(!6is
z$HYxO+(Po9PzKOq;=R*D@njmxpikVOA9?xDwG{apwalwgoj-e)=)t`3g`SnES?ZdJ
zTeq@Sk_cNE^9bd>wej!7d%MqwzBbikRQvgjZHEOh+m8L~>)(oAC%4e_nWfq%kr#Ol
z(;r&+S5o+iZ>IRJ^Ix}UlWQ}w?(2@6`ikgrjk#B;rXDFTX*H`iJQ3kx;a?Bl-E_RP
zm=;_B{C6YTzLV0m%_rk8!i{UfGPj=hmJE?dtGJ0k%8~RUzA%sCB)&4%HGA7v5&fg*
zniK>A{WJ8%d(Z62;&$-Qi6dtN?1os-D)YFXPtLm{r3opfIYm{cD7ES8e7yyv@S(H0
zS2uR<(8!^1Lm?pkJXC>q9l?usBN)Yd5A9vxRPaZ~oqh{{lTOv6O-|e|8S^-N9^BWI
z+u4L&qyV7c9Q76SmcH!yXw6#b4T=HI(~NVT{{Wp_hS+&yKfG>mame-*<U~Iz<&^R;
z4{CarXv&q_yN-L(QNF0v%`MATdv-`u4p#${)7G`2KQGOd?eg>9s9Qz7R02a51md+L
zMG@zc263J~xvtuANosR8<jH_SnAx*$Md?topap==2s=+xQY33L64@XeZO%a$;O3ho
zVH2+1-OnbvVu4;oTga6dlEFp~C!M0RCJHhJG8AV$$7<5LB*7vauHn=WMn091EQQ=C
zZQaz7+PY)DqLf)yd61H;oy<80pf#6p+jnH+C*>Va<ytfCa2Nu(Z<`~p(z36nR=@=0
zWDUcmZ@M`r2O}R;W=Nfv=VSgghY%CURZjj+Li2-K*ZG;V!3VdlDi|Y3737tSXn>x0
z1Kyk3$mN=AQl_P+yc&F)a3qm?4nXc}$^1<cSq2-y9=XY_zZUrU+G#dV&}<m#w!G6<
z)*Aj@<n!!nE4!RO7N&LFrb#lmZ1u%!cyq(@>T|{bB<DRUj+ta{E|dUEF~=3|z76oS
zdJdSkvxQeH##c2+#!pKkg_nh)(=5wK6fhY8j%$?hHS|`@=!~THt=|`Tw5pXuf};Qd
zUR|kbUu==L5>9%Wmn*WP1ho=rjHIz_=i9ASl#Co?pQSc71YnYWohmtrT=o>wFL92<
zjN=*YQIWwtM^jH2b_bv|fdY~-l6q!~_7V`T^xd}tog878fuF*aRObVydYUXOc>YwH
z9>^`XMIaz#gI<T>T~UkzE)Ft4#c*(-BRC+Qwb1x}_v}|Gl6H6FCXSjC)y}}Va$7k$
z&H?F93^wlEc{!~4ro`D_x_RcLX+&U>c<X{_yF}S^HH3tm;4*?c)RIcWuQ@pbJQ}HC
zD3x}DjPvsMtI|b=ImQ6TJ*ks>ZgZY9^4i04kGe2%Tn?9YvfzyO#dp3i8??3natY*&
zX1vDUU6cO+_32-sY2QO{#nvBcv`dK8VHc9UPu8+LEv+?#{!wGGjtD&~sI}XuY3&OT
zaywTCs9QFjdh4`|9x9sbR9^8tT|k~QBJw*CRp)@I9CYdJR6G%@t@Xc=BZ9+#4R6gB
zeqsounKJBVK)YNL0UfG&Wt!6B9YV?cyQrKxu;Anzii%|Nm~O}6S{hZD)nyj!-dSbg
z&p>I%MrTsaC+ZjMuIcg9!5U_*3`;H4UnR~utco$uv9GJ4_*0=jfi*7;YPL~LX{bcW
zIyeV#BEKyE0ALS^n*RX9kBfisjYV)phNgVKEzS_Q=ttJSSY*`Z@kW<5x|3<C!__;Q
z=}t@C>~T0l<Bsh7Q~j@hV=ZssMcvN7VQlw)6q@0YXN+V)lft!py=gJDoH%YX(!Zli
zzX<6c6TBC$ct6B8k=)x}#L>$PtCG1G+&#hPHTV(n{{Z1F@4+97o+a>Y;xQU^(<D+b
z;o>}_ejti<Z8YS!TmJx=r3=9*w{-UZ03sb9SQDcB!yo60_uqy802?iQ0pM>J={kn%
zi%m~Sp4uoexmrdTQTo@(b~o*3IOlFS_O9l`Q%n6krwrkGn&eI09de4b(Z<}{NucUM
zMgkBSPCD1nUjhCv>b?TjtaTkKb%IUXB_#pM5rd5M;=BXIQoYI|l6ORKze?5cR;(hL
zH8NuzaoVQ6DAbFLwqvC!MJBgL=?BLjgFY7c!SFj(_=n-EV{76K8WC}G8gjDd0OuU^
z=D$4k*j9Tqn>i{ok=)nNz5)HEej)rh@SdTeczaN@{>aoKD=n?e0q{u1?Dgqh6{*1T
z+e#;p%Pa0@Yyp-hCb7fDRH>?R>9g_^SDTu9@9K1Z0lf3A3N8s?AM5X3J;jPMWFu#;
zYtOzK%JAIArBnrNg-Op9>knl9X55BupFv7V#h$GnekVIEwmEN=M;NFjvE$`d1GafJ
z)IFZ$A(S3)8z0W0HZB#uP}l%u)EmkPY;zB$1!Wxd$>$lNEV9jyr~}fvfu|Q=nKxtm
z-_nvTF%XfBw6#cT2Rbaut{HKT#-&SNoR#HI1Y@Oa{{UugEP8XuIp&45DS^tbOjJo5
zL0GE<3m6Hv=57uu?X+24gpi}KJ?YWgC~`5L>%1T5SM8u1*p*TPbnjk$M4is+cj!qJ
zTn2SG0|YOvYuiD%s67gR3v*Q9M2(Z?{o4NkGg@#acmp9wBe50c&2rkurB7YS64)We
zSg|LMZ(6@;Y_4(}ws`4HfP$pp0(czutJZe>3@#UvKDEx?wr5gHp<>qEBXu8mvEwV=
ztV<9i`D^n6cMy70lX8W@RpW!yVx@hhf|G`BNl}50)i%4h-ip>Uni9xLrqBj??@<K~
zH>upGjtyveDcOSq#!2XECV@bFWOm#JKPv2m&UwQ^izz5jjFIza9Zght46cE|8R&Ws
z#<UDO7?}WA@t(B<!lCd+<$gdN>$)z?;BZpVp*^c?K3@!fhN``p4Y_~^9Ff|#OhA#8
zF{+$n)~npaLiu}wgWU8U)zKO0V?Sh`tjKFL+kuVG*Ko~IxwlqK00GAvc*pqG+?Ko*
z#!tEVt3G(bpd%oIzy~?}D*2u4jg=VRV+P_D`BbX{cv8F?8W9@><y(`t9Ytx+2IuB7
z*f|(D=A@1+$an2_+tl^VIZI7U{;s)<xUE_^ih##IH_y&bwO+QiDno56k%FM`D%5t3
zv>bpz&lR<0Y+evT<8x;xjw=phPh+7wks^XNhCB>&lTj4&l&MTG<c1wZSY_S`+yPz&
zdsCE&2IbrjLdUKv!cl2l`WkXhMlHlZ6aCP6EHi=WSyymjcQFdB(;VPeOCpv>W&o;;
z_3K#oa14^l0V5~d>07A1k7kRp&0Jf8aItSSn|6<rh{A3eIp^@Mj%Wtb!zYu0iq5*V
zkRWErX2=AL14D~vyFsIzofbHoj2?t~R%=87>&HA1*0wJoV5gxYo_p3w?lI62_|lEy
zv^wfWE*B}!7$`CV`qNZx#@<2cR$c<@w<D9<qX3|8I`DJayQ#|dK1&%6r1q%0PS)Ig
zGgqzUK_LVZNWk?KnjMjf{oITXQ&u6kAh02a@QmXoy5W7#iN!lR8!->v<3BhY0($*x
zM$z&H6nnO79vhLpLn#290&8B*U6KHJLGuHOnW-dsGJ4qAu?1Lk13aGfy>AZo4y5h+
zb6Iw11|-}u-`cjJVxcw_2r+^ilj~fS9=AFvQj^@CHB*7G4mcokYGDX@4n9>pfKNe5
zXrz<#9ofOjtH~OY!GOR6k%N<1%3CCNs#esdw&N@B?^W*N2qY@GJ@%d}VMre_10-M!
za%!Z-BvuMB*_YO;EKMlvW6B(>Yzw=&TB^}tm&gs!@x^J)Xi)A&41c@Qt1vqOz#I@V
zGen|_gRw?fcY+Dy+tb#f^1vmE?QiybRk;z7a(3sYN2Nw^qjxIU!9KaEOQI{ET}=6v
zSY!syae>Avx0b8BX(55g=Cr3qUzS2hT=f1~st*andY|EA(vwLQdyP4ek`4|yQaSq6
z<8Wf2oDq^p?^Vex${Rd#K&v+LsSXB9V2}q;D;Al&TDf5&!-3RihUi6TS;7!6%DD%y
z>rq)@`T>k`Ta0^((})5@VO5nuIUe<lot=(|tCpaQMp23@I{yF(HCImYeY85v_R~fr
zL`|hwa!pt_Q9%r{KO0j34gvgYinX*icau(~MhQG{8oq-8LjM4~XUt}}r2hbMADPm8
zO4GE@8~AGC2rX4E;%uX|cw#{H74zqZCXw{(?+jjp4a(+AV$1V!+P&(_Q%f7P4jr81
zD#xX9pBH>GeAqlgrbY$bvw4mXaNu>#dt1c$gxWm+0K+$Fs#?pX&B<UwF&yq5wa@C7
zQt4OHFG9a5$>~<LD}=Gt6H&H5B%n4Ij2_~&yhC*syBt?yAcO&*b5fm(O4}F<w8AsS
zIppTBwHXzIDdx3qCJDJY&#!9dZ{%4Sw{wbRBxg>U4l~79-NzUrtV@7M9=^3%N6b_V
zdehvrAx!h0I*@8P2e0W?UNRI8SRT~`quY^4Wmd^8j?~6EH6*;8W15Sc9QL4SGI8u_
z;5Ko`N{=}Lo~_Tl0u+!q<2dU~-cJ;aFlbT8=9ug+QN=W5W1MEB;d;>!-s(TjDIi3p
z{J3&H@!(_9mM(e4MJWbDj(sWduH*NxPo*1)o0?$S!IuEnbEU~E$M=9xD~8j@k`b7L
zkJh?)bv7`pai-tKuSATRxd)4Ga{&y&i0N8?0Q@ZeGWd<5>8L+>cYPFU4<qjmD~a(H
z%QV<#$?PlW{{Z+W?t}fW`#^Y5vVxIZd8GXYYN;=I8P<HX+55TST`DaTLDTg3Q_G6h
z1c(9b0I$p+_$^cnJW=qfd;*?L)O~PrS!?ws&TK>p$m6|!aeu*Pygu5e!|wy@=($}p
zQFvuwGl3xEC-A76Z<x}I;}sNUe#^S@TX-VCs~n_j@&@b2TK1i1;;YLXv5+NIO}iX)
z&3tG3Ie56+_#(+L7^>jPIOEd0>+c%0vJmb<X9ok4EAv{hO01FkO&R-<nd+Ap`UasC
z-f9$>so(%sK6v7|ZC>L;izoLk>fm4iGx%2zsrZbDB-<mPVf-(QW2Jevx#Aa=;zw(O
z@(=ZgIM1bAIkvc@;d`^a@m{}UXC1_`#)w$;Su#|Pm>J@{cf_7GlJJ-joRN@BZ?~_m
zD=%E}EVnB0szo9{-dQ^Rb6m*2K4VE52-A)f*JU_K@3G4&%V?gH;Yn>Y_@KSi3~Hz{
zHxftF70rA^)-<hh`KQzDg{{v?B#4kC`i_;!-fK?iV=saI+~%p;UHQ`t<+6Dvnx#dn
zw!)?=JiM_p^=o-#x0GNh9*3=B=}M_M7$+S-?_Iv3Ya3g?&zI?sYUUEl?9#Ii1~Z!N
zr8Vr@JSy$VT*llDwl&%b?S`oh!zpjwfVsfurDj;jz#K0b&su!5w$s^9Qfns*Jy5xo
zwJ*KOj(+JM&(@E(20d~Q0FUcgCQ#}RQ`6d<E=mwHk<fwKvvlsPN~@`;{{T23@-fwY
zY8T5%l6rOntrpTLRTvr0NzY2VAdkraD9ZJ&X6)>3&CRP}rQgYIard~$#!Y&^gEjoh
zspgXGbC7>Z@s)kDWDMuIuCK!PY`01?z#vy9B9fB1-Gjt9%_j6d$oOTgE4F2klx-{(
zyPEnZz}ov`bI8WgesYcSh4tpXO894bR4NeC@Gu7eoOQ25)&3=0>DFmy47;L24b+63
z9{69Sc(A*khuK1^sRGySJMp^v#FCE+_-<=h;!KN~nXw~h_(!HI;eQpTs%Lm7^Ca@v
zpvFKXb^6u@t?>fp@8Tx6sZVml?HAHAC^#E4^8SLoGT+A<KC7idvrG)?*u$?u-<tYZ
z(fYDZO7FSib4I%NC2Mpzp9J{6>%)5ZQtW})B#2K1PqlsH`#4CxD)C;KZyZ|$$0~N=
z1`h|@iui-YkEUMSM|Eo&tct_u9mh;p)nBq-j1G?_oy;;U_cq|5UZqBJfNE;gge^N8
zVO2)uO8WFW{{Y*r?g#k6pxQ#p#@|b8ec0=@hJPbpKEPH<N|?+!=s&&hT?g%x@dxc+
z9DE{$%FFf{Wt($zwb)}L@T@2zcOZ<gz&!OnmGl^Y-qTe(pE-#A#YaVbn_two9BcyM
zH#xvP54A}ZzSd#_f)7G7ijghC>{7#V&PeN@N}k>TyaBb3I3quauISUU(B<ZG3uu8=
zeyz@Uz^hQcKmZV+k)P*D6j4S%%PHsvc&TJWWjmOz8#xDnE1^c~VXKlxLgekr;{=nB
z!ka!CG7ya882;&}FcJ`l=ky?C0g8>{kyV=oSw=`b#a|;wY!bbU%Y%Y)2tAmNF<H~_
z!AqQHA1LHjox*?#%LCO;-lnteP%{=Q!2T9E&*NGrW@_oHU73?93PTL{2mC8G?HP+Y
z<Byb)+P3Zy2^(;y2MSL^=~ON))@V*fFhS3~Xrz{`<f%^YLz}oyEc%{u2T@!P#Xl1b
zHpMjPN%N1)@+s};Ytl6kw(v`FClRWbY>q$`^N)!yr12K3G^@G%)+Isfj@hE^o<1q^
z=yErglU>SKoS*Ac>H0kPk`0PmJxJ!gFTmdjFFZ>+m4KAaa(NZ)x);GcKS9|g#>OZ&
zHhX)0YPnKco>QpyNb^sIUkuek-(LKYAl`5}`c=P(-ZG9CYiK0eh`Rt@K3eI1BKYPl
zBG3Ci$VC#SLlonu^{<@u&1PHsmUd!Ksqb00%v4piBh>X-Zlz`{dEgG%tce`4C#N)x
zHW=q5dr}9>bvQn>BxtP3k%&Tf9Qt;qvE0CPJ#$IB0QEnG1cuHJ&DbAGHry=GV6eg9
zgTbLj*4jR9;F?l52L5!N#~l9vo+^Y*w~@|ERI3IP8NuugM+0$?xC6CZRt19*oO@E(
zG-OcjQ-Ux$eQRe*h)E*kfJyFaILDlvbK4bSAkavJatA+3O$*TKZ&9sajlm@JHCydq
z<1PvHroGe8r!tapf%(=$Ugk6;VD$ZHZCc^8(Cjo@lrA#Eis&51;I`e^I3)4KaJntX
zNw$tbARc(G(WEj)2nqq<d;8TRDQ;tUsaN|k#&Rpj?iek}9{dqrv*MQW^s=OK2RZLv
zL3aCYNcZNV#<5m9j}Kk2V22nr4~;afzv&1#s+t_zZV>zNU9PEU*ZOLVZph6wakpo4
z&OAS;ww->BlY&66WkN4>_@+z%!;Dvl-az(OOr&6`;=Nnp?xrua-z~ml9u7Td>JnF1
zC!P|W2VT_68Ja7lAY<mqB=K7pmYeq#AdX7p^{i=7#ge$lJ?h@N8K#d=)4WeEgR1FT
z?w>nDcLO6MA;!rRf~0;``p4iui<bWY68;@{bK(x0g}z9|zNc=d1tl2WkUe_-HTm)T
zBm4={zi246Jr?TtT3#)=lG7*n$5CHge$PJ%bx(r+4)K?U^+P0jq<1m8tfz8M2>vv#
z=s`*<&t9jWQcf+aX!bs^Td1!sEj&SEh6O>CDErEK*X0lV76-zRXnz<qeR&`uHSIn&
zNtf=IjF8#)#w+y`;I5<g{{RnMTD~y^n?jFIO8NKx3UlxPd|dsVZgovQ7MED?tDQpK
z5pvHLNf+|x@T_g`x^I1rRk<TmrvCt=KM!UblrZBzrEB<J^a;Yd<P(l7Ahy`bHdKL%
zOD8bh0uB@$=RIqct24bFH;Ak}xpNwV9A_ZcKWjhOZxpYuJoK*0R2qheCcrYs&*5B#
zr4N=t3)E(`>8YC0p26Wu^}n$~$Ee0f6&|T%P|2J&dI8(sxW55wB_|O#3QtdZ^qb}T
zO}e<}jz9f%jh)9WH8K1rVAi^;GICgk;Pf@_G3ooDhJ1+}sL323dh!hpPqS(XyK3$u
zCAwF(>6XhatR^fra1PVJtm^kYEF-dMl)l2O&OTr{Y~#H~`c^pFr_`U~9<|XWpDe_2
zo(TT5^s;3jfx$fceih1|w>#}~pBi$3xFN@(=bDCHHH)3Aka;JjE2@smouoEFKQQf4
zn<w+K2O)6Wbv0>~V~_sNc6Z&ougi|r3+bdC&b))1XQg&iY2`^QrC4K(b*LJ{db5Gg
zCqDj_R=%T+(aNo_2Mi5K4Z9ggW*;^<$0D~TvoNmWgRV#;JXL3bLmXfO-1Qa1QZ1d-
zwkt;-?Xm4amMxYU;;zC%o?GP{61{4+)58M5e@c-ZjCmvH=L8z_Y9^0DosCE&210X{
z9Anb7<B>>U2>_f9f0bZ)WSoJ?0I~F|miMU~KQ>7Xj1kUjf=jDA6E{*_q$?F5U}rh}
zO-~%V@VO#FPdVx<BHrUaFa&e?)ySj`C^^r~ka7A{#aU=m)!mn!LC?ysgVlS~1zAVV
zRYI{iJc23fG2u}{D9dF}Ij1v{GQbS+gUBC^Zw*Z5in%OEzzV}Vw)*xpTgk+@NBMD|
z$Lm@x8Ej)1>5wUd%SIfi8RskQU9pl&LzYzfl+liJwOMh_I6s9l;Uh4CFBs=N$*WSJ
zDnUgBhw*k5S)&eA9zg#0YT7Mc;!4P&ELaCBT%3H}2&xW%J4jg^x1#i|YluSO9d|GB
zDd~>YNt5Qv<v|$f&TDJj-9>0;AP0HlX~-C)TYP{O4nX9Sf(2VKVp6#zDB!T?@u@^)
zNQa`gQAxWM%iWRMKnp2#7#}FlrEl9s9^_7gsLOC`E)b?Y!4+691Rg$>uVm52Mpx!;
zoOG;`yCufT#VA0JcE;S<$UoMtAS|JsK-w~MR8@g~2-*e#&N!_|6c$c*2IB|Q-m&&p
zTAI<Qu28tN%$Pz5VV{$wR-WBLK28gq0!DFLs}MuSB?bcl(yPq~k!0M2gUTrFM=psT
z?HY@r%E@M@jfb{Zp{)C>Q|1uBxB!(Ux*F>4ZQBEP1Q2iqXU$}SJ*yam7CnDji9@OF
z)2nSxCi=(BjN=15;F{)c;#lQ5P%^j$dRKpa0;pi1G6S?T3|Bd*+F|g68++q}ShZ(+
z9gezdQ=5`7Mlpfhj`dPT%V2`Lxd8XAE2xN&Alkm9)fr=0$v{aedCz*<n!c#{+<dHv
zurhaaUVxrO3pONH%AL9E*wZE2fPg}uN`$LOT0!#hoPpZCI%za~9wpuAY}(C+86c0+
zw)ESjC3BTM%XF?<*pQhAb9Lm_t)$>P22cht4r(Q)h7@TzGqSS0C08sk!@u}e)wR-;
z3K(u|4CDD%8*OlQL;)p$t($qyF(+OEkz5k9-1Xr?QQaL!o>{(NPdt0pg}GTUxxfp@
z*15Q^3}rVGL14J+k8@h_U8vo)caefQ#y#shTcObCw2j62R}9Jl$36c53X0-Ask?v=
zL*AhmD(i#8u%Jvf=OYd<Nvl`Br!`tuSFu{*@~D1N6cF9Gtoe529PylRYV^`5gn|H7
zI0O!BHfAos<v|0cD}Ge<Joz^bNF|-3XHWs>2OX-XoL8tNhfJO+&cYTWAeQH!TCUR=
zm=*!>KH>YnTF%1ea@2FVlV}HaIU_wPyB)~Vau^(Bj)s(6G^_v_J(PE<Ge|&f*&Opp
z$4w1XmF~u{B2_2mKA_fxqvM5KuWWVqtj{p4gBe`@o~E>|i|!k+Ko}cMbIn_0dQCYR
zuw@9r+>AiM{RL>nGQzx{Eb<O3CJ4-o5pdv<$E8KDYKdiHcgeA3C0CB(vZqbfl8QPi
z){P2oY{KzIy)D6#D|t4A1b`1X^{d|wwO=;Y@n<MDW2aIpn+S{yvL2xH9JOb7e^dU>
zx7DNE+lk(yzRHwUIHeQw+SMIdIZLU#;yrz1)MpTrgZB$_kEJ?IakV`#r<uHz+EDcA
zTs79Vx2}_dtf%gd!mGorNoJCr`;_uQ?d?{R>St>!89LUPEs++N0|H#h0Unv9@a(1F
zmeOnza#N0TT+XlJS+BKS(#XxU{JA_2YQJTDiPGmdf8qesc5G_nwHqh2W(4OXpQp8Q
z`hx=GW1m{@b(rJ5MV=$c8D*{mTSks@56kqV(k*OKkBJ9ElSu3Yt<VyBccxoP1cPwL
zJXDTDT(;AZpGsG;S_nwNCpqm=NQG46l6mH)^76rf>(knm(2hymY1msCa;_UB<oZ(>
zV~k?2TtXD{j2@Lyi392DNfd~H#V<}rQA^da)KX+n09faqIix<cgr7|N(w=eJorhs_
zxKyx!s!v8deiayO4uXYkt%J=L?gFsE$UM}ru_v}gG1vv;zj0P{_;;`*oP)^qritii
z*<iQK!1uwePqc{Q!Q%rUipcW<wiSL}^%d>tc!H~K#~e|xir1GOb;j<4Kb3u({{RHi
zv5s$!I$gx7cEcOUA3YClE8>ij!yJnHpZ*EKXvy&&D}Znk6M_yhbNs7HOW(1}iP8t`
z^`*#?%rds%MnM(wpZpX9!D;aa;0KCy;*TZFFq^0pbMvPl*U^?2&mEvHyGB0>^WTYg
z7TS)Pbrk5XB!%O{bU7HV$y2hC=SF<8O#F2HpL|awejj@_c1KPCJq9}0v02=`$pD?(
zc**KBUp`&w*Ix>LGWdtXjJr{8*`ik+QI0_e@vlm?)pZ9T?Z7<b9+mm_K8Gb&%C%?d
zSS(L96qiG()~`*r=*TOchdpb|b-hv6Nh1sqSmm3!tGd>`cu~ZM=Tn7Xas_$rr*U&|
zU4bpTC#`eBoRZYqtyHxp)NfK?TY|vyLB>U7T;HPS3%EBOYL&#2?opg)sLfIV<tG5=
zp|0ptyS$GYrDooSkhmf8Tj~v2hU9G=Z2<9Ea6>5@3C<6tYei-W0YNQ{V-=&djJ>0J
z8fkp9C`5!3I4z#FpLYkA#J4#es$&$8;RZn*mOUxAjpW2bvX&#0n#M^%*&1_Q8RYE%
zfPHXHA-EFbBN*cq6t^B^U?~7+9MoQFfI#Ppt2r%9T)Gl8n8@dEQAv_ta^$b2HXvCK
zT;rjjkf&~PJqJowGriG%(r%!s&vWZnT5PE~7&zcoQi6-McsQ%k5g}94j=18nlosfv
zC$VnQ0P=tVHR#?1@SNJT=&KRkk=viZ*CpZI6Z=Bx2lu*j-n~ZS#nAX)O<fmG!rn<A
z`b^uhV*{}FuOhsp-z+yhOf@$3XJ4s!w%5Y;iKSXTC%{*jbqBr;L#66bYA|^Ute8Tq
zrLsWv{Hw$@PZDm_UPdJI*F6n&-U8NA<5piXLIVIdr#ySs(89(EGv23&Ujz<k;+Md=
z?9}S|QF-j=JA${~2fjV4$fDD4mgrk4lomL`o<XnEUxnTYv+;`?NsKdFv<!T$gs{i)
zdsa5L`y2Rb$HuU0(%ua|-XbJxJQ5`%lh0vaMNYImn&*2SC0s2}YW<z;es}$kQPDLS
zEiSHEOnkg@ADMGrweWx9{ink7b#-%dHNa*0Euuep`+X}T_O{X^(7$MJ6UPi|6}-s=
z(1gY|n845JUQG;)rvMH+p0(F36)Z$kms8A+HntX{<=q``j(#BOzB2fV{wmcR87IVQ
zs7@k{e(KlLo(I$ptDsq3HrJ3SPJWyk`4{Zs`pS3@EJjBi>*+7q=Tl8%!mATt`9qxb
z&qH0_$wmq>*&I==I+a|e?%C>IN~mB4;-@TqD2g{AV4R*Y?N&UNk&vkhRP8w6Vw6Q9
z6%QaT4)1EHK^<;P5*J1%sNfvc!EAi8TL9zkf!2mbbOp#?W7vKbWk5ii%Rb|`0CCp3
z)OJRYnnieFbA!2X1_lQs>+4c9M222lBRM0bXj|FD7&Kvn5?P0(NcQE?g8l6Lze+h$
zXQ55I+~@A?2GYSYHt|?ez{oPYombRn71v)|D=A<AJOG(I9{g4%%wAqXvXOvG0pHW>
zP@`vddJ9x@lfk?x^8WyMM+e%fJONfhc^z?{mC{LUk`<AV?!hCDl}hT-B80igU*Z_7
zq@O}u4>a-i={!Gi0y>76s;&vi8RS-H!_R^(aPVH=6@uRdhnRW%X?`Slq74H708WIe
zu_dG+4tVLB=4bfdb#~EN!zY&#fU3FTsx8GIA&pK|nz{5z)il2jSf#as#EhdGm-^S9
z_}}6L%LK5YP!C2^_r1+?k$8u7iq9p+SdNU`{uSmvHt~s^kd2)2k3mVc&M3u1#_?vk
zCFRSLDLmI3Ex_J>ZhP}gy}x<oa#)j!rX&~#^Q4irv?pmx6N7+znj>N{-xUx%40oxa
zjIsR<S3wp70s-oA`O@I1UNUM}?aD6R;+o(oAY>nYhMOJx2nNBp@_nj5H!3^&nttz;
z^aP5H13O`uVvjO)Xtfb8M`51zY9WO?vJQBv(6`IObM&hrvbpX(XkzMGiwvN3tEj5D
z3<mF7%(s*h$MikxLKoZy+;i_z{DS7BU_G+}GC<%8=473f+%W`$)6%z+V-8e<w2I~R
zM`*8INWdqGdRR%@LvKmD5wek<Pa?ez8JKC&k@IoJdsmcc_eC9YGIL&$rpe}Ms6qD`
zrc1r<jNcT@-(rvuat3)d<oAqC!yI?7PVsEV>~F?-=qt-+e8}CoqQ<c{G(-E~J7ia<
z>7?9Q5!)RI>t0!-60!rHE7p8COqNJF10S6XmU-um^pgyWDy9_oqv7tRH2qmOa<B3g
zuHVKQQr$qwvuFcwHRYDB`fj8fp;pcf8zCokW8Q8dP)PuD(5+zKLA8g=yC9ytR=%5c
z{iCPBGW^7-=xQ67GD#zXc%fK_eUC}~mVPc={2=(JrE0OZE!K51AwMqD^0t2hYxbL0
zv9b7<;I!2=rj6&iv@%)Tf4sR0NbQ>bf9>4EFb=rms@Lj|{1eOef&SU>oE{I=Zj0Pn
zE+8($?)nO~IYLTNCzdk2C$l<_*(2j%*Zf7Q=$e|PuBmN1*<8Xi#E8UkUr|pCI)mS7
z7qKjs*AW#c+=fONV1GLJ6U8<k@Sy(yZ4E~6QHJ6l4)~VkZs4BTKv5%g9P!t!eZ{M4
z$v%;5uG<i;ZOixhPh(xx;GC4#Q_rI|qTw&H{{Rh{_*MIBe$H1v06sWtS~5acNWEiw
zrbq|M(J{{4`l;f+dGg-fu)`;(PL=ze`+fWeu>GRG23+gfN+jMQ@bpc2Y-1lYpc!=h
zvTN}o?k$CuRp6XwxHW}E%#}|2`khoK$o-q!r<ynXD(2=UhpzrBCswj#nt0f9rz@Vd
zf5K`YxllMvftuIxcAxfn(&ii$afThMp7%PPu5emq(`mYb0)A3`Yufxfc$c<V^D;{G
z9V^E5n*j?6RA6Hx(z_3by3iy<<wsymOHDhD%13K;00E9j9=+?-J{jvj+7`cOk<XtO
z01l?S=ISuPyRUM!Yr-18_Aav&ts#yTZ=3zvnvv#?rO}(GC1dC~t(q~M0J-)3O;|`X
zut?}bcU}%E)|w-_wT?*6^^^t&>sFov=C<Wt0l_`1&RtRTYRM*N7&7uW=0m{2{*<xW
zv2U3J7UbiNzLli}ZW(f)A^XRSlkHNizTNu{2+m0vA6nij!)ZNHlGdAu8$dW2$>ddO
ztQ-<R!vm63bgkJf!Q=opbCb}IYJx~WaKsW+@q<@xsIFV@vCQAutY-<|oK^+gDDpPq
z0Unjt>MOJ`PJ`z9X1ROe*~0G5SPrJSsv~+)v(sXWj9`Jt<J%OBhDIUA(mxNSD>fs<
zWP}H+9z{lkNEkQHcmtlMyxFFDF->YtCL|CDI5-$RO)PT|9gB528&4x1wMC`?=WjW|
z9{#l=$r_9^1>~MO*96s(yjiVnI;m5;aXjastq3kbauu>iLDLn_T1dO!Bw={>tIIH0
z(;qO&+B=HLMH*b#Nt{MDF4K}r6M$;Kln8?DCHiAMs{~AOfWZcN4cqBbq=A8E1wieb
zf-6|QQ9X7yKGWrg1fC8;ukh4uD#;@a*%->M-lshCS>ja)HpV_~diALm<nP$S3=Rh!
zMRX~3GF#ZR0*%495!7R?EX*C3EJiWSR}*eI9D&ijsmRJe!RJ1m1#cUcqMqV3c%0>V
zAH~|MJW|N**q?sB^>A&F9mTPp3mRs^SZ_Hz@=a;XnY3eafsX|`h=CxUywf8al?#U6
zy-!-a@vLA48$jd$I2BdgFIEama(#WPH&dafC7syhRR9t;16D2WL3R0o0Ps3ysXWSY
zmI|xa2Lhvx?jTN1Tkj0?#Y|<b%<4wyn$dS1q=I*39^Z{_TkgjE1Gj=PSQZkYoP40h
zIuXaxwr!b`GBcG6$F6f;illfnYuj^4)xxk?!8sq5GC{Oua7J;o_NFX>6nxlkP)}Mi
zScTpX891nMR?zw?71Bjp$cw^8(pdBIo|Qu8)nrrmfl<I5<oc6Zv8FS*TP%5F(vaDW
z#H(@oRuYOwsSHCoON%xm5``<+);;Ztm282xJr5Pt&t}3vTmqn;0N~X-yHVxfu10y!
zLtN5JsnF|nJm&Vn(ZB#>+;*(Hn=)G{7_ZX1twPO7J#aqh?rRp}$gpjr35<_XSjJ0Z
zixX3w9E)3IvoIi!T7${n<97?5)zRGPs#Fos^#s)!Y}t8L2OTS>HC3#9>!jR_!yeOx
zz$2|#hC-{7yc}eIT9M)V$AD@zjDeClJ$)%UnjW4T31@a`T1xMQLd5m?dwpwa#~xyZ
z3{;Gttzg@sP#K6`K)^ilTXu5<ke+!M>s;<vN6^y3t7?sSNslZ^4eiZq+gzN6B(TN^
zBc*eqU8*zkIqH1{Xj#h2qBd>8I-jje6-+uv=wqEsD(XorPs)1J+H<(>KwE-}JwL{%
zTig<31=|d}S(N?JR#rwvS0m-g&#CmPgK6q`wW)H6D-r=GB=e7IsVb=X!x-B+<DAu*
z4jbk?1>l;fO314J05%jF>!#9IK6bj)sdNK|P}yK|N3Lp)UNqVQmSc`;{E>N*24V>4
zaBym{iMBT5haCYKrf{WqWL6(5kcSPDGQ8%iN{4m<U7-BH44<W2k9j+}`FR_A)N>$}
zm;hAu+&z5_M4gS}sZkUm0o1yKz|R9UeliHhZ2c;!Lfd&Ef#J<rhwkNw1PqgowaqPE
zmWM<gk)>}8o0*1q9OIzpgIrgL?`70)i^#=<1cXkj^{(RX{w*`Z(@Nz<%!6uy)km#)
zq?dUz6NV@6de^yx!+RyoEzg?A;@x@jN8v=0UauPuAamH)E2v&HO@Fpuouem_iqMkr
zeAeB@Iu;nsbNZdZX&mErL0n_CdRIKO?qq3tnV#9BCmT*hL#bc1aI&e!Mh#%t-1%3s
zp&$(Nj@32g(R`3jI#ljmx|ugEiHm0=(yiI*CM~Bude(j1j7jwUY7~&8W1#h?sLsS|
zZ1E@!+ZYwiYPV)dNiDkus(qk>GRLoKhFLO86T6yS2D_5N!Q2jlr{!cPILYbjRW0TK
zpOkg)RuVw+Imq464#JuSSqZ-*k~-vZ%`At0K?gl4VSMloJ5;#y2Htt;LlH)Fz#J2f
zl~!fL6O0r2Rn}sKhJOmJDxBo>J*c*Tilugpk5AT^K;ZgQ++q1AibK%SMU6Zkts;QK
znp_RMo-sfp9FCOz20k?dCY;I$2ACfW?@tT~IN)}tu_SDH1Cdwl<np3yADE7{MD{11
zY3$e>af(|3V`~ApoF4h8Bww4Zev~|=m=ba+fw=&5qWXdsCEUQ1^{>A_;GK3j@f5PK
z`?078J$bKy;02`sjx%4O{{Zk#h!wRv&_GbggDiR;z*h7=Ba0V)O%K!bo<pX0W3+Lc
zoY$B9K}n>ynRc)QV+8({-dkSc&Nki~jB(z%9~53As|hlyK^Oy*UGr(H9#*XU#r?WG
z5hjnXXnr%cT#(;nx+*cZ`>aptUU%XD02NJrVH{~F-;ABSSK42+kA<xKec*j}M+zj8
zNLa&>%DRlN>MQfF!1{w&NcLAMW4MLPZ@Z`?f-B{*^pw@tL+bL}Ltf)&ZLQz5Gc;@i
z5(9gG`s<p#)JK<v;Qs(B+100MB4Pkwd-oN}-8Ne%AZNXJ>1k$rH79*YnoxdW_>)k>
zD{dr{wwUTpLXLCJO(RHEK*vGOD@3k&@^>|@ZsXneK^f%M)xFy81xFahYmMGPBpy2T
zts4p2LAQA$&>C(nt8^hWZ0dT{N{XR!e(pykn!>xB$}m9Oy-jIJYN_|OjP%D^qjhS7
z_;MS8iiDAJli1G;RP63KsS}VoZ$7mlg8_Kw>DHQKY-O?3f(2HL$diMf#BokVCxE%<
zze<f%ha_~zZq+elVgV#$kU{HF=u*(06#0+86|rezWR^I>@6SAUtjIx=<iK2jYogM~
zNCwoyXRdlzEon6yqiS|<Q*o}N&@|#Bap#Z#z~xPH_qvlntn#rlIV{e8@ju~LH4`<%
zZU``=uc@vd#9Fwqxp?Mn*8mJgy%+0P;c(KQn`dO|w5=VB4Sw=FJhBm!+Pbd~>NlEU
zig+V(dW?($E6I)Y_j3Zrocy3yaiHI8R<`D2D?PfV3rap!A6oV6VdSG^Wg4@Kyjk=Y
zf&Tz&{YT*Tqis0Q*6gSsypC<B9mYF~`UgY*0D^%0IrxhkN8&3Pd_5>YnQ(T#PdPRD
zxvFbzeQ;ZFlOw3<_*EY{q&(vX(v&jAI9g4ncSkyvFODiq_0QV7$66P}KaRS#t>KG<
zbE2iZHqgpf0F_>G>MO~HbJrr6pyV8n!k-!f%rbG-z4}o0aEv=2GghOmQdJtY*|(wG
z7^MS_M}F1x5A5q=ZN{$wLW-v;&jWWtE9XloRyoj-mE(b5TYL}GL>d&=U?^GDS2*jA
z*{$!Tj3M!((4mLR0Jd32d}QXOjyTn`xNYbLIr`O!Vpt*#8EgT`6y}G_eZZW7oOaDP
ztq%K+wzM1AZvjs#2U@oh29V$!DDFAMHq-8a4<umV)`hjXSIGlC6dv`wS3^iPEu1Q`
z0s&=icMksbXUJ&*EJjGi)fmU)Rv-bC5;p$;vx<-a0B%=3D7CdcN^O|8mRJC&IOFF%
z7O*ZYl!-=ggqF@an(J<c==zXz%8s7Kx$QzMWq8lt$?j?!>UwmwX&A-~<6@97IQ10<
zr)9PhLljffo+|V^_pal?{VF|j9NCsq8A9$Eu6}QIo${k(d{^<GUu)kTY7i`h#b&Dl
zjCbm5jPTXF-)fM?IWE8gdQ|@a5HF3_kG1yBL)|w&PAPN-TPS9_bB`^4QR>w8KRm5>
zQeLM20E~6-B55t)lQBj%e5Z_x^ZV=OxMIYTX>}XpaXUF|?&hcyxRadH-*Y<&xa}nM
zry$%1bLm2%Ve9NF^`)7Rj491l<79AK<O7m(S~m8Cwm`_mY1wGxCgQms^?2J0U~&e1
zD(z)sJ>ATCAu$4Qa%!A|EuTuzy_672oDe!zQ?oM@k&1@KmB{3BNWdrD(!vNN5$;VP
zZ<J>w(xhbYPT`Evu=*Em$CyCK0D6khHtb@`@=sdMx04Tye7((VLdmlkz%=eAQu0{{
z$ioBq)!RZugQo|PM5?@P=bRpTQY$V--VI9BR$WfI*2doM-Ei0-V~X?t02o`FJxn1a
zarLg6&O)(~86b><&OxqY#!l}%EW{JH1kxH>l(fk=ONKr3UZJ8sbnr3=7~;H&!eWwx
z!LLs6+}>`TA>?csBz3CT9riQ)TX0RQH&r?O4SBm|oRf}gv+<SAA_=>Lo;_=eUepy8
zWpiIg8IcBd=c%t*@XHpn3Zp!8it?=;OF9wLJ?qwdHyW+GWA5$a-ktgxy~k@4D=FcD
zQMU)Zd8deU!y$Q*4neO%)Ya}Bmkc?^O;9>foNO_c?i&;<5v}e^@Z$K~Y0m+WZ;u2i
z^sb)f468UfJ-{6+gwT}e9w&_$ksQYxk3ehDOs5#nd~@7V+d`e5r#Ennk}xN7k;k=n
zKL~y$Y99>zO>3%IyGP}?E{cBg=aF26`~f6#FzUpU{?D~T5ZfR*!RdqPPo<3YKVx;D
z4`_e3XTWP4yD9c-cCq=^cVLalC>;(uWQ<mS!!L^Zm9N8{Q%CU~tnIF8vA&&sYLWcF
zfrOJD;=V8af&Tz$hxkkJ6+A7hTy4-bC&D|o`j<b_ze@fg_yWsQl{{Ib$Svn&U$!(W
zyX`O@ryb5Z8tTK%O4MpSIvfDqKq9|Y;V9m;H|y!#^Y7X3#*u28jmD35`G)=jAC$)+
zoDtvJzZpI#_;%XM;x~<S>u?M<8qL%(mFcuda0Py-Yw^$UYsVJa^r$U#w^^<%OP`oT
z5aT}e`8R*8$*FkDTDzIcokH$u*pZG|$^NwKr%q3^D-R_&tM0C1Xu<5Rz+srfbJ*g$
zy-Lw9^hrokSb$WHYm_jE?ptsqAH>&ZqsV5nNJ$$=#t&-cTb*)x9&qt3-L#Q7A(ta2
zv2<Ie(sfd-afahH(`y#y!&sMrvO|Cer=@cqAhhx>1;P)PJfBJ)x)%oTbJ}$2#-XRA
zgy0--Kb=>&Lb5wAVcXKVuK{ZY;?zW2cd<C)x|_r?3<0>~s5Ljz!6j#N-Tn>ur0Y5%
zw2|{IvD>$)D~>DBc9Xbclhb{C)$qSwJ|6K+yplG{X?{r#dS|9<>Bhv5kjn8eA2N;`
z(z&Lr?0c9=^Fqv9RAavbBNZ${LJrZ$<LWAC5klh|SJO2tR>4M85ZS=R3sbw9=!%lW
zt$<Si_a^{is?8A$;gfK!IpZyWKwu989V!`N`CBY-dEHv5^+Qs3vN@eZMy<b`u<9$2
z)MZ$tDu9+eg4NjSae!2)V5klihZ*|U8G8dJe(NqyIp;rG=BSm9+FF?o8aXhhaL+71
zl|s{Olx!Ui@M+S<nUEKCP%^+D>shTS8BPesK_<Mp>g<lltuAPp2?u)?C!Es~Y&qI~
zVmplHsI<?(7{TD2@liF-_ubAEkO<%!<&wH#vow{0+;tq}@m3b`cVHGIayxwuU`c#X
ze5V8)4tmgaH7SC@WXEoCP@{5rj)>l124?xrays+grh`!gpOk{D^0_z|u2J<5F;r*g
zE6(0CP5#kj$0f7C=QKFCpenq&ot#>eWDXQAa(#Z3_^#QD65|Ku$mHg@==EhFBOm^?
zUH;QCzX3?jK2y}zysxN6qHOGK?$pQ>63U|<m>#ua-taVUw2}$wn&TtYiZgA=7|&nO
z)w^9x?%W#~<b&507jZgaG~Ld_&Mu&5_<0AlO3ahPl_ck;Ju91oR8KN8WWtfo4oRy~
z>cTb{J6CU0!Nn-lw#Q^vrkvceoMd$CR4!c^(jvi+IO7=i&1X-j7Ril($>ifTn?AL;
zaL461Bc(*8t<lhx<8uAo?&K&lz~?L1@v13(zh>4YaexnM%evKCOn^aPKJIahnxgui
z6pi~-au2<2PG=QZ*zEM{q{1K|w_mMv7I%FVuuw-NbIoviW%`rLbnWR~9ktd_fJY}a
z^iDcl_$bwBo6+4i@)?+O^KKkt)~+jw88OqY7mU^<GiQD`5zrT_(M!2OVsNJ;9R+6K
zp2w$05hQA<^Cf59ycNM2=~8VBSOPKEAbyn%n}saJ0UZu{5mG{|(g{}#qoC+9-nk_k
zT=uErU6U%$611G2+#Z#kaTIKXIV2wDwC+A}oD63G^u<z;1#rif<YP7F)K+Jq8s6>B
zcJ|){WR~<8toO4L0NC0wf=5GJ)2J*X86P%IYA+!MKsm`gj`hhWV2t_BUh2THEPg@N
ziR5Opr?SEmj2@U3)ZE6(tfXWCz$2;8TF$$*ZN#tuAp4+n%^cbq(~55AGj(PoZbk<j
zRdZ-bBMiScOlG<pi+#jy8+&88s*eE9PI=@SF70FJaPdhQkw9aaQ)cc?Nj(K>+gq_*
z?a2oK6OL&kgA!w489$w0v$x&CoO8%y(v|Fc5J@2|;Abnih9F~}m2TQLQh6jE26|M<
zZM6|qG2cJqQwTTaBF7oQ+t=`<rDLA7bh{sFOCZ1s2*w+&TL7#e5&+02C$@UjR`$3j
z?-9^~D#{>k08`T$>5r{%%zVxv*hyd*m6@}Sa0OP}KvJu_cgv75_?pm^?k5495rgb~
zDwN@mEJ*_cX*fBqh&5|i`MgH=MJaOgG7K>X<-x(KpDQyrA(xOr<&9os1gi`ZPBD(3
zjaL!wlz^p4I0X7tw{@ZC+o;kEZ{{-;+kwFQ-&$nKlBmw)$546`R^AX$V;i%K;F>`L
zZO075pOj;0u30<kjo}kK!~>{ON4H`4RMuAJTZKkq>ANkS;-_fT?k95d)b%v&0wb*5
z>aj$@zR3}1!RUPly>;QK^VHX&#f+)!so8Zo4-@N#YpGz50V5;<j;GqWYgxW&5U}1)
zLr&Et5$bnI$tOG>2&@&kM7`Mg0~yVI5?re1%U!p2L95*uow9MxGJAb1I^yf?Hu=vu
z#zCsu_1K!=kO|Itta$DkEcafWdQ_*-*K-q7Z?ozyS2#UKy(3(+q3!L8Zm@GWAaZ#=
z)m|wuxhFMfcM?YV+pz}*p^?<^M@m^3l1_cOs2t=9T}Fp9ow*%7X^cqcy$E?eo|L%b
zC$Fsxt%ZfM;;dS!XK+1pRbgyN_|>a7+c9CDyyA}`GU_fEj+o}ARy~^;JbKh_y)n<d
zD$BJ>j@@ZHB6kvG401Eae&(w?ZpU-!il2KPaq@xG_o$c-cJ(yCt0In188uv~9rIT9
zWSsOJ>IYMdfk|jl67V{H6cd7Y{3+eY&(foFj(XEf2MwfVmvI~p2c<DM_Y~v7q%m@O
zpU#5YxzE;^LGMZr9@GIKYz}z`y*DFnF@g;#ZOei`8ff(IO$?Ub{c4lIC$)Zrf5AR(
zOd6!o2P&=<obz9wR+u*t{d!`))%}R|v!-~mL_&Xi7z7U7^{a%fByi$Vak2W74Zs#@
z{0ceX^{yYrO(nvyMj?0vgUxGcdYP8Re|QLAl=}3neR=SXcV|6u>t2TH=anUG4;t|e
zq>@cBbSkBe2;#pz{{U!T2oD4NP<zWr%2?{3z0YAU@qTssN8(x5CXrVqh{5--mw#!m
z0*@DXO7eKuH<oMWz*KSw>-uKA%JEh^u(cgIrhLAa&36!Oz>+!&&$(didyLj@nRdx;
zH+;Nw?^o7iBxG(FJb{i)eBD@b%INy1E@X%$OcBQ&aZorLhdB1D6J>$<NHtiE$L{3k
zxuqRWR<#<@<yiC6^QkQ75W454X?(C*k2%L<Op@55FgYaFwq02^XHy2rh>#7~9gS4E
z&z^Y!dkplfy*}yVO^v`j0h+sqEyx5`Qd;O~eTI+$I6MlgFEV4){&hQ!af}01<^_u5
zgN$%$64W{mW>&xe4)oPUX*1J~c>O9M%N_t-$D!t@f;XAK3UYc?B!hDPl><+7s4#tr
z=DPH=Hqaal^Mj7{Q$W$=g#_}UPcRTT=sV!n#;1QBm6J~UTWaA{@y&2mpS@_Soph<+
zR$cggpdS!;iD8oxTieGa)X9wEIMA^_rF`pua{At_cY1kg=4Zei26!KpeV6+tcvkns
znum(6blXP0)J~Z!FvI~rGx32|zisb;I!D8Q4*W6HZ8Up*6I{DVt@Rjfhyp;02x7ju
zBxbv?mElfqo86v{BMT=QT)j`5ei8gTo5lVhw}|vDz#}6yq4CSb7FT{EZx3iu#|D+9
z0SwYY*%woR^S96*g1sY2u#e%t!5wqObAc7}sIsssO0kwsGQUBSUo^v(kCIChmUGme
z=j&dk8ueuAOJ%V0ig3Wvr-zTm)!*oYX;#M=6*?dt4m<HkpbkFqKGgE3I0GKJ>0X)g
z3=47J>raoKG1tC&RC!V{w}5(zv2Pyq;0hZOx*o0NI&CLCYt?=l{8iLE39V?m?y=$f
zr!ikf<035eap{WklAt&}N#d{SF}(gBaT<A#8-f{nfO^quqOSTMpc-ZEj<X8Qq}<1-
zTFv)mw{XFRGoH0zksGXp5ISS}*XKT+tzCF(>I<tY%bR=1ztx+0itOjG2Nm>Zfj??%
zXnZLoJ|%<C)@?`bULlXPDgO7P3aHITbD=cPr7h4q@IfqaPeKMd)~%;KasfXm1Cw5B
z@Vnw(mGLIU?kwG{ZsX=lIhY9txb+q35L^Q4&$(E9p>bL%^K5m&HjOw_ad%YR$0t20
z%%xud518}2fVCV9$gSKrIVXTSijyk;05CZKaxt9Mrgu}lv@2Z1rHDBT(<7d13sQt8
z?65rX>s=+n4<)$yNX|RgH>t>90~^5Tr;o<4oS#G6!#lGs*bgv(ps_jNb*TJ9Z~p)i
z@P2HC#`QSB#aq*3CPJYw<aXqKb#q#^GU<c`+HxBw*06fq^xT%m=AVrb;qmUXAAhwt
z=j&1Gw`*@@6|ms1%zm}I@iR>}zZA8_lm2^|ayyFSH4BflTsvcTHKN%3+OP2>yvptK
zvCRmepK4Wzv8|mqNs{5$YHsxyrj^WFNQ+Of^9bXL>~x(F1P;mo?eAA~KMxp`7Xh=+
zBc)BMYKf<>mI&UX0FlzP+e16KJ0d%`iU{`Y1F<!SeS9!Ua&yg7z15y_cXvHO>sixG
zWKr1E-IZ-LBe|HgjK`e%R0Z%cO7G4w&q`*}r<#?f<!UHlyQdhXg!8wr9MekYc0QFf
z3-be<WA&ya`V&SNk~#{}w_;EOj4!8ptRra`<r{I|)~p~XqXL0FNsMgdkO(KPDmDy+
z?HuPERqJj?Jmc5BO15FxC?pbdN0B~-drOvt;Aa();<oc5jlbHiicK-%QdcB?mCg8<
zh?FoTf&8j%scD?_JV-vZ=)M-ZBF<R%edW&;=L^(#uG_;is#-Y*_;?jpvK-8h70<rt
zDaRda3MJhjtD3~-Ysb$d9A==ijL9Yi1KAxHhwaPB$i^^!mE1?GL#C)w_{UPb*Ck?&
zX>1PANF7B~ySRB+ocHURPsokV+HVv>;PIBmahizuq2&JnR0M13isI2^cO0GvKq~w|
zzz8RhGeW-Oww52_4Mo~$C31d7+yeHmO42nGf26@S1D&7}1$m9i8@L=}01TchW58PP
zlMJ>}wn`t9*ieOS4#M(WKg<C=cpOv;zb;A;4<{z8-`$3pa@jcP(=|SynfM<u9gS75
zp^LgJ>K7Af*AQOYf|Eu^&Cu8DZ~PPY_Lhg@_rufSeQM=Sx2DD-B1ZY7L%=opHL1XE
zEu>S<7a$Kx=)Y(G0E_yU!M}(aX1ifARY?NOqmAjFL8jMWx%#2;kKxq*Fz_deJUX(p
zz9O`krKmZ1rHu4dAKbzHEAf}c`X&DWg1l{cr0Ouez15||LdfGBgNpsd@iw&o01!MC
zqkKZ}j-e&H-`a~i$F?JQ4bz|DAousL&u`n8_G-J*ZgfpX&_{W%-G+OM8+S8K6l3Rn
zWaN`x)#Hf5-L-YMe>8Zoz8@3Hle7E0kCk?;s}zR?i0l3pwWP`-lY(0vtJZ!K{=`2R
zejsTU_ZI#Uy0*4+v`=}67oPZTarjr$o(ul~f>vMKEE4#)#&%W>fLaR}T31%|EO0Br
zl;Z_<&wW#r-J*}rZx?C)eXpFk+=RAqT)oA))GTwfpO=tDe$QyX@J+9S+C`(wtDR$8
zz}((s{#yI|sw%zD>|y&b$QMqR!-mdTNZTUb$gPvp1fS_#uNy@@S=9_JX|Hi?elB=c
z@wDw#RfYjL=Dl$b+EOwXB1Fy?n*CDnZ~POx_HdHsOY1KW-D-;yylgJ7o#V>&I2f&I
z^k3P-;SADQP2oKj)<{?gp)eWce@>*-&lg4(lX^2+cpOD*!ZB^HBl34o(Qob@TF%nq
zR#w0;M9fFv1${yA_San3{5fW1(seJj#GX?FXC_>Z_{DwQKgS;gcqd8Iu11MrqrKvn
zw$q}uL36h_1(Xk$@vLtPe%IDF+Qy+}cc;f1z~G~y87uf#H1iq>tNur;hsrULPEn5D
zX!*ZO_;KR>RWk>MbxBkvShcGS-%9GVui5*@dXfOX8oPiJ2I-2f2jXk#h`(w-4ZKCR
zxn%_GUJvD5_lo}jY_AV!78A5~@=HEHcDe8GNoE*(T|dCLfX6q>$#0rGtv_V{03W*K
zTG*=NJ7v2Y$@~T?o}v3Gd_xeQ_?Fqszub!Pay|XcR+Ih;1$6dEO|7#sGX^UBo_#Bt
z*MH!ldb?UqmUi&K<^EZ7mQn5vWb-JsbryB3vlSO<N+^Q&_G$Q>@su7ExN;bU#Ic{p
zt#Z1r?6vVm62-g|dng?m7e@UvQd)n(LOeldt$EKX%^8WJ+H?1hMyNFp+rPznq+;GH
zr?JZdXN`t`$*kp$O=|{rLockJl_PJN<-RQVdE(CrZ~ofwzOknuY;T&$_JiM$2*r8*
z(+PL9Wn?)kk<~qoeO;jb+kPvzaF-f{T8tn9%WwnacLzLIORfAp@Q>|j;Z0Xi)AZ{<
z4*2fI+3sMxut5^skTd1TqlV5p^%a`03CSy2owLGLqfOLylveh7{l~<{;Q2}e93FCN
zoVU1Nl;gHd3n7vmwo*Zql05y_2Mj*~D>n78K?HHwno^Ft98;Cm(8+ZyU@DW?d(<te
zqUYttdy34vn+$LW&swDH%%cM;zWA<%O*DCPsL{B(vBBEdImS;Jr8>i5NeUOBJ<W5`
zGZIffF9V*{Ff1K+cRb`(s%vAP+ew`SSHeYXzBA8U)a$5~WFssT_U&Byltc3FX7$HP
zvI`JSdiFi)WfqNNQs~`XRIwv=?)c6yYG^f9I9!i^U(UJyi;z0>%|1B}N|UtYbv4Z>
zH>v4Tskd{hwbk6XOatk+oK>-?JE#&3{)0T`xj3D{Eg0uG1Rg5%S5LI%xIAMy{415K
zGufuineUhh2hADVxRKhZ+}<<b892ut^wo0_E678PXQ=hfMR30;!sE~p)|0W<%#tfK
zs~c`789d^m`$%FrI0x>Y^tT{mD#tt?dR1mS7%mPm&fe9m71`z1scW0|H*6U0+k!H2
z-!;+c_e`J?LvlJEab9_8e9)`z1p6B3^y}=z2_;D!`+8T>#pr&1&i2mtdjqr$r=uQz
zm7`}nImmLG&rY}^xcdv$3$=P2Wc26Ox(f@U3mhqJ-91eWqiS<|Go*q~Bq+&dURj6n
zeib^+muFn>as~nR^sL3XW``KVoRWKWsY{}kEAuG9HODyhJvvoiLdDG6NXW_Qk<CP8
zX(R=eTo1etP-(15P>aJ6l`T$E?1dj343a%-$*7{wViT2-0FQeHRUJq?(?azqJ+_}(
zxFBPUji3zUrb(&AzwXo!H+8N_q_szNH{9ngEsAs-hy?ST;<M+s5=s0(umsmfbqGWA
z;5XeT(zB<B9O2BE`LcUfY25CE*HZ#m2rfw8I0KGqyW6S*v>#zxQroL;E0k|j&T5s!
z0Y|CGImH*$_UP3z<BOFWNh{ZXQ}nC0iSu$YKfB(NeXQSkxZoA<L=4f9u}(S8PdTjY
zdlc$LqfR9&7y&l12dTw9GF<VuAH)X-@u)53-iILV>z?_mFlT54?aAdy;N#M+_Bio1
zRkSC818&0<$;r)56+-0>2Ve(Eh%OPBx?pw#y-K@*B@_U7t4*y>nypiv*ayk8f8IG@
zDhVOV`Jco%2en>~GFR>b%aE;{nrxAS5|XZ<@^>D;g=nX3Pa33Lp2l3U;4pFWw;+m%
zZG#>GBLf3G3cDl)gYZ`b^4wIm)<!knMnmJL@exnjJ8EI<+GSLShDKwIZpWvkN^Qx)
zkW}|1)!}cz$OsAUILFqkEuyh1SOc7>>}!{sUGz1K9qh~rtrcTuZU#A0de=4J{b_9V
zFB7p-2rh#uf(}Lp(AMvX?v16wLZE^ax5|Ah$h6&1+iIG`Y#f>6Cu+Cx1I2wV1`>@v
zchvc8!fDmyT?l+rH<zr;q%v+|cQ;d9rmV&Z(nZ{Iar0J=y?f_L70w$t+Qp7?eQPTA
zM!AQ1U{r!}>+N2WZJuU^7O!y6bV$Gib*hsxh>JEj=nr~LMnD@ReAuju+p@{GkbQk>
zx|BOn8}P(nA4<(v*h=$SF}I&&GtSdgnR3})v}_Aejq>%+)|%fk^yAi_Ajs*+?NL8a
zGm+>hWm@cr@lU}Z8e!zpj+o6CMOY93Pc=QO6@I;YReF3!4l~k$G;Bu4W;+h_j0%&E
zbJm#)mP`y&v$FsUue};>K%IE#eN9CvDmdWcoL?j6Jawk9EDy{GrM7^`h}-}N4~mXJ
zLUWp)LBf?kH9+K*Jdy<)kEWzddFKY0Mowwx7|uDSIH$2lYIVkNY4`+Yn;6R<T9*W5
z5GjKh#~{)icBd7<-I_qz9WZGC7CyNYyFllqCN~302?vu-;Am)&`Pz&Llgj~&SJD3f
zv;MLF00_^IYzSlJJev<VCqK@<eDHiLF1czOAa4gEy`xLcm#*2}Dviq^Dt{WrbLEma
ztF!fE!n(1V$`E$)y+Is$WYxWGe$WXx>&Lx$kHRky4NE|^ZO0`P?j7-7kvyMiRtnC<
z42|8smF#>`O&(44vpo02DIzq0?b=BrBavQb;%z-HEu=?M!PJanJXf%5aEAnOzc>f!
zTpqn>+gr@rg!`D}n)B;wtc{@T_dhzmCiqGG5#x*7bsy-LE$6_&a1<V^^%aD!9Z5Wn
z=N0t#?Gf<!c$Y?L?a)VkXPKit&lw>58u?z<>vG_OkU1R)J@Z}_eRV#I3sc%c&!K3Y
z!vj2e@l4oqJLkPUn<Vk_(C_k|F^(`Rkv}7#P=g@!J+V?Ye7v#A&w8f!NQ`$jM_xFn
zWz?0F6p%5`-RqjsMop^`&1;q)<Z^MIGBMh;wCk}j0msfe9yqGnPMbEdJTW3*xyDX;
zuUPS?!HqY-9|*1dSABVN{k3~|mR5Fo8zdcE`tU2RG#r(ggQ}F0N0-Wr<~PlTJ-gzf
zc-RcCGtkn?+ekSXBRxA*jN##8e(3z`f^l@+nbMug@Y|PT&ePxCwzMrV?(UKl8<>&D
zTFkRh-1P6qTJ+zCnqrwm%@JeN<FFm`SyXN@X4K=)Bv;h0lFr>C46M+OcJ>v*Yx=w2
zHa8I(o-tdVJ-PcW<gp`Tc`Qac4@%-Bm`aBk$4qyuC{kKWbE<V*eZ%cP_$S|srSRsv
zs?8ivByrn$&fD?#dVndv7;QXP`$YU#lU>zp<b4v&O})LOIc0(z{p@wi9<}8E0I~PP
zI6NWoM#3w%hC54)!ziDj2ep2TY1+4kz7oNzc*|PWbd5K|mV!&Ifz-)122mAz^TjCA
z{{U!d?tS(GwiY-~Z#8*EY5qs&KkdUMr-rrP3U~uc%3A3b3x9Tsaz4>0<38a>>t8eH
zJYy%)yMK!R023wn!SO%EJ}|q8LN%M$o+yX>vyY-L;4xfOmfl&({447y!Bc{X`G!9e
zEM_8AruAVNBy-ojO3nAj8%IiwSLMMtKD90nY#uSqZ)9)?F_D0J@=a)4L|F*H$81(}
zKS09+KZSHUJ)oQcj!$X?^e9aOB4_V5Ju2ao$?)y-@wrncv8@~XBBSLQ?bfJkN6PS(
z?iZ7^9QNj=jwcGYURoI$gUEU*t2XSw7d_7Gn#+PFmB9ldwGL4T{U|SErSR^*bEMtH
zacgrWwZu#c$rE7b{443-h99*tFCCYRArhe>S5km{z#azW_OFlNx?~`Mf-7%N)L0<T
z*BH$vyBAKRqp|vJVS5Izro*Ud(xugmoTSmPAp0Lf?NT$c$&<NMjoBTm;SYwt7JNbQ
z^5vw_uEIknGTTfy!v5uZ8utGH4Sv;)E5{DGp~d96-t*WwQ=g&j-j}p%MvqdCA_;4w
zK7up(y%&sjIIOFfH%Qq7Zx|)HH6MpOU!{1~!7lV`*zT3NSWW|{)K!*J$Pn=RvT!*1
zR8DC2=t}8HGAn5Fw`v3@s2vSx-dZc^(-1SXWMuUAs4OCHHCJO~ag)-t?p5QobHK`;
ztL;g4M|-J#56<7(M%Vi{;*P5#F3~(ldSj@sCAG4W>O}w&Pdp0xJL9K=uRLw>en@TN
z^AbB`8&GE_*0%f^`!mmKW1m!Cv&7v;QU!EIJ<o#1O-8(<=6DW=;ES8*jI3^V91;gg
z^sOVnk?BwgE`M+UIVY}b+ckSn2>d*<kPVj(i-4{2o}D<aoqi#FPi<1_NUab<5dQD-
zrsTRDe6C)Dyiej-Y?JKvxESQOdh^@;Nv<R$o!?r|yS;m-CPpNa(3(XBkGc2hQyooh
zZAmw@q!2#}QkX;Bnvw`Ys3ei^QoKM9PIxs!-%^aJmd{?C)A`8B0gq~x<4~Bu$Lmp+
z3_nv#sM<pa<o$YznFb#u40?)cfHDU|)4fhl%DfLx#+J`eMy8(2A^>}PRhNKn!sHAN
zm7k}K$%B$lp{=OlE6``qgGG}Ep;7`>vPlc*Pg=VSg=OTDr>C_<@B+Y$xjjdv1~M2N
z9CpPU30<Rp-Qjh?e38i*t{=wCrd0{XPH|h2T(l<}h&9Z3s!uXRIr`IA9Ct7WTIw`8
z{HqxWI3RYeTDI)p$kV1`J7R{eT#SpE46`{sb6T1;vpcCDi9M?-H8MZc*IA|87+~Ly
z-6%mVi&t(Uhy^&vtl+BWo<$e8SYo4+PHLock}^*jr_j#bO<3hsKnHFC?@}o;w@=Qi
zKnsEL;<Vt8%U*cTVM#84<zmI9uvnbqv93+-+f3G(m9R6&uC=arA1pWn)4gU{_zz$4
zj;@xvE|GVr+{)NQw}iVn_5zzii%jU^yIc4nlfP^X;<WT>g3bXs2a-VMzLNM0{{RHS
z_^snhXzn~g3V2sdkcJI>_?K_{gOOif_#^%aOW-XIINMtB7OARE7i)+%#H9YD(o#q{
zUqka6cve`6-MM=<G5A#v1^hqp2ami<{fptfGUHX$Bzz<gL|Bi1r@el_H~bS<;Sp$X
zHDIZXuiF0i>BW10!#{!^2>3T`BwiQMV6d7+3oYXf)5r(+ob&ipN}`Ir#;LpNc$e%?
z`#$*F;eW#$?H9+l5Ve+|fTonKx=1oP+{1u<g?$C0{5bH(g@1o%q}s)Bi_O%iB$poU
z*)>DO-xaif2u6O@aG~>oUp#zN{jOsE&6?XumMJCN!y&mVj+phYDyCshDX8ju7<{^=
zTRT}EiR16uV%x)d<eDy-40qGScDn}UM{EIICxEVC)vd;{sOtO7<g&#hfwS0({L$2Y
zEjE*JH;A3m;7=nfE05l*XT4`b`%-E#Oo<e-B9ce|;E!*5@nwjqFNs|GRe`0;%T4n6
zpRdWSY4HV&TtxhKU~4DD`cH&!G|4Y@i(3gT;a%owRY4f^J!|t9!e6yUqVhu>&E$ce
zMTr+AlEn6|{{Z55#{FkOvbTd!nO%`YqSi$$9OEiT_NNSFqokr`{f`vy3XJ-W&&M7g
zx6y8VJ)*}hi)DCOQdn5D*<;iL(>3w$#E*x5B={HcPJMsGH<9>@Pt+qn**b;VVk=|c
z%wPHF2SHk21wJ-Gu4=~O=0atXOztC<`g&Knd`h_R@5J8&Y91EU7_2uRyn^O@JHs&L
zU-Ru;v9EU3N9p8ywCFl5Iy*i5{%6Uz{w~t*?(Q{P>&Kc~f$~dnA!+CO58+>G;$iU{
zf5J-~`d0A^lBA9S72o(1_D<Ao9`9B0_P=j$X9TRVn^yB4WzJV`Wf-UYN7uYL;mB6k
z!oC}x<!sQi-Atz^-0@v8h0@mdHJ&Cgo#WHFAhy>nS*~v;5yU{)hk`-wO?e;0ZxdZc
zZWcR$%n2D&k_C4+I-a58yC@d-Q=9Cs5Md3l3xG!))eAoWcyVM$mfCBk94We#wokYn
zYpGyrJ#<HdQ!-r7k=*&VZxP>l!Bm_x5%K~{eqHM1XIj1h!>3<P81;_b&p(xYSEXqh
zR*`U8&r7nk-N_NcpnD!`Wp7<e?VO;;-H(OGdh{cOrxj*!&b?}ywtRqm5#rmQE@(VI
zsa$Suixx0H8g`@MFC1B}>3lV+A}%t*EP#7-HTCn&B(e@&*+;GoM<nuWAUuF|+q)mF
zSFxsuQ>)TP#WTs`n>m$avDB^q0NL^w^Pi=CDf>74Rn>eMZGC;HCC#eG8ze!~X_2;^
zS6O|$i6mDzKYN^$_}3e%+nL%%EOw5^t5+>-H94M+9}!-a)0OUdz0@94&oSmnWoev)
zk-do|ezl8p%k#Gc_O6><h~e?PE_n3Cb5g|4n|AZtJ*q9U6q{(vo)YAONg3ykYMhYZ
zn8xmVcdh>bvgCt+2m3~(78oQh7x;<BLH4cVC9&nyi)J6##?o`Q80$zaok@0W%bbq&
z)Ip{fMrK2|8Q^rJIzxs(F5di(wS4I_A7t819PBU<v64<tIRp9CsO;KT0ZGUi&NGVA
zeLNm8Kq8(k&QzW=!vV!9NjIrbgGOk#KE3dFbo?paK|7g-)g8#KZzpcWD0ZKek~&l4
zv3Us{7oo0MO*LeCG^stzxNXdPb_}QYbJOWpAVoMh!*Vu`zl~Uq#aS{z9lZ$pP_dZH
zGLp(T+IS|pS?p1ZL!(UYVhF|wEP7JNghbiocOI2u3t;cJ8@7%??@p56d?9d99(bj0
zhoK1FXk$wOE<hVpFIML@LE-s>63U&zo=tBXLRSny?NvU=Tred-0OGZSN1IxUz1hme
zbG}2nf_WZ-wCwLU5DcUa)q*lxB<1tQ2U;SzE6zqM=o9RIe$}@-yKDZVa3F!5#~BsV
zY5IZ;Fk(=i2(L1*yun?+H>qRS+PZ5URE(Y2R_X!hYG+aGIIgFmTVIJ-97x2RZBvYU
z)}_3|1UMy$?cTVJKKU4Z<B)N|t=l`&R|@1XBXd^;N{?8h)1@7m(#4K<DPrTX`=C{%
zF_jrPB!D~SvF&b2!ij!E*B$F-&B#(o9QGZn&8T}+wcNTR1rZ6{$FAYPt1q)7f}^p=
z@~Y_DR1k5`Cmm^i(YRn8<Z*#mHFcre2Jf!L8<mZT*f{T=zl~$f9C0B5pCI?-pZ>LL
zT+OiqWlwhe>n`qP0hyQ*&4I^$!iDB^#!4j_NlZTBk~z-=4|=6=%<*vBlhUtE<&Dff
zX&Zyie+tQ+nU#PHG5jK<(Cvj@RzWK$`F9*Atr4>ri>Vx*Gt(5=<P0;Dv~ligyQypd
zbI)A#rsCd++2b4;s{v>bpEPaS2{^#3@hZuaoRE0I=sjyH+5E;;Jg6AKttfs;7D90t
z>}nc!vCTYJIxaxP0nf|<;B*94!2ojHkXUi``c-IMWE+&@10)gpRhX5SV36U585|G(
zy({UfI9#sDBaE)x5s}}w<3YC%g;3ZB029Fc>dY3;8YsZv`t=ogAxRWA7jYf?R#BN2
zze6<Id88ez0qS%5R)MubsjwZRfyYBvBC^_0s00(73b>G&BM9FwKXjk#Q*`W`DML%M
z99uV%10CZyBOPfcg>9iE;S>VQ{dmP|3t{srfXaFTdRHa!M^^sA@a@4;8RP;rQR;vC
z)zt*&H4_@GQ>NznBZ7xg{@vHL39tlFMpixVk&Jb(Bi61O!(J{J0PIwiIO4h;4_X#C
zm(eH)vLFn@lC{V9y@bELP<LdIYwV#OSg0SLN=~HQn<-vh8Kk(kZabjuip#aWRdWoD
zg<RsRNp{l(kaEL<GwE43@-UI6Q-Dr!ny_7qTDqSx-A+O6T>P$O1Re_XtvPicwAx@}
zaOqhRu3IBJedyJKEm_JG6?2s%pzTmJfgkT4J5*|XvJQBr$TyO4iV7#f$@2rpr9&cs
zPSJpAisc&>H=3*u9MiaLSI0D?tt)Uyrqva=9+c(hZ8Y?!50tN^O@Wu~$QaH?sTDH?
z`G!x|wLxrn#&epUR@{Vi0CuTu>_(R&W(PRyP2LIqp0tePZwDvZnlXdUDS+(brxeK)
z7AGHGX-+YYp7iVuq!al1(+;E#es4}cI)wD8oqC>_s5?-!DIw7uII9m6Gj;1#;6J<^
zX0`-j;|CaQU{gtn*vgO)*lvQODo0M0eprUp7{hlJS7}^&<C>7U9^YC}p#BuBF^^gR
z0;^^hI=_c@ziZbKNC#?`{Bd5PaUH}8kF-ds&(gS0g*L)#`<XW75;31%O?t3}P5|h@
z;2!nCUP&~0^`E?bMf)^(!|j?CqB(yxKX>x=I2|kM9W~6>(e59-JQZHm`Tg)$#N)#{
z;#!t;ibvcRr#<<vv~=GdX!<vX=DyW+8+|^~6wH^mErg7B2h{slqlc`WJ3fa5lXA39
zi^LEtQNH{rBRKABz`inkT=37r+clS6)FZdJbUQ2)=D2T6DC7g`Ysh{z{@phk%(q%E
z!^pnLY|3Gi#5ZVs=|@6fL-$9y=Dr)(bxYk>SGl^>FDBG3-Ol@qmoD%1CZcopj>mNj
zGQH+|*NVSsyRR8sO0YyUy*LmOFTE>|R&VKCrmc0RYxbh#i0yC3K4d&AkM@VHc?M28
z;-wcdr~pXV`qvb&tD5PZ>Kv}|JBxI^yhHX|Nv=B<MJB7<TWdSaX{TKJ3`9+HR^B4i
ztiTXn%LpAdHY(5jCc6IR#;tXc)AxspsNv%thTPI-^}mGmi?<CeyvRH5Twqs2rFcCM
zqL+!}C+;h$VeUY#2<m$7vf(7XySQV(UoiBpm%>^k`WB@P^rgJy=WcrXgH++B=2DtV
zN2&B@!GDGF>e{`rSUlK+bA!n~)uH=i+$6sc^j`+rZZ=*Pum(Y#gL5~`bM6-czK{Ku
zEOeQCCf+QZBszVayWGy$;RI?~x%?~SJyQN}8hD3W@ipNsb*$dWdd0ehWAZQHxT}ig
zh1usuTDh~&CeWIDe5fF<Fl(H--4v2W#Ha@cJ?qvkEffr7s*VEI2CLyQtuEF1CO8=#
zG3!`PimmE)Q>^2@$1A5wu}8ZMy}D+-@8J%cYpK{gXD=fFM;Onwcuu$B>+cNB6nAQN
zNIpg%bdT|`Ncbh<(PQFEIOJt}V8?Q|7~}a@&Sn&67`UG14y+|4-o@XFKMA!RM_BW;
zn^`VN2QfwoKZRj<Gxl=vcZsz)llv;>&djjib8x!?j^t;peQBj##<me(K<aKwkls+^
zu13@Jtvy@fELJOVb*yR)6@|1Od%0hg038RptSI8&DvVaAvpgjUK7M26kJ}qf(Y_e!
z-U;w`hHRm-xYKmueS3I-d9uwXA2IwhUpx4R#yaPUA%-1OR=U2oh~*)YLQ#H#y1$A(
zG`aYn<DFx~mnDF@aF*#O-bh!3AD2IkaE}+3#N#WDE9>dfPBE0$r_5BXB`HRmYA>Ke
zCI|rW^s7aSD9PO2u~d*0eCL9B2CPRQT(RMQhZWOp4o1hu*ngM}!@g-=UJ2V(u8Brj
zI4jWOwL~Pw0b+ecD~!JrZfqQe^fl<74X__&Y20Ihk9zZa8AOhuyB?M5ULM;XmK%0k
z)YG-dY_F_B5>~)2qd8D{u4~2T$?)69z-Dp4uBTIN%1$u8zV*iV+EBW3FFD=@PebcN
zzd<Fb%EGH}5aTV3(_T?0J&(OIMg>3_IT`v?3nov}r&CqAVHgljFgw-QCC)at9e$OV
zvUddIHEARsT8!d=*5^TCeDTOI!~@1Frql0~U;qiu2t3ybZ76rf2pIdvpsU~83vD9#
zK(mkeX`VArKs^@UR(}uNCE8ufV=6ZFk|!$PfE{ao>-MDayIHNRrllFc+4iYn4K6xY
zi5thcxOrxko>G4E8q?FF^PC>0r;;t*l?s!m@Vgyd-^4!_>TYJb@gAh^f4eb3pP;Wo
z@E`3B;{N~&N9EjJKD%eTEopq&;~4o{sQhcmF6BrBXs!uvpjQ2lhS~I6jao~{E$yLT
zjEx}k8IM2~mm;-|KCw|gWhQ!jpBe0-@ssP8c5Z@YR4~ZA#(Vv1U&Wua7Ay)ym6g=w
z<AcWrygjuTAsB>i#~D3-wN`l|z6Z@s;GBHN6<nzt^L+B=db1bCK0LeEu9>8jpLTQe
zaa?S(yzjV@Pipijyd|dIMZ+`%3}tz&seB7@Zs5d4%xCU}7&Ow<Hb*lBv&aT{=dEbl
z>HC;-(z;7O2~G$>1CySBbTxk4!Z$`jf+7#CYsybIbDLXbiY@@aHB#xo91ttClfb&H
z;}JkeKAyEe{50_dtO3)QsXV^mFg<B<iA^(+k#G)9N%g3}9R66ZLx<r7`#10JEiG38
zw@D~C`qby)zKdpe-RsERNmvs-J?bpBD*aLC7(Un>RfuCDc~TF(dOfd&JSsp5CC$u*
zfl;^sSHB*$+xUOsHKw~d!>4$1X$+0DOFNPW9Fy1&tx}E5ol9<bWu$J0J92Z@x1o%@
zYI?C9k6QYlPWWfw&j?w{m-;QXv#e~{8iGtPoOM2?vg|$^XxCSsWcERrfLhuW+NwRh
zsoEraNp?PN@{CF|k&{hT0$dfz>7Lc~x_mtF#8Q+x4YEXp9DsKoIR?1z7Wfmx`<_c3
zEfoR7Ff{o}bGDW~a=3s4xG6aFt~*_Q^JB2Dr>uS%Lw&f55R1tV$Of*<@KeK(LK^DI
zIj1X<h)*=EtO|B}A0t{p=EwzW>JT&*AY<6#zM!=D38CFxM#E1_c$j~DsN>$Z^zVXx
z6}0mfZ7pwGIauUkM^Dz8OSn4Cy%F)QnQ7)qrG^w9eXFXH2@E1QQb`yN1Zqxe>xg_G
zp=pSs*TdR<yYc{NgCDOov8H%M=T9-=x3`Wk8MdM-Mmv%~=}FmYFKFb?hnK>d=AkeU
zX&3Vb>9XC9e@gbxg<r6z#t(|N$#taoR(oqF=gzuu82xMOU)e9gNA`^Poposj_3%c7
z!LDXefpWn8(0vIN`kAF^HkvM<4V8_$TH3;)BZ@JFQClfOn!AnInyFhzyDsPCcZ0v+
zke?Cn403Ba{+XtuedSgz%0CMBuMhtK!5{oP6}o?G_|EaJ3gOMH0FT3Ueu)u*z^o4q
z>jzs)+r@0#n}>!TINFB<=iKI|rZL7XsHNz?&fy#!Z+XeTpZQq%6T#o`N^gbU8`R^v
z)b&kMT#7aXTgX-*-|rF0uc-V9@Snk73+)o$!yX&cw0O{C%z_cT{ao|<*I$!a_p!9x
z0Cx2?^HuS+9<e<-bfUB@ORGi{?O;OnIj(0=@v_41s_I-E06lA+@&5pbQ$n#~2~|}r
zaoZK)1LD8-H`=uupPCZDq-12bd<ybsUcF1U&uWeq5!I`oM&5YU?DX+-Ji-m^5kWkb
z_Vuo3#GW|0@Rx^P{{HoDUEgvs`BW+G{VV57Z;N_YkM(z#UY>m#8+nA0?gV}dUWf5s
zOLh2oE@UZpqsG9i?#bkFniQnfq;{$?j?qWUA0K`<NvUeHppoHdo0J*AC#U}auD)^B
zJXY6)NYfauT=#Ad6>sB?w+-I6E5|WqVlc}2AP$2*)#G=1(=?<9$Q?6Xk);-{iuRI=
zw2p&Y*KRdkpJ<VU$aZI-Bj47!xit%@7^q(}CkjF28fer!!?chYj|HpfpM$@#=ArQu
z;o<T2z2Z9$1$aGVB0Wn}Lh@W=gXKm#fOyHRBT73nvDSh~-&4r+?ITyPvbWW~(`{m5
zB3N2Ufo?hFYW<(Y$^2uf-~Rw=>M~tlO51>D$Rnl)rF%U800sX5XN^AGe`$P7@fV1E
zqC<-a5*VN9oRBM>*ZdLiBTiJg@Z#!`+yH#J<-06*b|ebtYYzS?YIROk)KZLWyvz>?
z>i614s;1Fc_B#eT*Vf+zFX4ju6U7k!0BBvf-5spQ3l@IsA6`3G!B<`&o5NbpTIKGc
z1eoN{QJyni<>6nBHae~SmY^8h>LL|}e=)#T3OFLT>e7nUA=1Qqyu9A0=?{h?x6*Zc
zYlEiRUFlEqJ-aUB7(c`_)~|d@_(P?5lGy6{OmTVeDKBX_#B(7ZGV$$R0q}$NgV1Nw
z#Fv+;bRh(?@4^5&<ev2Z0EU0GMcn@Y67RJ8*PiD=znzQ`mcWiYa2M9IrCp`U&|+|o
za#M`Def~$vx6|8rOT>2`9l5wvxsKu5)*NljMUDXV$4c6@nE+Mql0hfEaUbweZ9dK)
zkM_x-ytaqz5nV<i;Ko^x_)~ry>N=IzhAgDjCi7+l0^neg>TB!iIm(i9>U>O`VOCIG
z8R+S9+<f8p510k%Rz%GZA1Msn5u5>7aNYTDmBulhpmiR;)qdJnX>*e5a56g|dZw+Z
z)fxShcHbpR?<DclzqLCdm;=2PvOqmX4|=O=Bm-%}1vx#=KgP5?qb4%jhg^|ZN!aR)
zx*6A&%OXfK!R{-U)ok5W$lgyl1Y~BrCyUBf#xf58i~*kJv+k|pc^D{SfxhatK|a-s
zdK$*<qsp~iJjkXq^8CDk!1~ucCY&NH*~llM?Ova(X&cqPQUT}i&2oC4lnbBTg-=pz
zf>LiowRxPVv;;B7%nv8}RMA_yeAwJDGBf<EP}l;&n0&xzj^duS4Zk~h#&KCGTSFNu
z>W11{EP<PD7~>rEsm7nQ1}Y>2p$DyBu(1&{2HM9N1JbnZ^qr_xp#@KD;~n!!%IfBk
zi|leUY5Ny(2Ml@v$g0M{*|2$RbtkB<+T%#%5(xt*o`$M6k_#ySk<$Ql^`@rYjF$&{
zBy$4A!5Hcfdax~oWCmQQ7|QZ<TP>$5?FW)ZG2GP9>BIor&OqdmS+=)lWjMRo!&@d~
zDggsO#5!iE%WE2zCxAO1xUQb+)<Q7OHjV=x^^tcQmXi#m05W~*BP*Vq6`qD(Hmc*d
zBi9u3BP-)$FvfW6O`Y+#x{gU6wI7|o=R!E>GtMhS+207JA%ES0h7H#Z*i&8*gZN25
zF!!d1M?ry*qXRUXmwyMK!0t_4cRB0Fsl?q|m?U634!FUr=VEsO!T#-b`ks}z2EZNo
z>s<Bbl+d=}kDJ=Ph}7tQbyAyJnKrUCCn^c!82Z-jmBW<>Il#sM{OW?+GLf7DMQK_<
z%F2o{(38{aM5bd1+3Ig;?5YE?Jn?{fS4nAehTxXS>)yFrSPCg1`JKgX+fC)B?BSQF
z70E4K?s^oLE~igrJ41|seNAuJ-U$HvsxjY+;$XQ}RSCEpgUPKZZ`%O5O}W9(3{Pt2
zlpAMsDp>4=+BzMff@gvT25FMr0Q|PqJqYy`gKMZURwSLh0bWLGJG=87x!=!Xr;ny9
zHBI+ARa>o1Te-k*nDTfBu4;ty7T~cb(RyaHrPR+m@OuH?t9`v6aRjjkjC2&-9lhfH
zv{TTxH2k`^P<cHtDulBup134+C%r{;s3HvRZg|>%ol=^1C!k}T^Tj`9q8r4b(UM6)
zK*OGQ5Go*~kg5ha3_U5aO@(p0APk>cnhcg4246$POHFBGCtsUZUbP-r0CL3gPds+5
zI3f8?;6f?LInGUI+K>}F!oT-VQ&*9cI;ka!9(^)vk;&YpR_exur_9W~9dJ(mhc%@R
zBm`|L<aRs?$BJf*0k=6h6=ftlKKU#U(z2X=?qjB%+icc~Rh@CUPI`mXVy~pAFpQg9
zJ^1Zd2{~p=CNbNmHF_JeGB$?C11F_(IJK%eBcnH>ky{J*Rl5_@-mf7?IbWGnW7O9)
zmthGzv+KrB<yWG+A(W`#V15)NuX9WHHkX66uv8htFy_1~<JP<;)a>-IMj^!V5IN6k
z_3NETTg5ZUC{h%#J9rqcmb_c6NvvyEx2(kZ(jL8l;18vHnRPB|yzimmX4U<j6$SQ;
z8(aKpa;D&mA{EK3y<S4d$ayLNH4dpik#w?d<Jy+$>24$Q56!%CE9x!O`0b8K?mo{W
zD~<s;1Bz^^_K3Fef;x(Rt!^^pVMciOtowP0`CE)|DcBojNn?03*-56e7s&+kSMH<p
zVmLhY;<DLHWcpB2*c*(BYcRz~FvK2D)|(;#f5L{wyvAd8bJm;4JkyU;j+CV3d8CRO
zX$U0J(M^mg<#D$koiNml*#jd4P)jUZkCdF}9jeCQF@?zPDzq#%V;t1@A&w79TaZTl
z6Z%tGhA>G7(v^uPG}3Z?{b>wxw?IFYDk6|+p^EqEPTqD5el=c#d)RE43Q6Ls6H`vv
z9P#Z?9%*h|M@Pf2*18De4H!7b70&~L52bWgj!Y;+XCtAeDUeGZM<1P2X!_xDYg$Ah
za#s~fKyq*~L7v-`N?>4sdE%N>1JLo>tU8cEG=Xy7p7kYmJxAdEnQI+FeS>IaRb$uI
zy=z3ax0Ws2eA#-A+iQyWL7<~}HaVT04aLJ?s-Ktv>t2a#XqIDQ#Ljl-E&Q`wl_1=%
zdDFX_vCivPZ)2&079wT&fd{2C;t!9tKO5QD*j`JwO|n2%(SGZ=>h0=kPZ8M^MV@HN
znF;DEl)aoNRg7ajMP(X#TIEF}lhzV6ib+BR+A=UPUSTsAm6)95lbZB@6&H(7lP$}2
z8Lv2G+t#}2t0T6Zxki-$3Q(n~Pk(BBXi3g7{cBTOk?c7Gv97zpz7CUIoI5G<Q1VFY
z?Nt0V;mNh_P8(?Bb`05OQNUj2zJ~CZf~C|hA<{H>j@4yHU@~#)G1Sz%wPbVFsN!-~
z`UG~$V6cG$V{1q{sq__1tPh>#D8N?QTRAz;HSJ#%JSV37EYft_RguoEbi6>z^Lw#A
zmB9F0!&iFM=#CgzDI+qT0Qan67tN{1&vkR%d^h6@j|u+Bn%04AS#JD8sV16-aLU1r
z(=hhH1M#mdYea(AYJnI~6?TroyMGw{mcq+L(rrO#^ynLWglEi^y0`SMHbs*8wv{KI
zoib}gx!!@z(d=aXiKm&c3l<<(Pp0^G9WKl5my6|-_jh{wn%MB~h2w$-ySdCrI6?HT
zYsY>pE?Uk4268z4Xq`n$Hd~3=`W#=4^+eXDc$GZJSLO#F%Dn1pnY=%$FWFn?1919R
zZyY<N-_A(Jaa^~Etc-eql~*yiz#vx#@jf?mcumJtby_Fw7bk}_p<%0AT-_ARkqBRE
z@5TmAaNaKX&#rt#@-6P&ZLDJ8Tf>p&A6Gr=2gDX)dw1HWa`H3Z>0FXIhD>J|tD%I$
z!Slj4XQHdrsT($Sf>8T7C)^Gyq|kzgBbv{#zHD+%4;if`kT@&bu4~b`gSuv9pvE?k
z4{=O<AY5l@^sCnhHsG)|O_aaOjiefG<6Xz2Gp@!TDdMR<VUd)uBphejra4&#<G?hx
zQJLf2fxSOk8AzK;AWM<}=DlZ2Z0NAQ@;3~XBcZP#(_}t!9CCQYdaaC`bTGu{Zz{AW
zV>u$^$ZjBTNcl#3b+0|~<88EsGq>l-O6(U?A`m;U&P93OjPE44xj^4^5=AB|Yf}Yg
zVx$vHX6FW*M_P9_u;C#^#%gqsvhvtpYO1{{#k+b?I~PsK=s1rZ1u95e03Hu+^+<Em
zty+QETjgEseLZOrV__B>XoQjyPhs5E+f8-k-nQ1@0l_tZ>QkGUFvIu($)~2PapW`+
zH<JPT%Dw6A8=Wk(!DP!V<eTo9aw0*UpIU+SV<^L5N4PMI9{#7)*F6=-AmIN1I-AbH
z8T-9}q$Q@t{k7qib^!9-F<00_Z?xQ8ou{fG$rZ}2%YrtR`M3c_O>`C}$3;ZB)f8P^
zH{7t#0Q$N9lx$6n%_`F7><6}o$%AlTwA{W2)K^b&K7--I98=#uqo@qCf%3%|^aJ>-
z%(WjCU+Whr(#eQpBg%m|NWka-tcmXCl6H9{EbMYkE3&uT_9(s}Y0<kXD)~U<sOn8Y
zH^qy45==I6xjoyO@&%QZNe7Z?(8DFusS3oN_@d3|*jXNtfANb^kUBud6>foe{41QF
z$6CGnZ8NyfTp!YxMDQl5txS=_Y~;2v#e0v#kJ)<nQ*@V5+i4JBTYotn@mI;!nYqR<
zM0l>7WvuvyWr8J|a>p24oaVi&;qUCN;y)CXmg?49NJck#s&Z@UF9>`z@UOyM7HvxF
z?6E@%ZfUMCta<7)UN!NH_RbL{#+Ts3_H=xs+!MQZy3u&YViz>^y^g}y;Mama7`!K1
zxVN~zWXjtH1-kSnwRJZdgfi*E+Q}i)?WFmYZC9$1(4O`2Plr53d8>GWZCg{glIrF8
zFDn+WQ$G`~gb_s}NUIXzSRN{GB6&4E@iZ+0(#!2v*T}x9jJf=44^#M!;cXc}vsq`8
zA#!o~{VV407W`4UxMxVD&lpxG`d2p=yLGEvD3U^VbCc^)@3vnmvGm#apW*wN8+=nk
z)CBo{Zv0fbhs2);+*ve2-c$ib@Kk5;_2#~Mj@-_Fix}z+U7FS{0MtM$zdF>r73qPv
z_p4mVU9nj=W6|dLo284{W3aTE8zGRbHw=FY8{%D>EMn3YGNHpeu7Aj{9ygzCpKJ~7
zpIYA1JU4l$JZbZ7C!RXz-i}uFxI0H<(!b$8n(1~%p-9eEN8ZV;Ehghq)XStwM2s_*
z$qUUh!+#Gx%@Fe<+Q0@UJb_-RpxD{k!?GofS8D$7_03X>irmf1n`B}5f5EpCt6bcj
zfG`D{lHRzlD*dQFD;oelA9#JlQrv};Ql1~b6n&%mo~FHj;-AEuUjTSE_ga?WM6nE8
zz={60L&B*3wegpLEN(ni<5a%X<auuIF4kLz_h#wz8O2JoDlp|&XYB9%6Sv_^KMa3o
zT_QsdmwT(Ryp@Q-E71q#&3!{$Z^D=&(|iM<*+v4Ty_|7?J(O2qTn?tLrTLxB=(wmW
z8GbF)#*5*7TKut3v)aihVc3Nvezk}2*3jwS540qIl18*yq|f)C<|p$tf%{7Mgy=s4
zJaKyl9#}NV7!3C5UleOU9=;}cw?NYDwCk1AEJeIZ8rDzV1=s)|jd_^aIMYhoow#_$
zteWPvkH7Vg9C&}j(eBhWdrMzH@_<cvC&b^|&%k~Py*h4~lk2znD#8W*+7aq&<JtTj
zsA>{<z9HAHB#ClbDJ3NCtQ&1-z`ho1iQ7w;TGTi5kX1*o<6aG_?Al(7U%d7y(4iN0
zoBR>&ekT2-^}mR-8RfN2KF#yx!5>rUT)wO0R!upPErs0dzy*Gw`u=s}`tQa4PWtf%
zo1w#D0}&dhR#VU)%DVj<S(i-Gu5K@yDDQ$HMSq(Ld(^5*I~~fZpSp>l*7XfS`t5Jg
zBS00mxWcE<)(^*D+8MN+Iu8%{Ys4o0C{cdd47@3PV~@kVarZthx!13?tv24~Nz39w
zs@&l5fmggm`!$VIOSF4?X)X0XFMOtF+mJ``6I7uYKO=s39k)D7!ny{n@r%bAXNUCI
z8TB1j<Us^$_e&n7k6;HR`&ZLmIQ@ov4e-u5ZG27Rjb~NV_76S{2EiIA4{?%m*gR&u
z$Kd9RtNa7_v2Cy3JS`QqrOL%5Oc=!@Aqa8Y)?bbOI_e%M*P_)WyqP8ts&e=Mj=x-<
zwbLq&n&g5el^9F+wV%lE^l#Z8;U|hGc+=wsp{GoL<%RB+ftNkH^{-U;f$_UT&@_pB
z0bw%UX+9XYx3aa5%L^Qe7v_Dwr1M`JPvg6*tyJ7BjE)E+2LPJL@qdZs)wNf?IQvwp
z5?0UNz~eQ`IaR8;Ww-UY*r$c0oT=~U`W+9&ElWtA_3m{0XsqONODrP;p4jPLdb*sf
z7%LUy0|%2$j^2CsRctBFc@?#%cmr6~BQim=1J{oAycN}@x#CsC&Qfh`Q`7V<OIK3t
zt}XHxdvq1(o)Gv)8z<VPxDukT%!8$K_TCEC?5+~ZeNim;9otFBK8C%k;5WfD@grH(
zG@Gv%URm5im=fB7w{aY2>0I@c<9BqC6r$=&-A?9zieFCf_lNDR>?4Cpg%@m&bC*83
z`qkfrUlo?yTeiQ{ZXr!SO<lt19N?dCdipEFKM6c7@GdJ$J#Onv@h$D_60P0Oh$0Of
zOPq-SC*>dmUlIIh@rH}zZ;HMmz3|nwwWo)~g4We7qw?dCQ-dI1bDUQ$3X;Xtl{@X!
z*1j&T4$^;dtMPBg&GFCT{-@%GO^`~l+gheDOfm2Y_a`;kX>yBeXq6WTsk8;{it{f9
zd2vi#uw+s4<aDm~!f~`PAY+ZA*1pm(_Gv{QHyVzt+~vDEyG+X(e84U+;4fdsw{0B9
zv?7qb209Ambo<byL2(%Cwz^9@tboG=u=$8?F;OMf=UirVmWWK5B%Jjb<Lg>Te7Ht>
z<Ba-N9j)Ma$YX|IL;UK`+jnjS3Mj?_ISpL0S36-+>q6X;{EL(faq|)D*i}|jh5!O`
zTR7-w7a$e{V?QuZc>2(n8SmJVae<2FljVAyaCcf2FKoQ{fCC`llU)7wo+TIx7aS9u
z*HUB%2?T(8sUOO!Tw9SY#bDeGqzrx)=TzTQ(5CdU$IGL}&Pc&O)7F}{2OE?z8OKhw
z*QS~bhvf%$GRL(k)0tcpQZen;xaCsr&7CR+6_%EP_b4(R;I9I<VY2gMQd9-$lfkVE
zJvRgvcEI5Ckz4lKdbE2sD`4an?Z-;Z%`MJ_2hin?iIh0n6!W{N{3@l!l=v*lRfljm
zuIub;ux&uwN8KD$5^15=IaWe>+G{CQdjzQ@dF0wz1c4eB{uV#bRaq?<F71N{^{(dY
zPERo6F@P{wbCXyajj4=~56U{4(lfiUq+rs!IjP~?#Xw(|mIQD=#<}a*hGYRi2PL+y
zE2_J4ql2{p<YSXu?xno%#{s*M(APv6wKr#}%w4J`4+MjO$>;E@Wk`15Z9HW5tsBK<
zh?2XB;A4SVB0{Ge9!>~371OI)9)upmoCPXK9{9#7=;hQfQME@co`#@p&OUAwaB<$J
zk0loYdiJVU>P=LdX65FdHn}Rx_-7~5urD;FZKI9Hj8}1aY!2iO$~R;Haw{V8$&`_|
zdZ#}x^{t^c_dY76G;wli%ES@K2Mv+wQ`^R>gBS#!3F<{`O>WXRIbx#?^5UY76-O#i
zV>t)CU$oP64`$S~BZdMG%DaK*6>=yWBP)=4;P5IyyCDD!73Yrm^{2+|<)_G7w@OM^
zRz)b=az(-&tB;uabf7w+0Jj;=eJYvUt+iO5dgrAQOY^Y=GWW+!Vy-KyWH}>IZp!0m
z+wZ%ADy_})jFw_YY}Q}e81TTekOv2kY9^Cm1Ak6BR*5B{4o=&ajpIy7XXCKWa%t;w
zSTmOkx1c@iAl!v>f+@dh05Z1LOa=>7<8@;mcA2KvBn{?4$@x{W&$ULbC1!SFSardw
zFEEjnoNiqFyk`cbNkXwX0eBpCsFkcrsM^%hh>V3@%00Roxfmft!wt{Mq+klqhC#p_
zoaExHq^jRD5=KDzMRCox?-Qmj`<qtnmqf-~@rM3+t1T!Gw6M-{D;7JG=8dde;Es3|
zY3@1Wc1LVxxF>#l+e5w<XwyrQM(v>p<C9M^d4W_oQ;(Z*<ch{?jm`(&LV3Z#6+fKB
z{NFHN*0Zx}=X7Un5w#uKB1SoO_4W6u;J#FB<92w*uf1Ze#uW$MJ&t%DwD|8re6Dr_
zf)BspQONpibSZh8X8DH^s)5&VJc^#)^r<8;Ag?6zSPL%a<n9D=M*^l>oss|tZq=_X
z#dmT3HrI`YfpF^~M`YLv@_DbGZ)GUQlFQegwdj8kwWheeTSYq}jdIxQ^{+d-A&Kq=
zex!TX)L?1*I(L0fjm+zNYSvpL4_03?A~CxorD9p$U>KN?I%Cqduf}uL#@uJ7E0@$2
zqnNs$dz$o?r<ENEuUyPZo+}b)%0C$*wBnduARMa>{<U822HHS5&*wu!xl$>{;H2l;
zpK%zJ0)PYUR2(`#JReGYGwdfPudN#n!x>sOBR^Vj!>=3>RvIxl$RnjwWihr7QA=`%
zGHv3RYE>cAo}!{4gU=M~2udj3nkkJ9UZSObX@FpgbL6+RD+4UsuGU;*p0#0y0mom^
z)ktzjO1LscTc@QYNfWWbBy&)1=YdkrI6Rzs6H$ORjz2nnV%%^eraDsY135oIQLY2^
z?M`yI&ssppWjP|4PSHyL0D77Cg)~ywQ(Xp@!|dn?9Xgulfz58|BpYx6`Mv4fBwcsh
zPdpwfv!>#E4wYfRSLd8m4tHY*IL%AbLp>Q)qXf22b4?0E^ffCSAL~*<AD=3wc9tLm
z^)%3#^#{YvJ#4%Sq{oRDbbeu0_pN)2gtiRCWk~LGpQSl}(KM?|c-S8*-Z-|7ISMme
z=DTqA_WY7$bGIY-Yl=;_+C1%Bxr^crR!i%GtCo#81&{QsRkRVt^2v{2$E{tJ#9{ZG
zF+P;GnibBj>+-$`$Q_MTApRpoD{gtOjfmQ@u-aX-f!J3Qbr=BSjGF7dAjjqSnp<R-
ze~^lY9Rp*U<z<3LT=2wp71I>#cE@6fT-Ju2VI}nO#}czUovJ-gpr~NAZNLygJvgtW
ze`gPbuXq0d6)p5Y#T)FkiI+KV@7AgpBCSqDU-(t<hVs(R*4`+Y^*g3r;B$rk@A%i<
zo(lLMr2HZ9J8Bw&sK1d*WDmM=xPX1DqWzwJ1SW}T{{RUdy%&`<fV3$x;Hu+~&bVLN
zSK_4JCDkL*wD$i1Lxov02>>bRe>%C^lDgdTT%Ap1ct^w;?YwE?87`jAId+|bNd{Oa
z)~cie(%;E~B#JVC5}*v@-mJ%G6|`>3$1E`H+~?Y`wVVF{GD8i#t@8|$M*_HG7WHQ8
zIvCBm;$yjFXKblGc+GVl8}PdEadI}G;R7CjDv!hZIc6^TB~CDS{JlkA@fNopk7#zV
zX$tTcsHZxSp&NrTz9jgDEjHFGSRAB;?O?Uzvpe0p?gX*<i&oybt3Ic6^GNPXH$%~D
z8JBZp604k*734~%w0B`<(i;B&=yu*=;4r{FkF9b##rp3ngPy<|)$tCn6;=pCF+2gD
z1#*|9WRssT^NiI&cQlU02_y3zfjKRn39eVf76#Jma33pn9gTIXx6a(z1GQ!9vZcyM
zgl8jz>0Q*@i#nj~smnnzjN{U^AiCT(_3xb4Jd5SI9)_oaPTA(WdL0JSO0AL9_X46U
zPBYi8MM37C#BKwwDtNe1Nd>-@M6CuDGH^j2hJ@UD^Vt0=a=dlq9@LEvBrTE;wJ#uV
zsSUIy3&5k0d0O<VIktFtN#__D$F*>eX}%Pc0$M&YI^w$+nSbFQA%HkxgXn4MOEaaN
zqf9qUR}JC^FMLLN3hQpCA30-@o-^9GokBw`<g8A4#%UJ<wG>beXxz{Mz@?<6rUQb3
z)Z^GxqT%tfJfJ?64(=HBKJ=?A0mU1N!^9FZWP|?kr;w-!b|=|tCYjr-5<Mz2$;~ez
zSg>v|HlV=o?@f+Jk(Eb0)N!GafFFsgNLCcuy?eDVvM)sIWQ3~*pB%UMew9t8GBIXs
zvE-6^)Md%<z@$<ef=@jvSsL{;?Ky>{WxzZNWKccK!B>`J(x+q#XBq~>cNN)uInk}9
z)RJ4ks}g*~vB1SNglKpN;J&Zo`NKnJBSb#)?KmFhy<B`U@P~mCG}U!zC%gb|f;<qX
z(3<DIAbfk5NYL9z@cS)-NtI@RkV<2KYr$Jvy1lt+q?wvlJh>$1hbGp7alYr+9v|`7
zg}gekv?!CxTP=)W3cIWR)E1r{vu3h|Qd5#*U<e+S@(I@7+5)QV8>z)&-s%!gz_T%L
zT=uNma@~T8Nc5kH{{S5I?}(RDeY;SeXm=6ivtdB&Fe}gPL(eGV6`qN_<Eb^brrT_F
zEC>gRw2~f(?KCow+GjW;uN`T14O&p8QJ5!8=ZsV~1ndZ>b~<CVS%XNL@^(O^mg|bp
zjc#UJSxt2=a9oqdd9L$B@Y#+q&wz29`c~J4J|DV6_Nn8-C>SKyNquJpowMMmDli5p
zx+eG7=Oak%5IJ0`jFX;8_O2^l)g{$$yts3-C*`ew66*eA`Dua9Fs7^ce!|u%8s_QO
z4ai=+)bm_Q4Qh424}2cFfQ_dK5Ko=F%Jyv@*GkeYQF5PX$=#pQyc%yFMW>cn+#+<(
zx20v>d`h^LfHw!q2RY6SM>j(GF10?f8pWA>j3PGxZt2HgrDbZKB7)qr#W^JiAO_%Z
z*1lA@_^WdpW;=%^NB65TZ;CpV!niXw)1BDpX)C=Llq_!iY4JSXF!5X(dd_9EvHjyH
zCuxztz*gVE_#?LQ9gMqqN#n>PJZF<$W1y3K?>msvJC`}HPViCkE>=kRWMv}<86vTi
zxnzv0c0XnQ68uGq=fk!U$mNR02K@CHuSK86_He|m#~|<kJev4R;LndF{>y;*n{cD$
z4bWG!MdE2Llt<>0n|NWyYtoBSS7_q9j+Z)b+9$;k_^06Kk96Ben{1jjzzj!M3!cA)
zd>h~o9Y+2Q(ym@qQT901fH`77$2In3(4ALL)U2kHd{<Vo+mKE}Z$dMV#=k2(H{u(;
zD#r6fnT&Jkmy=n@ql|@e1$h~gy)@F;_44VcNuK@U4<5lUn5z4;^KLzUwdVT2i4yJP
zc<_ar@ioU?YO+r@H|@yC=CWtho;i2<!Bqw@25aVA+dhUhlRY0xoZZZ`+}x@a&t3*A
zp7FPjp65|$t*0gxK^W()akpL}x^N>&Ry93+Ya-_^NpeZgCp~K7<kgujvP<1PPv91!
zu=w)f?mV)O5Pj{_AoQ<V__6V6@7Zu!V~k-DUyKjwUnbh>7g}x5xwVy`nK&mW<{pN%
zPm1NeR%?ecI~*MJs&SV!*2h*C7fvy8p65lZ__Fs_Y#Cgr9Byvjm6aZYrr&5<g!5cW
z9;XpkwvIe)Vf;a}_*QJXlx(;Sv<{$kH2W!1MR3jcxdDI1w)l0q(a#yZUCw6aXM#ht
z_r?!g)2&)-hT75YZoGFjwXJx5-CRj;H<;vZbUlqyv%VU1i0qib9Yt)^WVF=t<exQ}
zERo#WN9G$@vHjqL<M6FrH{uuebbd#g%6%jRSEGD9@%^9M;aj_S-AUM0)O^CdO8vea
z+su+`nkA*=Ey)2w6+N&;aj8<5yE~?hBTj2ryQAm5HShd$eFEuauWs1wSm6ba<zHp~
z%pbF##cv3_y1mDS?b;iL-x!+lBXWIDwR%_VvErWwY1;fcPLrhR+JBxJQ#4U0nY0e<
zdFx+JN#d(GrSef!rg&rk0bKPxm95b9=~Amj^G9>@zy1mf;SU)2H$m{;r?21HJ8RdH
zTTN$T4#*J`Dx3SC=U*0CAVO6})X2h))%Oql6z}5}pW<y-!k-Up8D*PFm9<Skp#;Xo
zcA_70Ij@H8=2Lf$Fx|lYE9mn2Fr!6sD_>tz<gwC}tI0{+>-;@(*2wF)5>9e`E2Y!5
zagH)DI+MXQ!dqMzfdF6;)OM>{X0e4_mMjlZ*jJ@3j!0>t>sDH-<yet`nB-^it?PY6
z#HicAY-a#)JuAy>bs;RO19CCJHPTt@O|Xr}BZHd7T-`RA=&))EH*Lr)GQ=DLYVuyJ
zak29oEB8^GBDhUARSg+d`G4B%YhF9S^8DGz6`Ng6>CEb2zIfb{-3NZTHE3L`pj?no
zSjTGTBE4>`M&sAor(4h743o5j$m(%il_SixJLyl9=sfmsnTOruVxHdBGP*F|xq}hk
zll81vFAx%{aks7;zok!Yd=HovmpSN9f3117cK44)l$zBWu*N)+6}t2Ft1A;O58pfj
zgzzgm3&9WqPMGA5d94Vp2kye<gY#Zo;_rJNtvTG&wt*k!R0ls=(YKA&cmtA7Te0`7
zl)D&Rpo8h2D$-y6@ljX;K_)!^09xd2w`O&7T+%8-hf&*)KxzrbGQ$HS(-jNf1SA3r
z9)NR-sdIjjDQ9wooD#?KskOEnmGoqHSn_0(47-NX2YTo4n7S1H5TMoj$sRz%b1>Q%
zjos@Sdy+G_;Qs&#2l>{?JuXsx3{6iA;eKLIbL(8@r2`al%zj=;uBPQ!zDLa6zs9+(
zO_i0GZ#n0lwcQVYV>Il}OHd`ZV3p4xb*#pXkTUuV=Nx9X?@%<O0LB2vu4_J33&M;Z
z`)jHw?Tt%nR#?jAn{ht<>eaoz^Y=#{ho`+DVu%Pr7vGR--J<O=^R*muaq_q0SFYtw
zqO(U@$P)?}IX}c|g~Aprha}@Wv0D<rcM<nju4;wMMWbT*IO&7Zr$qEVZd#bKTNwZ)
zvQO}ic&e#x$_r#2-kn8g2%HrT&J#Q~IU<Ox)XN^&n+ypfJddcYER)p5tuBht!qP7Q
zWFMP6)Zb<-h}j<FrD;K6V^<*Llg`nADsiW*u5zo#Qd?*h7f)hk28<akLWlWI<NSH!
zHJ3HHL{2k+a6206t}GRPV5~_8?j8+cT|!hGk`E`7&2+}eXmZJ0a|UN9M(ilgIPHq9
zb8tZUPJ0ZV)iv2j%d-YKA6mz`xnv|@6Wcv2c&6HC1m$fDK6n@*xg6&`Xls>h<0bLb
zR!P0a><lkVVy#Cj2f;bW&T-q)x?F9kmD?}Ja71`2a6af2G*YZZnDD(#Q;CQw!*D`+
zdK$Er+t_8YdEoTTbIB&`$E(oLh0B2MaHD`TjE`E-5|x#4otel!yj3Uz<8f8TWl_*p
zgivH~bAgaon)9l=Xm!)olSX#7asw6UdQ-x&!6beh=9_MtkYsMj>57{hutJ0#Fb`Vf
zQg-)F^`b;=8zgyB6}x|pOACY1xC5pzGfZRzw?x~JK|IrzB9W<9IP4pmiAl9?$3$e-
zgW2D1?hkR!e=2-e1<DPi550rXeic~$@222-anhd-a;><q9Guf?=_8>{C84De42;Jt
z*~kO2sU>p^Oy)oWsbiDS)j==^f<qp>@mYQ=)RxlA$W{Y*KK0c~mpf5LRjVp+a%TnN
zJLSB;x}DVg!>R9FeD@+YVi^8)tE)L7lzhMwh9<c?nMr<FXV$)^F-kT^#L4qX$?i)u
z;fd?JxIHT};RL(;d-@ucqz>2z1x8Oav14h;<eqCw5ut-DZv_7UDdMDC&`#In`&PBp
zn(QsNllfOOJc2pj91wje^%~T(a}08j!G2@u-m@lzs~?vDRp@TP``F0+Drbde93Hf{
zD`P1oXt?cDI{D*wAJ(Rx$bd*aI`LG2DBKzf+zwFEm)<Z(H9yOAoDd|&F;(P@p~2%6
z0EU`IX~fcJG!!cGX-LVYfr=`GO$q1Lt;R^;l0g+tJ~7g*gP7`33~Y>j0r#khCyv9t
zNXh~0k8D&7ahx1>=972ORvb<`5ubWO!vqo2r8Nl21ZIX|{{Ysa$YgELIHVM`l=>Ec
z*4~OYTaY<9tV6)9jT7gIlirJpTN-kWtMZY}Rh2Q%w`#R=1ZWs%t}%+L?X-Fm+KZVo
zzaw`&`4zR`>ksWO5$Vt{1sdT2By<_gW3rFE$u-*iD6?CS6xxDV1O`$Ee02S2xTLf`
zhq}2%X-M0*JOk8Xxs7$c(J)3}NcpnIrD;j`814DJ+o?6qBvWe|nxJgPI6HaGaz;0H
zJpN{#%bp(a!|RvGQ!g29pkSQ){VVCOhhG7e{5gNAUw-bw(%M^@WXB4srHId_1ycQ=
zz7xx?Us}c?ml81CF^#KVN&ePPYw(lyMe*I$qZp-=Pg@l|8+@l=$KXwRv8JI;<_q_g
zQa=`TOW~^Om)Bv73GO73Nk76^<MhQ;RdB!#o$*%etk07kaB!f06=PzfjEn+tkSmz>
zE^K%o!k0cN)~z(lXqm1q<XB<=b!Ipf`ycQV_HVbfw9?-C)+Dpi?W2o?`6Q4JnSlD&
z#eeWk4~4egKKSWpJ?utXEhgFTm=W@p94J4DuhqX9YVqkhRJN9Au|x+uINj_krVS){
zmE`9yBguX`c=YKSRmFvjg4zsiB}Os;#sz#!uG|50a9Er(?io2e*S!2>)uy>%sO-oN
z;t2KYUq5RQwAYU!0kriay<;`Z?#Npl=BIq@-db)ap<b0=Ow-gh;#z0qbk8-vXW^Nz
z?$c&kMmRf;cr~l4>Ct#vG>DPsF(Fj)LG4&g#**e`b1jk2UfwQ^5or{8<Y05oJuzN$
zuIiIs&d(#@9u)^_>-BQ?NhxLzD-w6(fIU97$7)u|4)X7eVB~kNBBOO3-otMD7?Z|W
za&g-SzrAz%uByP4hdyHDVR{O?s_G(nogmIS7U^94=ddhE_3K>G?Dj4#Eg73Tkt-9H
zVmf+Ob;i&MIAi*cdegc&QUVni<-Kc~*R=?&p=CpdJxzAOJDWv0Xi~q`7Tr!5H@#q7
z>Wujj=N_i1++4lOlE;q1q9+yT#tCkA#vG!OSdw`(<!m2MdTkx6TNce5c|cG){c740
z$;dU618rf0TK2=v9eEw7u>|M{IL>`4;>K75)cT&(miEDzagsS16`;{=3d%+Z!4&VI
z4}C(yAtF3y4Y(1N?OII{hd^lGc2$Q?yj4vZlwNE&T#o%STRPsuq&$iS=5BC$Qbe<h
z)UE=+<eVQ$<yo@C=C(D9kja30^{iZHtp?H9Q^=qUQAGuX6dnZ>08vF0SOS%KGzG}!
zldrWjCQPygTmjE|YPZTqV^QatDIl>T^~Zl))TqH_9XP7{jVN+6%>ruXo8A)R+lsWl
zAh>}%xZJKqV1^^TF7kSwDO%xTY40Ssc4uwJJxx9-L|}T=Q;J>Wccu*%<hf}}0zmpw
zMGoc)-<?4iRy}c32|yg40jIF7p`&SR0*1iI&lRs^;04QZ>0HO!Sx*djscokxJEU?w
z0ih9QceXR;QMN@~9`)#c8q{=c0et;R_8DX!FhxCU#Erxe#97)=#|yt4)>X~g%6c;}
z=u2jyr_gp?Pop)zjk;O}hSor+2Lruv+Q-Fz?Eu?lI3u9qynSR1_m@7kAu)hR0251>
zKuI03@kP0t%z1J#p1o<ac&0fWc1jQ)xIKNVgfkUm!1SlW+vFKJUbRSV9X0;CW{@sM
z-$7aPYFoE_#CGdhk3Sv13TE<0Zh56{;#wDe)J{fl-Dw)-mNF5J<5f~pMsxVokxlau
zaA||k?>r!-^!V^b;n%f#M~5Zy&UrgV<AIzC^3Mfak!taVB!}P=+Pxpcvk^E^kghhK
z)x|ZgrzJ(H^$)?#WU^bR1=Jm&0fU<QS3zc)Ki)W1BaC&;d~5KxQW0D-?kk<VD;`Kb
zmGu7rguGl5*=C7%GM%g&kUjBTlqaR6aLO(0dPaw7arXGaxmd&f;(CvI{K)v#qD$cq
zj~@^;?Yj`_ZE%2a3Q6+{{Ug)7UeMj2vbrNWoXFgSBzjlIpS5R&h400W?akYxzOs!T
zVz}Pv#(ub|#d6M@iP?m1GfAI6+}z8KM#2s=p0!p+`52rAJoM{bJlX`e5(ur-%^^OX
zm675-I&TZLlIoW7*tPsdds94ReAvOkWY1Ba_498JDJ#Vu<DV<lnG-8U#N&c9%~vM`
zWNrvDN#GjiwQn6qYQ{TsGO*yYbgny5*Y9;Fb0o|WzkyB#bW*`iOWx5C>UKL#OU1Uf
zaylscM7hQg<PXNQEav-7nVEo4S8!iLUSDQOxLz~OdNO|FPYSrs%JpG}rv+qlN^f$M
zI@1|8l*)$Tja-LZ1GrI~V!57DLygPNbCFh1lGq2{o5ItU=y9z${4DFE)Y@V4v3Bq6
zP)R?U+c$C#uX@bW?p`+oZ_0m)ro4w^mqx(PHI#5ri_p1ZWY(<cv<)Xw)vgvTF5X+~
zqn22q<-ZEKd2!+x9jz{HZ(*J`$&OfCc7H0x@Xv_vJTHA~s#-|V$!#jg2s?UxE9lw(
z0BC>hjV{{iIUaeX{{UGOXbU&CNZ?m}466-^(oW3taT%5)4QB;(%0IKe#2CC6;)cK1
z?PjqH2ElbY6haBkK{f3E02RM(O((-X9l5vg)yx{_h-Zxbjyr#v8*}~n8{4q;ubjMV
z;@wxqwo<`&JXY||n?<w<o-@Gayq8k&?Z%6M_Kyr0$U6uasKs#XF!EJYuNTnj!|@$#
zM17M<G1t1rp|0whj<KuVKBKGZ5*e;;WjSYm=sl{cvn9wN0H?9_p;V|lN|w%l3TA(N
zssLuIO4=eDZQYvk9hUCo9OJ!W*<TctjO1sr=Cvln!H{~6aa_oeMC2YDCytn-a^QCw
zcBS(wlgFv+T_&HY9-Dz@=hD39#_MAPoO|`Iiq7?c!3B;w_NZ{Vt?YN!x5h+P<pC$@
zirui(iA4y?s(IYUw|e00^#w)%WD+t@QJUAYxKfL_<dMh+fl%SxYFg-bFkd?`Qp&)e
z&(g1p-Q<nMTd*CzmB?G)D0RaEpb&ViYiY<;+aURlLB?<^j&XaPaFxx-<|uI+ft)mi
z4o|IWTV3WwBO5_EV~@hQ$fVi>xed5|;(w)RMRbbe?uIxd<MI{7Ry^v=^eE4jrgYI=
z`I0f+l5lqq;;ZR&u}Si&&royvS1y;ONGNu@lae{9lJ&5mWn#)Qc^Nh4)rOWwr%tw~
zQy!pFL?G@s`<-)FBfervhR%39e?eS?bC4C8zD}gKTEA&@17%4gwR!a^-bZw5r>Z(8
zy>}TTD~>QdY6<RDS95dgyPTTNl29hjHvj?Mo}<#EY09X^J$bCH%X3F7vRli7r*PT{
z>`x=<SrS~cxI2b3$*Cu~9$S_<!N@0`y{jtbbyUFsa#Y}S9<^}0+^ESSNv?t`WU7ta
z5PMcV{OFJ{INaRrJo8cAUn;9CWaGY1IrYV0>KDyBn8b=0a#)^DE6}9}a~hQ`Vk`Gu
z?5nrs1E&N30Iyl>zGRFul6n!=p}4(SSdovHjiBU;ulCXkbMh0FE9+hAozk&CShl8`
zI7s@EpniW!zil8`Kw*>}7t*m(QnC<8!*icXy%gcFNp5)NslwY6EK-xy^tmBrW+w-q
zuQg8U*h?P^#^0M9Vzfa%V{F|RIZ@AQdPlvOZOV`V&rH`FZE8YkocH!*VDAN+k<CkQ
zrvWDA-^Wvolb>4JHu;xs)yX}o<*k-U&&tCb5yMd03u$C#$EJloyS+y_%~)+W$vdzx
zPdTlmgbk-4ob!{?p4ROeI}}pS!3uH(GG!YawZ)dy#?8E(isv;eCIR-0FFX(NuHyIi
zY86xhM?!O-dgiqhF03~4dE=q0QfpI^X=|b9cky{-0tY<sc&=*p67n-4;ZHpEuESM;
zfZIq=r-Qee!Md~zaDR4BL)yJMYRc!4QEqc-8DE%kGm=}iTep$hJHaF0y-xPb8*6|;
zq6KCwj7A3_=DMAk%=EEt2)FTqibivu0nKUH#PYhS`GNi_r*9rXM<n`=!nZ7-+7%Ro
zj+h-Ql2(b;9ZN7-JZf@De13ImIF=<F7Ysl+#tlyzqLmmM)cmBHS(Rm!ZeX7;1dgV>
z=S{geZgoM$EeBd*4$uiC@Ns}C7B4RgjFFrGI{j$#6!5LJk8E>NCfM==Hc1CKti762
zI^!j4G$^)b!5}kZAc0ZJxj~jJgmMQMtATc_s&(M<deu2{q^NZy^;}~Wn}xL+nu!ZB
zMqWakbk1rOyHH3_dgtnD3z@LTXdK|4II2lGE^r3Ye}=b=6Z9wBH1stVToT}gT=YGU
z^sYO^+LxVqf^dKkFgPZ*?rv7z+1o5h90ED7GuHKYl35*?k4|gW!ckFeo@O?)lvGGB
zWiRG3HhIP?n7znj$lMKR!FWos$vN%mS-0*T_kTL|5#q9*{{VhXN|J?OGs)|UsU(3{
zj%vEh8Oh`@;~Azh_Njg%wq;g3h^}4Ovlh-ttM_sjKT4)lp47&j$bS-QXl~vY1QUVU
zqbau@hMHH5fk~ISsF%WE!GOW4w|4sgbss6{MOEYqxo32s?3d<Kz|U$0XSq#Sqi4Nb
zGNr@>5Cnsvr(Ef+jq$K#ZbmATZi%o#27&H3ka?n%oYP6gJCrCKQA<fk2Sze#)MRbW
zYO;>rwIUD>4`bewGi0p9AJU?52+ljwyI}BhNLxK|_)rL9_olZU`K3KLrkVyN6j4mD
zJu73w>=mTQ{A(Qat#1#o61GJ&OW54Fk8)%j_No%bcel4aD_!9U7{)p7Duk#>$tN_o
zGAZmlV*@>fdRM`~w$o}CZZZ`FN>5yq+Pv~O%MsXm*P?h9L2IPAP#4UTu6ZC-%S1&_
zg!F&6JnmVS<qBA-73hBe{v6zRzgdhJ8_S)8e4_<MYsgYok&+PQH?T%vc>^{2H~Sm>
zD2MwR%Kj~)G<A=!C%s-85pw2dl~uJHM|0@EgMS6Bd=;WYEQ+E>jBYsR74ZlB6{F%R
z-gp~F@cy3ew%1ykESq2Ce=HNyzeD~d_`=)5o*cSGog<h+MhU?KrG7Yn!9YAkWvh6<
z!TMdC(w0c2yqYGHdWI(oN7lM!Cphy<<aJY}8go&PP0yFD;AK@iLmYEY8(F}XEc3=H
z<S_07o)2$YnQXGa0(WM)`kimF`a%By1e(#B-TZZ^Dyl?nA%}i4%1aZB*Vf+=^>H3!
zjeraCf;v~oU+_&26()<Jc=Jt?L{lxi7eJ1nsVYa)n)(C9J}8RrXJk_Q#{+NcT@cjs
zDyvxYKZq~p!zA)C^Ru)bz*m~scuMD1yW1RWs@)rIRcqH}(`WGo)PTi=KXi^Mo;UF>
zk?@yCjTEGstn0Q5afXnbb#H1_B^ay7i)*7eT~fnO_<yG)w}>R1t`aanXE^><;(E@v
zb*kzzUfgXnIXF}N1Jb3}{6&A_Jx)u@>DpNspOwc5I{{c%R|^u!^JH{9^Ij!dj#q4@
zwb;pm#tXZmjAt3*ywk-R$Der18*NNrAUPSWpAu`pM9@O}n-~KeW7q3kYTGpOvyge`
zBDhrDO^Z(Zl;$EvIDBO1r!<dbRI|+B?djX|tFH<~jLx9r^sZ}N)$oiGMOgF8diz$2
z2+>CD&+#U&94f&W0C_m*E6sH)=f0hZVpJY8R`tzc@1|u|I{~bf>0YHMa;vk_ggH=v
zW}F5n0~7<A>9ME*iZewRq=0xl{VPvSl$HbDvUA$4S<X?^XT1#)(cS6M;Rir^jyhEH
z+x)rPo;hySPer=Qscwgg-e^`q)T-l(eJp0t&qJ8*_kaNhAd1)4rt<VcMleoGXOYEb
z-N0?1D!c=nRJX48dIiL4xWX1W?TSL>)brbkjM5X^wMMDEsR`n{AB5UXhP&gfGf&iF
zX{~2+uBvgK4JkV-o27jb#~+ui74#p8e`h;esU(+0yK7Qhg@WUh1M6O4to$SKE{<5f
zp7TZzF9*yq>sZ3HC$lt_DZ_Meba$&)8g0$16_yu`hfvB#^Qb(h#&(~|w@k|8DQR{Q
z)MA^`fViadNktS4QfQ>3y&(!HJW^7gY3Kn(B`$cR7Zbe)G<Twau<&>zy*H@GYC4al
z9e5pR1UPp0tB?T_XN&{QRa6J-QcExkwNE|i+?FNG{&boC5!=$CCz=?Xnr#CojFktI
zO_hfj^r*q~?Lj%CaIm<kqxn$ecBqu(^VHLwv49E1Av7*P9dk-fK*uMoL{2k85;@N_
z#!mS`*CX1QyB!WaX@*SWnoZu+2;cD5plxpzGlgT{y?U03dWPy9q_NMZO7SS=G03hm
zNIgY*Plfemx=7o87z`1fMRQh-(UjwKd+&npp345(Qo{<|9C2Rbqj<3*gkkVWJd?u?
z_^+1qPZ30$4703iJy-xMr(cWS7V!K+Tir<~l@2_J&QIxHcRb^D6marN+aE|D8hN=e
zhCa%B)<xIDTc3_{O`^f5CY|C{w~|dIE(ghTI*f>kJvR<B>t8!+pSBK<r>u#h=+j6*
z!aLzt9)ud;{6YI$c*j|lTTMtbX%)9eHMu54J%~MxYfcrU({VJ7I*F+*534>0{?5AU
zc!J{h#;{!YZ%NVB=hv_AlgozE1m)Bd!!u(8>t8DV)Sn(Me`p_!_r4^xhwPpmutn3f
zODteRWgp6%dbi#`TASjZ?N{-0;~$3Yd^h6{9N+4iJP5vJl7)pQBcYV29$_EtSC*oJ
zoTwaQ73w6Dx<_r=Tk2uzyxcPmgw-0+)l?*y#sz0pmljyCQrB^T>s{8PFt@P`&9{Is
zD~r*g^KYXB;|Ddj;(M<uIM5vD-jNd5K|_fXf-zG-q1b?PisvEJ3Jt!!3GG^Tx19h#
zQajQUM%n-{I)Pd-L?^doZ@-*_Sr+q&2w}&qYegXv1x`U7L8^&2TQP{gE5Rz{W3Fq`
z{ucZk@y@+&uVtgmbm_@-xQz*108Vl`a1D9n(Ek9-R2XIL+v;od&;AMP`&9fi(|iR7
zgFH)j7Kh>%f3mY(fFPMpb`Zy=b6V4{>?EgSlMzMNk1BRP0MtGzX<i)$-$~QIwY4Z@
z!`w(dMP)vn`d8@(!fy|JH2BZ^EqIGn@hm!d)uGYnx|hhp%W9rcAnoc1VP86YB>k2L
zh5rC*4ShUQrX|ON=D(6;x`hM4V|fnWpP=B3b6)5Bdwey~e`jxn+MkI02Wcgvc!mY=
z{lsy$VTL(*GG{$V1OY}P6+BGR=Gf+;hlK^qqrUgt{JgLO?67?9z^OaEM{0%c3hGg&
zKJxR5w-u<ifmgCF+>_~C^`+BYYq<wFJ4Zb#7N?+gKYG~r$E9*}3|ui8&Twn3jP8Tw
zImkJ{u69de9zmSpvQJuuZ3U~j91|VH50s9%u7bwxLV(PEt5`~fN{oEMu3J9I4^P6a
zA<ILow7M7tPD#kcYuVg05CKx8_0KiQL3OnN0F&Oetmjq%NZF2uwI?2=DOuR-p}fgo
zn;7d_a9stFFwM2PfI3$x4c-`of)7t>zXj-xcIO20d*-lkHRn5PThx<klgDh1m8JIR
z+9ldTw?m#zD~7k!e67DY+Ck!`8t_%&ho%j1)TG|WY%41yb}{M&H{krFU={6FBh`^W
z1(itPbUCgawZAbDw}b2rAKL!_D`7_jbON~LM(Nz^r&`CN#eSz@W>Pw`j@5Z}6A@+4
zPH?B1^J`sQhI6}<(477iq`n{#$kLbdSd3)xiu0#N$E{AXX*(V7_K@0mWGR8P^O5UN
zT<eG!mH9x<)h8z&^~Qg0k}<rWmz*Bm>a^P4;H|h7QG=eitQ8w-^*VjJ=yg{bvD(hg
z6k|Jk{V`ehdWkBeu^{qD;MX%Yu2q5|9P!hwQlD0k<v|SHbDz2@p+Zi~<du6n8u$8x
zW0Qu@HO<{>kCr)1bjN(vYrRN<cR1XA4PnoAT)L|OdWP%Py-HM`iKCXLB++Z^v3EEb
z>7MlKc|?j%K<BCcm4frII8qc2Nb8!=wwajlcdjrFF<tzMDB}9X+0i8HDgm%@)E?rk
zMQ|4+jhN>IWD3W%X4~^Q&T-POi5;>!ocHvoloCaIXM3~Q65z8b8QKr0QC5+Ia^PV|
zInD)hF=`B`3Eav~(8T=0v~Beb&+_D;<1Bigaa=Q^&q|$W*yv!C`J1+*Gyebx;{)2X
zB4HUPIXL8FIQKQr+upf9d;q7Z?N=bVK*6wA8Sjjm%~96RV`W>bH&Q_=mkO-Few~d%
z?8LUif<ZqwLTVd(g*^G2Pw`c0?#!q6cmcW>9MV+vb`z_nrENzj56l>q{w_BAS1EYg
zBFSycM%}};Z(U4G>c?)y?0<@~uFx_#Q@jE=Tng!hI~;SUn{4IpB36`~pP6{if5Ne^
zEymIn2~(0!Z1)w@+{1>!#s?cuU&6Adw_w-<<|Ln+rFJMLaLx2*F+4+WJQ2=18n5O3
z(4c1-+&X5quWkI|aH_-}xa(BKubBS;GV-UK9AMW<fyvD7KTeEeGH}E7t;;kB{{S#Q
zH@-Nk7Iy9CaydNXsTH$sf-}oxlaYbO4QD!ccQlOBCvp)1Kst0iX=U8U%zR^jOAa&b
zPl<CRXRb5P_|?C&ZopCi``IIk#nWqZbyDROh;AE!<B`Sz{{ZV$q5lAQnQWmPDCwG4
zfs2RU3jvOL{VAd}i;VDoTzlrTl`Cpjwqm~hvM>ce#tG<sYPH1b6J}2bAf66tS@&g#
zP}n$Zp5E0)?UWo4SmXG=hMZ}63Dqgf<}e{xW2Zd`ra==sY{_2u^r=-<6|lq9gHuIr
zjN6NCkgn_=m9Mh0C)$|0=~!Udoy^$-o@>iB%VQ11snw5MSE2Z$Q%LXa?YAn0$tAm*
z<2*vB@`(dvbs=l2j8sv<UZ*^)ap^IM`}%Tfz3Y}B<ly!dHRG=0K<QLxmvW3840auB
zdsxL4<bB+Z4r;S8&U1|OQcaPNbH}w+W4DZ)14tKP?}APVIPFbT$o~Lq(9~s)(~b{*
zYD;syy7TW%F~1@v7~qZprsQq|98~vkl>n3N#Z~1<;+EitG<nWBsE8}nRPi_WxT)G8
z=mi0L5L#Ze5-v~6+#1rkw}SQ^@vv9wYbI!XvOCn)vV4rCu}wP-uBfW$QOf#JLHp;u
z6kM>RG_)RQ0YUZVo;f49rU9R7RRf-XN(p3y5Jv7n=}axaJYs@QF-<3$014)h^ra)-
zjAns>>q$iifk48wGzP`XbBqk;vVqNN_<a8Wregq>80L{LW33Tl6zhU|)oJ4j`Qrn%
zTxnHe+l|DY2c=M)lh=|>GbPxmIT7-|rFsvCqBgo@3__q~+@l=i*PX6syM{g+a{xg4
z*QZ3kyF?)EMG6#ltSUB^h7~2LyW!BXYA_e%?#?lumHN~BCD`A$z%<n~QxEo(%;qz8
zLZM(Vpn6y2wTgX)SX`Zwk}{;=0bhOo$iEb=ygA_OcsyS`*1j5znpmz?_N;P_NWkmG
zIMkFEx{MT4m%MVGApN4eUE=GlQ%1ehAfHe-uLRM{DF!l!1ZKVp_|xLE;}4Ab&A?F%
zHl$g{8k~g+Il=nozV_5LuZ7mWIMh5-4y8QN&3SWl&@%1HkVrN8uMO&I{v_3J*Cj5l
z<(Uh00i2QgS5vi-y)`XcHk5O)VUMU3^$sRbGO5=my-5<41Du1@)9tPN>yl10?rCUK
zNgrf>!Z%KQQLNjl<Lw$dh6AGj<DM()Z}>-E=1h&jS$SM^HS(wY6U0QH5j7~Kl}Zg3
z;Ox&&m>T!*iT?l`#+&wyE5n;)xKEN>r5`ML9glNbx{4_Csx3=@5dJ3VUkt4p+QJz1
z9eL9W7I3it0JQb;=DDoiYr2%WhM{oR*RqyposL51_*c+X?NUi5xRz<BYm2Ee%`}9P
z#QU1#^({xqVH8ch^PapY_4ltLtlXX0?w-SS8|ba$^CWGoqbj1f9cRQ7+{r2+3cHBP
zx8BWcYd0Hrk_59b;Pw^DvWOV&0h<{s+db>fnr+z$Cw&Uy*Ubzid?3jzhdkALxzaT|
zNJR=p-sYC}{6sPrgPbmZTF1MUnlzSR2s{IvVyS7Ns#hs$x97@WPSnP5PbR#_#M<e+
znWBt<ql1dm@rQ`_mWmfS=y6<0W1e|6=uo8X%_F*%J1eni2+b`O-D9XJ2+b`N0E^a^
zfH6fIfK#JltPj6RZ5hE7Fgk4-_^afc<DeDVTih9tWal{ieXGp$`TV&toL6z9U6)k@
z2cG7Ip^TBOb!YadPww(Zf9X_hka;sg-!9-+r)ucnVjv{rp4E?iZeyP@{Gjr4+<R3&
zAw=@4xO|J5W9hYsuT%Y<JUwx$`05LkAGx)O=5yN^#d-F(ZRYD!Dh?Qfn)<u;Q1E0+
z;Vn;DV0TS$EurIvRT*x6waJN}v!>bCMJY{O>)T8bMwwDZMo8^eBY~nvVB3eF9<|n7
zXvEGwRRbNmesxjw_~Hcu661v(MSSe9D<4TtNa3|F4{5rR?3%*b<2<pE0X50r{3r0m
z(aPy<0XfNy$Ul{Ooc06-!Ua`0!Swa4YujZ>7;=PmQ=Ix$!nD=WdjzOcmaQH$sr(7i
zE`D2U%Zq34xCRx&>pueZOI^)m(cT~&fN;d;j0*ZD;@C#S5IxB6QT>Si>;)>=&hK2-
z@WoV)t>|&f15LkoL*yM>!aAmnF^=xWXixh{aanC_=y1aaIIpyx%~gq!JluiAsvG&%
z9-;96072FFi=846Pt4LrHZeK%73f157PUC#fuGrD$jupCoOGt*zKqsB0_gW`BUoKc
zXxaOc4azwD>&^U4@QYE=BlAR%%Lisw=kl(&R)tT6oO7j8pTv(k#yikPaaN|Xk|$(k
zJCxw!qG%md5~uO4Oj9DFoKS<!CNWH*JBm@7F-J-TxP52`2Z|}6=QIHQ`+88$S&8+g
zo@k^N6!J|JQPzP9+!{g0IL#(`rR`5ai^ei39OsiqVrby?qTnC~ospc=bBX{afZS6+
zJ-U0*j@{_##TyFZsH+y2w-%ecmnd7Qs@csQDFv=sy1cxRipw*x^xai{y?turS0Ruj
zoa64Cbg4ywnYYI(NTByPKa~o?y^Q{&uN9%D+k)P7fbCyTTC}iQLmugsOCRB1T955M
zW)?BBG0|zUHctx~T(@J_n!cF(xyKbk*kSquk4n~pFw4Nn_o`ZxvCr!{41+w5D=b#7
zx&qDs#yzVmy#|rk-0-|buLI*CR))D?*HQvHEkoh8^5K?3c7QlFYTr{?ot3axJab8E
zX7@SCbomgTIQ7LrhlP(MS6s^+ppCymJJkuau`YPp4ONhopHni|Qgw0jekQs-KJY#;
zMgZ$v<;Ixy>`H<_=}T#F_T*)-2fawzO!O$_R)j8bk^V(NJW)!G89PTo>sh*9qKz7d
zAfH;*kZ<{iJC7&UksBD=m&896M{6F6z9iL`OGgg2e{6p&Fz7(fYW3@%j2=Dsm*Fi3
z!(KP>74EO${W4!SPqUEmyzm*w<*}YK(!5W^c4cHsl)x%^uh9Ph*vr6P0QlwbLs-yf
zwu&DR+FZwU`je?Hw#&<b{oHi-tmcyP9Iwlv^3TOj2<ZM1_*JFrQEJegb5Oo`MvxHs
zvBHDqmHh#10qb5F;rJw;@trwuy^8%){igo_Wsd;K@O?E{bxWO7UDRV1-W`e<ww5CV
z?*9N}4A;n?1pfeJoqOUQse2xkV$(}!yX|d0QaHlol1S`!n$j&oJKX0}Z%HdN$|1L!
z)CG}BmOyYu4l2A>K4EjW1E{X6$381h7kH@ML8e=1wwCtkV+NmUNmW?#rOO^mF$9zE
zS@w4S0J>tp0#8n~*4JlUCw`|q)*D-s^JmhSZ88ZN&(gYyEI<c$2OJ!I>d$Kuta!%b
zk~3D7nR4uBM5P8;_pJz=?$5tkYQPh!o<{?%NgNq&bA{=e(#f0>c9Cr^FfdLBw`!PQ
z>~aqT4oy=<!6bD(Gv1i_Bj#LE<ty4~U6TCm3<<~?{3)N>$Bsuz&XKam1mU<o)d2-g
z0LUN2D<>7XtYr2z*HvZ!6$B1>s}X8BkTy@LtN|(Ah0i>e6y%-9&5{5(BXx61ns+**
zQKO}gQwrG(Ksg!BNSe6YjlkgJHP0p31$ke(delpFLXMuiS1hQ-^g5wgtqz>)3|J6J
zUAR2be`<0t+#kxhq@0!`IVPn`l12*<0plXGR5^4;s<rnz7SxLcY=Q@0T8eAp@$vGL
z&sxPdfS|^CKaEEu?XV2zp0!b;mWETP-sRhi#ys%f?H<)qOQR!WfPF<k&y0{kBi^76
zTOD)jU2%s)na!fya~Tgz_6=H=c~uH9!x%i)U8)vbe-Y>_TFD)b3g9oV9M!n!LX$OZ
z!!FUt<B)4gIM@{mN}O|!^_y&66_vuAp1J0<tw}~!!94fq!mx4IQq<Ym&AoQ9U7@p%
zc&S$Hp?rx5Oae!#s#9H!gc1lNAc4}Tt=n$}P6+j@bgpcw*y=5>epPU!9On#rd)B;H
zLPb{HyKx|a)K?t@>x9b#(Brq#wzT~~DddMk$OE7?o1(9=vaI`^TFRgyC6$jj9+e!#
zHze&K@srxJBD+~PD@e@WPKVNo@5xXUly7lIvNUy7iKZ=b+jnDV+A?@GR%rIOLWijI
zB9yTl7s<yZhcyk%pDL=jIA93JHL9nfgQ`-v-MH<?-N(#2dRBeX6bi-5ZWzGqYfeSn
zvNrz!m>vaEc*DqB=T#tMcTd8#jXh3xJMLtQZQ(vpGENS7G>c{#$r0rD=k=|~>_eO+
zd@e!br@dN&#2^?Oi*Q>Q;<{83mpOqQn~#-A1RgLkTDFmx2JD@|zVG*jD@Hv$6Y}7y
zwlF&rR^ro07%RUAoQ}UrUd%nBGgi!%1Z4(taoVKV6L1XOdY*Aw^IEgH3WbOrbC1)#
zGFx4%A;4BoQ;L^OmZjLmWCgN6A9L?jqzjpLj(cwP9+jze5apL?Q`C;W^_Oy`k%kqA
z0dQ%1F18msC|piX0ALvBe%{8YNiWJiTpz7kx^Pgcfq}~r$I`PUm@e{8=D+|Rf~ir{
zLS0g5qzJ?nQX8C+)7qpAVMmatZHt_KHBuXdBq2gL0E5!1c%JobbSsji<y7I9sLvG+
zlK>k*<i1Z-Up>z%@o$QS=CyesZbS9Y@~oEEjnZRwYa3A?eYo6DC$4Kg8>U7)RHb7*
z^)=^U@)PUV-l?}F1KYJaIX5Rfd-~HR8QR3)&`pvW_~?3`)lz852iG+*U|eSz9VsPz
z@)x}xg)Is!0%wjhOB{qaY+{_`g4n<$)F&Wy=9^=&vl^|`JvkkPW=j~0DnSReTGB4W
zQiWr|HE&t4Xz?gtmAT@Ac6Ko~m0`|)wWDblnuH%ps8GlTMhK~GSjQ(lDFYjE6C#nG
zJ5@z(r=@FN0VH_<V;!p{vKoSxqX{g=lnhc1w6xJ-MHErg1)v_;#V6sKKOE2k=ZYyP
zJPL2fLSq!7fl7H9q=AV=6j5P?X=qGV^bz!|+P$Okc&8a6f@QJR%t=wm<GAW7l#+!9
z<-sF0YDr9hDd|~vPr>5@90F<RjElY+fL?2nZ(o%T{Cd}@X|bb7WZF0!8uR}E16qRD
z7i<Si44U+fIEby|0GyMOnd9qR^*oMwrrv|KBq*sMK8LM)@4-9s;*SJfXj0CpFP_T?
zW+VbofyI3Lsb+7K0GJr$@N1;_YvQ>)J9RTFl2%yc3!EMgY*kX1y<-<=6HCRAUic%z
zUM#oN!o`1YXC!!G!<IWkFW_tEZwf|I6OWsYIO$(*e%bfhUcLJ`>E0uWQFSYuxNQ8z
z9J-vd1N6mwW1&J8*)n$LsPA1eQBU1BrF8|(xx1Xiyx^bKq_ZSku{aD*9-S!=10FWu
zbPL{{5(tzr8_w<kG^{;#K7jp|@9u3pUwbvJ!$mBbWU;YQK`Kbk@)he^<msirOP0%J
ziRqDE3-ANPE#dug{@}s(mU|f^NVi}DNaWXXe|tW&a&9kOl(r7gepU7r#a^c?vfSgS
zuc{xb>r!eSV?mhHuqUYYtifv1IRS7EK7U_oe3Hi$d*{M|%KGEdp_cfV1IXWJgPbNl
zcJ#$@>Xq3FCJwJ^(%(9xkg+K&2Oxem#@}jt%SQ>x2L-WOn&*h7yLPsN{T|o?7y<JW
z?rWZt%ZVFsIbK&a$tSLZS`f?<1m5kOHhymP!g#;Leq2&0esXX+b*+CBYiS&EVallI
zp7rG#uA=&t+e+LH!n*MExwU6~8h>blSz2is+~to`OrnbQwmSlfD5iiYqKX>=#kwg{
zNX<4#3iRfmX)?wfIqkxVmfWs>asc$rX7prgnMC}(c%wP1w@V91cDQePtnif`N8wF7
z?p4H%@ZgSXs?aXhNmLW_WMhitf!cVjEiU8Am~)RqRbpB_TH0~s<%q%SS(=^Kn2rpA
zcJvs@HCES9GFY+5<BG_h?7W90jxcDw%$3nX=&#xgnZtp>1Eqe9{3`HA{30I-{4u3@
zTV*z@bu%dIB%d)S^A+&-!M}$y{8sp%;r{>(+YyVqm1)W9u&2!D@)i1fsp+V$*6@O`
z#-ccebG1}peuBLGQ_{@qpzSNPd8Njayd39_$E{~cXhswO7@i0`*Li(pV|)M?wgKdt
zz`L-(`?>Gan(?OEdLG;+w?`L$Z@HK@5S}pI>zvdr)R0Ed!=~R)O6>J3Sp#EW5%lM&
zu5$V$0pnId+XJn0FMCy?=tie9If)@}J0k=(PB^3xef*XLFdJC)t5;EDX<Tjug>t;F
z_|$GdRSXGnkC;{SChk*LS0OO;Qo)EnFBA>Qy;*QOlgB>QYBmL<8*oP%=}OTT&iMlc
z&H+4TsY=_4uEt#PGcO2pgOk?0{{Z4DCBB&Ddf=RU*Qh1COBld7>OmL=xbKL%QruWD
zC{Y+>W2e1$(6=&Z;ly8-S3Yagbh&SDTg*~&-*|Vf^3%dLLeZMyC3V}7aniT^JK<Pu
z?M1_d*g525ALCelFYyXmhe%(i0~~Q*L88?8O=Qj|#X4S@Zby+3M(=~ga*qHF$4^sQ
z8inb(k&fa<d-baE#AP|Dz0Fpd71GhA`=h6=FZN`>XKqDo*;?fEF1^iOm1BxL<P2~<
z>DWp3IXAR;$IOI#)J8MV3g5iCSpgUXRS4rv{-pL4pODmy;-`U16p{E=s@g_+j<s$p
z7)p$;MHUWYpAomEFO=Wi{A;bY(=DXH*nbMwveE5Pf$~!r#$JmF%=6{5k@_h(=YdZ9
z48-HhZ1%{nQVR{NERjPV4<wZttl?t%jl!L~h&_cnAm(SDOKB`CxzK^?YBdVYf_r*b
zVdE<SWoUyRHgHXHcG2a-b{%R<zJ-W1#+fsa2fa3H6K*<;8rO&AgrCnfmwhHl8P9BH
znJKnW&I$FV<es#x>qsaxLgy52BcY_Cnm|2IbN>MAr>Vin;-eWHcc=1k)97gklkc!O
z`qato$p)ZM2VB(A?j!-h9rH@$HL0g*@{y6(sI6EqBFhZ=fmwE}9IqMeT8zRwa!9}f
zjBrgc9LBRI`?5O<qN8&K^*w3#G8t!PKD92NADecI+cikjWOQi>veF10S#w;vO!2Y7
zHQHU=CA4wILB=`}#be!RDR2yt923qdEl65!RI}BZFn64a+qAq{QAy-`*D*bmw(LU#
zO@ih~7;<sxNGzVH?2Hl22mld|m78~@1zd&q=}D&Q;Ek+6&ji-*n35*t$4;5eQe@ej
z<+AxjSPUBJ^vji!0*pHM^sM{KJcVUk6YWj2W`*;(f$53_%lf^p`*#Ea2*4m$ul~b+
zGCmvly`@=QUEIT`Ud*<)F+(9yB6YzX#(P(m%);W>4cKgSJ?e*mb*Vff<BJ>RICv*X
zmp-AgY9$pYv?p`*t$rwcKJj11Ek945!sAbaMY}qEq&HKKEismsLcNJN0=S=q+AaM4
zD%Z5jUlrZ>cShH5X11BE)CQ8=xxfVUBp$WrUMKMGnBF_md|3viX{krA!upSs1A^AO
zRAjL2laX5AvxkXoJbm#UEv~OTn^tEw;dn0NILYiYT=f%H<!2?OI+uD_`Rn$x@D`8o
z<MxKvyg%W~ONcZ}C~el+ry28(-=08wf@^}XfHkNt3a}&*-oEDe!Qo9O<F13PYd2Qw
zapGSM-3wo_SvcQwZinV=!@e_*rF>mud1tHK>JwPnJ*B9)kzs;KH@cuW0Jp7lDRV~W
zRvouKR#Ng6)Zutuerl<8Y6&4np}?)vYzbWagaC8anJfZ84#G(8D%0q6&$-LBvnkFo
z&kK%~EKuV+j^6dBJ*zB-joBQL(xVp2jCUy@4x+b5n<;B_WengK+mXjTF;0;LL>!Ed
zTD~9+k=G-wSCZKGBL^Q$(q?N#c4W^MbKDc0)k3>QGJmCOO&MTL7XzuPQpQ5yV}aE7
zq-_~AQDRd$2R*5!vJNqk)~tDMiZXG<M8A0F9QDBKQD$tKBi;x5L{LuL?ZY#6^rxg`
zh8e~>8dpGYMt2V9y<pXu(HC`aLdv7i`gf;^Fq^TGdr=aF2Rt6M6akfaAoHI}hK-ZZ
zb4h{njsWe=CgR6-M?4N_RKPoNj+|7H+vl7C-vCmuGBsRsbCJ+utXkT%_`vDjrHU4j
z@wcxT0=Mie6;O8=^zT~4!evWMFuqFm80WdIIJC^Z0~agE`qsvuq^ym<Zyi9#de(zT
z4x<1DJmd<dj&5$pHyx9p#?nu04wZRr+B|M;qzwCFx<jPP5ke4>SDn2otolyS%tDR5
z0|I$HswA(mqQ6nsW>Vzs7$cub%X!<)Jd9(~wdYnS<+3tygW9n!QDZ!v+4QejQdaXh
z)mL&vyYk8mH$3j^&1u`;?Tlca4sd-d060K;t8f7|IF*P1bsXeVcy#&}tF@`q{{U(h
zISjji1Ofeh>UGqM?;-bKec$U`s!qTXcrVcPsXXixlZOOg4@x72x^^4HX>+AbU+xT&
zJMBE5YH7GE3EYDxqZ~Ka-mxRN^Kk4oG2ny!D)p!e-#!RD1sy=E`n8Dm_cR28cfx=h
zpeMaa9BvsmIAC}v2WpBqRBXXG2OytX(TWk~gko{joK<~Z#$MY}&72I*oP&-)&JKO+
zW-Ck(q^WMa9D$mS!q4O^LX{m3ImL7qmf|Jaz?5tpw^~Y#_6J(aQ!#YWw35Fvw+C-u
zV^$MSV81XwcR5~w`c}V^xY~Jb!)ZN*SQcEdP&aeQrlDjnX>$qfo>>8GDbH5)s<)Py
zIbL@Ty+&((TTQCXj1b+<bMIOAFe>fZOJ^jG^wljcFKwyIUPFZb>JUNiShFVN`EoKg
zl1J-ZPN1JCzyldL70z6#Op-}+*X8M2MxSBIrH+2~JhAz9sNj-%`c_QnR|K4n0Rp$L
zV#}4=xiQW<X0k36lBZ^Q#&i8EWkSly87hx*mc}5Ql_d47Zx(|tn<B0T?z!uV-NX5u
z;PJ}(Ru79C7VC_m=bV0(&xxhWO|zzy)$Dln^}0E6o`$jJgf2+N1zf+mEpp(T9P|{y
z^R76-{VT)YM0PE;E2EGBzyJ=u^*JJBI5}h9nDHF*k`EZD!);|4JaieM14L2+uZ#jc
zX@$lxM+2d!%0m-@^{TTuTo8Gx&=+E6Lm=RE=xPZNsK<Whk!CA`I-b1L>cPf(pGuOO
zwxu*X8$HE!+BNJtt(2Ctf2`YuK9$SM11Q`%6t;IyV>pp=4I%Day0m*MhmFA)Jx_Xt
z(_sX12(9_mHOnzN@iL4P(y+)eGb<C3*wJpJp(2yz!)NJLE*EPOI(yXfFv%c(HBru6
zuN6s@hUYX;1}LDgqJzgYPytDdQ-vih04Su-N>k4iAPQPaDBJ>&jMC9XfGYNm3A|h!
zRT{gb=j}rSBzB-rW22CP5a;h_pGwNSY-b&PI@XlTLJ`mk%GlR8aYm|1W&?^(xtZMf
zKG;X5+oXs6V;5pOS922N<Q$<sn82*vBEmSKUB4=-3=Cj{j%!{7+Q@e?7~~P&x!jfX
zI9%5;Uj8-(Mnj_x2SZV4kQp^d8WMB62Or4Pw<|5x$c{0NcCI-!>mLce6J6_9VUosK
z=W-e-<6Lw7=Ju<l2PS6fC?kUXq<lkrAHxp`cye`-VwU;t*Ky<JUBA}6r%U-Ej|u=$
z*1fm(;?Vy9;TiEqf^>PM6W)tSZfDqXs9AsjepTZ(N&=`~nMN=VTIsf@Tx9uUb51S0
za?D8Uno!`NTyylRI%b(JrF8|Y3i8b>g;>>dl6wlZ;$IAEJ`>b_&wmG#CQcV2v-pnm
z)3ExTm%^Wt>gklI{oXRekF9zzneOCefO4k=+<c=o=idn}lIm-<m06WgI}gW-?{zI!
zIAro6RYn~G^&eW`uHvP0if+=d%ef-c`7P&May?Xi1#^0p#G53zG6Nzn`~-a~N6L8{
zGDs92clE_!_=@DmZ5$ZJNiAM{=Kj&0?sHO|%Og6LC!M+NT;8>+g;tI>%AQF*t3y=O
z$PEHE2SbYUUm0twZeG$BCT8K=upX5(sk)BF^x)?7F?>y}oB8~da?qzATEQJDNX-CZ
zy{JV+Sst2Ps=@(^S`Pw%b62rJMHC8X0*WZ61C@6$9<&rVCm931HkDYeK<H{j6y$sn
zlYva56zl`tfjJyf#U|DSbg1d^sn4}YG<7;P;dq%CoDti-Lv=A+wmN!sto=IVMA>7H
zN-r;qzfLnv=x1ZxKVtoN`yck2@KbKuF65TY{*HtX*1t?I>;xWcL3vgxL-p%llAp8Y
zpmhHLj-CR!EJ=@9x8!@cAJ)HM^{7C*yWFH7F^?zSy!!CFHH@r|8&b25P}^0bBZHnu
zu6FGeUO+}d@r}KB>s^kexJE%@3GeCbE1J58C|M3h-gkAcHgL9$9k8oy&KpsMm6>+n
zH}N-0<}a<rUn{kT0CxJ<ZK_5cm<`LGr1!33_9aD;iTQ!*Yo5`1BhsZ(=OuX;%G~Fu
z^fgy4wM$3H1CHjkE~02;`Ec0dlaOkQM5WcY5sdJCY9$+JmWO(lgb1cW>cMv7ameTJ
zHDVa|1wBaTrAHmVn9R}u9G)>(&=C*HxyJ>4Dy*ACH*G`g<yk{?#_Xx&8t1%UrZk#k
z$ixr<+mVXvt&otM4Ep1WH4Qo|n@Iux08|EWM_TTs9$ijKvgTGkX}#Cl-o{v3Oks#B
zIs@%qSFT^lcRLnrjQZDq@iH~j^_k&~1Zd=t2iKb6W7D4DvQQD8_3g!TMISdM%O+tY
z4J&Tj$E|Bx*x^Hwj2zaidSq7F$s31irG0xG0EKKEb6OF&OK`Ts3xIm!vF|U75~aEI
z%~rX-GL|45<AYU?Jf6PvuX2(nG7Z23o;aza<O~m+xvJ=;m;utS+gh{WfOFoa%v%IO
zk2vF}HFDT*Jc0&zsUx%5g2bHl&vRC-;lpx3#Zfo5rJFeRftL3MuA9Ap6W2X)-l_>v
z7YZ_IKG35%<NciV_o0Kit8Z@CM<02QAB}YO8ccQ&268ug9>0xpmKv0H;4>aaI0mlE
z;wPO7A>0m58`6{4R2FW>G4USdB%UNj-Hzj-u4cwQGq*YISA0!7++U6S06J85Y9j}s
zIO&=T*=k99If(+PI3tl*(?0Xlk6N{PId<!iII1j0dSZ>V98(bRXgrD!N?eRki(*kl
z8OPVP0~|R#@lV_jBPSlT&;cFuP9LQN4^Rq&&U@7G=XUHIXQe@q7dgr4#aXo{jAS2r
zEGBB(0@%+^xB{isE`nMS(Bp%iY4%a_3E)<Dh~@>62OiYcg!M3+rEB<l+s(TSMsd^H
zvMZ$U>|Rt7N_{awq_!j0F0*h~cHpBOdQ<E#HU&^d-r&|%+1+sM&I=Pyw{n>sR-}!Q
z(aRiHF%m#OTFkuAH-b=L_8F-yu8V&T-M+o+YSM8i`=Fk~(w)fjM-F0^)<O<J6|JUf
z#w7u{=NUD%sp)ZDMAD!c^zU5U)>2y?+eibYH{BJ@bFQ_$OQE!!j<_DQ`-?oNbinP3
z<!o;r2ON+yT`r%fEyfj(L!A24PeNHeoNiCe&~b{y*JJXoqhO~2>!En|HuNWx#w#yd
zw`syi;PJ@<nq7qMeO2&D+r>T=&?9)#+*&~`tc?lzpQ!<>GxmJcBenQ}Y}ZdDR%YSj
zFvE~rEw>zUF<lqzw7OQW@L$B%){88f-KM2)a#^_9Z-c#u@~$(((@mrNOVtw6LkWuH
z$q@&ggy$3`cs^4Wo0;_1r|}l=_C4{=v3h(P9QM8;(<PHmH?OnHWh4e8z6tzuUm$o*
zrn<1XxSwa*XPKsvP+>PS79e_KHPwFCI@gN4L*xAyQ}HIVb*c$077HOJ6(WQHc7-1O
z>z(jKMfA4~f;Wym!0TBkIIEjcij0jz5G)HEWOAdY(xQ7%7^3{Z^}wx9FKOg)*QY~J
zuraeXbByC154BWP*|gn}i13oeGNXm+I28c50B#?5xfQ24+A+KD4oDxRM%KX`k;uk9
ztEZ)z<;mVxMp%hY0Asl)wO5|me9ycy?OKvA497c(03T|v<awKi-V8|?6cKysV@(JP
zfHJ*E^{P`q9oGs8;{z4Z{{UwZ(Cr;?X_9G*NGyeY4J%)Al+ID1+>MZOe(!8l5?f%e
z13krb^XY9LBMiKN4QI<@q%H?j&S`0}tX{jAhBg@r4=1OkI9r^r9Czox(zIU8=Wgr_
z@wcE9!E8&FINh9&dc~u%oV2k`ZO$@AIp|L{Ab_aA!98(T5dxeA1bWh<6(A6H`jJ_*
zbws2fEs~&)I(yZqpe__H2X1@Q;{mc2PbaArr)z2$5}cl#)V{-HmNuJX$?55e>GaJn
zcRLi1)~jijIbEy>+%cSF<J!Be8%rFWyAuIQsN~hg$iiBYSZKsVi?oo#Imb%gu+Yg3
zlq0t7y=!X6N?1^{=aMj|wQj>`kpN2J812S0iibXie2C@0;UC-zY;DcTvh&SQzR=KQ
zD9?YTdK^}fxIFFv;A7UR+-R``We9PeeJD=*gNft!5cz61A;vli#J+%qU{?fmuA=(b
zyA=zN2{;~=&t1j=!j4Ed$?acV?DRY+&dkI)G61X_cNjgfP6)^XkU}0#4=0*g0cK^v
zAaywPr^bplq9MYJeATRJ*<BiQ^JptV03;GgZkg#$5p`~JjyCg25X*GP&Nw|O#2}P~
zEI{KuF<U~Nx*0j>O=$|2-MF^noL04?0PV==2;-0|8W8M9IUVvVUf8sQAO^wYjtw_O
zuZW*%eGO|>#Gf%3BY}?9t!|*mjl7eMrzW#4NK&L7{CvT<t*tq6wOJK^8p=>ewDdX+
z9uldr;NX#;QT48Z)&+D>Lv3HW8nE=jsoAj0%8s?sTDB2OWPyRn=kcy-D?6=<O*LY{
zfIe`l#CJZl;SpsE(X+`E<zePX2~xegVAGU|BUu=+INO}#idO7Pb}LU5aW^Z!Zyk6w
zn|lBzR^YZc1Fdbcs8h5Cz{VI>P0MalRAi?>7m#X_=*4vPIeYk#;a~v{*-#H3{;KEi
zCGtX?a<~OR&o$IvL<=w{4aoqGb66KKc_m38t~vwx*71n%)aS1X%+AE+w{kiYSQjd#
ziNhf|&U;r$bh|hO%X%M5!?=XZH*5eC_ksN@u9Dp{FR7kVFvZS$53jv*o-c(=C<2hg
zpO~L+E30J7o(h67gIFFfw=wCfDFK!#75@MX@^f7H+I-X{ZidunYKb$zH3+<$rzG+i
z=A8){$OPx5YIx61YkfvZ6;GDOa{VhF)a0BK^skLxXScaKw;qGJ^s18g9DPBlrf{I=
zBi^dJZztdNqh<{ujCTQm0QRcV4cN~F)bG#?;Coag;jw~g+d-lR`@~Qkm%a^HHrx_=
zR1Fyb`+Cy3cTBSd*=7pduhOhdY_j~r)6%mC%UhZgM{=eo#{6(i43@hUH2c@ExW;mX
z^Y2<0YaPn@u;VBAYKEg_<w`)n$A4O<9mCu7BzuZhxb+s`5uEYuRmUA_TZw$e-JH~2
zY55d{2L_#-(ru*!6d{EaQB8nRMF8fF04O6kqKW`gN$W{P0OZmD0~Aq302QI4kMy9!
zsI1^~T3R%Dk(;olg!VOV$p}g4eJcL|fOLk{{6P)}$q_OVPfS)$p(o3M-oB0fkp2wn
zpAef-n#$GY$q_4T`=D}3rOM^*qn50>A#*C$!bg}Qrw6&>yAKL{I=t~VrE6hh47!Eo
z$NH;#W!%NPXVSi%(m!OAYpPj2!^Vi9eXZ`7<$!$$Qhh6=`!<i^Zy0I%2ZWgEvRO!`
zTd3mN?;$*M>5kQKqM@vhBb~`;dFO#YWJ_NN-NQGFZdG+RQ7O~lJLHLp;4$f%_dO@W
z(0FT3c<gOkOn@)?+4+@+)K^uhJXZR>&EQ!zi}oR8pKdt=vFTi&iRIL9+hmMlg|ZAW
zDR<Ag>0L>3t3?yZ?_HmsU$*7n+I~M-+V5veT`m%&obtqzUSV$$2XX!{TJ1k+$VvU9
zwWuU48Vh((?>RZ!pX*$NDZPL$2Gd-xbJ<JXO!U8mw*E!s?w}b~SfVke^MW@InTNO)
z7sPc-y(ZRiGM_2N&>M4Y&N6*-SpE<3Ww(Z|<b6^jb6~>`vFC8(f<1nfYvMnTY`j-3
zlv-uGL1hdmuErpqV-A=dKop*`u?qW_{u;@3<<A@;n{dHp`u_kb?@g?Bo8@2(gl8?@
zxNn8B7{%Km1LYj<_3d4Zk_Tqae6YVZdsmZ+U%a|F=X;4c5-Uo|tria+zgqLJ6l**0
zUMR-=3~p1vt&bA;n86&D)~wOY<L`ly&lSLH7b8crl53aDnCRWjaa*0(n5+7jekj)y
zL$`1w&C~tG9QE&BVJy#aBS`F7*yNK|HEl{wPVz~dlaum;*i}8%?NO$wuQS)D4n!_<
zMF3)o=rsx`qLsiXqKaS?9w?xU&;dmhPyt00QnLYi8hY@glm7tMrE~%%Z1d?&9QEne
zixN09b?9gWu{k+3);T;=hCY;pbpHShuG+`qCxxyNwlsRRs|G*y)ob><#3&@cx!V{D
z9F;ly)%bbg`-5w(>C=OThUzB=9*zxu-)k2FNn)1+62TOoQe#tG^<#T7Tehbys6JGJ
zG8FTJ(z)GGEO|_<oN?`44fKoy;Y02xh2s^?>N|glLi!QfxaSM#YZ*4qTKQPdo{X#b
z8s;yfJDB7yN6ZQ28tSz-1h&vNo;M2SH4KCsPnbv{f%F~gj!{r|JqmJY<?azi^3AmY
z=xT$8V7vgqv4VQmjnvAYbnVH=?~0&Go(U?%^$SzUcYB?&sh~oQGAjiEfXi&@RxRRe
z?aOj@;~jHFyeO%I@{YOpt1)Id0SsAs>>Pe3lw)aVIZDdp_Ua;rNY(MQ@JY!B&{MDG
z`#rPoZ<lUQwK^1LR2fjul2i=w+ORxrel+bSL%3(lIaA*r)z=$0W0}vZK5qDlaF_lm
zoD$80f!~_vB$gWpwz&h`b5rX#=3DuuZ@%nJar%_)EQgW?O?wG@sU9q!G@E6ePg^qY
z8STLx>z|h4rEHeT#wtS;k`aJ^D!*r;O*v2ywtM25LQKexHg1YdU$xTYl&{KpJuzL5
zhu|6J8{H1x_!ZE}q1xz{!RJtjI0W^pvWwJ?ZFD%h9}T|U(t;PiAJVV1R@!_$2I6=<
z@lfjiD~2~IY^MW^<E?XzdvSRCk6(J0?q07`PUihtw+^*cuitMO2c`uyM2VJ^k&jx@
z(d4w4HrR{cb#ABWO7<sHC{1@JaI7)vI@Dz^bDu4Txvtg=yJ$$nE3|bFR;RqMod#{f
zw_lf`G!?HygN9p?_t5(DSE0Qw22MER9jmAjX>;djkq5ZVLpFnLG-cs@W419>w#2iH
z)j!g&gJ9qf&YLR~LC|{o;;i0bZ(DCfJ9AmLcL2L`eL7V2(6XGbxsN1(YARm2q@#00
z9cTi8F-khq1_Wa?&@eMk>PV)JDT?Ei@&KnvmB{NzDZr31*Xu|JA>0pR>sKuhHaW?v
zaf6n~&1hIC-lNynnJn9lSz`_x01Rgtu47cXH&;yA$Q)+6JNtoaVowTjz|C?yixN*<
z)T@mOgL?own(QrN7TRhIeg12ev5(B1N4<2{cLVn@j4sd)XzCJu3Kv$q?mQ7xO6?1b
z4sp$I21%pH1+Y(1S@$pl{5a1_d!s$IBDav|2d`Suh02h69-{`cRT?~Gez~jA@^hLH
zT-Snr04F#el>3WBxI#b-aniHmVls2|=C4C8(mHWeMVW(lro0Y%u6d{0%jL3;K^4_p
zTBYnfD9>UmpS-a!z856-z^Soovp1l-^DR&lyN-jkMS48g{S?-2n?IC7oM3dVONJ6c
z#1K1yO+MsFHhl;C7G2ME;y)31YAH4iV@aAdE5R(hfm8ngV*#ptx-hFGM`W4K@<GAp
z@UJudoP1Yv;SY;`7`}~`B5xK63pNLq{{Sieb?Uw_Yp(_TQSly<;JvlI+wDf+VUFN)
z->+KI3hko_XyVL&+GU{B$Azxpk>rxz$Rmbq;fo*2v3?&R8Xopt>%WnXhOK--jB1u!
zw=b3xDvB~e^ri3}x0B&pa`{$fW+S-gp{%5=j;JThY)B5x<uT4W)jOgPE*lBdk3&``
zAhBh@1aZ$Jo|Th*a3d}^W1MHPG~l|jYQDr0%0b-N<l{8Pn-~f}$5WcB_W+ZDh3m~5
zfox~5Ijzq&?LA8&7Gty?4<!Epg-Z+@K-vKSag)t5Be#*3P;t*(VyB6G!lWh_+)=Q`
zsMvr6-a~ioM5>1%f^a(asf0xd!xGu-I3lEl74X1r9dJD;OdXbne3tvj3ZNgoxc;?T
z;>iv&gFP!<qf?WY`ANZH*wX!&vJg|K$jRoDcGyczPFh<64@~6pYP(t}8DLJ+fr{vE
zY<4o^g*<J~H9|;s<SLbZp4F6-x#-cA(UJCbQ@L_mIKcI(Jc8NCEIMR#6>Px#5=m~E
z9Ar~ON~+oAy5t;IO&#!BmEnV9U=xAehu*D?IusZIc<MOoS@FgR>9~9Q*42b6Bn^{*
z27mh1o7~Z)wntN;TYy6aJBI`??d@KJr0Ma=9A~b3j<v{WcEx~w<YWK?cK-nN*P>{!
zvnq|MMh1OBsB$xsT}=pWnFa{oi~zW;1&1uVkIc+>5zykF2rz=ookjpBky5HSA1>4_
z(6aRPtW#~=$?3R}!mY87%B18kLQP2a?JB+(1v(DocB=|LMr8^HcH<ptXhsPk8Ab<A
zgjR}HBGx<)P(ESLToKUVAFW{DCK;IW**pr>y12|F0stKkT-GJi1<BjM!Q0>KU!ccb
z51Cd<?9Oe#;9#)oPf<=t#Aw8+=bp7`ZJ5l*XvxRTQ^%)nBrsq-d)3}3715r+r}tGc
z)OV+(Z6*Qq<&<!1Sm{O4cBV!E!K7_5lK`s>=Zy95T60IC3v($Hs}&jJu6tIMt8M|f
z9FdA+TA0@?u2>xOsn#PC4Z!@z98}JtXcE^$O4>kGK?H(+nXRii{J@~+YWjBetQd!u
zNFePEmC5PFXj)tZ1$N-$Ao`l-=SG%&PQOdI0!0`B`;Thgx4cv?qn0cKAnja5z3$`;
z+_yvT_|}vft1l$=<2m)LB#T~WVFlti04U({K=1EUo1-%2akw0FT%3A|+wzsl_dV*$
z>Ws%Nf)5#9#-Y11(z(z+pfShZUZn6om7jHXv9l6(x%=BqX346vI~F@a`Y-dWtK0qT
zGFxw64O~{YY=)B1n(lceV&f`=5L*?`PjDo8BXE7V@9k1vTsds3I)FzFRb;u!NCM%B
z%N6cDt9Ue)qLs8L-ENSa1`-9p2C}YEi3;2hdyYT-b*V1WTW;jXBb?+_3DawZ#~ctr
z%GIi=YEy${Bu|v?Dn<`Zrn3A~7@tACK<l_f*vAJTb*;7u89BxQ#xc%o1I4*b4)wFS
zOk^C=uT^_FFCytd^F;FfDoalk=__S-AddPW!@uzg<h8#IUFbJ^B}WKbf(Hb8)jO++
ztZux>a)&*urqg~REyP|%t!|fUzzxK50I!K%k8al3=3X_G4goAV=CfRU<YK)J9V0>2
zWG!ib_EuxeGIRs$S=zsWF5*)qx~<BCjKsj7%B^_{_c)?R<2cPU<bB`Qy;;1{?yVp9
zmhvt}M&u(EPX$+=zT%fdLfjK5BYjBCZz&+K9Ah;~1!-I^IX&vc`ZUNg0XXEERu+Ow
zVvMKDaD9h*t!*P(+$(aV98+2;t&T`#^fcCypQ+6@QLCv*xW_0t+&Lz)UH1$MyBw=`
z2#t;i=zZ#wp++irB9a7#(@Dvt2Q+P_P_$<hP)2EhQQm{Vqy~T%iYTLC7K2HgQJm7;
zNITI*6#9%PqKZ}ktxX$&DfJbWYg0{JTd^H}w3#nrXUvm;6rM*N>-D$x0n%)|6Yz*j
ze*uou?Gd%b;-*;0{OmtLUzk4!d@~=6ek5pGRKR&t-XWB?-3S;K&$cV~cf&si^q+=4
z9@O;PDOP<B^_KB1q*431HUZbtv`}(R&dl>M6&h(<L(4ul#j9$5AQyfO)D}Mu2*kHB
z%Hlnej^jL#MLWZm9tg0}?0iiP*Y>uw{{Xs{LU$_3j!kmEv`4~E5?$!SS@4U=a<ZQ)
z_Qe|vpbiQS^~d}h)P>facc9)Y+1$J$RgQGn7DeHPI^>Gzrxyg4=Nz0|wmoA|@uU~G
zJ3P!GVTFirM|!Dyt3(x&7cm3d8O{$wTvnTHI!?;5^PCN%kEpH5&{)Q@O8Xl-h>+s|
zQ6|xGwuk12?E!w;r|li%Y2=g5D{vyn?S%ssgJ_}f4?r{c()>Zb8mGn|8)^!{)=f%K
z8G2wG3{qR30}c*3#dD=|)RxH)m}G_E^VhXT5AhMtKssaIqz(_u>Uk!S+l-zDdeONr
z-C7;r!_gdRbCNd|9J6B;wX14{B4tB?{7es8=6oJp#WKVhn1O}Ha&ywJYbq@yf3*;s
zMs}L=F-`NFRTsT;CjRH_+wSgP%wW7A^zEAR4;^@c^&6ikIU_k>PI2vBZ;N&IOKC1-
zAR_#TqxioH@|mSG%JMhfW0O~hrFYFEvV;>{%w-f(6N>as&;t~-Q9=ODXrK&HOah81
zpasn(6a$(!5V#$v+qlwIi%WL7eXG~4HLC{fM5sx}deqQ7E2?;(RJYS~n=6e*{&vK6
z_R*JiKEP3JVBc#<vNFVSMS8Zk;Lj8MD)@Whe;MiX{{UyFi7qZJtu8I3D{!JL2O}JS
zbJm=!k&iQO$nrg7N4e3bXfBbGL}H8&W(Nd)MN$~sUh!k2uBZDfc(+&ACskW5YSs-C
zdIKcWzT-Fz)PT4ruQlN0fOFciPUz7MBom&3oG?hoT3{U1h*vyzr|33Vv~shfju{zP
zeM1WUx0d1N(=@px<;|73+6Pc#TKq_d4p%+df0(b@IqsGnA4`vxk+l17ybc10m%U?C
zV+xxTwHXu~F)5CPc;>mSN>HJQ1V2og(Z0Mq4WWoRIOi45-&_y@X5Kl;Bi69xzNIG2
zo9Tkc#n1vc2R$p8)TRK)5V~&1&DOTHIaxStD97GB^{#ID_DJBI^ec{l*Cj=%+fG(7
zE?hG)1Qy?%5ztjq;1k0UkXw!vdsU0~Kf*V2oQ^V0Qz{}%zDQA$19U&uvGqG*?zAU_
z9__ar24j<ozi*d~3j>!N`Y`&|Y)_q|j5j-g!Tf66G8OB+0UQOv2b#4Np<Kp|uz2ye
z18C|y4@%^IDcmY}Qsvkjq7$Cvcdnu-&z4nkTx4YTu0!Iizwt_60f|bXJn@by>8r}-
zGnS0`R{6ZyODh)l^{TPypJ{M=lTqAU6beVuuIU=QFtGCmMtU0dk>tCxb3yPxymdQ%
zP<bR{HR!rWge)x3JjHs29N>?7<6-fVS|AZ^*g9jaX6n8>nZxaT<a*K1r@DycZQSkr
zTjM()4cV2q+HN)wI#-A5zAC)dCuWvIvpfvbbsM?$TZVRG*sANMZoxf0DLqx$q*9MU
zswt7P$zjs8zz{;LPanwCO8|sp9FE<ol6jNh4xI?6VDl<nUA@fs=WckdjXq&*5aegB
zYNR$IGr5O70IRXX9snmk$E7O=TN8QmPDsH3_4ln?I|nf-Ac53oqS9^Sna;%Cz>ERV
zRh?ZHS&F>x&<2eTG3`~MH@?KuHKm&7S>st0=V&!YRPjU*TZpXkWnuFYI0xFXb*%`j
z0(dtS1CUNgtXq75K_pa^yO!QuM#LPG$v*X&D;9E1Se{I9K^dxj%>|?elYvV`I~E3t
zD4+$!1EHXr2NW`FIR<$qo}g}~0#~+0Dg&J3npP7gjaauIm#u5rE(aqZdscO_Vn9bV
zw{8WzZ2f@iLUtj$nY#VJbx4BazH1t+UtBfC%dt5FfmP|6tr4Z5#9r}EGDkdB{Xw_g
zGh=BTy($d|2;-Jae86$_spJ__#N?j7l+wAIdXBZ9%NRX6in0|ZQ;g#ko01fBx7^k1
zSpmY3c<)BU?m;9R<d4ddC)nT~p7o)#Ad{cMt26^}BjzKhq`QcoFeGABf$N%Zm6YV1
z9Mn*-NiaoNkwl)DJ@L|*8dev$$5Ghly;`2!T_FdrUOHA3Y|(;LXB`H5*3FFhQIVDY
zv^(EYOsOsWiFV_R@&{VBPWVdg9FI<F^~?(}Bmk#49<@Q#+w#ModI~1+{;K+3uWfN3
z`sgM}Q|hD|`&;5)hAq5p@f%Lo0NVz&q(OF)d4Mkcm>~TKuY_)<RFo1vLU|^>xbR-7
zb>e@7UJ2A<ki7au<LU0se}frOk4oBu{o?a7s=eEsq*koYab&??Ycg)fTppsgA5Lu}
zPJw)}9A$H{yPDCPPgAJfM#dGoc?_TcMnUW=OT|~KtNc9D<x3N6`dqJXb0+WgrH=&t
z1yyL;OmyXV?r<0PvBbG<2pPcdT;=8N*I-8F^**&?{^^v-yQw%)oZx!a1k?WTXP>F8
zqp39{($JjTXFIXaTC)tlI2a&w&14&Z8MC#N`iiv#n?^I&(zNtBS~jic45fN|`qkB#
zv5mJdJ+Nyc8OO@JH#~~CW!|~K2N=SdT}azf@Y)$zmuBawz|Xx%ueHDjX&{V_n5uD2
zj!KZKIS0K?vXyU`h9Kkv!KOCRX}IADWdLVBwLU`f6r8R(>MEK@8FB_n<c`>>R!0#G
zpMH9Q=}yGj`w4UcsUY!;b6N6`k(?&(GnG9vR_2fh+z@feJHMr8$syRdDo;$F^^~r5
zQGW3R&A8woQ_xfjzr6XBw>T9frCGs0HaN)RH4C;|X~$fUJBsIREe}>Bk&Bi9oP&&3
zmYBpo*B}AV6V|eUS8NV2GgfUb3`_~Z!Sv4+oR*pz-p8Y8a+N@2Wh@Bk+<Vuhcz$A1
zGQ=|vn{ekf<QgsLUyv{bd!G5PLeMn<8$_jvR_BAj6_dNvPh-Efn9C-|Opd-_6{KTg
zKIvjPQh%*;`gPngZ7Sy>wu7JZn%A_sP(Ue$+;Yc^)^7Sc9NHHl#!ln)_M}xP<c7%m
zs=cWskh%bzb>^zv-k6hVWiO25psMCui21_iatT023FMyCf-^jYn4Bof5rdOiziD{~
z4hScwa%)#kjE$~Wp~>2J0Bi15T@MO0w7GiD&nKW^fx)edeK-KFLgWsV+c-nGBb}p`
zZZlg}&|yI+3jY9m^{gjdwWB&6EsBFlNj8v#D)ac!CW;12@q@yipr1<U?CsgmG06-v
z4^PsEw?)eE2MP~fopW685YxTP-6W1mYZX;i<d@3x)jqXKYd~ZkUQix{oc6A&;?$NX
zyMp5&k-^Po+}im$Dww0|9NV!fPCFQYta2zIFdn^0p=HMMcLnwpJg~G)CJ)T*kWZyl
znbD&=e&`q@9cXoRE7<oe!Fp}+obKpydsNWsVm53xN1?14BoW3CV+-gHA4-VckgBKU
z&lv)#*S^FmUCyNH;nj{t1~{gjU128~Jm8%7u2kP`QgTKI1l2axu%YtXTx5e)?YW2S
z+B;X)cBUhd_w?lT_NtR=NaV0$OMU9&B-X|c%ufe_-yN#V8iUAymQYCOd(rI@jhH%Z
zJr0mutCGdr0CUe#OnZ)cmfSIbdR8PCgbbq-yDC8+%B{yJ$RlYP1C9we?^5eoSrn<=
z-bKuoRo%PLlg`>hmLz1H4mj^o!d0;0y;SqXOhy?`7*)ncN|{!%s;1clilpQYIO=oF
za=txL{{RS{q{MF96CMUDt(|u&s`5xbFzH<9jiK{ADXFN*Re_m-?~h8(rEX|i=8&Y6
zu6*luyWkv?kO%~ORvd_8lOxu;OVQ-pBV^!?GxV-z;!W&*b6!4&V%!qxk%0_&t&Km#
zcUJDDW^9g!HGl?ADtmazI5`8>f!Q6bJ}$m>3iBBg2j!4%$LB<voxQ<tv|7P1E5;We
z%DIi~pn!Q5G;*E@=RTdNPRxdCwWgUr%$Cm<27XuRR#HT0N-kJq9FA)?CnvT6<l?Sc
zxeu0Of#@obo9st@rAaC#04a`ybv4i3=(F3g!Zrt|IIi;SCH0m$R>uS!5nPqs&E}l$
zjNd1y@Aajy(|0h4XwN(mPLf|RVTU8VX@6<ODa6nz_Z@1T>4*?eaz}2|T^epxqKYXL
zCfZOjMHFlSMHF|YfGDDh04So0U=&eBAPOj=ivXZzwJn{av?OB{mOAszYQUvJ1;#Kq
zp`$q-yZbxawYIH$ss$c$#pJ^w>WofF{Dpqk_;bdq<DZ9m9<gn39vi(nG<4g_x~NwD
zYw{C9@YKH!?eu*%bBnpHlJ;aPf}UW=AC@chKlUH-O6&d&*Ze&s;pNigj_Np%IEnu8
z2kY9krtHrqtel>Qxvb|#xVE>JPcBK}G9zd274)w;*0eZvuNB35wul)+258i8E$dw;
z#tEjg)Vw`&0y88`@s<OiVO-aXd|#)0IM5qZ)bEzca-_!?8Ioql0SB#g%1RoX@lEJ)
zH+rU(phbCcb##%*42&2T17|z}E9S3@9~ZR`8%s5wn<0Zt$@3)W(r|w7pscSM_{scN
zt6bbnjco+-dEQHPW1b5iTH&?rZYx_UcHzkka0fgC$*&&1A-AK@+9~XO?WI7|Y8r!_
zkZxbUUTdI?>>GLGwR7GZQ#>*=95c+#lkQD)TLxE*upD|1t#wCZ(S1ic7EIt_xaOE}
zI4T%)`c#r~oPIc}<#D@kBp#Tm+(&=l4N}iV({*dRwO5sVv2F?Hc5-oC?}>GpHG9df
z=6#FH70&=wT|I}8LB`SP{cDQx_lXRSY#?9<{Io0ltIeDo>e$Uw=a-Sr_>)>Xwc!YV
zaGWUh_pE&8iU7rTMJTHyy(E>8QJhgh8K7ZB6jQhb6j9AE3MitB08yOMiZB2e>q!Vf
zz^htx=H6}Nt}#_>LqpS~)b$u`p#i0pf*>aYB;uXzsHLj0dGDmTx>sg7$m`a=i}1`I
z7}tC+;Q9P`y7b-~(2R%5)29dbOxv9lH$um_uN}GYL_Qz!Z}v8$t!eSk8z_0L<nyCe
zJmVv;p{~2)zlyK*4IanBc2*WKPiq)yWz*!(nIAwg>)xWJMC}#3Fo$+_pS1<ggFYa5
zA5QU4gtdzg4rmrKi!C3((6;%ZhxnzGgZ{OT%t`hcua;XmrMQMmX__fe$0D3Eu)zk9
zk;ZAH(a<5`s4PolQXWk{G0FCzTNm_;f3)gWaE=VKMxUDjU$UB*SfYXxysBG5fqQWp
ziu{TAZKpn`<IfFR1@ju?Q?@{Zulm8#zgzX${GCGKGm;pnC!Plau&L1)&!L4Z!Q?7X
zuHRFESr<i=kT}jyHK}k*7cLYGV1dc3yVJO2<dQgUhOv4gmghgIN9M)>!hwQw&JA-q
zh+()PKKbcgb?{NUcF?K@?DhO>mDEG|jDT<C=g^A6SCcxRj%w+QMMDC+zGKB#X<Ozv
z<Q_*_vv_lqP|UeJ4u1}6k_O0S2RXw7*0O1xDU!zQr*Q@McJ!&CkxG(7Z4Hc%<xno&
zp~^Bo><m+oFDNsdmn-Uhs#lq9T@#7QoCanf@I5nJ$HXa&{v5tWZJ;9u$;WEk3`4d7
zAdn7w53ON%p51S3rj3}4#=zr|R|#F2Jrh1bxw<9ujC)mdn5I}Ay{guyW?{IRHYX_L
zbH{qEBtZuw0P-u>TONBJFBwNHYP()D^*Q!6UCH2g&lJ}C*z4=<Rc!@xLM!D^0m%2O
ztEj?LsO!hQVBnLEgS9zw20x`PgEo!CM;QYnxTdwzk$?jC7_7+n@6Al7bAm~x-(pE#
z<bj;z)Dqk~WaQv<#XXmBVow>ssbaT6!^}HH9z#QPy=LOVQ0d4WYku2aw0Q|@cHGC3
z#-OvZvuOBVoOS1|NhP(vn~2o=mZxsPbGp*3EOm`NnL$IehEtF8n)6Q*X(vX#bsVWb
zDX#wj!o{tu<zl!|+t#r>ZEAH3Lvf7l=tVcFo~hjPnOw-^ns0CGLv{RVDIEbt6i`rO
z6j4SvrXfJ*tr+K}B`S^FP%DqlK=!Aq<c`Le2IeQyricPYdUvAYFWE<vy8wWAtGblJ
z3nm%mz3MwyK*t-q)eUNJ@`#l1y+tdLYqK(yMo9FescoY3W>N1&%}whFJi9D)-Ofcd
zlRXCNo(BYo$=IWh{=F-q$pGMXKD3dOE4*jQ0OOP1k|y%l@_h$1_x|pBcc{)=<x|go
zI#adu7N&%4xdG~aw5+3Y?fdmk3CeI!J?lYbM%oIFnH*E-E0w}+ecc9X!WGG+b>QG+
z5lH|l#OL&+hv+><2TW$BwV%p3-Lz*k#zDhmjL^{ojxt9)(Yh7vYl#H0{G<Xqnxl4}
zTON1knwHK$R1dmOQAOJ4k=GSSn{+TWBbeWwPh($2e#}?@0Pv9bE5+U&^NL-hE2vrl
z{p9=D{43{M)43%KxIL@9{h7RTAA^1>XwzK~Z6|iLxK=n{Eygl^fu|PJxThP&$oF>E
zuI0Sa-uX-@ig6=H%laRsb=FX&*M<B^rO!9o8tx-JAf2HcbGUo)UtEub9uN5G@UKjY
z813w}-98y2hVmrZoOI9Eiuq>S!n&uz?-^UzYe=wu{{YHIkmNG-EzNsaiYj!~SbWjt
zQmH7**~@;1&6<_j66ZUC80U=EMAsn*1oi3dU023kD0pMyMz^M+EfjNku$%#y+m$%3
z1+JGPIVaM*jgHl-v3agla=frT#Z3jk;Ee7)vsle?OMIkt;8c-b6lOb*Urv;hDW<eX
zP?sx~!V&1Auf;y;G8-IpHOfJMwNwT?p51Fg8^F0Gk3C4Bl@q0oK+E@!BRq4*rAo4-
zfC4!<8@uMP?e73kRDcI;Rk3s*cJ2c5M`|`9$5UZu000V{5OGiYK~~P~#2%HA9O?>;
zfES?0>r;KG7|SpLalt1C=}zq+QP8(>KJmHOa5^5fkuA{PSAm0^0Z`mte7%Eo=eOfo
z@?H}rLkylXP}#K=XQ`lWatH%z=f8SB(!8<82><{&&1bB;m>lHw;+)NZMt=7o=cQox
zJxJWpl0d3HeWTQWDpj1Taq{P|HAu>13xEzV2<w`YEKUJj43cqEYZ^9mx>fg<a9l7o
z*=V|`NP@Hc*x)x@X1u=E?5YM|mmK~zw`r+>0elWV@aLMAx}qf2k7?5NTn(GDq<z!S
z9@V{Vs^om`Tq(#<dv~uNvDbER&45P-Jl92Qt@5E;r_31lscX5;-lwDg0Bsb6s(|a&
z25?WcXWi>0tDFs|uYTPtlzniq7<`{x;8tbdh&HKbV1)G>jYEylT_b|CxZKH*pm$vG
zE2GmGDx3vToD^O&?kkP5c-2cYe3{1`PHU{v&y*17rx|Yl09yBFR@)gyn%L>I@09}J
zE=NPwx9k{Tf;JwCxUO#1RoFH}nCjW>>04H^6jf*8LCEJP9jl$yZ&ODEbarmU{O#$6
z#wyFi4qb7z^SEdAs#a1bm6c;5UP$d%7BMyha7fP4&{s67jYO$+2?0(w6a?TLgIRZx
zmgtNNV~=X+fE!d3^YS(kS@)2Uy%n>Q@~{5@Ua|J+F{)R39G0e`iFCsJ+j2RqONVR~
z93Na)O??WWVYm~LdSqs>?jl|pNiKLiaC7ff?cZ>8wb<wG=T-gySw;(TKN`h*!dMOG
zBOsoFwzVjN##E93;|INRm*2XThb6k;o(C1QD{~o24HHYKv|&j<I5^|^)_u+Ni^*bn
z=~bTjqmzI-bDE)hdaR_LqPJB$88}$I4bU<Y**GU2)w5$b+N9@iP#U<~Ymw$>ap#)p
zG@F*&w{}?c1azm)9J?J9E)=PhfWD))YW=zL_OIVPM(;|?w|4Uovj!N+z^zCn*mo1p
zraRVdc6*v7+|ae!2pw6vr?;(4aKxMf4^i9NtH2sUNx@8Kj@4yI2wVPH4^FxIRxY#Z
zX&8-ds<{ib`kZG2+PVJ#6e7vty-zKYU}evtKHinmyoF&TDI9mMYsE!j@W!bqQ0^fo
z(`d-%quRDxg^!(lRXW2QQ7AkPeznSz-n6y*(|35x4n<P7w`t@G0X0bpXs!@P<}l*5
zBey9ZsWqcvp&u(GVU0(AR@Dd`oZ_n1BI%jmHu4Ds=cQY;h-Z~GnI+I9;2tR#Q<63W
z9w}@Zv#5r|x81;Ax$pF+t+0$HTpV&q?O0HFhER5~z&%K-7uK(Mo1(eOoL~xV+)Y^D
z^P*wp`N&86)XD7@`YnxyOmM@R<X=p>LQ3U;?hQ$7HAsi<)=~#J?MYl|Eyy)H2eP<j
z?Vc)&6VTS3_3Y9NPZ10U@ecKv%vj{mS{8~xb4yQhgzHE~DZpZaGg1LX6jdexMIbq)
zp#W0!r0<;4(g8D?C<7Ez0HD!D06AAIGtk$2@UKFL#C|%_H0km7SGZT0lhG9JKgzgR
zK4ux?73x0=G})k<T|y>hkbIG`9S?kd6rP%#^<9zf{{R;6KeYU3E%GpETm(W7L>K^m
z7_XrJ0N|hABacb=uc+C{KEbHzj~NZ~1}btZ<vUoOS-k7RltIylQ|n%#@B`uk{5|pX
zI`Sx%J4mGc+Z+chxB|0`wdQA<-OtcJjK31RJK?_!{{U!emq7))sg4!<^EmzyUjzI_
z_@S$ON!K4xxDJY>h$4~lkgq|seLB@IANY@0_>tlZonKqk)xnVcn@@#y#R7H%)cTs^
zTFTxcPuiuGNI3zx8T77t)!h9GOO&%LAj;l#*ld6Z4NRS7T$7Lc{YOYiNhmSOp)}Gk
zI;5pLr5j{41C&ry7=zK^=o~4{2&EZ~bc>AcMg;x*_x(NkKit!8ulv5PbDi@(U4Kk{
z+9CG#g=<N}eFHnZBAUyFgKykPKqCYMATBU{Jk~~uze6;F--9kb_|>C95PkodrWo~{
zCae0d%;CKs5^GjmTnAR(spG^fp(hrWY{z0Ffe&v|9f=xM(qDgx+4Wq}I8NV;D-`Ev
zKtx69i+#c4ikWAr;CX}aYrkH{5;c^~DE{&_o6E3y;54$7_*plhXq@`R7mnN4t$)li
zb@=r7Fq;j+L(iMS)q|$Tm`+ymX<?@njx*)O%hDXo?6_qz9p}UQ-`*HWfGLdQjRf@5
z8Ng<)0EN-u!kqU!w>klD2|HpZtS+7noIF=zROq=25g*&Yp-6}kdz$%mh3SXSToLt)
zoXyZY%Q~PRbGNULRmcD^@5@D1chK*r*{=R8an=0J?zT5#_o`yS!3QFKCk!IM9f1Q2
zM-aFO?4Tq5QCvbyQEJyimBUxsbuJ4B9x-5Sn4A=taQd5iS$mY2_>CkAVJr5HmgVOm
z&zrs1C2dueJ2JF6#~Swgp6iJV+Ak&Zn2%~1_|!}HZk`afoF=!Moo#<R$~j{r_Vvlf
zfyOPd<yWH6UDx5arn0BFAN^sP2sODYA@rPgt6Pb$Jn1VC`-d#nuD+rr>--%V{GqAj
z{@Bz^Z~LbYc18mC7P7dz`N|R@7eprWtntFeWZ3x=w}^l1jd;8m`Qa^pJ>CEv<VgQY
z?M$6H&?N{3Ab?S;YmIsOl@wu!QJDM6N^~T7I@wk?F-xV0xxVv5VI#PXnTjWagQUqa
zTqS&L!I)EschMR*cx*Qw7vhP;g&yTn7^UnGzcrSS_Kz`_lDOgvMCl-f>_`o*z$}z9
zCKPIH@}$%!`b2&)DZl4p1Ro~!dLZHNEQ`v=Re&u@-9{LC0qsodPQ5hQz|x!-eHmKD
zRfh5>+31l)VVZS3`0Vj(dRcC9Z-JUZnGzMu^3c6!_nRMBd**0HU8YV;|7~>&4JmCy
z)X1X==-VkZsq*gLFsL!2)(DAH$~qS_l!l9f<)B8Ic!^?1%f`90PnZ(`GRMstm5+G*
zyEX&Il%H&Kroi4d`Oxvi#I&ROIcv04&bDH3UAFpT!ma?ejHTp_AaXM)uJX%rx;i=e
zMt1RP7he$y@4f44nS8DqnK_E&40hZDyS<juqGt5)A^ZvGs?3w1GeOw9eu}%OTcJNL
zIf5d4>Qy;k%icuOo83Q#*sw>434q<~n6fa36Y(2Xq)D?=p8xik>HJ~vMeoG$V6}10
zm%;0&6SgV9SRk%Cz=N{<@PA#p1#|+yI37Gqz7o=?4(X5tb4X<^jgLgl)mY~HV+MVA
z>#wS17zXZX<4Bw@`N(y~g}^mF8%AQIYo*PBp|4DrmB3uzOYA9A3C;8?|9Ei<`>Z>;
zpwuM4@%b(Nbh3h^AB>q|)BfP+@n58@)zqGV)*t1DR=|WK^RaU8O3b6}TY%Z7b?MlW
zcrudBzr4?1<LEMNOwGe&0id&TW)3(dL_42;Rg0R4^a^E%$m2YP8d5K#*O^Rg%D@$>
zPc*;}pqGsKGDHK4*GC3c7^Oi%_~vY6LA}P#QlfGI$tHQXu3q)48qQY%SYTkkB2v&l
z>c9~9AALyq7Zn;GAkTA;ijKOhW_%mw2ek{VI_-|cmO*ozT@v3wW}wp)&BAYtXoL)*
zf#M1FzFt>&><)~&Ay>e-<rzQHo4<USX=jpOWwTWWjjk20Ie$mD&G%-`L)<st<0p1e
zz|5+`&40VPpS|uLqS&fkypr)%Eg5!%*iX{F#(&$BtB}6bbKT>a^QoSPF(pZO;PH1Y
zc`DC$r^!oei|lt=z3lD}17E=v$S&Q@(h+Y|CUWRqpP_I4@9f;Diaq`@&g9a^hI%s%
z?7F_#RtpihqQ5AzA-`N2_^$SSy_gm6({K6Xe{)1nBwG0V;Gc6Ue{}x`V7i}9_8v>t
z1+3>bO&AJNcB@(6yzyIXWr4(&iT@lH(YSir@M>W|kLW`l%!#SHoyBx!u4P6dZT)D1
zsL}qL8HS56c*1fk-JxR>b#Um>W3wJRAS6BgkdNg(6GB<YtZc5)`{bsStpI0Gn`&)s
zBIqUPmOZn4SRul-I&^cOatO<X9hjanED*dm#q=vl)O;%WL{2Q{`NdmVO-do)ayv62
zV>9YNrKy|Cv&a@}EUFn96f<e8tZ&7+9xZiXOy7fy)Rbikab6MbKGxy#i9K~^a(}Ls
zDvQM38=WDo`2O8T78@>iYn_liqe1qUxNNRh?rZ|QHN*G>Lm;&`rV#2(zQ7u3;*`Rx
zCjae<Gt6n|XFJ#ZMp{im)hjlKQu)1uJWIq2O9^#rUr3|}eNvUZHaBJmIOY3fe!+mw
z6_npJtHKT@&P5+s3VFVQ6(2AC9on-F@cDt|){_N*>3zWPALluJtp5S34Wr#QkZ6nf
zZ>=WsMi>U!ow$+qc_tfFN3zTxQ?4aWFW7yB@La_h4`#=0hoS6n^!5Z@R=V;=Rs!h%
zU8<%*r+r|N`T<uBrC)^SxY%vqsOWhzH16OM6)mCCtk^|RP`q5XyBHvI;67VqO7U3)
z>fd#BS^b4Hl2<M4@xyUGcwIZUaS_W70pr1e&4Uk{%E|=cw*;<lJs)o-9R@+ehewMq
z27G1aO4|AD&1sk+UR=0CMw`tffJQlOh!uTV-J124lyQjAF>xHtYrOl0p)@VNA-wA`
z#RYIvz_9bh(`K@Pk0Adrs7YDgh~codV@htC@~_9Qq;Rj9tUcSX@}kN84+7b0sw<Ar
ztt{rkog!1!)w0wesS6_Q7hr<5HtnQj?v*lrU;Ny(v`|0-exz|A4%4OJJzDKwwm)ws
zm0<Z3+QM9y91IzQK;OS|v2Sk?--V_jc(utDe5K7e%FTr=@Cfbf&XzjKO!()@9#~TO
z!@ms!A0>k^Rh~otR4#yy`Seq-m+>C$Gx+NGGr_nx6ElLv_mnLcE}k*Vk)_|Lk8ZBR
z9|SV-zfT*X_V1QY!z`m{!h6MM-F`fFHbPQOwb2N>9W>q=w;Gz)I>N6y-4x@u34(Oj
zbwmD`vVI|P1>nW)3Zy-X+!}$=$W<~{>(JKuJ=zjfT)&>s3NbX#>7-nbDA!0G8i{oV
zM%`CzvWdikj-&m5?pfEjNxo!oWWH}T^s5?_3p1lSlU`r^Eox!cZ8l6sJcFhGxl-Tp
zFnU;z1Co7Sn{cCzyA|wB|6)f$_=_onT_fM+xN6FKUh?Xg-yU<1^>xG@;>amq>u#qa
zBLh~XXV&OW6PK)xXvtreDOgUPz4_#Qxg{|-E)v~IUs@*GJ~=Wcu5rlWY%4s-a`3sW
zBMc?^Sn5c(^SkGwr0_j&8_K1tXe|4g({q0<BB)8FxA?Z<QEI~5i$_!GiipjZl6TqS
z53hNtAyZY0uP0o39dmH|=Rh_c`H5GU@mHLAgH|jPoj`Q<;O@oHdxpV>1~mocqHjbo
zou7!ZeJHzHffrGF(Oj**#WYqWVl}FV3Eq$Oj_~-+5LI1p2KYPap*b<}78N-(dCp{@
z<+6s6Zp*^^tjzGST{#}a@{`1!r&7x(F;Yo?7>gT7T<%bLZT}@PJ1d1!Tk(n|cVR^r
zohz=mj?2<U5%(z`V4$>)d($c6W<4P?+Zk87$}xN~F)Q$kH>TWJ!DD4^0?xX1@(9n%
zVCBC#mlI?mRK4j_9(7i>s_wvyxms!$k?#T%){&6c;D23t#2deB&kj@@I}(bg17^J~
zcOPJupYW0%rT4#mAFg{U{{`#0XWi~T@2i6@`5480ggCNN7Mxc{e9qY#4!^)A##++D
z48*_fn6SM75D}wmnEyTE^9)%vb!3WIk0ajZ>pUBLf5k_k8z#{n48z;nJXJig7WkJI
z;iBO#$@UBMXP$iJOS_tofwsy+{ppR^SHyBs9F-z`2I#MnLDkGT@;;Jv0xNh3{rD#i
z>g-OeR0p;J)85(iG!tpw{ay5!aMM(k^@C=%0aH=<qWG@wqR2N50w9gLfUW=8s_A^s
zH6l7#C!j)!1+bka<!`Jy)lnR}V#ekY&B3rzp3hdp+j(4;*ybxduH!o78(!U=*v$Jy
z!zPML{MdH)SZl0)Z0y!oCU3_g;|Y9Jk&|spH(fcV{3&XT9kkT&2JKejyIgXR4Nv=a
zTU;S-g_Gzt{-@Og3gfr|W892V#e-sxvZ)^s8mReCMUrvvDdrPY)8PX9)CQ{Hu&Gwk
zXzt>YK`s1s>De!kbf6QIEK2EeP#iiSFwK7NPI9Mk4VctY!A68;_|QBgS)npQf82`u
zQ@E}ANF=3&Sc-o0KR`WYWVqZZm2P@~afU^E_Ek6Vkl2IvH`x{G&txJ7C@X-?@?wW?
zsNg)1-L8y;n3wcQ>ZamY59IM!F(?^KSL;i(^$@<2J5ZQz=)~6oi&zgSnfxK3)gpYd
ze8HA6SH7YQWNrU*d}689z6q!?CQrfLgX7E>iW-8B%cROPgr^^R{1~@gmM|}uY3RYi
zOvBSbj-<l5Ld9lUr=PV6_9iL6C+MS_M|HZ#NxI}9CZ2!N@5e3g^cG&CK`eCs#$1VH
z416!_)EVf1jIcVcRY*o*d`PN>98BZg*qbAy<75}J(;9_z>Xiq{l=ew0B<mhJdwoce
z8ahDET}~GJg|9#HI#(m&leng*rsxs^aR=K)StmC-`xjCKO5L>!Il3)s6W{eVM^x^-
zh?9N^wXNyl<m-eVUe=apKc?JkrS|h*>oCIV#_y=LXtfgN=Fa|5_FS^u=u^qg6WI-k
zm1sU0%+3`dUD1=DWwtku7QHGlA%o7>ByxC3t0W2knJTm+=$0yV-3GvBt0T!j3=u>b
z`E-d1uHa!%<WZuHY~xX^hac{DA01sYYzF7+1oD0TIduE^s_f~b0hwzQRw)wiBv(}f
zbpeb@v@GV@wwf*)&Br%)Z3<oz>sbLPa)fTTj&b0nsROQS)~5BsJ{Yyw5!BvPRAuIV
z+P~}!Vr%%iM0ZI5oc$3bsC=liu<nB9^OiP2QjD!2=l(W+E?aV5c{~Wn^;i2ev>!Uy
zzbY0(kFj=)j_@4)0KG}%^j7J;5tWeSA!eQ3e3~L{cZu5@Q{;HmE!Cp5ms0WzBgy<=
zM()^hqFC)`O6b<X8PmDE$CP?(mcvbY!k-3ySW*6TZ4Ta**g#Nj>(+wP_cB1FIAUzt
z7aU39Lb(PT=Mw+Y@@srR<i%xms!YQ;l`n5jTPTE_QV*KO04D}qig`ILf_o`Cg~xdT
zzchz-^6A~*I%8z97Zu0RvJC)DS=Xi~yU*%e7$17yepP3vl(mbBRQF$Nc)VHZA9G|@
z@P${M7<RcM_J>&e(@+QU<``-WxWa)&(tM0p=;*sZSLGHG&FgrBC7c`%c$x$;Yc<Nd
zln<Tqrcg9h!f?GZ>zRrIYu6K@0$6Jq-v>sP-IaF#AF7Jg7Z4<zS0~~8!<HV-B5L|9
zA@Z22gxUXsMt!b`#CRuIYGSI?g6>!fBj?u2Xtv`owEN_$#^dcXpOty_@Vnx`Za}bH
zXC*GDnR;D(Guc|nI(8=%QhhInU3MtZ8kWde>#V%;zt%c)D%+4Ra^-V*c;HJE!u%0>
zZ}a<Ibq+yax@6?zN3Y<Dmzc4)P2q&!V}D)#q+S~1RekuG)H<R^=0AYeoQS5_IJxmE
z4^M#HG!B!*^n0YM4fd#aTP&&3DW=!Sk?1>x_}}O6s63&u83AMyt}<O%hE2Au*ORX@
zCPVUi=hF{+-iSOtFLl1v93=WboduVGvi<G9G0=Jw`C0Io)$3^aC;hz9T4`|`gF&MQ
zG}j&(C>wO5=%+!r&IA*7MA}iNt`h*A&JL{2<XAqB0Fi%xY6ZLt-s@LQR_7vKDpkU8
zm5@lx)Wb9fq*(TQw1l*M6}u|-lF0rbjenp(WKwh(Xu82g;yc^M3lMqKjh>MKz9N^~
z^XPQ|X}6C86CuJC!lAJq%!oqV3N(tIMd?$Tv!Jp0l_Wtql`**<7R83I>M*xGDN#56
zrgX_MV8;9XRs&c}%!w&sC<_EJSO0?rV#<{;tGJxDz9YLivrA{k-OIXA?qISYomZkm
zvKNahK3{5Rm!>}o(B8uBbklHmHEPIw4G*n?5Zmi&o}aDsMoHl9CXvkIoaMOtvX~e{
zwQg$`Ts$rY5$CS_r3FYZd1v$^(=lgZbEm`&u|2ak>M6}I;wQR7R>^zc%N#kORmZyt
zvwP73ys5b1Ul=(0`BAIVeBdwnm(Y0W59={E2?5y=rwd9l8atpSh{X8vN3MN7Q^s?p
zaUDOdm8-;;(}6k_SrE+8{DF;N1~jUh{0Rs-pT74e|C94q65t~%Q_F4OR>Qc4T)%d^
zC0+H*wSbI~sWG5t5^r2Od#$Ns1rD(JzIM!q@d{TACUW6N50@2GkGy^)Bb|1u8_LyM
zD_s%XCP&7@3R{YTeTa2tM~dWXvNq1Qn`Kg?k}{>Z%6`v3dt7fZv_j<tFI%fofx7BL
z8VSZjcA7#P(wbbGwDKGSMp{8Bjqf*Ee_F<>N_mB^vntUOa(Z*qC9S@mD_t8zB;l>Q
zme<$@U4C9d4Wd#a9xLB>uu{p%9b|Si1q)KgG-4I7Hi3P%4oSx4j)<!&tIS6#<kY<!
zk+%LejjtPBzkG_0U${7OnD7Z&XBiBFnsK45y!p`>;+VLrhX?c=pC4o}Y~pC=``PY{
zc6cCm+Pyv7zXGOZV<x(HKt4+mv|*9>RLI+B?p;ZTShtC(BF|@(qy#}>xoNdUmS4lK
zF<rGvZi(`5>L&N*mL+H#agbimqUiz^Qh@N#fO#N&UReQu-1m^nnz(_5s^TP4`@9mn
zZubImiGASuri8y?;R8*2%3DeR=ek3UCaK`CvG*QgDvMB?)l#WhzU0%mu=Pb8RJ2fV
z7~904n^OF(be%fysZ-#al8|8dwr4wINm3}<cN8+T(+QpE=c|9$;EneV<eJq8B*Mnn
z>TJ9hD6;<a?fPdbrH;EU&r|S9?iZkG*~a6#X)VQ|O~;4UglE=2^*Up4D5DmgdwB=`
z6<9(S?oWF8;vvq}(V+OI%BeM?6;FfVk4Yt0kmTq$+F|bwa4_U)BL6zlmHyirbMxt?
zyia*JTKHTU>>^(_)&3uV`d(won<M=N)t<1*^A*mi`%(FrxsEX7^b`H|&|{WO1Y8?j
zxo!2*U>iCbab0%37%j;0vA#?T78Ol<QGutcN2p)5zD{ej?e5c`_K`T5A<r^Xtz1Z#
z%CZ99cQGLKylOxjG0$4oDPsHntUrzMz(z8*%GBba<2IQF!-+Yy7tSAgWMlgA#bPS$
zIZ8G~dGd?DkA$}z`)G>r!*=kPzhp*rMDUi{*cNI%h`xHmTm2|SRw7hz)i(sc9y^6I
zH}46qlG;hhr&75%?tgf@5OfV-t2V}z1PN+7ChKaJK8mBz-{&soB8rMvr88(HA>wf>
zO!!}jlpjFEEtc<ErbW`7uLN_P@01t6jg&PaCJ+~IU0L_$*E~|~TTT4&<~L^(EIT+p
z+@{>|VPHuoniF55l)1J>CqfUK?kQ(e%y}5J^qw5xx%2ZkSE}%D$=+P{bU(+C!=jI)
z26Gn7kk@ycWH)+DzvHH?3`8*rUy~~|7;8Qa`Q<(^-2(N=3wliUS6SUA=84NY>-k*m
zNHUEYZG{k04z^5H-M>2HXPWzF;NWaNPqOah7usF(^uWNp-uM)+d+>S3-b{O4{p63<
zyl|uthzp)oE_?d=Ze<;4%7J$1|J-dGa?CrU>&zZqq0adiYDQi<HA9O=0sGK9p~PT?
z;f~<z$To5@E8j!&;d2pM#B_{p=1n1YOx+4Lmhb0UhXR)3VD)$GfP}0%GyRS%?OaWY
zt~(2zSqH@Ln<5J@<1+#>>8p*;43T~zmt!h?-ulY(#aA-kt`5wf>qVC;Ui}_`8lQiY
z&ZR0b1@k3~2<s^oQf(B%{8gEmKH#>RNbaIecCi~gw-cr9I7K>_BtITVHb7Kc^_dI_
zcac;+xxUbWHe6Iuswh`#jF~iQJMPtmDu51+#Vtt$xiV8UYz$!5D^zLMylAn(1>e^M
z$Vy7$frSTPz;jN)^#$=DRw3S&VS3AO4%eh&_4%K50^)w~mhAJ8s^kKVU$VyE$EVGi
zvOMdx6uZMwk9&1viR8e`DT6aJEy1ew0K*(LN~zNQ`7wdZF+p>&ECa+1F3v7Dnzb&W
z_vZCL$1_3K;F%L7IN;fZ1(L=jay{|27U3--sE*~+AQ9>bO~J}7Se7hYr&*Cw3Mg3}
zSQd<mOGu!9RyZKE&@&ATwU4@{m>|kb&R`4Umx0gp2LN2tIXB@-g$MqgL39NR-SUbn
zdHTFC1gWF{bWF6zPmG_j6I?VqI=}!OD}9awMHmJNmwqJNs@KG&23AaU`oDse&g~o8
z*IERBGcY<p3A#Z`bv~*2T-&`s)VMm<%Bu-{QWNWR`(gzp#r(a*#YVY`#JhYg4~Nvt
zVT==vGzr<EPvg&galyxp<ti5+GUV}UlHO~)aS?u{`5e=ev+^IH$y&Yd=*gY>%dFwp
zzz5%=J1M%7^<^H6D~{_p?wdZcT^vp(`n!?l43Y_{dAXGAb_6jh8xD64bHDcd3<AmM
zS<l)kfw8Q!v%e2C{*BDK*k(Bn@TE9jgqi&qT+_^xpUue}>*6_?u*~JFa$;5EZ59eS
z(89wE+BTZIApK+DkX@es*mFp-C)lJR>S|1nuGLEzkbC*#G5@bl(Gx==PICW+7z6$s
zVid~g<|BTlo7-N>rxHS#V-u7$v6@>|S;W{0&(@hNHBhELBEf6XMpm6m>PAdJ@~PGx
z%hg&PXZ^7WfYMjaQ{D<yv&r9=f_!jU6*%`xYBguDb(c?Tu<x-OeI~J8s2tB)&ob@^
z_Q-OGEB4r7NzrLvT^vhZVjeT&>$z(-TP^O*lb<jnLAn&-*%LVOynf~w1Y+=yQ%m}>
zFoD|}C2-w?WIU0Dxsk}fJTcj6#9GM~(C&xS!j~xV&vD9iJ1KKz({$7X<gVzdYOOc&
zdzf{~2TU|gytC~Ly}|-{UM9}Un+`S0fEwz{t5UH1hm#KJsJ|Yd3*gaiNTm`1Ple&O
z<e=<z;T}ld@NZ?TJt8s$<&x-!E8(DAtw<}zzLlmuFq`~nG(MfHLsAOc)31tze=J9N
z@9;(CHaVC_jS%EP%OsD-CC+7jpm{FE3Xxy&KH{#{xyBMea=RV+FXX@9Zc_R|P2*lw
zm3cZLR1c%)oHR;EaT-qV1KiEYcBW87laWB7<Y^@bct;i>W6)~Zn?~k8SE@MLIv}-C
zM7HB24K<F_NI~7Zcakd8HXaRV0<$IU^?blj(`MuGt>ArePH+h!$Cv}neP+hs%n{^f
zo>ouhu@qaiw+&j~PY5zs$0_r9qM9`p!C9X&+-f=wuKhu^$h9HVc}lz>dxPi_)-a11
zeEMBlL<v({^v)@fiAA(uy9}ed411stZTSySQIE7PJcM9TVOk;@f8~GspMe8HOnXhx
z{YBJ8v!Xx6&$y26evt^uYKK+s9XF_u7j(xbIldKrt>S6w&ANEBka=2s(XD{BwLddc
zl;@hR6>w4z*sA0c-H8S>+>Ali>qMik>Gd+YHcG}(+6A}gUHBm!ofKe=0biVFI3vA&
z$$Ek?hU#G^=7yNA&uA|uakx{hjm<J=cF35B3%FhVGR~Yvs+<l$8A|VrXKGC`bflW~
zrj8e&A)|}?CJ7^T!IyM>HYFigFzWgul8TFc+6I=>r`Cm;;3|>IxxIzJw~Nh}qhP_<
zsrR~NNH*J<0LuJ0?Ob2!>=qLK6}+ga0`uW3(7d>qlM_`3g`V=%yz*2|Je>5hk~#%}
z1o|g?G`b3Obsy^JB7Q}NCrcwN#QmGOzvi<H!dN4jvRRF|cp(_s?R-^^7~Y$HD_F9B
zuC%Z8%<i@H3&>eyknmmWuFUk@)4n{RuS%FfEqW3Y(6(INxLk$t8WHwJ&lmdFJxlYo
zLBiwhbtl*Fbd^l!IdZ~=B8Qxa7M8F{#}Ox*2uk68&nJ@?`~7R1<N$-*EU7WmOu+kf
zf3s(Rqj4%Zyb}`_C1war(xZK^Alh;tvcDkH0!-;b{Yvpm?n)?PoUkn078S|OH$Iav
zi&m4#-mqd#)nRbuRqX0wNz|*hi1mIi<d~=L$;+sF{yySYHkxz*A1>|KDVQ!EkDj#j
zP;DjegQrco&x<4psWHP?X9xGzPrPd00nOA)M;f<mOrls+edlZvO=FwU^LtaxhoXq6
z50_&BZGKsqd7}PN(ZWfd$#tm!AtG&x!(Oh_nieg{IYH7Q)~%MQ*ehouD1MQJqV2JX
zKo=;In6Xj`VAsli#oCiqre<OkY%nh8X<_hDR!H`Ur82=rhUMB6ohXY(CjtPvZaZ3-
zJvxGkeZK3_Bm~~n#O^O@D)b2FX7#(Sy)2M8d=R-$Y+#%ABG_@XkMF=Svolc`BP5vu
z?_k=#Vx|iKx!J4=kMq^f91-fozRtYnV)kSTp;H@<%#f3rM{8Evu!-B)>_cex)}{D`
z(Bpc_d|FeJJ_D1Qo2&~*W}9Cr7oC@I7XCfMWvlm!#(=@^US{Pvvsu54r_9uH^E?#Q
z*`L4DgRV7ys1Hf>1-Qy)W14us;4w}xzCN(LhH<iUa4FPIHM~`9eEx6;f29J>Kq(y8
zJ==tN!<o$-<VeRrUhy;J=H3mb0naN<Z=SDG%*2`KzoTODOg@EgHe773=uAI044FVx
z<s5r*6?9_fCA0NDHi<iUzpz{RW;bLgB76ih%k;<qIrjCYj0IbE4t?nkwse}Nl}PYA
zSIXN+KzCi&inzbZA7jUWqNc^<`k#0+ZvEr@8fIf?0yx^InyZ&=Jyxtau*qirQj2uD
z{6jX-I%%AY>9uF^H*tC6PbPx~vBy4b_L5cg0X?#{x{ZUjT~*M!Q!z?`Z3ikkzwkM-
zXBX_v?7_0d_ilkN^;`??6$k`(T|Rfq(O0IrW$CFTTBZ>W%bO}hl?69E;c1fmxTPFa
zu8^P{fTrdF0TM08pR_!}`^+rAopLnIhL!KgHk%Y!nUAA~p<Dqmm;+1h0q@G>E-Gs?
zF#Y1nLrKtFlh~1t>J;rb75h!$4Sl2ZhzzqQL-0_Ob!5;+`MzZy@|C>hEmy^Lzn-W{
z1iN#N$udm1pR`Pc=5gB1AAsN6RK7>=K)DgmhmVQLUKs@%ETK^aZca`<BvLj1u6v{k
zMb%8GAi0V)MpkY$E+VQ42fdD+RQ?(bAjUF0oTHgTs-!L-XGCOmBcS`Aer=!wFi;ib
z1{`UbBNVLzfm26vRF?c2KL!a(0&+>FP46t;e<M@98z4?nJhJ}7#g02Yik)tdJea8%
zX4v8MRWES`a|^ukm`LaUL)HD7?uv@=x4eyX*VB<Ozm_*V`>i$w@5rjw#OCf*{H9*N
z9;wqL`|!`2wTym1g<0?E4zqFEICwC>+Q|kXMBZ+mFbIsh0B=1H<<&XXE4Rg5z*<+R
zOym-;N*LcV*zKUp4W1^<$S;zB$<+L>P@Jh9?>X(CRMHx*B21s_gSyxsO>i2jOND=$
zA+NQa@gg6lWO#Hi&cpgHlRJ?k<kkuh*B=@?qBQ1BM{a8&0>Kc(oxX{GVz3gj@ly9O
z13mFYt;hG)bL<FfA7$9Pgz%e<y$|zoO^oy*D|GmNY7YYK({}tzKlc0cpf`%LNR<Iy
z<8Pbn9T~d2<eTU&$f;!lZ)!~kT~SKd0e6@$62=rz<!8qDC#d3htDba>GybK`1x}N8
ziF5<H#PR&k9FmED-x->J?k>HN{vHpB{GrHz)A=m5cmS-a`FE~jA4>rG_#5y`Rviwy
zp#|>3jQnDue!^33BADHs!B@(}XVGU9&^v-_rqck#zU4_=T*@_HV149H6eqIfpETd5
z6+^aXDnS%tobU4Ewf||}J;!UJ%aCpT3~2nf0zV=p=2oR!s<~F-G%$~XXbZ9S((I+&
z<3NhmIs#uTZ0=PgLDKN*XO?eGJ{yXC(PY$Nxf&I=9(|e^&fJh%{M3~|*IH8q<)rx|
z7#s_mo_(@4Aroe(vHr`i0(X+jX0&4HBFG;U-&Oi)!Rl4yB3xtPjMu79LI}B?=0tl9
zD6tcCv+1gGRzX8UmW2G?-gFxJfxJKf5f$2{Hul;=k+*w=f|3IkR>YH6H@FC&8M!0w
z<(A9)-iTj!Y+x<w3#wFX(KLwA`yZ{1LA<(X+7PGjIwr;+F&-8+XM$NfB#)07Y%<Rd
zbRvw71VC2E#?cvWoHh4;davFkxI57D4%^#|0=On4HCfSBDEQS<zKkUJX=!I>y-1~+
zG0XQC9)&*m*nGe#6?8k*Or?~jIo~FY+AawX@WS!LVt(`jgrtWIJ?t9b?M+MZbujr%
zXg909m}Qqz;6<$@J5R-@r!$Vx;S4`IvwV<yv;u6#PIWX5kweCyKNAk`?@(Q2n&W&U
zf`!7EVQIKr<#KeR0d{CjcT0)U>(8C>9>buDa<tyCIzh>UVWj`%m|GKVXP@I&K;sMn
zL~hqkv&>71<paA@xh4S|S2QN@b%#;hRCF?s(4kD3PVk+USMnyg<O5uhr>DdC&m(i2
zl7=pPbVln!$R_-%w$RgM&V+C?pkH9%QmjT+#*fm#{Dnt>d`6)644VPM=5OAoqU<&C
zThX6#drmX!sm;3vk+Q$s;?;a^q#jxw#DmohCWxnM4$^sQEyeZ$txDtX;@aFBS7i+C
zXsNa5DNF^zInRKDy!B9?(q{Uj>O|U*B}uzpLSJ|ESim>wAK&Z69q6{4n7_rM^My?u
zOJwr@FW#-;5Qzhk-f}>4Z!0Q7_jTO&KH(NMuBPWIFXWfQo_i%Nhlo$mXmVbO*Vbrm
z6)Jb$dJMzm7Nu}dnq%<-hj|Y>NpbrOs$9r?Tye!PmL<%k21HXNXPThl{p2V!b;S%W
zY_O`PND-4V`Nw!}Tw?QnwYAiShoI(HqHXF6k)VbADPZ7caJ7sY=c%9YRQ&`o%iV0d
zJIs+N^1Hw8O9$c`kLpqT3>dz;fvJ58lr`8XxY*d#Hm8;DIafitF>3v6&v2<FeK-{7
znstp&i6k!dXlE&sk}4%#nV}`J#T&wHKdxR>!wq(6-CQsejO%Cx`Zn=-(%M!bev$^b
z^zV-p<V<}7HvyQT{H*=^2rT`1rtqS`05)2RsB$GC&QJ6tJL|L2@a@NZ`B}r=Bj!Xv
zZYtk`?&wg*7n!z{+@{P>&bbeVIf^Gs4Jf8QzKY*(s+&J=tV$ekD8DMp&GAe_9X%6T
z0TIA}+mXp_3ija~Wn&v`AJSRbKhRhi_DDFdqd>79*uWez3-7YlCcllRR({BN(L08F
z?bmeS0_~@re}5!siTTKEQYGC5R=x$EapDMP6a!IJn%jLfj<h1DPu4!Kr<sR&Xq%u<
z7lt48ZqTJ?$OC^579>2`V6DPu*vQqB5a;4T4BcN?Yeh^WuEZ~Ij@;LGhX<>cdfE-u
zOjBgra^IVc*0C#a0jP{DI}Kf@f9>-&PP6z(0v|QPvnuQG0Y)<y2>q9&TtMWNe3~Ce
zd)^e{M;(7iw-n~zkyR|`5<~LCfYN@dRR$n(yOacv0N6q>m;1h@WOBedTG~H4Y#N~z
z=|7Ikd&~CtuV7(QUjy~&fVC<rUu$cM1$r*oU8D3q0l?VrbE$y!9l6jkehBuNuKxfp
zW3g>{9V20_>c2DxVKkbPpsTzfF)B%}-{K=LDOjP}xnT9N`DYUgV__WX|BJ&Q4451W
zE_Yn<#bW@m{q@LwCIUp@<QB_8)yv6j(IjJ*>RgRIBmS@yL?ne-B1tF%V5eHQl|&MF
zmaGo-936_Cw25(o_bLn{8EQy}tOJ1m0zMfxZ%7EP<y;);sc|s+5wLy~uL^L@u{?2j
zyoq82l}bBQjQ>*idLBAvY3I~!pDTSmW`@@2W=}H4g35`Sz*EgT<dTES-~%Jo3v%E;
zIvBuCT`NugH@k0G*nFP<tk&iaHQ^+o!6?%WHj&)L?fjQyc!WrtFlh0aF_9%=-{udC
zklKf&M@iDjq1!EoSuei?okihL-91h5QVV`NsLPtze&0$ANH!Z=zPLAK1JBSyNU{^h
ziqGu9ORj|mrU&%IF%}}x`6vMNMt=6YL;tY!5av)#^WJkfy+tn0y9hn)v{X@jW4w;7
z4nWjgnmPEcaMy_HrM~Q^V-x)d_KN8b_!AbZs_<fXg>s|yu<%lj@VH4Z^|^#SENagp
zBdPKM7ctx%5@UIABLztEhn;(rjB=|W;Y4~sO3&u>Hr5DF;O6xn$cF>I?#EnSwH!|e
z=OPPcJBEAuZLh9=UXeP~aT(QkE^f0LMF4PJ>#Wc`%(}=-@HuqSEUU!VU?4!|e%C@>
zzvdT(kz6#oG_8T1_{(D!{r}9+ST&FfaYK@cJuZKN22jkYhc{0vP+M(|aZRD9=UHCP
zuDy8YcX=MQvbMUMfZQE;TF>t?Ye||<X+tJJ^6NsYOjQr({iXLy<4swVy1uPD@T-~X
z;YF*xTx<JT7an$k<4wqKGnvAdbzQFAYySZPA-TM(10_IH+OEy2<mZlzn?k$p;?54W
z5i$K{br$=NtkJ^Vkh?4_h!1wEcU}uVGnxFF{qlW^M`-*)glGBe8|<vuyd;_LTSN3F
zVy@%Fxb;cRsi@>}E91$YQGt7~&=w*qYXwQWRPfOtdqyHOapt;k!xXV7e=I|wKhPZy
z3SVxmXc`ft`Rnqkj(9FVNo|1_f202RY4T#%(1M$GZ<iS5YW%Ah_Lg69vD?24f+`aI
z*RrRgi_bMGYBL=Ck<(!mo~?5ZgJL-mJO_{1vqRzu5UO!)9CAD+pV(tCsFzj^h~Gx{
zk<x~b%1S+ye&CEiArl@m=cR(LbP#js0N7_KshT29G;bW$=xPF?!c(3PqXmUQ9JpGL
z?7djIzV%2Mc+-rvb$=rZTHI3OeZo0h&%<5B_9Onjp_-xagqGINd9kAOEcw&@rYLn(
zTQF`WOHiXTP=^ZQPZB{5YoSJ6#oBaEaALVJ4#GPoX>#8P9EeK*R1q2aFW?yD*|Wy_
z#dgLqS{#FMm5=WH51>BT-_#LQcYHn%3>Y)|t@O*&hD!ZT^^i(nb%4!xH|DGOE?<QO
zuT~-bQZE7Mmg$0bB4?4+Tk~RgUTEw?PjoS_-D!l}zDDC#!pH2<v7gK5l?}FC7D{}L
zFvK$B2BI`Ebdb<#6KV#!NrQVo{tz-HM(ptsJfSdLB*Gf(C@}v<D_aqm(pnDOk<I=T
zHPkiWAEkfT;>=ZAc$?6Q9#~u0=cVbUKD<TFRI)3NS3z1Hm_u|djHQB@)om&d^wfHG
zouIyf?#|DYWRbzOUjjeFmj0pG+0)VCc8;A9j5Qv0du`!Uw;#z%;?nQR=r24RJU?#&
zKL$DIp=(tr5sNA=n0VTpvH8pLC5n->@rW@S>SMzoY>Spjvv(`@tX6SvX~4bFP&B3A
z5FM$GVW^2Ybk3yh8t@I9dyDcie7f4MKN}a1PQ(!-#mVDvBk}{5-C`~}K%;>ws~t{}
z2GBL8(jI9%08UCzv8KMD1LU7+bh*YEf{P0x$)~clcorTMJ!_jHpPqDr-INq?y*qu~
z{Q~=r)$NalQS))2sa$kS`d_}wwxg%<UJ|YFC2{jYMJW@5NCmB1z3UgJuF2wTG!yt=
zqbRD#v23D&;4A!Z#fU8Z=IP7J+VsI$zsivxY$oZyZr#JwXG+9cZy91oycuP;D>ON*
zE68uadq(41gpoWCyTQQid`Ropo^Oz=y{V4l;CG<rfYh2SP9DtNm+xt>%!Xfo!NV2Y
zn;3suRhypX-03v8@QZ=|f+BL$rh)3hy}XYXPzn#&e3YcRWf2y%yo8JcM}x4dp}p+o
zZ)uF$!Y4R>@W)`@=>Gs6n*j`eJ!cAx(A)E6-k1{S^NShOI_26dX)ABpiF4bGk#zxQ
zvQ`WG_0tBf4!-A;x}q_I_?_HC!LsP*@kXn^nvZ!G{@sXw2@Xcq0K9fioR|tPa(3P^
zdf5f^8{|gRBRbyIQ~jQUjc?x2LQ?S<62Abq%bNzatl8RUt&lTRp-5t8%?X0oF%vTi
zVLPEG(VF`YRN{Cv(44;*DD(04>M9zB54?pzVcz#|OS2pJ;pV5zTm*%)ESB~Zu&Iwr
zeUG{aS<~L*IxHJqokGg`Y|JfW%Krmcu(Q+ND`;I*mRy*yfidHrMjMY&*GJB?YLE1Q
zbE;Lb+TLYN!D~b2+t7VegGL1WQsg2TV#>r%)Wvx-=#lVI33fNT*ZL`O1b$iG*BlJl
zGZ3Ywdh7n-6J2cD$n~(TLG1c<HE|PHe$^L?jut|s=~nf*SjcXK+rBo>ki%OCyn7F}
z1`U|B&vkV|FZ|!^(}DL9YpOD2+s;k1eNxPy*w3sapeuX5PBfuh+2xLgqEX$u?kZlp
zolpaps0LJ1EBq`7y)Y_d?(69=$DFzN7_1#FJfAqw`X%CSe!fPt=0>UGjwN1CVRew;
zk3s#jr5mu`XQ)vpQc{)%DM6)I9h!p!6;-O2FWc~c6mI2Ew>C>_#am_()x8n_w8UK)
zqjdK7SN7txdirP|mH?NA;w2n`{+S!8U)me(y6<x&G(H~9LnMYOEcxUNaW(0<tyvyP
zv0ucM7a?bt11?A~_dLfEocY8I)?wSljE3@Qc9yZ@z7Xx}aLUY$+`biamwy7C(6}%J
zZyNiD@*<s1HT73fMuhBV{W@(#8GKExTu+ftmtjp>6*i|KWw)UW4<}G%UrF*&J<Z^C
z;}O9pF^B{GTPG(!z4Kxd-i0N-sVvT9P4qP)uS8j~ixWtei7#aC$eN042DqA#D%ck<
zz<+)WjjLn+l(>pRxx9z*3`mW!ztUKtmfN#tMswt$CZzVXtdF`%pVqF)wHf{9q#<E#
zJZyPfo-GRh_a7j^sEs{#9eEa)dJI5J{$WDN-hl?fZi*iV)nx?qa=~LOzJsL>OkM2;
zIiRzq@&hq1B|9}4Zeyiq-t|4u13EPaZO5lh6nuC7&MNs{R-Hh!_Jr+$lPvAhw**|0
zh4~%r?^wQa0o4XEl`+QKSGk4X*iIX(T~M+w2loBUDLwZlVt>-}%j!82WmVC|?mt@w
zR^`)p{^)i9DZjlQJryMf_3;h*|H$hy`zQ0;JKRU0<IY-EW1Th@aO(N1a#h+!<T}hE
zWhDIxw^5Cd=atd5Z#JJ*f?2O6vSN;@*!;r+js!}`^qcRx?03*xwtM?IfhoE478*vn
z#F>BMKjL95TLk1!j&JQQ{{x6(jA{B_uxT~X+0o0c2h$U3`BD1vj*<Z%5CCp)Jl~@h
zzeBD~G9`j?`84^TSwZJ|%0H`><1g&&uqE2eBECd2G+~AuyBcQOU|FhPrBb&y1WoO6
zV3*~o)Y?%>KXb=8nmRrEc1ems_o1?v?IsJpng?3>64bT2`9b;4X0Qh**;WN^Ra)_1
zW7=yi8=o!t)<zxjmYx&g0nf6b7_&_UNyiDxv7$Dnr{@wqQn&3)UqZdh-Y{;ddlV=8
z5&06M$_g0ReI9)Otfw`CYI8nGCE`2=T<#f?O4bc1?!`=@Ku%5)N(z>lnBcEcgSOn?
zm7R{w)$NoKljrJMhy{_$o}KRo`k<(!RosNlhfFz73fXS9fitCl6?0C#zo$|%ctt$c
zBK5Q?)OEy=^6=Vrmi#?d<}5cqu4xe%=Ho}f+S?!(G9WWu#3&1o*jIm0vcoTf48B4U
z+SNzhKsV>P1haEjn4EsR)F+Rt2RZW%zMe{Eh~eFdnQ^IAq4~NzE`u}^t4UNwzA698
z&In3Ym%6I1bQ^x!jEBoK7{sx+>Z_MxyQ-Oeh)7Sy`QnP+IQ}SO5f}Hm5Y0FABVOk#
zYD|h8eyb{bd|eYX7L>fRMYwKvRsBVilv_w71SE@REgI}<BVJmjUAE%QiyKN~PizFz
z#(U6q2I$qvc}DLx5r*U^a&2U*jcw0jr405(vo|4gg8|L~LDbeDd}u|kRhih{a}l10
zH=hVA$p#zSi1ZNu3>M(CZfl?Q`Q#xpwb0`d=Ynpl%<7P!X!X&Z7<g0a{@L&*PE8`k
zo>$IKaT|($cpF={nRMbzOz_QfwlvvH{iBWWvv*SPx6bQd_byAVMUI$7psv}mnp#I)
zOB$F7XhCQ>bHw2&y|NPuOFz#TsGcGACskIjA|iXy+nAOQUpve!r%E6!9AjW!_v>>v
zezo<%3)HIaUH!+@p<Ov%D?WQBu^Md&DTURVPXd%?oj?2x1-ws*Uv>d5YqU0k(5ZDY
z_%Qs?YB{aFHAT$N=PPWMTTMBtMS22n4gE9^v?nEATF%~vC2=@l26wu4JqgSa+6cxK
zTxOpBspflLzva$9rcULPTBd4)hLr9Lo#e}-VqrZ;DdI?AEJk)myoe*zIxiJD%c#$>
zqCm~P(1@sHusU!i?`8MzcfwI>1THHjg6&-f)}&o($9x)|n`InxJ1lfl_LgHV#d)RA
zlB9O%4k}#|8d?ai%SDWH`^ZdrWYV$rNG$72yCNXBNgvz=9_&;Y<CWgQbu8z1aS>&X
z7hhtl&1hWf`UQ_Q{(3}y@m-xExIZxLSud~#QuEP~pUaqJ7W4j$rO@dw=(tf`_3yc=
zW;P?IVv%;8LSH5||3GfE3CKxW?XZ8hjo|r1Gialh@Q9H);vjKOtlMMbC75EtOtr$M
z;uO7ZHz$f}ON5LI$2sZ_(9_kF0HcLepMmTO;|zuhA}f#d$iQ+HLJ&h<+W9=Kpnb(j
zG}lz8<gYhT<1M}!(;RnV{6ZvmW7Z#I!)5>UFDM7SEPmp@cVzo({ciU%FiZ@fTr5QB
z=fQcaYdJlIxfT#riJj_(PY5si!+amOY8Lkg`s6D+$eBx3TE4BHhkCtYNTw!79ZW!<
zwdd}UWd%#%gu=IJ7%Y9^!g>=TMjrM){S)iow%I4sYtMK5FlzrRU*idKOv@PI2W+)t
zJBc<PBmW&@{6x&A>aQX8bz^=}-JF|8GHuiMlgw`8keRu@Q>!5<20PL&LO-7Rg)Y+D
zI=Ehw-*^hzv=08*GwMCdnGv&73*MG5C8g3X@63(9Ie!A$5tOXBRr&FZ_|w`J3<BgK
zj+xP~W@guK7y9<}AbMlYDH6e86!VjQTiT??+vIdGiCBClq&izp(8TMB3jlao)%ld)
zk{5|Ld0ngZ-YaWW$CCXk-Z>)WXbssMm6xPIYZgcT;UKQ!M}xesQcY!Nyrl<b^JD%X
z=&Y*R<(Wh>HM;8_C%y<N2#P=~{#><HBX@}14Ar=2(`J6@Y2oGqUom|W&{~}4|8GyH
zEE97TBlpK00GJ~q?Qlh80+BrGD!9%7#-YMEk}<i=2LP8i+f)GFP&EtLSZyGQy|IX}
z{RfuYs$X-RiPx^DD!<z|<dN^Go<F&87MSGT;ad7yDXvSYSD+t*5@+36dQBS6n@fF4
zlu=f&DAT|5it4n1O0Oiyn}Fw4l0~Qh(xpV`?QOk^-8!|@V3X$cJ27M|xd`diAG03g
z$_a_ZKLXMoNSZ?zx%OYd(ejSTor4~g&l(1d*&X+@b`ETSrdWtw(JquJ?nIB@|D#Om
zxeVU2cyey}GhK;x@OS<qN7Mw@QttR71EbssB~#P1j!k6Rf?h4ecss^zN&3ThSX`^t
zpG-d+o6LD#b!(!1z-9y=*|FRGDf)cVD_Yw0xbU&cOr;|Tl*^Yjvt`!88A&3G^oux{
z?v;`0OcZ^jr$Z)5`<WorDWQz{gMPZ1pQfJ{5)LsO5x(pq08qWQ97MNsZ?%vk8sR;i
z*?zm>M{bMBtI|hYxkMVa=&PzQv@q*ovTmpxrfg*&Z#D^_O<Cc|8@A<$NdA2sQnS0d
zu%7mrt4*+cB<91xim|)Uc+XuFi@(LjmQ?}xTGp7&-54Rs$IU2H>B;!hD%)VB-Ddz3
zBnvfVix<oi8|r9))yStoo}bTL5$-Vj3mgt9Gch0OS#W{ml<gU~`lWcCb_P8DmNv1*
zA1ZD-{zhON%G6%HRSV2()Ai(*pC|Og8}mp{7htv`i<N=oSr*CA<DNuKR+{g>3R=~c
z7=A$}Y09VGe{L=b0?Th_uC4MM_9Y4NWbVY_Ld^onz8>Z^jFiDZs1cbk<AHj*I?La^
zKd|YRSrP&eXsxmOil(o;Ys_D(_$<cMVWn7tYASvqJwT?T7YTqmltlAywZ8F~XvoC*
z%&w~WLSuuX=36T}e`E#gwp?s3CUiuK?pgg~zet~Ac2XmYPgfYOyUa@SaisdNLzq_`
zOq;2bg?zC@s!#GfXQ&Om{p4h;@7^AQ>4zNqZDJW~b>`>BkDsZ2F7Oj=sSdp^Dr+jv
zA`4>m2wIsE++xz#g=p$3N|J9QQ15i(A=p}Io_Rzi(Ehv#X`Jn3ujHU6oSXI~0-PNL
zCZwG)n2EPZyJ($l4|ayFUzpH^ugoRn>z5_=O%Yi%Wj3m6t_&n^t;u4y=`dX@LAk2(
zJ3GGlIScpPT;2xsoy(Y@%cC*NbbF>0SP-UE9lx)5nu{X|g~LB&)|T%c`*o!=$W<yo
z7?$CArs|~b;|zkQq3yOA7O3$N7&@XYiM-((;_8R&zL2OD;~RYrFaRsHXOccsi9q7}
z^0rV6#CNw7?yxp_ix|Coby)#f!iRK&YD=sv$UX1|q#aT;Wj-pMZANUZ$hjZVrE%J|
z&_5hrt|#)}Tgqg~Ry8Cc?gY$!c1m2qnH&oBgLWXGPMOiCx}B6fWsyXF-%8Uv3A8`;
zUGh_1R%9p=?IDBdy^CmE8R@1S#ydOR++1XOv>{zr<@d25h6$ER&pQP>z(28z;v+_*
z?!6<Or*9ndVi$`u+z7KLvsbHocx;LT$J~Fv9eOrj1WQ_pjNq&KT@+TjFPW{An^97V
z6ua}M9~=DAv8tgP90rgki;Ws_<Wr0POUU}IXwqaMr<#*?0P^(j^qzrRR})+q1_aJ#
z(V^aDz_aM9UTxwue&Y3(L2$ljgo0t4kVednq|8_U1+qN_k1*1E$gk-Qo_rCTCGKa~
z*WX(Ab;2v(@TVtN7ASCmSUi`*Db6DI<rzCpuPb@e(+Oxs1bx-NcUpdl&7riIHoR%e
zC2g_8C9C2Zs3~A@W0#yz?@ilRpMIqQ%h@*{WqTC3j88%|c6An-D4)Q9R}=?ERbd!T
z@*VJ1If%e+V)$K}g~0_dfHgK+@Ht5m&-x!q_uu3}IFL`)08c-uHEKZG@Nn31+ba;8
zqMbh-Ru{tvlG>?OW8eVzkCP6l>ai2^!GKN#2K46(DXkBV-B%u8Q!KxY=!nz!WQPMl
zW$v&E{yZ&nq@ku15w>VR(Q<wqVXry%rGy$+97Ij9RMZXNah?n75z=u|NAL>FtXiYD
zKj?Id$S`FSuT%`?Qu-U49Seqnkh33TNZ1hrawv11`g`w=z`f<U64<7w5CJg^I4hMW
zqlpE<Ofp{+rhMQ^CapG@kO>e_{7pbC0DAy5a()<1!r4MMt03}$fnnUL31@`Sg$(?d
zJ}}w!+r0!YZY=b}anG4>0={-P@ZK@6RSBD@D~N^XM-2b~fs@e7!Us!;9W;t4Lv4Si
z*?vj|ZDTHRb#{)o8uGI~9ODw}4rnf-M77j!=c5mk9=?0xhf7E<>6|1~4k}H9?mdux
z4>&j92D&__IpUQ_#}P(q<%?gd{D3V7dCfLE)KKDa-W>ATF8P+{1A(pzSaTsZ0fRgO
zM#7kx*{d%M4!;d>@Sz$;kMY(;7IMS&&752IN4c|=o{+6JAL|-Ff9uui>nYK@$=+@D
zb+{CLnY&-N(S!d9=OuQt@Dk2I(+obwXKhd_Xsh6c;ktcutpGB(-#_T4uZ|txm=-5W
zFWd0ab4L8i?JzNFa|vW}Ufz2$s(;j^O}|q%SMMWez~&}p{}ad*v3Y2W>SiRQoj9-v
zHo{}w2D3wQoA#!1vvUR9R-2y}g#X}JX6J;L<$TxL`hNjN3c2;XL#dlfHi$7vXB>v=
z!`8H2&QV#5JDh@g3gY}ts4k(a&6nRAksc30j-*#*JIUyeDzoZWvPZbMRE&T}Jo;AN
zp>USb1zv~c!K#{cD{XEZl3ltH)C#SsP9%35h+*8<cFyM%Z+*<WyRi{DW87hTfAy=E
zzqk)CbIx;DH7lkP5DtA*Rt3f0?2O=gQu7*p#g^e=R$>V_JbG4af=kzCJY%6W;^o^U
z@M*G6u`UNpezjM=qe!JA`EfFkH)pL;k-5kjtB)U=OP)PPtyPl*0tN@CrA3SAFdr=B
zas4Y}Nx2go9COFLViI=}4;3}O^w{|-Gr<)0)K14!b)@;ww1~Tvdx2c#?w;{vk&*3P
zcZPL@kcg!t(1YH!^<NJ~a~m>{cN~m#6lnBDcjb5Jd2V>Y<LlayM^F#tTRN_e_Uv#o
zgIL5E!8yUC)s0h6VN`>Vayg)6WOwy62|DCZ&GU7mpveItIXFG4NXhTl)}Y5i4;1kG
zdUc}0+haoAhye8+Yi`o<Od})#)8#eJ+e&yC=C7r~Lb*5?>+eknedL>*o~Jw!O+Y-b
zPeJMHRmSUygZg%>n^Xgqz#N?S_NCC5V;4}jc-%Q&8@Q@<xh>1g!Ey4Afb^=Db|I9>
z7X)=$FLOl9>M3a{mN_}}tz8>On^wF?V@4#Ak~>s-Hj_51c924)-2OtngTnqBheeD9
z1I)+H-`+Kp>T)BRr9~YGG`$scyJfdTP*?9CQ&*4fq{#VPb``0y6c9p_oE+3rz&=nA
z1}Aq~!=C$`_wIN83BMEAG(;B2$s}+qqClKUxa6EE#c{t5+D4jma`Frel^j=SBQXQF
zlh`+>ttVrdX>?)VMJ=t%?S2kd3&&cnx`V=Sz_>w=mx|T9kSybmmHh`pQB4$Yv;Y`)
zQPkHo;UToqj&)ad9N~!I;;W5HX^4y<FM={_N%ZLQcMzoV0qIjfmexs~%FKU+4!?~|
zV(qBfF{IKSbdpJBFOSoYO7m?*O$F1W-FF|Db;Wws&B<WJM%BhXQJ>DaPY`Jl-rBP=
z1#qQ<gOAd*<W1|)wEG@M;>pCO+TC(NZQnOjQrV**3*2-S4f>nk5h88KjAPomD?2r9
znFDWcTJ$L|cSEggQb-;_o|)r;(yo7JkCjS*0LQ&uNOraX0|y^kvlIbYnVT(~Vzse1
zT}&6WSe1YTamH&S#Hl1&Eb{Fj5CJ}!uH@Pz(i7J!laAHQd_`4{!^8}My+%7z(#1z~
zd0iAyQ*)>&>p|v<06;N88Kt6?fGDDZGe+PBlOK&O6u>B=iY@^~2Z2H9OaRa*rOhD;
zj&nt5TU$q{#v@kQaz5Za8``N!3q>O<4Xh3bG_C?hyVwf*SN1~in9{s8d95<9nRepd
zFjtbe%N+hy@&|@Axpi$?3wR<jNbVFWj;GSUM7#~9L*b7PX}W9*3~;~$?j0PAn(=c=
zytKJGv)Rh&DwVmVvONyTzyxC?93FYCdsuwQ2xQ1O<+!eQOq=&ZBMaOP_0wtd@DYJ!
z+khC?#y50*!j00odMg~h6?Y$Q!l!#RkxMG|<cxG3>T7lR6}cgMXRTUAL%0r}-9=`l
zV^svSXFqjkwU~j%Fb+A#YQ(*@VxaJ+zI)eYEL(}%r+@H~+PQ1x%et2VvVLrI_N`*y
zLpjGoi`1f3mA4XclhU~>;k}2=vjgsd&NE$}u1A}}1axERT&?n%9gp51mGm{}(QZ1k
z%BxK~qmtAa<1V<|%6Z39eNAFtPQlLR%w&AK1~7f=e^65!Nrm~Fg3HwVS0jHjt3F8`
z%J#*51qXdu^H_-L(N6O0Hg+%_w-d%|Dp`vhmjIKJSD(t6d3aTZ8C0mr&1SvPcR3&v
z{oa-A(^?)iLr6-^fH+S70RFmFZO*s>vyezR#ZrQ8xLgCCxbId_20MY;Gtdn4T0M3-
zJx5$hsUB6f<Z=&DUTflAN9`K#mJj;4$vjt~>c_~m$7~iXO?aznM*GB9t~me{1fJCi
zbw;sT7#gc);lMfOvQJvSs2#Go&Rf1}hH`UMYZPf|e>`pu03Nj*%y)8g&rwt9sgxu5
zjV0V$55KUfxi4~t-nkj21K0|fCU){M-kvSPjt^=FaxJ{$0;Tdn!RIvf8wOZ_J2f?>
z<BmC}VP3+R)lWQ9D`N^d0;74d$DV!Z6^U+Xq52nNlqLZDt3ut*GN5GEGB8op;<T(J
z!vMhG^!K2Xpt3<D50?#&Nv-WOTawd!aspSd>}xkhh)u!jYo@gDznY<e5upSJZj{xG
z<)((6wZ5OKBA>G(IXp1q1Jbj#9|K$5w2_nm9FDy!Zq_?}B_mIjnMQJlioUb7khID|
zx4)sP*I{!XJ9w8ulR?xT7W;>kZ&6wHsAP~XGtGLBk94o?UByvU#5iC(SDo6x(8xy8
z4NFF`mYSLl4Yip#1d)MU{NF5{Fnud->TpPlJTF|;8KCn%VbFJ^RnbXCSRVPS>+;4}
zjy<Zklu+^k6`>43L5|;AJw(||vj*sK+NX|2Wyz<QL*u9(l!6vdn0Fl0*e`ZT6w9=n
zlkJMHBe9bh+nSX@10)Zptt5-)bAk_S9<?E{HKT3AejL`cJ6bkY>(;U@mA3B3;A-N^
zi_~L2ln9z;7~Bc`J!z`p*PQ1)Di1hggWvR~sVyPE+O+o6EKa8c;EzfOBygabbYLP4
z%ilF3k&yd8F2bl*AxNJijD2ZdKb#)ItZo~+<c@xn-O5*YLsAXfVmRUsyo~x#u;ZM7
zJq<{#LWTnYdlS}z8OGzZ0x|#;^ynJca-!|z0@TkvRGf~yVt`3F>FOyRc~&DMJ%twP
z!tD-Oe8xer1K%~Huz3XFeQP=+vQpXaz%_kX{hi#f;Yp^Q*qKYhu!*&6hwiz-6|1P(
z09cW^^PXylgCYP=H++ye^{u<pn3D^*uLZME!L3makV9KY2WIB1$iF5BKJ>N<s|E%X
zIm!2;Sn$V=G19b+t*M-@-OA1tdUM*LC6$goUOHx`Ah9Fm1afgvZRPj?n!h6(YA_GF
zq<fl`c)|`r^x)6{Ad)_BdKH4PBXA^R0;c7)WoworVYq@n4@$8g%zH1X$6Bb3gTWa+
zIOeB~wvU+Z1HLJ*GJK0aAjU@CI_8#8HijOZjYZ}Ha#R&OWQt_65~PEJ?b8%%)U6ap
z$u?Vnqp&^kQAnXN*J<@MZzQsi4;&v_V><<24hLc>Hugan-%)(QCPo3rBpPp+6rYzq
zhL%QEPzV`3)J9Bl!zZW%y=Km+`Hx()79TJBB=xCA(wOb-Rs6+alh&jT4gmYZ^r<y0
zq4LIf1Gvptjmox2+z%KvQ4g4K>N)RLmA1CV!3U)+oy7c$5zCTOU|=wFp7m}v3gZBR
zdjZaBns(0zJuy}mO~<KT<n^mc`<%0FJqyA?unoB#$9iZj@?o}~++gG0nG2kpox>R(
U)TTw=tivogI5l>*#uwE8*<&4X;s5{u

diff --git a/yolov5-6.2/data/scripts/download_weights.sh b/yolov5-6.2/data/scripts/download_weights.sh
deleted file mode 100644
index a4f3becf..00000000
--- a/yolov5-6.2/data/scripts/download_weights.sh
+++ /dev/null
@@ -1,21 +0,0 @@
-#!/bin/bash
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Download latest models from https://github.com/ultralytics/yolov5/releases
-# Example usage: bash data/scripts/download_weights.sh
-# parent
-# └── yolov5
-#     ├── yolov5s.pt  ← downloads here
-#     ├── yolov5m.pt
-#     └── ...
-
-python - <<EOF
-from utils.downloads import attempt_download
-
-p5 = ['n', 's', 'm', 'l', 'x']  # P5 models
-p6 = [f'{x}6' for x in p5]  # P6 models
-cls = [f'{x}-cls' for x in p5]  # classification models
-
-for x in p5 + p6 + cls:
-    attempt_download(f'weights/yolov5{x}.pt')
-
-EOF
diff --git a/yolov5-6.2/data/scripts/get_coco.sh b/yolov5-6.2/data/scripts/get_coco.sh
deleted file mode 100644
index 506d46df..00000000
--- a/yolov5-6.2/data/scripts/get_coco.sh
+++ /dev/null
@@ -1,56 +0,0 @@
-#!/bin/bash
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Download COCO 2017 dataset http://cocodataset.org
-# Example usage: bash data/scripts/get_coco.sh
-# parent
-# ├── yolov5
-# └── datasets
-#     └── coco  ← downloads here
-
-# Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments
-if [ "$#" -gt 0 ]; then
-  for opt in "$@"; do
-    case "${opt}" in
-    --train) train=true ;;
-    --val) val=true ;;
-    --test) test=true ;;
-    --segments) segments=true ;;
-    esac
-  done
-else
-  train=true
-  val=true
-  test=false
-  segments=false
-fi
-
-# Download/unzip labels
-d='../datasets' # unzip directory
-url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
-if [ "$segments" == "true" ]; then
-  f='coco2017labels-segments.zip' # 168 MB
-else
-  f='coco2017labels.zip' # 168 MB
-fi
-echo 'Downloading' $url$f ' ...'
-curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
-
-# Download/unzip images
-d='../datasets/coco/images' # unzip directory
-url=http://images.cocodataset.org/zips/
-if [ "$train" == "true" ]; then
-  f='train2017.zip' # 19G, 118k images
-  echo 'Downloading' $url$f '...'
-  curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
-fi
-if [ "$val" == "true" ]; then
-  f='val2017.zip' # 1G, 5k images
-  echo 'Downloading' $url$f '...'
-  curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
-fi
-if [ "$test" == "true" ]; then
-  f='test2017.zip' # 7G, 41k images (optional)
-  echo 'Downloading' $url$f '...'
-  curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
-fi
-wait # finish background tasks
diff --git a/yolov5-6.2/data/scripts/get_coco128.sh b/yolov5-6.2/data/scripts/get_coco128.sh
deleted file mode 100644
index e7ddce89..00000000
--- a/yolov5-6.2/data/scripts/get_coco128.sh
+++ /dev/null
@@ -1,17 +0,0 @@
-#!/bin/bash
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
-# Example usage: bash data/scripts/get_coco128.sh
-# parent
-# ├── yolov5
-# └── datasets
-#     └── coco128  ← downloads here
-
-# Download/unzip images and labels
-d='../datasets' # unzip directory
-url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
-f='coco128.zip' # or 'coco128-segments.zip', 68 MB
-echo 'Downloading' $url$f ' ...'
-curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
-
-wait # finish background tasks
diff --git a/yolov5-6.2/data/scripts/get_imagenet.sh b/yolov5-6.2/data/scripts/get_imagenet.sh
deleted file mode 100644
index 6026d502..00000000
--- a/yolov5-6.2/data/scripts/get_imagenet.sh
+++ /dev/null
@@ -1,51 +0,0 @@
-#!/bin/bash
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Download ILSVRC2012 ImageNet dataset https://image-net.org
-# Example usage: bash data/scripts/get_imagenet.sh
-# parent
-# ├── yolov5
-# └── datasets
-#     └── imagenet  ← downloads here
-
-# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
-if [ "$#" -gt 0 ]; then
-  for opt in "$@"; do
-    case "${opt}" in
-    --train) train=true ;;
-    --val) val=true ;;
-    esac
-  done
-else
-  train=true
-  val=true
-fi
-
-# Make dir
-d='../datasets/imagenet' # unzip directory
-mkdir -p $d && cd $d
-
-# Download/unzip train
-if [ "$train" == "true" ]; then
-  wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images
-  mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
-  tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
-  find . -name "*.tar" | while read NAME; do
-    mkdir -p "${NAME%.tar}"
-    tar -xf "${NAME}" -C "${NAME%.tar}"
-    rm -f "${NAME}"
-  done
-  cd ..
-fi
-
-# Download/unzip val
-if [ "$val" == "true" ]; then
-  wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images
-  mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar
-  wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs
-fi
-
-# Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail)
-# rm train/n04266014/n04266014_10835.JPEG
-
-# TFRecords (optional)
-# wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt
diff --git a/yolov5-6.2/data/xView.yaml b/yolov5-6.2/data/xView.yaml
deleted file mode 100644
index 3b38f1ff..00000000
--- a/yolov5-6.2/data/xView.yaml
+++ /dev/null
@@ -1,102 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
-# --------  DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command!  --------
-# Example usage: python train.py --data xView.yaml
-# parent
-# ├── yolov5
-# └── datasets
-#     └── xView  ← downloads here (20.7 GB)
-
-
-# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
-path: ../datasets/xView  # dataset root dir
-train: images/autosplit_train.txt  # train images (relative to 'path') 90% of 847 train images
-val: images/autosplit_val.txt  # train images (relative to 'path') 10% of 847 train images
-
-# Classes
-nc: 60  # number of classes
-names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus',
-        'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer',
-        'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car',
-        'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge',
-        'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane',
-        'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck',
-        'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed',
-        'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad',
-        'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower']  # class names
-
-
-# Download script/URL (optional) ---------------------------------------------------------------------------------------
-download: |
-  import json
-  import os
-  from pathlib import Path
-
-  import numpy as np
-  from PIL import Image
-  from tqdm import tqdm
-
-  from utils.datasets import autosplit
-  from utils.general import download, xyxy2xywhn
-
-
-  def convert_labels(fname=Path('xView/xView_train.geojson')):
-      # Convert xView geoJSON labels to YOLO format
-      path = fname.parent
-      with open(fname) as f:
-          print(f'Loading {fname}...')
-          data = json.load(f)
-
-      # Make dirs
-      labels = Path(path / 'labels' / 'train')
-      os.system(f'rm -rf {labels}')
-      labels.mkdir(parents=True, exist_ok=True)
-
-      # xView classes 11-94 to 0-59
-      xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
-                           12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
-                           29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
-                           47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
-
-      shapes = {}
-      for feature in tqdm(data['features'], desc=f'Converting {fname}'):
-          p = feature['properties']
-          if p['bounds_imcoords']:
-              id = p['image_id']
-              file = path / 'train_images' / id
-              if file.exists():  # 1395.tif missing
-                  try:
-                      box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
-                      assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
-                      cls = p['type_id']
-                      cls = xview_class2index[int(cls)]  # xView class to 0-60
-                      assert 59 >= cls >= 0, f'incorrect class index {cls}'
-
-                      # Write YOLO label
-                      if id not in shapes:
-                          shapes[id] = Image.open(file).size
-                      box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
-                      with open((labels / id).with_suffix('.txt'), 'a') as f:
-                          f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n")  # write label.txt
-                  except Exception as e:
-                      print(f'WARNING: skipping one label for {file}: {e}')
-
-
-  # Download manually from https://challenge.xviewdataset.org
-  dir = Path(yaml['path'])  # dataset root dir
-  # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip',  # train labels
-  #         'https://d307kc0mrhucc3.cloudfront.net/train_images.zip',  # 15G, 847 train images
-  #         'https://d307kc0mrhucc3.cloudfront.net/val_images.zip']  # 5G, 282 val images (no labels)
-  # download(urls, dir=dir, delete=False)
-
-  # Convert labels
-  convert_labels(dir / 'xView_train.geojson')
-
-  # Move images
-  images = Path(dir / 'images')
-  images.mkdir(parents=True, exist_ok=True)
-  Path(dir / 'train_images').rename(dir / 'images' / 'train')
-  Path(dir / 'val_images').rename(dir / 'images' / 'val')
-
-  # Split
-  autosplit(dir / 'images' / 'train')
diff --git a/yolov5-6.2/detect.py b/yolov5-6.2/detect.py
deleted file mode 100644
index 0a88608d..00000000
--- a/yolov5-6.2/detect.py
+++ /dev/null
@@ -1,260 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Run inference on images, videos, directories, streams, etc.
-
-Usage - sources:
-    $ python path/to/detect.py --weights yolov5s.pt --source 0              # webcam
-                                                             img.jpg        # image
-                                                             vid.mp4        # video
-                                                             path/          # directory
-                                                             path/*.jpg     # glob
-                                                             'https://youtu.be/Zgi9g1ksQHc'  # YouTube
-                                                             'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
-
-Usage - formats:
-    $ python path/to/detect.py --weights yolov5s.pt                 # PyTorch
-                                         yolov5s.torchscript        # TorchScript
-                                         yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
-                                         yolov5s.xml                # OpenVINO
-                                         yolov5s.engine             # TensorRT
-                                         yolov5s.mlmodel            # CoreML (macOS-only)
-                                         yolov5s_saved_model        # TensorFlow SavedModel
-                                         yolov5s.pb                 # TensorFlow GraphDef
-                                         yolov5s.tflite             # TensorFlow Lite
-                                         yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
-"""
-
-import argparse
-import os
-import platform
-import sys
-from pathlib import Path
-
-import torch
-import torch.backends.cudnn as cudnn
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[0]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
-
-from models.common import DetectMultiBackend
-from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
-from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
-                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
-from utils.plots import Annotator, colors, save_one_box
-from utils.torch_utils import select_device, smart_inference_mode, time_sync
-
-
-@smart_inference_mode()
-def run(
-        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
-        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
-        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
-        imgsz=(640, 640),  # inference size (height, width)
-        conf_thres=0.25,  # confidence threshold
-        iou_thres=0.45,  # NMS IOU threshold
-        max_det=1000,  # maximum detections per image
-        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
-        view_img=False,  # show results
-        save_txt=False,  # save results to *.txt
-        save_conf=False,  # save confidences in --save-txt labels
-        save_crop=False,  # save cropped prediction boxes
-        nosave=False,  # do not save images/videos
-        classes=None,  # filter by class: --class 0, or --class 0 2 3
-        agnostic_nms=False,  # class-agnostic NMS
-        augment=False,  # augmented inference
-        visualize=False,  # visualize features
-        update=False,  # update all models
-        project=ROOT / 'runs/detect',  # save results to project/name
-        name='exp',  # save results to project/name
-        exist_ok=False,  # existing project/name ok, do not increment
-        line_thickness=3,  # bounding box thickness (pixels)
-        hide_labels=False,  # hide labels
-        hide_conf=False,  # hide confidences
-        half=False,  # use FP16 half-precision inference
-        dnn=False,  # use OpenCV DNN for ONNX inference
-):
-    source = str(source)
-    save_img = not nosave and not source.endswith('.txt')  # save inference images
-    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
-    is_url = source.lower().startswith(('rtsp://'))#, 'rtmp://', 'http://', 'https://'))
-    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
-    if is_url and is_file:
-        source = check_file(source)  # download
-
-    # Directories
-    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
-    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
-
-    # Load model
-    device = select_device(device)
-    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
-    stride, names, pt = model.stride, model.names, model.pt
-    imgsz = check_img_size(imgsz, s=stride)  # check image size
-
-    # Dataloader
-    if webcam:
-        view_img = check_imshow()
-        cudnn.benchmark = True  # set True to speed up constant image size inference
-        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
-        bs = len(dataset)  # batch_size
-    else:
-        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
-        bs = 1  # batch_size
-    vid_path, vid_writer = [None] * bs, [None] * bs
-
-    # Run inference
-    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
-    seen, windows, dt = 0, [], [0.0, 0.0, 0.0]
-    for path, im, im0s, vid_cap, s in dataset:
-        t1 = time_sync()
-        im = torch.from_numpy(im).to(device)
-        im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
-        im /= 255  # 0 - 255 to 0.0 - 1.0
-        if len(im.shape) == 3:
-            im = im[None]  # expand for batch dim
-        t2 = time_sync()
-        dt[0] += t2 - t1
-
-        # Inference
-        visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
-        pred = model(im, augment=augment, visualize=visualize)
-        t3 = time_sync()
-        dt[1] += t3 - t2
-
-        # NMS
-        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
-        dt[2] += time_sync() - t3
-
-        # Second-stage classifier (optional)
-        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
-
-        # Process predictions
-        for i, det in enumerate(pred):  # per image
-            seen += 1
-            if webcam:  # batch_size >= 1
-                p, im0, frame = path[i], im0s[i].copy(), dataset.count
-                s += f'{i}: '
-            else:
-                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
-
-            p = Path(p)  # to Path
-            save_path = str(save_dir / p.name)  # im.jpg
-            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
-            s += '%gx%g ' % im.shape[2:]  # print string
-            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
-            imc = im0.copy() if save_crop else im0  # for save_crop
-            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
-            if len(det):
-                # Rescale boxes from img_size to im0 size
-                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
-
-                # Print results
-                for c in det[:, -1].unique():
-                    n = (det[:, -1] == c).sum()  # detections per class
-                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
-
-                # Write results
-                for *xyxy, conf, cls in reversed(det):
-                    if save_txt:  # Write to file
-                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
-                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
-                        with open(f'{txt_path}.txt', 'a') as f:
-                            f.write(('%g ' * len(line)).rstrip() % line + '\n')
-
-                    if save_img or save_crop or view_img:  # Add bbox to image
-                        c = int(cls)  # integer class
-                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
-                        annotator.box_label(xyxy, label, color=colors(c, True))
-                        
-                    if save_crop:
-                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
-
-            # Stream results
-            im0 = annotator.result()
-            if view_img:
-                if platform.system() == 'Linux' and p not in windows:
-                    windows.append(p)
-                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
-                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
-                cv2.imshow(str(p), im0)
-                cv2.waitKey(1)  # 1 millisecond
-
-            # Save results (image with detections)
-            if save_img:
-                if dataset.mode == 'image':
-                    cv2.imwrite(save_path, im0)
-                else:  # 'video' or 'stream'
-                    if vid_path[i] != save_path:  # new video
-                        vid_path[i] = save_path
-                        if isinstance(vid_writer[i], cv2.VideoWriter):
-                            vid_writer[i].release()  # release previous video writer
-                        if vid_cap:  # video
-                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
-                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
-                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
-                        else:  # stream
-                            fps, w, h = 30, im0.shape[1], im0.shape[0]
-                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
-                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
-                    vid_writer[i].write(im0)
-
-        # Print time (inference-only)
-        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
-
-    # Print results
-    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
-    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
-    if save_txt or save_img:
-        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
-        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
-    if update:
-        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
-
-
-def parse_opt():
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
-    parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
-    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
-    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
-    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
-    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
-    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
-    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
-    parser.add_argument('--view-img', action='store_true', help='show results')
-    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
-    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
-    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
-    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
-    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
-    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
-    parser.add_argument('--augment', action='store_true', help='augmented inference')
-    parser.add_argument('--visualize', action='store_true', help='visualize features')
-    parser.add_argument('--update', action='store_true', help='update all models')
-    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
-    parser.add_argument('--name', default='exp', help='save results to project/name')
-    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
-    
-    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
-    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
-    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
-    
-    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
-    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
-    opt = parser.parse_args()
-    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
-    print_args(vars(opt))
-    return opt
-
-
-def main(opt):
-    check_requirements(exclude=('tensorboard', 'thop'))
-    run(**vars(opt))
-
-
-if __name__ == "__main__":
-    opt = parse_opt()
-    main(opt)
diff --git a/yolov5-6.2/export.py b/yolov5-6.2/export.py
deleted file mode 100644
index 595039b2..00000000
--- a/yolov5-6.2/export.py
+++ /dev/null
@@ -1,616 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
-
-Format                      | `export.py --include`         | Model
----                         | ---                           | ---
-PyTorch                     | -                             | yolov5s.pt
-TorchScript                 | `torchscript`                 | yolov5s.torchscript
-ONNX                        | `onnx`                        | yolov5s.onnx
-OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
-TensorRT                    | `engine`                      | yolov5s.engine
-CoreML                      | `coreml`                      | yolov5s.mlmodel
-TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
-TensorFlow GraphDef         | `pb`                          | yolov5s.pb
-TensorFlow Lite             | `tflite`                      | yolov5s.tflite
-TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
-TensorFlow.js               | `tfjs`                        | yolov5s_web_model/
-
-Requirements:
-    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU
-    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU
-
-Usage:
-    $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
-
-Inference:
-    $ python path/to/detect.py --weights yolov5s.pt                 # PyTorch
-                                         yolov5s.torchscript        # TorchScript
-                                         yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
-                                         yolov5s.xml                # OpenVINO
-                                         yolov5s.engine             # TensorRT
-                                         yolov5s.mlmodel            # CoreML (macOS-only)
-                                         yolov5s_saved_model        # TensorFlow SavedModel
-                                         yolov5s.pb                 # TensorFlow GraphDef
-                                         yolov5s.tflite             # TensorFlow Lite
-                                         yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
-
-TensorFlow.js:
-    $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
-    $ npm install
-    $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
-    $ npm start
-"""
-
-import argparse
-import json
-import os
-import platform
-import subprocess
-import sys
-import time
-import warnings
-from pathlib import Path
-
-import pandas as pd
-import torch
-import yaml
-from torch.utils.mobile_optimizer import optimize_for_mobile
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[0]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-if platform.system() != 'Windows':
-    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
-
-from models.experimental import attempt_load
-from models.yolo import Detect
-from utils.dataloaders import LoadImages
-from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, check_yaml,
-                           colorstr, file_size, print_args, url2file)
-from utils.torch_utils import select_device, smart_inference_mode
-
-
-def export_formats():
-    # YOLOv5 export formats
-    x = [
-        ['PyTorch', '-', '.pt', True, True],
-        ['TorchScript', 'torchscript', '.torchscript', True, True],
-        ['ONNX', 'onnx', '.onnx', True, True],
-        ['OpenVINO', 'openvino', '_openvino_model', True, False],
-        ['TensorRT', 'engine', '.engine', False, True],
-        ['CoreML', 'coreml', '.mlmodel', True, False],
-        ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
-        ['TensorFlow GraphDef', 'pb', '.pb', True, True],
-        ['TensorFlow Lite', 'tflite', '.tflite', True, False],
-        ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
-        ['TensorFlow.js', 'tfjs', '_web_model', False, False],]
-    return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
-
-
-def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
-    # YOLOv5 TorchScript model export
-    try:
-        LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
-        f = file.with_suffix('.torchscript')
-
-        ts = torch.jit.trace(model, im, strict=False)
-        d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
-        extra_files = {'config.txt': json.dumps(d)}  # torch._C.ExtraFilesMap()
-        if optimize:  # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
-            optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
-        else:
-            ts.save(str(f), _extra_files=extra_files)
-
-        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
-        return f
-    except Exception as e:
-        LOGGER.info(f'{prefix} export failure: {e}')
-
-
-def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
-    # YOLOv5 ONNX export
-    try:
-        check_requirements(('onnx',))
-        import onnx
-
-        LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
-        f = file.with_suffix('.onnx')
-
-        torch.onnx.export(
-            model.cpu() if dynamic else model,  # --dynamic only compatible with cpu
-            im.cpu() if dynamic else im,
-            f,
-            verbose=False,
-            opset_version=opset,
-            training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
-            do_constant_folding=not train,
-            input_names=['images'],
-            output_names=['output'],
-            dynamic_axes={
-                'images': {
-                    0: 'batch',
-                    2: 'height',
-                    3: 'width'},  # shape(1,3,640,640)
-                'output': {
-                    0: 'batch',
-                    1: 'anchors'}  # shape(1,25200,85)
-            } if dynamic else None)
-
-        # Checks
-        model_onnx = onnx.load(f)  # load onnx model
-        onnx.checker.check_model(model_onnx)  # check onnx model
-
-        # Metadata
-        d = {'stride': int(max(model.stride)), 'names': model.names}
-        for k, v in d.items():
-            meta = model_onnx.metadata_props.add()
-            meta.key, meta.value = k, str(v)
-        onnx.save(model_onnx, f)
-
-        # Simplify
-        if simplify:
-            try:
-                cuda = torch.cuda.is_available()
-                check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
-                import onnxsim
-
-                LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
-                model_onnx, check = onnxsim.simplify(model_onnx)
-                assert check, 'assert check failed'
-                onnx.save(model_onnx, f)
-            except Exception as e:
-                LOGGER.info(f'{prefix} simplifier failure: {e}')
-        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
-        return f
-    except Exception as e:
-        LOGGER.info(f'{prefix} export failure: {e}')
-
-
-def export_openvino(model, file, half, prefix=colorstr('OpenVINO:')):
-    # YOLOv5 OpenVINO export
-    try:
-        check_requirements(('openvino-dev',))  # requires openvino-dev: https://pypi.org/project/openvino-dev/
-        import openvino.inference_engine as ie
-
-        LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
-        f = str(file).replace('.pt', f'_openvino_model{os.sep}')
-
-        cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
-        subprocess.check_output(cmd.split())  # export
-        with open(Path(f) / file.with_suffix('.yaml').name, 'w') as g:
-            yaml.dump({'stride': int(max(model.stride)), 'names': model.names}, g)  # add metadata.yaml
-
-        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
-        return f
-    except Exception as e:
-        LOGGER.info(f'\n{prefix} export failure: {e}')
-
-
-def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
-    # YOLOv5 CoreML export
-    try:
-        check_requirements(('coremltools',))
-        import coremltools as ct
-
-        LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
-        f = file.with_suffix('.mlmodel')
-
-        ts = torch.jit.trace(model, im, strict=False)  # TorchScript model
-        ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
-        bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
-        if bits < 32:
-            if platform.system() == 'Darwin':  # quantization only supported on macOS
-                with warnings.catch_warnings():
-                    warnings.filterwarnings("ignore", category=DeprecationWarning)  # suppress numpy==1.20 float warning
-                    ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
-            else:
-                print(f'{prefix} quantization only supported on macOS, skipping...')
-        ct_model.save(f)
-
-        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
-        return ct_model, f
-    except Exception as e:
-        LOGGER.info(f'\n{prefix} export failure: {e}')
-        return None, None
-
-
-def export_engine(model, im, file, train, half, dynamic, simplify, workspace=4, verbose=False):
-    # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
-    prefix = colorstr('TensorRT:')
-    try:
-        assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
-        try:
-            import tensorrt as trt
-        except Exception:
-            if platform.system() == 'Linux':
-                check_requirements(('nvidia-tensorrt',), cmds=('-U --index-url https://pypi.ngc.nvidia.com',))
-            import tensorrt as trt
-
-        if trt.__version__[0] == '7':  # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
-            grid = model.model[-1].anchor_grid
-            model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
-            export_onnx(model, im, file, 12, train, dynamic, simplify)  # opset 12
-            model.model[-1].anchor_grid = grid
-        else:  # TensorRT >= 8
-            check_version(trt.__version__, '8.0.0', hard=True)  # require tensorrt>=8.0.0
-            export_onnx(model, im, file, 13, train, dynamic, simplify)  # opset 13
-        onnx = file.with_suffix('.onnx')
-
-        LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
-        assert onnx.exists(), f'failed to export ONNX file: {onnx}'
-        f = file.with_suffix('.engine')  # TensorRT engine file
-        logger = trt.Logger(trt.Logger.INFO)
-        if verbose:
-            logger.min_severity = trt.Logger.Severity.VERBOSE
-
-        builder = trt.Builder(logger)
-        config = builder.create_builder_config()
-        config.max_workspace_size = workspace * 1 << 30
-        # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30)  # fix TRT 8.4 deprecation notice
-
-        flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
-        network = builder.create_network(flag)
-        parser = trt.OnnxParser(network, logger)
-        if not parser.parse_from_file(str(onnx)):
-            raise RuntimeError(f'failed to load ONNX file: {onnx}')
-
-        inputs = [network.get_input(i) for i in range(network.num_inputs)]
-        outputs = [network.get_output(i) for i in range(network.num_outputs)]
-        LOGGER.info(f'{prefix} Network Description:')
-        for inp in inputs:
-            LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
-        for out in outputs:
-            LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')
-
-        if dynamic:
-            if im.shape[0] <= 1:
-                LOGGER.warning(f"{prefix}WARNING: --dynamic model requires maximum --batch-size argument")
-            profile = builder.create_optimization_profile()
-            for inp in inputs:
-                profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
-            config.add_optimization_profile(profile)
-
-        LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine in {f}')
-        if builder.platform_has_fast_fp16 and half:
-            config.set_flag(trt.BuilderFlag.FP16)
-        with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
-            t.write(engine.serialize())
-        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
-        return f
-    except Exception as e:
-        LOGGER.info(f'\n{prefix} export failure: {e}')
-
-
-def export_saved_model(model,
-                       im,
-                       file,
-                       dynamic,
-                       tf_nms=False,
-                       agnostic_nms=False,
-                       topk_per_class=100,
-                       topk_all=100,
-                       iou_thres=0.45,
-                       conf_thres=0.25,
-                       keras=False,
-                       prefix=colorstr('TensorFlow SavedModel:')):
-    # YOLOv5 TensorFlow SavedModel export
-    try:
-        import tensorflow as tf
-        from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
-
-        from models.tf import TFDetect, TFModel
-
-        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
-        f = str(file).replace('.pt', '_saved_model')
-        batch_size, ch, *imgsz = list(im.shape)  # BCHW
-
-        tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
-        im = tf.zeros((batch_size, *imgsz, ch))  # BHWC order for TensorFlow
-        _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
-        inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
-        outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
-        keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
-        keras_model.trainable = False
-        keras_model.summary()
-        if keras:
-            keras_model.save(f, save_format='tf')
-        else:
-            spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
-            m = tf.function(lambda x: keras_model(x))  # full model
-            m = m.get_concrete_function(spec)
-            frozen_func = convert_variables_to_constants_v2(m)
-            tfm = tf.Module()
-            tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x)[0], [spec])
-            tfm.__call__(im)
-            tf.saved_model.save(tfm,
-                                f,
-                                options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
-                                if check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions())
-        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
-        return keras_model, f
-    except Exception as e:
-        LOGGER.info(f'\n{prefix} export failure: {e}')
-        return None, None
-
-
-def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
-    # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
-    try:
-        import tensorflow as tf
-        from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
-
-        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
-        f = file.with_suffix('.pb')
-
-        m = tf.function(lambda x: keras_model(x))  # full model
-        m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
-        frozen_func = convert_variables_to_constants_v2(m)
-        frozen_func.graph.as_graph_def()
-        tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
-
-        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
-        return f
-    except Exception as e:
-        LOGGER.info(f'\n{prefix} export failure: {e}')
-
-
-def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
-    # YOLOv5 TensorFlow Lite export
-    try:
-        import tensorflow as tf
-
-        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
-        batch_size, ch, *imgsz = list(im.shape)  # BCHW
-        f = str(file).replace('.pt', '-fp16.tflite')
-
-        converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
-        converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
-        converter.target_spec.supported_types = [tf.float16]
-        converter.optimizations = [tf.lite.Optimize.DEFAULT]
-        if int8:
-            from models.tf import representative_dataset_gen
-            dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
-            converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
-            converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
-            converter.target_spec.supported_types = []
-            converter.inference_input_type = tf.uint8  # or tf.int8
-            converter.inference_output_type = tf.uint8  # or tf.int8
-            converter.experimental_new_quantizer = True
-            f = str(file).replace('.pt', '-int8.tflite')
-        if nms or agnostic_nms:
-            converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
-
-        tflite_model = converter.convert()
-        open(f, "wb").write(tflite_model)
-        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
-        return f
-    except Exception as e:
-        LOGGER.info(f'\n{prefix} export failure: {e}')
-
-
-def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
-    # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
-    try:
-        cmd = 'edgetpu_compiler --version'
-        help_url = 'https://coral.ai/docs/edgetpu/compiler/'
-        assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
-        if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
-            LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
-            sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0  # sudo installed on system
-            for c in (
-                    'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
-                    'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
-                    'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
-                subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
-        ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
-
-        LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
-        f = str(file).replace('.pt', '-int8_edgetpu.tflite')  # Edge TPU model
-        f_tfl = str(file).replace('.pt', '-int8.tflite')  # TFLite model
-
-        cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
-        subprocess.run(cmd.split(), check=True)
-
-        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
-        return f
-    except Exception as e:
-        LOGGER.info(f'\n{prefix} export failure: {e}')
-
-
-def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
-    # YOLOv5 TensorFlow.js export
-    try:
-        check_requirements(('tensorflowjs',))
-        import re
-
-        import tensorflowjs as tfjs
-
-        LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
-        f = str(file).replace('.pt', '_web_model')  # js dir
-        f_pb = file.with_suffix('.pb')  # *.pb path
-        f_json = f'{f}/model.json'  # *.json path
-
-        cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
-              f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
-        subprocess.run(cmd.split())
-
-        with open(f_json) as j:
-            json = j.read()
-        with open(f_json, 'w') as j:  # sort JSON Identity_* in ascending order
-            subst = re.sub(
-                r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
-                r'"Identity.?.?": {"name": "Identity.?.?"}, '
-                r'"Identity.?.?": {"name": "Identity.?.?"}, '
-                r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
-                r'"Identity_1": {"name": "Identity_1"}, '
-                r'"Identity_2": {"name": "Identity_2"}, '
-                r'"Identity_3": {"name": "Identity_3"}}}', json)
-            j.write(subst)
-
-        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
-        return f
-    except Exception as e:
-        LOGGER.info(f'\n{prefix} export failure: {e}')
-
-
-@smart_inference_mode()
-def run(
-        data=ROOT / 'data/coco128.yaml',  # 'dataset.yaml path'
-        weights=ROOT / 'yolov5s.pt',  # weights path
-        imgsz=(640, 640),  # image (height, width)
-        batch_size=1,  # batch size
-        device='cpu',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
-        include=('torchscript', 'onnx'),  # include formats
-        half=False,  # FP16 half-precision export
-        inplace=False,  # set YOLOv5 Detect() inplace=True
-        train=False,  # model.train() mode
-        keras=False,  # use Keras
-        optimize=False,  # TorchScript: optimize for mobile
-        int8=False,  # CoreML/TF INT8 quantization
-        dynamic=False,  # ONNX/TF/TensorRT: dynamic axes
-        simplify=False,  # ONNX: simplify model
-        opset=12,  # ONNX: opset version
-        verbose=False,  # TensorRT: verbose log
-        workspace=4,  # TensorRT: workspace size (GB)
-        nms=False,  # TF: add NMS to model
-        agnostic_nms=False,  # TF: add agnostic NMS to model
-        topk_per_class=100,  # TF.js NMS: topk per class to keep
-        topk_all=100,  # TF.js NMS: topk for all classes to keep
-        iou_thres=0.45,  # TF.js NMS: IoU threshold
-        conf_thres=0.25,  # TF.js NMS: confidence threshold
-):
-    t = time.time()
-    include = [x.lower() for x in include]  # to lowercase
-    fmts = tuple(export_formats()['Argument'][1:])  # --include arguments
-    flags = [x in include for x in fmts]
-    assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
-    jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags  # export booleans
-    file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)  # PyTorch weights
-
-    # Load PyTorch model
-    device = select_device(device)
-    if half:
-        assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
-        assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
-    model = attempt_load(weights, device=device, inplace=True, fuse=True)  # load FP32 model
-
-    # Checks
-    imgsz *= 2 if len(imgsz) == 1 else 1  # expand
-    if optimize:
-        assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
-
-    # Input
-    gs = int(max(model.stride))  # grid size (max stride)
-    imgsz = [check_img_size(x, gs) for x in imgsz]  # verify img_size are gs-multiples
-    im = torch.zeros(batch_size, 3, *imgsz).to(device)  # image size(1,3,320,192) BCHW iDetection
-
-    # Update model
-    model.train() if train else model.eval()  # training mode = no Detect() layer grid construction
-    for k, m in model.named_modules():
-        if isinstance(m, Detect):
-            m.inplace = inplace
-            m.onnx_dynamic = dynamic
-            m.export = True
-
-    for _ in range(2):
-        y = model(im)  # dry runs
-    if half and not coreml:
-        im, model = im.half(), model.half()  # to FP16
-    shape = tuple((y[0] if isinstance(y, tuple) else y).shape)  # model output shape
-    LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
-
-    # Exports
-    f = [''] * 10  # exported filenames
-    warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning)  # suppress TracerWarning
-    if jit:
-        f[0] = export_torchscript(model, im, file, optimize)
-    if engine:  # TensorRT required before ONNX
-        f[1] = export_engine(model, im, file, train, half, dynamic, simplify, workspace, verbose)
-    if onnx or xml:  # OpenVINO requires ONNX
-        f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify)
-    if xml:  # OpenVINO
-        f[3] = export_openvino(model, file, half)
-    if coreml:
-        _, f[4] = export_coreml(model, im, file, int8, half)
-
-    # TensorFlow Exports
-    if any((saved_model, pb, tflite, edgetpu, tfjs)):
-        if int8 or edgetpu:  # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
-            check_requirements(('flatbuffers==1.12',))  # required before `import tensorflow`
-        assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
-        model, f[5] = export_saved_model(model.cpu(),
-                                         im,
-                                         file,
-                                         dynamic,
-                                         tf_nms=nms or agnostic_nms or tfjs,
-                                         agnostic_nms=agnostic_nms or tfjs,
-                                         topk_per_class=topk_per_class,
-                                         topk_all=topk_all,
-                                         iou_thres=iou_thres,
-                                         conf_thres=conf_thres,
-                                         keras=keras)
-        if pb or tfjs:  # pb prerequisite to tfjs
-            f[6] = export_pb(model, file)
-        if tflite or edgetpu:
-            f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
-        if edgetpu:
-            f[8] = export_edgetpu(file)
-        if tfjs:
-            f[9] = export_tfjs(file)
-
-    # Finish
-    f = [str(x) for x in f if x]  # filter out '' and None
-    if any(f):
-        h = '--half' if half else ''  # --half FP16 inference arg
-        LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
-                    f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
-                    f"\nDetect:          python detect.py --weights {f[-1]} {h}"
-                    f"\nValidate:        python val.py --weights {f[-1]} {h}"
-                    f"\nPyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')"
-                    f"\nVisualize:       https://netron.app")
-    return f  # return list of exported files/dirs
-
-
-def parse_opt():
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
-    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
-    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
-    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
-    parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
-    parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
-    parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
-    parser.add_argument('--train', action='store_true', help='model.train() mode')
-    parser.add_argument('--keras', action='store_true', help='TF: use Keras')
-    parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
-    parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
-    parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
-    parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
-    parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
-    parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
-    parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
-    parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
-    parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
-    parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
-    parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
-    parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
-    parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
-    parser.add_argument('--include',
-                        nargs='+',
-                        default=['torchscript', 'onnx'],
-                        help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs')
-    opt = parser.parse_args()
-    print_args(vars(opt))
-    return opt
-
-
-def main(opt):
-    for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
-        run(**vars(opt))
-
-
-if __name__ == "__main__":
-    opt = parse_opt()
-    main(opt)
diff --git a/yolov5-6.2/hubconf.py b/yolov5-6.2/hubconf.py
deleted file mode 100644
index 011eaa57..00000000
--- a/yolov5-6.2/hubconf.py
+++ /dev/null
@@ -1,160 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
-
-Usage:
-    import torch
-    model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
-    model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx')  # file from branch
-"""
-
-import torch
-
-
-def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
-    """Creates or loads a YOLOv5 model
-
-    Arguments:
-        name (str): model name 'yolov5s' or path 'path/to/best.pt'
-        pretrained (bool): load pretrained weights into the model
-        channels (int): number of input channels
-        classes (int): number of model classes
-        autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
-        verbose (bool): print all information to screen
-        device (str, torch.device, None): device to use for model parameters
-
-    Returns:
-        YOLOv5 model
-    """
-    from pathlib import Path
-
-    from models.common import AutoShape, DetectMultiBackend
-    from models.experimental import attempt_load
-    from models.yolo import Model
-    from utils.downloads import attempt_download
-    from utils.general import LOGGER, check_requirements, intersect_dicts, logging
-    from utils.torch_utils import select_device
-
-    if not verbose:
-        LOGGER.setLevel(logging.WARNING)
-    check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
-    name = Path(name)
-    path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name  # checkpoint path
-    try:
-        device = select_device(device)
-        if pretrained and channels == 3 and classes == 80:
-            try:
-                model = DetectMultiBackend(path, device=device, fuse=autoshape)  # detection model
-                if autoshape:
-                    model = AutoShape(model)  # for file/URI/PIL/cv2/np inputs and NMS
-            except Exception:
-                model = attempt_load(path, device=device, fuse=False)  # arbitrary model
-        else:
-            cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0]  # model.yaml path
-            model = Model(cfg, channels, classes)  # create model
-            if pretrained:
-                ckpt = torch.load(attempt_download(path), map_location=device)  # load
-                csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
-                csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors'])  # intersect
-                model.load_state_dict(csd, strict=False)  # load
-                if len(ckpt['model'].names) == classes:
-                    model.names = ckpt['model'].names  # set class names attribute
-        if not verbose:
-            LOGGER.setLevel(logging.INFO)  # reset to default
-        return model.to(device)
-
-    except Exception as e:
-        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
-        s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
-        raise Exception(s) from e
-
-
-def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
-    # YOLOv5 custom or local model
-    return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
-
-
-def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
-    # YOLOv5-nano model https://github.com/ultralytics/yolov5
-    return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
-
-
-def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
-    # YOLOv5-small model https://github.com/ultralytics/yolov5
-    return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
-
-
-def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
-    # YOLOv5-medium model https://github.com/ultralytics/yolov5
-    return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
-
-
-def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
-    # YOLOv5-large model https://github.com/ultralytics/yolov5
-    return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
-
-
-def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
-    # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
-    return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
-
-
-def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
-    # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
-    return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
-
-
-def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
-    # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
-    return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
-
-
-def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
-    # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
-    return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
-
-
-def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
-    # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
-    return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
-
-
-def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
-    # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
-    return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
-
-
-if __name__ == '__main__':
-    import argparse
-    from pathlib import Path
-
-    import numpy as np
-    from PIL import Image
-
-    from utils.general import cv2, print_args
-
-    # Argparser
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--model', type=str, default='yolov5s', help='model name')
-    opt = parser.parse_args()
-    print_args(vars(opt))
-
-    # Model
-    model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
-    # model = custom(path='path/to/model.pt')  # custom
-
-    # Images
-    imgs = [
-        'data/images/zidane.jpg',  # filename
-        Path('data/images/zidane.jpg'),  # Path
-        'https://ultralytics.com/images/zidane.jpg',  # URI
-        cv2.imread('data/images/bus.jpg')[:, :, ::-1],  # OpenCV
-        Image.open('data/images/bus.jpg'),  # PIL
-        np.zeros((320, 640, 3))]  # numpy
-
-    # Inference
-    results = model(imgs, size=320)  # batched inference
-
-    # Results
-    results.print()
-    results.save()
diff --git a/yolov5-6.2/ip.py b/yolov5-6.2/ip.py
deleted file mode 100644
index 4ca5f9cf..00000000
--- a/yolov5-6.2/ip.py
+++ /dev/null
@@ -1,21 +0,0 @@
-import socket
-import sys,json
-import numpy as np
-# 创建 socket 对象
-serversocket = socket.socket(
-    socket.AF_INET, socket.SOCK_STREAM)
- 
-# 获取本地主机名,本机的ip
-host = '192.168.220.151'
-port = 9999
- 
-# 绑定端口号
-serversocket.connect((host, port))
- 
-# 设置最大连接数,超过后排队
-while True:
-    # 建立客户端连接
-    msg = serversocket.recv(4096)
-    msg = msg.decode('utf-8')
-    recvmsg = json.loads(msg)
-    print(recvmsg)
diff --git a/yolov5-6.2/models/__init__.py b/yolov5-6.2/models/__init__.py
deleted file mode 100644
index e69de29b..00000000
diff --git a/yolov5-6.2/models/common.py b/yolov5-6.2/models/common.py
deleted file mode 100644
index 17e40e60..00000000
--- a/yolov5-6.2/models/common.py
+++ /dev/null
@@ -1,771 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Common modules
-"""
-
-import json
-import math
-import platform
-import warnings
-from collections import OrderedDict, namedtuple
-from copy import copy
-from pathlib import Path
-
-import cv2
-import numpy as np
-import pandas as pd
-import requests
-import torch
-import torch.nn as nn
-from PIL import Image
-from torch.cuda import amp
-
-from utils.dataloaders import exif_transpose, letterbox
-from utils.general import (LOGGER, ROOT, check_requirements, check_suffix, check_version, colorstr, increment_path,
-                           make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh, yaml_load)
-from utils.plots import Annotator, colors, save_one_box
-from utils.torch_utils import copy_attr, smart_inference_mode, time_sync
-
-
-def autopad(k, p=None):  # kernel, padding
-    # Pad to 'same'
-    if p is None:
-        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
-    return p
-
-
-class Conv(nn.Module):
-    # Standard convolution
-    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
-        super().__init__()
-        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
-        self.bn = nn.BatchNorm2d(c2)
-        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
-
-    def forward(self, x):
-        return self.act(self.bn(self.conv(x)))
-
-    def forward_fuse(self, x):
-        return self.act(self.conv(x))
-
-
-class DWConv(Conv):
-    # Depth-wise convolution class
-    def __init__(self, c1, c2, k=1, s=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
-        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
-
-
-class DWConvTranspose2d(nn.ConvTranspose2d):
-    # Depth-wise transpose convolution class
-    def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):  # ch_in, ch_out, kernel, stride, padding, padding_out
-        super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
-
-
-class TransformerLayer(nn.Module):
-    # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
-    def __init__(self, c, num_heads):
-        super().__init__()
-        self.q = nn.Linear(c, c, bias=False)
-        self.k = nn.Linear(c, c, bias=False)
-        self.v = nn.Linear(c, c, bias=False)
-        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
-        self.fc1 = nn.Linear(c, c, bias=False)
-        self.fc2 = nn.Linear(c, c, bias=False)
-
-    def forward(self, x):
-        x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
-        x = self.fc2(self.fc1(x)) + x
-        return x
-
-
-class TransformerBlock(nn.Module):
-    # Vision Transformer https://arxiv.org/abs/2010.11929
-    def __init__(self, c1, c2, num_heads, num_layers):
-        super().__init__()
-        self.conv = None
-        if c1 != c2:
-            self.conv = Conv(c1, c2)
-        self.linear = nn.Linear(c2, c2)  # learnable position embedding
-        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
-        self.c2 = c2
-
-    def forward(self, x):
-        if self.conv is not None:
-            x = self.conv(x)
-        b, _, w, h = x.shape
-        p = x.flatten(2).permute(2, 0, 1)
-        return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
-
-
-class Bottleneck(nn.Module):
-    # Standard bottleneck
-    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
-        super().__init__()
-        c_ = int(c2 * e)  # hidden channels
-        self.cv1 = Conv(c1, c_, 1, 1)
-        self.cv2 = Conv(c_, c2, 3, 1, g=g)
-        self.add = shortcut and c1 == c2
-
-    def forward(self, x):
-        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
-
-
-class BottleneckCSP(nn.Module):
-    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
-    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
-        super().__init__()
-        c_ = int(c2 * e)  # hidden channels
-        self.cv1 = Conv(c1, c_, 1, 1)
-        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
-        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
-        self.cv4 = Conv(2 * c_, c2, 1, 1)
-        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
-        self.act = nn.SiLU()
-        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
-
-    def forward(self, x):
-        y1 = self.cv3(self.m(self.cv1(x)))
-        y2 = self.cv2(x)
-        return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
-
-
-class CrossConv(nn.Module):
-    # Cross Convolution Downsample
-    def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
-        # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
-        super().__init__()
-        c_ = int(c2 * e)  # hidden channels
-        self.cv1 = Conv(c1, c_, (1, k), (1, s))
-        self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
-        self.add = shortcut and c1 == c2
-
-    def forward(self, x):
-        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
-
-
-class C3(nn.Module):
-    # CSP Bottleneck with 3 convolutions
-    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
-        super().__init__()
-        c_ = int(c2 * e)  # hidden channels
-        self.cv1 = Conv(c1, c_, 1, 1)
-        self.cv2 = Conv(c1, c_, 1, 1)
-        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
-        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
-
-    def forward(self, x):
-        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
-
-
-class C3x(C3):
-    # C3 module with cross-convolutions
-    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
-        super().__init__(c1, c2, n, shortcut, g, e)
-        c_ = int(c2 * e)
-        self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
-
-
-class C3TR(C3):
-    # C3 module with TransformerBlock()
-    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
-        super().__init__(c1, c2, n, shortcut, g, e)
-        c_ = int(c2 * e)
-        self.m = TransformerBlock(c_, c_, 4, n)
-
-
-class C3SPP(C3):
-    # C3 module with SPP()
-    def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
-        super().__init__(c1, c2, n, shortcut, g, e)
-        c_ = int(c2 * e)
-        self.m = SPP(c_, c_, k)
-
-
-class C3Ghost(C3):
-    # C3 module with GhostBottleneck()
-    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
-        super().__init__(c1, c2, n, shortcut, g, e)
-        c_ = int(c2 * e)  # hidden channels
-        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
-
-
-class SPP(nn.Module):
-    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
-    def __init__(self, c1, c2, k=(5, 9, 13)):
-        super().__init__()
-        c_ = c1 // 2  # hidden channels
-        self.cv1 = Conv(c1, c_, 1, 1)
-        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
-        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
-
-    def forward(self, x):
-        x = self.cv1(x)
-        with warnings.catch_warnings():
-            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
-            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
-
-
-class SPPF(nn.Module):
-    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
-    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
-        super().__init__()
-        c_ = c1 // 2  # hidden channels
-        self.cv1 = Conv(c1, c_, 1, 1)
-        self.cv2 = Conv(c_ * 4, c2, 1, 1)
-        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
-
-    def forward(self, x):
-        x = self.cv1(x)
-        with warnings.catch_warnings():
-            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
-            y1 = self.m(x)
-            y2 = self.m(y1)
-            return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
-
-
-class Focus(nn.Module):
-    # Focus wh information into c-space
-    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
-        super().__init__()
-        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
-        # self.contract = Contract(gain=2)
-
-    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
-        return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
-        # return self.conv(self.contract(x))
-
-
-class GhostConv(nn.Module):
-    # Ghost Convolution https://github.com/huawei-noah/ghostnet
-    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):  # ch_in, ch_out, kernel, stride, groups
-        super().__init__()
-        c_ = c2 // 2  # hidden channels
-        self.cv1 = Conv(c1, c_, k, s, None, g, act)
-        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
-
-    def forward(self, x):
-        y = self.cv1(x)
-        return torch.cat((y, self.cv2(y)), 1)
-
-
-class GhostBottleneck(nn.Module):
-    # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
-    def __init__(self, c1, c2, k=3, s=1):  # ch_in, ch_out, kernel, stride
-        super().__init__()
-        c_ = c2 // 2
-        self.conv = nn.Sequential(
-            GhostConv(c1, c_, 1, 1),  # pw
-            DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
-            GhostConv(c_, c2, 1, 1, act=False))  # pw-linear
-        self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
-                                                                            act=False)) if s == 2 else nn.Identity()
-
-    def forward(self, x):
-        return self.conv(x) + self.shortcut(x)
-
-
-class Contract(nn.Module):
-    # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
-    def __init__(self, gain=2):
-        super().__init__()
-        self.gain = gain
-
-    def forward(self, x):
-        b, c, h, w = x.size()  # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
-        s = self.gain
-        x = x.view(b, c, h // s, s, w // s, s)  # x(1,64,40,2,40,2)
-        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)
-        return x.view(b, c * s * s, h // s, w // s)  # x(1,256,40,40)
-
-
-class Expand(nn.Module):
-    # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
-    def __init__(self, gain=2):
-        super().__init__()
-        self.gain = gain
-
-    def forward(self, x):
-        b, c, h, w = x.size()  # assert C / s ** 2 == 0, 'Indivisible gain'
-        s = self.gain
-        x = x.view(b, s, s, c // s ** 2, h, w)  # x(1,2,2,16,80,80)
-        x = x.permute(0, 3, 4, 1, 5, 2).contiguous()  # x(1,16,80,2,80,2)
-        return x.view(b, c // s ** 2, h * s, w * s)  # x(1,16,160,160)
-
-
-class Concat(nn.Module):
-    # Concatenate a list of tensors along dimension
-    def __init__(self, dimension=1):
-        super().__init__()
-        self.d = dimension
-
-    def forward(self, x):
-        return torch.cat(x, self.d)
-
-
-class DetectMultiBackend(nn.Module):
-    # YOLOv5 MultiBackend class for python inference on various backends
-    def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
-        # Usage:
-        #   PyTorch:              weights = *.pt
-        #   TorchScript:                    *.torchscript
-        #   ONNX Runtime:                   *.onnx
-        #   ONNX OpenCV DNN:                *.onnx with --dnn
-        #   OpenVINO:                       *.xml
-        #   CoreML:                         *.mlmodel
-        #   TensorRT:                       *.engine
-        #   TensorFlow SavedModel:          *_saved_model
-        #   TensorFlow GraphDef:            *.pb
-        #   TensorFlow Lite:                *.tflite
-        #   TensorFlow Edge TPU:            *_edgetpu.tflite
-        from models.experimental import attempt_download, attempt_load  # scoped to avoid circular import
-
-        super().__init__()
-        w = str(weights[0] if isinstance(weights, list) else weights)
-        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self._model_type(w)  # get backend
-        w = attempt_download(w)  # download if not local
-        fp16 &= pt or jit or onnx or engine  # FP16
-        stride = 32  # default stride
-
-        if pt:  # PyTorch
-            model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
-            stride = max(int(model.stride.max()), 32)  # model stride
-            names = model.module.names if hasattr(model, 'module') else model.names  # get class names
-            model.half() if fp16 else model.float()
-            self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
-        elif jit:  # TorchScript
-            LOGGER.info(f'Loading {w} for TorchScript inference...')
-            extra_files = {'config.txt': ''}  # model metadata
-            model = torch.jit.load(w, _extra_files=extra_files)
-            model.half() if fp16 else model.float()
-            if extra_files['config.txt']:
-                d = json.loads(extra_files['config.txt'])  # extra_files dict
-                stride, names = int(d['stride']), d['names']
-        elif dnn:  # ONNX OpenCV DNN
-            LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
-            check_requirements(('opencv-python>=4.5.4',))
-            net = cv2.dnn.readNetFromONNX(w)
-        elif onnx:  # ONNX Runtime
-            LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
-            cuda = torch.cuda.is_available() and device.type != 'cpu'
-            check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
-            import onnxruntime
-            providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
-            session = onnxruntime.InferenceSession(w, providers=providers)
-            meta = session.get_modelmeta().custom_metadata_map  # metadata
-            if 'stride' in meta:
-                stride, names = int(meta['stride']), eval(meta['names'])
-        elif xml:  # OpenVINO
-            LOGGER.info(f'Loading {w} for OpenVINO inference...')
-            check_requirements(('openvino',))  # requires openvino-dev: https://pypi.org/project/openvino-dev/
-            from openvino.runtime import Core, Layout, get_batch
-            ie = Core()
-            if not Path(w).is_file():  # if not *.xml
-                w = next(Path(w).glob('*.xml'))  # get *.xml file from *_openvino_model dir
-            network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
-            if network.get_parameters()[0].get_layout().empty:
-                network.get_parameters()[0].set_layout(Layout("NCHW"))
-            batch_dim = get_batch(network)
-            if batch_dim.is_static:
-                batch_size = batch_dim.get_length()
-            executable_network = ie.compile_model(network, device_name="CPU")  # device_name="MYRIAD" for Intel NCS2
-            output_layer = next(iter(executable_network.outputs))
-            meta = Path(w).with_suffix('.yaml')
-            if meta.exists():
-                stride, names = self._load_metadata(meta)  # load metadata
-        elif engine:  # TensorRT
-            LOGGER.info(f'Loading {w} for TensorRT inference...')
-            import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download
-            check_version(trt.__version__, '7.0.0', hard=True)  # require tensorrt>=7.0.0
-            if device.type == 'cpu':
-                device = torch.device('cuda:0')
-            Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
-            logger = trt.Logger(trt.Logger.INFO)
-            with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
-                model = runtime.deserialize_cuda_engine(f.read())
-            context = model.create_execution_context()
-            bindings = OrderedDict()
-            fp16 = False  # default updated below
-            dynamic = False
-            for index in range(model.num_bindings):
-                name = model.get_binding_name(index)
-                dtype = trt.nptype(model.get_binding_dtype(index))
-                if model.binding_is_input(index):
-                    if -1 in tuple(model.get_binding_shape(index)):  # dynamic
-                        dynamic = True
-                        context.set_binding_shape(index, tuple(model.get_profile_shape(0, index)[2]))
-                    if dtype == np.float16:
-                        fp16 = True
-                shape = tuple(context.get_binding_shape(index))
-                im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
-                bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
-            binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
-            batch_size = bindings['images'].shape[0]  # if dynamic, this is instead max batch size
-        elif coreml:  # CoreML
-            LOGGER.info(f'Loading {w} for CoreML inference...')
-            import coremltools as ct
-            model = ct.models.MLModel(w)
-        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
-            if saved_model:  # SavedModel
-                LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
-                import tensorflow as tf
-                keras = False  # assume TF1 saved_model
-                model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
-            elif pb:  # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
-                LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
-                import tensorflow as tf
-
-                def wrap_frozen_graph(gd, inputs, outputs):
-                    x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped
-                    ge = x.graph.as_graph_element
-                    return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
-
-                gd = tf.Graph().as_graph_def()  # graph_def
-                with open(w, 'rb') as f:
-                    gd.ParseFromString(f.read())
-                frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
-            elif tflite or edgetpu:  # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
-                try:  # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
-                    from tflite_runtime.interpreter import Interpreter, load_delegate
-                except ImportError:
-                    import tensorflow as tf
-                    Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
-                if edgetpu:  # Edge TPU https://coral.ai/software/#edgetpu-runtime
-                    LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
-                    delegate = {
-                        'Linux': 'libedgetpu.so.1',
-                        'Darwin': 'libedgetpu.1.dylib',
-                        'Windows': 'edgetpu.dll'}[platform.system()]
-                    interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
-                else:  # Lite
-                    LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
-                    interpreter = Interpreter(model_path=w)  # load TFLite model
-                interpreter.allocate_tensors()  # allocate
-                input_details = interpreter.get_input_details()  # inputs
-                output_details = interpreter.get_output_details()  # outputs
-            elif tfjs:
-                raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
-            else:
-                raise NotImplementedError(f'ERROR: {w} is not a supported format')
-
-        # class names
-        if 'names' not in locals():
-            names = yaml_load(data)['names'] if data else [f'class{i}' for i in range(999)]
-        if names[0] == 'n01440764' and len(names) == 1000:  # ImageNet
-            names = yaml_load(ROOT / 'data/ImageNet.yaml')['names']  # human-readable names
-
-        self.__dict__.update(locals())  # assign all variables to self
-
-    def forward(self, im, augment=False, visualize=False, val=False):
-        # YOLOv5 MultiBackend inference
-        b, ch, h, w = im.shape  # batch, channel, height, width
-        if self.fp16 and im.dtype != torch.float16:
-            im = im.half()  # to FP16
-
-        if self.pt:  # PyTorch
-            y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
-            if isinstance(y, tuple):
-                y = y[0]
-        elif self.jit:  # TorchScript
-            y = self.model(im)[0]
-        elif self.dnn:  # ONNX OpenCV DNN
-            im = im.cpu().numpy()  # torch to numpy
-            self.net.setInput(im)
-            y = self.net.forward()
-        elif self.onnx:  # ONNX Runtime
-            im = im.cpu().numpy()  # torch to numpy
-            y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
-        elif self.xml:  # OpenVINO
-            im = im.cpu().numpy()  # FP32
-            y = self.executable_network([im])[self.output_layer]
-        elif self.engine:  # TensorRT
-            if self.dynamic and im.shape != self.bindings['images'].shape:
-                i_in, i_out = (self.model.get_binding_index(x) for x in ('images', 'output'))
-                self.context.set_binding_shape(i_in, im.shape)  # reshape if dynamic
-                self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
-                self.bindings['output'].data.resize_(tuple(self.context.get_binding_shape(i_out)))
-            s = self.bindings['images'].shape
-            assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
-            self.binding_addrs['images'] = int(im.data_ptr())
-            self.context.execute_v2(list(self.binding_addrs.values()))
-            y = self.bindings['output'].data
-        elif self.coreml:  # CoreML
-            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
-            im = Image.fromarray((im[0] * 255).astype('uint8'))
-            # im = im.resize((192, 320), Image.ANTIALIAS)
-            y = self.model.predict({'image': im})  # coordinates are xywh normalized
-            if 'confidence' in y:
-                box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
-                conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
-                y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
-            else:
-                k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1])  # output key
-                y = y[k]  # output
-        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
-            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
-            if self.saved_model:  # SavedModel
-                y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
-            elif self.pb:  # GraphDef
-                y = self.frozen_func(x=self.tf.constant(im)).numpy()
-            else:  # Lite or Edge TPU
-                input, output = self.input_details[0], self.output_details[0]
-                int8 = input['dtype'] == np.uint8  # is TFLite quantized uint8 model
-                if int8:
-                    scale, zero_point = input['quantization']
-                    im = (im / scale + zero_point).astype(np.uint8)  # de-scale
-                self.interpreter.set_tensor(input['index'], im)
-                self.interpreter.invoke()
-                y = self.interpreter.get_tensor(output['index'])
-                if int8:
-                    scale, zero_point = output['quantization']
-                    y = (y.astype(np.float32) - zero_point) * scale  # re-scale
-            y[..., :4] *= [w, h, w, h]  # xywh normalized to pixels
-
-        if isinstance(y, np.ndarray):
-            y = torch.tensor(y, device=self.device)
-        return (y, []) if val else y
-
-    def warmup(self, imgsz=(1, 3, 640, 640)):
-        # Warmup model by running inference once
-        warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb
-        if any(warmup_types) and self.device.type != 'cpu':
-            im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device)  # input
-            for _ in range(2 if self.jit else 1):  #
-                self.forward(im)  # warmup
-
-    @staticmethod
-    def _model_type(p='path/to/model.pt'):
-        # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
-        from export import export_formats
-        suffixes = list(export_formats().Suffix) + ['.xml']  # export suffixes
-        check_suffix(p, suffixes)  # checks
-        p = Path(p).name  # eliminate trailing separators
-        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
-        xml |= xml2  # *_openvino_model or *.xml
-        tflite &= not edgetpu  # *.tflite
-        return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
-
-    @staticmethod
-    def _load_metadata(f='path/to/meta.yaml'):
-        # Load metadata from meta.yaml if it exists
-        d = yaml_load(f)
-        return d['stride'], d['names']  # assign stride, names
-
-
-class AutoShape(nn.Module):
-    # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
-    conf = 0.25  # NMS confidence threshold
-    iou = 0.45  # NMS IoU threshold
-    agnostic = False  # NMS class-agnostic
-    multi_label = False  # NMS multiple labels per box
-    classes = None  # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
-    max_det = 1000  # maximum number of detections per image
-    amp = False  # Automatic Mixed Precision (AMP) inference
-
-    def __init__(self, model, verbose=True):
-        super().__init__()
-        if verbose:
-            LOGGER.info('Adding AutoShape... ')
-        copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=())  # copy attributes
-        self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance
-        self.pt = not self.dmb or model.pt  # PyTorch model
-        self.model = model.eval()
-        if self.pt:
-            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
-            m.inplace = False  # Detect.inplace=False for safe multithread inference
-
-    def _apply(self, fn):
-        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
-        self = super()._apply(fn)
-        if self.pt:
-            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
-            m.stride = fn(m.stride)
-            m.grid = list(map(fn, m.grid))
-            if isinstance(m.anchor_grid, list):
-                m.anchor_grid = list(map(fn, m.anchor_grid))
-        return self
-
-    @smart_inference_mode()
-    def forward(self, imgs, size=640, augment=False, profile=False):
-        # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
-        #   file:       imgs = 'data/images/zidane.jpg'  # str or PosixPath
-        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
-        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
-        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
-        #   numpy:           = np.zeros((640,1280,3))  # HWC
-        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
-        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images
-
-        t = [time_sync()]
-        p = next(self.model.parameters()) if self.pt else torch.zeros(1, device=self.model.device)  # for device, type
-        autocast = self.amp and (p.device.type != 'cpu')  # Automatic Mixed Precision (AMP) inference
-        if isinstance(imgs, torch.Tensor):  # torch
-            with amp.autocast(autocast):
-                return self.model(imgs.to(p.device).type_as(p), augment, profile)  # inference
-
-        # Pre-process
-        n, imgs = (len(imgs), list(imgs)) if isinstance(imgs, (list, tuple)) else (1, [imgs])  # number, list of images
-        shape0, shape1, files = [], [], []  # image and inference shapes, filenames
-        for i, im in enumerate(imgs):
-            f = f'image{i}'  # filename
-            if isinstance(im, (str, Path)):  # filename or uri
-                im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
-                im = np.asarray(exif_transpose(im))
-            elif isinstance(im, Image.Image):  # PIL Image
-                im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
-            files.append(Path(f).with_suffix('.jpg').name)
-            if im.shape[0] < 5:  # image in CHW
-                im = im.transpose((1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
-            im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3)  # enforce 3ch input
-            s = im.shape[:2]  # HWC
-            shape0.append(s)  # image shape
-            g = (size / max(s))  # gain
-            shape1.append([y * g for y in s])
-            imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update
-        shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)]  # inf shape
-        x = [letterbox(im, shape1, auto=False)[0] for im in imgs]  # pad
-        x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2)))  # stack and BHWC to BCHW
-        x = torch.from_numpy(x).to(p.device).type_as(p) / 255  # uint8 to fp16/32
-        t.append(time_sync())
-
-        with amp.autocast(autocast):
-            # Inference
-            y = self.model(x, augment, profile)  # forward
-            t.append(time_sync())
-
-            # Post-process
-            y = non_max_suppression(y if self.dmb else y[0],
-                                    self.conf,
-                                    self.iou,
-                                    self.classes,
-                                    self.agnostic,
-                                    self.multi_label,
-                                    max_det=self.max_det)  # NMS
-            for i in range(n):
-                scale_coords(shape1, y[i][:, :4], shape0[i])
-
-            t.append(time_sync())
-            return Detections(imgs, y, files, t, self.names, x.shape)
-
-
-class Detections:
-    # YOLOv5 detections class for inference results
-    def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
-        super().__init__()
-        d = pred[0].device  # device
-        gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs]  # normalizations
-        self.imgs = imgs  # list of images as numpy arrays
-        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
-        self.names = names  # class names
-        self.files = files  # image filenames
-        self.times = times  # profiling times
-        self.xyxy = pred  # xyxy pixels
-        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
-        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
-        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
-        self.n = len(self.pred)  # number of images (batch size)
-        self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3))  # timestamps (ms)
-        self.s = shape  # inference BCHW shape
-
-    def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
-        crops = []
-        for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
-            s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '  # string
-            if pred.shape[0]:
-                for c in pred[:, -1].unique():
-                    n = (pred[:, -1] == c).sum()  # detections per class
-                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
-                if show or save or render or crop:
-                    annotator = Annotator(im, example=str(self.names))
-                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class
-                        label = f'{self.names[int(cls)]} {conf:.2f}'
-                        if crop:
-                            file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
-                            crops.append({
-                                'box': box,
-                                'conf': conf,
-                                'cls': cls,
-                                'label': label,
-                                'im': save_one_box(box, im, file=file, save=save)})
-                        else:  # all others
-                            annotator.box_label(box, label if labels else '', color=colors(cls))
-                    im = annotator.im
-            else:
-                s += '(no detections)'
-
-            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
-            if pprint:
-                print(s.rstrip(', '))
-            if show:
-                im.show(self.files[i])  # show
-            if save:
-                f = self.files[i]
-                im.save(save_dir / f)  # save
-                if i == self.n - 1:
-                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
-            if render:
-                self.imgs[i] = np.asarray(im)
-        if crop:
-            if save:
-                LOGGER.info(f'Saved results to {save_dir}\n')
-            return crops
-
-    def print(self):
-        self.display(pprint=True)  # print results
-        print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
-
-    def show(self, labels=True):
-        self.display(show=True, labels=labels)  # show results
-
-    def save(self, labels=True, save_dir='runs/detect/exp'):
-        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True)  # increment save_dir
-        self.display(save=True, labels=labels, save_dir=save_dir)  # save results
-
-    def crop(self, save=True, save_dir='runs/detect/exp'):
-        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
-        return self.display(crop=True, save=save, save_dir=save_dir)  # crop results
-
-    def render(self, labels=True):
-        self.display(render=True, labels=labels)  # render results
-        return self.imgs
-
-    def pandas(self):
-        # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
-        new = copy(self)  # return copy
-        ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name'  # xyxy columns
-        cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name'  # xywh columns
-        for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
-            a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)]  # update
-            setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
-        return new
-
-    def tolist(self):
-        # return a list of Detections objects, i.e. 'for result in results.tolist():'
-        r = range(self.n)  # iterable
-        x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
-        # for d in x:
-        #    for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
-        #        setattr(d, k, getattr(d, k)[0])  # pop out of list
-        return x
-
-    def __len__(self):
-        return self.n  # override len(results)
-
-    def __str__(self):
-        self.print()  # override print(results)
-        return ''
-
-
-class Classify(nn.Module):
-    # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
-    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):  # ch_in, ch_out, kernel, stride, padding, groups
-        super().__init__()
-        c_ = 1280  # efficientnet_b0 size
-        self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
-        self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
-        self.drop = nn.Dropout(p=0.0, inplace=True)
-        self.linear = nn.Linear(c_, c2)  # to x(b,c2)
-
-    def forward(self, x):
-        if isinstance(x, list):
-            x = torch.cat(x, 1)
-        return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
diff --git a/yolov5-6.2/models/experimental.py b/yolov5-6.2/models/experimental.py
deleted file mode 100644
index cb32d01b..00000000
--- a/yolov5-6.2/models/experimental.py
+++ /dev/null
@@ -1,107 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Experimental modules
-"""
-import math
-
-import numpy as np
-import torch
-import torch.nn as nn
-
-from models.common import Conv
-from utils.downloads import attempt_download
-
-
-class Sum(nn.Module):
-    # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
-    def __init__(self, n, weight=False):  # n: number of inputs
-        super().__init__()
-        self.weight = weight  # apply weights boolean
-        self.iter = range(n - 1)  # iter object
-        if weight:
-            self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True)  # layer weights
-
-    def forward(self, x):
-        y = x[0]  # no weight
-        if self.weight:
-            w = torch.sigmoid(self.w) * 2
-            for i in self.iter:
-                y = y + x[i + 1] * w[i]
-        else:
-            for i in self.iter:
-                y = y + x[i + 1]
-        return y
-
-
-class MixConv2d(nn.Module):
-    # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
-    def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):  # ch_in, ch_out, kernel, stride, ch_strategy
-        super().__init__()
-        n = len(k)  # number of convolutions
-        if equal_ch:  # equal c_ per group
-            i = torch.linspace(0, n - 1E-6, c2).floor()  # c2 indices
-            c_ = [(i == g).sum() for g in range(n)]  # intermediate channels
-        else:  # equal weight.numel() per group
-            b = [c2] + [0] * n
-            a = np.eye(n + 1, n, k=-1)
-            a -= np.roll(a, 1, axis=1)
-            a *= np.array(k) ** 2
-            a[0] = 1
-            c_ = np.linalg.lstsq(a, b, rcond=None)[0].round()  # solve for equal weight indices, ax = b
-
-        self.m = nn.ModuleList([
-            nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
-        self.bn = nn.BatchNorm2d(c2)
-        self.act = nn.SiLU()
-
-    def forward(self, x):
-        return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
-
-
-class Ensemble(nn.ModuleList):
-    # Ensemble of models
-    def __init__(self):
-        super().__init__()
-
-    def forward(self, x, augment=False, profile=False, visualize=False):
-        y = [module(x, augment, profile, visualize)[0] for module in self]
-        # y = torch.stack(y).max(0)[0]  # max ensemble
-        # y = torch.stack(y).mean(0)  # mean ensemble
-        y = torch.cat(y, 1)  # nms ensemble
-        return y, None  # inference, train output
-
-
-def attempt_load(weights, device=None, inplace=True, fuse=True):
-    # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
-    from models.yolo import Detect, Model
-
-    model = Ensemble()
-    for w in weights if isinstance(weights, list) else [weights]:
-        ckpt = torch.load(attempt_download(w), map_location='cpu')  # load
-        ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float()  # FP32 model
-        if not hasattr(ckpt, 'stride'):
-            ckpt.stride = torch.tensor([32.])  # compatibility update for ResNet etc.
-        model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval())  # model in eval mode
-
-    # Compatibility updates
-    for m in model.modules():
-        t = type(m)
-        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
-            m.inplace = inplace  # torch 1.7.0 compatibility
-            if t is Detect and not isinstance(m.anchor_grid, list):
-                delattr(m, 'anchor_grid')
-                setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
-        elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
-            m.recompute_scale_factor = None  # torch 1.11.0 compatibility
-
-    # Return model
-    if len(model) == 1:
-        return model[-1]
-
-    # Return detection ensemble
-    print(f'Ensemble created with {weights}\n')
-    for k in 'names', 'nc', 'yaml':
-        setattr(model, k, getattr(model[0], k))
-    model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride  # max stride
-    assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
-    return model
diff --git a/yolov5-6.2/models/hub/anchors.yaml b/yolov5-6.2/models/hub/anchors.yaml
deleted file mode 100644
index e4d7beb0..00000000
--- a/yolov5-6.2/models/hub/anchors.yaml
+++ /dev/null
@@ -1,59 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Default anchors for COCO data
-
-
-# P5 -------------------------------------------------------------------------------------------------------------------
-# P5-640:
-anchors_p5_640:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-
-# P6 -------------------------------------------------------------------------------------------------------------------
-# P6-640:  thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11,  21,19,  17,41,  43,32,  39,70,  86,64,  65,131,  134,130,  120,265,  282,180,  247,354,  512,387
-anchors_p6_640:
-  - [9,11,  21,19,  17,41]  # P3/8
-  - [43,32,  39,70,  86,64]  # P4/16
-  - [65,131,  134,130,  120,265]  # P5/32
-  - [282,180,  247,354,  512,387]  # P6/64
-
-# P6-1280:  thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27,  44,40,  38,94,  96,68,  86,152,  180,137,  140,301,  303,264,  238,542,  436,615,  739,380,  925,792
-anchors_p6_1280:
-  - [19,27,  44,40,  38,94]  # P3/8
-  - [96,68,  86,152,  180,137]  # P4/16
-  - [140,301,  303,264,  238,542]  # P5/32
-  - [436,615,  739,380,  925,792]  # P6/64
-
-# P6-1920:  thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41,  67,59,  57,141,  144,103,  129,227,  270,205,  209,452,  455,396,  358,812,  653,922,  1109,570,  1387,1187
-anchors_p6_1920:
-  - [28,41,  67,59,  57,141]  # P3/8
-  - [144,103,  129,227,  270,205]  # P4/16
-  - [209,452,  455,396,  358,812]  # P5/32
-  - [653,922,  1109,570,  1387,1187]  # P6/64
-
-
-# P7 -------------------------------------------------------------------------------------------------------------------
-# P7-640:  thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11,  13,30,  29,20,  30,46,  61,38,  39,92,  78,80,  146,66,  79,163,  149,150,  321,143,  157,303,  257,402,  359,290,  524,372
-anchors_p7_640:
-  - [11,11,  13,30,  29,20]  # P3/8
-  - [30,46,  61,38,  39,92]  # P4/16
-  - [78,80,  146,66,  79,163]  # P5/32
-  - [149,150,  321,143,  157,303]  # P6/64
-  - [257,402,  359,290,  524,372]  # P7/128
-
-# P7-1280:  thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22,  54,36,  32,77,  70,83,  138,71,  75,173,  165,159,  148,334,  375,151,  334,317,  251,626,  499,474,  750,326,  534,814,  1079,818
-anchors_p7_1280:
-  - [19,22,  54,36,  32,77]  # P3/8
-  - [70,83,  138,71,  75,173]  # P4/16
-  - [165,159,  148,334,  375,151]  # P5/32
-  - [334,317,  251,626,  499,474]  # P6/64
-  - [750,326,  534,814,  1079,818]  # P7/128
-
-# P7-1920:  thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34,  81,55,  47,115,  105,124,  207,107,  113,259,  247,238,  222,500,  563,227,  501,476,  376,939,  749,711,  1126,489,  801,1222,  1618,1227
-anchors_p7_1920:
-  - [29,34,  81,55,  47,115]  # P3/8
-  - [105,124,  207,107,  113,259]  # P4/16
-  - [247,238,  222,500,  563,227]  # P5/32
-  - [501,476,  376,939,  749,711]  # P6/64
-  - [1126,489,  801,1222,  1618,1227]  # P7/128
diff --git a/yolov5-6.2/models/hub/yolov3-spp.yaml b/yolov5-6.2/models/hub/yolov3-spp.yaml
deleted file mode 100644
index c6698215..00000000
--- a/yolov5-6.2/models/hub/yolov3-spp.yaml
+++ /dev/null
@@ -1,51 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.0  # model depth multiple
-width_multiple: 1.0  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# darknet53 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [32, 3, 1]],  # 0
-   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
-   [-1, 1, Bottleneck, [64]],
-   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4
-   [-1, 2, Bottleneck, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 5-P3/8
-   [-1, 8, Bottleneck, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 7-P4/16
-   [-1, 8, Bottleneck, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 9-P5/32
-   [-1, 4, Bottleneck, [1024]],  # 10
-  ]
-
-# YOLOv3-SPP head
-head:
-  [[-1, 1, Bottleneck, [1024, False]],
-   [-1, 1, SPP, [512, [5, 9, 13]]],
-   [-1, 1, Conv, [1024, 3, 1]],
-   [-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, Conv, [1024, 3, 1]],  # 15 (P5/32-large)
-
-   [-2, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
-   [-1, 1, Bottleneck, [512, False]],
-   [-1, 1, Bottleneck, [512, False]],
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, Conv, [512, 3, 1]],  # 22 (P4/16-medium)
-
-   [-2, 1, Conv, [128, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P3
-   [-1, 1, Bottleneck, [256, False]],
-   [-1, 2, Bottleneck, [256, False]],  # 27 (P3/8-small)
-
-   [[27, 22, 15], 1, Detect, [nc, anchors]],   # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov3-tiny.yaml b/yolov5-6.2/models/hub/yolov3-tiny.yaml
deleted file mode 100644
index b28b4431..00000000
--- a/yolov5-6.2/models/hub/yolov3-tiny.yaml
+++ /dev/null
@@ -1,41 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.0  # model depth multiple
-width_multiple: 1.0  # layer channel multiple
-anchors:
-  - [10,14, 23,27, 37,58]  # P4/16
-  - [81,82, 135,169, 344,319]  # P5/32
-
-# YOLOv3-tiny backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [16, 3, 1]],  # 0
-   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 1-P1/2
-   [-1, 1, Conv, [32, 3, 1]],
-   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 3-P2/4
-   [-1, 1, Conv, [64, 3, 1]],
-   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 5-P3/8
-   [-1, 1, Conv, [128, 3, 1]],
-   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 7-P4/16
-   [-1, 1, Conv, [256, 3, 1]],
-   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 9-P5/32
-   [-1, 1, Conv, [512, 3, 1]],
-   [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]],  # 11
-   [-1, 1, nn.MaxPool2d, [2, 1, 0]],  # 12
-  ]
-
-# YOLOv3-tiny head
-head:
-  [[-1, 1, Conv, [1024, 3, 1]],
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, Conv, [512, 3, 1]],  # 15 (P5/32-large)
-
-   [-2, 1, Conv, [128, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
-   [-1, 1, Conv, [256, 3, 1]],  # 19 (P4/16-medium)
-
-   [[19, 15], 1, Detect, [nc, anchors]],  # Detect(P4, P5)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov3.yaml b/yolov5-6.2/models/hub/yolov3.yaml
deleted file mode 100644
index d1ef9129..00000000
--- a/yolov5-6.2/models/hub/yolov3.yaml
+++ /dev/null
@@ -1,51 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.0  # model depth multiple
-width_multiple: 1.0  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# darknet53 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [32, 3, 1]],  # 0
-   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
-   [-1, 1, Bottleneck, [64]],
-   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4
-   [-1, 2, Bottleneck, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 5-P3/8
-   [-1, 8, Bottleneck, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 7-P4/16
-   [-1, 8, Bottleneck, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 9-P5/32
-   [-1, 4, Bottleneck, [1024]],  # 10
-  ]
-
-# YOLOv3 head
-head:
-  [[-1, 1, Bottleneck, [1024, False]],
-   [-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, Conv, [1024, 3, 1]],
-   [-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, Conv, [1024, 3, 1]],  # 15 (P5/32-large)
-
-   [-2, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
-   [-1, 1, Bottleneck, [512, False]],
-   [-1, 1, Bottleneck, [512, False]],
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, Conv, [512, 3, 1]],  # 22 (P4/16-medium)
-
-   [-2, 1, Conv, [128, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P3
-   [-1, 1, Bottleneck, [256, False]],
-   [-1, 2, Bottleneck, [256, False]],  # 27 (P3/8-small)
-
-   [[27, 22, 15], 1, Detect, [nc, anchors]],   # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5-bifpn.yaml b/yolov5-6.2/models/hub/yolov5-bifpn.yaml
deleted file mode 100644
index 504815f5..00000000
--- a/yolov5-6.2/models/hub/yolov5-bifpn.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.0  # model depth multiple
-width_multiple: 1.0  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 9
-  ]
-
-# YOLOv5 v6.0 BiFPN head
-head:
-  [[-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 13
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 14, 6], 1, Concat, [1]],  # cat P4 <--- BiFPN change
-   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 10], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
-
-   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5-fpn.yaml b/yolov5-6.2/models/hub/yolov5-fpn.yaml
deleted file mode 100644
index a23e9c6f..00000000
--- a/yolov5-6.2/models/hub/yolov5-fpn.yaml
+++ /dev/null
@@ -1,42 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.0  # model depth multiple
-width_multiple: 1.0  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 9
-  ]
-
-# YOLOv5 v6.0 FPN head
-head:
-  [[-1, 3, C3, [1024, False]],  # 10 (P5/32-large)
-
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 1, Conv, [512, 1, 1]],
-   [-1, 3, C3, [512, False]],  # 14 (P4/16-medium)
-
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 3, C3, [256, False]],  # 18 (P3/8-small)
-
-   [[18, 14, 10], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5-p2.yaml b/yolov5-6.2/models/hub/yolov5-p2.yaml
deleted file mode 100644
index 554117dd..00000000
--- a/yolov5-6.2/models/hub/yolov5-p2.yaml
+++ /dev/null
@@ -1,54 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.0  # model depth multiple
-width_multiple: 1.0  # layer channel multiple
-anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 9
-  ]
-
-# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
-head:
-  [[-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 13
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
-
-   [-1, 1, Conv, [128, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 2], 1, Concat, [1]],  # cat backbone P2
-   [-1, 1, C3, [128, False]],  # 21 (P2/4-xsmall)
-
-   [-1, 1, Conv, [128, 3, 2]],
-   [[-1, 18], 1, Concat, [1]],  # cat head P3
-   [-1, 3, C3, [256, False]],  # 24 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 14], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 27 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 10], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [1024, False]],  # 30 (P5/32-large)
-
-   [[21, 24, 27, 30], 1, Detect, [nc, anchors]],  # Detect(P2, P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5-p34.yaml b/yolov5-6.2/models/hub/yolov5-p34.yaml
deleted file mode 100644
index dbf0f850..00000000
--- a/yolov5-6.2/models/hub/yolov5-p34.yaml
+++ /dev/null
@@ -1,41 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 0.33  # model depth multiple
-width_multiple: 0.50  # layer channel multiple
-anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ],  # 0-P1/2
-    [ -1, 1, Conv, [ 128, 3, 2 ] ],  # 1-P2/4
-    [ -1, 3, C3, [ 128 ] ],
-    [ -1, 1, Conv, [ 256, 3, 2 ] ],  # 3-P3/8
-    [ -1, 6, C3, [ 256 ] ],
-    [ -1, 1, Conv, [ 512, 3, 2 ] ],  # 5-P4/16
-    [ -1, 9, C3, [ 512 ] ],
-    [ -1, 1, Conv, [ 1024, 3, 2 ] ],  # 7-P5/32
-    [ -1, 3, C3, [ 1024 ] ],
-    [ -1, 1, SPPF, [ 1024, 5 ] ],  # 9
-  ]
-
-# YOLOv5 v6.0 head with (P3, P4) outputs
-head:
-  [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
-    [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
-    [ [ -1, 6 ], 1, Concat, [ 1 ] ],  # cat backbone P4
-    [ -1, 3, C3, [ 512, False ] ],  # 13
-
-    [ -1, 1, Conv, [ 256, 1, 1 ] ],
-    [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
-    [ [ -1, 4 ], 1, Concat, [ 1 ] ],  # cat backbone P3
-    [ -1, 3, C3, [ 256, False ] ],  # 17 (P3/8-small)
-
-    [ -1, 1, Conv, [ 256, 3, 2 ] ],
-    [ [ -1, 14 ], 1, Concat, [ 1 ] ],  # cat head P4
-    [ -1, 3, C3, [ 512, False ] ],  # 20 (P4/16-medium)
-
-    [ [ 17, 20 ], 1, Detect, [ nc, anchors ] ],  # Detect(P3, P4)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5-p6.yaml b/yolov5-6.2/models/hub/yolov5-p6.yaml
deleted file mode 100644
index a17202f2..00000000
--- a/yolov5-6.2/models/hub/yolov5-p6.yaml
+++ /dev/null
@@ -1,56 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.0  # model depth multiple
-width_multiple: 1.0  # layer channel multiple
-anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [768]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 11
-  ]
-
-# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
-head:
-  [[-1, 1, Conv, [768, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
-   [-1, 3, C3, [768, False]],  # 15
-
-   [-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 19
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 20], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 16], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
-
-   [-1, 1, Conv, [768, 3, 2]],
-   [[-1, 12], 1, Concat, [1]],  # cat head P6
-   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
-
-   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5-p7.yaml b/yolov5-6.2/models/hub/yolov5-p7.yaml
deleted file mode 100644
index edd7d13a..00000000
--- a/yolov5-6.2/models/hub/yolov5-p7.yaml
+++ /dev/null
@@ -1,67 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.0  # model depth multiple
-width_multiple: 1.0  # layer channel multiple
-anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [768]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
-   [-1, 3, C3, [1024]],
-   [-1, 1, Conv, [1280, 3, 2]],  # 11-P7/128
-   [-1, 3, C3, [1280]],
-   [-1, 1, SPPF, [1280, 5]],  # 13
-  ]
-
-# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
-head:
-  [[-1, 1, Conv, [1024, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 10], 1, Concat, [1]],  # cat backbone P6
-   [-1, 3, C3, [1024, False]],  # 17
-
-   [-1, 1, Conv, [768, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
-   [-1, 3, C3, [768, False]],  # 21
-
-   [-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 25
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 29 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 26], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 32 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 22], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [768, False]],  # 35 (P5/32-large)
-
-   [-1, 1, Conv, [768, 3, 2]],
-   [[-1, 18], 1, Concat, [1]],  # cat head P6
-   [-1, 3, C3, [1024, False]],  # 38 (P6/64-xlarge)
-
-   [-1, 1, Conv, [1024, 3, 2]],
-   [[-1, 14], 1, Concat, [1]],  # cat head P7
-   [-1, 3, C3, [1280, False]],  # 41 (P7/128-xxlarge)
-
-   [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6, P7)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5-panet.yaml b/yolov5-6.2/models/hub/yolov5-panet.yaml
deleted file mode 100644
index ccfbf900..00000000
--- a/yolov5-6.2/models/hub/yolov5-panet.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.0  # model depth multiple
-width_multiple: 1.0  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 9
-  ]
-
-# YOLOv5 v6.0 PANet head
-head:
-  [[-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 13
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 14], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 10], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
-
-   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5l6.yaml b/yolov5-6.2/models/hub/yolov5l6.yaml
deleted file mode 100644
index 632c2cb6..00000000
--- a/yolov5-6.2/models/hub/yolov5l6.yaml
+++ /dev/null
@@ -1,60 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.0  # model depth multiple
-width_multiple: 1.0  # layer channel multiple
-anchors:
-  - [19,27,  44,40,  38,94]  # P3/8
-  - [96,68,  86,152,  180,137]  # P4/16
-  - [140,301,  303,264,  238,542]  # P5/32
-  - [436,615,  739,380,  925,792]  # P6/64
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [768]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 11
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, Conv, [768, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
-   [-1, 3, C3, [768, False]],  # 15
-
-   [-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 19
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 20], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 16], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
-
-   [-1, 1, Conv, [768, 3, 2]],
-   [[-1, 12], 1, Concat, [1]],  # cat head P6
-   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
-
-   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5m6.yaml b/yolov5-6.2/models/hub/yolov5m6.yaml
deleted file mode 100644
index ecc53fd6..00000000
--- a/yolov5-6.2/models/hub/yolov5m6.yaml
+++ /dev/null
@@ -1,60 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 0.67  # model depth multiple
-width_multiple: 0.75  # layer channel multiple
-anchors:
-  - [19,27,  44,40,  38,94]  # P3/8
-  - [96,68,  86,152,  180,137]  # P4/16
-  - [140,301,  303,264,  238,542]  # P5/32
-  - [436,615,  739,380,  925,792]  # P6/64
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [768]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 11
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, Conv, [768, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
-   [-1, 3, C3, [768, False]],  # 15
-
-   [-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 19
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 20], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 16], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
-
-   [-1, 1, Conv, [768, 3, 2]],
-   [[-1, 12], 1, Concat, [1]],  # cat head P6
-   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
-
-   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5n6.yaml b/yolov5-6.2/models/hub/yolov5n6.yaml
deleted file mode 100644
index 0c0c71d3..00000000
--- a/yolov5-6.2/models/hub/yolov5n6.yaml
+++ /dev/null
@@ -1,60 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 0.33  # model depth multiple
-width_multiple: 0.25  # layer channel multiple
-anchors:
-  - [19,27,  44,40,  38,94]  # P3/8
-  - [96,68,  86,152,  180,137]  # P4/16
-  - [140,301,  303,264,  238,542]  # P5/32
-  - [436,615,  739,380,  925,792]  # P6/64
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [768]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 11
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, Conv, [768, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
-   [-1, 3, C3, [768, False]],  # 15
-
-   [-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 19
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 20], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 16], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
-
-   [-1, 1, Conv, [768, 3, 2]],
-   [[-1, 12], 1, Concat, [1]],  # cat head P6
-   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
-
-   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5s-ghost.yaml b/yolov5-6.2/models/hub/yolov5s-ghost.yaml
deleted file mode 100644
index ff9519c3..00000000
--- a/yolov5-6.2/models/hub/yolov5s-ghost.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 0.33  # model depth multiple
-width_multiple: 0.50  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, GhostConv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3Ghost, [128]],
-   [-1, 1, GhostConv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3Ghost, [256]],
-   [-1, 1, GhostConv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3Ghost, [512]],
-   [-1, 1, GhostConv, [1024, 3, 2]],  # 7-P5/32
-   [-1, 3, C3Ghost, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 9
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, GhostConv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3Ghost, [512, False]],  # 13
-
-   [-1, 1, GhostConv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3Ghost, [256, False]],  # 17 (P3/8-small)
-
-   [-1, 1, GhostConv, [256, 3, 2]],
-   [[-1, 14], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3Ghost, [512, False]],  # 20 (P4/16-medium)
-
-   [-1, 1, GhostConv, [512, 3, 2]],
-   [[-1, 10], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3Ghost, [1024, False]],  # 23 (P5/32-large)
-
-   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5s-transformer.yaml b/yolov5-6.2/models/hub/yolov5s-transformer.yaml
deleted file mode 100644
index 100d7c44..00000000
--- a/yolov5-6.2/models/hub/yolov5s-transformer.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 0.33  # model depth multiple
-width_multiple: 0.50  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
-   [-1, 3, C3TR, [1024]],  # 9 <--- C3TR() Transformer module
-   [-1, 1, SPPF, [1024, 5]],  # 9
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 13
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 14], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 10], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
-
-   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5s6.yaml b/yolov5-6.2/models/hub/yolov5s6.yaml
deleted file mode 100644
index a28fb559..00000000
--- a/yolov5-6.2/models/hub/yolov5s6.yaml
+++ /dev/null
@@ -1,60 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 0.33  # model depth multiple
-width_multiple: 0.50  # layer channel multiple
-anchors:
-  - [19,27,  44,40,  38,94]  # P3/8
-  - [96,68,  86,152,  180,137]  # P4/16
-  - [140,301,  303,264,  238,542]  # P5/32
-  - [436,615,  739,380,  925,792]  # P6/64
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [768]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 11
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, Conv, [768, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
-   [-1, 3, C3, [768, False]],  # 15
-
-   [-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 19
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 20], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 16], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
-
-   [-1, 1, Conv, [768, 3, 2]],
-   [[-1, 12], 1, Concat, [1]],  # cat head P6
-   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
-
-   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
-  ]
diff --git a/yolov5-6.2/models/hub/yolov5x6.yaml b/yolov5-6.2/models/hub/yolov5x6.yaml
deleted file mode 100644
index ba795c4a..00000000
--- a/yolov5-6.2/models/hub/yolov5x6.yaml
+++ /dev/null
@@ -1,60 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.33  # model depth multiple
-width_multiple: 1.25  # layer channel multiple
-anchors:
-  - [19,27,  44,40,  38,94]  # P3/8
-  - [96,68,  86,152,  180,137]  # P4/16
-  - [140,301,  303,264,  238,542]  # P5/32
-  - [436,615,  739,380,  925,792]  # P6/64
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [768]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 11
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, Conv, [768, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
-   [-1, 3, C3, [768, False]],  # 15
-
-   [-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 19
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 20], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 16], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
-
-   [-1, 1, Conv, [768, 3, 2]],
-   [[-1, 12], 1, Concat, [1]],  # cat head P6
-   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
-
-   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
-  ]
diff --git a/yolov5-6.2/models/tf.py b/yolov5-6.2/models/tf.py
deleted file mode 100644
index b0d98cc2..00000000
--- a/yolov5-6.2/models/tf.py
+++ /dev/null
@@ -1,574 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-TensorFlow, Keras and TFLite versions of YOLOv5
-Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
-
-Usage:
-    $ python models/tf.py --weights yolov5s.pt
-
-Export:
-    $ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
-"""
-
-import argparse
-import sys
-from copy import deepcopy
-from pathlib import Path
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[1]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-# ROOT = ROOT.relative_to(Path.cwd())  # relative
-
-import numpy as np
-import tensorflow as tf
-import torch
-import torch.nn as nn
-from tensorflow import keras
-
-from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
-                           DWConvTranspose2d, Focus, autopad)
-from models.experimental import MixConv2d, attempt_load
-from models.yolo import Detect
-from utils.activations import SiLU
-from utils.general import LOGGER, make_divisible, print_args
-
-
-class TFBN(keras.layers.Layer):
-    # TensorFlow BatchNormalization wrapper
-    def __init__(self, w=None):
-        super().__init__()
-        self.bn = keras.layers.BatchNormalization(
-            beta_initializer=keras.initializers.Constant(w.bias.numpy()),
-            gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
-            moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
-            moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
-            epsilon=w.eps)
-
-    def call(self, inputs):
-        return self.bn(inputs)
-
-
-class TFPad(keras.layers.Layer):
-    # Pad inputs in spatial dimensions 1 and 2
-    def __init__(self, pad):
-        super().__init__()
-        if isinstance(pad, int):
-            self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
-        else:  # tuple/list
-            self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
-
-    def call(self, inputs):
-        return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
-
-
-class TFConv(keras.layers.Layer):
-    # Standard convolution
-    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
-        # ch_in, ch_out, weights, kernel, stride, padding, groups
-        super().__init__()
-        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
-        # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
-        # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
-        conv = keras.layers.Conv2D(
-            filters=c2,
-            kernel_size=k,
-            strides=s,
-            padding='SAME' if s == 1 else 'VALID',
-            use_bias=not hasattr(w, 'bn'),
-            kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
-            bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
-        self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
-        self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
-        self.act = activations(w.act) if act else tf.identity
-
-    def call(self, inputs):
-        return self.act(self.bn(self.conv(inputs)))
-
-
-class TFDWConv(keras.layers.Layer):
-    # Depthwise convolution
-    def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
-        # ch_in, ch_out, weights, kernel, stride, padding, groups
-        super().__init__()
-        assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
-        conv = keras.layers.DepthwiseConv2D(
-            kernel_size=k,
-            depth_multiplier=c2 // c1,
-            strides=s,
-            padding='SAME' if s == 1 else 'VALID',
-            use_bias=not hasattr(w, 'bn'),
-            depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
-            bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
-        self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
-        self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
-        self.act = activations(w.act) if act else tf.identity
-
-    def call(self, inputs):
-        return self.act(self.bn(self.conv(inputs)))
-
-
-class TFDWConvTranspose2d(keras.layers.Layer):
-    # Depthwise ConvTranspose2d
-    def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
-        # ch_in, ch_out, weights, kernel, stride, padding, groups
-        super().__init__()
-        assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
-        assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
-        weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
-        self.c1 = c1
-        self.conv = [
-            keras.layers.Conv2DTranspose(filters=1,
-                                         kernel_size=k,
-                                         strides=s,
-                                         padding='VALID',
-                                         output_padding=p2,
-                                         use_bias=True,
-                                         kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
-                                         bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]
-
-    def call(self, inputs):
-        return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
-
-
-class TFFocus(keras.layers.Layer):
-    # Focus wh information into c-space
-    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
-        # ch_in, ch_out, kernel, stride, padding, groups
-        super().__init__()
-        self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
-
-    def call(self, inputs):  # x(b,w,h,c) -> y(b,w/2,h/2,4c)
-        # inputs = inputs / 255  # normalize 0-255 to 0-1
-        inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
-        return self.conv(tf.concat(inputs, 3))
-
-
-class TFBottleneck(keras.layers.Layer):
-    # Standard bottleneck
-    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None):  # ch_in, ch_out, shortcut, groups, expansion
-        super().__init__()
-        c_ = int(c2 * e)  # hidden channels
-        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
-        self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
-        self.add = shortcut and c1 == c2
-
-    def call(self, inputs):
-        return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
-
-
-class TFCrossConv(keras.layers.Layer):
-    # Cross Convolution
-    def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
-        super().__init__()
-        c_ = int(c2 * e)  # hidden channels
-        self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
-        self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
-        self.add = shortcut and c1 == c2
-
-    def call(self, inputs):
-        return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
-
-
-class TFConv2d(keras.layers.Layer):
-    # Substitution for PyTorch nn.Conv2D
-    def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
-        super().__init__()
-        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
-        self.conv = keras.layers.Conv2D(filters=c2,
-                                        kernel_size=k,
-                                        strides=s,
-                                        padding='VALID',
-                                        use_bias=bias,
-                                        kernel_initializer=keras.initializers.Constant(
-                                            w.weight.permute(2, 3, 1, 0).numpy()),
-                                        bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)
-
-    def call(self, inputs):
-        return self.conv(inputs)
-
-
-class TFBottleneckCSP(keras.layers.Layer):
-    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
-    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
-        # ch_in, ch_out, number, shortcut, groups, expansion
-        super().__init__()
-        c_ = int(c2 * e)  # hidden channels
-        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
-        self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
-        self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
-        self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
-        self.bn = TFBN(w.bn)
-        self.act = lambda x: keras.activations.swish(x)
-        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
-
-    def call(self, inputs):
-        y1 = self.cv3(self.m(self.cv1(inputs)))
-        y2 = self.cv2(inputs)
-        return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
-
-
-class TFC3(keras.layers.Layer):
-    # CSP Bottleneck with 3 convolutions
-    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
-        # ch_in, ch_out, number, shortcut, groups, expansion
-        super().__init__()
-        c_ = int(c2 * e)  # hidden channels
-        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
-        self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
-        self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
-        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
-
-    def call(self, inputs):
-        return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
-
-
-class TFC3x(keras.layers.Layer):
-    # 3 module with cross-convolutions
-    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
-        # ch_in, ch_out, number, shortcut, groups, expansion
-        super().__init__()
-        c_ = int(c2 * e)  # hidden channels
-        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
-        self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
-        self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
-        self.m = keras.Sequential([
-            TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])
-
-    def call(self, inputs):
-        return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
-
-
-class TFSPP(keras.layers.Layer):
-    # Spatial pyramid pooling layer used in YOLOv3-SPP
-    def __init__(self, c1, c2, k=(5, 9, 13), w=None):
-        super().__init__()
-        c_ = c1 // 2  # hidden channels
-        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
-        self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
-        self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
-
-    def call(self, inputs):
-        x = self.cv1(inputs)
-        return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
-
-
-class TFSPPF(keras.layers.Layer):
-    # Spatial pyramid pooling-Fast layer
-    def __init__(self, c1, c2, k=5, w=None):
-        super().__init__()
-        c_ = c1 // 2  # hidden channels
-        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
-        self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
-        self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
-
-    def call(self, inputs):
-        x = self.cv1(inputs)
-        y1 = self.m(x)
-        y2 = self.m(y1)
-        return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
-
-
-class TFDetect(keras.layers.Layer):
-    # TF YOLOv5 Detect layer
-    def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None):  # detection layer
-        super().__init__()
-        self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
-        self.nc = nc  # number of classes
-        self.no = nc + 5  # number of outputs per anchor
-        self.nl = len(anchors)  # number of detection layers
-        self.na = len(anchors[0]) // 2  # number of anchors
-        self.grid = [tf.zeros(1)] * self.nl  # init grid
-        self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
-        self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
-        self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
-        self.training = False  # set to False after building model
-        self.imgsz = imgsz
-        for i in range(self.nl):
-            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
-            self.grid[i] = self._make_grid(nx, ny)
-
-    def call(self, inputs):
-        z = []  # inference output
-        x = []
-        for i in range(self.nl):
-            x.append(self.m[i](inputs[i]))
-            # x(bs,20,20,255) to x(bs,3,20,20,85)
-            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
-            x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
-
-            if not self.training:  # inference
-                y = tf.sigmoid(x[i])
-                grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
-                anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
-                xy = (y[..., 0:2] * 2 + grid) * self.stride[i]  # xy
-                wh = y[..., 2:4] ** 2 * anchor_grid
-                # Normalize xywh to 0-1 to reduce calibration error
-                xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
-                wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
-                y = tf.concat([xy, wh, y[..., 4:]], -1)
-                z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
-
-        return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1), x)
-
-    @staticmethod
-    def _make_grid(nx=20, ny=20):
-        # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
-        # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
-        xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
-        return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
-
-
-class TFUpsample(keras.layers.Layer):
-    # TF version of torch.nn.Upsample()
-    def __init__(self, size, scale_factor, mode, w=None):  # warning: all arguments needed including 'w'
-        super().__init__()
-        assert scale_factor == 2, "scale_factor must be 2"
-        self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
-        # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
-        # with default arguments: align_corners=False, half_pixel_centers=False
-        # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
-        #                                                            size=(x.shape[1] * 2, x.shape[2] * 2))
-
-    def call(self, inputs):
-        return self.upsample(inputs)
-
-
-class TFConcat(keras.layers.Layer):
-    # TF version of torch.concat()
-    def __init__(self, dimension=1, w=None):
-        super().__init__()
-        assert dimension == 1, "convert only NCHW to NHWC concat"
-        self.d = 3
-
-    def call(self, inputs):
-        return tf.concat(inputs, self.d)
-
-
-def parse_model(d, ch, model, imgsz):  # model_dict, input_channels(3)
-    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
-    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
-    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
-    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
-
-    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
-    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
-        m_str = m
-        m = eval(m) if isinstance(m, str) else m  # eval strings
-        for j, a in enumerate(args):
-            try:
-                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
-            except NameError:
-                pass
-
-        n = max(round(n * gd), 1) if n > 1 else n  # depth gain
-        if m in [
-                nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
-                BottleneckCSP, C3, C3x]:
-            c1, c2 = ch[f], args[0]
-            c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
-
-            args = [c1, c2, *args[1:]]
-            if m in [BottleneckCSP, C3, C3x]:
-                args.insert(2, n)
-                n = 1
-        elif m is nn.BatchNorm2d:
-            args = [ch[f]]
-        elif m is Concat:
-            c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
-        elif m is Detect:
-            args.append([ch[x + 1] for x in f])
-            if isinstance(args[1], int):  # number of anchors
-                args[1] = [list(range(args[1] * 2))] * len(f)
-            args.append(imgsz)
-        else:
-            c2 = ch[f]
-
-        tf_m = eval('TF' + m_str.replace('nn.', ''))
-        m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
-            else tf_m(*args, w=model.model[i])  # module
-
-        torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
-        t = str(m)[8:-2].replace('__main__.', '')  # module type
-        np = sum(x.numel() for x in torch_m_.parameters())  # number params
-        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
-        LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10}  {t:<40}{str(args):<30}')  # print
-        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
-        layers.append(m_)
-        ch.append(c2)
-    return keras.Sequential(layers), sorted(save)
-
-
-class TFModel:
-    # TF YOLOv5 model
-    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)):  # model, channels, classes
-        super().__init__()
-        if isinstance(cfg, dict):
-            self.yaml = cfg  # model dict
-        else:  # is *.yaml
-            import yaml  # for torch hub
-            self.yaml_file = Path(cfg).name
-            with open(cfg) as f:
-                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict
-
-        # Define model
-        if nc and nc != self.yaml['nc']:
-            LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
-            self.yaml['nc'] = nc  # override yaml value
-        self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
-
-    def predict(self,
-                inputs,
-                tf_nms=False,
-                agnostic_nms=False,
-                topk_per_class=100,
-                topk_all=100,
-                iou_thres=0.45,
-                conf_thres=0.25):
-        y = []  # outputs
-        x = inputs
-        for m in self.model.layers:
-            if m.f != -1:  # if not from previous layer
-                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
-
-            x = m(x)  # run
-            y.append(x if m.i in self.savelist else None)  # save output
-
-        # Add TensorFlow NMS
-        if tf_nms:
-            boxes = self._xywh2xyxy(x[0][..., :4])
-            probs = x[0][:, :, 4:5]
-            classes = x[0][:, :, 5:]
-            scores = probs * classes
-            if agnostic_nms:
-                nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
-            else:
-                boxes = tf.expand_dims(boxes, 2)
-                nms = tf.image.combined_non_max_suppression(boxes,
-                                                            scores,
-                                                            topk_per_class,
-                                                            topk_all,
-                                                            iou_thres,
-                                                            conf_thres,
-                                                            clip_boxes=False)
-            return nms, x[1]
-        return x[0]  # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
-        # x = x[0][0]  # [x(1,6300,85), ...] to x(6300,85)
-        # xywh = x[..., :4]  # x(6300,4) boxes
-        # conf = x[..., 4:5]  # x(6300,1) confidences
-        # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1))  # x(6300,1)  classes
-        # return tf.concat([conf, cls, xywh], 1)
-
-    @staticmethod
-    def _xywh2xyxy(xywh):
-        # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
-        x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
-        return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
-
-
-class AgnosticNMS(keras.layers.Layer):
-    # TF Agnostic NMS
-    def call(self, input, topk_all, iou_thres, conf_thres):
-        # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
-        return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
-                         input,
-                         fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
-                         name='agnostic_nms')
-
-    @staticmethod
-    def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25):  # agnostic NMS
-        boxes, classes, scores = x
-        class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
-        scores_inp = tf.reduce_max(scores, -1)
-        selected_inds = tf.image.non_max_suppression(boxes,
-                                                     scores_inp,
-                                                     max_output_size=topk_all,
-                                                     iou_threshold=iou_thres,
-                                                     score_threshold=conf_thres)
-        selected_boxes = tf.gather(boxes, selected_inds)
-        padded_boxes = tf.pad(selected_boxes,
-                              paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
-                              mode="CONSTANT",
-                              constant_values=0.0)
-        selected_scores = tf.gather(scores_inp, selected_inds)
-        padded_scores = tf.pad(selected_scores,
-                               paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
-                               mode="CONSTANT",
-                               constant_values=-1.0)
-        selected_classes = tf.gather(class_inds, selected_inds)
-        padded_classes = tf.pad(selected_classes,
-                                paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
-                                mode="CONSTANT",
-                                constant_values=-1.0)
-        valid_detections = tf.shape(selected_inds)[0]
-        return padded_boxes, padded_scores, padded_classes, valid_detections
-
-
-def activations(act=nn.SiLU):
-    # Returns TF activation from input PyTorch activation
-    if isinstance(act, nn.LeakyReLU):
-        return lambda x: keras.activations.relu(x, alpha=0.1)
-    elif isinstance(act, nn.Hardswish):
-        return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
-    elif isinstance(act, (nn.SiLU, SiLU)):
-        return lambda x: keras.activations.swish(x)
-    else:
-        raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')
-
-
-def representative_dataset_gen(dataset, ncalib=100):
-    # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
-    for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
-        im = np.transpose(img, [1, 2, 0])
-        im = np.expand_dims(im, axis=0).astype(np.float32)
-        im /= 255
-        yield [im]
-        if n >= ncalib:
-            break
-
-
-def run(
-        weights=ROOT / 'yolov5s.pt',  # weights path
-        imgsz=(640, 640),  # inference size h,w
-        batch_size=1,  # batch size
-        dynamic=False,  # dynamic batch size
-):
-    # PyTorch model
-    im = torch.zeros((batch_size, 3, *imgsz))  # BCHW image
-    model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
-    _ = model(im)  # inference
-    model.info()
-
-    # TensorFlow model
-    im = tf.zeros((batch_size, *imgsz, 3))  # BHWC image
-    tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
-    _ = tf_model.predict(im)  # inference
-
-    # Keras model
-    im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
-    keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
-    keras_model.summary()
-
-    LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
-
-
-def parse_opt():
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
-    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
-    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
-    parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
-    opt = parser.parse_args()
-    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
-    print_args(vars(opt))
-    return opt
-
-
-def main(opt):
-    run(**vars(opt))
-
-
-if __name__ == "__main__":
-    opt = parse_opt()
-    main(opt)
diff --git a/yolov5-6.2/models/yolo.py b/yolov5-6.2/models/yolo.py
deleted file mode 100644
index df420972..00000000
--- a/yolov5-6.2/models/yolo.py
+++ /dev/null
@@ -1,360 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-YOLO-specific modules
-
-Usage:
-    $ python path/to/models/yolo.py --cfg yolov5s.yaml
-"""
-
-import argparse
-import contextlib
-import os
-import platform
-import sys
-from copy import deepcopy
-from pathlib import Path
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[1]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-if platform.system() != 'Windows':
-    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
-
-from models.common import *
-from models.experimental import *
-from utils.autoanchor import check_anchor_order
-from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
-from utils.plots import feature_visualization
-from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
-                               time_sync)
-
-try:
-    import thop  # for FLOPs computation
-except ImportError:
-    thop = None
-
-
-class Detect(nn.Module):
-    stride = None  # strides computed during build
-    onnx_dynamic = False  # ONNX export parameter
-    export = False  # export mode
-
-    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
-        super().__init__()
-        self.nc = nc  # number of classes
-        self.no = nc + 5  # number of outputs per anchor
-        self.nl = len(anchors)  # number of detection layers
-        self.na = len(anchors[0]) // 2  # number of anchors
-        self.grid = [torch.zeros(1)] * self.nl  # init grid
-        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
-        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
-        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
-        self.inplace = inplace  # use inplace ops (e.g. slice assignment)
-
-    def forward(self, x):
-        z = []  # inference output
-        for i in range(self.nl):
-            x[i] = self.m[i](x[i])  # conv
-            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
-            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
-
-            if not self.training:  # inference
-                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
-                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
-
-                y = x[i].sigmoid()
-                if self.inplace:
-                    y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xy
-                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
-                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
-                    xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0
-                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
-                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
-                    y = torch.cat((xy, wh, conf), 4)
-                z.append(y.view(bs, -1, self.no))
-
-        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
-
-    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
-        d = self.anchors[i].device
-        t = self.anchors[i].dtype
-        shape = 1, self.na, ny, nx, 2  # grid shape
-        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
-        if torch_1_10:  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
-            yv, xv = torch.meshgrid(y, x, indexing='ij')
-        else:
-            yv, xv = torch.meshgrid(y, x)
-        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5
-        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
-        return grid, anchor_grid
-
-
-class BaseModel(nn.Module):
-    # YOLOv5 base model
-    def forward(self, x, profile=False, visualize=False):
-        return self._forward_once(x, profile, visualize)  # single-scale inference, train
-
-    def _forward_once(self, x, profile=False, visualize=False):
-        y, dt = [], []  # outputs
-        for m in self.model:
-            if m.f != -1:  # if not from previous layer
-                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
-            if profile:
-                self._profile_one_layer(m, x, dt)
-            x = m(x)  # run
-            y.append(x if m.i in self.save else None)  # save output
-            if visualize:
-                feature_visualization(x, m.type, m.i, save_dir=visualize)
-        return x
-
-    def _profile_one_layer(self, m, x, dt):
-        c = m == self.model[-1]  # is final layer, copy input as inplace fix
-        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
-        t = time_sync()
-        for _ in range(10):
-            m(x.copy() if c else x)
-        dt.append((time_sync() - t) * 100)
-        if m == self.model[0]:
-            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
-        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
-        if c:
-            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")
-
-    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
-        LOGGER.info('Fusing layers... ')
-        for m in self.model.modules():
-            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
-                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
-                delattr(m, 'bn')  # remove batchnorm
-                m.forward = m.forward_fuse  # update forward
-        self.info()
-        return self
-
-    def info(self, verbose=False, img_size=640):  # print model information
-        model_info(self, verbose, img_size)
-
-    def _apply(self, fn):
-        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
-        self = super()._apply(fn)
-        m = self.model[-1]  # Detect()
-        if isinstance(m, Detect):
-            m.stride = fn(m.stride)
-            m.grid = list(map(fn, m.grid))
-            if isinstance(m.anchor_grid, list):
-                m.anchor_grid = list(map(fn, m.anchor_grid))
-        return self
-
-
-class DetectionModel(BaseModel):
-    # YOLOv5 detection model
-    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
-        super().__init__()
-        if isinstance(cfg, dict):
-            self.yaml = cfg  # model dict
-        else:  # is *.yaml
-            import yaml  # for torch hub
-            self.yaml_file = Path(cfg).name
-            with open(cfg, encoding='ascii', errors='ignore') as f:
-                self.yaml = yaml.safe_load(f)  # model dict
-
-        # Define model
-        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
-        if nc and nc != self.yaml['nc']:
-            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
-            self.yaml['nc'] = nc  # override yaml value
-        if anchors:
-            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
-            self.yaml['anchors'] = round(anchors)  # override yaml value
-        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
-        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
-        self.inplace = self.yaml.get('inplace', True)
-
-        # Build strides, anchors
-        m = self.model[-1]  # Detect()
-        if isinstance(m, Detect):
-            s = 256  # 2x min stride
-            m.inplace = self.inplace
-            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
-            check_anchor_order(m)  # must be in pixel-space (not grid-space)
-            m.anchors /= m.stride.view(-1, 1, 1)
-            self.stride = m.stride
-            self._initialize_biases()  # only run once
-
-        # Init weights, biases
-        initialize_weights(self)
-        self.info()
-        LOGGER.info('')
-
-    def forward(self, x, augment=False, profile=False, visualize=False):
-        if augment:
-            return self._forward_augment(x)  # augmented inference, None
-        return self._forward_once(x, profile, visualize)  # single-scale inference, train
-
-    def _forward_augment(self, x):
-        img_size = x.shape[-2:]  # height, width
-        s = [1, 0.83, 0.67]  # scales
-        f = [None, 3, None]  # flips (2-ud, 3-lr)
-        y = []  # outputs
-        for si, fi in zip(s, f):
-            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
-            yi = self._forward_once(xi)[0]  # forward
-            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
-            yi = self._descale_pred(yi, fi, si, img_size)
-            y.append(yi)
-        y = self._clip_augmented(y)  # clip augmented tails
-        return torch.cat(y, 1), None  # augmented inference, train
-
-    def _descale_pred(self, p, flips, scale, img_size):
-        # de-scale predictions following augmented inference (inverse operation)
-        if self.inplace:
-            p[..., :4] /= scale  # de-scale
-            if flips == 2:
-                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
-            elif flips == 3:
-                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
-        else:
-            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
-            if flips == 2:
-                y = img_size[0] - y  # de-flip ud
-            elif flips == 3:
-                x = img_size[1] - x  # de-flip lr
-            p = torch.cat((x, y, wh, p[..., 4:]), -1)
-        return p
-
-    def _clip_augmented(self, y):
-        # Clip YOLOv5 augmented inference tails
-        nl = self.model[-1].nl  # number of detection layers (P3-P5)
-        g = sum(4 ** x for x in range(nl))  # grid points
-        e = 1  # exclude layer count
-        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
-        y[0] = y[0][:, :-i]  # large
-        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
-        y[-1] = y[-1][:, i:]  # small
-        return y
-
-    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
-        # https://arxiv.org/abs/1708.02002 section 3.3
-        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
-        m = self.model[-1]  # Detect() module
-        for mi, s in zip(m.m, m.stride):  # from
-            b = mi.bias.view(m.na, -1).detach()  # conv.bias(255) to (3,85)
-            b[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
-            b[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
-            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
-
-
-Model = DetectionModel  # retain YOLOv5 'Model' class for backwards compatibility
-
-
-class ClassificationModel(BaseModel):
-    # YOLOv5 classification model
-    def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):  # yaml, model, number of classes, cutoff index
-        super().__init__()
-        self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
-
-    def _from_detection_model(self, model, nc=1000, cutoff=10):
-        # Create a YOLOv5 classification model from a YOLOv5 detection model
-        if isinstance(model, DetectMultiBackend):
-            model = model.model  # unwrap DetectMultiBackend
-        model.model = model.model[:cutoff]  # backbone
-        m = model.model[-1]  # last layer
-        ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels  # ch into module
-        c = Classify(ch, nc)  # Classify()
-        c.i, c.f, c.type = m.i, m.f, 'models.common.Classify'  # index, from, type
-        model.model[-1] = c  # replace
-        self.model = model.model
-        self.stride = model.stride
-        self.save = []
-        self.nc = nc
-
-    def _from_yaml(self, cfg):
-        # Create a YOLOv5 classification model from a *.yaml file
-        self.model = None
-
-
-def parse_model(d, ch):  # model_dict, input_channels(3)
-    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
-    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
-    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
-    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
-
-    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
-    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
-        m = eval(m) if isinstance(m, str) else m  # eval strings
-        for j, a in enumerate(args):
-            with contextlib.suppress(NameError):
-                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
-
-        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
-        if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
-                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x):
-            c1, c2 = ch[f], args[0]
-            if c2 != no:  # if not output
-                c2 = make_divisible(c2 * gw, 8)
-
-            args = [c1, c2, *args[1:]]
-            if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x]:
-                args.insert(2, n)  # number of repeats
-                n = 1
-        elif m is nn.BatchNorm2d:
-            args = [ch[f]]
-        elif m is Concat:
-            c2 = sum(ch[x] for x in f)
-        elif m is Detect:
-            args.append([ch[x] for x in f])
-            if isinstance(args[1], int):  # number of anchors
-                args[1] = [list(range(args[1] * 2))] * len(f)
-        elif m is Contract:
-            c2 = ch[f] * args[0] ** 2
-        elif m is Expand:
-            c2 = ch[f] // args[0] ** 2
-        else:
-            c2 = ch[f]
-
-        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
-        t = str(m)[8:-2].replace('__main__.', '')  # module type
-        np = sum(x.numel() for x in m_.parameters())  # number params
-        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
-        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
-        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
-        layers.append(m_)
-        if i == 0:
-            ch = []
-        ch.append(c2)
-    return nn.Sequential(*layers), sorted(save)
-
-
-if __name__ == '__main__':
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
-    parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
-    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
-    parser.add_argument('--profile', action='store_true', help='profile model speed')
-    parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
-    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
-    opt = parser.parse_args()
-    opt.cfg = check_yaml(opt.cfg)  # check YAML
-    print_args(vars(opt))
-    device = select_device(opt.device)
-
-    # Create model
-    im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
-    model = Model(opt.cfg).to(device)
-
-    # Options
-    if opt.line_profile:  # profile layer by layer
-        model(im, profile=True)
-
-    elif opt.profile:  # profile forward-backward
-        results = profile(input=im, ops=[model], n=3)
-
-    elif opt.test:  # test all models
-        for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
-            try:
-                _ = Model(cfg)
-            except Exception as e:
-                print(f'Error in {cfg}: {e}')
-
-    else:  # report fused model summary
-        model.fuse()
diff --git a/yolov5-6.2/models/yolov5l.yaml b/yolov5-6.2/models/yolov5l.yaml
deleted file mode 100644
index ce8a5de4..00000000
--- a/yolov5-6.2/models/yolov5l.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.0  # model depth multiple
-width_multiple: 1.0  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 9
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 13
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 14], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 10], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
-
-   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/yolov5m.yaml b/yolov5-6.2/models/yolov5m.yaml
deleted file mode 100644
index ad13ab37..00000000
--- a/yolov5-6.2/models/yolov5m.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 0.67  # model depth multiple
-width_multiple: 0.75  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 9
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 13
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 14], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 10], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
-
-   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/yolov5n.yaml b/yolov5-6.2/models/yolov5n.yaml
deleted file mode 100644
index 8a28a40d..00000000
--- a/yolov5-6.2/models/yolov5n.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 0.33  # model depth multiple
-width_multiple: 0.25  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 9
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 13
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 14], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 10], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
-
-   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/yolov5s.yaml b/yolov5-6.2/models/yolov5s.yaml
deleted file mode 100644
index f35beabb..00000000
--- a/yolov5-6.2/models/yolov5s.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 0.33  # model depth multiple
-width_multiple: 0.50  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 9
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 13
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 14], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 10], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
-
-   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/models/yolov5x.yaml b/yolov5-6.2/models/yolov5x.yaml
deleted file mode 100644
index f617a027..00000000
--- a/yolov5-6.2/models/yolov5x.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-
-# Parameters
-nc: 80  # number of classes
-depth_multiple: 1.33  # model depth multiple
-width_multiple: 1.25  # layer channel multiple
-anchors:
-  - [10,13, 16,30, 33,23]  # P3/8
-  - [30,61, 62,45, 59,119]  # P4/16
-  - [116,90, 156,198, 373,326]  # P5/32
-
-# YOLOv5 v6.0 backbone
-backbone:
-  # [from, number, module, args]
-  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
-   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
-   [-1, 3, C3, [128]],
-   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
-   [-1, 6, C3, [256]],
-   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
-   [-1, 9, C3, [512]],
-   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
-   [-1, 3, C3, [1024]],
-   [-1, 1, SPPF, [1024, 5]],  # 9
-  ]
-
-# YOLOv5 v6.0 head
-head:
-  [[-1, 1, Conv, [512, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
-   [-1, 3, C3, [512, False]],  # 13
-
-   [-1, 1, Conv, [256, 1, 1]],
-   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
-   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
-   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
-
-   [-1, 1, Conv, [256, 3, 2]],
-   [[-1, 14], 1, Concat, [1]],  # cat head P4
-   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
-
-   [-1, 1, Conv, [512, 3, 2]],
-   [[-1, 10], 1, Concat, [1]],  # cat head P5
-   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
-
-   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
-  ]
diff --git a/yolov5-6.2/requirements.txt b/yolov5-6.2/requirements.txt
deleted file mode 100644
index 10620566..00000000
--- a/yolov5-6.2/requirements.txt
+++ /dev/null
@@ -1,43 +0,0 @@
-# YOLOv5 requirements
-# Usage: pip install -r requirements.txt
-
-# Base ----------------------------------------
-matplotlib>=3.2.2
-numpy>=1.18.5
-opencv-python>=4.1.1
-Pillow>=7.1.2
-PyYAML>=5.3.1
-requests>=2.23.0
-scipy>=1.4.1
-torch>=1.7.0
-torchvision>=0.8.1
-tqdm>=4.64.0
-protobuf<=3.20.1  # https://github.com/ultralytics/yolov5/issues/8012
-
-# Logging -------------------------------------
-tensorboard>=2.4.1
-# wandb
-# clearml
-
-# Plotting ------------------------------------
-pandas>=1.1.4
-seaborn>=0.11.0
-
-# Export --------------------------------------
-# coremltools>=5.2  # CoreML export
-# onnx>=1.9.0  # ONNX export
-# onnx-simplifier>=0.4.1  # ONNX simplifier
-# nvidia-pyindex  # TensorRT export
-# nvidia-tensorrt  # TensorRT export
-# scikit-learn==0.19.2  # CoreML quantization
-# tensorflow>=2.4.1  # TFLite export (or tensorflow-cpu, tensorflow-aarch64)
-# tensorflowjs>=3.9.0  # TF.js export
-# openvino-dev  # OpenVINO export
-
-# Extras --------------------------------------
-ipython  # interactive notebook
-psutil  # system utilization
-thop>=0.1.1  # FLOPs computation
-# albumentations>=1.0.3
-# pycocotools>=2.0  # COCO mAP
-# roboflow
diff --git a/yolov5-6.2/setup.cfg b/yolov5-6.2/setup.cfg
deleted file mode 100644
index 020a7574..00000000
--- a/yolov5-6.2/setup.cfg
+++ /dev/null
@@ -1,59 +0,0 @@
-# Project-wide configuration file, can be used for package metadata and other toll configurations
-# Example usage: global configuration for PEP8 (via flake8) setting or default pytest arguments
-# Local usage: pip install pre-commit, pre-commit run --all-files
-
-[metadata]
-license_file = LICENSE
-description_file = README.md
-
-
-[tool:pytest]
-norecursedirs =
-    .git
-    dist
-    build
-addopts =
-    --doctest-modules
-    --durations=25
-    --color=yes
-
-
-[flake8]
-max-line-length = 120
-exclude = .tox,*.egg,build,temp
-select = E,W,F
-doctests = True
-verbose = 2
-# https://pep8.readthedocs.io/en/latest/intro.html#error-codes
-format = pylint
-# see: https://www.flake8rules.com/
-ignore =
-    E731  # Do not assign a lambda expression, use a def
-    F405  # name may be undefined, or defined from star imports: module
-    E402  # module level import not at top of file
-    F401  # module imported but unused
-    W504  # line break after binary operator
-    E127  # continuation line over-indented for visual indent
-    W504  # line break after binary operator
-    E231  # missing whitespace after ‘,’, ‘;’, or ‘:’
-    E501  # line too long
-    F403  # ‘from module import *’ used; unable to detect undefined names
-
-
-[isort]
-# https://pycqa.github.io/isort/docs/configuration/options.html
-line_length = 120
-# see: https://pycqa.github.io/isort/docs/configuration/multi_line_output_modes.html
-multi_line_output = 0
-
-
-[yapf]
-based_on_style = pep8
-spaces_before_comment = 2
-COLUMN_LIMIT = 120
-COALESCE_BRACKETS = True
-SPACES_AROUND_POWER_OPERATOR = True
-SPACE_BETWEEN_ENDING_COMMA_AND_CLOSING_BRACKET = False
-SPLIT_BEFORE_CLOSING_BRACKET = False
-SPLIT_BEFORE_FIRST_ARGUMENT = False
-# EACH_DICT_ENTRY_ON_SEPARATE_LINE = False
diff --git a/yolov5-6.2/test.py b/yolov5-6.2/test.py
deleted file mode 100644
index d0be671a..00000000
--- a/yolov5-6.2/test.py
+++ /dev/null
@@ -1,300 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Run inference on images, videos, directories, streams, etc.
-
-Usage - sources:
-    $ python path/to/detect.py --weights yolov5s.pt --source 0              # webcam
-                                                             img.jpg        # image
-                                                             vid.mp4        # video
-                                                             path/          # directory
-                                                             path/*.jpg     # glob
-                                                             'https://youtu.be/Zgi9g1ksQHc'  # YouTube
-                                                             'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
-
-Usage - formats:
-    $ python path/to/detect.py --weights yolov5s.pt                 # PyTorch
-                                         yolov5s.torchscript        # TorchScript
-                                         yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
-                                         yolov5s.xml                # OpenVINO
-                                         yolov5s.engine             # TensorRT
-                                         yolov5s.mlmodel            # CoreML (macOS-only)
-                                         yolov5s_saved_model        # TensorFlow SavedModel
-                                         yolov5s.pb                 # TensorFlow GraphDef
-                                         yolov5s.tflite             # TensorFlow Lite
-                                         yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
-"""
-
-import argparse
-import os
-import platform
-import sys
-from pathlib import Path
-
-import torch
-import torch.backends.cudnn as cudnn
-
-import json
-import socket
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[0]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
-
-from models.common import DetectMultiBackend
-from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
-from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
-                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
-from utils.plots import Annotator, colors, save_one_box
-from utils.torch_utils import select_device, smart_inference_mode, time_sync
-
-UDP_IP = '192.168.43.58' # change to desired IP address
-UDP_PORT = 1900  # change to desired port number
-sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
-sock.bind((UDP_IP, UDP_PORT))
-sock.listen(2)
-clientsocket, addr = sock.accept()
-
-test = 0
-x_pos = 0.0
-y_pos = 0.0
-
-@smart_inference_mode()
-def run(
-        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
-        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
-        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
-        imgsz=(640, 640),  # inference size (height, width)
-        conf_thres=0.25,  # confidence threshold
-        iou_thres=0.45,  # NMS IOU threshold
-        max_det=1000,  # maximum detections per image
-        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
-        view_img=False,  # show results
-        save_txt=False,  # save results to *.txt
-        save_conf=False,  # save confidences in --save-txt labels
-        save_crop=False,  # save cropped prediction boxes
-        nosave=False,  # do not save images/videos
-        classes=None,  # filter by class: --class 0, or --class 0 2 3
-        agnostic_nms=False,  # class-agnostic NMS
-        augment=False,  # augmented inference
-        visualize=False,  # visualize features
-        update=False,  # update all models
-        project=ROOT / 'runs/detect',  # save results to project/name
-        name='exp',  # save results to project/name
-        exist_ok=False,  # existing project/name ok, do not increment
-        line_thickness=3,  # bounding box thickness (pixels)
-        hide_labels=False,  # hide labels
-        hide_conf=False,  # hide confidences
-        half=False,  # use FP16 half-precision inference
-        dnn=False,  # use OpenCV DNN for ONNX inference
-):
-    source = str(source)
-    save_img = not nosave and not source.endswith('.txt')  # save inference images
-    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
-    is_url = source.lower().startswith(('rtsp://'))#, 'rtmp://', 'http://', 'https://'))
-    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
-    if is_url and is_file:
-        source = check_file(source)  # download
-
-    # Directories
-    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
-    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
-
-    # Load model
-    device = select_device(device)
-    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
-    stride, names, pt = model.stride, model.names, model.pt
-    imgsz = check_img_size(imgsz, s=stride)  # check image size
-
-    # Dataloader
-    if webcam:
-        view_img = check_imshow()
-        cudnn.benchmark = True  # set True to speed up constant image size inference
-        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
-        bs = len(dataset)  # batch_size
-    else:
-        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
-        bs = 1  # batch_size
-    vid_path, vid_writer = [None] * bs, [None] * bs
-
-    # Run inference
-    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
-    seen, windows, dt = 0, [], [0.0, 0.0, 0.0]
-    for path, im, im0s, vid_cap, s in dataset:
-        t1 = time_sync()
-        im = torch.from_numpy(im).to(device)
-        im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
-        im /= 255  # 0 - 255 to 0.0 - 1.0
-        if len(im.shape) == 3:
-            im = im[None]  # expand for batch dim
-        t2 = time_sync()
-        dt[0] += t2 - t1
-
-        # Inference
-        visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
-        pred = model(im, augment=augment, visualize=visualize)
-        t3 = time_sync()
-        dt[1] += t3 - t2
-
-        # NMS
-        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
-        dt[2] += time_sync() - t3
-
-        # Second-stage classifier (optional)
-        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
-
-        # Process predictions
-        for i, det in enumerate(pred):  # per image
-            seen += 1
-            if webcam:  # batch_size >= 1
-                p, im0, frame = path[i], im0s[i].copy(), dataset.count
-                s += f'{i}: '
-            else:
-                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
-
-            p = Path(p)  # to Path
-            save_path = str(save_dir / p.name)  # im.jpg
-
-            img_location = os.path.abspath(p)
-
-            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
-            s += '%gx%g ' % im.shape[2:]  # print string
-            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
-            imc = im0.copy() if save_crop else im0  # for save_crop
-            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
-            if len(det):
-                # Rescale boxes from img_size to im0 size
-                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
-
-                # Print results
-                for c in det[:, -1].unique():
-                    n = (det[:, -1] == c).sum()  # detections per class
-                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
-
-                # Write results
-                for *xyxy, conf, cls in reversed(det):
-                    if save_txt:  # Write to file
-                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
-                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
-                        with open(f'{txt_path}.txt', 'a') as f:
-                            f.write(('%g ' * len(line)).rstrip() % line + '\n')
-
-                    if save_img or save_crop or view_img:  # Add bbox to image
-                        c = int(cls)  # integer class
-                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
-                        annotator.box_label(xyxy, label, color=colors(c, True))
-                        
-                    if save_crop:
-                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
-
-            # Stream results
-            im0 = annotator.result()
-            if view_img:
-                if platform.system() == 'Linux' and p not in windows:
-                    windows.append(p)
-                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
-                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
-                cv2.imshow(str(p), im0)
-                cv2.waitKey(1)  # 1 millisecond
-
-            # Save results (image with detections)
-            if save_img:
-                if dataset.mode == 'image':
-                    cv2.imwrite(save_path, im0)
-                else:  # 'video' or 'stream'
-                    if vid_path[i] != save_path:  # new video
-                        vid_path[i] = save_path
-                        if isinstance(vid_writer[i], cv2.VideoWriter):
-                            vid_writer[i].release()  # release previous video writer
-                        if vid_cap:  # video
-                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
-                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
-                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
-                        else:  # stream
-                            fps, w, h = 30, im0.shape[1], im0.shape[0]
-                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
-                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
-                    vid_writer[i].write(im0)
-
-        # Print time (inference-only)
-        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
-
-        #Encode targets as JSON string and send via UDP socket
-        targets = []
-        for *xyxy, conf, cls in reversed(det):
-            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
-            targets.append({'class': names[int(cls)], 'conf': float(conf), 'bbox': [float(val) for val in xywh]})
-        json_str = json.dumps({'location': img_location, 'targets': targets, 'x_pos':x_pos, 'y_pos':y_pos})
-        
-        clientsocket.send(json_str.encode('utf-8')) # change DEST_IP and DEST_PORT to desired values
-        print(json_str)
-        client()
-
-    # Print results
-    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
-    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
-    if save_txt or save_img:
-        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
-        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
-    if update:
-        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
-
-def client():
-    global test
-    global x_pos
-    global y_pos
-    if test == 0:
-        msg = clientsocket.recv(4096)
-        msg = msg.decode('utf-8')
-        recvmsg = json.loads(msg)
-        print(recvmsg)
-        x_pos = recvmsg['x_pos']
-        y_pos = recvmsg['y_pos']
-        if (x_pos != 0.0 and y_pos != 0.0):
-           test = 1
-
-def parse_opt():
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
-    parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
-    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
-    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
-    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
-    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
-    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
-    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
-    parser.add_argument('--view-img', action='store_true', help='show results')
-    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
-    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
-    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
-    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
-    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
-    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
-    parser.add_argument('--augment', action='store_true', help='augmented inference')
-    parser.add_argument('--visualize', action='store_true', help='visualize features')
-    parser.add_argument('--update', action='store_true', help='update all models')
-    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
-    parser.add_argument('--name', default='exp', help='save results to project/name')
-    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
-    
-    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
-    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
-    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
-    
-    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
-    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
-    opt = parser.parse_args()
-    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
-    print_args(vars(opt))
-    return opt
-
-
-def main(opt):
-    check_requirements(exclude=('tensorboard', 'thop'))
-    run(**vars(opt))
-
-
-if __name__ == "__main__":
-    opt = parse_opt()
-    main(opt)
diff --git a/yolov5-6.2/test/test.py b/yolov5-6.2/test/test.py
deleted file mode 100644
index 5edda545..00000000
--- a/yolov5-6.2/test/test.py
+++ /dev/null
@@ -1,12 +0,0 @@
-import cv2
-url = "rtsp://192.168.144.108:8000/165506"
-cap = cv2.VideoCapture(url, cv2.CAP_FFMPEG)
-cap.set(cv2.CAP_PROP_FFMPEG_PARAM,'-strict -2')
-ret, frame = cap.read()
-while ret:
-    ret, frame = cap.read()
-    cv2.imshow("frame",frame)
-    if cv2.waitKey(1) & 0xFF == ord('q'):
-        break
-cv2.destroyAllWindows()
-cap.release()
\ No newline at end of file
diff --git a/yolov5-6.2/train.py b/yolov5-6.2/train.py
deleted file mode 100644
index bbb26cde..00000000
--- a/yolov5-6.2/train.py
+++ /dev/null
@@ -1,632 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Train a YOLOv5 model on a custom dataset.
-
-Models and datasets download automatically from the latest YOLOv5 release.
-Models: https://github.com/ultralytics/yolov5/tree/master/models
-Datasets: https://github.com/ultralytics/yolov5/tree/master/data
-Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
-
-Usage:
-    $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640  # from pretrained (RECOMMENDED)
-    $ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640  # from scratch
-"""
-
-import argparse
-import math
-import os
-import random
-import sys
-import time
-from copy import deepcopy
-from datetime import datetime
-from pathlib import Path
-
-import numpy as np
-import torch
-import torch.distributed as dist
-import torch.nn as nn
-import yaml
-from torch.optim import lr_scheduler
-from tqdm import tqdm
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[0]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
-
-import val  # for end-of-epoch mAP
-from models.experimental import attempt_load
-from models.yolo import Model
-from utils.autoanchor import check_anchors
-from utils.autobatch import check_train_batch_size
-from utils.callbacks import Callbacks
-from utils.dataloaders import create_dataloader
-from utils.downloads import attempt_download, is_url
-from utils.general import (LOGGER, check_amp, check_dataset, check_file, check_git_status, check_img_size,
-                           check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path,
-                           init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods,
-                           one_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
-from utils.loggers import Loggers
-from utils.loggers.wandb.wandb_utils import check_wandb_resume
-from utils.loss import ComputeLoss
-from utils.metrics import fitness
-from utils.plots import plot_evolve, plot_labels
-from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
-                               smart_resume, torch_distributed_zero_first)
-
-LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
-RANK = int(os.getenv('RANK', -1))
-WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
-
-
-def train(hyp, opt, device, callbacks):  # hyp is path/to/hyp.yaml or hyp dictionary
-    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
-        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
-        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
-    callbacks.run('on_pretrain_routine_start')
-
-    # Directories
-    w = save_dir / 'weights'  # weights dir
-    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
-    last, best = w / 'last.pt', w / 'best.pt'
-
-    # Hyperparameters
-    if isinstance(hyp, str):
-        with open(hyp, errors='ignore') as f:
-            hyp = yaml.safe_load(f)  # load hyps dict
-    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
-    opt.hyp = hyp.copy()  # for saving hyps to checkpoints
-
-    # Save run settings
-    if not evolve:
-        yaml_save(save_dir / 'hyp.yaml', hyp)
-        yaml_save(save_dir / 'opt.yaml', vars(opt))
-
-    # Loggers
-    data_dict = None
-    if RANK in {-1, 0}:
-        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance
-        if loggers.clearml:
-            data_dict = loggers.clearml.data_dict  # None if no ClearML dataset or filled in by ClearML
-        if loggers.wandb:
-            data_dict = loggers.wandb.data_dict
-            if resume:
-                weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
-
-        # Register actions
-        for k in methods(loggers):
-            callbacks.register_action(k, callback=getattr(loggers, k))
-
-    # Config
-    plots = not evolve and not opt.noplots  # create plots
-    cuda = device.type != 'cpu'
-    init_seeds(opt.seed + 1 + RANK, deterministic=True)
-    with torch_distributed_zero_first(LOCAL_RANK):
-        data_dict = data_dict or check_dataset(data)  # check if None
-    train_path, val_path = data_dict['train'], data_dict['val']
-    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
-    names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
-    assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'  # check
-    is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset
-
-    # Model
-    check_suffix(weights, '.pt')  # check weights
-    pretrained = weights.endswith('.pt')
-    if pretrained:
-        with torch_distributed_zero_first(LOCAL_RANK):
-            weights = attempt_download(weights)  # download if not found locally
-        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid CUDA memory leak
-        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
-        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
-        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
-        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
-        model.load_state_dict(csd, strict=False)  # load
-        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
-    else:
-        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
-    amp = check_amp(model)  # check AMP
-
-    # Freeze
-    freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
-    for k, v in model.named_parameters():
-        v.requires_grad = True  # train all layers
-        # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)
-        if any(x in k for x in freeze):
-            LOGGER.info(f'freezing {k}')
-            v.requires_grad = False
-
-    # Image size
-    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
-    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple
-
-    # Batch size
-    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
-        batch_size = check_train_batch_size(model, imgsz, amp)
-        loggers.on_params_update({"batch_size": batch_size})
-
-    # Optimizer
-    nbs = 64  # nominal batch size
-    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
-    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
-    optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
-
-    # Scheduler
-    if opt.cos_lr:
-        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
-    else:
-        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
-    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)
-
-    # EMA
-    ema = ModelEMA(model) if RANK in {-1, 0} else None
-
-    # Resume
-    best_fitness, start_epoch = 0.0, 0
-    if pretrained:
-        if resume:
-            best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
-        del ckpt, csd
-
-    # DP mode
-    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
-        LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
-                       'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
-        model = torch.nn.DataParallel(model)
-
-    # SyncBatchNorm
-    if opt.sync_bn and cuda and RANK != -1:
-        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
-        LOGGER.info('Using SyncBatchNorm()')
-
-    # Trainloader
-    train_loader, dataset = create_dataloader(train_path,
-                                              imgsz,
-                                              batch_size // WORLD_SIZE,
-                                              gs,
-                                              single_cls,
-                                              hyp=hyp,
-                                              augment=True,
-                                              cache=None if opt.cache == 'val' else opt.cache,
-                                              rect=opt.rect,
-                                              rank=LOCAL_RANK,
-                                              workers=workers,
-                                              image_weights=opt.image_weights,
-                                              quad=opt.quad,
-                                              prefix=colorstr('train: '),
-                                              shuffle=True)
-    labels = np.concatenate(dataset.labels, 0)
-    mlc = int(labels[:, 0].max())  # max label class
-    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
-
-    # Process 0
-    if RANK in {-1, 0}:
-        val_loader = create_dataloader(val_path,
-                                       imgsz,
-                                       batch_size // WORLD_SIZE * 2,
-                                       gs,
-                                       single_cls,
-                                       hyp=hyp,
-                                       cache=None if noval else opt.cache,
-                                       rect=True,
-                                       rank=-1,
-                                       workers=workers * 2,
-                                       pad=0.5,
-                                       prefix=colorstr('val: '))[0]
-
-        if not resume:
-            if plots:
-                plot_labels(labels, names, save_dir)
-
-            # Anchors
-            if not opt.noautoanchor:
-                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
-            model.half().float()  # pre-reduce anchor precision
-
-        callbacks.run('on_pretrain_routine_end')
-
-    # DDP mode
-    if cuda and RANK != -1:
-        model = smart_DDP(model)
-
-    # Model attributes
-    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
-    hyp['box'] *= 3 / nl  # scale to layers
-    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
-    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
-    hyp['label_smoothing'] = opt.label_smoothing
-    model.nc = nc  # attach number of classes to model
-    model.hyp = hyp  # attach hyperparameters to model
-    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
-    model.names = names
-
-    # Start training
-    t0 = time.time()
-    nb = len(train_loader)  # number of batches
-    nw = max(round(hyp['warmup_epochs'] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
-    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
-    last_opt_step = -1
-    maps = np.zeros(nc)  # mAP per class
-    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
-    scheduler.last_epoch = start_epoch - 1  # do not move
-    scaler = torch.cuda.amp.GradScaler(enabled=amp)
-    stopper, stop = EarlyStopping(patience=opt.patience), False
-    compute_loss = ComputeLoss(model)  # init loss class
-    callbacks.run('on_train_start')
-    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
-                f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
-                f"Logging results to {colorstr('bold', save_dir)}\n"
-                f'Starting training for {epochs} epochs...')
-    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
-        callbacks.run('on_train_epoch_start')
-        model.train()
-
-        # Update image weights (optional, single-GPU only)
-        if opt.image_weights:
-            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
-            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
-            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
-
-        # Update mosaic border (optional)
-        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
-        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
-
-        mloss = torch.zeros(3, device=device)  # mean losses
-        if RANK != -1:
-            train_loader.sampler.set_epoch(epoch)
-        pbar = enumerate(train_loader)
-        LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
-        if RANK in {-1, 0}:
-            pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
-        optimizer.zero_grad()
-        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
-            callbacks.run('on_train_batch_start')
-            ni = i + nb * epoch  # number integrated batches (since train start)
-            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0
-
-            # Warmup
-            if ni <= nw:
-                xi = [0, nw]  # x interp
-                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
-                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
-                for j, x in enumerate(optimizer.param_groups):
-                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
-                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
-                    if 'momentum' in x:
-                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
-
-            # Multi-scale
-            if opt.multi_scale:
-                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
-                sf = sz / max(imgs.shape[2:])  # scale factor
-                if sf != 1:
-                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
-                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
-
-            # Forward
-            with torch.cuda.amp.autocast(amp):
-                pred = model(imgs)  # forward
-                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
-                if RANK != -1:
-                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
-                if opt.quad:
-                    loss *= 4.
-
-            # Backward
-            scaler.scale(loss).backward()
-
-            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
-            if ni - last_opt_step >= accumulate:
-                scaler.unscale_(optimizer)  # unscale gradients
-                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
-                scaler.step(optimizer)  # optimizer.step
-                scaler.update()
-                optimizer.zero_grad()
-                if ema:
-                    ema.update(model)
-                last_opt_step = ni
-
-            # Log
-            if RANK in {-1, 0}:
-                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
-                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
-                pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
-                                     (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
-                callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots)
-                if callbacks.stop_training:
-                    return
-            # end batch ------------------------------------------------------------------------------------------------
-
-        # Scheduler
-        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
-        scheduler.step()
-
-        if RANK in {-1, 0}:
-            # mAP
-            callbacks.run('on_train_epoch_end', epoch=epoch)
-            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
-            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
-            if not noval or final_epoch:  # Calculate mAP
-                results, maps, _ = val.run(data_dict,
-                                           batch_size=batch_size // WORLD_SIZE * 2,
-                                           imgsz=imgsz,
-                                           half=amp,
-                                           model=ema.ema,
-                                           single_cls=single_cls,
-                                           dataloader=val_loader,
-                                           save_dir=save_dir,
-                                           plots=False,
-                                           callbacks=callbacks,
-                                           compute_loss=compute_loss)
-
-            # Update best mAP
-            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
-            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
-            if fi > best_fitness:
-                best_fitness = fi
-            log_vals = list(mloss) + list(results) + lr
-            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
-
-            # Save model
-            if (not nosave) or (final_epoch and not evolve):  # if save
-                ckpt = {
-                    'epoch': epoch,
-                    'best_fitness': best_fitness,
-                    'model': deepcopy(de_parallel(model)).half(),
-                    'ema': deepcopy(ema.ema).half(),
-                    'updates': ema.updates,
-                    'optimizer': optimizer.state_dict(),
-                    'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
-                    'opt': vars(opt),
-                    'date': datetime.now().isoformat()}
-
-                # Save last, best and delete
-                torch.save(ckpt, last)
-                if best_fitness == fi:
-                    torch.save(ckpt, best)
-                if opt.save_period > 0 and epoch % opt.save_period == 0:
-                    torch.save(ckpt, w / f'epoch{epoch}.pt')
-                del ckpt
-                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
-
-        # EarlyStopping
-        if RANK != -1:  # if DDP training
-            broadcast_list = [stop if RANK == 0 else None]
-            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
-            if RANK != 0:
-                stop = broadcast_list[0]
-        if stop:
-            break  # must break all DDP ranks
-
-        # end epoch ----------------------------------------------------------------------------------------------------
-    # end training -----------------------------------------------------------------------------------------------------
-    if RANK in {-1, 0}:
-        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
-        for f in last, best:
-            if f.exists():
-                strip_optimizer(f)  # strip optimizers
-                if f is best:
-                    LOGGER.info(f'\nValidating {f}...')
-                    results, _, _ = val.run(
-                        data_dict,
-                        batch_size=batch_size // WORLD_SIZE * 2,
-                        imgsz=imgsz,
-                        model=attempt_load(f, device).half(),
-                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools results at 0.65
-                        single_cls=single_cls,
-                        dataloader=val_loader,
-                        save_dir=save_dir,
-                        save_json=is_coco,
-                        verbose=True,
-                        plots=plots,
-                        callbacks=callbacks,
-                        compute_loss=compute_loss)  # val best model with plots
-                    if is_coco:
-                        callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
-
-        callbacks.run('on_train_end', last, best, plots, epoch, results)
-
-    torch.cuda.empty_cache()
-    return results
-
-
-def parse_opt(known=False):
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
-    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
-    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
-    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
-    parser.add_argument('--epochs', type=int, default=300)
-    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
-    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
-    parser.add_argument('--rect', action='store_true', help='rectangular training')
-    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
-    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
-    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
-    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
-    parser.add_argument('--noplots', action='store_true', help='save no plot files')
-    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
-    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
-    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
-    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
-    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
-    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
-    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
-    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
-    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
-    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
-    parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
-    parser.add_argument('--name', default='exp', help='save to project/name')
-    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
-    parser.add_argument('--quad', action='store_true', help='quad dataloader')
-    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
-    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
-    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
-    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
-    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
-    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
-    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
-
-    # Weights & Biases arguments
-    parser.add_argument('--entity', default=None, help='W&B: Entity')
-    parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
-    parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
-    parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
-
-    return parser.parse_known_args()[0] if known else parser.parse_args()
-
-
-def main(opt, callbacks=Callbacks()):
-    # Checks
-    if RANK in {-1, 0}:
-        print_args(vars(opt))
-        check_git_status()
-        check_requirements()
-
-    # Resume
-    if opt.resume and not (check_wandb_resume(opt) or opt.evolve):  # resume from specified or most recent last.pt
-        last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
-        opt_yaml = last.parent.parent / 'opt.yaml'  # train options yaml
-        opt_data = opt.data  # original dataset
-        if opt_yaml.is_file():
-            with open(opt_yaml, errors='ignore') as f:
-                d = yaml.safe_load(f)
-        else:
-            d = torch.load(last, map_location='cpu')['opt']
-        opt = argparse.Namespace(**d)  # replace
-        opt.cfg, opt.weights, opt.resume = '', str(last), True  # reinstate
-        if is_url(opt_data):
-            opt.data = check_file(opt_data)  # avoid HUB resume auth timeout
-    else:
-        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
-            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
-        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
-        if opt.evolve:
-            if opt.project == str(ROOT / 'runs/train'):  # if default project name, rename to runs/evolve
-                opt.project = str(ROOT / 'runs/evolve')
-            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
-        if opt.name == 'cfg':
-            opt.name = Path(opt.cfg).stem  # use model.yaml as name
-        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
-
-    # DDP mode
-    device = select_device(opt.device, batch_size=opt.batch_size)
-    if LOCAL_RANK != -1:
-        msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
-        assert not opt.image_weights, f'--image-weights {msg}'
-        assert not opt.evolve, f'--evolve {msg}'
-        assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
-        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
-        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
-        torch.cuda.set_device(LOCAL_RANK)
-        device = torch.device('cuda', LOCAL_RANK)
-        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
-
-    # Train
-    if not opt.evolve:
-        train(opt.hyp, opt, device, callbacks)
-
-    # Evolve hyperparameters (optional)
-    else:
-        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
-        meta = {
-            'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
-            'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
-            'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
-            'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
-            'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
-            'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
-            'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
-            'box': (1, 0.02, 0.2),  # box loss gain
-            'cls': (1, 0.2, 4.0),  # cls loss gain
-            'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
-            'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
-            'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
-            'iou_t': (0, 0.1, 0.7),  # IoU training threshold
-            'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
-            'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
-            'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
-            'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
-            'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
-            'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
-            'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
-            'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
-            'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
-            'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
-            'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
-            'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
-            'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
-            'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
-            'mixup': (1, 0.0, 1.0),  # image mixup (probability)
-            'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability)
-
-        with open(opt.hyp, errors='ignore') as f:
-            hyp = yaml.safe_load(f)  # load hyps dict
-            if 'anchors' not in hyp:  # anchors commented in hyp.yaml
-                hyp['anchors'] = 3
-        if opt.noautoanchor:
-            del hyp['anchors'], meta['anchors']
-        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
-        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
-        evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
-        if opt.bucket:
-            os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}')  # download evolve.csv if exists
-
-        for _ in range(opt.evolve):  # generations to evolve
-            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate
-                # Select parent(s)
-                parent = 'single'  # parent selection method: 'single' or 'weighted'
-                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
-                n = min(5, len(x))  # number of previous results to consider
-                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
-                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
-                if parent == 'single' or len(x) == 1:
-                    # x = x[random.randint(0, n - 1)]  # random selection
-                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
-                elif parent == 'weighted':
-                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination
-
-                # Mutate
-                mp, s = 0.8, 0.2  # mutation probability, sigma
-                npr = np.random
-                npr.seed(int(time.time()))
-                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
-                ng = len(meta)
-                v = np.ones(ng)
-                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
-                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
-                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
-                    hyp[k] = float(x[i + 7] * v[i])  # mutate
-
-            # Constrain to limits
-            for k, v in meta.items():
-                hyp[k] = max(hyp[k], v[1])  # lower limit
-                hyp[k] = min(hyp[k], v[2])  # upper limit
-                hyp[k] = round(hyp[k], 5)  # significant digits
-
-            # Train mutation
-            results = train(hyp.copy(), opt, device, callbacks)
-            callbacks = Callbacks()
-            # Write mutation results
-            print_mutation(results, hyp.copy(), save_dir, opt.bucket)
-
-        # Plot results
-        plot_evolve(evolve_csv)
-        LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
-                    f"Results saved to {colorstr('bold', save_dir)}\n"
-                    f'Usage example: $ python train.py --hyp {evolve_yaml}')
-
-
-def run(**kwargs):
-    # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
-    opt = parse_opt(True)
-    for k, v in kwargs.items():
-        setattr(opt, k, v)
-    main(opt)
-    return opt
-
-
-if __name__ == "__main__":
-    opt = parse_opt()
-    main(opt)
diff --git a/yolov5-6.2/tutorial.ipynb b/yolov5-6.2/tutorial.ipynb
deleted file mode 100644
index 61641bab..00000000
--- a/yolov5-6.2/tutorial.ipynb
+++ /dev/null
@@ -1,1141 +0,0 @@
-{
-  "nbformat": 4,
-  "nbformat_minor": 0,
-  "metadata": {
-    "colab": {
-      "name": "YOLOv5 Tutorial",
-      "provenance": [],
-      "collapsed_sections": [],
-      "machine_shape": "hm",
-      "toc_visible": true,
-      "include_colab_link": true
-    },
-    "kernelspec": {
-      "name": "python3",
-      "display_name": "Python 3"
-    },
-    "accelerator": "GPU",
-    "widgets": {
-      "application/vnd.jupyter.widget-state+json": {
-        "c31d2039ccf74c22b67841f4877d1186": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_d4bba1727c714d94ad58a72bffa07c4c",
-              "IPY_MODEL_9aeff9f1780b45f892422fdc96e56913",
-              "IPY_MODEL_bf55a7c71d074d3fa88b10b997820825"
-            ],
-            "layout": "IPY_MODEL_d8b66044e2fb4f5b916696834d880c81"
-          }
-        },
-        "d4bba1727c714d94ad58a72bffa07c4c": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_102e1deda239436fa72751c58202fa0f",
-            "placeholder": "​",
-            "style": "IPY_MODEL_4fd4431ced6c42368e18424912b877e4",
-            "value": "100%"
-          }
-        },
-        "9aeff9f1780b45f892422fdc96e56913": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_cdd709c4f40941bea1b2053523c9fac8",
-            "max": 818322941,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_a1ef2d8de2b741c78ca5d938e2ddbcdf",
-            "value": 818322941
-          }
-        },
-        "bf55a7c71d074d3fa88b10b997820825": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_0dbce99bb6184238842cbec0587d564a",
-            "placeholder": "​",
-            "style": "IPY_MODEL_91ff5f93f2a24c5790ab29e347965946",
-            "value": " 780M/780M [01:10&lt;00:00, 10.5MB/s]"
-          }
-        },
-        "d8b66044e2fb4f5b916696834d880c81": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "102e1deda239436fa72751c58202fa0f": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "4fd4431ced6c42368e18424912b877e4": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "cdd709c4f40941bea1b2053523c9fac8": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "a1ef2d8de2b741c78ca5d938e2ddbcdf": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "0dbce99bb6184238842cbec0587d564a": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "91ff5f93f2a24c5790ab29e347965946": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        }
-      }
-    }
-  },
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "view-in-github",
-        "colab_type": "text"
-      },
-      "source": [
-        "<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "t6MPjfT5NrKQ"
-      },
-      "source": [
-        "<a align=\"left\" href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
-        "<img width=\"1024\", src=\"https://user-images.githubusercontent.com/26833433/125273437-35b3fc00-e30d-11eb-9079-46f313325424.png\"></a>\n",
-        "\n",
-        "This is the **official YOLOv5 🚀 notebook** by **Ultralytics**, and is freely available for redistribution under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/). \n",
-        "For more information please visit https://github.com/ultralytics/yolov5 and https://ultralytics.com. Thank you!"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "7mGmQbAO5pQb"
-      },
-      "source": [
-        "# Setup\n",
-        "\n",
-        "Clone repo, install dependencies and check PyTorch and GPU."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "wbvMlHd_QwMG",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "185d0979-edcd-4860-e6fb-b8a27dbf5096"
-      },
-      "source": [
-        "!git clone https://github.com/ultralytics/yolov5  # clone\n",
-        "%cd yolov5\n",
-        "%pip install -qr requirements.txt  # install\n",
-        "\n",
-        "import torch\n",
-        "import utils\n",
-        "display = utils.notebook_init()  # checks"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "YOLOv5 🚀 v6.1-370-g20f1b7e Python-3.7.13 torch-1.12.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Setup complete ✅ (8 CPUs, 51.0 GB RAM, 37.4/166.8 GB disk)\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "4JnkELT0cIJg"
-      },
-      "source": [
-        "# 1. Inference\n",
-        "\n",
-        "`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n",
-        "\n",
-        "```shell\n",
-        "python detect.py --source 0  # webcam\n",
-        "                          img.jpg  # image \n",
-        "                          vid.mp4  # video\n",
-        "                          path/  # directory\n",
-        "                          'path/*.jpg'  # glob\n",
-        "                          'https://youtu.be/Zgi9g1ksQHc'  # YouTube\n",
-        "                          'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
-        "```"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "zR9ZbuQCH7FX",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "4b13989f-32a4-4ef0-b403-06ff3aac255c"
-      },
-      "source": [
-        "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
-        "#display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
-            "YOLOv5 🚀 v6.1-370-g20f1b7e Python-3.7.13 torch-1.12.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
-            "\n",
-            "Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt to yolov5s.pt...\n",
-            "100% 14.1M/14.1M [00:00<00:00, 53.9MB/s]\n",
-            "\n",
-            "Fusing layers... \n",
-            "YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
-            "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.016s)\n",
-            "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.021s)\n",
-            "Speed: 0.6ms pre-process, 18.6ms inference, 25.0ms NMS per image at shape (1, 3, 640, 640)\n",
-            "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "hkAzDWJ7cWTr"
-      },
-      "source": [
-        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
-        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "0eq1SMWl6Sfn"
-      },
-      "source": [
-        "# 2. Validate\n",
-        "Validate a model's accuracy on [COCO](https://cocodataset.org/#home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag. Note that `pycocotools` metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation."
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "eyTZYGgRjnMc"
-      },
-      "source": [
-        "## COCO val\n",
-        "Download [COCO val 2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L14) dataset (1GB - 5000 images), and test model accuracy."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "WQPtK1QYVaD_",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 49,
-          "referenced_widgets": [
-            "c31d2039ccf74c22b67841f4877d1186",
-            "d4bba1727c714d94ad58a72bffa07c4c",
-            "9aeff9f1780b45f892422fdc96e56913",
-            "bf55a7c71d074d3fa88b10b997820825",
-            "d8b66044e2fb4f5b916696834d880c81",
-            "102e1deda239436fa72751c58202fa0f",
-            "4fd4431ced6c42368e18424912b877e4",
-            "cdd709c4f40941bea1b2053523c9fac8",
-            "a1ef2d8de2b741c78ca5d938e2ddbcdf",
-            "0dbce99bb6184238842cbec0587d564a",
-            "91ff5f93f2a24c5790ab29e347965946"
-          ]
-        },
-        "outputId": "a9004b06-37a6-41ed-a1f2-ac956f3963b3"
-      },
-      "source": [
-        "# Download COCO val\n",
-        "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n",
-        "!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "  0%|          | 0.00/780M [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "c31d2039ccf74c22b67841f4877d1186"
-            }
-          },
-          "metadata": {}
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "X58w8JLpMnjH",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "c0f29758-4ec8-4def-893d-0efd6ed5b7f4"
-      },
-      "source": [
-        "# Run YOLOv5x on COCO val\n",
-        "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
-            "YOLOv5 🚀 v6.1-370-g20f1b7e Python-3.7.13 torch-1.12.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
-            "\n",
-            "Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt to yolov5x.pt...\n",
-            "100% 166M/166M [00:35<00:00, 4.97MB/s]\n",
-            "\n",
-            "Fusing layers... \n",
-            "YOLOv5x summary: 444 layers, 86705005 parameters, 0 gradients\n",
-            "Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n",
-            "100% 755k/755k [00:00<00:00, 49.4MB/s]\n",
-            "\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00, 10716.86it/s]\n",
-            "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
-            "               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [01:08<00:00,  2.28it/s]\n",
-            "                 all       5000      36335      0.743      0.625      0.683      0.504\n",
-            "Speed: 0.1ms pre-process, 4.6ms inference, 1.2ms NMS per image at shape (32, 3, 640, 640)\n",
-            "\n",
-            "Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
-            "loading annotations into memory...\n",
-            "Done (t=0.41s)\n",
-            "creating index...\n",
-            "index created!\n",
-            "Loading and preparing results...\n",
-            "DONE (t=5.64s)\n",
-            "creating index...\n",
-            "index created!\n",
-            "Running per image evaluation...\n",
-            "Evaluate annotation type *bbox*\n",
-            "DONE (t=72.86s).\n",
-            "Accumulating evaluation results...\n",
-            "DONE (t=14.20s).\n",
-            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.506\n",
-            " Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.688\n",
-            " Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.549\n",
-            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.340\n",
-            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.558\n",
-            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.651\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.382\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.631\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.684\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.528\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.737\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833\n",
-            "Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "rc_KbFk0juX2"
-      },
-      "source": [
-        "## COCO test\n",
-        "Download [COCO test2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L15) dataset (7GB - 40,000 images), to test model accuracy on test-dev set (**20,000 images, no labels**). Results are saved to a `*.json` file which should be **zipped** and submitted to the evaluation server at https://competitions.codalab.org/competitions/20794."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "V0AJnSeCIHyJ"
-      },
-      "source": [
-        "# Download COCO test-dev2017\n",
-        "!bash data/scripts/get_coco.sh --test"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "29GJXAP_lPrt"
-      },
-      "source": [
-        "# Run YOLOv5x on COCO test\n",
-        "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half --task test"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "ZY2VXXXu74w5"
-      },
-      "source": [
-        "# 3. Train\n",
-        "\n",
-        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png\"/></a></p>\n",
-        "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
-        "<br><br>\n",
-        "\n",
-        "Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
-        "\n",
-        "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
-        "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
-        "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
-        "- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
-        "<br><br>\n",
-        "\n",
-        "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
-        "\n",
-        "## Train on Custom Data with Roboflow 🌟 NEW\n",
-        "\n",
-        "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
-        "\n",
-        "- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n",
-        "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n",
-        "<br>\n",
-        "\n",
-        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/6152a275ad4b4ac20cd2e21a_roboflow-annotate.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "bOy5KI2ncnWd"
-      },
-      "source": [
-        "# Tensorboard  (optional)\n",
-        "%load_ext tensorboard\n",
-        "%tensorboard --logdir runs/train"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# ClearML  (optional)\n",
-        "%pip install -q clearml\n",
-        "!clearml-init"
-      ],
-      "metadata": {
-        "id": "DQhI6vvaRWjR"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "2fLAV42oNb7M"
-      },
-      "source": [
-        "# Weights & Biases  (optional)\n",
-        "%pip install -q wandb\n",
-        "import wandb\n",
-        "wandb.login()"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "1NcFxRcFdJ_O",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "bce1b4bd-1a14-4c07-aebd-6c11e91ad24b"
-      },
-      "source": [
-        "# Train YOLOv5s on COCO128 for 3 epochs\n",
-        "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
-            "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
-            "YOLOv5 🚀 v6.1-370-g20f1b7e Python-3.7.13 torch-1.12.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
-            "\n",
-            "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
-            "\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases\n",
-            "\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 runs in ClearML\n",
-            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
-            "\n",
-            "Dataset not found ⚠️, missing paths ['/content/datasets/coco128/images/train2017']\n",
-            "Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n",
-            "100% 6.66M/6.66M [00:00<00:00, 75.2MB/s]\n",
-            "Dataset download success ✅ (0.7s), saved to \u001b[1m/content/datasets\u001b[0m\n",
-            "\n",
-            "                 from  n    params  module                                  arguments                     \n",
-            "  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              \n",
-            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
-            "  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   \n",
-            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
-            "  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 \n",
-            "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
-            "  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 \n",
-            "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
-            "  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 \n",
-            "  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 \n",
-            " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
-            " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
-            " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
-            " 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          \n",
-            " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
-            " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
-            " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
-            " 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          \n",
-            " 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
-            " 19          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
-            " 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          \n",
-            " 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
-            " 22          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
-            " 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          \n",
-            " 24      [17, 20, 23]  1    229245  models.yolo.Detect                      [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
-            "Model summary: 270 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs\n",
-            "\n",
-            "Transferred 349/349 items from yolov5s.pt\n",
-            "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
-            "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n",
-            "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(always_apply=False, p=0.01, blur_limit=(3, 7)), MedianBlur(always_apply=False, p=0.01, blur_limit=(3, 7)), ToGray(always_apply=False, p=0.01), CLAHE(always_apply=False, p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<00:00, 7926.40it/s]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 975.81it/s]\n",
-            "\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
-            "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 258.62it/s]\n",
-            "Plotting labels to runs/train/exp/labels.jpg... \n",
-            "\n",
-            "\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
-            "Image sizes 640 train, 640 val\n",
-            "Using 8 dataloader workers\n",
-            "Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
-            "Starting training for 3 epochs...\n",
-            "\n",
-            "     Epoch   gpu_mem       box       obj       cls    labels  img_size\n",
-            "       0/2     3.76G   0.04529   0.06712   0.01835       323       640: 100% 8/8 [00:05<00:00,  1.59it/s]\n",
-            "               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00,  4.05it/s]\n",
-            "                 all        128        929      0.806      0.593      0.718      0.472\n",
-            "\n",
-            "     Epoch   gpu_mem       box       obj       cls    labels  img_size\n",
-            "       1/2     4.79G   0.04244   0.06423   0.01611       236       640: 100% 8/8 [00:00<00:00,  8.11it/s]\n",
-            "               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00,  4.20it/s]\n",
-            "                 all        128        929      0.811      0.615       0.74      0.493\n",
-            "\n",
-            "     Epoch   gpu_mem       box       obj       cls    labels  img_size\n",
-            "       2/2     4.79G   0.04695   0.06875    0.0173       189       640: 100% 8/8 [00:00<00:00,  9.12it/s]\n",
-            "               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00,  4.24it/s]\n",
-            "                 all        128        929      0.784      0.634      0.747      0.502\n",
-            "\n",
-            "3 epochs completed in 0.003 hours.\n",
-            "Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
-            "Optimizer stripped from runs/train/exp/weights/best.pt, 14.9MB\n",
-            "\n",
-            "Validating runs/train/exp/weights/best.pt...\n",
-            "Fusing layers... \n",
-            "Model summary: 213 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs\n",
-            "               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00,  1.20it/s]\n",
-            "                 all        128        929      0.781      0.637      0.747      0.502\n",
-            "              person        128        254      0.872      0.693       0.81      0.534\n",
-            "             bicycle        128          6          1      0.407       0.68      0.425\n",
-            "                 car        128         46      0.743      0.413      0.581      0.247\n",
-            "          motorcycle        128          5          1      0.988      0.995      0.692\n",
-            "            airplane        128          6      0.965          1      0.995      0.717\n",
-            "                 bus        128          7      0.706      0.714      0.814      0.697\n",
-            "               train        128          3          1      0.582      0.806      0.477\n",
-            "               truck        128         12      0.602      0.417      0.495      0.271\n",
-            "                boat        128          6      0.961      0.333      0.464      0.224\n",
-            "       traffic light        128         14      0.517      0.155      0.364      0.216\n",
-            "           stop sign        128          2      0.782          1      0.995      0.821\n",
-            "               bench        128          9      0.829      0.539      0.701      0.288\n",
-            "                bird        128         16      0.924          1      0.995      0.655\n",
-            "                 cat        128          4      0.891          1      0.995      0.809\n",
-            "                 dog        128          9          1      0.659      0.883      0.604\n",
-            "               horse        128          2      0.808          1      0.995      0.672\n",
-            "            elephant        128         17      0.973      0.882      0.936      0.733\n",
-            "                bear        128          1      0.692          1      0.995      0.995\n",
-            "               zebra        128          4      0.872          1      0.995      0.922\n",
-            "             giraffe        128          9      0.865      0.889      0.975      0.736\n",
-            "            backpack        128          6          1      0.547      0.787      0.372\n",
-            "            umbrella        128         18      0.823      0.667      0.889      0.504\n",
-            "             handbag        128         19      0.516      0.105      0.304      0.153\n",
-            "                 tie        128          7      0.696      0.714      0.741      0.482\n",
-            "            suitcase        128          4      0.716          1      0.995      0.553\n",
-            "             frisbee        128          5      0.715        0.8        0.8       0.71\n",
-            "                skis        128          1      0.694          1      0.995      0.398\n",
-            "           snowboard        128          7      0.893      0.714      0.855      0.569\n",
-            "         sports ball        128          6      0.659      0.667      0.602      0.307\n",
-            "                kite        128         10      0.683      0.434      0.611      0.242\n",
-            "        baseball bat        128          4      0.838        0.5       0.55      0.146\n",
-            "      baseball glove        128          7      0.572      0.429      0.463      0.294\n",
-            "          skateboard        128          5      0.697        0.6      0.702      0.476\n",
-            "       tennis racket        128          7       0.62      0.429      0.544       0.29\n",
-            "              bottle        128         18      0.591      0.402      0.572      0.295\n",
-            "          wine glass        128         16      0.747      0.921      0.913      0.529\n",
-            "                 cup        128         36      0.824      0.639      0.826      0.535\n",
-            "                fork        128          6          1      0.319      0.518      0.353\n",
-            "               knife        128         16      0.768       0.62      0.654      0.374\n",
-            "               spoon        128         22      0.824      0.427       0.65      0.382\n",
-            "                bowl        128         28        0.8      0.643      0.726      0.525\n",
-            "              banana        128          1      0.878          1      0.995      0.208\n",
-            "            sandwich        128          2          1          0       0.62      0.546\n",
-            "              orange        128          4          1      0.896      0.995      0.691\n",
-            "            broccoli        128         11      0.586      0.364      0.481      0.349\n",
-            "              carrot        128         24      0.702      0.589      0.722      0.475\n",
-            "             hot dog        128          2      0.524          1      0.828      0.795\n",
-            "               pizza        128          5      0.811      0.865      0.962      0.695\n",
-            "               donut        128         14      0.653          1      0.964      0.853\n",
-            "                cake        128          4      0.852          1      0.995      0.822\n",
-            "               chair        128         35      0.536      0.571      0.593       0.31\n",
-            "               couch        128          6          1       0.63       0.75      0.518\n",
-            "        potted plant        128         14      0.775      0.738      0.839      0.478\n",
-            "                 bed        128          3          1          0       0.72      0.423\n",
-            "        dining table        128         13      0.817      0.348      0.592      0.381\n",
-            "              toilet        128          2      0.782          1      0.995      0.895\n",
-            "                  tv        128          2      0.711          1      0.995      0.821\n",
-            "              laptop        128          3          1          0      0.789       0.42\n",
-            "               mouse        128          2          1          0     0.0798     0.0399\n",
-            "              remote        128          8          1      0.611       0.63      0.549\n",
-            "          cell phone        128          8      0.685      0.375      0.428      0.245\n",
-            "           microwave        128          3      0.803          1      0.995      0.767\n",
-            "                oven        128          5       0.42        0.4      0.444      0.306\n",
-            "                sink        128          6      0.288      0.167       0.34      0.247\n",
-            "        refrigerator        128          5      0.632        0.8      0.805      0.572\n",
-            "                book        128         29      0.494      0.207      0.332      0.161\n",
-            "               clock        128          9      0.791      0.889       0.93       0.75\n",
-            "                vase        128          2      0.355          1      0.995      0.895\n",
-            "            scissors        128          1          1          0      0.332     0.0663\n",
-            "          teddy bear        128         21      0.839      0.571      0.767      0.487\n",
-            "          toothbrush        128          5      0.829      0.974      0.962      0.644\n",
-            "Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "15glLzbQx5u0"
-      },
-      "source": [
-        "# 4. Visualize"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## ClearML Logging and Automation 🌟 NEW\n",
-        "\n",
-        "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
-        "\n",
-        "- `pip install clearml`\n",
-        "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
-        "\n",
-        "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
-        "\n",
-        "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for details!\n",
-        "\n",
-        "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
-        "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
-      ],
-      "metadata": {
-        "id": "Lay2WsTjNJzP"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "DLI1JmHU7B0l"
-      },
-      "source": [
-        "## Weights & Biases Logging\n",
-        "\n",
-        "[Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_notebook) (W&B) is integrated with YOLOv5 for real-time visualization and cloud logging of training runs. This allows for better run comparison and introspection, as well improved visibility and collaboration for teams. To enable W&B `pip install wandb`, and then train normally (you will be guided through setup on first use). \n",
-        "\n",
-        "During training you will see live updates at [https://wandb.ai/home](https://wandb.ai/home?utm_campaign=repo_yolo_notebook), and you can create and share detailed [Reports](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY) of your results. For more information see the [YOLOv5 Weights & Biases Tutorial](https://github.com/ultralytics/yolov5/issues/1289).  \n",
-        "\n",
-        "<a href=\"https://wandb.ai/glenn-jocher/yolov5_tutorial\">\n",
-        "<img alt=\"Weights & Biases dashboard\" src=\"https://user-images.githubusercontent.com/26833433/182482859-288a9622-4661-48db-99de-650d1dead5c6.jpg\" width=\"1280\"/></a>"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "-WPvRbS5Swl6"
-      },
-      "source": [
-        "## Local Logging\n",
-        "\n",
-        "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
-        "\n",
-        "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
-        "\n",
-        "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "Zelyeqbyt3GD"
-      },
-      "source": [
-        "# Environments\n",
-        "\n",
-        "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
-        "\n",
-        "- **Google Colab and Kaggle** notebooks with free GPU: <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
-        "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
-        "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
-        "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "6Qu7Iesl0p54"
-      },
-      "source": [
-        "# Status\n",
-        "\n",
-        "![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)\n",
-        "\n",
-        "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "IEijrePND_2I"
-      },
-      "source": [
-        "# Appendix\n",
-        "\n",
-        "Additional content below for PyTorch Hub, CI, reproducing results, profiling speeds, VOC training, classification training and TensorRT example."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "GMusP4OAxFu6"
-      },
-      "source": [
-        "import torch\n",
-        "\n",
-        "# PyTorch Hub Model\n",
-        "model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5n - yolov5x6, custom\n",
-        "\n",
-        "# Images\n",
-        "img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list\n",
-        "\n",
-        "# Inference\n",
-        "results = model(img)\n",
-        "\n",
-        "# Results\n",
-        "results.print()  # or .show(), .save(), .crop(), .pandas(), etc."
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "FGH0ZjkGjejy"
-      },
-      "source": [
-        "# YOLOv5 CI\n",
-        "%%shell\n",
-        "rm -rf runs  # remove runs/\n",
-        "m=yolov5n  # official weights\n",
-        "b=runs/train/exp/weights/best  # best.pt checkpoint\n",
-        "python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device 0  # train\n",
-        "for d in 0 cpu; do  # devices\n",
-        "  for w in $m $b; do  # weights\n",
-        "    python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d  # val\n",
-        "    python detect.py --imgsz 64 --weights $w.pt --device $d  # detect\n",
-        "  done\n",
-        "done\n",
-        "python hubconf.py --model $m  # hub\n",
-        "python models/tf.py --weights $m.pt  # build TF model\n",
-        "python models/yolo.py --cfg $m.yaml  # build PyTorch model\n",
-        "python export.py --weights $m.pt --img 64 --include torchscript  # export"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "mcKoSIK2WSzj"
-      },
-      "source": [
-        "# Reproduce\n",
-        "for x in (f'yolov5{x}' for x in 'nsmlx'):\n",
-        "  !python val.py --weights {x}.pt --data coco.yaml --img 640 --task speed  # speed\n",
-        "  !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.001 --iou 0.65  # mAP"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "gogI-kwi3Tye"
-      },
-      "source": [
-        "# Profile\n",
-        "from utils.torch_utils import profile\n",
-        "\n",
-        "m1 = lambda x: x * torch.sigmoid(x)\n",
-        "m2 = torch.nn.SiLU()\n",
-        "results = profile(input=torch.randn(16, 3, 640, 640), ops=[m1, m2], n=100)"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "BSgFCAcMbk1R"
-      },
-      "source": [
-        "# VOC\n",
-        "for b, m in zip([64, 64, 64, 32, 16], [f'yolov5{x}' for x in 'nsmlx']):  # batch, model\n",
-        "  !python train.py --batch {b} --weights {m}.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.VOC.yaml --project VOC --name {m} --cache"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Classification\n",
-        "for m in [*(f'yolov5{x}.pt' for x in 'nsmlx'), 'resnet50.pt', 'efficientnet_b0.pt']:\n",
-        "  for d in 'mnist', 'fashion-mnist', 'cifar10', 'cifar100', 'imagenette160', 'imagenette320', 'imagenette', 'imagewoof160', 'imagewoof320', 'imagewoof':\n",
-        "    !python classify/train.py --model {m} --data {d} --epochs 10 --project YOLOv5-cls --name {m}-{d}"
-      ],
-      "metadata": {
-        "id": "UWGH7H6yakVl"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "VTRwsvA9u7ln"
-      },
-      "source": [
-        "# TensorRT \n",
-        "!pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com  # install\n",
-        "!python export.py --weights yolov5s.pt --include engine --imgsz 640 --device 0  # export\n",
-        "!python detect.py --weights yolov5s.engine --imgsz 640 --device 0  # inference"
-      ],
-      "execution_count": null,
-      "outputs": []
-    }
-  ]
-}
\ No newline at end of file
diff --git a/yolov5-6.2/utils/__init__.py b/yolov5-6.2/utils/__init__.py
deleted file mode 100644
index da53a4d2..00000000
--- a/yolov5-6.2/utils/__init__.py
+++ /dev/null
@@ -1,36 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-utils/initialization
-"""
-
-
-def notebook_init(verbose=True):
-    # Check system software and hardware
-    print('Checking setup...')
-
-    import os
-    import shutil
-
-    from utils.general import check_requirements, emojis, is_colab
-    from utils.torch_utils import select_device  # imports
-
-    check_requirements(('psutil', 'IPython'))
-    import psutil
-    from IPython import display  # to display images and clear console output
-
-    if is_colab():
-        shutil.rmtree('/content/sample_data', ignore_errors=True)  # remove colab /sample_data directory
-
-    # System info
-    if verbose:
-        gb = 1 << 30  # bytes to GiB (1024 ** 3)
-        ram = psutil.virtual_memory().total
-        total, used, free = shutil.disk_usage("/")
-        display.clear_output()
-        s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
-    else:
-        s = ''
-
-    select_device(newline=False)
-    print(emojis(f'Setup complete ✅ {s}'))
-    return display
diff --git a/yolov5-6.2/utils/activations.py b/yolov5-6.2/utils/activations.py
deleted file mode 100644
index 084ce8c4..00000000
--- a/yolov5-6.2/utils/activations.py
+++ /dev/null
@@ -1,103 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Activation functions
-"""
-
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-
-
-class SiLU(nn.Module):
-    # SiLU activation https://arxiv.org/pdf/1606.08415.pdf
-    @staticmethod
-    def forward(x):
-        return x * torch.sigmoid(x)
-
-
-class Hardswish(nn.Module):
-    # Hard-SiLU activation
-    @staticmethod
-    def forward(x):
-        # return x * F.hardsigmoid(x)  # for TorchScript and CoreML
-        return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0  # for TorchScript, CoreML and ONNX
-
-
-class Mish(nn.Module):
-    # Mish activation https://github.com/digantamisra98/Mish
-    @staticmethod
-    def forward(x):
-        return x * F.softplus(x).tanh()
-
-
-class MemoryEfficientMish(nn.Module):
-    # Mish activation memory-efficient
-    class F(torch.autograd.Function):
-
-        @staticmethod
-        def forward(ctx, x):
-            ctx.save_for_backward(x)
-            return x.mul(torch.tanh(F.softplus(x)))  # x * tanh(ln(1 + exp(x)))
-
-        @staticmethod
-        def backward(ctx, grad_output):
-            x = ctx.saved_tensors[0]
-            sx = torch.sigmoid(x)
-            fx = F.softplus(x).tanh()
-            return grad_output * (fx + x * sx * (1 - fx * fx))
-
-    def forward(self, x):
-        return self.F.apply(x)
-
-
-class FReLU(nn.Module):
-    # FReLU activation https://arxiv.org/abs/2007.11824
-    def __init__(self, c1, k=3):  # ch_in, kernel
-        super().__init__()
-        self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
-        self.bn = nn.BatchNorm2d(c1)
-
-    def forward(self, x):
-        return torch.max(x, self.bn(self.conv(x)))
-
-
-class AconC(nn.Module):
-    r""" ACON activation (activate or not)
-    AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
-    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
-    """
-
-    def __init__(self, c1):
-        super().__init__()
-        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
-        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
-        self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
-
-    def forward(self, x):
-        dpx = (self.p1 - self.p2) * x
-        return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
-
-
-class MetaAconC(nn.Module):
-    r""" ACON activation (activate or not)
-    MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
-    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
-    """
-
-    def __init__(self, c1, k=1, s=1, r=16):  # ch_in, kernel, stride, r
-        super().__init__()
-        c2 = max(r, c1 // r)
-        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
-        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
-        self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
-        self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
-        # self.bn1 = nn.BatchNorm2d(c2)
-        # self.bn2 = nn.BatchNorm2d(c1)
-
-    def forward(self, x):
-        y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
-        # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
-        # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))  # bug/unstable
-        beta = torch.sigmoid(self.fc2(self.fc1(y)))  # bug patch BN layers removed
-        dpx = (self.p1 - self.p2) * x
-        return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
diff --git a/yolov5-6.2/utils/augmentations.py b/yolov5-6.2/utils/augmentations.py
deleted file mode 100644
index 498776a6..00000000
--- a/yolov5-6.2/utils/augmentations.py
+++ /dev/null
@@ -1,348 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Image augmentation functions
-"""
-
-import math
-import random
-
-import cv2
-import numpy as np
-import torchvision.transforms as T
-import torchvision.transforms.functional as TF
-
-from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box
-from utils.metrics import bbox_ioa
-
-IMAGENET_MEAN = 0.485, 0.456, 0.406  # RGB mean
-IMAGENET_STD = 0.229, 0.224, 0.225  # RGB standard deviation
-
-
-class Albumentations:
-    # YOLOv5 Albumentations class (optional, only used if package is installed)
-    def __init__(self):
-        self.transform = None
-        prefix = colorstr('albumentations: ')
-        try:
-            import albumentations as A
-            check_version(A.__version__, '1.0.3', hard=True)  # version requirement
-
-            T = [
-                A.Blur(p=0.01),
-                A.MedianBlur(p=0.01),
-                A.ToGray(p=0.01),
-                A.CLAHE(p=0.01),
-                A.RandomBrightnessContrast(p=0.0),
-                A.RandomGamma(p=0.0),
-                A.ImageCompression(quality_lower=75, p=0.0)]  # transforms
-            self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
-
-            LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
-        except ImportError:  # package not installed, skip
-            pass
-        except Exception as e:
-            LOGGER.info(f'{prefix}{e}')
-
-    def __call__(self, im, labels, p=1.0):
-        if self.transform and random.random() < p:
-            new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0])  # transformed
-            im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
-        return im, labels
-
-
-def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
-    # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std
-    return TF.normalize(x, mean, std, inplace=inplace)
-
-
-def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
-    # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean
-    for i in range(3):
-        x[:, i] = x[:, i] * std[i] + mean[i]
-    return x
-
-
-def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
-    # HSV color-space augmentation
-    if hgain or sgain or vgain:
-        r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
-        hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
-        dtype = im.dtype  # uint8
-
-        x = np.arange(0, 256, dtype=r.dtype)
-        lut_hue = ((x * r[0]) % 180).astype(dtype)
-        lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
-        lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
-
-        im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
-        cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im)  # no return needed
-
-
-def hist_equalize(im, clahe=True, bgr=False):
-    # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
-    yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
-    if clahe:
-        c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
-        yuv[:, :, 0] = c.apply(yuv[:, :, 0])
-    else:
-        yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0])  # equalize Y channel histogram
-    return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB)  # convert YUV image to RGB
-
-
-def replicate(im, labels):
-    # Replicate labels
-    h, w = im.shape[:2]
-    boxes = labels[:, 1:].astype(int)
-    x1, y1, x2, y2 = boxes.T
-    s = ((x2 - x1) + (y2 - y1)) / 2  # side length (pixels)
-    for i in s.argsort()[:round(s.size * 0.5)]:  # smallest indices
-        x1b, y1b, x2b, y2b = boxes[i]
-        bh, bw = y2b - y1b, x2b - x1b
-        yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw))  # offset x, y
-        x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
-        im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b]  # im4[ymin:ymax, xmin:xmax]
-        labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
-
-    return im, labels
-
-
-def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
-    # Resize and pad image while meeting stride-multiple constraints
-    shape = im.shape[:2]  # current shape [height, width]
-    if isinstance(new_shape, int):
-        new_shape = (new_shape, new_shape)
-
-    # Scale ratio (new / old)
-    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
-    if not scaleup:  # only scale down, do not scale up (for better val mAP)
-        r = min(r, 1.0)
-
-    # Compute padding
-    ratio = r, r  # width, height ratios
-    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
-    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
-    if auto:  # minimum rectangle
-        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
-    elif scaleFill:  # stretch
-        dw, dh = 0.0, 0.0
-        new_unpad = (new_shape[1], new_shape[0])
-        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios
-
-    dw /= 2  # divide padding into 2 sides
-    dh /= 2
-
-    if shape[::-1] != new_unpad:  # resize
-        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
-    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
-    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
-    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
-    return (im, ratio, (dw, dh))
-
-
-def random_perspective(im,
-                       targets=(),
-                       segments=(),
-                       degrees=10,
-                       translate=.1,
-                       scale=.1,
-                       shear=10,
-                       perspective=0.0,
-                       border=(0, 0)):
-    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
-    # targets = [cls, xyxy]
-
-    height = im.shape[0] + border[0] * 2  # shape(h,w,c)
-    width = im.shape[1] + border[1] * 2
-
-    # Center
-    C = np.eye(3)
-    C[0, 2] = -im.shape[1] / 2  # x translation (pixels)
-    C[1, 2] = -im.shape[0] / 2  # y translation (pixels)
-
-    # Perspective
-    P = np.eye(3)
-    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
-    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)
-
-    # Rotation and Scale
-    R = np.eye(3)
-    a = random.uniform(-degrees, degrees)
-    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
-    s = random.uniform(1 - scale, 1 + scale)
-    # s = 2 ** random.uniform(-scale, scale)
-    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
-
-    # Shear
-    S = np.eye(3)
-    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
-    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)
-
-    # Translation
-    T = np.eye(3)
-    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
-    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)
-
-    # Combined rotation matrix
-    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
-    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
-        if perspective:
-            im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
-        else:  # affine
-            im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
-
-    # Visualize
-    # import matplotlib.pyplot as plt
-    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
-    # ax[0].imshow(im[:, :, ::-1])  # base
-    # ax[1].imshow(im2[:, :, ::-1])  # warped
-
-    # Transform label coordinates
-    n = len(targets)
-    if n:
-        use_segments = any(x.any() for x in segments)
-        new = np.zeros((n, 4))
-        if use_segments:  # warp segments
-            segments = resample_segments(segments)  # upsample
-            for i, segment in enumerate(segments):
-                xy = np.ones((len(segment), 3))
-                xy[:, :2] = segment
-                xy = xy @ M.T  # transform
-                xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]  # perspective rescale or affine
-
-                # clip
-                new[i] = segment2box(xy, width, height)
-
-        else:  # warp boxes
-            xy = np.ones((n * 4, 3))
-            xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
-            xy = xy @ M.T  # transform
-            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine
-
-            # create new boxes
-            x = xy[:, [0, 2, 4, 6]]
-            y = xy[:, [1, 3, 5, 7]]
-            new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
-
-            # clip
-            new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
-            new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
-
-        # filter candidates
-        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
-        targets = targets[i]
-        targets[:, 1:5] = new[i]
-
-    return im, targets
-
-
-def copy_paste(im, labels, segments, p=0.5):
-    # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
-    n = len(segments)
-    if p and n:
-        h, w, c = im.shape  # height, width, channels
-        im_new = np.zeros(im.shape, np.uint8)
-        for j in random.sample(range(n), k=round(p * n)):
-            l, s = labels[j], segments[j]
-            box = w - l[3], l[2], w - l[1], l[4]
-            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
-            if (ioa < 0.30).all():  # allow 30% obscuration of existing labels
-                labels = np.concatenate((labels, [[l[0], *box]]), 0)
-                segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
-                cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
-
-        result = cv2.bitwise_and(src1=im, src2=im_new)
-        result = cv2.flip(result, 1)  # augment segments (flip left-right)
-        i = result > 0  # pixels to replace
-        # i[:, :] = result.max(2).reshape(h, w, 1)  # act over ch
-        im[i] = result[i]  # cv2.imwrite('debug.jpg', im)  # debug
-
-    return im, labels, segments
-
-
-def cutout(im, labels, p=0.5):
-    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
-    if random.random() < p:
-        h, w = im.shape[:2]
-        scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction
-        for s in scales:
-            mask_h = random.randint(1, int(h * s))  # create random masks
-            mask_w = random.randint(1, int(w * s))
-
-            # box
-            xmin = max(0, random.randint(0, w) - mask_w // 2)
-            ymin = max(0, random.randint(0, h) - mask_h // 2)
-            xmax = min(w, xmin + mask_w)
-            ymax = min(h, ymin + mask_h)
-
-            # apply random color mask
-            im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
-
-            # return unobscured labels
-            if len(labels) and s > 0.03:
-                box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
-                ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
-                labels = labels[ioa < 0.60]  # remove >60% obscured labels
-
-    return labels
-
-
-def mixup(im, labels, im2, labels2):
-    # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
-    r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
-    im = (im * r + im2 * (1 - r)).astype(np.uint8)
-    labels = np.concatenate((labels, labels2), 0)
-    return im, labels
-
-
-def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)
-    # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
-    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
-    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
-    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
-    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates
-
-
-def classify_albumentations(augment=True,
-                            size=224,
-                            scale=(0.08, 1.0),
-                            hflip=0.5,
-                            vflip=0.0,
-                            jitter=0.4,
-                            mean=IMAGENET_MEAN,
-                            std=IMAGENET_STD,
-                            auto_aug=False):
-    # YOLOv5 classification Albumentations (optional, only used if package is installed)
-    prefix = colorstr('albumentations: ')
-    try:
-        import albumentations as A
-        from albumentations.pytorch import ToTensorV2
-        check_version(A.__version__, '1.0.3', hard=True)  # version requirement
-        if augment:  # Resize and crop
-            T = [A.RandomResizedCrop(height=size, width=size, scale=scale)]
-            if auto_aug:
-                # TODO: implement AugMix, AutoAug & RandAug in albumentation
-                LOGGER.info(f'{prefix}auto augmentations are currently not supported')
-            else:
-                if hflip > 0:
-                    T += [A.HorizontalFlip(p=hflip)]
-                if vflip > 0:
-                    T += [A.VerticalFlip(p=vflip)]
-                if jitter > 0:
-                    color_jitter = (float(jitter),) * 3  # repeat value for brightness, contrast, satuaration, 0 hue
-                    T += [A.ColorJitter(*color_jitter, 0)]
-        else:  # Use fixed crop for eval set (reproducibility)
-            T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
-        T += [A.Normalize(mean=mean, std=std), ToTensorV2()]  # Normalize and convert to Tensor
-        LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
-        return A.Compose(T)
-
-    except ImportError:  # package not installed, skip
-        pass
-    except Exception as e:
-        LOGGER.info(f'{prefix}{e}')
-
-
-def classify_transforms(size=224):
-    # Transforms to apply if albumentations not installed
-    return T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
-
diff --git a/yolov5-6.2/utils/autoanchor.py b/yolov5-6.2/utils/autoanchor.py
deleted file mode 100644
index f2222203..00000000
--- a/yolov5-6.2/utils/autoanchor.py
+++ /dev/null
@@ -1,170 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-AutoAnchor utils
-"""
-
-import random
-
-import numpy as np
-import torch
-import yaml
-from tqdm import tqdm
-
-from utils.general import LOGGER, colorstr
-
-PREFIX = colorstr('AutoAnchor: ')
-
-
-def check_anchor_order(m):
-    # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
-    a = m.anchors.prod(-1).mean(-1).view(-1)  # mean anchor area per output layer
-    da = a[-1] - a[0]  # delta a
-    ds = m.stride[-1] - m.stride[0]  # delta s
-    if da and (da.sign() != ds.sign()):  # same order
-        LOGGER.info(f'{PREFIX}Reversing anchor order')
-        m.anchors[:] = m.anchors.flip(0)
-
-
-def check_anchors(dataset, model, thr=4.0, imgsz=640):
-    # Check anchor fit to data, recompute if necessary
-    m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()
-    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
-    scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1))  # augment scale
-    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float()  # wh
-
-    def metric(k):  # compute metric
-        r = wh[:, None] / k[None]
-        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
-        best = x.max(1)[0]  # best_x
-        aat = (x > 1 / thr).float().sum(1).mean()  # anchors above threshold
-        bpr = (best > 1 / thr).float().mean()  # best possible recall
-        return bpr, aat
-
-    stride = m.stride.to(m.anchors.device).view(-1, 1, 1)  # model strides
-    anchors = m.anchors.clone() * stride  # current anchors
-    bpr, aat = metric(anchors.cpu().view(-1, 2))
-    s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
-    if bpr > 0.98:  # threshold to recompute
-        LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
-    else:
-        LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
-        na = m.anchors.numel() // 2  # number of anchors
-        try:
-            anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
-        except Exception as e:
-            LOGGER.info(f'{PREFIX}ERROR: {e}')
-        new_bpr = metric(anchors)[0]
-        if new_bpr > bpr:  # replace anchors
-            anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
-            m.anchors[:] = anchors.clone().view_as(m.anchors)
-            check_anchor_order(m)  # must be in pixel-space (not grid-space)
-            m.anchors /= stride
-            s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
-        else:
-            s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
-        LOGGER.info(s)
-
-
-def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
-    """ Creates kmeans-evolved anchors from training dataset
-
-        Arguments:
-            dataset: path to data.yaml, or a loaded dataset
-            n: number of anchors
-            img_size: image size used for training
-            thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
-            gen: generations to evolve anchors using genetic algorithm
-            verbose: print all results
-
-        Return:
-            k: kmeans evolved anchors
-
-        Usage:
-            from utils.autoanchor import *; _ = kmean_anchors()
-    """
-    from scipy.cluster.vq import kmeans
-
-    npr = np.random
-    thr = 1 / thr
-
-    def metric(k, wh):  # compute metrics
-        r = wh[:, None] / k[None]
-        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
-        # x = wh_iou(wh, torch.tensor(k))  # iou metric
-        return x, x.max(1)[0]  # x, best_x
-
-    def anchor_fitness(k):  # mutation fitness
-        _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
-        return (best * (best > thr).float()).mean()  # fitness
-
-    def print_results(k, verbose=True):
-        k = k[np.argsort(k.prod(1))]  # sort small to large
-        x, best = metric(k, wh0)
-        bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thr
-        s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
-            f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
-            f'past_thr={x[x > thr].mean():.3f}-mean: '
-        for x in k:
-            s += '%i,%i, ' % (round(x[0]), round(x[1]))
-        if verbose:
-            LOGGER.info(s[:-2])
-        return k
-
-    if isinstance(dataset, str):  # *.yaml file
-        with open(dataset, errors='ignore') as f:
-            data_dict = yaml.safe_load(f)  # model dict
-        from utils.dataloaders import LoadImagesAndLabels
-        dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
-
-    # Get label wh
-    shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
-    wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])  # wh
-
-    # Filter
-    i = (wh0 < 3.0).any(1).sum()
-    if i:
-        LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found: {i} of {len(wh0)} labels are < 3 pixels in size')
-    wh = wh0[(wh0 >= 2.0).any(1)]  # filter > 2 pixels
-    # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1)  # multiply by random scale 0-1
-
-    # Kmeans init
-    try:
-        LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
-        assert n <= len(wh)  # apply overdetermined constraint
-        s = wh.std(0)  # sigmas for whitening
-        k = kmeans(wh / s, n, iter=30)[0] * s  # points
-        assert n == len(k)  # kmeans may return fewer points than requested if wh is insufficient or too similar
-    except Exception:
-        LOGGER.warning(f'{PREFIX}WARNING: switching strategies from kmeans to random init')
-        k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size  # random init
-    wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
-    k = print_results(k, verbose=False)
-
-    # Plot
-    # k, d = [None] * 20, [None] * 20
-    # for i in tqdm(range(1, 21)):
-    #     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance
-    # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
-    # ax = ax.ravel()
-    # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
-    # fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh
-    # ax[0].hist(wh[wh[:, 0]<100, 0],400)
-    # ax[1].hist(wh[wh[:, 1]<100, 1],400)
-    # fig.savefig('wh.png', dpi=200)
-
-    # Evolve
-    f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigma
-    pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
-    for _ in pbar:
-        v = np.ones(sh)
-        while (v == 1).all():  # mutate until a change occurs (prevent duplicates)
-            v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
-        kg = (k.copy() * v).clip(min=2.0)
-        fg = anchor_fitness(kg)
-        if fg > f:
-            f, k = fg, kg.copy()
-            pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
-            if verbose:
-                print_results(k, verbose)
-
-    return print_results(k)
diff --git a/yolov5-6.2/utils/autobatch.py b/yolov5-6.2/utils/autobatch.py
deleted file mode 100644
index c231d24c..00000000
--- a/yolov5-6.2/utils/autobatch.py
+++ /dev/null
@@ -1,66 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Auto-batch utils
-"""
-
-from copy import deepcopy
-
-import numpy as np
-import torch
-
-from utils.general import LOGGER, colorstr
-from utils.torch_utils import profile
-
-
-def check_train_batch_size(model, imgsz=640, amp=True):
-    # Check YOLOv5 training batch size
-    with torch.cuda.amp.autocast(amp):
-        return autobatch(deepcopy(model).train(), imgsz)  # compute optimal batch size
-
-
-def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
-    # Automatically estimate best batch size to use `fraction` of available CUDA memory
-    # Usage:
-    #     import torch
-    #     from utils.autobatch import autobatch
-    #     model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
-    #     print(autobatch(model))
-
-    # Check device
-    prefix = colorstr('AutoBatch: ')
-    LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
-    device = next(model.parameters()).device  # get model device
-    if device.type == 'cpu':
-        LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
-        return batch_size
-
-    # Inspect CUDA memory
-    gb = 1 << 30  # bytes to GiB (1024 ** 3)
-    d = str(device).upper()  # 'CUDA:0'
-    properties = torch.cuda.get_device_properties(device)  # device properties
-    t = properties.total_memory / gb  # GiB total
-    r = torch.cuda.memory_reserved(device) / gb  # GiB reserved
-    a = torch.cuda.memory_allocated(device) / gb  # GiB allocated
-    f = t - (r + a)  # GiB free
-    LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
-
-    # Profile batch sizes
-    batch_sizes = [1, 2, 4, 8, 16]
-    try:
-        img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
-        results = profile(img, model, n=3, device=device)
-    except Exception as e:
-        LOGGER.warning(f'{prefix}{e}')
-
-    # Fit a solution
-    y = [x[2] for x in results if x]  # memory [2]
-    p = np.polyfit(batch_sizes[:len(y)], y, deg=1)  # first degree polynomial fit
-    b = int((f * fraction - p[1]) / p[0])  # y intercept (optimal batch size)
-    if None in results:  # some sizes failed
-        i = results.index(None)  # first fail index
-        if b >= batch_sizes[i]:  # y intercept above failure point
-            b = batch_sizes[max(i - 1, 0)]  # select prior safe point
-
-    fraction = np.polyval(p, b) / t  # actual fraction predicted
-    LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
-    return b
diff --git a/yolov5-6.2/utils/aws/__init__.py b/yolov5-6.2/utils/aws/__init__.py
deleted file mode 100644
index e69de29b..00000000
diff --git a/yolov5-6.2/utils/aws/mime.sh b/yolov5-6.2/utils/aws/mime.sh
deleted file mode 100644
index c319a83c..00000000
--- a/yolov5-6.2/utils/aws/mime.sh
+++ /dev/null
@@ -1,26 +0,0 @@
-# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
-# This script will run on every instance restart, not only on first start
-# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
-
-Content-Type: multipart/mixed; boundary="//"
-MIME-Version: 1.0
-
---//
-Content-Type: text/cloud-config; charset="us-ascii"
-MIME-Version: 1.0
-Content-Transfer-Encoding: 7bit
-Content-Disposition: attachment; filename="cloud-config.txt"
-
-#cloud-config
-cloud_final_modules:
-- [scripts-user, always]
-
---//
-Content-Type: text/x-shellscript; charset="us-ascii"
-MIME-Version: 1.0
-Content-Transfer-Encoding: 7bit
-Content-Disposition: attachment; filename="userdata.txt"
-
-#!/bin/bash
-# --- paste contents of userdata.sh here ---
---//
diff --git a/yolov5-6.2/utils/aws/resume.py b/yolov5-6.2/utils/aws/resume.py
deleted file mode 100644
index b21731c9..00000000
--- a/yolov5-6.2/utils/aws/resume.py
+++ /dev/null
@@ -1,40 +0,0 @@
-# Resume all interrupted trainings in yolov5/ dir including DDP trainings
-# Usage: $ python utils/aws/resume.py
-
-import os
-import sys
-from pathlib import Path
-
-import torch
-import yaml
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[2]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-
-port = 0  # --master_port
-path = Path('').resolve()
-for last in path.rglob('*/**/last.pt'):
-    ckpt = torch.load(last)
-    if ckpt['optimizer'] is None:
-        continue
-
-    # Load opt.yaml
-    with open(last.parent.parent / 'opt.yaml', errors='ignore') as f:
-        opt = yaml.safe_load(f)
-
-    # Get device count
-    d = opt['device'].split(',')  # devices
-    nd = len(d)  # number of devices
-    ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1)  # distributed data parallel
-
-    if ddp:  # multi-GPU
-        port += 1
-        cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
-    else:  # single-GPU
-        cmd = f'python train.py --resume {last}'
-
-    cmd += ' > /dev/null 2>&1 &'  # redirect output to dev/null and run in daemon thread
-    print(cmd)
-    os.system(cmd)
diff --git a/yolov5-6.2/utils/aws/userdata.sh b/yolov5-6.2/utils/aws/userdata.sh
deleted file mode 100644
index 5fc1332a..00000000
--- a/yolov5-6.2/utils/aws/userdata.sh
+++ /dev/null
@@ -1,27 +0,0 @@
-#!/bin/bash
-# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
-# This script will run only once on first instance start (for a re-start script see mime.sh)
-# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
-# Use >300 GB SSD
-
-cd home/ubuntu
-if [ ! -d yolov5 ]; then
-  echo "Running first-time script." # install dependencies, download COCO, pull Docker
-  git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
-  cd yolov5
-  bash data/scripts/get_coco.sh && echo "COCO done." &
-  sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
-  python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
-  wait && echo "All tasks done." # finish background tasks
-else
-  echo "Running re-start script." # resume interrupted runs
-  i=0
-  list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
-  while IFS= read -r id; do
-    ((i++))
-    echo "restarting container $i: $id"
-    sudo docker start $id
-    # sudo docker exec -it $id python train.py --resume # single-GPU
-    sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
-  done <<<"$list"
-fi
diff --git a/yolov5-6.2/utils/benchmarks.py b/yolov5-6.2/utils/benchmarks.py
deleted file mode 100644
index d412653c..00000000
--- a/yolov5-6.2/utils/benchmarks.py
+++ /dev/null
@@ -1,157 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Run YOLOv5 benchmarks on all supported export formats
-
-Format                      | `export.py --include`         | Model
----                         | ---                           | ---
-PyTorch                     | -                             | yolov5s.pt
-TorchScript                 | `torchscript`                 | yolov5s.torchscript
-ONNX                        | `onnx`                        | yolov5s.onnx
-OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
-TensorRT                    | `engine`                      | yolov5s.engine
-CoreML                      | `coreml`                      | yolov5s.mlmodel
-TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
-TensorFlow GraphDef         | `pb`                          | yolov5s.pb
-TensorFlow Lite             | `tflite`                      | yolov5s.tflite
-TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
-TensorFlow.js               | `tfjs`                        | yolov5s_web_model/
-
-Requirements:
-    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU
-    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU
-    $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com  # TensorRT
-
-Usage:
-    $ python utils/benchmarks.py --weights yolov5s.pt --img 640
-"""
-
-import argparse
-import platform
-import sys
-import time
-from pathlib import Path
-
-import pandas as pd
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[1]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-# ROOT = ROOT.relative_to(Path.cwd())  # relative
-
-import export
-import val
-from utils import notebook_init
-from utils.general import LOGGER, check_yaml, file_size, print_args
-from utils.torch_utils import select_device
-
-
-def run(
-        weights=ROOT / 'yolov5s.pt',  # weights path
-        imgsz=640,  # inference size (pixels)
-        batch_size=1,  # batch size
-        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
-        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
-        half=False,  # use FP16 half-precision inference
-        test=False,  # test exports only
-        pt_only=False,  # test PyTorch only
-        hard_fail=False,  # throw error on benchmark failure
-):
-    y, t = [], time.time()
-    device = select_device(device)
-    for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows():  # index, (name, file, suffix, CPU, GPU)
-        try:
-            assert i not in (9, 10), 'inference not supported'  # Edge TPU and TF.js are unsupported
-            assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13'  # CoreML
-            if 'cpu' in device.type:
-                assert cpu, 'inference not supported on CPU'
-            if 'cuda' in device.type:
-                assert gpu, 'inference not supported on GPU'
-
-            # Export
-            if f == '-':
-                w = weights  # PyTorch format
-            else:
-                w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]  # all others
-            assert suffix in str(w), 'export failed'
-
-            # Validate
-            result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
-            metrics = result[0]  # metrics (mp, mr, map50, map, *losses(box, obj, cls))
-            speeds = result[2]  # times (preprocess, inference, postprocess)
-            y.append([name, round(file_size(w), 1), round(metrics[3], 4), round(speeds[1], 2)])  # MB, mAP, t_inference
-        except Exception as e:
-            if hard_fail:
-                assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
-            LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}')
-            y.append([name, None, None, None])  # mAP, t_inference
-        if pt_only and i == 0:
-            break  # break after PyTorch
-
-    # Print results
-    LOGGER.info('\n')
-    parse_opt()
-    notebook_init()  # print system info
-    c = ['Format', 'Size (MB)', 'mAP@0.5:0.95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
-    py = pd.DataFrame(y, columns=c)
-    LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
-    LOGGER.info(str(py if map else py.iloc[:, :2]))
-    return py
-
-
-def test(
-        weights=ROOT / 'yolov5s.pt',  # weights path
-        imgsz=640,  # inference size (pixels)
-        batch_size=1,  # batch size
-        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
-        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
-        half=False,  # use FP16 half-precision inference
-        test=False,  # test exports only
-        pt_only=False,  # test PyTorch only
-        hard_fail=False,  # throw error on benchmark failure
-):
-    y, t = [], time.time()
-    device = select_device(device)
-    for i, (name, f, suffix, gpu) in export.export_formats().iterrows():  # index, (name, file, suffix, gpu-capable)
-        try:
-            w = weights if f == '-' else \
-                export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]  # weights
-            assert suffix in str(w), 'export failed'
-            y.append([name, True])
-        except Exception:
-            y.append([name, False])  # mAP, t_inference
-
-    # Print results
-    LOGGER.info('\n')
-    parse_opt()
-    notebook_init()  # print system info
-    py = pd.DataFrame(y, columns=['Format', 'Export'])
-    LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
-    LOGGER.info(str(py))
-    return py
-
-
-def parse_opt():
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
-    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
-    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
-    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
-    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
-    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
-    parser.add_argument('--test', action='store_true', help='test exports only')
-    parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
-    parser.add_argument('--hard-fail', action='store_true', help='throw error on benchmark failure')
-    opt = parser.parse_args()
-    opt.data = check_yaml(opt.data)  # check YAML
-    print_args(vars(opt))
-    return opt
-
-
-def main(opt):
-    test(**vars(opt)) if opt.test else run(**vars(opt))
-
-
-if __name__ == "__main__":
-    opt = parse_opt()
-    main(opt)
diff --git a/yolov5-6.2/utils/callbacks.py b/yolov5-6.2/utils/callbacks.py
deleted file mode 100644
index 2b32df0b..00000000
--- a/yolov5-6.2/utils/callbacks.py
+++ /dev/null
@@ -1,71 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Callback utils
-"""
-
-
-class Callbacks:
-    """"
-    Handles all registered callbacks for YOLOv5 Hooks
-    """
-
-    def __init__(self):
-        # Define the available callbacks
-        self._callbacks = {
-            'on_pretrain_routine_start': [],
-            'on_pretrain_routine_end': [],
-            'on_train_start': [],
-            'on_train_epoch_start': [],
-            'on_train_batch_start': [],
-            'optimizer_step': [],
-            'on_before_zero_grad': [],
-            'on_train_batch_end': [],
-            'on_train_epoch_end': [],
-            'on_val_start': [],
-            'on_val_batch_start': [],
-            'on_val_image_end': [],
-            'on_val_batch_end': [],
-            'on_val_end': [],
-            'on_fit_epoch_end': [],  # fit = train + val
-            'on_model_save': [],
-            'on_train_end': [],
-            'on_params_update': [],
-            'teardown': [],}
-        self.stop_training = False  # set True to interrupt training
-
-    def register_action(self, hook, name='', callback=None):
-        """
-        Register a new action to a callback hook
-
-        Args:
-            hook: The callback hook name to register the action to
-            name: The name of the action for later reference
-            callback: The callback to fire
-        """
-        assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
-        assert callable(callback), f"callback '{callback}' is not callable"
-        self._callbacks[hook].append({'name': name, 'callback': callback})
-
-    def get_registered_actions(self, hook=None):
-        """"
-        Returns all the registered actions by callback hook
-
-        Args:
-            hook: The name of the hook to check, defaults to all
-        """
-        return self._callbacks[hook] if hook else self._callbacks
-
-    def run(self, hook, *args, **kwargs):
-        """
-        Loop through the registered actions and fire all callbacks
-
-        Args:
-            hook: The name of the hook to check, defaults to all
-            args: Arguments to receive from YOLOv5
-            kwargs: Keyword Arguments to receive from YOLOv5
-        """
-
-        assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
-
-        for logger in self._callbacks[hook]:
-            logger['callback'](*args, **kwargs)
diff --git a/yolov5-6.2/utils/dataloaders.py b/yolov5-6.2/utils/dataloaders.py
deleted file mode 100644
index 2c04040b..00000000
--- a/yolov5-6.2/utils/dataloaders.py
+++ /dev/null
@@ -1,1156 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Dataloaders and dataset utils
-"""
-
-import contextlib
-import glob
-import hashlib
-import json
-import math
-import os
-import random
-import shutil
-import time
-from itertools import repeat
-from multiprocessing.pool import Pool, ThreadPool
-from pathlib import Path
-from threading import Thread
-from urllib.parse import urlparse
-from zipfile import ZipFile
-
-import numpy as np
-import torch
-import torch.nn.functional as F
-import torchvision
-import yaml
-from PIL import ExifTags, Image, ImageOps
-from torch.utils.data import DataLoader, Dataset, dataloader, distributed
-from tqdm import tqdm
-
-from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste,
-                                 letterbox, mixup, random_perspective)
-from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, check_dataset, check_requirements, check_yaml, clean_str,
-                           cv2, is_colab, is_kaggle, segments2boxes, xyn2xy, xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
-from utils.torch_utils import torch_distributed_zero_first
-
-# Parameters
-HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
-IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp'  # include image suffixes
-VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv'  # include video suffixes
-BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}'  # tqdm bar format
-LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
-
-# Get orientation exif tag
-for orientation in ExifTags.TAGS.keys():
-    if ExifTags.TAGS[orientation] == 'Orientation':
-        break
-
-
-def get_hash(paths):
-    # Returns a single hash value of a list of paths (files or dirs)
-    size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
-    h = hashlib.md5(str(size).encode())  # hash sizes
-    h.update(''.join(paths).encode())  # hash paths
-    return h.hexdigest()  # return hash
-
-
-def exif_size(img):
-    # Returns exif-corrected PIL size
-    s = img.size  # (width, height)
-    with contextlib.suppress(Exception):
-        rotation = dict(img._getexif().items())[orientation]
-        if rotation in [6, 8]:  # rotation 270 or 90
-            s = (s[1], s[0])
-    return s
-
-
-def exif_transpose(image):
-    """
-    Transpose a PIL image accordingly if it has an EXIF Orientation tag.
-    Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
-
-    :param image: The image to transpose.
-    :return: An image.
-    """
-    exif = image.getexif()
-    orientation = exif.get(0x0112, 1)  # default 1
-    if orientation > 1:
-        method = {
-            2: Image.FLIP_LEFT_RIGHT,
-            3: Image.ROTATE_180,
-            4: Image.FLIP_TOP_BOTTOM,
-            5: Image.TRANSPOSE,
-            6: Image.ROTATE_270,
-            7: Image.TRANSVERSE,
-            8: Image.ROTATE_90,}.get(orientation)
-        if method is not None:
-            image = image.transpose(method)
-            del exif[0x0112]
-            image.info["exif"] = exif.tobytes()
-    return image
-
-
-def seed_worker(worker_id):
-    # Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
-    worker_seed = torch.initial_seed() % 2 ** 32
-    np.random.seed(worker_seed)
-    random.seed(worker_seed)
-
-
-def create_dataloader(path,
-                      imgsz,
-                      batch_size,
-                      stride,
-                      single_cls=False,
-                      hyp=None,
-                      augment=False,
-                      cache=False,
-                      pad=0.0,
-                      rect=False,
-                      rank=-1,
-                      workers=8,
-                      image_weights=False,
-                      quad=False,
-                      prefix='',
-                      shuffle=False):
-    if rect and shuffle:
-        LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False')
-        shuffle = False
-    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
-        dataset = LoadImagesAndLabels(
-            path,
-            imgsz,
-            batch_size,
-            augment=augment,  # augmentation
-            hyp=hyp,  # hyperparameters
-            rect=rect,  # rectangular batches
-            cache_images=cache,
-            single_cls=single_cls,
-            stride=int(stride),
-            pad=pad,
-            image_weights=image_weights,
-            prefix=prefix)
-
-    batch_size = min(batch_size, len(dataset))
-    nd = torch.cuda.device_count()  # number of CUDA devices
-    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])  # number of workers
-    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
-    loader = DataLoader if image_weights else InfiniteDataLoader  # only DataLoader allows for attribute updates
-    generator = torch.Generator()
-    generator.manual_seed(0)
-    return loader(dataset,
-                  batch_size=batch_size,
-                  shuffle=shuffle and sampler is None,
-                  num_workers=nw,
-                  sampler=sampler,
-                  pin_memory=True,
-                  collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn,
-                  worker_init_fn=seed_worker,
-                  generator=generator), dataset
-
-
-class InfiniteDataLoader(dataloader.DataLoader):
-    """ Dataloader that reuses workers
-
-    Uses same syntax as vanilla DataLoader
-    """
-
-    def __init__(self, *args, **kwargs):
-        super().__init__(*args, **kwargs)
-        object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
-        self.iterator = super().__iter__()
-
-    def __len__(self):
-        return len(self.batch_sampler.sampler)
-
-    def __iter__(self):
-        for _ in range(len(self)):
-            yield next(self.iterator)
-
-
-class _RepeatSampler:
-    """ Sampler that repeats forever
-
-    Args:
-        sampler (Sampler)
-    """
-
-    def __init__(self, sampler):
-        self.sampler = sampler
-
-    def __iter__(self):
-        while True:
-            yield from iter(self.sampler)
-
-
-class LoadImages:
-    # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
-    def __init__(self, path, img_size=640, stride=32, auto=True):
-        files = []
-        for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
-            p = str(Path(p).resolve())
-            if '*' in p:
-                files.extend(sorted(glob.glob(p, recursive=True)))  # glob
-            elif os.path.isdir(p):
-                files.extend(sorted(glob.glob(os.path.join(p, '*.*'))))  # dir
-            elif os.path.isfile(p):
-                files.append(p)  # files
-            else:
-                raise FileNotFoundError(f'{p} does not exist')
-
-        images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
-        videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
-        ni, nv = len(images), len(videos)
-
-        self.img_size = img_size
-        self.stride = stride
-        self.files = images + videos
-        self.nf = ni + nv  # number of files
-        self.video_flag = [False] * ni + [True] * nv
-        self.mode = 'image'
-        self.auto = auto
-        if any(videos):
-            self.new_video(videos[0])  # new video
-        else:
-            self.cap = None
-        assert self.nf > 0, f'No images or videos found in {p}. ' \
-                            f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
-
-    def __iter__(self):
-        self.count = 0
-        return self
-
-    def __next__(self):
-        if self.count == self.nf:
-            raise StopIteration
-        path = self.files[self.count]
-
-        if self.video_flag[self.count]:
-            # Read video
-            self.mode = 'video'
-            ret_val, img0 = self.cap.read()
-            while not ret_val:
-                self.count += 1
-                self.cap.release()
-                if self.count == self.nf:  # last video
-                    raise StopIteration
-                path = self.files[self.count]
-                self.new_video(path)
-                ret_val, img0 = self.cap.read()
-
-            self.frame += 1
-            s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
-
-        else:
-            # Read image
-            self.count += 1
-            img0 = cv2.imread(path)  # BGR
-            assert img0 is not None, f'Image Not Found {path}'
-            s = f'image {self.count}/{self.nf} {path}: '
-
-        # Padded resize
-        img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0]
-
-        # Convert
-        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
-        img = np.ascontiguousarray(img)
-
-        return path, img, img0, self.cap, s
-
-    def new_video(self, path):
-        self.frame = 0
-        self.cap = cv2.VideoCapture(path)
-        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
-
-    def __len__(self):
-        return self.nf  # number of files
-
-
-class LoadWebcam:  # for inference
-    # YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0`
-    def __init__(self, pipe='0', img_size=640, stride=32):
-        self.img_size = img_size
-        self.stride = stride
-        self.pipe = eval(pipe) if pipe.isnumeric() else pipe
-        self.cap = cv2.VideoCapture(self.pipe)  # video capture object
-        self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3)  # set buffer size
-
-    def __iter__(self):
-        self.count = -1
-        return self
-
-    def __next__(self):
-        self.count += 1
-        if cv2.waitKey(1) == ord('q'):  # q to quit
-            self.cap.release()
-            cv2.destroyAllWindows()
-            raise StopIteration
-
-        # Read frame
-        ret_val, img0 = self.cap.read()
-        img0 = cv2.flip(img0, 1)  # flip left-right
-
-        # Print
-        assert ret_val, f'Camera Error {self.pipe}'
-        img_path = 'webcam.jpg'
-        s = f'webcam {self.count}: '
-
-        # Padded resize
-        img = letterbox(img0, self.img_size, stride=self.stride)[0]
-
-        # Convert
-        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
-        img = np.ascontiguousarray(img)
-
-        return img_path, img, img0, None, s
-
-    def __len__(self):
-        return 0
-
-
-class LoadStreams:
-    # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP streams`
-    def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True):
-        self.mode = 'stream'
-        self.img_size = img_size
-        self.stride = stride
-
-        if os.path.isfile(sources):
-            with open(sources) as f:
-                sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
-        else:
-            sources = [sources]
-
-        n = len(sources)
-        self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
-        self.sources = [clean_str(x) for x in sources]  # clean source names for later
-        self.auto = auto
-        for i, s in enumerate(sources):  # index, source
-            # Start thread to read frames from video stream
-            st = f'{i + 1}/{n}: {s}... '
-            if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'):  # if source is YouTube video
-                check_requirements(('pafy', 'youtube_dl==2020.12.2'))
-                import pafy
-                s = pafy.new(s).getbest(preftype="mp4").url  # YouTube URL
-            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
-            if s == 0:
-                assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
-                assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
-            cap = cv2.VideoCapture(s)
-            assert cap.isOpened(), f'{st}Failed to open {s}'
-            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
-            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
-            fps = cap.get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
-            self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')  # infinite stream fallback
-            self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30  # 30 FPS fallback
-
-            _, self.imgs[i] = cap.read()  # guarantee first frame
-            self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
-            LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
-            self.threads[i].start()
-        LOGGER.info('')  # newline
-
-        # check for common shapes
-        s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs])
-        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
-        if not self.rect:
-            LOGGER.warning('WARNING: Stream shapes differ. For optimal performance supply similarly-shaped streams.')
-
-    def update(self, i, cap, stream):
-        # Read stream `i` frames in daemon thread
-        n, f, read = 0, self.frames[i], 1  # frame number, frame array, inference every 'read' frame
-        while cap.isOpened() and n < f:
-            n += 1
-            # _, self.imgs[index] = cap.read()
-            cap.grab()
-            if n % read == 0:
-                success, im = cap.retrieve()
-                if success:
-                    self.imgs[i] = im
-                else:
-                    LOGGER.warning('WARNING: Video stream unresponsive, please check your IP camera connection.')
-                    self.imgs[i] = np.zeros_like(self.imgs[i])
-                    cap.open(stream)  # re-open stream if signal was lost
-            time.sleep(0.0)  # wait time
-
-    def __iter__(self):
-        self.count = -1
-        return self
-
-    def __next__(self):
-        self.count += 1
-        if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'):  # q to quit
-            cv2.destroyAllWindows()
-            raise StopIteration
-
-        # Letterbox
-        img0 = self.imgs.copy()
-        img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0]
-
-        # Stack
-        img = np.stack(img, 0)
-
-        # Convert
-        img = img[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW
-        img = np.ascontiguousarray(img)
-
-        return self.sources, img, img0, None, ''
-
-    def __len__(self):
-        return len(self.sources)  # 1E12 frames = 32 streams at 30 FPS for 30 years
-
-
-def img2label_paths(img_paths):
-    # Define label paths as a function of image paths
-    sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}'  # /images/, /labels/ substrings
-    return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
-
-
-class LoadImagesAndLabels(Dataset):
-    # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
-    cache_version = 0.6  # dataset labels *.cache version
-    rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
-
-    def __init__(self,
-                 path,
-                 img_size=640,
-                 batch_size=16,
-                 augment=False,
-                 hyp=None,
-                 rect=False,
-                 image_weights=False,
-                 cache_images=False,
-                 single_cls=False,
-                 stride=32,
-                 pad=0.0,
-                 prefix=''):
-        self.img_size = img_size
-        self.augment = augment
-        self.hyp = hyp
-        self.image_weights = image_weights
-        self.rect = False if image_weights else rect
-        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
-        self.mosaic_border = [-img_size // 2, -img_size // 2]
-        self.stride = stride
-        self.path = path
-        self.albumentations = Albumentations() if augment else None
-
-        try:
-            f = []  # image files
-            for p in path if isinstance(path, list) else [path]:
-                p = Path(p)  # os-agnostic
-                if p.is_dir():  # dir
-                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
-                    # f = list(p.rglob('*.*'))  # pathlib
-                elif p.is_file():  # file
-                    with open(p) as t:
-                        t = t.read().strip().splitlines()
-                        parent = str(p.parent) + os.sep
-                        f += [x.replace('./', parent) if x.startswith('./') else x for x in t]  # local to global path
-                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib)
-                else:
-                    raise FileNotFoundError(f'{prefix}{p} does not exist')
-            self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
-            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
-            assert self.im_files, f'{prefix}No images found'
-        except Exception as e:
-            raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')
-
-        # Check cache
-        self.label_files = img2label_paths(self.im_files)  # labels
-        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
-        try:
-            cache, exists = np.load(cache_path, allow_pickle=True).item(), True  # load dict
-            assert cache['version'] == self.cache_version  # matches current version
-            assert cache['hash'] == get_hash(self.label_files + self.im_files)  # identical hash
-        except Exception:
-            cache, exists = self.cache_labels(cache_path, prefix), False  # run cache ops
-
-        # Display cache
-        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupt, total
-        if exists and LOCAL_RANK in {-1, 0}:
-            d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
-            tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT)  # display cache results
-            if cache['msgs']:
-                LOGGER.info('\n'.join(cache['msgs']))  # display warnings
-        assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
-
-        # Read cache
-        [cache.pop(k) for k in ('hash', 'version', 'msgs')]  # remove items
-        labels, shapes, self.segments = zip(*cache.values())
-        self.labels = list(labels)
-        self.shapes = np.array(shapes)
-        self.im_files = list(cache.keys())  # update
-        self.label_files = img2label_paths(cache.keys())  # update
-        n = len(shapes)  # number of images
-        bi = np.floor(np.arange(n) / batch_size).astype(np.int)  # batch index
-        nb = bi[-1] + 1  # number of batches
-        self.batch = bi  # batch index of image
-        self.n = n
-        self.indices = range(n)
-
-        # Update labels
-        include_class = []  # filter labels to include only these classes (optional)
-        include_class_array = np.array(include_class).reshape(1, -1)
-        for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
-            if include_class:
-                j = (label[:, 0:1] == include_class_array).any(1)
-                self.labels[i] = label[j]
-                if segment:
-                    self.segments[i] = segment[j]
-            if single_cls:  # single-class training, merge all classes into 0
-                self.labels[i][:, 0] = 0
-                if segment:
-                    self.segments[i][:, 0] = 0
-
-        # Rectangular Training
-        if self.rect:
-            # Sort by aspect ratio
-            s = self.shapes  # wh
-            ar = s[:, 1] / s[:, 0]  # aspect ratio
-            irect = ar.argsort()
-            self.im_files = [self.im_files[i] for i in irect]
-            self.label_files = [self.label_files[i] for i in irect]
-            self.labels = [self.labels[i] for i in irect]
-            self.shapes = s[irect]  # wh
-            ar = ar[irect]
-
-            # Set training image shapes
-            shapes = [[1, 1]] * nb
-            for i in range(nb):
-                ari = ar[bi == i]
-                mini, maxi = ari.min(), ari.max()
-                if maxi < 1:
-                    shapes[i] = [maxi, 1]
-                elif mini > 1:
-                    shapes[i] = [1, 1 / mini]
-
-            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
-
-        # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
-        self.ims = [None] * n
-        self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
-        if cache_images:
-            gb = 0  # Gigabytes of cached images
-            self.im_hw0, self.im_hw = [None] * n, [None] * n
-            fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
-            results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
-            pbar = tqdm(enumerate(results), total=n, bar_format=BAR_FORMAT, disable=LOCAL_RANK > 0)
-            for i, x in pbar:
-                if cache_images == 'disk':
-                    gb += self.npy_files[i].stat().st_size
-                else:  # 'ram'
-                    self.ims[i], self.im_hw0[i], self.im_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
-                    gb += self.ims[i].nbytes
-                pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
-            pbar.close()
-
-    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
-        # Cache dataset labels, check images and read shapes
-        x = {}  # dict
-        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
-        desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
-        with Pool(NUM_THREADS) as pool:
-            pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
-                        desc=desc,
-                        total=len(self.im_files),
-                        bar_format=BAR_FORMAT)
-            for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
-                nm += nm_f
-                nf += nf_f
-                ne += ne_f
-                nc += nc_f
-                if im_file:
-                    x[im_file] = [lb, shape, segments]
-                if msg:
-                    msgs.append(msg)
-                pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
-
-        pbar.close()
-        if msgs:
-            LOGGER.info('\n'.join(msgs))
-        if nf == 0:
-            LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
-        x['hash'] = get_hash(self.label_files + self.im_files)
-        x['results'] = nf, nm, ne, nc, len(self.im_files)
-        x['msgs'] = msgs  # warnings
-        x['version'] = self.cache_version  # cache version
-        try:
-            np.save(path, x)  # save cache for next time
-            path.with_suffix('.cache.npy').rename(path)  # remove .npy suffix
-            LOGGER.info(f'{prefix}New cache created: {path}')
-        except Exception as e:
-            LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}')  # not writeable
-        return x
-
-    def __len__(self):
-        return len(self.im_files)
-
-    # def __iter__(self):
-    #     self.count = -1
-    #     print('ran dataset iter')
-    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
-    #     return self
-
-    def __getitem__(self, index):
-        index = self.indices[index]  # linear, shuffled, or image_weights
-
-        hyp = self.hyp
-        mosaic = self.mosaic and random.random() < hyp['mosaic']
-        if mosaic:
-            # Load mosaic
-            img, labels = self.load_mosaic(index)
-            shapes = None
-
-            # MixUp augmentation
-            if random.random() < hyp['mixup']:
-                img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
-
-        else:
-            # Load image
-            img, (h0, w0), (h, w) = self.load_image(index)
-
-            # Letterbox
-            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
-            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
-            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
-
-            labels = self.labels[index].copy()
-            if labels.size:  # normalized xywh to pixel xyxy format
-                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
-
-            if self.augment:
-                img, labels = random_perspective(img,
-                                                 labels,
-                                                 degrees=hyp['degrees'],
-                                                 translate=hyp['translate'],
-                                                 scale=hyp['scale'],
-                                                 shear=hyp['shear'],
-                                                 perspective=hyp['perspective'])
-
-        nl = len(labels)  # number of labels
-        if nl:
-            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
-
-        if self.augment:
-            # Albumentations
-            img, labels = self.albumentations(img, labels)
-            nl = len(labels)  # update after albumentations
-
-            # HSV color-space
-            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
-
-            # Flip up-down
-            if random.random() < hyp['flipud']:
-                img = np.flipud(img)
-                if nl:
-                    labels[:, 2] = 1 - labels[:, 2]
-
-            # Flip left-right
-            if random.random() < hyp['fliplr']:
-                img = np.fliplr(img)
-                if nl:
-                    labels[:, 1] = 1 - labels[:, 1]
-
-            # Cutouts
-            # labels = cutout(img, labels, p=0.5)
-            # nl = len(labels)  # update after cutout
-
-        labels_out = torch.zeros((nl, 6))
-        if nl:
-            labels_out[:, 1:] = torch.from_numpy(labels)
-
-        # Convert
-        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
-        img = np.ascontiguousarray(img)
-
-        return torch.from_numpy(img), labels_out, self.im_files[index], shapes
-
-    def load_image(self, i):
-        # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
-        im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
-        if im is None:  # not cached in RAM
-            if fn.exists():  # load npy
-                im = np.load(fn)
-            else:  # read image
-                im = cv2.imread(f)  # BGR
-                assert im is not None, f'Image Not Found {f}'
-            h0, w0 = im.shape[:2]  # orig hw
-            r = self.img_size / max(h0, w0)  # ratio
-            if r != 1:  # if sizes are not equal
-                interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
-                im = cv2.resize(im, (int(w0 * r), int(h0 * r)), interpolation=interp)
-            return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
-        return self.ims[i], self.im_hw0[i], self.im_hw[i]  # im, hw_original, hw_resized
-
-    def cache_images_to_disk(self, i):
-        # Saves an image as an *.npy file for faster loading
-        f = self.npy_files[i]
-        if not f.exists():
-            np.save(f.as_posix(), cv2.imread(self.im_files[i]))
-
-    def load_mosaic(self, index):
-        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
-        labels4, segments4 = [], []
-        s = self.img_size
-        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
-        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
-        random.shuffle(indices)
-        for i, index in enumerate(indices):
-            # Load image
-            img, _, (h, w) = self.load_image(index)
-
-            # place img in img4
-            if i == 0:  # top left
-                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
-                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
-                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
-            elif i == 1:  # top right
-                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
-                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
-            elif i == 2:  # bottom left
-                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
-                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
-            elif i == 3:  # bottom right
-                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
-                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
-
-            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
-            padw = x1a - x1b
-            padh = y1a - y1b
-
-            # Labels
-            labels, segments = self.labels[index].copy(), self.segments[index].copy()
-            if labels.size:
-                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
-                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
-            labels4.append(labels)
-            segments4.extend(segments)
-
-        # Concat/clip labels
-        labels4 = np.concatenate(labels4, 0)
-        for x in (labels4[:, 1:], *segments4):
-            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
-        # img4, labels4 = replicate(img4, labels4)  # replicate
-
-        # Augment
-        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
-        img4, labels4 = random_perspective(img4,
-                                           labels4,
-                                           segments4,
-                                           degrees=self.hyp['degrees'],
-                                           translate=self.hyp['translate'],
-                                           scale=self.hyp['scale'],
-                                           shear=self.hyp['shear'],
-                                           perspective=self.hyp['perspective'],
-                                           border=self.mosaic_border)  # border to remove
-
-        return img4, labels4
-
-    def load_mosaic9(self, index):
-        # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
-        labels9, segments9 = [], []
-        s = self.img_size
-        indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
-        random.shuffle(indices)
-        hp, wp = -1, -1  # height, width previous
-        for i, index in enumerate(indices):
-            # Load image
-            img, _, (h, w) = self.load_image(index)
-
-            # place img in img9
-            if i == 0:  # center
-                img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
-                h0, w0 = h, w
-                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
-            elif i == 1:  # top
-                c = s, s - h, s + w, s
-            elif i == 2:  # top right
-                c = s + wp, s - h, s + wp + w, s
-            elif i == 3:  # right
-                c = s + w0, s, s + w0 + w, s + h
-            elif i == 4:  # bottom right
-                c = s + w0, s + hp, s + w0 + w, s + hp + h
-            elif i == 5:  # bottom
-                c = s + w0 - w, s + h0, s + w0, s + h0 + h
-            elif i == 6:  # bottom left
-                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
-            elif i == 7:  # left
-                c = s - w, s + h0 - h, s, s + h0
-            elif i == 8:  # top left
-                c = s - w, s + h0 - hp - h, s, s + h0 - hp
-
-            padx, pady = c[:2]
-            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords
-
-            # Labels
-            labels, segments = self.labels[index].copy(), self.segments[index].copy()
-            if labels.size:
-                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
-                segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
-            labels9.append(labels)
-            segments9.extend(segments)
-
-            # Image
-            img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
-            hp, wp = h, w  # height, width previous
-
-        # Offset
-        yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border)  # mosaic center x, y
-        img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
-
-        # Concat/clip labels
-        labels9 = np.concatenate(labels9, 0)
-        labels9[:, [1, 3]] -= xc
-        labels9[:, [2, 4]] -= yc
-        c = np.array([xc, yc])  # centers
-        segments9 = [x - c for x in segments9]
-
-        for x in (labels9[:, 1:], *segments9):
-            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
-        # img9, labels9 = replicate(img9, labels9)  # replicate
-
-        # Augment
-        img9, labels9 = random_perspective(img9,
-                                           labels9,
-                                           segments9,
-                                           degrees=self.hyp['degrees'],
-                                           translate=self.hyp['translate'],
-                                           scale=self.hyp['scale'],
-                                           shear=self.hyp['shear'],
-                                           perspective=self.hyp['perspective'],
-                                           border=self.mosaic_border)  # border to remove
-
-        return img9, labels9
-
-    @staticmethod
-    def collate_fn(batch):
-        im, label, path, shapes = zip(*batch)  # transposed
-        for i, lb in enumerate(label):
-            lb[:, 0] = i  # add target image index for build_targets()
-        return torch.stack(im, 0), torch.cat(label, 0), path, shapes
-
-    @staticmethod
-    def collate_fn4(batch):
-        img, label, path, shapes = zip(*batch)  # transposed
-        n = len(shapes) // 4
-        im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
-
-        ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
-        wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
-        s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]])  # scale
-        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
-            i *= 4
-            if random.random() < 0.5:
-                im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear',
-                                   align_corners=False)[0].type(img[i].type())
-                lb = label[i]
-            else:
-                im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
-                lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
-            im4.append(im)
-            label4.append(lb)
-
-        for i, lb in enumerate(label4):
-            lb[:, 0] = i  # add target image index for build_targets()
-
-        return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
-
-
-# Ancillary functions --------------------------------------------------------------------------------------------------
-def flatten_recursive(path=DATASETS_DIR / 'coco128'):
-    # Flatten a recursive directory by bringing all files to top level
-    new_path = Path(f'{str(path)}_flat')
-    if os.path.exists(new_path):
-        shutil.rmtree(new_path)  # delete output folder
-    os.makedirs(new_path)  # make new output folder
-    for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)):
-        shutil.copyfile(file, new_path / Path(file).name)
-
-
-def extract_boxes(path=DATASETS_DIR / 'coco128'):  # from utils.dataloaders import *; extract_boxes()
-    # Convert detection dataset into classification dataset, with one directory per class
-    path = Path(path)  # images dir
-    shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None  # remove existing
-    files = list(path.rglob('*.*'))
-    n = len(files)  # number of files
-    for im_file in tqdm(files, total=n):
-        if im_file.suffix[1:] in IMG_FORMATS:
-            # image
-            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
-            h, w = im.shape[:2]
-
-            # labels
-            lb_file = Path(img2label_paths([str(im_file)])[0])
-            if Path(lb_file).exists():
-                with open(lb_file) as f:
-                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels
-
-                for j, x in enumerate(lb):
-                    c = int(x[0])  # class
-                    f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'  # new filename
-                    if not f.parent.is_dir():
-                        f.parent.mkdir(parents=True)
-
-                    b = x[1:] * [w, h, w, h]  # box
-                    # b[2:] = b[2:].max()  # rectangle to square
-                    b[2:] = b[2:] * 1.2 + 3  # pad
-                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
-
-                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image
-                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
-                    assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
-
-
-def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
-    """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
-    Usage: from utils.dataloaders import *; autosplit()
-    Arguments
-        path:            Path to images directory
-        weights:         Train, val, test weights (list, tuple)
-        annotated_only:  Only use images with an annotated txt file
-    """
-    path = Path(path)  # images dir
-    files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS)  # image files only
-    n = len(files)  # number of files
-    random.seed(0)  # for reproducibility
-    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split
-
-    txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']  # 3 txt files
-    [(path.parent / x).unlink(missing_ok=True) for x in txt]  # remove existing
-
-    print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
-    for i, img in tqdm(zip(indices, files), total=n):
-        if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():  # check label
-            with open(path.parent / txt[i], 'a') as f:
-                f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n')  # add image to txt file
-
-
-def verify_image_label(args):
-    # Verify one image-label pair
-    im_file, lb_file, prefix = args
-    nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', []  # number (missing, found, empty, corrupt), message, segments
-    try:
-        # verify images
-        im = Image.open(im_file)
-        im.verify()  # PIL verify
-        shape = exif_size(im)  # image size
-        assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
-        assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
-        if im.format.lower() in ('jpg', 'jpeg'):
-            with open(im_file, 'rb') as f:
-                f.seek(-2, 2)
-                if f.read() != b'\xff\xd9':  # corrupt JPEG
-                    ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
-                    msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved'
-
-        # verify labels
-        if os.path.isfile(lb_file):
-            nf = 1  # label found
-            with open(lb_file) as f:
-                lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
-                if any(len(x) > 6 for x in lb):  # is segment
-                    classes = np.array([x[0] for x in lb], dtype=np.float32)
-                    segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb]  # (cls, xy1...)
-                    lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
-                lb = np.array(lb, dtype=np.float32)
-            nl = len(lb)
-            if nl:
-                assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
-                assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
-                assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
-                _, i = np.unique(lb, axis=0, return_index=True)
-                if len(i) < nl:  # duplicate row check
-                    lb = lb[i]  # remove duplicates
-                    if segments:
-                        segments = segments[i]
-                    msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed'
-            else:
-                ne = 1  # label empty
-                lb = np.zeros((0, 5), dtype=np.float32)
-        else:
-            nm = 1  # label missing
-            lb = np.zeros((0, 5), dtype=np.float32)
-        return im_file, lb, shape, segments, nm, nf, ne, nc, msg
-    except Exception as e:
-        nc = 1
-        msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
-        return [None, None, None, None, nm, nf, ne, nc, msg]
-
-
-class HUBDatasetStats():
-    """ Return dataset statistics dictionary with images and instances counts per split per class
-    To run in parent directory: export PYTHONPATH="$PWD/yolov5"
-    Usage1: from utils.dataloaders import *; HUBDatasetStats('coco128.yaml', autodownload=True)
-    Usage2: from utils.dataloaders import *; HUBDatasetStats('path/to/coco128_with_yaml.zip')
-    Arguments
-        path:           Path to data.yaml or data.zip (with data.yaml inside data.zip)
-        autodownload:   Attempt to download dataset if not found locally
-    """
-
-    def __init__(self, path='coco128.yaml', autodownload=False):
-        # Initialize class
-        zipped, data_dir, yaml_path = self._unzip(Path(path))
-        try:
-            with open(check_yaml(yaml_path), errors='ignore') as f:
-                data = yaml.safe_load(f)  # data dict
-                if zipped:
-                    data['path'] = data_dir
-        except Exception as e:
-            raise Exception("error/HUB/dataset_stats/yaml_load") from e
-
-        check_dataset(data, autodownload)  # download dataset if missing
-        self.hub_dir = Path(data['path'] + '-hub')
-        self.im_dir = self.hub_dir / 'images'
-        self.im_dir.mkdir(parents=True, exist_ok=True)  # makes /images
-        self.stats = {'nc': data['nc'], 'names': data['names']}  # statistics dictionary
-        self.data = data
-
-    @staticmethod
-    def _find_yaml(dir):
-        # Return data.yaml file
-        files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml'))  # try root level first and then recursive
-        assert files, f'No *.yaml file found in {dir}'
-        if len(files) > 1:
-            files = [f for f in files if f.stem == dir.stem]  # prefer *.yaml files that match dir name
-            assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
-        assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
-        return files[0]
-
-    def _unzip(self, path):
-        # Unzip data.zip
-        if not str(path).endswith('.zip'):  # path is data.yaml
-            return False, None, path
-        assert Path(path).is_file(), f'Error unzipping {path}, file not found'
-        ZipFile(path).extractall(path=path.parent)  # unzip
-        dir = path.with_suffix('')  # dataset directory == zip name
-        assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/'
-        return True, str(dir), self._find_yaml(dir)  # zipped, data_dir, yaml_path
-
-    def _hub_ops(self, f, max_dim=1920):
-        # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
-        f_new = self.im_dir / Path(f).name  # dataset-hub image filename
-        try:  # use PIL
-            im = Image.open(f)
-            r = max_dim / max(im.height, im.width)  # ratio
-            if r < 1.0:  # image too large
-                im = im.resize((int(im.width * r), int(im.height * r)))
-            im.save(f_new, 'JPEG', quality=50, optimize=True)  # save
-        except Exception as e:  # use OpenCV
-            print(f'WARNING: HUB ops PIL failure {f}: {e}')
-            im = cv2.imread(f)
-            im_height, im_width = im.shape[:2]
-            r = max_dim / max(im_height, im_width)  # ratio
-            if r < 1.0:  # image too large
-                im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
-            cv2.imwrite(str(f_new), im)
-
-    def get_json(self, save=False, verbose=False):
-        # Return dataset JSON for Ultralytics HUB
-        def _round(labels):
-            # Update labels to integer class and 6 decimal place floats
-            return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
-
-        for split in 'train', 'val', 'test':
-            if self.data.get(split) is None:
-                self.stats[split] = None  # i.e. no test set
-                continue
-            dataset = LoadImagesAndLabels(self.data[split])  # load dataset
-            x = np.array([
-                np.bincount(label[:, 0].astype(int), minlength=self.data['nc'])
-                for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics')])  # shape(128x80)
-            self.stats[split] = {
-                'instance_stats': {
-                    'total': int(x.sum()),
-                    'per_class': x.sum(0).tolist()},
-                'image_stats': {
-                    'total': dataset.n,
-                    'unlabelled': int(np.all(x == 0, 1).sum()),
-                    'per_class': (x > 0).sum(0).tolist()},
-                'labels': [{
-                    str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]}
-
-        # Save, print and return
-        if save:
-            stats_path = self.hub_dir / 'stats.json'
-            print(f'Saving {stats_path.resolve()}...')
-            with open(stats_path, 'w') as f:
-                json.dump(self.stats, f)  # save stats.json
-        if verbose:
-            print(json.dumps(self.stats, indent=2, sort_keys=False))
-        return self.stats
-
-    def process_images(self):
-        # Compress images for Ultralytics HUB
-        for split in 'train', 'val', 'test':
-            if self.data.get(split) is None:
-                continue
-            dataset = LoadImagesAndLabels(self.data[split])  # load dataset
-            desc = f'{split} images'
-            for _ in tqdm(ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files), total=dataset.n, desc=desc):
-                pass
-        print(f'Done. All images saved to {self.im_dir}')
-        return self.im_dir
-
-
-# Classification dataloaders -------------------------------------------------------------------------------------------
-class ClassificationDataset(torchvision.datasets.ImageFolder):
-    """
-    YOLOv5 Classification Dataset.
-    Arguments
-        root:  Dataset path
-        transform:  torchvision transforms, used by default
-        album_transform: Albumentations transforms, used if installed
-    """
-
-    def __init__(self, root, augment, imgsz, cache=False):
-        super().__init__(root=root)
-        self.torch_transforms = classify_transforms(imgsz)
-        self.album_transforms = classify_albumentations(augment, imgsz) if augment else None
-        self.cache_ram = cache is True or cache == 'ram'
-        self.cache_disk = cache == 'disk'
-        self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples]  # file, index, npy, im
-
-    def __getitem__(self, i):
-        f, j, fn, im = self.samples[i]  # filename, index, filename.with_suffix('.npy'), image
-        if self.album_transforms:
-            if self.cache_ram and im is None:
-                im = self.samples[i][3] = cv2.imread(f)
-            elif self.cache_disk:
-                if not fn.exists():  # load npy
-                    np.save(fn.as_posix(), cv2.imread(f))
-                im = np.load(fn)
-            else:  # read image
-                im = cv2.imread(f)  # BGR
-            sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))["image"]
-        else:
-            sample = self.torch_transforms(self.loader(f))
-        return sample, j
-
-
-def create_classification_dataloader(path,
-                                     imgsz=224,
-                                     batch_size=16,
-                                     augment=True,
-                                     cache=False,
-                                     rank=-1,
-                                     workers=8,
-                                     shuffle=True):
-    # Returns Dataloader object to be used with YOLOv5 Classifier
-    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
-        dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
-    batch_size = min(batch_size, len(dataset))
-    nd = torch.cuda.device_count()
-    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
-    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
-    generator = torch.Generator()
-    generator.manual_seed(0)
-    return InfiniteDataLoader(dataset,
-                              batch_size=batch_size,
-                              shuffle=shuffle and sampler is None,
-                              num_workers=nw,
-                              sampler=sampler,
-                              pin_memory=True,
-                              worker_init_fn=seed_worker,
-                              generator=generator)  # or DataLoader(persistent_workers=True)
diff --git a/yolov5-6.2/utils/docker/Dockerfile b/yolov5-6.2/utils/docker/Dockerfile
deleted file mode 100644
index 2280f209..00000000
--- a/yolov5-6.2/utils/docker/Dockerfile
+++ /dev/null
@@ -1,68 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
-# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
-
-# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
-FROM nvcr.io/nvidia/pytorch:22.07-py3
-RUN rm -rf /opt/pytorch  # remove 1.2GB dir
-
-# Downloads to user config dir
-ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
-
-# Install linux packages
-RUN apt update && apt install --no-install-recommends -y zip htop screen libgl1-mesa-glx
-
-# Install pip packages
-COPY requirements.txt .
-RUN python -m pip install --upgrade pip wheel
-RUN pip uninstall -y Pillow torchtext  # torch torchvision
-RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook Pillow>=9.1.0 \
-    'opencv-python<4.6.0.66' \
-    --extra-index-url https://download.pytorch.org/whl/cu113
-
-# Create working directory
-RUN mkdir -p /usr/src/app
-WORKDIR /usr/src/app
-
-# Copy contents
-# COPY . /usr/src/app  (issues as not a .git directory)
-RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
-
-# Set environment variables
-ENV OMP_NUM_THREADS=8
-
-
-# Usage Examples -------------------------------------------------------------------------------------------------------
-
-# Build and Push
-# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t
-
-# Pull and Run
-# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
-
-# Pull and Run with local directory access
-# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
-
-# Kill all
-# sudo docker kill $(sudo docker ps -q)
-
-# Kill all image-based
-# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
-
-# Bash into running container
-# sudo docker exec -it 5a9b5863d93d bash
-
-# Bash into stopped container
-# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
-
-# Clean up
-# docker system prune -a --volumes
-
-# Update Ubuntu drivers
-# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
-
-# DDP test
-# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
-
-# GCP VM from Image
-# docker.io/ultralytics/yolov5:latest
diff --git a/yolov5-6.2/utils/docker/Dockerfile-arm64 b/yolov5-6.2/utils/docker/Dockerfile-arm64
deleted file mode 100644
index fe92c8d5..00000000
--- a/yolov5-6.2/utils/docker/Dockerfile-arm64
+++ /dev/null
@@ -1,42 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Builds ultralytics/yolov5:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
-# Image is aarch64-compatible for Apple M1 and other ARM architectures i.e. Jetson Nano and Raspberry Pi
-
-# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
-FROM arm64v8/ubuntu:20.04
-
-# Downloads to user config dir
-ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
-
-# Install linux packages
-RUN apt update
-RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt install -y tzdata
-RUN apt install --no-install-recommends -y python3-pip git zip curl htop gcc \
-    libgl1-mesa-glx libglib2.0-0 libpython3.8-dev
-# RUN alias python=python3
-
-# Install pip packages
-COPY requirements.txt .
-RUN python3 -m pip install --upgrade pip wheel
-RUN pip install --no-cache -r requirements.txt gsutil notebook \
-    tensorflow-aarch64
-    # tensorflowjs \
-    # onnx onnx-simplifier onnxruntime \
-    # coremltools openvino-dev \
-
-# Create working directory
-RUN mkdir -p /usr/src/app
-WORKDIR /usr/src/app
-
-# Copy contents
-# COPY . /usr/src/app  (issues as not a .git directory)
-RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
-
-
-# Usage Examples -------------------------------------------------------------------------------------------------------
-
-# Build and Push
-# t=ultralytics/yolov5:latest-M1 && sudo docker build --platform linux/arm64 -f utils/docker/Dockerfile-arm64 -t $t . && sudo docker push $t
-
-# Pull and Run
-# t=ultralytics/yolov5:latest-M1 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
diff --git a/yolov5-6.2/utils/docker/Dockerfile-cpu b/yolov5-6.2/utils/docker/Dockerfile-cpu
deleted file mode 100644
index d61dfeff..00000000
--- a/yolov5-6.2/utils/docker/Dockerfile-cpu
+++ /dev/null
@@ -1,39 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-# Builds ultralytics/yolov5:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
-# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments
-
-# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
-FROM ubuntu:20.04
-
-# Downloads to user config dir
-ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
-
-# Install linux packages
-RUN apt update
-RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt install -y tzdata
-RUN apt install --no-install-recommends -y python3-pip git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3.8-dev
-# RUN alias python=python3
-
-# Install pip packages
-COPY requirements.txt .
-RUN python3 -m pip install --upgrade pip wheel
-RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
-    coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu tensorflowjs \
-    --extra-index-url https://download.pytorch.org/whl/cpu
-
-# Create working directory
-RUN mkdir -p /usr/src/app
-WORKDIR /usr/src/app
-
-# Copy contents
-# COPY . /usr/src/app  (issues as not a .git directory)
-RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
-
-
-# Usage Examples -------------------------------------------------------------------------------------------------------
-
-# Build and Push
-# t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t
-
-# Pull and Run
-# t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
diff --git a/yolov5-6.2/utils/downloads.py b/yolov5-6.2/utils/downloads.py
deleted file mode 100644
index 9d4780ad..00000000
--- a/yolov5-6.2/utils/downloads.py
+++ /dev/null
@@ -1,180 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Download utils
-"""
-
-import logging
-import os
-import platform
-import subprocess
-import time
-import urllib
-from pathlib import Path
-from zipfile import ZipFile
-
-import requests
-import torch
-
-
-def is_url(url, check_online=True):
-    # Check if online file exists
-    try:
-        url = str(url)
-        result = urllib.parse.urlparse(url)
-        assert all([result.scheme, result.netloc, result.path])  # check if is url
-        return (urllib.request.urlopen(url).getcode() == 200) if check_online else True  # check if exists online
-    except (AssertionError, urllib.request.HTTPError):
-        return False
-
-
-def gsutil_getsize(url=''):
-    # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
-    s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
-    return eval(s.split(' ')[0]) if len(s) else 0  # bytes
-
-
-def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
-    # Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
-    from utils.general import LOGGER
-
-    file = Path(file)
-    assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
-    try:  # url1
-        LOGGER.info(f'Downloading {url} to {file}...')
-        torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
-        assert file.exists() and file.stat().st_size > min_bytes, assert_msg  # check
-    except Exception as e:  # url2
-        file.unlink(missing_ok=True)  # remove partial downloads
-        LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
-        os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -")  # curl download, retry and resume on fail
-    finally:
-        if not file.exists() or file.stat().st_size < min_bytes:  # check
-            file.unlink(missing_ok=True)  # remove partial downloads
-            LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
-        LOGGER.info('')
-
-
-def attempt_download(file, repo='ultralytics/yolov5', release='v6.1'):
-    # Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.1', etc.
-    from utils.general import LOGGER
-
-    def github_assets(repository, version='latest'):
-        # Return GitHub repo tag (i.e. 'v6.1') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
-        if version != 'latest':
-            version = f'tags/{version}'  # i.e. tags/v6.1
-        response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json()  # github api
-        return response['tag_name'], [x['name'] for x in response['assets']]  # tag, assets
-
-    file = Path(str(file).strip().replace("'", ''))
-    if not file.exists():
-        # URL specified
-        name = Path(urllib.parse.unquote(str(file))).name  # decode '%2F' to '/' etc.
-        if str(file).startswith(('http:/', 'https:/')):  # download
-            url = str(file).replace(':/', '://')  # Pathlib turns :// -> :/
-            file = name.split('?')[0]  # parse authentication https://url.com/file.txt?auth...
-            if Path(file).is_file():
-                LOGGER.info(f'Found {url} locally at {file}')  # file already exists
-            else:
-                safe_download(file=file, url=url, min_bytes=1E5)
-            return file
-
-        # GitHub assets
-        assets = [
-            'yolov5n.pt', 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov5n6.pt', 'yolov5s6.pt',
-            'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
-        try:
-            tag, assets = github_assets(repo, release)
-        except Exception:
-            try:
-                tag, assets = github_assets(repo)  # latest release
-            except Exception:
-                try:
-                    tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
-                except Exception:
-                    tag = release
-
-        file.parent.mkdir(parents=True, exist_ok=True)  # make parent dir (if required)
-        if name in assets:
-            url3 = 'https://drive.google.com/drive/folders/1EFQTEUeXWSFww0luse2jB9M1QNZQGwNl'  # backup gdrive mirror
-            safe_download(
-                file,
-                url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
-                url2=f'https://storage.googleapis.com/{repo}/{tag}/{name}',  # backup url (optional)
-                min_bytes=1E5,
-                error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}')
-
-    return str(file)
-
-
-def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
-    # Downloads a file from Google Drive. from yolov5.utils.downloads import *; gdrive_download()
-    t = time.time()
-    file = Path(file)
-    cookie = Path('cookie')  # gdrive cookie
-    print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
-    file.unlink(missing_ok=True)  # remove existing file
-    cookie.unlink(missing_ok=True)  # remove existing cookie
-
-    # Attempt file download
-    out = "NUL" if platform.system() == "Windows" else "/dev/null"
-    os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
-    if os.path.exists('cookie'):  # large file
-        s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
-    else:  # small file
-        s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
-    r = os.system(s)  # execute, capture return
-    cookie.unlink(missing_ok=True)  # remove existing cookie
-
-    # Error check
-    if r != 0:
-        file.unlink(missing_ok=True)  # remove partial
-        print('Download error ')  # raise Exception('Download error')
-        return r
-
-    # Unzip if archive
-    if file.suffix == '.zip':
-        print('unzipping... ', end='')
-        ZipFile(file).extractall(path=file.parent)  # unzip
-        file.unlink()  # remove zip
-
-    print(f'Done ({time.time() - t:.1f}s)')
-    return r
-
-
-def get_token(cookie="./cookie"):
-    with open(cookie) as f:
-        for line in f:
-            if "download" in line:
-                return line.split()[-1]
-    return ""
-
-
-# Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
-#
-#
-# def upload_blob(bucket_name, source_file_name, destination_blob_name):
-#     # Uploads a file to a bucket
-#     # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
-#
-#     storage_client = storage.Client()
-#     bucket = storage_client.get_bucket(bucket_name)
-#     blob = bucket.blob(destination_blob_name)
-#
-#     blob.upload_from_filename(source_file_name)
-#
-#     print('File {} uploaded to {}.'.format(
-#         source_file_name,
-#         destination_blob_name))
-#
-#
-# def download_blob(bucket_name, source_blob_name, destination_file_name):
-#     # Uploads a blob from a bucket
-#     storage_client = storage.Client()
-#     bucket = storage_client.get_bucket(bucket_name)
-#     blob = bucket.blob(source_blob_name)
-#
-#     blob.download_to_filename(destination_file_name)
-#
-#     print('Blob {} downloaded to {}.'.format(
-#         source_blob_name,
-#         destination_file_name))
diff --git a/yolov5-6.2/utils/flask_rest_api/README.md b/yolov5-6.2/utils/flask_rest_api/README.md
deleted file mode 100644
index a726acbd..00000000
--- a/yolov5-6.2/utils/flask_rest_api/README.md
+++ /dev/null
@@ -1,73 +0,0 @@
-# Flask REST API
-
-[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are
-commonly used to expose Machine Learning (ML)  models to other services. This folder contains an example REST API
-created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
-
-## Requirements
-
-[Flask](https://palletsprojects.com/p/flask/) is required. Install with:
-
-```shell
-$ pip install Flask
-```
-
-## Run
-
-After Flask installation run:
-
-```shell
-$ python3 restapi.py --port 5000
-```
-
-Then use [curl](https://curl.se/) to perform a request:
-
-```shell
-$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'
-```
-
-The model inference results are returned as a JSON response:
-
-```json
-[
-  {
-    "class": 0,
-    "confidence": 0.8900438547,
-    "height": 0.9318675399,
-    "name": "person",
-    "width": 0.3264600933,
-    "xcenter": 0.7438579798,
-    "ycenter": 0.5207948685
-  },
-  {
-    "class": 0,
-    "confidence": 0.8440024257,
-    "height": 0.7155083418,
-    "name": "person",
-    "width": 0.6546785235,
-    "xcenter": 0.427829951,
-    "ycenter": 0.6334488392
-  },
-  {
-    "class": 27,
-    "confidence": 0.3771208823,
-    "height": 0.3902671337,
-    "name": "tie",
-    "width": 0.0696444362,
-    "xcenter": 0.3675483763,
-    "ycenter": 0.7991207838
-  },
-  {
-    "class": 27,
-    "confidence": 0.3527112305,
-    "height": 0.1540903747,
-    "name": "tie",
-    "width": 0.0336618312,
-    "xcenter": 0.7814827561,
-    "ycenter": 0.5065554976
-  }
-]
-```
-
-An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given
-in `example_request.py`
diff --git a/yolov5-6.2/utils/flask_rest_api/example_request.py b/yolov5-6.2/utils/flask_rest_api/example_request.py
deleted file mode 100644
index 773ad893..00000000
--- a/yolov5-6.2/utils/flask_rest_api/example_request.py
+++ /dev/null
@@ -1,19 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Perform test request
-"""
-
-import pprint
-
-import requests
-
-DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s"
-IMAGE = "zidane.jpg"
-
-# Read image
-with open(IMAGE, "rb") as f:
-    image_data = f.read()
-
-response = requests.post(DETECTION_URL, files={"image": image_data}).json()
-
-pprint.pprint(response)
diff --git a/yolov5-6.2/utils/flask_rest_api/restapi.py b/yolov5-6.2/utils/flask_rest_api/restapi.py
deleted file mode 100644
index 8482435c..00000000
--- a/yolov5-6.2/utils/flask_rest_api/restapi.py
+++ /dev/null
@@ -1,48 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Run a Flask REST API exposing one or more YOLOv5s models
-"""
-
-import argparse
-import io
-
-import torch
-from flask import Flask, request
-from PIL import Image
-
-app = Flask(__name__)
-models = {}
-
-DETECTION_URL = "/v1/object-detection/<model>"
-
-
-@app.route(DETECTION_URL, methods=["POST"])
-def predict(model):
-    if request.method != "POST":
-        return
-
-    if request.files.get("image"):
-        # Method 1
-        # with request.files["image"] as f:
-        #     im = Image.open(io.BytesIO(f.read()))
-
-        # Method 2
-        im_file = request.files["image"]
-        im_bytes = im_file.read()
-        im = Image.open(io.BytesIO(im_bytes))
-
-        if model in models:
-            results = models[model](im, size=640)  # reduce size=320 for faster inference
-            return results.pandas().xyxy[0].to_json(orient="records")
-
-
-if __name__ == "__main__":
-    parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
-    parser.add_argument("--port", default=5000, type=int, help="port number")
-    parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s')
-    opt = parser.parse_args()
-
-    for m in opt.model:
-        models[m] = torch.hub.load("ultralytics/yolov5", m, force_reload=True, skip_validation=True)
-
-    app.run(host="0.0.0.0", port=opt.port)  # debug=True causes Restarting with stat
diff --git a/yolov5-6.2/utils/general.py b/yolov5-6.2/utils/general.py
deleted file mode 100644
index 1c525c45..00000000
--- a/yolov5-6.2/utils/general.py
+++ /dev/null
@@ -1,1050 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-General utils
-"""
-
-import contextlib
-import glob
-import inspect
-import logging
-import math
-import os
-import platform
-import random
-import re
-import shutil
-import signal
-import sys
-import threading
-import time
-import urllib
-from datetime import datetime
-from itertools import repeat
-from multiprocessing.pool import ThreadPool
-from pathlib import Path
-from subprocess import check_output
-from typing import Optional
-from zipfile import ZipFile
-
-import cv2
-import numpy as np
-import pandas as pd
-import pkg_resources as pkg
-import torch
-import torchvision
-import yaml
-
-from utils.downloads import gsutil_getsize
-from utils.metrics import box_iou, fitness
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[1]  # YOLOv5 root directory
-RANK = int(os.getenv('RANK', -1))
-
-# Settings
-DATASETS_DIR = ROOT.parent / 'datasets'  # YOLOv5 datasets directory
-NUM_THREADS = min(8, max(1, os.cpu_count() - 1))  # number of YOLOv5 multiprocessing threads
-AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true'  # global auto-install mode
-VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true'  # global verbose mode
-FONT = 'Arial.ttf'  # https://ultralytics.com/assets/Arial.ttf
-
-torch.set_printoptions(linewidth=320, precision=5, profile='long')
-np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})  # format short g, %precision=5
-pd.options.display.max_columns = 10
-cv2.setNumThreads(0)  # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
-os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS)  # NumExpr max threads
-os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS)  # OpenMP (PyTorch and SciPy)
-
-
-def is_ascii(s=''):
-    # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
-    s = str(s)  # convert list, tuple, None, etc. to str
-    return len(s.encode().decode('ascii', 'ignore')) == len(s)
-
-
-def is_chinese(s='人工智能'):
-    # Is string composed of any Chinese characters?
-    return bool(re.search('[\u4e00-\u9fff]', str(s)))
-
-
-def is_colab():
-    # Is environment a Google Colab instance?
-    return 'COLAB_GPU' in os.environ
-
-
-def is_kaggle():
-    # Is environment a Kaggle Notebook?
-    return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
-
-
-def is_docker() -> bool:
-    """Check if the process runs inside a docker container."""
-    if Path("/.dockerenv").exists():
-        return True
-    try:  # check if docker is in control groups
-        with open("/proc/self/cgroup") as file:
-            return any("docker" in line for line in file)
-    except OSError:
-        return False
-
-
-def is_writeable(dir, test=False):
-    # Return True if directory has write permissions, test opening a file with write permissions if test=True
-    if not test:
-        return os.access(dir, os.W_OK)  # possible issues on Windows
-    file = Path(dir) / 'tmp.txt'
-    try:
-        with open(file, 'w'):  # open file with write permissions
-            pass
-        file.unlink()  # remove file
-        return True
-    except OSError:
-        return False
-
-
-def set_logging(name=None, verbose=VERBOSE):
-    # Sets level and returns logger
-    if is_kaggle() or is_colab():
-        for h in logging.root.handlers:
-            logging.root.removeHandler(h)  # remove all handlers associated with the root logger object
-    rank = int(os.getenv('RANK', -1))  # rank in world for Multi-GPU trainings
-    level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
-    log = logging.getLogger(name)
-    log.setLevel(level)
-    handler = logging.StreamHandler()
-    handler.setFormatter(logging.Formatter("%(message)s"))
-    handler.setLevel(level)
-    log.addHandler(handler)
-
-
-set_logging()  # run before defining LOGGER
-LOGGER = logging.getLogger("yolov5")  # define globally (used in train.py, val.py, detect.py, etc.)
-if platform.system() == 'Windows':
-    for fn in LOGGER.info, LOGGER.warning:
-        setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x)))  # emoji safe logging
-
-
-def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
-    # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
-    env = os.getenv(env_var)
-    if env:
-        path = Path(env)  # use environment variable
-    else:
-        cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'}  # 3 OS dirs
-        path = Path.home() / cfg.get(platform.system(), '')  # OS-specific config dir
-        path = (path if is_writeable(path) else Path('/tmp')) / dir  # GCP and AWS lambda fix, only /tmp is writeable
-    path.mkdir(exist_ok=True)  # make if required
-    return path
-
-
-CONFIG_DIR = user_config_dir()  # Ultralytics settings dir
-
-
-class Profile(contextlib.ContextDecorator):
-    # Usage: @Profile() decorator or 'with Profile():' context manager
-    def __enter__(self):
-        self.start = time.time()
-
-    def __exit__(self, type, value, traceback):
-        print(f'Profile results: {time.time() - self.start:.5f}s')
-
-
-class Timeout(contextlib.ContextDecorator):
-    # Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
-    def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
-        self.seconds = int(seconds)
-        self.timeout_message = timeout_msg
-        self.suppress = bool(suppress_timeout_errors)
-
-    def _timeout_handler(self, signum, frame):
-        raise TimeoutError(self.timeout_message)
-
-    def __enter__(self):
-        if platform.system() != 'Windows':  # not supported on Windows
-            signal.signal(signal.SIGALRM, self._timeout_handler)  # Set handler for SIGALRM
-            signal.alarm(self.seconds)  # start countdown for SIGALRM to be raised
-
-    def __exit__(self, exc_type, exc_val, exc_tb):
-        if platform.system() != 'Windows':
-            signal.alarm(0)  # Cancel SIGALRM if it's scheduled
-            if self.suppress and exc_type is TimeoutError:  # Suppress TimeoutError
-                return True
-
-
-class WorkingDirectory(contextlib.ContextDecorator):
-    # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
-    def __init__(self, new_dir):
-        self.dir = new_dir  # new dir
-        self.cwd = Path.cwd().resolve()  # current dir
-
-    def __enter__(self):
-        os.chdir(self.dir)
-
-    def __exit__(self, exc_type, exc_val, exc_tb):
-        os.chdir(self.cwd)
-
-
-def try_except(func):
-    # try-except function. Usage: @try_except decorator
-    def handler(*args, **kwargs):
-        try:
-            func(*args, **kwargs)
-        except Exception as e:
-            print(e)
-
-    return handler
-
-
-def threaded(func):
-    # Multi-threads a target function and returns thread. Usage: @threaded decorator
-    def wrapper(*args, **kwargs):
-        thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
-        thread.start()
-        return thread
-
-    return wrapper
-
-
-def methods(instance):
-    # Get class/instance methods
-    return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
-
-
-def print_args(args: Optional[dict] = None, show_file=True, show_fcn=False):
-    # Print function arguments (optional args dict)
-    x = inspect.currentframe().f_back  # previous frame
-    file, _, fcn, _, _ = inspect.getframeinfo(x)
-    if args is None:  # get args automatically
-        args, _, _, frm = inspect.getargvalues(x)
-        args = {k: v for k, v in frm.items() if k in args}
-    try:
-        file = Path(file).resolve().relative_to(ROOT).with_suffix('')
-    except ValueError:
-        file = Path(file).stem
-    s = (f'{file}: ' if show_file else '') + (f'{fcn}: ' if show_fcn else '')
-    LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
-
-
-def init_seeds(seed=0, deterministic=False):
-    # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
-    # cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible
-    import torch.backends.cudnn as cudnn
-
-    if deterministic and check_version(torch.__version__, '1.12.0'):  # https://github.com/ultralytics/yolov5/pull/8213
-        torch.use_deterministic_algorithms(True)
-        os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
-        os.environ['PYTHONHASHSEED'] = str(seed)
-
-    random.seed(seed)
-    np.random.seed(seed)
-    torch.manual_seed(seed)
-    cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)
-    torch.cuda.manual_seed(seed)
-    torch.cuda.manual_seed_all(seed)  # for Multi-GPU, exception safe
-
-
-def intersect_dicts(da, db, exclude=()):
-    # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
-    return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
-
-
-def get_latest_run(search_dir='.'):
-    # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
-    last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
-    return max(last_list, key=os.path.getctime) if last_list else ''
-
-
-def emojis(str=''):
-    # Return platform-dependent emoji-safe version of string
-    return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
-
-
-def file_age(path=__file__):
-    # Return days since last file update
-    dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime))  # delta
-    return dt.days  # + dt.seconds / 86400  # fractional days
-
-
-def file_date(path=__file__):
-    # Return human-readable file modification date, i.e. '2021-3-26'
-    t = datetime.fromtimestamp(Path(path).stat().st_mtime)
-    return f'{t.year}-{t.month}-{t.day}'
-
-
-def file_size(path):
-    # Return file/dir size (MB)
-    mb = 1 << 20  # bytes to MiB (1024 ** 2)
-    path = Path(path)
-    if path.is_file():
-        return path.stat().st_size / mb
-    elif path.is_dir():
-        return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
-    else:
-        return 0.0
-
-
-def check_online():
-    # Check internet connectivity
-    import socket
-    try:
-        socket.create_connection(("1.1.1.1", 443), 5)  # check host accessibility
-        return True
-    except OSError:
-        return False
-
-
-def git_describe(path=ROOT):  # path must be a directory
-    # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
-    try:
-        assert (Path(path) / '.git').is_dir()
-        return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
-    except Exception:
-        return ''
-
-
-@try_except
-@WorkingDirectory(ROOT)
-def check_git_status(repo='ultralytics/yolov5'):
-    # YOLOv5 status check, recommend 'git pull' if code is out of date
-    url = f'https://github.com/{repo}'
-    msg = f', for updates see {url}'
-    s = colorstr('github: ')  # string
-    assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
-    assert check_online(), s + 'skipping check (offline)' + msg
-
-    splits = re.split(pattern=r'\s', string=check_output('git remote -v', shell=True).decode())
-    matches = [repo in s for s in splits]
-    if any(matches):
-        remote = splits[matches.index(True) - 1]
-    else:
-        remote = 'ultralytics'
-        check_output(f'git remote add {remote} {url}', shell=True)
-    check_output(f'git fetch {remote}', shell=True, timeout=5)  # git fetch
-    branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip()  # checked out
-    n = int(check_output(f'git rev-list {branch}..{remote}/master --count', shell=True))  # commits behind
-    if n > 0:
-        pull = 'git pull' if remote == 'origin' else f'git pull {remote} master'
-        s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `{pull}` or `git clone {url}` to update."
-    else:
-        s += f'up to date with {url} ✅'
-    LOGGER.info(s)
-
-
-def check_python(minimum='3.7.0'):
-    # Check current python version vs. required python version
-    check_version(platform.python_version(), minimum, name='Python ', hard=True)
-
-
-def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
-    # Check version vs. required version
-    current, minimum = (pkg.parse_version(x) for x in (current, minimum))
-    result = (current == minimum) if pinned else (current >= minimum)  # bool
-    s = f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed'  # string
-    if hard:
-        assert result, s  # assert min requirements met
-    if verbose and not result:
-        LOGGER.warning(s)
-    return result
-
-
-@try_except
-def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=()):
-    # Check installed dependencies meet YOLOv5 requirements (pass *.txt file or list of packages)
-    prefix = colorstr('red', 'bold', 'requirements:')
-    check_python()  # check python version
-    if isinstance(requirements, (str, Path)):  # requirements.txt file
-        file = Path(requirements)
-        assert file.exists(), f"{prefix} {file.resolve()} not found, check failed."
-        with file.open() as f:
-            requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
-    else:  # list or tuple of packages
-        requirements = [x for x in requirements if x not in exclude]
-
-    n = 0  # number of packages updates
-    for i, r in enumerate(requirements):
-        try:
-            pkg.require(r)
-        except Exception:  # DistributionNotFound or VersionConflict if requirements not met
-            s = f"{prefix} {r} not found and is required by YOLOv5"
-            if install and AUTOINSTALL:  # check environment variable
-                LOGGER.info(f"{s}, attempting auto-update...")
-                try:
-                    assert check_online(), f"'pip install {r}' skipped (offline)"
-                    LOGGER.info(check_output(f'pip install "{r}" {cmds[i] if cmds else ""}', shell=True).decode())
-                    n += 1
-                except Exception as e:
-                    LOGGER.warning(f'{prefix} {e}')
-            else:
-                LOGGER.info(f'{s}. Please install and rerun your command.')
-
-    if n:  # if packages updated
-        source = file.resolve() if 'file' in locals() else requirements
-        s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
-            f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
-        LOGGER.info(s)
-
-
-def check_img_size(imgsz, s=32, floor=0):
-    # Verify image size is a multiple of stride s in each dimension
-    if isinstance(imgsz, int):  # integer i.e. img_size=640
-        new_size = max(make_divisible(imgsz, int(s)), floor)
-    else:  # list i.e. img_size=[640, 480]
-        imgsz = list(imgsz)  # convert to list if tuple
-        new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
-    if new_size != imgsz:
-        LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
-    return new_size
-
-
-def check_imshow():
-    # Check if environment supports image displays
-    try:
-        assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
-        assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
-        cv2.imshow('test', np.zeros((1, 1, 3)))
-        cv2.waitKey(1)
-        cv2.destroyAllWindows()
-        cv2.waitKey(1)
-        return True
-    except Exception as e:
-        LOGGER.warning(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
-        return False
-
-
-def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
-    # Check file(s) for acceptable suffix
-    if file and suffix:
-        if isinstance(suffix, str):
-            suffix = [suffix]
-        for f in file if isinstance(file, (list, tuple)) else [file]:
-            s = Path(f).suffix.lower()  # file suffix
-            if len(s):
-                assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
-
-
-def check_yaml(file, suffix=('.yaml', '.yml')):
-    # Search/download YAML file (if necessary) and return path, checking suffix
-    return check_file(file, suffix)
-
-
-def check_file(file, suffix=''):
-    # Search/download file (if necessary) and return path
-    check_suffix(file, suffix)  # optional
-    file = str(file)  # convert to str()
-    if Path(file).is_file() or not file:  # exists
-        return file
-    elif file.startswith(('http:/', 'https:/')):  # download
-        url = file  # warning: Pathlib turns :// -> :/
-        file = Path(urllib.parse.unquote(file).split('?')[0]).name  # '%2F' to '/', split https://url.com/file.txt?auth
-        if Path(file).is_file():
-            LOGGER.info(f'Found {url} locally at {file}')  # file already exists
-        else:
-            LOGGER.info(f'Downloading {url} to {file}...')
-            torch.hub.download_url_to_file(url, file)
-            assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}'  # check
-        return file
-    elif file.startswith('clearml://'):  # ClearML Dataset ID
-        assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'."
-        return file
-    else:  # search
-        files = []
-        for d in 'data', 'models', 'utils':  # search directories
-            files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True))  # find file
-        assert len(files), f'File not found: {file}'  # assert file was found
-        assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}"  # assert unique
-        return files[0]  # return file
-
-
-def check_font(font=FONT, progress=False):
-    # Download font to CONFIG_DIR if necessary
-    font = Path(font)
-    file = CONFIG_DIR / font.name
-    if not font.exists() and not file.exists():
-        url = "https://ultralytics.com/assets/" + font.name
-        LOGGER.info(f'Downloading {url} to {file}...')
-        torch.hub.download_url_to_file(url, str(file), progress=progress)
-
-
-def check_dataset(data, autodownload=True):
-    # Download, check and/or unzip dataset if not found locally
-
-    # Download (optional)
-    extract_dir = ''
-    if isinstance(data, (str, Path)) and str(data).endswith('.zip'):  # i.e. gs://bucket/dir/coco128.zip
-        download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1)
-        data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
-        extract_dir, autodownload = data.parent, False
-
-    # Read yaml (optional)
-    if isinstance(data, (str, Path)):
-        with open(data, errors='ignore') as f:
-            data = yaml.safe_load(f)  # dictionary
-
-    # Checks
-    for k in 'train', 'val', 'nc':
-        assert k in data, f"data.yaml '{k}:' field missing ❌"
-    if 'names' not in data:
-        LOGGER.warning("data.yaml 'names:' field missing ⚠️, assigning default names 'class0', 'class1', etc.")
-        data['names'] = [f'class{i}' for i in range(data['nc'])]  # default names
-
-    # Resolve paths
-    path = Path(extract_dir or data.get('path') or '')  # optional 'path' default to '.'
-    if not path.is_absolute():
-        path = (ROOT / path).resolve()
-    for k in 'train', 'val', 'test':
-        if data.get(k):  # prepend path
-            data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
-
-    # Parse yaml
-    train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
-    if val:
-        val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]  # val path
-        if not all(x.exists() for x in val):
-            LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()])
-            if not s or not autodownload:
-                raise Exception('Dataset not found ❌')
-            t = time.time()
-            root = path.parent if 'path' in data else '..'  # unzip directory i.e. '../'
-            if s.startswith('http') and s.endswith('.zip'):  # URL
-                f = Path(s).name  # filename
-                LOGGER.info(f'Downloading {s} to {f}...')
-                torch.hub.download_url_to_file(s, f)
-                Path(root).mkdir(parents=True, exist_ok=True)  # create root
-                ZipFile(f).extractall(path=root)  # unzip
-                Path(f).unlink()  # remove zip
-                r = None  # success
-            elif s.startswith('bash '):  # bash script
-                LOGGER.info(f'Running {s} ...')
-                r = os.system(s)
-            else:  # python script
-                r = exec(s, {'yaml': data})  # return None
-            dt = f'({round(time.time() - t, 1)}s)'
-            s = f"success ✅ {dt}, saved to {colorstr('bold', root)}" if r in (0, None) else f"failure {dt} ❌"
-            LOGGER.info(f"Dataset download {s}")
-    check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True)  # download fonts
-    return data  # dictionary
-
-
-def check_amp(model):
-    # Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation
-    from models.common import AutoShape, DetectMultiBackend
-
-    def amp_allclose(model, im):
-        # All close FP32 vs AMP results
-        m = AutoShape(model, verbose=False)  # model
-        a = m(im).xywhn[0]  # FP32 inference
-        m.amp = True
-        b = m(im).xywhn[0]  # AMP inference
-        return a.shape == b.shape and torch.allclose(a, b, atol=0.1)  # close to 10% absolute tolerance
-
-    prefix = colorstr('AMP: ')
-    device = next(model.parameters()).device  # get model device
-    if device.type == 'cpu':
-        return False  # AMP disabled on CPU
-    f = ROOT / 'data' / 'images' / 'bus.jpg'  # image to check
-    im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3))
-    try:
-        assert amp_allclose(model, im) or amp_allclose(DetectMultiBackend('yolov5n.pt', device), im)
-        LOGGER.info(f'{prefix}checks passed ✅')
-        return True
-    except Exception:
-        help_url = 'https://github.com/ultralytics/yolov5/issues/7908'
-        LOGGER.warning(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}')
-        return False
-
-
-def yaml_load(file='data.yaml'):
-    # Single-line safe yaml loading
-    with open(file, errors='ignore') as f:
-        return yaml.safe_load(f)
-
-
-def yaml_save(file='data.yaml', data={}):
-    # Single-line safe yaml saving
-    with open(file, 'w') as f:
-        yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
-
-
-def url2file(url):
-    # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
-    url = str(Path(url)).replace(':/', '://')  # Pathlib turns :// -> :/
-    return Path(urllib.parse.unquote(url)).name.split('?')[0]  # '%2F' to '/', split https://url.com/file.txt?auth
-
-
-def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3):
-    # Multi-threaded file download and unzip function, used in data.yaml for autodownload
-    def download_one(url, dir):
-        # Download 1 file
-        success = True
-        f = dir / Path(url).name  # filename
-        if Path(url).is_file():  # exists in current path
-            Path(url).rename(f)  # move to dir
-        elif not f.exists():
-            LOGGER.info(f'Downloading {url} to {f}...')
-            for i in range(retry + 1):
-                if curl:
-                    s = 'sS' if threads > 1 else ''  # silent
-                    r = os.system(f'curl -{s}L "{url}" -o "{f}" --retry 9 -C -')  # curl download with retry, continue
-                    success = r == 0
-                else:
-                    torch.hub.download_url_to_file(url, f, progress=threads == 1)  # torch download
-                    success = f.is_file()
-                if success:
-                    break
-                elif i < retry:
-                    LOGGER.warning(f'Download failure, retrying {i + 1}/{retry} {url}...')
-                else:
-                    LOGGER.warning(f'Failed to download {url}...')
-
-        if unzip and success and f.suffix in ('.zip', '.tar', '.gz'):
-            LOGGER.info(f'Unzipping {f}...')
-            if f.suffix == '.zip':
-                ZipFile(f).extractall(path=dir)  # unzip
-            elif f.suffix == '.tar':
-                os.system(f'tar xf {f} --directory {f.parent}')  # unzip
-            elif f.suffix == '.gz':
-                os.system(f'tar xfz {f} --directory {f.parent}')  # unzip
-            if delete:
-                f.unlink()  # remove zip
-
-    dir = Path(dir)
-    dir.mkdir(parents=True, exist_ok=True)  # make directory
-    if threads > 1:
-        pool = ThreadPool(threads)
-        pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))  # multi-threaded
-        pool.close()
-        pool.join()
-    else:
-        for u in [url] if isinstance(url, (str, Path)) else url:
-            download_one(u, dir)
-
-
-def make_divisible(x, divisor):
-    # Returns nearest x divisible by divisor
-    if isinstance(divisor, torch.Tensor):
-        divisor = int(divisor.max())  # to int
-    return math.ceil(x / divisor) * divisor
-
-
-def clean_str(s):
-    # Cleans a string by replacing special characters with underscore _
-    return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
-
-
-def one_cycle(y1=0.0, y2=1.0, steps=100):
-    # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
-    return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
-
-
-def colorstr(*input):
-    # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e.  colorstr('blue', 'hello world')
-    *args, string = input if len(input) > 1 else ('blue', 'bold', input[0])  # color arguments, string
-    colors = {
-        'black': '\033[30m',  # basic colors
-        'red': '\033[31m',
-        'green': '\033[32m',
-        'yellow': '\033[33m',
-        'blue': '\033[34m',
-        'magenta': '\033[35m',
-        'cyan': '\033[36m',
-        'white': '\033[37m',
-        'bright_black': '\033[90m',  # bright colors
-        'bright_red': '\033[91m',
-        'bright_green': '\033[92m',
-        'bright_yellow': '\033[93m',
-        'bright_blue': '\033[94m',
-        'bright_magenta': '\033[95m',
-        'bright_cyan': '\033[96m',
-        'bright_white': '\033[97m',
-        'end': '\033[0m',  # misc
-        'bold': '\033[1m',
-        'underline': '\033[4m'}
-    return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
-
-
-def labels_to_class_weights(labels, nc=80):
-    # Get class weights (inverse frequency) from training labels
-    if labels[0] is None:  # no labels loaded
-        return torch.Tensor()
-
-    labels = np.concatenate(labels, 0)  # labels.shape = (866643, 5) for COCO
-    classes = labels[:, 0].astype(int)  # labels = [class xywh]
-    weights = np.bincount(classes, minlength=nc)  # occurrences per class
-
-    # Prepend gridpoint count (for uCE training)
-    # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum()  # gridpoints per image
-    # weights = np.hstack([gpi * len(labels)  - weights.sum() * 9, weights * 9]) ** 0.5  # prepend gridpoints to start
-
-    weights[weights == 0] = 1  # replace empty bins with 1
-    weights = 1 / weights  # number of targets per class
-    weights /= weights.sum()  # normalize
-    return torch.from_numpy(weights).float()
-
-
-def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
-    # Produces image weights based on class_weights and image contents
-    # Usage: index = random.choices(range(n), weights=image_weights, k=1)  # weighted image sample
-    class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels])
-    return (class_weights.reshape(1, nc) * class_counts).sum(1)
-
-
-def coco80_to_coco91_class():  # converts 80-index (val2014) to 91-index (paper)
-    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
-    # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
-    # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
-    # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
-    # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
-    return [
-        1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
-        35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
-        64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
-
-
-def xyxy2xywh(x):
-    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
-    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
-    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
-    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
-    y[:, 2] = x[:, 2] - x[:, 0]  # width
-    y[:, 3] = x[:, 3] - x[:, 1]  # height
-    return y
-
-
-def xywh2xyxy(x):
-    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
-    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
-    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
-    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
-    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
-    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
-    return y
-
-
-def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
-    # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
-    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
-    y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw  # top left x
-    y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh  # top left y
-    y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw  # bottom right x
-    y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh  # bottom right y
-    return y
-
-
-def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
-    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
-    if clip:
-        clip_coords(x, (h - eps, w - eps))  # warning: inplace clip
-    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
-    y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w  # x center
-    y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h  # y center
-    y[:, 2] = (x[:, 2] - x[:, 0]) / w  # width
-    y[:, 3] = (x[:, 3] - x[:, 1]) / h  # height
-    return y
-
-
-def xyn2xy(x, w=640, h=640, padw=0, padh=0):
-    # Convert normalized segments into pixel segments, shape (n,2)
-    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
-    y[:, 0] = w * x[:, 0] + padw  # top left x
-    y[:, 1] = h * x[:, 1] + padh  # top left y
-    return y
-
-
-def segment2box(segment, width=640, height=640):
-    # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
-    x, y = segment.T  # segment xy
-    inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
-    x, y, = x[inside], y[inside]
-    return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4))  # xyxy
-
-
-def segments2boxes(segments):
-    # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
-    boxes = []
-    for s in segments:
-        x, y = s.T  # segment xy
-        boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
-    return xyxy2xywh(np.array(boxes))  # cls, xywh
-
-
-def resample_segments(segments, n=1000):
-    # Up-sample an (n,2) segment
-    for i, s in enumerate(segments):
-        s = np.concatenate((s, s[0:1, :]), axis=0)
-        x = np.linspace(0, len(s) - 1, n)
-        xp = np.arange(len(s))
-        segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T  # segment xy
-    return segments
-
-
-def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
-    # Rescale coords (xyxy) from img1_shape to img0_shape
-    if ratio_pad is None:  # calculate from img0_shape
-        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
-        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
-    else:
-        gain = ratio_pad[0][0]
-        pad = ratio_pad[1]
-
-    coords[:, [0, 2]] -= pad[0]  # x padding
-    coords[:, [1, 3]] -= pad[1]  # y padding
-    coords[:, :4] /= gain
-    clip_coords(coords, img0_shape)
-    return coords
-
-
-def clip_coords(boxes, shape):
-    # Clip bounding xyxy bounding boxes to image shape (height, width)
-    if isinstance(boxes, torch.Tensor):  # faster individually
-        boxes[:, 0].clamp_(0, shape[1])  # x1
-        boxes[:, 1].clamp_(0, shape[0])  # y1
-        boxes[:, 2].clamp_(0, shape[1])  # x2
-        boxes[:, 3].clamp_(0, shape[0])  # y2
-    else:  # np.array (faster grouped)
-        boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1])  # x1, x2
-        boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0])  # y1, y2
-
-
-def non_max_suppression(prediction,
-                        conf_thres=0.25,
-                        iou_thres=0.45,
-                        classes=None,
-                        agnostic=False,
-                        multi_label=False,
-                        labels=(),
-                        max_det=300):
-    """Non-Maximum Suppression (NMS) on inference results to reject overlapping bounding boxes
-
-    Returns:
-         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
-    """
-
-    bs = prediction.shape[0]  # batch size
-    nc = prediction.shape[2] - 5  # number of classes
-    xc = prediction[..., 4] > conf_thres  # candidates
-
-    # Checks
-    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
-    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
-
-    # Settings
-    # min_wh = 2  # (pixels) minimum box width and height
-    max_wh = 7680  # (pixels) maximum box width and height
-    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
-    time_limit = 0.3 + 0.03 * bs  # seconds to quit after
-    redundant = True  # require redundant detections
-    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
-    merge = False  # use merge-NMS
-
-    t = time.time()
-    output = [torch.zeros((0, 6), device=prediction.device)] * bs
-    for xi, x in enumerate(prediction):  # image index, image inference
-        # Apply constraints
-        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
-        x = x[xc[xi]]  # confidence
-
-        # Cat apriori labels if autolabelling
-        if labels and len(labels[xi]):
-            lb = labels[xi]
-            v = torch.zeros((len(lb), nc + 5), device=x.device)
-            v[:, :4] = lb[:, 1:5]  # box
-            v[:, 4] = 1.0  # conf
-            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
-            x = torch.cat((x, v), 0)
-
-        # If none remain process next image
-        if not x.shape[0]:
-            continue
-
-        # Compute conf
-        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf
-
-        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
-        box = xywh2xyxy(x[:, :4])
-
-        # Detections matrix nx6 (xyxy, conf, cls)
-        if multi_label:
-            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
-            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
-        else:  # best class only
-            conf, j = x[:, 5:].max(1, keepdim=True)
-            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
-
-        # Filter by class
-        if classes is not None:
-            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
-
-        # Apply finite constraint
-        # if not torch.isfinite(x).all():
-        #     x = x[torch.isfinite(x).all(1)]
-
-        # Check shape
-        n = x.shape[0]  # number of boxes
-        if not n:  # no boxes
-            continue
-        elif n > max_nms:  # excess boxes
-            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence
-
-        # Batched NMS
-        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
-        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
-        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
-        if i.shape[0] > max_det:  # limit detections
-            i = i[:max_det]
-        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
-            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
-            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
-            weights = iou * scores[None]  # box weights
-            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
-            if redundant:
-                i = i[iou.sum(1) > 1]  # require redundancy
-
-        output[xi] = x[i]
-        if (time.time() - t) > time_limit:
-            LOGGER.warning(f'WARNING: NMS time limit {time_limit:.3f}s exceeded')
-            break  # time limit exceeded
-
-    return output
-
-
-def strip_optimizer(f='best.pt', s=''):  # from utils.general import *; strip_optimizer()
-    # Strip optimizer from 'f' to finalize training, optionally save as 's'
-    x = torch.load(f, map_location=torch.device('cpu'))
-    if x.get('ema'):
-        x['model'] = x['ema']  # replace model with ema
-    for k in 'optimizer', 'best_fitness', 'wandb_id', 'ema', 'updates':  # keys
-        x[k] = None
-    x['epoch'] = -1
-    x['model'].half()  # to FP16
-    for p in x['model'].parameters():
-        p.requires_grad = False
-    torch.save(x, s or f)
-    mb = os.path.getsize(s or f) / 1E6  # filesize
-    LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
-
-
-def print_mutation(results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
-    evolve_csv = save_dir / 'evolve.csv'
-    evolve_yaml = save_dir / 'hyp_evolve.yaml'
-    keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
-            'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys())  # [results + hyps]
-    keys = tuple(x.strip() for x in keys)
-    vals = results + tuple(hyp.values())
-    n = len(keys)
-
-    # Download (optional)
-    if bucket:
-        url = f'gs://{bucket}/evolve.csv'
-        if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
-            os.system(f'gsutil cp {url} {save_dir}')  # download evolve.csv if larger than local
-
-    # Log to evolve.csv
-    s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n')  # add header
-    with open(evolve_csv, 'a') as f:
-        f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
-
-    # Save yaml
-    with open(evolve_yaml, 'w') as f:
-        data = pd.read_csv(evolve_csv)
-        data = data.rename(columns=lambda x: x.strip())  # strip keys
-        i = np.argmax(fitness(data.values[:, :4]))  #
-        generations = len(data)
-        f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' +
-                f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) +
-                '\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
-        yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
-
-    # Print to screen
-    LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix +
-                ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}'
-                                                                                         for x in vals) + '\n\n')
-
-    if bucket:
-        os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}')  # upload
-
-
-def apply_classifier(x, model, img, im0):
-    # Apply a second stage classifier to YOLO outputs
-    # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
-    im0 = [im0] if isinstance(im0, np.ndarray) else im0
-    for i, d in enumerate(x):  # per image
-        if d is not None and len(d):
-            d = d.clone()
-
-            # Reshape and pad cutouts
-            b = xyxy2xywh(d[:, :4])  # boxes
-            b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # rectangle to square
-            b[:, 2:] = b[:, 2:] * 1.3 + 30  # pad
-            d[:, :4] = xywh2xyxy(b).long()
-
-            # Rescale boxes from img_size to im0 size
-            scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
-
-            # Classes
-            pred_cls1 = d[:, 5].long()
-            ims = []
-            for a in d:
-                cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
-                im = cv2.resize(cutout, (224, 224))  # BGR
-
-                im = im[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
-                im = np.ascontiguousarray(im, dtype=np.float32)  # uint8 to float32
-                im /= 255  # 0 - 255 to 0.0 - 1.0
-                ims.append(im)
-
-            pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1)  # classifier prediction
-            x[i] = x[i][pred_cls1 == pred_cls2]  # retain matching class detections
-
-    return x
-
-
-def increment_path(path, exist_ok=False, sep='', mkdir=False):
-    # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
-    path = Path(path)  # os-agnostic
-    if path.exists() and not exist_ok:
-        path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
-
-        # Method 1
-        for n in range(2, 9999):
-            p = f'{path}{sep}{n}{suffix}'  # increment path
-            if not os.path.exists(p):  #
-                break
-        path = Path(p)
-
-        # Method 2 (deprecated)
-        # dirs = glob.glob(f"{path}{sep}*")  # similar paths
-        # matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs]
-        # i = [int(m.groups()[0]) for m in matches if m]  # indices
-        # n = max(i) + 1 if i else 2  # increment number
-        # path = Path(f"{path}{sep}{n}{suffix}")  # increment path
-
-    if mkdir:
-        path.mkdir(parents=True, exist_ok=True)  # make directory
-
-    return path
-
-
-# OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------
-imshow_ = cv2.imshow  # copy to avoid recursion errors
-
-
-def imread(path, flags=cv2.IMREAD_COLOR):
-    return cv2.imdecode(np.fromfile(path, np.uint8), flags)
-
-
-def imwrite(path, im):
-    try:
-        cv2.imencode(Path(path).suffix, im)[1].tofile(path)
-        return True
-    except Exception:
-        return False
-
-
-def imshow(path, im):
-    imshow_(path.encode('unicode_escape').decode(), im)
-
-
-cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow  # redefine
-
-# Variables ------------------------------------------------------------------------------------------------------------
-NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns  # terminal window size for tqdm
diff --git a/yolov5-6.2/utils/google_app_engine/Dockerfile b/yolov5-6.2/utils/google_app_engine/Dockerfile
deleted file mode 100644
index 0155618f..00000000
--- a/yolov5-6.2/utils/google_app_engine/Dockerfile
+++ /dev/null
@@ -1,25 +0,0 @@
-FROM gcr.io/google-appengine/python
-
-# Create a virtualenv for dependencies. This isolates these packages from
-# system-level packages.
-# Use -p python3 or -p python3.7 to select python version. Default is version 2.
-RUN virtualenv /env -p python3
-
-# Setting these environment variables are the same as running
-# source /env/bin/activate.
-ENV VIRTUAL_ENV /env
-ENV PATH /env/bin:$PATH
-
-RUN apt-get update && apt-get install -y python-opencv
-
-# Copy the application's requirements.txt and run pip to install all
-# dependencies into the virtualenv.
-ADD requirements.txt /app/requirements.txt
-RUN pip install -r /app/requirements.txt
-
-# Add the application source code.
-ADD . /app
-
-# Run a WSGI server to serve the application. gunicorn must be declared as
-# a dependency in requirements.txt.
-CMD gunicorn -b :$PORT main:app
diff --git a/yolov5-6.2/utils/google_app_engine/additional_requirements.txt b/yolov5-6.2/utils/google_app_engine/additional_requirements.txt
deleted file mode 100644
index 42d7ffc0..00000000
--- a/yolov5-6.2/utils/google_app_engine/additional_requirements.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-# add these requirements in your app on top of the existing ones
-pip==21.1
-Flask==1.0.2
-gunicorn==19.9.0
diff --git a/yolov5-6.2/utils/google_app_engine/app.yaml b/yolov5-6.2/utils/google_app_engine/app.yaml
deleted file mode 100644
index 5056b7c1..00000000
--- a/yolov5-6.2/utils/google_app_engine/app.yaml
+++ /dev/null
@@ -1,14 +0,0 @@
-runtime: custom
-env: flex
-
-service: yolov5app
-
-liveness_check:
-  initial_delay_sec: 600
-
-manual_scaling:
-  instances: 1
-resources:
-  cpu: 1
-  memory_gb: 4
-  disk_size_gb: 20
diff --git a/yolov5-6.2/utils/loggers/__init__.py b/yolov5-6.2/utils/loggers/__init__.py
deleted file mode 100644
index 8ec846f8..00000000
--- a/yolov5-6.2/utils/loggers/__init__.py
+++ /dev/null
@@ -1,308 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Logging utils
-"""
-
-import os
-import warnings
-from pathlib import Path
-
-import pkg_resources as pkg
-import torch
-from torch.utils.tensorboard import SummaryWriter
-
-from utils.general import colorstr, cv2
-from utils.loggers.clearml.clearml_utils import ClearmlLogger
-from utils.loggers.wandb.wandb_utils import WandbLogger
-from utils.plots import plot_images, plot_results
-from utils.torch_utils import de_parallel
-
-LOGGERS = ('csv', 'tb', 'wandb', 'clearml')  # *.csv, TensorBoard, Weights & Biases, ClearML
-RANK = int(os.getenv('RANK', -1))
-
-try:
-    import wandb
-
-    assert hasattr(wandb, '__version__')  # verify package import not local dir
-    if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}:
-        try:
-            wandb_login_success = wandb.login(timeout=30)
-        except wandb.errors.UsageError:  # known non-TTY terminal issue
-            wandb_login_success = False
-        if not wandb_login_success:
-            wandb = None
-except (ImportError, AssertionError):
-    wandb = None
-
-try:
-    import clearml
-
-    assert hasattr(clearml, '__version__')  # verify package import not local dir
-except (ImportError, AssertionError):
-    clearml = None
-
-
-class Loggers():
-    # YOLOv5 Loggers class
-    def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
-        self.save_dir = save_dir
-        self.weights = weights
-        self.opt = opt
-        self.hyp = hyp
-        self.logger = logger  # for printing results to console
-        self.include = include
-        self.keys = [
-            'train/box_loss',
-            'train/obj_loss',
-            'train/cls_loss',  # train loss
-            'metrics/precision',
-            'metrics/recall',
-            'metrics/mAP_0.5',
-            'metrics/mAP_0.5:0.95',  # metrics
-            'val/box_loss',
-            'val/obj_loss',
-            'val/cls_loss',  # val loss
-            'x/lr0',
-            'x/lr1',
-            'x/lr2']  # params
-        self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
-        for k in LOGGERS:
-            setattr(self, k, None)  # init empty logger dictionary
-        self.csv = True  # always log to csv
-
-        # Messages
-        if not wandb:
-            prefix = colorstr('Weights & Biases: ')
-            s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases"
-            self.logger.info(s)
-        if not clearml:
-            prefix = colorstr('ClearML: ')
-            s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML"
-            self.logger.info(s)
-
-        # TensorBoard
-        s = self.save_dir
-        if 'tb' in self.include and not self.opt.evolve:
-            prefix = colorstr('TensorBoard: ')
-            self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
-            self.tb = SummaryWriter(str(s))
-
-        # W&B
-        if wandb and 'wandb' in self.include:
-            wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
-            run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
-            self.opt.hyp = self.hyp  # add hyperparameters
-            self.wandb = WandbLogger(self.opt, run_id)
-            # temp warn. because nested artifacts not supported after 0.12.10
-            if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
-                s = "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
-                self.logger.warning(s)
-        else:
-            self.wandb = None
-
-        # ClearML
-        if clearml and 'clearml' in self.include:
-            self.clearml = ClearmlLogger(self.opt, self.hyp)
-        else:
-            self.clearml = None
-
-    def on_train_start(self):
-        # Callback runs on train start
-        pass
-
-    def on_pretrain_routine_end(self):
-        # Callback runs on pre-train routine end
-        paths = self.save_dir.glob('*labels*.jpg')  # training labels
-        if self.wandb:
-            self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
-        if self.clearml:
-            pass  # ClearML saves these images automatically using hooks
-
-    def on_train_batch_end(self, ni, model, imgs, targets, paths, plots):
-        # Callback runs on train batch end
-        # ni: number integrated batches (since train start)
-        if plots:
-            if ni == 0 and not self.opt.sync_bn and self.tb:
-                log_tensorboard_graph(self.tb, model, imgsz=list(imgs.shape[2:4]))
-            if ni < 3:
-                f = self.save_dir / f'train_batch{ni}.jpg'  # filename
-                plot_images(imgs, targets, paths, f)
-            if (self.wandb or self.clearml) and ni == 10:
-                files = sorted(self.save_dir.glob('train*.jpg'))
-                if self.wandb:
-                    self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
-                if self.clearml:
-                    self.clearml.log_debug_samples(files, title='Mosaics')
-
-    def on_train_epoch_end(self, epoch):
-        # Callback runs on train epoch end
-        if self.wandb:
-            self.wandb.current_epoch = epoch + 1
-
-    def on_val_image_end(self, pred, predn, path, names, im):
-        # Callback runs on val image end
-        if self.wandb:
-            self.wandb.val_one_image(pred, predn, path, names, im)
-        if self.clearml:
-            self.clearml.log_image_with_boxes(path, pred, names, im)
-
-    def on_val_end(self):
-        # Callback runs on val end
-        if self.wandb or self.clearml:
-            files = sorted(self.save_dir.glob('val*.jpg'))
-            if self.wandb:
-                self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
-            if self.clearml:
-                self.clearml.log_debug_samples(files, title='Validation')
-
-    def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
-        # Callback runs at the end of each fit (train+val) epoch
-        x = dict(zip(self.keys, vals))
-        if self.csv:
-            file = self.save_dir / 'results.csv'
-            n = len(x) + 1  # number of cols
-            s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n')  # add header
-            with open(file, 'a') as f:
-                f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
-
-        if self.tb:
-            for k, v in x.items():
-                self.tb.add_scalar(k, v, epoch)
-        elif self.clearml:  # log to ClearML if TensorBoard not used
-            for k, v in x.items():
-                title, series = k.split('/')
-                self.clearml.task.get_logger().report_scalar(title, series, v, epoch)
-
-        if self.wandb:
-            if best_fitness == fi:
-                best_results = [epoch] + vals[3:7]
-                for i, name in enumerate(self.best_keys):
-                    self.wandb.wandb_run.summary[name] = best_results[i]  # log best results in the summary
-            self.wandb.log(x)
-            self.wandb.end_epoch(best_result=best_fitness == fi)
-
-        if self.clearml:
-            self.clearml.current_epoch_logged_images = set()  # reset epoch image limit
-            self.clearml.current_epoch += 1
-
-    def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
-        # Callback runs on model save event
-        if self.wandb:
-            if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
-                self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
-
-        if self.clearml:
-            if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
-                self.clearml.task.update_output_model(model_path=str(last),
-                                                      model_name='Latest Model',
-                                                      auto_delete_file=False)
-
-    def on_train_end(self, last, best, plots, epoch, results):
-        # Callback runs on training end
-        if plots:
-            plot_results(file=self.save_dir / 'results.csv')  # save results.png
-        files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
-        files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()]  # filter
-        self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
-
-        if self.tb and not self.clearml:  # These images are already captured by ClearML by now, we don't want doubles
-            for f in files:
-                self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
-
-        if self.wandb:
-            self.wandb.log(dict(zip(self.keys[3:10], results)))
-            self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
-            # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
-            if not self.opt.evolve:
-                wandb.log_artifact(str(best if best.exists() else last),
-                                   type='model',
-                                   name=f'run_{self.wandb.wandb_run.id}_model',
-                                   aliases=['latest', 'best', 'stripped'])
-            self.wandb.finish_run()
-
-        if self.clearml:
-            # Save the best model here
-            if not self.opt.evolve:
-                self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
-                                                      name='Best Model')
-
-    def on_params_update(self, params):
-        # Update hyperparams or configs of the experiment
-        # params: A dict containing {param: value} pairs
-        if self.wandb:
-            self.wandb.wandb_run.config.update(params, allow_val_change=True)
-
-
-class GenericLogger:
-    """
-    YOLOv5 General purpose logger for non-task specific logging
-    Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
-    Arguments
-        opt:             Run arguments
-        console_logger:  Console logger
-        include:         loggers to include
-    """
-
-    def __init__(self, opt, console_logger, include=('tb', 'wandb')):
-        # init default loggers
-        self.save_dir = opt.save_dir
-        self.include = include
-        self.console_logger = console_logger
-        if 'tb' in self.include:
-            prefix = colorstr('TensorBoard: ')
-            self.console_logger.info(
-                f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/")
-            self.tb = SummaryWriter(str(self.save_dir))
-
-        if wandb and 'wandb' in self.include:
-            self.wandb = wandb.init(project="YOLOv5-Classifier" if opt.project == "runs/train" else opt.project,
-                                    name=None if opt.name == "exp" else opt.name,
-                                    config=opt)
-        else:
-            self.wandb = None
-
-    def log_metrics(self, metrics_dict, epoch):
-        # Log metrics dictionary to all loggers
-        if self.tb:
-            for k, v in metrics_dict.items():
-                self.tb.add_scalar(k, v, epoch)
-
-        if self.wandb:
-            self.wandb.log(metrics_dict, step=epoch)
-
-    def log_images(self, files, name='Images', epoch=0):
-        # Log images to all loggers
-        files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])]  # to Path
-        files = [f for f in files if f.exists()]  # filter by exists
-
-        if self.tb:
-            for f in files:
-                self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
-
-        if self.wandb:
-            self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
-
-    def log_graph(self, model, imgsz=(640, 640)):
-        # Log model graph to all loggers
-        if self.tb:
-            log_tensorboard_graph(self.tb, model, imgsz)
-
-    def log_model(self, model_path, epoch=0, metadata={}):
-        # Log model to all loggers
-        if self.wandb:
-            art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
-            art.add_file(str(model_path))
-            wandb.log_artifact(art)
-
-
-def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
-    # Log model graph to TensorBoard
-    try:
-        p = next(model.parameters())  # for device, type
-        imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz  # expand
-        im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p)  # input image
-        with warnings.catch_warnings():
-            warnings.simplefilter('ignore')  # suppress jit trace warning
-            tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
-    except Exception:
-        print('WARNING: TensorBoard graph visualization failure')
diff --git a/yolov5-6.2/utils/loggers/clearml/README.md b/yolov5-6.2/utils/loggers/clearml/README.md
deleted file mode 100644
index 64eef6be..00000000
--- a/yolov5-6.2/utils/loggers/clearml/README.md
+++ /dev/null
@@ -1,222 +0,0 @@
-# ClearML Integration
-
-<img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_dark.png#gh-light-mode-only" alt="Clear|ML"><img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_light.png#gh-dark-mode-only" alt="Clear|ML">
-
-## About ClearML
-
-[ClearML](https://cutt.ly/yolov5-tutorial-clearml) is an [open-source](https://github.com/allegroai/clearml) toolbox designed to save you time ⏱️.
-
-🔨 Track every YOLOv5 training run in the <b>experiment manager</b>
-
-🔧 Version and easily access your custom training data with the integrated ClearML <b>Data Versioning Tool</b>
-
-🔦 <b>Remotely train and monitor</b> your YOLOv5 training runs using ClearML Agent
-
-🔬 Get the very best mAP using ClearML <b>Hyperparameter Optimization</b>
-
-🔭 Turn your newly trained <b>YOLOv5 model into an API</b> with just a few commands using ClearML Serving
-
-<br />
-And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline!
-<br />
-<br />
-
-![ClearML scalars dashboard](https://github.com/thepycoder/clearml_screenshots/raw/main/experiment_manager_with_compare.gif)
-
-
-<br />
-<br />
-
-## 🦾 Setting Things Up
-
-To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one:
-
-Either sign up for free to the [ClearML Hosted Service](https://cutt.ly/yolov5-tutorial-clearml) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go!
-
-1. Install the `clearml` python package:
-
-    ```bash
-    pip install clearml
-    ```
-
-1. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions:
-
-    ```bash
-    clearml-init
-    ```
-
-That's it! You're done 😎
-
-<br />
-
-## 🚀 Training YOLOv5 With ClearML
-
-To enable ClearML experiment tracking, simply install the ClearML pip package.
-
-```bash
-pip install clearml
-```
-
-This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager. If you want to change the `project_name` or `task_name`, head over to our custom logger, where you can change it: `utils/loggers/clearml/clearml_utils.py`
-
-```bash
-python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
-```
-
-This will capture:
-- Source code + uncommitted changes
-- Installed packages
-- (Hyper)parameters
-- Model files (use `--save-period n` to save a checkpoint every n epochs)
-- Console output
-- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...)
-- General info such as machine details, runtime, creation date etc.
-- All produced plots such as label correlogram and confusion matrix
-- Images with bounding boxes per epoch
-- Mosaic per epoch
-- Validation images per epoch
-- ...
-
-That's a lot right? 🤯
-Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them!
-
-There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works!
-
-<br />
-
-## 🔗 Dataset Version Management
-
-Versioning your data separately from your code is generally a good idea and makes it easy to aqcuire the latest version too. This repository supports supplying a dataset version ID and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment!
-
-![ClearML Dataset Interface](https://github.com/thepycoder/clearml_screenshots/raw/main/clearml_data.gif)
-
-### Prepare Your Dataset
-
-The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure:
-
-```
-..
-|_ yolov5
-|_ datasets
-    |_ coco128
-        |_ images
-        |_ labels
-        |_ LICENSE
-        |_ README.txt
-```
-But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure.
-
-Next, ⚠️**copy the corresponding yaml file to the root of the dataset folder**⚠️. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls.
-
-Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`.
-
-```
-..
-|_ yolov5
-|_ datasets
-    |_ coco128
-        |_ images
-        |_ labels
-        |_ coco128.yaml  # <---- HERE!
-        |_ LICENSE
-        |_ README.txt
-```
-
-### Upload Your Dataset
-
-To get this dataset into ClearML as a versionned dataset, go to the dataset root folder and run the following command:
-```bash
-cd coco128
-clearml-data sync --project YOLOv5 --name coco128 --folder .
-```
-
-The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other:
-```bash
-# Optionally add --parent <parent_dataset_id> if you want to base
-# this version on another dataset version, so no duplicate files are uploaded!
-clearml-data create --name coco128 --project YOLOv5
-clearml-data add --files .
-clearml-data close
-```
-
-### Run Training Using A ClearML Dataset
-
-Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 🚀 models!
-
-```bash
-python train.py --img 640 --batch 16 --epochs 3 --data clearml://<your_dataset_id> --weights yolov5s.pt --cache
-```
-
-<br />
-
-## 👀 Hyperparameter Optimization
-
-Now that we have our experiments and data versioned, it's time to take a look at what we can build on top!
-
-Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does!
-
-To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters.
-
-You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead.
-
-```bash
-# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch
-pip install optuna
-python utils/loggers/clearml/hpo.py
-```
-
-![HPO](https://github.com/thepycoder/clearml_screenshots/raw/main/hpo.png)
-
-## 🤯 Remote Execution (advanced)
-
-Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access to a very powerful GPU machine on-site or you have some budget to use cloud GPUs.
-This is where the ClearML Agent comes into play. Check out what the agent can do here:
-
-- [YouTube video](https://youtu.be/MX3BrXnaULs)
-- [Documentation](https://clear.ml/docs/latest/docs/clearml_agent)
-
-In short: every experiment tracked by the experiment manager contains enough information to reproduce it on a different machine (installed packages, uncommitted changes etc.). So a ClearML agent does just that: it listens to a queue for incoming tasks and when it finds one, it recreates the environment and runs it while still reporting scalars, plots etc. to the experiment manager.
-
-You can turn any machine (a cloud VM, a local GPU machine, your own laptop ... ) into a ClearML agent by simply running:
-```bash
-clearml-agent daemon --queue <queues_to_listen_to> [--docker]
-```
-
-### Cloning, Editing And Enqueuing
-
-With our agent running, we can give it some work. Remember from the HPO section that we can clone a task and edit the hyperparameters? We can do that from the interface too!
-
-🪄 Clone the experiment by right clicking it
-
-🎯 Edit the hyperparameters to what you wish them to be
-
-⏳ Enqueue the task to any of the queues by right clicking it
-
-![Enqueue a task from the UI](https://github.com/thepycoder/clearml_screenshots/raw/main/enqueue.gif)
-
-### Executing A Task Remotely
-
-Now you can clone a task like we explained above, or simply mark your current script by adding `task.execute_remotely()` and on execution it will be put into a queue, for the agent to start working on!
-
-To run the YOLOv5 training script remotely, all you have to do is add this line to the training.py script after the clearml logger has been instatiated:
-```python
-# ...
-# Loggers
-data_dict = None
-if RANK in {-1, 0}:
-    loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance
-    if loggers.clearml:
-        loggers.clearml.task.execute_remotely(queue='my_queue')  # <------ ADD THIS LINE
-        # Data_dict is either None is user did not choose for ClearML dataset or is filled in by ClearML
-        data_dict = loggers.clearml.data_dict
-# ...
-```
-When running the training script after this change, python will run the script up until that line, after which it will package the code and send it to the queue instead!
-
-### Autoscaling workers
-
-ClearML comes with autoscalers too! This tool will automatically spin up new remote machines in the cloud of your choice (AWS, GCP, Azure) and turn them into ClearML agents for you whenever there are experiments detected in the queue. Once the tasks are processed, the autoscaler will automatically shut down the remote machines and you stop paying!
-
-Check out the autoscalers getting started video below.
-
-[![Watch the video](https://img.youtube.com/vi/j4XVMAaUt3E/0.jpg)](https://youtu.be/j4XVMAaUt3E)
diff --git a/yolov5-6.2/utils/loggers/clearml/__init__.py b/yolov5-6.2/utils/loggers/clearml/__init__.py
deleted file mode 100644
index e69de29b..00000000
diff --git a/yolov5-6.2/utils/loggers/clearml/clearml_utils.py b/yolov5-6.2/utils/loggers/clearml/clearml_utils.py
deleted file mode 100644
index 52320c09..00000000
--- a/yolov5-6.2/utils/loggers/clearml/clearml_utils.py
+++ /dev/null
@@ -1,156 +0,0 @@
-"""Main Logger class for ClearML experiment tracking."""
-import glob
-import re
-from pathlib import Path
-
-import numpy as np
-import yaml
-
-from utils.plots import Annotator, colors
-
-try:
-    import clearml
-    from clearml import Dataset, Task
-    assert hasattr(clearml, '__version__')  # verify package import not local dir
-except (ImportError, AssertionError):
-    clearml = None
-
-
-def construct_dataset(clearml_info_string):
-    """Load in a clearml dataset and fill the internal data_dict with its contents.
-    """
-    dataset_id = clearml_info_string.replace('clearml://', '')
-    dataset = Dataset.get(dataset_id=dataset_id)
-    dataset_root_path = Path(dataset.get_local_copy())
-
-    # We'll search for the yaml file definition in the dataset
-    yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
-    if len(yaml_filenames) > 1:
-        raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains '
-                         'the dataset definition this way.')
-    elif len(yaml_filenames) == 0:
-        raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file '
-                         'inside the dataset root path.')
-    with open(yaml_filenames[0]) as f:
-        dataset_definition = yaml.safe_load(f)
-
-    assert set(dataset_definition.keys()).issuperset(
-        {'train', 'test', 'val', 'nc', 'names'}
-    ), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
-
-    data_dict = dict()
-    data_dict['train'] = str(
-        (dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None
-    data_dict['test'] = str(
-        (dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None
-    data_dict['val'] = str(
-        (dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None
-    data_dict['nc'] = dataset_definition['nc']
-    data_dict['names'] = dataset_definition['names']
-
-    return data_dict
-
-
-class ClearmlLogger:
-    """Log training runs, datasets, models, and predictions to ClearML.
-
-    This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default,
-    this information includes hyperparameters, system configuration and metrics, model metrics, code information and
-    basic data metrics and analyses.
-
-    By providing additional command line arguments to train.py, datasets,
-    models and predictions can also be logged.
-    """
-
-    def __init__(self, opt, hyp):
-        """
-        - Initialize ClearML Task, this object will capture the experiment
-        - Upload dataset version to ClearML Data if opt.upload_dataset is True
-
-        arguments:
-        opt (namespace) -- Commandline arguments for this run
-        hyp (dict) -- Hyperparameters for this run
-
-        """
-        self.current_epoch = 0
-        # Keep tracked of amount of logged images to enforce a limit
-        self.current_epoch_logged_images = set()
-        # Maximum number of images to log to clearML per epoch
-        self.max_imgs_to_log_per_epoch = 16
-        # Get the interval of epochs when bounding box images should be logged
-        self.bbox_interval = opt.bbox_interval
-        self.clearml = clearml
-        self.task = None
-        self.data_dict = None
-        if self.clearml:
-            self.task = Task.init(
-                project_name='YOLOv5',
-                task_name='training',
-                tags=['YOLOv5'],
-                output_uri=True,
-                auto_connect_frameworks={'pytorch': False}
-                # We disconnect pytorch auto-detection, because we added manual model save points in the code
-            )
-            # ClearML's hooks will already grab all general parameters
-            # Only the hyperparameters coming from the yaml config file
-            # will have to be added manually!
-            self.task.connect(hyp, name='Hyperparameters')
-
-            # Get ClearML Dataset Version if requested
-            if opt.data.startswith('clearml://'):
-                # data_dict should have the following keys:
-                # names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
-                self.data_dict = construct_dataset(opt.data)
-                # Set data to data_dict because wandb will crash without this information and opt is the best way
-                # to give it to them
-                opt.data = self.data_dict
-
-    def log_debug_samples(self, files, title='Debug Samples'):
-        """
-        Log files (images) as debug samples in the ClearML task.
-
-        arguments:
-        files (List(PosixPath)) a list of file paths in PosixPath format
-        title (str) A title that groups together images with the same values
-        """
-        for f in files:
-            if f.exists():
-                it = re.search(r'_batch(\d+)', f.name)
-                iteration = int(it.groups()[0]) if it else 0
-                self.task.get_logger().report_image(title=title,
-                                                    series=f.name.replace(it.group(), ''),
-                                                    local_path=str(f),
-                                                    iteration=iteration)
-
-    def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
-        """
-        Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
-
-        arguments:
-        image_path (PosixPath) the path the original image file
-        boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
-        class_names (dict): dict containing mapping of class int to class name
-        image (Tensor): A torch tensor containing the actual image data
-        """
-        if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0:
-            # Log every bbox_interval times and deduplicate for any intermittend extra eval runs
-            if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images:
-                im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
-                annotator = Annotator(im=im, pil=True)
-                for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
-                    color = colors(i)
-
-                    class_name = class_names[int(class_nr)]
-                    confidence = round(float(conf) * 100, 2)
-                    label = f"{class_name}: {confidence}%"
-
-                    if confidence > conf_threshold:
-                        annotator.rectangle(box.cpu().numpy(), outline=color)
-                        annotator.box_label(box.cpu().numpy(), label=label, color=color)
-
-                annotated_image = annotator.result()
-                self.task.get_logger().report_image(title='Bounding Boxes',
-                                                    series=image_path.name,
-                                                    iteration=self.current_epoch,
-                                                    image=annotated_image)
-                self.current_epoch_logged_images.add(image_path)
diff --git a/yolov5-6.2/utils/loggers/clearml/hpo.py b/yolov5-6.2/utils/loggers/clearml/hpo.py
deleted file mode 100644
index 96c2c544..00000000
--- a/yolov5-6.2/utils/loggers/clearml/hpo.py
+++ /dev/null
@@ -1,84 +0,0 @@
-from clearml import Task
-# Connecting ClearML with the current process,
-# from here on everything is logged automatically
-from clearml.automation import HyperParameterOptimizer, UniformParameterRange
-from clearml.automation.optuna import OptimizerOptuna
-
-task = Task.init(project_name='Hyper-Parameter Optimization',
-                 task_name='YOLOv5',
-                 task_type=Task.TaskTypes.optimizer,
-                 reuse_last_task_id=False)
-
-# Example use case:
-optimizer = HyperParameterOptimizer(
-    # This is the experiment we want to optimize
-    base_task_id='<your_template_task_id>',
-    # here we define the hyper-parameters to optimize
-    # Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter>
-    # For Example, here we see in the base experiment a section Named: "General"
-    # under it a parameter named "batch_size", this becomes "General/batch_size"
-    # If you have `argparse` for example, then arguments will appear under the "Args" section,
-    # and you should instead pass "Args/batch_size"
-    hyper_parameters=[
-        UniformParameterRange('Hyperparameters/lr0', min_value=1e-5, max_value=1e-1),
-        UniformParameterRange('Hyperparameters/lrf', min_value=0.01, max_value=1.0),
-        UniformParameterRange('Hyperparameters/momentum', min_value=0.6, max_value=0.98),
-        UniformParameterRange('Hyperparameters/weight_decay', min_value=0.0, max_value=0.001),
-        UniformParameterRange('Hyperparameters/warmup_epochs', min_value=0.0, max_value=5.0),
-        UniformParameterRange('Hyperparameters/warmup_momentum', min_value=0.0, max_value=0.95),
-        UniformParameterRange('Hyperparameters/warmup_bias_lr', min_value=0.0, max_value=0.2),
-        UniformParameterRange('Hyperparameters/box', min_value=0.02, max_value=0.2),
-        UniformParameterRange('Hyperparameters/cls', min_value=0.2, max_value=4.0),
-        UniformParameterRange('Hyperparameters/cls_pw', min_value=0.5, max_value=2.0),
-        UniformParameterRange('Hyperparameters/obj', min_value=0.2, max_value=4.0),
-        UniformParameterRange('Hyperparameters/obj_pw', min_value=0.5, max_value=2.0),
-        UniformParameterRange('Hyperparameters/iou_t', min_value=0.1, max_value=0.7),
-        UniformParameterRange('Hyperparameters/anchor_t', min_value=2.0, max_value=8.0),
-        UniformParameterRange('Hyperparameters/fl_gamma', min_value=0.0, max_value=4.0),
-        UniformParameterRange('Hyperparameters/hsv_h', min_value=0.0, max_value=0.1),
-        UniformParameterRange('Hyperparameters/hsv_s', min_value=0.0, max_value=0.9),
-        UniformParameterRange('Hyperparameters/hsv_v', min_value=0.0, max_value=0.9),
-        UniformParameterRange('Hyperparameters/degrees', min_value=0.0, max_value=45.0),
-        UniformParameterRange('Hyperparameters/translate', min_value=0.0, max_value=0.9),
-        UniformParameterRange('Hyperparameters/scale', min_value=0.0, max_value=0.9),
-        UniformParameterRange('Hyperparameters/shear', min_value=0.0, max_value=10.0),
-        UniformParameterRange('Hyperparameters/perspective', min_value=0.0, max_value=0.001),
-        UniformParameterRange('Hyperparameters/flipud', min_value=0.0, max_value=1.0),
-        UniformParameterRange('Hyperparameters/fliplr', min_value=0.0, max_value=1.0),
-        UniformParameterRange('Hyperparameters/mosaic', min_value=0.0, max_value=1.0),
-        UniformParameterRange('Hyperparameters/mixup', min_value=0.0, max_value=1.0),
-        UniformParameterRange('Hyperparameters/copy_paste', min_value=0.0, max_value=1.0)],
-    # this is the objective metric we want to maximize/minimize
-    objective_metric_title='metrics',
-    objective_metric_series='mAP_0.5',
-    # now we decide if we want to maximize it or minimize it (accuracy we maximize)
-    objective_metric_sign='max',
-    # let us limit the number of concurrent experiments,
-    # this in turn will make sure we do dont bombard the scheduler with experiments.
-    # if we have an auto-scaler connected, this, by proxy, will limit the number of machine
-    max_number_of_concurrent_tasks=1,
-    # this is the optimizer class (actually doing the optimization)
-    # Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
-    optimizer_class=OptimizerOptuna,
-    # If specified only the top K performing Tasks will be kept, the others will be automatically archived
-    save_top_k_tasks_only=5,  # 5,
-    compute_time_limit=None,
-    total_max_jobs=20,
-    min_iteration_per_job=None,
-    max_iteration_per_job=None,
-)
-
-# report every 10 seconds, this is way too often, but we are testing here
-optimizer.set_report_period(10)
-# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
-# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
-# set the time limit for the optimization process (2 hours)
-optimizer.set_time_limit(in_minutes=120.0)
-# Start the optimization process in the local environment
-optimizer.start_locally()
-# wait until process is done (notice we are controlling the optimization process in the background)
-optimizer.wait()
-# make sure background optimization stopped
-optimizer.stop()
-
-print('We are done, good bye')
diff --git a/yolov5-6.2/utils/loggers/wandb/README.md b/yolov5-6.2/utils/loggers/wandb/README.md
deleted file mode 100644
index d78324b4..00000000
--- a/yolov5-6.2/utils/loggers/wandb/README.md
+++ /dev/null
@@ -1,162 +0,0 @@
-📚 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 🚀. UPDATED 29 September 2021.
-
-- [About Weights & Biases](#about-weights-&-biases)
-- [First-Time Setup](#first-time-setup)
-- [Viewing runs](#viewing-runs)
-- [Disabling wandb](#disabling-wandb)
-- [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
-- [Reports: Share your work with the world!](#reports)
-
-## About Weights & Biases
-
-Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models — architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
-
-Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
-
-- [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
-- [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
-- [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
-- [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
-- [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
-- [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
-
-## First-Time Setup
-
-<details open>
- <summary> Toggle Details </summary>
-When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
-
-W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
-
-```shell
-$ python train.py --project ... --name ...
-```
-
-YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
-<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
-
-</details>
-
-## Viewing Runs
-
-<details open>
-  <summary> Toggle Details </summary>
-Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
-
-- Training & Validation losses
-- Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
-- Learning Rate over time
-- A bounding box debugging panel, showing the training progress over time
-- GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
-- System: Disk I/0, CPU utilization, RAM memory usage
-- Your trained model as W&B Artifact
-- Environment: OS and Python types, Git repository and state, **training command**
-
-<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
-</details>
-
-## Disabling wandb
-
-- training after running `wandb disabled` inside that directory creates no wandb run
-  ![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
-
-- To enable wandb again, run `wandb online`
-  ![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
-
-## Advanced Usage
-
-You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
-
-<details open>
- <h3> 1: Train and Log Evaluation simultaneousy </h3>
-   This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
-   Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
-   so no images will be uploaded from your system more than once.
- <details open>
-  <summary> <b>Usage</b> </summary>
-   <b>Code</b> <code> $ python train.py --upload_data val</code>
-
-![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
-
-</details>
-
-<h3>2. Visualize and Version Datasets</h3>
- Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
- <details>
-  <summary> <b>Usage</b> </summary>
-   <b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
-
-![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
-
-</details>
-
-<h3> 3: Train using dataset artifact </h3>
-   When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
-   can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
- <details>
-  <summary> <b>Usage</b> </summary>
-   <b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
-
-![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
-
-</details>
-
-<h3> 4: Save model checkpoints as artifacts </h3>
-  To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
-  You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
-
-<details>
-  <summary> <b>Usage</b> </summary>
-   <b>Code</b> <code> $ python train.py --save_period 1 </code>
-
-![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
-
-</details>
-
-</details>
-
-<h3> 5: Resume runs from checkpoint artifacts. </h3>
-Any run can be resumed using artifacts if the <code>--resume</code> argument starts with <code>wandb-artifact://</code> prefix followed by the run path, i.e, <code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
-
-<details>
-  <summary> <b>Usage</b> </summary>
-   <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
-
-![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
-
-</details>
-
-<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
- <b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
- The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
- train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
-
-<details>
-  <summary> <b>Usage</b> </summary>
-   <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
-
-![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
-
-</details>
-
-</details>
-
-<h3> Reports </h3>
-W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)).
-
-<img width="900" alt="Weights & Biases Reports" src="https://user-images.githubusercontent.com/26833433/135394029-a17eaf86-c6c1-4b1d-bb80-b90e83aaffa7.png">
-
-## Environments
-
-YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
-
-- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
-- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
-- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
-- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
-
-## Status
-
-![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
-
-If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
diff --git a/yolov5-6.2/utils/loggers/wandb/__init__.py b/yolov5-6.2/utils/loggers/wandb/__init__.py
deleted file mode 100644
index e69de29b..00000000
diff --git a/yolov5-6.2/utils/loggers/wandb/log_dataset.py b/yolov5-6.2/utils/loggers/wandb/log_dataset.py
deleted file mode 100644
index 06e81fb6..00000000
--- a/yolov5-6.2/utils/loggers/wandb/log_dataset.py
+++ /dev/null
@@ -1,27 +0,0 @@
-import argparse
-
-from wandb_utils import WandbLogger
-
-from utils.general import LOGGER
-
-WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
-
-
-def create_dataset_artifact(opt):
-    logger = WandbLogger(opt, None, job_type='Dataset Creation')  # TODO: return value unused
-    if not logger.wandb:
-        LOGGER.info("install wandb using `pip install wandb` to log the dataset")
-
-
-if __name__ == '__main__':
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
-    parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
-    parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
-    parser.add_argument('--entity', default=None, help='W&B entity')
-    parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run')
-
-    opt = parser.parse_args()
-    opt.resume = False  # Explicitly disallow resume check for dataset upload job
-
-    create_dataset_artifact(opt)
diff --git a/yolov5-6.2/utils/loggers/wandb/sweep.py b/yolov5-6.2/utils/loggers/wandb/sweep.py
deleted file mode 100644
index d49ea6f2..00000000
--- a/yolov5-6.2/utils/loggers/wandb/sweep.py
+++ /dev/null
@@ -1,41 +0,0 @@
-import sys
-from pathlib import Path
-
-import wandb
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[3]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-
-from train import parse_opt, train
-from utils.callbacks import Callbacks
-from utils.general import increment_path
-from utils.torch_utils import select_device
-
-
-def sweep():
-    wandb.init()
-    # Get hyp dict from sweep agent. Copy because train() modifies parameters which confused wandb.
-    hyp_dict = vars(wandb.config).get("_items").copy()
-
-    # Workaround: get necessary opt args
-    opt = parse_opt(known=True)
-    opt.batch_size = hyp_dict.get("batch_size")
-    opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
-    opt.epochs = hyp_dict.get("epochs")
-    opt.nosave = True
-    opt.data = hyp_dict.get("data")
-    opt.weights = str(opt.weights)
-    opt.cfg = str(opt.cfg)
-    opt.data = str(opt.data)
-    opt.hyp = str(opt.hyp)
-    opt.project = str(opt.project)
-    device = select_device(opt.device, batch_size=opt.batch_size)
-
-    # train
-    train(hyp_dict, opt, device, callbacks=Callbacks())
-
-
-if __name__ == "__main__":
-    sweep()
diff --git a/yolov5-6.2/utils/loggers/wandb/sweep.yaml b/yolov5-6.2/utils/loggers/wandb/sweep.yaml
deleted file mode 100644
index 688b1ea0..00000000
--- a/yolov5-6.2/utils/loggers/wandb/sweep.yaml
+++ /dev/null
@@ -1,143 +0,0 @@
-# Hyperparameters for training
-# To set range-
-# Provide min and max values as:
-#      parameter:
-#
-#         min: scalar
-#         max: scalar
-# OR
-#
-# Set a specific list of search space-
-#     parameter:
-#         values: [scalar1, scalar2, scalar3...]
-#
-# You can use grid, bayesian and hyperopt search strategy
-# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration
-
-program: utils/loggers/wandb/sweep.py
-method: random
-metric:
-  name: metrics/mAP_0.5
-  goal: maximize
-
-parameters:
-  # hyperparameters: set either min, max range or values list
-  data:
-    value: "data/coco128.yaml"
-  batch_size:
-    values: [64]
-  epochs:
-    values: [10]
-
-  lr0:
-    distribution: uniform
-    min: 1e-5
-    max: 1e-1
-  lrf:
-    distribution: uniform
-    min: 0.01
-    max: 1.0
-  momentum:
-    distribution: uniform
-    min: 0.6
-    max: 0.98
-  weight_decay:
-    distribution: uniform
-    min: 0.0
-    max: 0.001
-  warmup_epochs:
-    distribution: uniform
-    min: 0.0
-    max: 5.0
-  warmup_momentum:
-    distribution: uniform
-    min: 0.0
-    max: 0.95
-  warmup_bias_lr:
-    distribution: uniform
-    min: 0.0
-    max: 0.2
-  box:
-    distribution: uniform
-    min: 0.02
-    max: 0.2
-  cls:
-    distribution: uniform
-    min: 0.2
-    max: 4.0
-  cls_pw:
-    distribution: uniform
-    min: 0.5
-    max: 2.0
-  obj:
-    distribution: uniform
-    min: 0.2
-    max: 4.0
-  obj_pw:
-    distribution: uniform
-    min: 0.5
-    max: 2.0
-  iou_t:
-    distribution: uniform
-    min: 0.1
-    max: 0.7
-  anchor_t:
-    distribution: uniform
-    min: 2.0
-    max: 8.0
-  fl_gamma:
-    distribution: uniform
-    min: 0.0
-    max: 4.0
-  hsv_h:
-    distribution: uniform
-    min: 0.0
-    max: 0.1
-  hsv_s:
-    distribution: uniform
-    min: 0.0
-    max: 0.9
-  hsv_v:
-    distribution: uniform
-    min: 0.0
-    max: 0.9
-  degrees:
-    distribution: uniform
-    min: 0.0
-    max: 45.0
-  translate:
-    distribution: uniform
-    min: 0.0
-    max: 0.9
-  scale:
-    distribution: uniform
-    min: 0.0
-    max: 0.9
-  shear:
-    distribution: uniform
-    min: 0.0
-    max: 10.0
-  perspective:
-    distribution: uniform
-    min: 0.0
-    max: 0.001
-  flipud:
-    distribution: uniform
-    min: 0.0
-    max: 1.0
-  fliplr:
-    distribution: uniform
-    min: 0.0
-    max: 1.0
-  mosaic:
-    distribution: uniform
-    min: 0.0
-    max: 1.0
-  mixup:
-    distribution: uniform
-    min: 0.0
-    max: 1.0
-  copy_paste:
-    distribution: uniform
-    min: 0.0
-    max: 1.0
diff --git a/yolov5-6.2/utils/loggers/wandb/wandb_utils.py b/yolov5-6.2/utils/loggers/wandb/wandb_utils.py
deleted file mode 100644
index e850d2ac..00000000
--- a/yolov5-6.2/utils/loggers/wandb/wandb_utils.py
+++ /dev/null
@@ -1,584 +0,0 @@
-"""Utilities and tools for tracking runs with Weights & Biases."""
-
-import logging
-import os
-import sys
-from contextlib import contextmanager
-from pathlib import Path
-from typing import Dict
-
-import yaml
-from tqdm import tqdm
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[3]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-
-from utils.dataloaders import LoadImagesAndLabels, img2label_paths
-from utils.general import LOGGER, check_dataset, check_file
-
-try:
-    import wandb
-
-    assert hasattr(wandb, '__version__')  # verify package import not local dir
-except (ImportError, AssertionError):
-    wandb = None
-
-RANK = int(os.getenv('RANK', -1))
-WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
-
-
-def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
-    return from_string[len(prefix):]
-
-
-def check_wandb_config_file(data_config_file):
-    wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1))  # updated data.yaml path
-    if Path(wandb_config).is_file():
-        return wandb_config
-    return data_config_file
-
-
-def check_wandb_dataset(data_file):
-    is_trainset_wandb_artifact = False
-    is_valset_wandb_artifact = False
-    if isinstance(data_file, dict):
-        # In that case another dataset manager has already processed it and we don't have to
-        return data_file
-    if check_file(data_file) and data_file.endswith('.yaml'):
-        with open(data_file, errors='ignore') as f:
-            data_dict = yaml.safe_load(f)
-        is_trainset_wandb_artifact = isinstance(data_dict['train'],
-                                                str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX)
-        is_valset_wandb_artifact = isinstance(data_dict['val'],
-                                              str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX)
-    if is_trainset_wandb_artifact or is_valset_wandb_artifact:
-        return data_dict
-    else:
-        return check_dataset(data_file)
-
-
-def get_run_info(run_path):
-    run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
-    run_id = run_path.stem
-    project = run_path.parent.stem
-    entity = run_path.parent.parent.stem
-    model_artifact_name = 'run_' + run_id + '_model'
-    return entity, project, run_id, model_artifact_name
-
-
-def check_wandb_resume(opt):
-    process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None
-    if isinstance(opt.resume, str):
-        if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
-            if RANK not in [-1, 0]:  # For resuming DDP runs
-                entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
-                api = wandb.Api()
-                artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
-                modeldir = artifact.download()
-                opt.weights = str(Path(modeldir) / "last.pt")
-            return True
-    return None
-
-
-def process_wandb_config_ddp_mode(opt):
-    with open(check_file(opt.data), errors='ignore') as f:
-        data_dict = yaml.safe_load(f)  # data dict
-    train_dir, val_dir = None, None
-    if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
-        api = wandb.Api()
-        train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
-        train_dir = train_artifact.download()
-        train_path = Path(train_dir) / 'data/images/'
-        data_dict['train'] = str(train_path)
-
-    if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
-        api = wandb.Api()
-        val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
-        val_dir = val_artifact.download()
-        val_path = Path(val_dir) / 'data/images/'
-        data_dict['val'] = str(val_path)
-    if train_dir or val_dir:
-        ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
-        with open(ddp_data_path, 'w') as f:
-            yaml.safe_dump(data_dict, f)
-        opt.data = ddp_data_path
-
-
-class WandbLogger():
-    """Log training runs, datasets, models, and predictions to Weights & Biases.
-
-    This logger sends information to W&B at wandb.ai. By default, this information
-    includes hyperparameters, system configuration and metrics, model metrics,
-    and basic data metrics and analyses.
-
-    By providing additional command line arguments to train.py, datasets,
-    models and predictions can also be logged.
-
-    For more on how this logger is used, see the Weights & Biases documentation:
-    https://docs.wandb.com/guides/integrations/yolov5
-    """
-
-    def __init__(self, opt, run_id=None, job_type='Training'):
-        """
-        - Initialize WandbLogger instance
-        - Upload dataset if opt.upload_dataset is True
-        - Setup training processes if job_type is 'Training'
-
-        arguments:
-        opt (namespace) -- Commandline arguments for this run
-        run_id (str) -- Run ID of W&B run to be resumed
-        job_type (str) -- To set the job_type for this run
-
-       """
-        # Pre-training routine --
-        self.job_type = job_type
-        self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
-        self.val_artifact, self.train_artifact = None, None
-        self.train_artifact_path, self.val_artifact_path = None, None
-        self.result_artifact = None
-        self.val_table, self.result_table = None, None
-        self.bbox_media_panel_images = []
-        self.val_table_path_map = None
-        self.max_imgs_to_log = 16
-        self.wandb_artifact_data_dict = None
-        self.data_dict = None
-        # It's more elegant to stick to 1 wandb.init call,
-        #  but useful config data is overwritten in the WandbLogger's wandb.init call
-        if isinstance(opt.resume, str):  # checks resume from artifact
-            if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
-                entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
-                model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
-                assert wandb, 'install wandb to resume wandb runs'
-                # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
-                self.wandb_run = wandb.init(id=run_id,
-                                            project=project,
-                                            entity=entity,
-                                            resume='allow',
-                                            allow_val_change=True)
-                opt.resume = model_artifact_name
-        elif self.wandb:
-            self.wandb_run = wandb.init(config=opt,
-                                        resume="allow",
-                                        project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
-                                        entity=opt.entity,
-                                        name=opt.name if opt.name != 'exp' else None,
-                                        job_type=job_type,
-                                        id=run_id,
-                                        allow_val_change=True) if not wandb.run else wandb.run
-        if self.wandb_run:
-            if self.job_type == 'Training':
-                if opt.upload_dataset:
-                    if not opt.resume:
-                        self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
-
-                if isinstance(opt.data, dict):
-                    # This means another dataset manager has already processed the dataset info (e.g. ClearML)
-                    # and they will have stored the already processed dict in opt.data
-                    self.data_dict = opt.data
-                elif opt.resume:
-                    # resume from artifact
-                    if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
-                        self.data_dict = dict(self.wandb_run.config.data_dict)
-                    else:  # local resume
-                        self.data_dict = check_wandb_dataset(opt.data)
-                else:
-                    self.data_dict = check_wandb_dataset(opt.data)
-                    self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
-
-                    # write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
-                    self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict}, allow_val_change=True)
-                self.setup_training(opt)
-
-            if self.job_type == 'Dataset Creation':
-                self.wandb_run.config.update({"upload_dataset": True})
-                self.data_dict = self.check_and_upload_dataset(opt)
-
-    def check_and_upload_dataset(self, opt):
-        """
-        Check if the dataset format is compatible and upload it as W&B artifact
-
-        arguments:
-        opt (namespace)-- Commandline arguments for current run
-
-        returns:
-        Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
-        """
-        assert wandb, 'Install wandb to upload dataset'
-        config_path = self.log_dataset_artifact(opt.data, opt.single_cls,
-                                                'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
-        with open(config_path, errors='ignore') as f:
-            wandb_data_dict = yaml.safe_load(f)
-        return wandb_data_dict
-
-    def setup_training(self, opt):
-        """
-        Setup the necessary processes for training YOLO models:
-          - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
-          - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
-          - Setup log_dict, initialize bbox_interval
-
-        arguments:
-        opt (namespace) -- commandline arguments for this run
-
-        """
-        self.log_dict, self.current_epoch = {}, 0
-        self.bbox_interval = opt.bbox_interval
-        if isinstance(opt.resume, str):
-            modeldir, _ = self.download_model_artifact(opt)
-            if modeldir:
-                self.weights = Path(modeldir) / "last.pt"
-                config = self.wandb_run.config
-                opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str(
-                    self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs,\
-                    config.hyp, config.imgsz
-        data_dict = self.data_dict
-        if self.val_artifact is None:  # If --upload_dataset is set, use the existing artifact, don't download
-            self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(
-                data_dict.get('train'), opt.artifact_alias)
-            self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(
-                data_dict.get('val'), opt.artifact_alias)
-
-        if self.train_artifact_path is not None:
-            train_path = Path(self.train_artifact_path) / 'data/images/'
-            data_dict['train'] = str(train_path)
-        if self.val_artifact_path is not None:
-            val_path = Path(self.val_artifact_path) / 'data/images/'
-            data_dict['val'] = str(val_path)
-
-        if self.val_artifact is not None:
-            self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
-            columns = ["epoch", "id", "ground truth", "prediction"]
-            columns.extend(self.data_dict['names'])
-            self.result_table = wandb.Table(columns)
-            self.val_table = self.val_artifact.get("val")
-            if self.val_table_path_map is None:
-                self.map_val_table_path()
-        if opt.bbox_interval == -1:
-            self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
-            if opt.evolve or opt.noplots:
-                self.bbox_interval = opt.bbox_interval = opt.epochs + 1  # disable bbox_interval
-        train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None
-        # Update the the data_dict to point to local artifacts dir
-        if train_from_artifact:
-            self.data_dict = data_dict
-
-    def download_dataset_artifact(self, path, alias):
-        """
-        download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
-
-        arguments:
-        path -- path of the dataset to be used for training
-        alias (str)-- alias of the artifact to be download/used for training
-
-        returns:
-        (str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
-        is found otherwise returns (None, None)
-        """
-        if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
-            artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
-            dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
-            assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
-            datadir = dataset_artifact.download()
-            return datadir, dataset_artifact
-        return None, None
-
-    def download_model_artifact(self, opt):
-        """
-        download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
-
-        arguments:
-        opt (namespace) -- Commandline arguments for this run
-        """
-        if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
-            model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
-            assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
-            modeldir = model_artifact.download()
-            # epochs_trained = model_artifact.metadata.get('epochs_trained')
-            total_epochs = model_artifact.metadata.get('total_epochs')
-            is_finished = total_epochs is None
-            assert not is_finished, 'training is finished, can only resume incomplete runs.'
-            return modeldir, model_artifact
-        return None, None
-
-    def log_model(self, path, opt, epoch, fitness_score, best_model=False):
-        """
-        Log the model checkpoint as W&B artifact
-
-        arguments:
-        path (Path)   -- Path of directory containing the checkpoints
-        opt (namespace) -- Command line arguments for this run
-        epoch (int)  -- Current epoch number
-        fitness_score (float) -- fitness score for current epoch
-        best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
-        """
-        model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model',
-                                        type='model',
-                                        metadata={
-                                            'original_url': str(path),
-                                            'epochs_trained': epoch + 1,
-                                            'save period': opt.save_period,
-                                            'project': opt.project,
-                                            'total_epochs': opt.epochs,
-                                            'fitness_score': fitness_score})
-        model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
-        wandb.log_artifact(model_artifact,
-                           aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
-        LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
-
-    def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
-        """
-        Log the dataset as W&B artifact and return the new data file with W&B links
-
-        arguments:
-        data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
-        single_class (boolean)  -- train multi-class data as single-class
-        project (str) -- project name. Used to construct the artifact path
-        overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
-        file with _wandb postfix. Eg -> data_wandb.yaml
-
-        returns:
-        the new .yaml file with artifact links. it can be used to start training directly from artifacts
-        """
-        upload_dataset = self.wandb_run.config.upload_dataset
-        log_val_only = isinstance(upload_dataset, str) and upload_dataset == 'val'
-        self.data_dict = check_dataset(data_file)  # parse and check
-        data = dict(self.data_dict)
-        nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
-        names = {k: v for k, v in enumerate(names)}  # to index dictionary
-
-        # log train set
-        if not log_val_only:
-            self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(data['train'], rect=True, batch_size=1),
-                                                            names,
-                                                            name='train') if data.get('train') else None
-            if data.get('train'):
-                data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
-
-        self.val_artifact = self.create_dataset_table(
-            LoadImagesAndLabels(data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
-        if data.get('val'):
-            data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
-
-        path = Path(data_file)
-        # create a _wandb.yaml file with artifacts links if both train and test set are logged
-        if not log_val_only:
-            path = (path.stem if overwrite_config else path.stem + '_wandb') + '.yaml'  # updated data.yaml path
-            path = ROOT / 'data' / path
-            data.pop('download', None)
-            data.pop('path', None)
-            with open(path, 'w') as f:
-                yaml.safe_dump(data, f)
-                LOGGER.info(f"Created dataset config file {path}")
-
-        if self.job_type == 'Training':  # builds correct artifact pipeline graph
-            if not log_val_only:
-                self.wandb_run.log_artifact(
-                    self.train_artifact)  # calling use_artifact downloads the dataset. NOT NEEDED!
-            self.wandb_run.use_artifact(self.val_artifact)
-            self.val_artifact.wait()
-            self.val_table = self.val_artifact.get('val')
-            self.map_val_table_path()
-        else:
-            self.wandb_run.log_artifact(self.train_artifact)
-            self.wandb_run.log_artifact(self.val_artifact)
-        return path
-
-    def map_val_table_path(self):
-        """
-        Map the validation dataset Table like name of file -> it's id in the W&B Table.
-        Useful for - referencing artifacts for evaluation.
-        """
-        self.val_table_path_map = {}
-        LOGGER.info("Mapping dataset")
-        for i, data in enumerate(tqdm(self.val_table.data)):
-            self.val_table_path_map[data[3]] = data[0]
-
-    def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[int, str], name: str = 'dataset'):
-        """
-        Create and return W&B artifact containing W&B Table of the dataset.
-
-        arguments:
-        dataset -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
-        class_to_id -- hash map that maps class ids to labels
-        name -- name of the artifact
-
-        returns:
-        dataset artifact to be logged or used
-        """
-        # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
-        artifact = wandb.Artifact(name=name, type="dataset")
-        img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
-        img_files = tqdm(dataset.im_files) if not img_files else img_files
-        for img_file in img_files:
-            if Path(img_file).is_dir():
-                artifact.add_dir(img_file, name='data/images')
-                labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
-                artifact.add_dir(labels_path, name='data/labels')
-            else:
-                artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
-                label_file = Path(img2label_paths([img_file])[0])
-                artifact.add_file(str(label_file), name='data/labels/' +
-                                  label_file.name) if label_file.exists() else None
-        table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
-        class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
-        for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
-            box_data, img_classes = [], {}
-            for cls, *xywh in labels[:, 1:].tolist():
-                cls = int(cls)
-                box_data.append({
-                    "position": {
-                        "middle": [xywh[0], xywh[1]],
-                        "width": xywh[2],
-                        "height": xywh[3]},
-                    "class_id": cls,
-                    "box_caption": "%s" % (class_to_id[cls])})
-                img_classes[cls] = class_to_id[cls]
-            boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}}  # inference-space
-            table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()),
-                           Path(paths).name)
-        artifact.add(table, name)
-        return artifact
-
-    def log_training_progress(self, predn, path, names):
-        """
-        Build evaluation Table. Uses reference from validation dataset table.
-
-        arguments:
-        predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
-        path (str): local path of the current evaluation image
-        names (dict(int, str)): hash map that maps class ids to labels
-        """
-        class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
-        box_data = []
-        avg_conf_per_class = [0] * len(self.data_dict['names'])
-        pred_class_count = {}
-        for *xyxy, conf, cls in predn.tolist():
-            if conf >= 0.25:
-                cls = int(cls)
-                box_data.append({
-                    "position": {
-                        "minX": xyxy[0],
-                        "minY": xyxy[1],
-                        "maxX": xyxy[2],
-                        "maxY": xyxy[3]},
-                    "class_id": cls,
-                    "box_caption": f"{names[cls]} {conf:.3f}",
-                    "scores": {
-                        "class_score": conf},
-                    "domain": "pixel"})
-                avg_conf_per_class[cls] += conf
-
-                if cls in pred_class_count:
-                    pred_class_count[cls] += 1
-                else:
-                    pred_class_count[cls] = 1
-
-        for pred_class in pred_class_count.keys():
-            avg_conf_per_class[pred_class] = avg_conf_per_class[pred_class] / pred_class_count[pred_class]
-
-        boxes = {"predictions": {"box_data": box_data, "class_labels": names}}  # inference-space
-        id = self.val_table_path_map[Path(path).name]
-        self.result_table.add_data(self.current_epoch, id, self.val_table.data[id][1],
-                                   wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
-                                   *avg_conf_per_class)
-
-    def val_one_image(self, pred, predn, path, names, im):
-        """
-        Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
-
-        arguments:
-        pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
-        predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
-        path (str): local path of the current evaluation image
-        """
-        if self.val_table and self.result_table:  # Log Table if Val dataset is uploaded as artifact
-            self.log_training_progress(predn, path, names)
-
-        if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
-            if self.current_epoch % self.bbox_interval == 0:
-                box_data = [{
-                    "position": {
-                        "minX": xyxy[0],
-                        "minY": xyxy[1],
-                        "maxX": xyxy[2],
-                        "maxY": xyxy[3]},
-                    "class_id": int(cls),
-                    "box_caption": f"{names[int(cls)]} {conf:.3f}",
-                    "scores": {
-                        "class_score": conf},
-                    "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
-                boxes = {"predictions": {"box_data": box_data, "class_labels": names}}  # inference-space
-                self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
-
-    def log(self, log_dict):
-        """
-        save the metrics to the logging dictionary
-
-        arguments:
-        log_dict (Dict) -- metrics/media to be logged in current step
-        """
-        if self.wandb_run:
-            for key, value in log_dict.items():
-                self.log_dict[key] = value
-
-    def end_epoch(self, best_result=False):
-        """
-        commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
-
-        arguments:
-        best_result (boolean): Boolean representing if the result of this evaluation is best or not
-        """
-        if self.wandb_run:
-            with all_logging_disabled():
-                if self.bbox_media_panel_images:
-                    self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images
-                try:
-                    wandb.log(self.log_dict)
-                except BaseException as e:
-                    LOGGER.info(
-                        f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
-                    )
-                    self.wandb_run.finish()
-                    self.wandb_run = None
-
-                self.log_dict = {}
-                self.bbox_media_panel_images = []
-            if self.result_artifact:
-                self.result_artifact.add(self.result_table, 'result')
-                wandb.log_artifact(self.result_artifact,
-                                   aliases=[
-                                       'latest', 'last', 'epoch ' + str(self.current_epoch),
-                                       ('best' if best_result else '')])
-
-                wandb.log({"evaluation": self.result_table})
-                columns = ["epoch", "id", "ground truth", "prediction"]
-                columns.extend(self.data_dict['names'])
-                self.result_table = wandb.Table(columns)
-                self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
-
-    def finish_run(self):
-        """
-        Log metrics if any and finish the current W&B run
-        """
-        if self.wandb_run:
-            if self.log_dict:
-                with all_logging_disabled():
-                    wandb.log(self.log_dict)
-            wandb.run.finish()
-
-
-@contextmanager
-def all_logging_disabled(highest_level=logging.CRITICAL):
-    """ source - https://gist.github.com/simon-weber/7853144
-    A context manager that will prevent any logging messages triggered during the body from being processed.
-    :param highest_level: the maximum logging level in use.
-      This would only need to be changed if a custom level greater than CRITICAL is defined.
-    """
-    previous_level = logging.root.manager.disable
-    logging.disable(highest_level)
-    try:
-        yield
-    finally:
-        logging.disable(previous_level)
diff --git a/yolov5-6.2/utils/loss.py b/yolov5-6.2/utils/loss.py
deleted file mode 100644
index 9b9c3d9f..00000000
--- a/yolov5-6.2/utils/loss.py
+++ /dev/null
@@ -1,234 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Loss functions
-"""
-
-import torch
-import torch.nn as nn
-
-from utils.metrics import bbox_iou
-from utils.torch_utils import de_parallel
-
-
-def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
-    # return positive, negative label smoothing BCE targets
-    return 1.0 - 0.5 * eps, 0.5 * eps
-
-
-class BCEBlurWithLogitsLoss(nn.Module):
-    # BCEwithLogitLoss() with reduced missing label effects.
-    def __init__(self, alpha=0.05):
-        super().__init__()
-        self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')  # must be nn.BCEWithLogitsLoss()
-        self.alpha = alpha
-
-    def forward(self, pred, true):
-        loss = self.loss_fcn(pred, true)
-        pred = torch.sigmoid(pred)  # prob from logits
-        dx = pred - true  # reduce only missing label effects
-        # dx = (pred - true).abs()  # reduce missing label and false label effects
-        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
-        loss *= alpha_factor
-        return loss.mean()
-
-
-class FocalLoss(nn.Module):
-    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
-    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
-        super().__init__()
-        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
-        self.gamma = gamma
-        self.alpha = alpha
-        self.reduction = loss_fcn.reduction
-        self.loss_fcn.reduction = 'none'  # required to apply FL to each element
-
-    def forward(self, pred, true):
-        loss = self.loss_fcn(pred, true)
-        # p_t = torch.exp(-loss)
-        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability
-
-        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
-        pred_prob = torch.sigmoid(pred)  # prob from logits
-        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
-        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
-        modulating_factor = (1.0 - p_t) ** self.gamma
-        loss *= alpha_factor * modulating_factor
-
-        if self.reduction == 'mean':
-            return loss.mean()
-        elif self.reduction == 'sum':
-            return loss.sum()
-        else:  # 'none'
-            return loss
-
-
-class QFocalLoss(nn.Module):
-    # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
-    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
-        super().__init__()
-        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
-        self.gamma = gamma
-        self.alpha = alpha
-        self.reduction = loss_fcn.reduction
-        self.loss_fcn.reduction = 'none'  # required to apply FL to each element
-
-    def forward(self, pred, true):
-        loss = self.loss_fcn(pred, true)
-
-        pred_prob = torch.sigmoid(pred)  # prob from logits
-        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
-        modulating_factor = torch.abs(true - pred_prob) ** self.gamma
-        loss *= alpha_factor * modulating_factor
-
-        if self.reduction == 'mean':
-            return loss.mean()
-        elif self.reduction == 'sum':
-            return loss.sum()
-        else:  # 'none'
-            return loss
-
-
-class ComputeLoss:
-    sort_obj_iou = False
-
-    # Compute losses
-    def __init__(self, model, autobalance=False):
-        device = next(model.parameters()).device  # get model device
-        h = model.hyp  # hyperparameters
-
-        # Define criteria
-        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
-        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
-
-        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
-        self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets
-
-        # Focal loss
-        g = h['fl_gamma']  # focal loss gamma
-        if g > 0:
-            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
-
-        m = de_parallel(model).model[-1]  # Detect() module
-        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
-        self.ssi = list(m.stride).index(16) if autobalance else 0  # stride 16 index
-        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
-        self.na = m.na  # number of anchors
-        self.nc = m.nc  # number of classes
-        self.nl = m.nl  # number of layers
-        self.anchors = m.anchors
-        self.device = device
-
-    def __call__(self, p, targets):  # predictions, targets
-        lcls = torch.zeros(1, device=self.device)  # class loss
-        lbox = torch.zeros(1, device=self.device)  # box loss
-        lobj = torch.zeros(1, device=self.device)  # object loss
-        tcls, tbox, indices, anchors = self.build_targets(p, targets)  # targets
-
-        # Losses
-        for i, pi in enumerate(p):  # layer index, layer predictions
-            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
-            tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device)  # target obj
-
-            n = b.shape[0]  # number of targets
-            if n:
-                # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1)  # faster, requires torch 1.8.0
-                pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1)  # target-subset of predictions
-
-                # Regression
-                pxy = pxy.sigmoid() * 2 - 0.5
-                pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
-                pbox = torch.cat((pxy, pwh), 1)  # predicted box
-                iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze()  # iou(prediction, target)
-                lbox += (1.0 - iou).mean()  # iou loss
-
-                # Objectness
-                iou = iou.detach().clamp(0).type(tobj.dtype)
-                if self.sort_obj_iou:
-                    j = iou.argsort()
-                    b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
-                if self.gr < 1:
-                    iou = (1.0 - self.gr) + self.gr * iou
-                tobj[b, a, gj, gi] = iou  # iou ratio
-
-                # Classification
-                if self.nc > 1:  # cls loss (only if multiple classes)
-                    t = torch.full_like(pcls, self.cn, device=self.device)  # targets
-                    t[range(n), tcls[i]] = self.cp
-                    lcls += self.BCEcls(pcls, t)  # BCE
-
-                # Append targets to text file
-                # with open('targets.txt', 'a') as file:
-                #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
-
-            obji = self.BCEobj(pi[..., 4], tobj)
-            lobj += obji * self.balance[i]  # obj loss
-            if self.autobalance:
-                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
-
-        if self.autobalance:
-            self.balance = [x / self.balance[self.ssi] for x in self.balance]
-        lbox *= self.hyp['box']
-        lobj *= self.hyp['obj']
-        lcls *= self.hyp['cls']
-        bs = tobj.shape[0]  # batch size
-
-        return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
-
-    def build_targets(self, p, targets):
-        # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
-        na, nt = self.na, targets.shape[0]  # number of anchors, targets
-        tcls, tbox, indices, anch = [], [], [], []
-        gain = torch.ones(7, device=self.device)  # normalized to gridspace gain
-        ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
-        targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2)  # append anchor indices
-
-        g = 0.5  # bias
-        off = torch.tensor(
-            [
-                [0, 0],
-                [1, 0],
-                [0, 1],
-                [-1, 0],
-                [0, -1],  # j,k,l,m
-                # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
-            ],
-            device=self.device).float() * g  # offsets
-
-        for i in range(self.nl):
-            anchors, shape = self.anchors[i], p[i].shape
-            gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]]  # xyxy gain
-
-            # Match targets to anchors
-            t = targets * gain  # shape(3,n,7)
-            if nt:
-                # Matches
-                r = t[..., 4:6] / anchors[:, None]  # wh ratio
-                j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t']  # compare
-                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
-                t = t[j]  # filter
-
-                # Offsets
-                gxy = t[:, 2:4]  # grid xy
-                gxi = gain[[2, 3]] - gxy  # inverse
-                j, k = ((gxy % 1 < g) & (gxy > 1)).T
-                l, m = ((gxi % 1 < g) & (gxi > 1)).T
-                j = torch.stack((torch.ones_like(j), j, k, l, m))
-                t = t.repeat((5, 1, 1))[j]
-                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
-            else:
-                t = targets[0]
-                offsets = 0
-
-            # Define
-            bc, gxy, gwh, a = t.chunk(4, 1)  # (image, class), grid xy, grid wh, anchors
-            a, (b, c) = a.long().view(-1), bc.long().T  # anchors, image, class
-            gij = (gxy - offsets).long()
-            gi, gj = gij.T  # grid indices
-
-            # Append
-            indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))  # image, anchor, grid
-            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
-            anch.append(anchors[a])  # anchors
-            tcls.append(c)  # class
-
-        return tcls, tbox, indices, anch
diff --git a/yolov5-6.2/utils/metrics.py b/yolov5-6.2/utils/metrics.py
deleted file mode 100644
index 08880cd3..00000000
--- a/yolov5-6.2/utils/metrics.py
+++ /dev/null
@@ -1,364 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Model validation metrics
-"""
-
-import math
-import warnings
-from pathlib import Path
-
-import matplotlib.pyplot as plt
-import numpy as np
-import torch
-
-
-def fitness(x):
-    # Model fitness as a weighted combination of metrics
-    w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
-    return (x[:, :4] * w).sum(1)
-
-
-def smooth(y, f=0.05):
-    # Box filter of fraction f
-    nf = round(len(y) * f * 2) // 2 + 1  # number of filter elements (must be odd)
-    p = np.ones(nf // 2)  # ones padding
-    yp = np.concatenate((p * y[0], y, p * y[-1]), 0)  # y padded
-    return np.convolve(yp, np.ones(nf) / nf, mode='valid')  # y-smoothed
-
-
-def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16):
-    """ Compute the average precision, given the recall and precision curves.
-    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
-    # Arguments
-        tp:  True positives (nparray, nx1 or nx10).
-        conf:  Objectness value from 0-1 (nparray).
-        pred_cls:  Predicted object classes (nparray).
-        target_cls:  True object classes (nparray).
-        plot:  Plot precision-recall curve at mAP@0.5
-        save_dir:  Plot save directory
-    # Returns
-        The average precision as computed in py-faster-rcnn.
-    """
-
-    # Sort by objectness
-    i = np.argsort(-conf)
-    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
-
-    # Find unique classes
-    unique_classes, nt = np.unique(target_cls, return_counts=True)
-    nc = unique_classes.shape[0]  # number of classes, number of detections
-
-    # Create Precision-Recall curve and compute AP for each class
-    px, py = np.linspace(0, 1, 1000), []  # for plotting
-    ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
-    for ci, c in enumerate(unique_classes):
-        i = pred_cls == c
-        n_l = nt[ci]  # number of labels
-        n_p = i.sum()  # number of predictions
-        if n_p == 0 or n_l == 0:
-            continue
-
-        # Accumulate FPs and TPs
-        fpc = (1 - tp[i]).cumsum(0)
-        tpc = tp[i].cumsum(0)
-
-        # Recall
-        recall = tpc / (n_l + eps)  # recall curve
-        r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases
-
-        # Precision
-        precision = tpc / (tpc + fpc)  # precision curve
-        p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)  # p at pr_score
-
-        # AP from recall-precision curve
-        for j in range(tp.shape[1]):
-            ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
-            if plot and j == 0:
-                py.append(np.interp(px, mrec, mpre))  # precision at mAP@0.5
-
-    # Compute F1 (harmonic mean of precision and recall)
-    f1 = 2 * p * r / (p + r + eps)
-    names = [v for k, v in names.items() if k in unique_classes]  # list: only classes that have data
-    names = dict(enumerate(names))  # to dict
-    if plot:
-        plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
-        plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
-        plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
-        plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
-
-    i = smooth(f1.mean(0), 0.1).argmax()  # max F1 index
-    p, r, f1 = p[:, i], r[:, i], f1[:, i]
-    tp = (r * nt).round()  # true positives
-    fp = (tp / (p + eps) - tp).round()  # false positives
-    return tp, fp, p, r, f1, ap, unique_classes.astype(int)
-
-
-def compute_ap(recall, precision):
-    """ Compute the average precision, given the recall and precision curves
-    # Arguments
-        recall:    The recall curve (list)
-        precision: The precision curve (list)
-    # Returns
-        Average precision, precision curve, recall curve
-    """
-
-    # Append sentinel values to beginning and end
-    mrec = np.concatenate(([0.0], recall, [1.0]))
-    mpre = np.concatenate(([1.0], precision, [0.0]))
-
-    # Compute the precision envelope
-    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
-
-    # Integrate area under curve
-    method = 'interp'  # methods: 'continuous', 'interp'
-    if method == 'interp':
-        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
-        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
-    else:  # 'continuous'
-        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x axis (recall) changes
-        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve
-
-    return ap, mpre, mrec
-
-
-class ConfusionMatrix:
-    # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
-    def __init__(self, nc, conf=0.25, iou_thres=0.45):
-        self.matrix = np.zeros((nc + 1, nc + 1))
-        self.nc = nc  # number of classes
-        self.conf = conf
-        self.iou_thres = iou_thres
-
-    def process_batch(self, detections, labels):
-        """
-        Return intersection-over-union (Jaccard index) of boxes.
-        Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
-        Arguments:
-            detections (Array[N, 6]), x1, y1, x2, y2, conf, class
-            labels (Array[M, 5]), class, x1, y1, x2, y2
-        Returns:
-            None, updates confusion matrix accordingly
-        """
-        if detections is None:
-            gt_classes = labels.int()
-            for i, gc in enumerate(gt_classes):
-                self.matrix[self.nc, gc] += 1  # background FN
-            return
-
-        detections = detections[detections[:, 4] > self.conf]
-        gt_classes = labels[:, 0].int()
-        detection_classes = detections[:, 5].int()
-        iou = box_iou(labels[:, 1:], detections[:, :4])
-
-        x = torch.where(iou > self.iou_thres)
-        if x[0].shape[0]:
-            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
-            if x[0].shape[0] > 1:
-                matches = matches[matches[:, 2].argsort()[::-1]]
-                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
-                matches = matches[matches[:, 2].argsort()[::-1]]
-                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
-        else:
-            matches = np.zeros((0, 3))
-
-        n = matches.shape[0] > 0
-        m0, m1, _ = matches.transpose().astype(int)
-        for i, gc in enumerate(gt_classes):
-            j = m0 == i
-            if n and sum(j) == 1:
-                self.matrix[detection_classes[m1[j]], gc] += 1  # correct
-            else:
-                self.matrix[self.nc, gc] += 1  # background FP
-
-        if n:
-            for i, dc in enumerate(detection_classes):
-                if not any(m1 == i):
-                    self.matrix[dc, self.nc] += 1  # background FN
-
-    def matrix(self):
-        return self.matrix
-
-    def tp_fp(self):
-        tp = self.matrix.diagonal()  # true positives
-        fp = self.matrix.sum(1) - tp  # false positives
-        # fn = self.matrix.sum(0) - tp  # false negatives (missed detections)
-        return tp[:-1], fp[:-1]  # remove background class
-
-    def plot(self, normalize=True, save_dir='', names=()):
-        try:
-            import seaborn as sn
-
-            array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1)  # normalize columns
-            array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)
-
-            fig = plt.figure(figsize=(12, 9), tight_layout=True)
-            nc, nn = self.nc, len(names)  # number of classes, names
-            sn.set(font_scale=1.0 if nc < 50 else 0.8)  # for label size
-            labels = (0 < nn < 99) and (nn == nc)  # apply names to ticklabels
-            with warnings.catch_warnings():
-                warnings.simplefilter('ignore')  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
-                sn.heatmap(array,
-                           annot=nc < 30,
-                           annot_kws={
-                               "size": 8},
-                           cmap='Blues',
-                           fmt='.2f',
-                           square=True,
-                           vmin=0.0,
-                           xticklabels=names + ['background FP'] if labels else "auto",
-                           yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
-            fig.axes[0].set_xlabel('True')
-            fig.axes[0].set_ylabel('Predicted')
-            plt.title('Confusion Matrix')
-            fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
-            plt.close()
-        except Exception as e:
-            print(f'WARNING: ConfusionMatrix plot failure: {e}')
-
-    def print(self):
-        for i in range(self.nc + 1):
-            print(' '.join(map(str, self.matrix[i])))
-
-
-def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
-    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
-
-    # Get the coordinates of bounding boxes
-    if xywh:  # transform from xywh to xyxy
-        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, 1), box2.chunk(4, 1)
-        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
-        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
-        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
-    else:  # x1, y1, x2, y2 = box1
-        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, 1)
-        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, 1)
-        w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1
-        w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1
-
-    # Intersection area
-    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
-            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
-
-    # Union Area
-    union = w1 * h1 + w2 * h2 - inter + eps
-
-    # IoU
-    iou = inter / union
-    if CIoU or DIoU or GIoU:
-        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
-        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
-        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
-            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
-            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2
-            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
-                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
-                with torch.no_grad():
-                    alpha = v / (v - iou + (1 + eps))
-                return iou - (rho2 / c2 + v * alpha)  # CIoU
-            return iou - rho2 / c2  # DIoU
-        c_area = cw * ch + eps  # convex area
-        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
-    return iou  # IoU
-
-
-def box_area(box):
-    # box = xyxy(4,n)
-    return (box[2] - box[0]) * (box[3] - box[1])
-
-
-def box_iou(box1, box2, eps=1e-7):
-    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
-    """
-    Return intersection-over-union (Jaccard index) of boxes.
-    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
-    Arguments:
-        box1 (Tensor[N, 4])
-        box2 (Tensor[M, 4])
-    Returns:
-        iou (Tensor[N, M]): the NxM matrix containing the pairwise
-            IoU values for every element in boxes1 and boxes2
-    """
-
-    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
-    (a1, a2), (b1, b2) = box1[:, None].chunk(2, 2), box2.chunk(2, 1)
-    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
-
-    # IoU = inter / (area1 + area2 - inter)
-    return inter / (box_area(box1.T)[:, None] + box_area(box2.T) - inter + eps)
-
-
-def bbox_ioa(box1, box2, eps=1e-7):
-    """ Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
-    box1:       np.array of shape(4)
-    box2:       np.array of shape(nx4)
-    returns:    np.array of shape(n)
-    """
-
-    # Get the coordinates of bounding boxes
-    b1_x1, b1_y1, b1_x2, b1_y2 = box1
-    b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
-
-    # Intersection area
-    inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
-                 (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
-
-    # box2 area
-    box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
-
-    # Intersection over box2 area
-    return inter_area / box2_area
-
-
-def wh_iou(wh1, wh2, eps=1e-7):
-    # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
-    wh1 = wh1[:, None]  # [N,1,2]
-    wh2 = wh2[None]  # [1,M,2]
-    inter = torch.min(wh1, wh2).prod(2)  # [N,M]
-    return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps)  # iou = inter / (area1 + area2 - inter)
-
-
-# Plots ----------------------------------------------------------------------------------------------------------------
-
-
-def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
-    # Precision-recall curve
-    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
-    py = np.stack(py, axis=1)
-
-    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
-        for i, y in enumerate(py.T):
-            ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}')  # plot(recall, precision)
-    else:
-        ax.plot(px, py, linewidth=1, color='grey')  # plot(recall, precision)
-
-    ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
-    ax.set_xlabel('Recall')
-    ax.set_ylabel('Precision')
-    ax.set_xlim(0, 1)
-    ax.set_ylim(0, 1)
-    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
-    plt.title('Precision-Recall Curve')
-    fig.savefig(save_dir, dpi=250)
-    plt.close()
-
-
-def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
-    # Metric-confidence curve
-    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
-
-    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
-        for i, y in enumerate(py):
-            ax.plot(px, y, linewidth=1, label=f'{names[i]}')  # plot(confidence, metric)
-    else:
-        ax.plot(px, py.T, linewidth=1, color='grey')  # plot(confidence, metric)
-
-    y = smooth(py.mean(0), 0.05)
-    ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
-    ax.set_xlabel(xlabel)
-    ax.set_ylabel(ylabel)
-    ax.set_xlim(0, 1)
-    ax.set_ylim(0, 1)
-    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
-    plt.title(f'{ylabel}-Confidence Curve')
-    fig.savefig(save_dir, dpi=250)
-    plt.close()
diff --git a/yolov5-6.2/utils/plots.py b/yolov5-6.2/utils/plots.py
deleted file mode 100644
index 5df27a34..00000000
--- a/yolov5-6.2/utils/plots.py
+++ /dev/null
@@ -1,522 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Plotting utils
-"""
-
-import math
-import os
-from copy import copy
-from pathlib import Path
-from urllib.error import URLError
-
-import cv2
-import matplotlib
-import matplotlib.pyplot as plt
-import numpy as np
-import pandas as pd
-import seaborn as sn
-import torch
-from PIL import Image, ImageDraw, ImageFont
-
-from utils.general import (CONFIG_DIR, FONT, LOGGER, Timeout, check_font, check_requirements, clip_coords,
-                           increment_path, is_ascii, threaded, try_except, xywh2xyxy, xyxy2xywh)
-from utils.metrics import fitness
-
-# Settings
-RANK = int(os.getenv('RANK', -1))
-matplotlib.rc('font', **{'size': 11})
-matplotlib.use('Agg')  # for writing to files only
-
-
-class Colors:
-    # Ultralytics color palette https://ultralytics.com/
-    def __init__(self):
-        # hex = matplotlib.colors.TABLEAU_COLORS.values()
-        hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
-                '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
-        self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
-        self.n = len(self.palette)
-
-    def __call__(self, i, bgr=False):
-        c = self.palette[int(i) % self.n]
-        return (c[2], c[1], c[0]) if bgr else c
-
-    @staticmethod
-    def hex2rgb(h):  # rgb order (PIL)
-        return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
-
-
-colors = Colors()  # create instance for 'from utils.plots import colors'
-
-
-def check_pil_font(font=FONT, size=10):
-    # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
-    font = Path(font)
-    font = font if font.exists() else (CONFIG_DIR / font.name)
-    try:
-        return ImageFont.truetype(str(font) if font.exists() else font.name, size)
-    except Exception:  # download if missing
-        try:
-            check_font(font)
-            return ImageFont.truetype(str(font), size)
-        except TypeError:
-            check_requirements('Pillow>=8.4.0')  # known issue https://github.com/ultralytics/yolov5/issues/5374
-        except URLError:  # not online
-            return ImageFont.load_default()
-
-
-class Annotator:
-    # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
-    def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
-        assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
-        non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
-        self.pil = pil or non_ascii
-        if self.pil:  # use PIL
-            self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
-            self.draw = ImageDraw.Draw(self.im)
-            self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
-                                       size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
-        else:  # use cv2
-            self.im = im
-        self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2)  # line width
-
-    def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
-        # Add one xyxy box to image with label
-        if self.pil or not is_ascii(label):
-            self.draw.rectangle(box, width=self.lw, outline=color)  # box
-            if label:
-                w, h = self.font.getsize(label)  # text width, height
-                outside = box[1] - h >= 0  # label fits outside box
-                self.draw.rectangle(
-                    (box[0], box[1] - h if outside else box[1], box[0] + w + 1,
-                     box[1] + 1 if outside else box[1] + h + 1),
-                    fill=color,
-                )
-                # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
-                self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
-        else:  # cv2
-            p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
-            center = (int((box[0]+box[2])/2),int((box[1]+box[3])/2))
-            cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
-            if label:
-                tf = max(self.lw - 1, 1)  # font thickness
-                w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
-                outside = p1[1] - h >= 3
-                p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
-                cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
-                cv2.putText(self.im,
-                            label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
-                            0,
-                            self.lw / 3,
-                            txt_color,
-                            thickness=tf,
-                            lineType=cv2.LINE_AA)
-                cv2.putText(self.im, "("+str(center[0])+","+str(center[1])+")", (p1[0]+5, p1[1] -50 if outside else p1[1] + h + 2), 2, self.lw / 3, txt_color,
-                            thickness=tf, lineType=cv2.LINE_AA)
-
-    def rectangle(self, xy, fill=None, outline=None, width=1):
-        # Add rectangle to image (PIL-only)
-        self.draw.rectangle(xy, fill, outline, width)
-
-    def text(self, xy, text, txt_color=(255, 255, 255)):
-        # Add text to image (PIL-only)
-        w, h = self.font.getsize(text)  # text width, height
-        self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font)
-
-    def result(self):
-        # Return annotated image as array
-        return np.asarray(self.im)
-
-
-def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
-    """
-    x:              Features to be visualized
-    module_type:    Module type
-    stage:          Module stage within model
-    n:              Maximum number of feature maps to plot
-    save_dir:       Directory to save results
-    """
-    if 'Detect' not in module_type:
-        batch, channels, height, width = x.shape  # batch, channels, height, width
-        if height > 1 and width > 1:
-            f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename
-
-            blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
-            n = min(n, channels)  # number of plots
-            fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
-            ax = ax.ravel()
-            plt.subplots_adjust(wspace=0.05, hspace=0.05)
-            for i in range(n):
-                ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
-                ax[i].axis('off')
-
-            LOGGER.info(f'Saving {f}... ({n}/{channels})')
-            plt.title('Features')
-            plt.savefig(f, dpi=300, bbox_inches='tight')
-            plt.close()
-            np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy())  # npy save
-
-
-def hist2d(x, y, n=100):
-    # 2d histogram used in labels.png and evolve.png
-    xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
-    hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
-    xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
-    yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
-    return np.log(hist[xidx, yidx])
-
-
-def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
-    from scipy.signal import butter, filtfilt
-
-    # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
-    def butter_lowpass(cutoff, fs, order):
-        nyq = 0.5 * fs
-        normal_cutoff = cutoff / nyq
-        return butter(order, normal_cutoff, btype='low', analog=False)
-
-    b, a = butter_lowpass(cutoff, fs, order=order)
-    return filtfilt(b, a, data)  # forward-backward filter
-
-
-def output_to_target(output):
-    # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
-    targets = []
-    for i, o in enumerate(output):
-        for *box, conf, cls in o.cpu().numpy():
-            targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
-    return np.array(targets)
-
-
-@threaded
-def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16):
-    # Plot image grid with labels
-    if isinstance(images, torch.Tensor):
-        images = images.cpu().float().numpy()
-    if isinstance(targets, torch.Tensor):
-        targets = targets.cpu().numpy()
-    if np.max(images[0]) <= 1:
-        images *= 255  # de-normalise (optional)
-    bs, _, h, w = images.shape  # batch size, _, height, width
-    bs = min(bs, max_subplots)  # limit plot images
-    ns = np.ceil(bs ** 0.5)  # number of subplots (square)
-
-    # Build Image
-    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
-    for i, im in enumerate(images):
-        if i == max_subplots:  # if last batch has fewer images than we expect
-            break
-        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
-        im = im.transpose(1, 2, 0)
-        mosaic[y:y + h, x:x + w, :] = im
-
-    # Resize (optional)
-    scale = max_size / ns / max(h, w)
-    if scale < 1:
-        h = math.ceil(scale * h)
-        w = math.ceil(scale * w)
-        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
-
-    # Annotate
-    fs = int((h + w) * ns * 0.01)  # font size
-    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
-    for i in range(i + 1):
-        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
-        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
-        if paths:
-            annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
-        if len(targets) > 0:
-            ti = targets[targets[:, 0] == i]  # image targets
-            boxes = xywh2xyxy(ti[:, 2:6]).T
-            classes = ti[:, 1].astype('int')
-            labels = ti.shape[1] == 6  # labels if no conf column
-            conf = None if labels else ti[:, 6]  # check for confidence presence (label vs pred)
-
-            if boxes.shape[1]:
-                if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
-                    boxes[[0, 2]] *= w  # scale to pixels
-                    boxes[[1, 3]] *= h
-                elif scale < 1:  # absolute coords need scale if image scales
-                    boxes *= scale
-            boxes[[0, 2]] += x
-            boxes[[1, 3]] += y
-            for j, box in enumerate(boxes.T.tolist()):
-                cls = classes[j]
-                color = colors(cls)
-                cls = names[cls] if names else cls
-                if labels or conf[j] > 0.25:  # 0.25 conf thresh
-                    label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
-                    annotator.box_label(box, label, color=color)
-    annotator.im.save(fname)  # save
-
-
-def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
-    # Plot LR simulating training for full epochs
-    optimizer, scheduler = copy(optimizer), copy(scheduler)  # do not modify originals
-    y = []
-    for _ in range(epochs):
-        scheduler.step()
-        y.append(optimizer.param_groups[0]['lr'])
-    plt.plot(y, '.-', label='LR')
-    plt.xlabel('epoch')
-    plt.ylabel('LR')
-    plt.grid()
-    plt.xlim(0, epochs)
-    plt.ylim(0)
-    plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
-    plt.close()
-
-
-def plot_val_txt():  # from utils.plots import *; plot_val()
-    # Plot val.txt histograms
-    x = np.loadtxt('val.txt', dtype=np.float32)
-    box = xyxy2xywh(x[:, :4])
-    cx, cy = box[:, 0], box[:, 1]
-
-    fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
-    ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
-    ax.set_aspect('equal')
-    plt.savefig('hist2d.png', dpi=300)
-
-    fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
-    ax[0].hist(cx, bins=600)
-    ax[1].hist(cy, bins=600)
-    plt.savefig('hist1d.png', dpi=200)
-
-
-def plot_targets_txt():  # from utils.plots import *; plot_targets_txt()
-    # Plot targets.txt histograms
-    x = np.loadtxt('targets.txt', dtype=np.float32).T
-    s = ['x targets', 'y targets', 'width targets', 'height targets']
-    fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
-    ax = ax.ravel()
-    for i in range(4):
-        ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
-        ax[i].legend()
-        ax[i].set_title(s[i])
-    plt.savefig('targets.jpg', dpi=200)
-
-
-def plot_val_study(file='', dir='', x=None):  # from utils.plots import *; plot_val_study()
-    # Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
-    save_dir = Path(file).parent if file else Path(dir)
-    plot2 = False  # plot additional results
-    if plot2:
-        ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
-
-    fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
-    # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
-    for f in sorted(save_dir.glob('study*.txt')):
-        y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
-        x = np.arange(y.shape[1]) if x is None else np.array(x)
-        if plot2:
-            s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
-            for i in range(7):
-                ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
-                ax[i].set_title(s[i])
-
-        j = y[3].argmax() + 1
-        ax2.plot(y[5, 1:j],
-                 y[3, 1:j] * 1E2,
-                 '.-',
-                 linewidth=2,
-                 markersize=8,
-                 label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
-
-    ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
-             'k.-',
-             linewidth=2,
-             markersize=8,
-             alpha=.25,
-             label='EfficientDet')
-
-    ax2.grid(alpha=0.2)
-    ax2.set_yticks(np.arange(20, 60, 5))
-    ax2.set_xlim(0, 57)
-    ax2.set_ylim(25, 55)
-    ax2.set_xlabel('GPU Speed (ms/img)')
-    ax2.set_ylabel('COCO AP val')
-    ax2.legend(loc='lower right')
-    f = save_dir / 'study.png'
-    print(f'Saving {f}...')
-    plt.savefig(f, dpi=300)
-
-
-@try_except  # known issue https://github.com/ultralytics/yolov5/issues/5395
-@Timeout(30)  # known issue https://github.com/ultralytics/yolov5/issues/5611
-def plot_labels(labels, names=(), save_dir=Path('')):
-    # plot dataset labels
-    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
-    c, b = labels[:, 0], labels[:, 1:].transpose()  # classes, boxes
-    nc = int(c.max() + 1)  # number of classes
-    x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
-
-    # seaborn correlogram
-    sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
-    plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
-    plt.close()
-
-    # matplotlib labels
-    matplotlib.use('svg')  # faster
-    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
-    y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
-    try:  # color histogram bars by class
-        [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)]  # known issue #3195
-    except Exception:
-        pass
-    ax[0].set_ylabel('instances')
-    if 0 < len(names) < 30:
-        ax[0].set_xticks(range(len(names)))
-        ax[0].set_xticklabels(names, rotation=90, fontsize=10)
-    else:
-        ax[0].set_xlabel('classes')
-    sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
-    sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
-
-    # rectangles
-    labels[:, 1:3] = 0.5  # center
-    labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
-    img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
-    for cls, *box in labels[:1000]:
-        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
-    ax[1].imshow(img)
-    ax[1].axis('off')
-
-    for a in [0, 1, 2, 3]:
-        for s in ['top', 'right', 'left', 'bottom']:
-            ax[a].spines[s].set_visible(False)
-
-    plt.savefig(save_dir / 'labels.jpg', dpi=200)
-    matplotlib.use('Agg')
-    plt.close()
-
-
-def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path('images.jpg')):
-    # Show classification image grid with labels (optional) and predictions (optional)
-    from utils.augmentations import denormalize
-
-    names = names or [f'class{i}' for i in range(1000)]
-    blocks = torch.chunk(denormalize(im.clone()).cpu().float(), len(im),
-                         dim=0)  # select batch index 0, block by channels
-    n = min(len(blocks), nmax)  # number of plots
-    m = min(8, round(n ** 0.5))  # 8 x 8 default
-    fig, ax = plt.subplots(math.ceil(n / m), m)  # 8 rows x n/8 cols
-    ax = ax.ravel() if m > 1 else [ax]
-    # plt.subplots_adjust(wspace=0.05, hspace=0.05)
-    for i in range(n):
-        ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
-        ax[i].axis('off')
-        if labels is not None:
-            s = names[labels[i]] + (f'—{names[pred[i]]}' if pred is not None else '')
-            ax[i].set_title(s, fontsize=8, verticalalignment='top')
-    plt.savefig(f, dpi=300, bbox_inches='tight')
-    plt.close()
-    if verbose:
-        LOGGER.info(f"Saving {f}")
-        if labels is not None:
-            LOGGER.info('True:     ' + ' '.join(f'{names[i]:3s}' for i in labels[:nmax]))
-        if pred is not None:
-            LOGGER.info('Predicted:' + ' '.join(f'{names[i]:3s}' for i in pred[:nmax]))
-    return f
-
-
-def plot_evolve(evolve_csv='path/to/evolve.csv'):  # from utils.plots import *; plot_evolve()
-    # Plot evolve.csv hyp evolution results
-    evolve_csv = Path(evolve_csv)
-    data = pd.read_csv(evolve_csv)
-    keys = [x.strip() for x in data.columns]
-    x = data.values
-    f = fitness(x)
-    j = np.argmax(f)  # max fitness index
-    plt.figure(figsize=(10, 12), tight_layout=True)
-    matplotlib.rc('font', **{'size': 8})
-    print(f'Best results from row {j} of {evolve_csv}:')
-    for i, k in enumerate(keys[7:]):
-        v = x[:, 7 + i]
-        mu = v[j]  # best single result
-        plt.subplot(6, 5, i + 1)
-        plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
-        plt.plot(mu, f.max(), 'k+', markersize=15)
-        plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9})  # limit to 40 characters
-        if i % 5 != 0:
-            plt.yticks([])
-        print(f'{k:>15}: {mu:.3g}')
-    f = evolve_csv.with_suffix('.png')  # filename
-    plt.savefig(f, dpi=200)
-    plt.close()
-    print(f'Saved {f}')
-
-
-def plot_results(file='path/to/results.csv', dir=''):
-    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
-    save_dir = Path(file).parent if file else Path(dir)
-    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
-    ax = ax.ravel()
-    files = list(save_dir.glob('results*.csv'))
-    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
-    for f in files:
-        try:
-            data = pd.read_csv(f)
-            s = [x.strip() for x in data.columns]
-            x = data.values[:, 0]
-            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
-                y = data.values[:, j].astype('float')
-                # y[y == 0] = np.nan  # don't show zero values
-                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
-                ax[i].set_title(s[j], fontsize=12)
-                # if j in [8, 9, 10]:  # share train and val loss y axes
-                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
-        except Exception as e:
-            LOGGER.info(f'Warning: Plotting error for {f}: {e}')
-    ax[1].legend()
-    fig.savefig(save_dir / 'results.png', dpi=200)
-    plt.close()
-
-
-def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
-    # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
-    ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
-    s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
-    files = list(Path(save_dir).glob('frames*.txt'))
-    for fi, f in enumerate(files):
-        try:
-            results = np.loadtxt(f, ndmin=2).T[:, 90:-30]  # clip first and last rows
-            n = results.shape[1]  # number of rows
-            x = np.arange(start, min(stop, n) if stop else n)
-            results = results[:, x]
-            t = (results[0] - results[0].min())  # set t0=0s
-            results[0] = x
-            for i, a in enumerate(ax):
-                if i < len(results):
-                    label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
-                    a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
-                    a.set_title(s[i])
-                    a.set_xlabel('time (s)')
-                    # if fi == len(files) - 1:
-                    #     a.set_ylim(bottom=0)
-                    for side in ['top', 'right']:
-                        a.spines[side].set_visible(False)
-                else:
-                    a.remove()
-        except Exception as e:
-            print(f'Warning: Plotting error for {f}; {e}')
-    ax[1].legend()
-    plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
-
-
-def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
-    # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
-    xyxy = torch.tensor(xyxy).view(-1, 4)
-    b = xyxy2xywh(xyxy)  # boxes
-    if square:
-        b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
-    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
-    xyxy = xywh2xyxy(b).long()
-    clip_coords(xyxy, im.shape)
-    crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
-    if save:
-        file.parent.mkdir(parents=True, exist_ok=True)  # make directory
-        f = str(increment_path(file).with_suffix('.jpg'))
-        # cv2.imwrite(f, crop)  # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
-        Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0)  # save RGB
-    return crop
diff --git a/yolov5-6.2/utils/torch_utils.py b/yolov5-6.2/utils/torch_utils.py
deleted file mode 100644
index 354a802a..00000000
--- a/yolov5-6.2/utils/torch_utils.py
+++ /dev/null
@@ -1,454 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-PyTorch utils
-"""
-
-import math
-import os
-import platform
-import subprocess
-import time
-import warnings
-from contextlib import contextmanager
-from copy import deepcopy
-from pathlib import Path
-
-import torch
-import torch.distributed as dist
-import torch.nn as nn
-import torch.nn.functional as F
-from torch.nn.parallel import DistributedDataParallel as DDP
-
-from utils.general import LOGGER, check_version, colorstr, file_date, git_describe
-
-LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
-RANK = int(os.getenv('RANK', -1))
-WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
-
-try:
-    import thop  # for FLOPs computation
-except ImportError:
-    thop = None
-
-# Suppress PyTorch warnings
-warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling')
-
-
-def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
-    # Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
-    def decorate(fn):
-        return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
-
-    return decorate
-
-
-def smartCrossEntropyLoss(label_smoothing=0.0):
-    # Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0
-    if check_version(torch.__version__, '1.10.0'):
-        return nn.CrossEntropyLoss(label_smoothing=label_smoothing)  # loss function
-    else:
-        if label_smoothing > 0:
-            LOGGER.warning(f'WARNING: label smoothing {label_smoothing} requires torch>=1.10.0')
-        return nn.CrossEntropyLoss()  # loss function
-
-
-def smart_DDP(model):
-    # Model DDP creation with checks
-    assert not check_version(torch.__version__, '1.12.0', pinned=True), \
-        'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \
-        'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395'
-    if check_version(torch.__version__, '1.11.0'):
-        return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
-    else:
-        return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
-
-
-def reshape_classifier_output(model, n=1000):
-    # Update a TorchVision classification model to class count 'n' if required
-    from models.common import Classify
-    name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1]  # last module
-    if isinstance(m, Classify):  # YOLOv5 Classify() head
-        if m.linear.out_features != n:
-            m.linear = nn.Linear(m.linear.in_features, n)
-    elif isinstance(m, nn.Linear):  # ResNet, EfficientNet
-        if m.out_features != n:
-            setattr(model, name, nn.Linear(m.in_features, n))
-    elif isinstance(m, nn.Sequential):
-        types = [type(x) for x in m]
-        if nn.Linear in types:
-            i = types.index(nn.Linear)  # nn.Linear index
-            if m[i].out_features != n:
-                m[i] = nn.Linear(m[i].in_features, n)
-        elif nn.Conv2d in types:
-            i = types.index(nn.Conv2d)  # nn.Conv2d index
-            if m[i].out_channels != n:
-                m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias)
-
-
-@contextmanager
-def torch_distributed_zero_first(local_rank: int):
-    # Decorator to make all processes in distributed training wait for each local_master to do something
-    if local_rank not in [-1, 0]:
-        dist.barrier(device_ids=[local_rank])
-    yield
-    if local_rank == 0:
-        dist.barrier(device_ids=[0])
-
-
-def device_count():
-    # Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows
-    assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows'
-    try:
-        cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""'  # Windows
-        return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
-    except Exception:
-        return 0
-
-
-def select_device(device='', batch_size=0, newline=True):
-    # device = None or 'cpu' or 0 or '0' or '0,1,2,3'
-    s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} '
-    device = str(device).strip().lower().replace('cuda:', '').replace('none', '')  # to string, 'cuda:0' to '0'
-    cpu = device == 'cpu'
-    mps = device == 'mps'  # Apple Metal Performance Shaders (MPS)
-    if cpu or mps:
-        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'  # force torch.cuda.is_available() = False
-    elif device:  # non-cpu device requested
-        os.environ['CUDA_VISIBLE_DEVICES'] = device  # set environment variable - must be before assert is_available()
-        assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
-            f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
-
-    if not (cpu or mps) and torch.cuda.is_available():  # prefer GPU if available
-        devices = device.split(',') if device else '0'  # range(torch.cuda.device_count())  # i.e. 0,1,6,7
-        n = len(devices)  # device count
-        if n > 1 and batch_size > 0:  # check batch_size is divisible by device_count
-            assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
-        space = ' ' * (len(s) + 1)
-        for i, d in enumerate(devices):
-            p = torch.cuda.get_device_properties(i)
-            s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n"  # bytes to MB
-        arg = 'cuda:0'
-    elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available():  # prefer MPS if available
-        s += 'MPS\n'
-        arg = 'mps'
-    else:  # revert to CPU
-        s += 'CPU\n'
-        arg = 'cpu'
-
-    if not newline:
-        s = s.rstrip()
-    LOGGER.info(s)
-    return torch.device(arg)
-
-
-def time_sync():
-    # PyTorch-accurate time
-    if torch.cuda.is_available():
-        torch.cuda.synchronize()
-    return time.time()
-
-
-def profile(input, ops, n=10, device=None):
-    """ YOLOv5 speed/memory/FLOPs profiler
-    Usage:
-        input = torch.randn(16, 3, 640, 640)
-        m1 = lambda x: x * torch.sigmoid(x)
-        m2 = nn.SiLU()
-        profile(input, [m1, m2], n=100)  # profile over 100 iterations
-    """
-    results = []
-    if not isinstance(device, torch.device):
-        device = select_device(device)
-    print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
-          f"{'input':>24s}{'output':>24s}")
-
-    for x in input if isinstance(input, list) else [input]:
-        x = x.to(device)
-        x.requires_grad = True
-        for m in ops if isinstance(ops, list) else [ops]:
-            m = m.to(device) if hasattr(m, 'to') else m  # device
-            m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
-            tf, tb, t = 0, 0, [0, 0, 0]  # dt forward, backward
-            try:
-                flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2  # GFLOPs
-            except Exception:
-                flops = 0
-
-            try:
-                for _ in range(n):
-                    t[0] = time_sync()
-                    y = m(x)
-                    t[1] = time_sync()
-                    try:
-                        _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
-                        t[2] = time_sync()
-                    except Exception:  # no backward method
-                        # print(e)  # for debug
-                        t[2] = float('nan')
-                    tf += (t[1] - t[0]) * 1000 / n  # ms per op forward
-                    tb += (t[2] - t[1]) * 1000 / n  # ms per op backward
-                mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0  # (GB)
-                s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y))  # shapes
-                p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0  # parameters
-                print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
-                results.append([p, flops, mem, tf, tb, s_in, s_out])
-            except Exception as e:
-                print(e)
-                results.append(None)
-            torch.cuda.empty_cache()
-    return results
-
-
-def is_parallel(model):
-    # Returns True if model is of type DP or DDP
-    return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
-
-
-def de_parallel(model):
-    # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
-    return model.module if is_parallel(model) else model
-
-
-def initialize_weights(model):
-    for m in model.modules():
-        t = type(m)
-        if t is nn.Conv2d:
-            pass  # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
-        elif t is nn.BatchNorm2d:
-            m.eps = 1e-3
-            m.momentum = 0.03
-        elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
-            m.inplace = True
-
-
-def find_modules(model, mclass=nn.Conv2d):
-    # Finds layer indices matching module class 'mclass'
-    return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
-
-
-def sparsity(model):
-    # Return global model sparsity
-    a, b = 0, 0
-    for p in model.parameters():
-        a += p.numel()
-        b += (p == 0).sum()
-    return b / a
-
-
-def prune(model, amount=0.3):
-    # Prune model to requested global sparsity
-    import torch.nn.utils.prune as prune
-    for name, m in model.named_modules():
-        if isinstance(m, nn.Conv2d):
-            prune.l1_unstructured(m, name='weight', amount=amount)  # prune
-            prune.remove(m, 'weight')  # make permanent
-    LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity')
-
-
-def fuse_conv_and_bn(conv, bn):
-    # Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
-    fusedconv = nn.Conv2d(conv.in_channels,
-                          conv.out_channels,
-                          kernel_size=conv.kernel_size,
-                          stride=conv.stride,
-                          padding=conv.padding,
-                          groups=conv.groups,
-                          bias=True).requires_grad_(False).to(conv.weight.device)
-
-    # Prepare filters
-    w_conv = conv.weight.clone().view(conv.out_channels, -1)
-    w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
-    fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
-
-    # Prepare spatial bias
-    b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
-    b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
-    fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
-
-    return fusedconv
-
-
-def model_info(model, verbose=False, imgsz=640):
-    # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
-    n_p = sum(x.numel() for x in model.parameters())  # number parameters
-    n_g = sum(x.numel() for x in model.parameters() if x.requires_grad)  # number gradients
-    if verbose:
-        print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
-        for i, (name, p) in enumerate(model.named_parameters()):
-            name = name.replace('module_list.', '')
-            print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
-                  (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
-
-    try:  # FLOPs
-        p = next(model.parameters())
-        stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stride
-        im = torch.zeros((1, p.shape[1], stride, stride), device=p.device)  # input image in BCHW format
-        flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2  # stride GFLOPs
-        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
-        fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs'  # 640x640 GFLOPs
-    except Exception:
-        fs = ''
-
-    name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model'
-    LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
-
-
-def scale_img(img, ratio=1.0, same_shape=False, gs=32):  # img(16,3,256,416)
-    # Scales img(bs,3,y,x) by ratio constrained to gs-multiple
-    if ratio == 1.0:
-        return img
-    h, w = img.shape[2:]
-    s = (int(h * ratio), int(w * ratio))  # new size
-    img = F.interpolate(img, size=s, mode='bilinear', align_corners=False)  # resize
-    if not same_shape:  # pad/crop img
-        h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
-    return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447)  # value = imagenet mean
-
-
-def copy_attr(a, b, include=(), exclude=()):
-    # Copy attributes from b to a, options to only include [...] and to exclude [...]
-    for k, v in b.__dict__.items():
-        if (len(include) and k not in include) or k.startswith('_') or k in exclude:
-            continue
-        else:
-            setattr(a, k, v)
-
-
-def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
-    # YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay
-    g = [], [], []  # optimizer parameter groups
-    bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k)  # normalization layers, i.e. BatchNorm2d()
-    for v in model.modules():
-        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias (no decay)
-            g[2].append(v.bias)
-        if isinstance(v, bn):  # weight (no decay)
-            g[1].append(v.weight)
-        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):  # weight (with decay)
-            g[0].append(v.weight)
-
-    if name == 'Adam':
-        optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999))  # adjust beta1 to momentum
-    elif name == 'AdamW':
-        optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
-    elif name == 'RMSProp':
-        optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
-    elif name == 'SGD':
-        optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
-    else:
-        raise NotImplementedError(f'Optimizer {name} not implemented.')
-
-    optimizer.add_param_group({'params': g[0], 'weight_decay': decay})  # add g0 with weight_decay
-    optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0})  # add g1 (BatchNorm2d weights)
-    LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
-                f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias")
-    return optimizer
-
-
-def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs):
-    # YOLOv5 torch.hub.load() wrapper with smart error/issue handling
-    if check_version(torch.__version__, '1.9.1'):
-        kwargs['skip_validation'] = True  # validation causes GitHub API rate limit errors
-    if check_version(torch.__version__, '1.12.0'):
-        kwargs['trust_repo'] = True  # argument required starting in torch 0.12
-    try:
-        return torch.hub.load(repo, model, **kwargs)
-    except Exception:
-        return torch.hub.load(repo, model, force_reload=True, **kwargs)
-
-
-def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True):
-    # Resume training from a partially trained checkpoint
-    best_fitness = 0.0
-    start_epoch = ckpt['epoch'] + 1
-    if ckpt['optimizer'] is not None:
-        optimizer.load_state_dict(ckpt['optimizer'])  # optimizer
-        best_fitness = ckpt['best_fitness']
-    if ema and ckpt.get('ema'):
-        ema.ema.load_state_dict(ckpt['ema'].float().state_dict())  # EMA
-        ema.updates = ckpt['updates']
-    if resume:
-        assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \
-                                f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'"
-        LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs')
-    if epochs < start_epoch:
-        LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
-        epochs += ckpt['epoch']  # finetune additional epochs
-    return best_fitness, start_epoch, epochs
-
-
-class EarlyStopping:
-    # YOLOv5 simple early stopper
-    def __init__(self, patience=30):
-        self.best_fitness = 0.0  # i.e. mAP
-        self.best_epoch = 0
-        self.patience = patience or float('inf')  # epochs to wait after fitness stops improving to stop
-        self.possible_stop = False  # possible stop may occur next epoch
-
-    def __call__(self, epoch, fitness):
-        if fitness >= self.best_fitness:  # >= 0 to allow for early zero-fitness stage of training
-            self.best_epoch = epoch
-            self.best_fitness = fitness
-        delta = epoch - self.best_epoch  # epochs without improvement
-        self.possible_stop = delta >= (self.patience - 1)  # possible stop may occur next epoch
-        stop = delta >= self.patience  # stop training if patience exceeded
-        if stop:
-            LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
-                        f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
-                        f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
-                        f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
-        return stop
-
-
-class ModelEMA:
-    """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
-    Keeps a moving average of everything in the model state_dict (parameters and buffers)
-    For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
-    """
-
-    def __init__(self, model, decay=0.9999, tau=2000, updates=0):
-        # Create EMA
-        self.ema = deepcopy(de_parallel(model)).eval()  # FP32 EMA
-        # if next(model.parameters()).device.type != 'cpu':
-        #     self.ema.half()  # FP16 EMA
-        self.updates = updates  # number of EMA updates
-        self.decay = lambda x: decay * (1 - math.exp(-x / tau))  # decay exponential ramp (to help early epochs)
-        for p in self.ema.parameters():
-            p.requires_grad_(False)
-
-    @smart_inference_mode()
-    def update(self, model):
-        # Update EMA parameters
-        self.updates += 1
-        d = self.decay(self.updates)
-
-        msd = de_parallel(model).state_dict()  # model state_dict
-        for k, v in self.ema.state_dict().items():
-            if v.dtype.is_floating_point:
-                v *= d
-                v += (1 - d) * msd[k].detach()
-
-    def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
-        # Update EMA attributes
-        copy_attr(self.ema, model, include, exclude)
-
-
-import time
-import torch
-
-if torch.cuda.is_available():
-    torch.backends.cudnn.benchmark = True
-
-_EPOCHS = {}
-
-def time_synchronized():
-    global _EPOCHS
-    if not torch.cuda.is_available():
-        return time.time()
-    else:
-        if torch.cuda.current_device() not in _EPOCHS:
-            _EPOCHS[torch.cuda.current_device()] = 0
-        n = time.time()
-        if n - _EPOCHS[torch.cuda.current_device()] > 600:
-            torch.cuda.empty_cache()
-            _EPOCHS[torch.cuda.current_device()] = n
-        return torch.cuda.Event(enable_timing=True)
diff --git a/yolov5-6.2/val.py b/yolov5-6.2/val.py
deleted file mode 100644
index 13049623..00000000
--- a/yolov5-6.2/val.py
+++ /dev/null
@@ -1,396 +0,0 @@
-# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
-"""
-Validate a trained YOLOv5 model accuracy on a custom dataset
-
-Usage:
-    $ python path/to/val.py --weights yolov5s.pt --data coco128.yaml --img 640
-
-Usage - formats:
-    $ python path/to/val.py --weights yolov5s.pt                 # PyTorch
-                                      yolov5s.torchscript        # TorchScript
-                                      yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
-                                      yolov5s.xml                # OpenVINO
-                                      yolov5s.engine             # TensorRT
-                                      yolov5s.mlmodel            # CoreML (macOS-only)
-                                      yolov5s_saved_model        # TensorFlow SavedModel
-                                      yolov5s.pb                 # TensorFlow GraphDef
-                                      yolov5s.tflite             # TensorFlow Lite
-                                      yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
-"""
-
-import argparse
-import json
-import os
-import sys
-from pathlib import Path
-
-import numpy as np
-import torch
-from tqdm import tqdm
-
-FILE = Path(__file__).resolve()
-ROOT = FILE.parents[0]  # YOLOv5 root directory
-if str(ROOT) not in sys.path:
-    sys.path.append(str(ROOT))  # add ROOT to PATH
-ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
-
-from models.common import DetectMultiBackend
-from utils.callbacks import Callbacks
-from utils.dataloaders import create_dataloader
-from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_yaml,
-                           coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
-                           scale_coords, xywh2xyxy, xyxy2xywh)
-from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
-from utils.plots import output_to_target, plot_images, plot_val_study
-from utils.torch_utils import select_device, smart_inference_mode, time_sync
-
-
-def save_one_txt(predn, save_conf, shape, file):
-    # Save one txt result
-    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
-    for *xyxy, conf, cls in predn.tolist():
-        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
-        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
-        with open(file, 'a') as f:
-            f.write(('%g ' * len(line)).rstrip() % line + '\n')
-
-
-def save_one_json(predn, jdict, path, class_map):
-    # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
-    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
-    box = xyxy2xywh(predn[:, :4])  # xywh
-    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
-    for p, b in zip(predn.tolist(), box.tolist()):
-        jdict.append({
-            'image_id': image_id,
-            'category_id': class_map[int(p[5])],
-            'bbox': [round(x, 3) for x in b],
-            'score': round(p[4], 5)})
-
-
-def process_batch(detections, labels, iouv):
-    """
-    Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
-    Arguments:
-        detections (Array[N, 6]), x1, y1, x2, y2, conf, class
-        labels (Array[M, 5]), class, x1, y1, x2, y2
-    Returns:
-        correct (Array[N, 10]), for 10 IoU levels
-    """
-    correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
-    iou = box_iou(labels[:, 1:], detections[:, :4])
-    correct_class = labels[:, 0:1] == detections[:, 5]
-    for i in range(len(iouv)):
-        x = torch.where((iou >= iouv[i]) & correct_class)  # IoU > threshold and classes match
-        if x[0].shape[0]:
-            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detect, iou]
-            if x[0].shape[0] > 1:
-                matches = matches[matches[:, 2].argsort()[::-1]]
-                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
-                # matches = matches[matches[:, 2].argsort()[::-1]]
-                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
-            correct[matches[:, 1].astype(int), i] = True
-    return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
-
-
-@smart_inference_mode()
-def run(
-        data,
-        weights=None,  # model.pt path(s)
-        batch_size=32,  # batch size
-        imgsz=640,  # inference size (pixels)
-        conf_thres=0.001,  # confidence threshold
-        iou_thres=0.6,  # NMS IoU threshold
-        task='val',  # train, val, test, speed or study
-        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
-        workers=8,  # max dataloader workers (per RANK in DDP mode)
-        single_cls=False,  # treat as single-class dataset
-        augment=False,  # augmented inference
-        verbose=False,  # verbose output
-        save_txt=False,  # save results to *.txt
-        save_hybrid=False,  # save label+prediction hybrid results to *.txt
-        save_conf=False,  # save confidences in --save-txt labels
-        save_json=False,  # save a COCO-JSON results file
-        project=ROOT / 'runs/val',  # save to project/name
-        name='exp',  # save to project/name
-        exist_ok=False,  # existing project/name ok, do not increment
-        half=True,  # use FP16 half-precision inference
-        dnn=False,  # use OpenCV DNN for ONNX inference
-        model=None,
-        dataloader=None,
-        save_dir=Path(''),
-        plots=True,
-        callbacks=Callbacks(),
-        compute_loss=None,
-):
-    # Initialize/load model and set device
-    training = model is not None
-    if training:  # called by train.py
-        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
-        half &= device.type != 'cpu'  # half precision only supported on CUDA
-        model.half() if half else model.float()
-    else:  # called directly
-        device = select_device(device, batch_size=batch_size)
-
-        # Directories
-        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
-        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
-
-        # Load model
-        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
-        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
-        imgsz = check_img_size(imgsz, s=stride)  # check image size
-        half = model.fp16  # FP16 supported on limited backends with CUDA
-        if engine:
-            batch_size = model.batch_size
-        else:
-            device = model.device
-            if not (pt or jit):
-                batch_size = 1  # export.py models default to batch-size 1
-                LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
-
-        # Data
-        data = check_dataset(data)  # check
-
-    # Configure
-    model.eval()
-    cuda = device.type != 'cpu'
-    is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt')  # COCO dataset
-    nc = 1 if single_cls else int(data['nc'])  # number of classes
-    iouv = torch.linspace(0.5, 0.95, 10, device=device)  # iou vector for mAP@0.5:0.95
-    niou = iouv.numel()
-
-    # Dataloader
-    if not training:
-        if pt and not single_cls:  # check --weights are trained on --data
-            ncm = model.model.nc
-            assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
-                              f'classes). Pass correct combination of --weights and --data that are trained together.'
-        model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz))  # warmup
-        pad = 0.0 if task in ('speed', 'benchmark') else 0.5
-        rect = False if task == 'benchmark' else pt  # square inference for benchmarks
-        task = task if task in ('train', 'val', 'test') else 'val'  # path to train/val/test images
-        dataloader = create_dataloader(data[task],
-                                       imgsz,
-                                       batch_size,
-                                       stride,
-                                       single_cls,
-                                       pad=pad,
-                                       rect=rect,
-                                       workers=workers,
-                                       prefix=colorstr(f'{task}: '))[0]
-
-    seen = 0
-    confusion_matrix = ConfusionMatrix(nc=nc)
-    names = dict(enumerate(model.names if hasattr(model, 'names') else model.module.names))
-    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
-    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
-    dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
-    loss = torch.zeros(3, device=device)
-    jdict, stats, ap, ap_class = [], [], [], []
-    callbacks.run('on_val_start')
-    pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
-    for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
-        callbacks.run('on_val_batch_start')
-        t1 = time_sync()
-        if cuda:
-            im = im.to(device, non_blocking=True)
-            targets = targets.to(device)
-        im = im.half() if half else im.float()  # uint8 to fp16/32
-        im /= 255  # 0 - 255 to 0.0 - 1.0
-        nb, _, height, width = im.shape  # batch size, channels, height, width
-        t2 = time_sync()
-        dt[0] += t2 - t1
-
-        # Inference
-        out, train_out = model(im) if training else model(im, augment=augment, val=True)  # inference, loss outputs
-        dt[1] += time_sync() - t2
-
-        # Loss
-        if compute_loss:
-            loss += compute_loss([x.float() for x in train_out], targets)[1]  # box, obj, cls
-
-        # NMS
-        targets[:, 2:] *= torch.tensor((width, height, width, height), device=device)  # to pixels
-        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
-        t3 = time_sync()
-        out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
-        dt[2] += time_sync() - t3
-
-        # Metrics
-        for si, pred in enumerate(out):
-            labels = targets[targets[:, 0] == si, 1:]
-            nl, npr = labels.shape[0], pred.shape[0]  # number of labels, predictions
-            path, shape = Path(paths[si]), shapes[si][0]
-            correct = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
-            seen += 1
-
-            if npr == 0:
-                if nl:
-                    stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
-                    if plots:
-                        confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
-                continue
-
-            # Predictions
-            if single_cls:
-                pred[:, 5] = 0
-            predn = pred.clone()
-            scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred
-
-            # Evaluate
-            if nl:
-                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
-                scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
-                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
-                correct = process_batch(predn, labelsn, iouv)
-                if plots:
-                    confusion_matrix.process_batch(predn, labelsn)
-            stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0]))  # (correct, conf, pcls, tcls)
-
-            # Save/log
-            if save_txt:
-                save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
-            if save_json:
-                save_one_json(predn, jdict, path, class_map)  # append to COCO-JSON dictionary
-            callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
-
-        # Plot images
-        if plots and batch_i < 3:
-            plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)  # labels
-            plot_images(im, output_to_target(out), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names)  # pred
-
-        callbacks.run('on_val_batch_end')
-
-    # Compute metrics
-    stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)]  # to numpy
-    if len(stats) and stats[0].any():
-        tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
-        ap50, ap = ap[:, 0], ap.mean(1)  # AP@0.5, AP@0.5:0.95
-        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
-    nt = np.bincount(stats[3].astype(int), minlength=nc)  # number of targets per class
-
-    # Print results
-    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
-    LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
-    if nt.sum() == 0:
-        LOGGER.warning(f'WARNING: no labels found in {task} set, can not compute metrics without labels ⚠️')
-
-    # Print results per class
-    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
-        for i, c in enumerate(ap_class):
-            LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
-
-    # Print speeds
-    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
-    if not training:
-        shape = (batch_size, 3, imgsz, imgsz)
-        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
-
-    # Plots
-    if plots:
-        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
-        callbacks.run('on_val_end')
-
-    # Save JSON
-    if save_json and len(jdict):
-        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
-        anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json')  # annotations json
-        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
-        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
-        with open(pred_json, 'w') as f:
-            json.dump(jdict, f)
-
-        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
-            check_requirements(['pycocotools'])
-            from pycocotools.coco import COCO
-            from pycocotools.cocoeval import COCOeval
-
-            anno = COCO(anno_json)  # init annotations api
-            pred = anno.loadRes(pred_json)  # init predictions api
-            eval = COCOeval(anno, pred, 'bbox')
-            if is_coco:
-                eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files]  # image IDs to evaluate
-            eval.evaluate()
-            eval.accumulate()
-            eval.summarize()
-            map, map50 = eval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
-        except Exception as e:
-            LOGGER.info(f'pycocotools unable to run: {e}')
-
-    # Return results
-    model.float()  # for training
-    if not training:
-        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
-        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
-    maps = np.zeros(nc) + map
-    for i, c in enumerate(ap_class):
-        maps[c] = ap[i]
-    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
-
-
-def parse_opt():
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
-    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
-    parser.add_argument('--batch-size', type=int, default=32, help='batch size')
-    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
-    parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
-    parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
-    parser.add_argument('--task', default='val', help='train, val, test, speed or study')
-    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
-    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
-    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
-    parser.add_argument('--augment', action='store_true', help='augmented inference')
-    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
-    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
-    parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
-    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
-    parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
-    parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
-    parser.add_argument('--name', default='exp', help='save to project/name')
-    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
-    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
-    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
-    opt = parser.parse_args()
-    opt.data = check_yaml(opt.data)  # check YAML
-    opt.save_json |= opt.data.endswith('coco.yaml')
-    opt.save_txt |= opt.save_hybrid
-    print_args(vars(opt))
-    return opt
-
-
-def main(opt):
-    check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
-
-    if opt.task in ('train', 'val', 'test'):  # run normally
-        if opt.conf_thres > 0.001:  # https://github.com/ultralytics/yolov5/issues/1466
-            LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} > 0.001 produces invalid results ⚠️')
-        run(**vars(opt))
-
-    else:
-        weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
-        opt.half = True  # FP16 for fastest results
-        if opt.task == 'speed':  # speed benchmarks
-            # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
-            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
-            for opt.weights in weights:
-                run(**vars(opt), plots=False)
-
-        elif opt.task == 'study':  # speed vs mAP benchmarks
-            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
-            for opt.weights in weights:
-                f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt'  # filename to save to
-                x, y = list(range(256, 1536 + 128, 128)), []  # x axis (image sizes), y axis
-                for opt.imgsz in x:  # img-size
-                    LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
-                    r, _, t = run(**vars(opt), plots=False)
-                    y.append(r + t)  # results and times
-                np.savetxt(f, y, fmt='%10.4g')  # save
-            os.system('zip -r study.zip study_*.txt')
-            plot_val_study(x=x)  # plot
-
-
-if __name__ == "__main__":
-    opt = parse_opt()
-    main(opt)