# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Run classification inference on images Usage: $ python classify/predict.py --weights yolov5s-cls.pt --source im.jpg """ import argparse import os import sys from pathlib import Path import cv2 import torch.nn.functional as F FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from classify.train import imshow_cls from models.common import DetectMultiBackend from utils.augmentations import classify_transforms from utils.general import LOGGER, check_requirements, colorstr, increment_path, print_args from utils.torch_utils import select_device, smart_inference_mode, time_sync @smart_inference_mode() def run( weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s) source=ROOT / 'data/images/bus.jpg', # file/dir/URL/glob, 0 for webcam imgsz=224, # inference size device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference show=True, project=ROOT / 'runs/predict-cls', # save to project/name name='exp', # save to project/name exist_ok=False, # existing project/name ok, do not increment ): file = str(source) seen, dt = 1, [0.0, 0.0, 0.0] device = select_device(device) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run save_dir.mkdir(parents=True, exist_ok=True) # make dir # Transforms transforms = classify_transforms(imgsz) # Load model model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half) model.warmup(imgsz=(1, 3, imgsz, imgsz)) # warmup # Image t1 = time_sync() im = cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB) im = transforms(im).unsqueeze(0).to(device) im = im.half() if model.fp16 else im.float() t2 = time_sync() dt[0] += t2 - t1 # Inference results = model(im) t3 = time_sync() dt[1] += t3 - t2 p = F.softmax(results, dim=1) # probabilities i = p.argsort(1, descending=True)[:, :5].squeeze() # top 5 indices dt[2] += time_sync() - t3 LOGGER.info(f"image 1/1 {file}: {imgsz}x{imgsz} {', '.join(f'{model.names[j]} {p[0, j]:.2f}' for j in i)}") # Print results t = tuple(x / seen * 1E3 for x in dt) # speeds per image shape = (1, 3, imgsz, imgsz) LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t) if show: imshow_cls(im, f=save_dir / Path(file).name, verbose=True) LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") return p def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)') parser.add_argument('--source', type=str, default=ROOT / 'data/images/bus.jpg', help='file') parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save to project/name') parser.add_argument('--name', default='exp', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') opt = parser.parse_args() print_args(vars(opt)) return opt def main(opt): check_requirements(exclude=('tensorboard', 'thop')) run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)