You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
3.9 KiB
110 lines
3.9 KiB
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
|
"""
|
|
Run classification inference on images
|
|
|
|
Usage:
|
|
$ python classify/predict.py --weights yolov5s-cls.pt --source im.jpg
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import torch.nn.functional as F
|
|
|
|
FILE = Path(__file__).resolve()
|
|
ROOT = FILE.parents[1] # YOLOv5 root directory
|
|
if str(ROOT) not in sys.path:
|
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
|
|
|
from classify.train import imshow_cls
|
|
from models.common import DetectMultiBackend
|
|
from utils.augmentations import classify_transforms
|
|
from utils.general import LOGGER, check_requirements, colorstr, increment_path, print_args
|
|
from utils.torch_utils import select_device, smart_inference_mode, time_sync
|
|
|
|
|
|
@smart_inference_mode()
|
|
def run(
|
|
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
|
|
source=ROOT / 'data/images/bus.jpg', # file/dir/URL/glob, 0 for webcam
|
|
imgsz=224, # inference size
|
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
|
half=False, # use FP16 half-precision inference
|
|
dnn=False, # use OpenCV DNN for ONNX inference
|
|
show=True,
|
|
project=ROOT / 'runs/predict-cls', # save to project/name
|
|
name='exp', # save to project/name
|
|
exist_ok=False, # existing project/name ok, do not increment
|
|
):
|
|
file = str(source)
|
|
seen, dt = 1, [0.0, 0.0, 0.0]
|
|
device = select_device(device)
|
|
|
|
# Directories
|
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
|
save_dir.mkdir(parents=True, exist_ok=True) # make dir
|
|
|
|
# Transforms
|
|
transforms = classify_transforms(imgsz)
|
|
|
|
# Load model
|
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
|
|
model.warmup(imgsz=(1, 3, imgsz, imgsz)) # warmup
|
|
|
|
# Image
|
|
t1 = time_sync()
|
|
im = cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB)
|
|
im = transforms(im).unsqueeze(0).to(device)
|
|
im = im.half() if model.fp16 else im.float()
|
|
t2 = time_sync()
|
|
dt[0] += t2 - t1
|
|
|
|
# Inference
|
|
results = model(im)
|
|
t3 = time_sync()
|
|
dt[1] += t3 - t2
|
|
|
|
p = F.softmax(results, dim=1) # probabilities
|
|
i = p.argsort(1, descending=True)[:, :5].squeeze() # top 5 indices
|
|
dt[2] += time_sync() - t3
|
|
LOGGER.info(f"image 1/1 {file}: {imgsz}x{imgsz} {', '.join(f'{model.names[j]} {p[0, j]:.2f}' for j in i)}")
|
|
|
|
# Print results
|
|
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
|
|
shape = (1, 3, imgsz, imgsz)
|
|
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
|
|
if show:
|
|
imshow_cls(im, f=save_dir / Path(file).name, verbose=True)
|
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
|
|
return p
|
|
|
|
|
|
def parse_opt():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
|
|
parser.add_argument('--source', type=str, default=ROOT / 'data/images/bus.jpg', help='file')
|
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)')
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
|
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
|
parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save to project/name')
|
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
|
opt = parser.parse_args()
|
|
print_args(vars(opt))
|
|
return opt
|
|
|
|
|
|
def main(opt):
|
|
check_requirements(exclude=('tensorboard', 'thop'))
|
|
run(**vars(opt))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
opt = parse_opt()
|
|
main(opt)
|