liuwenzhe 6 months ago
parent 94f4de5b2e
commit baff77c028

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

Before

Width:  |  Height:  |  Size: 239 KiB

After

Width:  |  Height:  |  Size: 239 KiB

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

@ -3,7 +3,9 @@ import cv2
from matplotlib import pyplot as plt
import os
import numpy as np
import tkinter as tk
from tkinter import ttk
from PIL import ImageTk, Image
# plt显示彩色图片
def plt_show0(img):
@ -27,11 +29,14 @@ def gray_guss(image):
return gray_image
# 读取待检测图片
origin_image = cv2.imread('../chepai1.jpg')
origin_image = cv2.imread('../xiangA.jpg')
# 复制一张图片,在复制图上进行图像操作,保留原图
image = origin_image.copy()
# 图像去噪灰度处理
gray_image = gray_guss(image)
# x方向上的边缘检测增强边缘信息
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x)
@ -39,27 +44,35 @@ image = absX
# 图像阈值化操作——获得二值化图
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
# 显示灰度图像
plt_show(image)
# 形态学(从图像中提取对表达和描绘区域形状有意义的图像分量)——闭操作
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
# 显示灰度图像
plt_show(image)
# 腐蚀erode和膨胀dilate
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
#x方向进行闭操作抑制暗细节
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
#y方向的开操作
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)
# 中值滤波(去噪)
image = cv2.medianBlur(image, 21)
# 显示灰度图像
plt_show(image)
# 获得轮廓
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
@ -77,11 +90,12 @@ for item in contours:
#车牌字符分割
# 图像去噪灰度处理
gray_image = gray_guss(image)
# 图像阈值化操作——获得二值化图
ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)
#膨胀操作,使“”字膨胀为一个近似的整体,为分割做准备
#膨胀操作,使“”字膨胀为一个近似的整体,为分割做准备
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
image = cv2.dilate(image, kernel)
plt_show(image)
@ -90,6 +104,7 @@ plt_show(image)
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
words = []
word_images = []
#对所有轮廓逐一操作
for item in contours:
word = []
@ -98,14 +113,21 @@ for item in contours:
y = rect[1]
weight = rect[2]
height = rect[3]
word.append(x)
word.append(y)
word.append(weight)
word.append(height)
words.append(word)
# 排序车牌号有顺序。words是一个嵌套列表
words = sorted(words,key=lambda s:s[0],reverse=False)
i = 0
#word中存放轮廓的起始点和宽高
for word in words:
# 筛选字符的轮廓
@ -113,8 +135,8 @@ for word in words:
i = i+1
splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
word_images.append(splite_image)
print(i)
print(words)
#print(i)
#print(words)
for i,j in enumerate(word_images):
plt.subplot(1,7,i+1)
@ -124,9 +146,12 @@ plt.show()
#模版匹配
# 准备模板(template[0-9]为数字模板;)
template = ['0','1','2','3','4','5','6','7','8','9',
'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
'','','','','','','','','','','','','','','','','','','',
'','','','','','','','','','','','']
'A','B','C','D','E','F','G','H','J','K',
'L','M','N','P','Q','R','S','T','U','V',
'W','X','Y','Z','','','','','',
'','','','','','','','','',
'','','','','','','','','',
'','','','','','','','']
# 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
def read_directory(directory_name):
@ -234,16 +259,18 @@ def template_matching(word_images):
word_images_ = word_images.copy()
# 调用函数获得结果
result = template_matching(word_images_)
print(result)
#print(result)
# "".join(result)函数将列表转换为拼接好的字符串,方便结果显示
print( "".join(result))
#print( "".join(result))
from PIL import ImageFont, ImageDraw, Image
height,weight = origin_image.shape[0:2]
print(height)
print(weight)
#print(height)
#print(weight)
image_1 = origin_image.copy()
cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)
@ -257,6 +284,26 @@ draw = ImageDraw.Draw(img_pil)
#绘制文字信息
draw.text((int(0.2*weight)+25, int(0.75*height)), "".join(result), font = font, fill = (255, 255, 0))
bk_img = np.array(img_pil)
print(result)
#print(result)
print( "".join(result))
plt_show0(bk_img)
# 使用PIL将numpy数组转换为Image对象
image_tk = Image.fromarray(cv2.cvtColor(bk_img, cv2.COLOR_BGR2RGB))
# 初始化Tkinter窗口
root = tk.Tk()
root.title("车牌识别结果")
# 将Image对象转换为Tkinter支持的PhotoImage对象
photo_image = ImageTk.PhotoImage(image_tk)
# 创建标签以显示图像
label = ttk.Label(root, image=photo_image)
label.pack() # 将标签添加到窗口中并自动调整大小
# 防止Tkinter在图像数据被垃圾回收时删除图像
label.image = photo_image
# 运行Tkinter事件循环
root.mainloop()

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Loading…
Cancel
Save