You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
42 lines
1.2 KiB
42 lines
1.2 KiB
5 months ago
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.optim as optim
|
||
|
import torch.nn.functional as F
|
||
|
import torchvision
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
class CNN(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(CNN, self).__init__()
|
||
|
self.conv1 = nn.Sequential(
|
||
|
nn.Conv2d(1, 16, 5, 1, 2),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(2)
|
||
|
)
|
||
|
self.conv2 = nn.Sequential(
|
||
|
nn.Conv2d(16, 32, 5, 1, 2),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(2)
|
||
|
)
|
||
|
self.conv3 = nn.Sequential(
|
||
|
nn.Conv2d(32, 64, 5, 1, 2),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(2)
|
||
|
)
|
||
|
self.conv4 = nn.Sequential(
|
||
|
nn.Conv2d(64, 32, 5, 1, 2),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(2)
|
||
|
)
|
||
|
self.out = nn.Linear(32, 10) # 确保输出类别数正确
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.conv1(x).to(device) # 将数据迁移到GPU
|
||
|
x = self.conv2(x).to(device)
|
||
|
x=self.conv3(x).to(device)
|
||
|
x = self.conv4(x).to(device)
|
||
|
x = x.view(x.size(0), -1).to(device)
|
||
|
x = self.out(x).to(device)
|
||
|
return x
|