You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

61 lines
1.9 KiB

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5,self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3,16,5,1),
nn.ReLU(),
nn.MaxPool2d(2,2,0,1),
nn.Conv2d(16,32,5,1),
nn.ReLU(),
nn.MaxPool2d(2,2,0,1)
)
self.fc = nn.Sequential(
nn.Linear(32*5*5,120),
nn.Linear(120,84),
nn.Linear(84, 10)
)
def forward(self, x):
x = self.layer1(x)
x = x.view(-1, 800)
x = self.fc(x)
return x
lr = 0.01
momentum = 0.5
log_interval = 10
epochs = 10
batch_size = 64
test_batch_size = 1000
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = LeNet5()
optimizer = torch.optim.SGD(model.parameters(),lr=lr,momentum=momentum)
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
def train(epoch): # 定义每个epoch的训练细节
model.train() # 设置为trainning模式
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to(device)
target = target.to(device)
data, target = Variable(data), Variable(target)
optimizer.zero_grad() # 优化器梯度初始化为零
output = model(data) # 把数据输入网络并得到输出,即进行前向传播
loss = F.cross_entropy(output, target) # 交叉熵损失函数
loss.backward() # 反向传播梯度
optimizer.step() # 结束一次前传+反传之后,更新参数