You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
127 lines
4.9 KiB
127 lines
4.9 KiB
6 years ago
|
# -*- coding=UTF-8 -*-
|
||
|
import sys
|
||
|
import os
|
||
|
import random
|
||
|
import cv2
|
||
|
import math
|
||
|
import time
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
import linecache
|
||
|
import string
|
||
|
import skimage
|
||
|
import imageio
|
||
|
# 输入数据
|
||
|
import input_data
|
||
|
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
|
||
|
# 定义网络超参数
|
||
|
learning_rate = 0.001
|
||
|
training_iters = 200000
|
||
|
batch_size = 64
|
||
|
display_step = 20
|
||
|
# 定义网络参数
|
||
|
n_input = 784 # 输入的维度
|
||
|
n_classes = 10 # 标签的维度
|
||
|
dropout = 0.8 # Dropout 的概率
|
||
|
# 占位符输入
|
||
|
x = tf.placeholder(tf.types.float32, [None, n_input])
|
||
|
y = tf.placeholder(tf.types.float32, [None, n_classes])
|
||
|
keep_prob = tf.placeholder(tf.types.float32)
|
||
|
# 卷积操作
|
||
|
def conv2d(name, l_input, w, b):
|
||
|
return tf.nn.relu(tf.nn.bias_add( \
|
||
|
tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b) \
|
||
|
, name=name)
|
||
|
# 最大下采样操作
|
||
|
def max_pool(name, l_input, k):
|
||
|
return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], \
|
||
|
strides=[1, k, k, 1], padding='SAME', name=name)
|
||
|
# 归一化操作
|
||
|
def norm(name, l_input, lsize=4):
|
||
|
return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
|
||
|
# 定义整个网络
|
||
|
def alex_net(_X, _weights, _biases, _dropout):
|
||
|
_X = tf.reshape(_X, shape=[-1, 28, 28, 1]) # 向量转为矩阵
|
||
|
# 卷积层
|
||
|
conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
|
||
|
# 下采样层
|
||
|
pool1 = max_pool('pool1', conv1, k=2)
|
||
|
# 归一化层
|
||
|
norm1 = norm('norm1', pool1, lsize=4)
|
||
|
# Dropout
|
||
|
norm1 = tf.nn.dropout(norm1, _dropout)
|
||
|
|
||
|
# 卷积
|
||
|
conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
|
||
|
# 下采样
|
||
|
pool2 = max_pool('pool2', conv2, k=2)
|
||
|
# 归一化
|
||
|
norm2 = norm('norm2', pool2, lsize=4)
|
||
|
# Dropout
|
||
|
norm2 = tf.nn.dropout(norm2, _dropout)
|
||
|
|
||
|
# 卷积
|
||
|
conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
|
||
|
# 下采样
|
||
|
pool3 = max_pool('pool3', conv3, k=2)
|
||
|
# 归一化
|
||
|
norm3 = norm('norm3', pool3, lsize=4)
|
||
|
# Dropout
|
||
|
norm3 = tf.nn.dropout(norm3, _dropout)
|
||
|
|
||
|
# 全连接层,先把特征图转为向量
|
||
|
dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]])
|
||
|
dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')
|
||
|
# 全连接层
|
||
|
dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2')
|
||
|
# Relu activation
|
||
|
# 网络输出层
|
||
|
out = tf.matmul(dense2, _weights['out']) + _biases['out']
|
||
|
return out
|
||
|
|
||
|
# 存储所有的网络参数
|
||
|
weights = {
|
||
|
'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
|
||
|
'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
|
||
|
'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
|
||
|
'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
|
||
|
'wd2': tf.Variable(tf.random_normal([1024, 1024])),
|
||
|
'out': tf.Variable(tf.random_normal([1024, 10]))
|
||
|
}
|
||
|
biases = {
|
||
|
'bc1': tf.Variable(tf.random_normal([64])),
|
||
|
'bc2': tf.Variable(tf.random_normal([128])),
|
||
|
'bc3': tf.Variable(tf.random_normal([256])),
|
||
|
'bd1': tf.Variable(tf.random_normal([1024])),
|
||
|
'bd2': tf.Variable(tf.random_normal([1024])),
|
||
|
'out': tf.Variable(tf.random_normal([n_classes]))
|
||
|
}
|
||
|
# 构建模型
|
||
|
pred = alex_net(x, weights, biases, keep_prob)
|
||
|
# 定义损失函数和学习步骤
|
||
|
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
|
||
|
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
|
||
|
# 测试网络
|
||
|
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
|
||
|
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
|
||
|
# 初始化所有的共享变量
|
||
|
init = tf.initialize_all_variables()
|
||
|
# 开启一个训练
|
||
|
with tf.Session() as sess:
|
||
|
sess.run(init)
|
||
|
step = 1
|
||
|
# Keep training until reach max iterations
|
||
|
while step * batch_size < training_iters:
|
||
|
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
|
||
|
# 获取批数据
|
||
|
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
|
||
|
if step % display_step == 0:
|
||
|
# 计算精度
|
||
|
acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
|
||
|
# 计算损失值
|
||
|
loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
|
||
|
print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
|
||
|
step += 1
|
||
|
print "Optimization Finished!"
|
||
|
# 计算测试精度
|
||
|
print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})
|