diff --git a/gzy/tesorflow/AlexNET.py b/gzy/tesorflow/AlexNET.py new file mode 100755 index 0000000..9513c1d --- /dev/null +++ b/gzy/tesorflow/AlexNET.py @@ -0,0 +1,127 @@ +# -*- coding=UTF-8 -*- +import sys +import os +import random +import cv2 +import math +import time +import numpy as np +import tensorflow as tf +import linecache +import string +import skimage +import imageio +# 输入数据 +import input_data +mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) +# 定义网络超参数 +learning_rate = 0.001 +training_iters = 200000 +batch_size = 64 +display_step = 20 +# 定义网络参数 +n_input = 784 # 输入的维度 +n_classes = 10 # 标签的维度 +dropout = 0.8 # Dropout 的概率 +# 占位符输入 +x = tf.placeholder(tf.types.float32, [None, n_input]) +y = tf.placeholder(tf.types.float32, [None, n_classes]) +keep_prob = tf.placeholder(tf.types.float32) +# 卷积操作 +def conv2d(name, l_input, w, b): + return tf.nn.relu(tf.nn.bias_add( \ + tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b) \ + , name=name) +# 最大下采样操作 +def max_pool(name, l_input, k): + return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], \ + strides=[1, k, k, 1], padding='SAME', name=name) +# 归一化操作 +def norm(name, l_input, lsize=4): + return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name) +# 定义整个网络 +def alex_net(_X, _weights, _biases, _dropout): + _X = tf.reshape(_X, shape=[-1, 28, 28, 1]) # 向量转为矩阵 + # 卷积层 + conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1']) + # 下采样层 + pool1 = max_pool('pool1', conv1, k=2) + # 归一化层 + norm1 = norm('norm1', pool1, lsize=4) + # Dropout + norm1 = tf.nn.dropout(norm1, _dropout) + + # 卷积 + conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2']) + # 下采样 + pool2 = max_pool('pool2', conv2, k=2) + # 归一化 + norm2 = norm('norm2', pool2, lsize=4) + # Dropout + norm2 = tf.nn.dropout(norm2, _dropout) + + # 卷积 + conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3']) + # 下采样 + pool3 = max_pool('pool3', conv3, k=2) + # 归一化 + norm3 = norm('norm3', pool3, lsize=4) + # Dropout + norm3 = tf.nn.dropout(norm3, _dropout) + + # 全连接层,先把特征图转为向量 + dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]]) + dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1') + # 全连接层 + dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') + # Relu activation + # 网络输出层 + out = tf.matmul(dense2, _weights['out']) + _biases['out'] + return out + +# 存储所有的网络参数 +weights = { + 'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])), + 'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])), + 'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])), + 'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])), + 'wd2': tf.Variable(tf.random_normal([1024, 1024])), + 'out': tf.Variable(tf.random_normal([1024, 10])) +} +biases = { + 'bc1': tf.Variable(tf.random_normal([64])), + 'bc2': tf.Variable(tf.random_normal([128])), + 'bc3': tf.Variable(tf.random_normal([256])), + 'bd1': tf.Variable(tf.random_normal([1024])), + 'bd2': tf.Variable(tf.random_normal([1024])), + 'out': tf.Variable(tf.random_normal([n_classes])) +} +# 构建模型 +pred = alex_net(x, weights, biases, keep_prob) +# 定义损失函数和学习步骤 +cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) +optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) +# 测试网络 +correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) +accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) +# 初始化所有的共享变量 +init = tf.initialize_all_variables() +# 开启一个训练 +with tf.Session() as sess: + sess.run(init) + step = 1 + # Keep training until reach max iterations + while step * batch_size < training_iters: + batch_xs, batch_ys = mnist.train.next_batch(batch_size) + # 获取批数据 + sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout}) + if step % display_step == 0: + # 计算精度 + acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) + # 计算损失值 + loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) + print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc) + step += 1 + print "Optimization Finished!" + # 计算测试精度 + print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.}) \ No newline at end of file diff --git a/gzy/tesorflow/KMP用于网页内容匹配.py b/gzy/tesorflow/KMP用于网页内容匹配.py new file mode 100755 index 0000000..e83bdac --- /dev/null +++ b/gzy/tesorflow/KMP用于网页内容匹配.py @@ -0,0 +1,24 @@ + +nexts = [0]*100 +x = '2: + r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2] + gray = 0.2989 * r + 0.5870 * g + 0.1140 * b + return gray + else: + return img + + +def text2vec(text): + text_len = len(text) + if text_len > max_captcha: + raise ValueError('验证码最长4个字符') + + vector = np.zeros(max_captcha * char_set_len) + + def char2pos(c): + if c == '_': + k = 62 + return k + k = ord(c) - 48 + if k > 9: + k = ord(c) - 55 + if k > 35: + k = ord(c) - 61 + if k > 61: + raise ValueError('No Map') + return k + + for i, c in enumerate(text): + idx = i * char_set_len + char2pos(c) + vector[idx] = 1 + return vector + + +def get_next_batch(batch_size=128): + batch_x=np.zeros([batch_size,image_height*image_width]) + batch_y=np.zeros([batch_size,max_captcha*char_set_len]) + + def wrap_gen_captcha_text_and_image(): + while True: + text, image = gen_captcha_text_image() + if image.shape == (60, 160, 3): + return text, image + + for i in range(batch_size): + text, image = wrap_gen_captcha_text_and_image() + image = convert2gray(image) + + batch_x[i, :] = image.flatten() / 255 + batch_y[i, :] = text2vec(text) + + return batch_x, batch_y + +def cnn_structure(w_alpha=0.01, b_alpha=0.1): + x = tf.reshape(X, shape=[-1, image_height, image_width, 1]) + + + wc1=tf.get_variable(name='wc1',shape=[3,3,1,32],dtype=tf.float32,initializer=tf.contrib.layers.xavier_initializer()) + #wc1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32])) + bc1 = tf.Variable(b_alpha * tf.random_normal([32])) + conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, wc1, strides=[1, 1, 1, 1], padding='SAME'), bc1)) + conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') + conv1 = tf.nn.dropout(conv1, keep_prob) + + wc2=tf.get_variable(name='wc2',shape=[3,3,32,64],dtype=tf.float32,initializer=tf.contrib.layers.xavier_initializer()) + # wc2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64])) + bc2 = tf.Variable(b_alpha * tf.random_normal([64])) + conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, wc2, strides=[1, 1, 1, 1], padding='SAME'), bc2)) + conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') + conv2 = tf.nn.dropout(conv2, keep_prob) + + wc3=tf.get_variable(name='wc3',shape=[3,3,64,128],dtype=tf.float32,initializer=tf.contrib.layers.xavier_initializer()) + #wc3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 128])) + bc3 = tf.Variable(b_alpha * tf.random_normal([128])) + conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, wc3, strides=[1, 1, 1, 1], padding='SAME'), bc3)) + conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') + conv3 = tf.nn.dropout(conv3, keep_prob) + + + wd1=tf.get_variable(name='wd1',shape=[8*20*128,1024],dtype=tf.float32,initializer=tf.contrib.layers.xavier_initializer()) + #wd1 = tf.Variable(w_alpha * tf.random_normal([7*20*128,1024])) + bd1 = tf.Variable(b_alpha * tf.random_normal([1024])) + dense = tf.reshape(conv3, [-1, wd1.get_shape().as_list()[0]]) + dense = tf.nn.relu(tf.add(tf.matmul(dense, wd1), bd1)) + dense = tf.nn.dropout(dense, keep_prob) + + wout=tf.get_variable('name',shape=[1024,max_captcha * char_set_len],dtype=tf.float32,initializer=tf.contrib.layers.xavier_initializer()) + #wout = tf.Variable(w_alpha * tf.random_normal([1024, max_captcha * char_set_len])) + bout = tf.Variable(b_alpha * tf.random_normal([max_captcha * char_set_len])) + out = tf.add(tf.matmul(dense, wout), bout) + return out + +def train_cnn(): + output=cnn_structure() + cost=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output,labels=Y)) + optimizer=tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost) + predict=tf.reshape(output,[-1,max_captcha,char_set_len]) + max_idx_p = tf.argmax(predict, 2) + max_idx_l = tf.argmax(tf.reshape(Y, [-1, max_captcha, char_set_len]), 2) + correct_pred = tf.equal(max_idx_p, max_idx_l) + accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) + + saver=tf.train.Saver() + + with tf.Session() as sess: + init = tf.global_variables_initializer() + sess.run(init) + step = 0 + while True: + batch_x, batch_y = get_next_batch(100) + _, cost_= sess.run([optimizer, cost], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75}) + print(step, cost_) + if step % 10 == 0: + batch_x_test, batch_y_test = get_next_batch(100) + acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.}) + print(step, acc) + if acc > 0.99: + saver.save(sess, "./model/crack_capcha.model", global_step=step) + break + step += 1 + + +def crack_captcha(captcha_image): + output = cnn_structure() + + saver = tf.train.Saver() + with tf.Session() as sess: + saver.restore(sess, "./model/crack_capcha.model-1200") + + predict = tf.argmax(tf.reshape(output, [-1, max_captcha, char_set_len]), 2) + text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1.}) + text = text_list[0].tolist() + return text + +if __name__=='__main__': + train=1 + if train==0: + text,image=gen_captcha_text_image() + print("验证码大小:",image.shape)#(60,160,3) + + image_height=60 + image_width=160 + max_captcha=len(text) + print("验证码文本最长字符数",max_captcha) + char_set=number + char_set_len=len(char_set) + + X = tf.placeholder(tf.float32, [None, image_height * image_width]) + Y = tf.placeholder(tf.float32, [None, max_captcha * char_set_len]) + keep_prob = tf.placeholder(tf.float32) + train_cnn() + + if train == 1: + image_height = 60 + image_width = 160 + char_set = number + char_set_len = len(char_set) + + text, image = gen_captcha_text_image() + + f = plt.figure() + ax = f.add_subplot(111) + ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes) + plt.imshow(image) + + # plt.show() + + max_captcha = len(text) + image = convert2gray(image) + image = image.flatten() / 255 + + X = tf.placeholder(tf.float32, [None, image_height * image_width]) + Y = tf.placeholder(tf.float32, [None, max_captcha * char_set_len]) + keep_prob = tf.placeholder(tf.float32) + + predict_text = crack_captcha(image) + print("正确: {} 预测: {}".format(text, predict_text)) + + + plt.show() \ No newline at end of file