import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data def weight_variable(shape): initial = tf.truncated_normal(shape,stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0,1,shape=shape) return tf.Variable(initial) def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') # 预处理 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) xs = tf.placeholder(tf.float32,[None,784]) ys = tf.placeholder(tf.float32,[None,10]) keep_prob = tf.placeholder(tf.float32) # 第一层卷积 W_conv1 = weight_variable([5,5,1,32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(xs,[-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1) h_pool1 = max_pool_2x2(h_conv1) # 第二层卷积 W_conv2 = weight_variable([5,5,32,64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2) h_pool2 = max_pool_2x2(h_conv2) # 第一层全连接层 W_fc1 = weight_variable([7*7*64,1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) # 第二层全连接层 W_fc2 = weight_variable([1024,10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) # 训练模型 cross_entropy = -tf.reduce_sum(ys*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 概率计算 correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(ys,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for i in range(2001): batch = mnist.train.next_batch(50) sess.run(train_step,feed_dict={xs:batch[0],ys:batch[1],keep_prob:0.5}) if i%100==0: tests = mnist.test.next_batch(200) print(sess.run(accuracy,feed_dict={xs:tests[0],ys:tests[1],keep_prob:1.0}))