import tensorflow as tf import numpy as np from PIL import Image import os flower_dict = {0:'小熊猫',1:'滑稽',2:'萌妹子',3:'小坏坏',4:'小黄鸡'} path = 'C:/Users/yuanshao/Desktop/test/' w=100 h=100 c=3 def read_one_image(path): image = Image.open(path).convert('RGB') img = image.resize((w, h), Image.ANTIALIAS) return np.asarray(img) def preprocess(): count = 0 for file in os.listdir(path): new_name = os.path.join(path, str(count)) os.rename(os.path.join(path, file),new_name) count += 1 for file in os.listdir(path): ori_name = path+file os.rename(ori_name,ori_name+'.jpg') with tf.Session() as sess: PATH = cate=[path+x for x in os.listdir(path)] data = [] pic = [] preprocess() for i in range(len(PATH)): picture = path+str(i)+'.jpg'; print(picture) pic.append(picture) data.append(read_one_image(picture)) saver = tf.train.import_meta_graph('D:/tensorflow/saver/model.ckpt.meta') saver.restore(sess,tf.train.latest_checkpoint('D:/tensorflow/saver/')) graph = tf.get_default_graph() x = graph.get_tensor_by_name("x:0") logits = graph.get_tensor_by_name("logits_eval:0") classification_result = sess.run(logits,feed_dict={x:data}) #打印出预测矩阵 print(classification_result) #打印出预测矩阵每一行最大值的索引 print(tf.argmax(classification_result,1).eval()) output = [] output = tf.argmax(classification_result,1).eval() for i in range(len(output)): print("第",i,"张图片预测:"+flower_dict[output[i]])