You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
725 lines
25 KiB
725 lines
25 KiB
/*
|
|
* Copyright (c) 2006, 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*/
|
|
|
|
package java.awt;
|
|
|
|
import java.awt.MultipleGradientPaint.CycleMethod;
|
|
import java.awt.MultipleGradientPaint.ColorSpaceType;
|
|
import java.awt.color.ColorSpace;
|
|
import java.awt.geom.AffineTransform;
|
|
import java.awt.geom.NoninvertibleTransformException;
|
|
import java.awt.geom.Rectangle2D;
|
|
import java.awt.image.ColorModel;
|
|
import java.awt.image.DataBuffer;
|
|
import java.awt.image.DataBufferInt;
|
|
import java.awt.image.DirectColorModel;
|
|
import java.awt.image.Raster;
|
|
import java.awt.image.SinglePixelPackedSampleModel;
|
|
import java.awt.image.WritableRaster;
|
|
import java.lang.ref.SoftReference;
|
|
import java.lang.ref.WeakReference;
|
|
import java.util.Arrays;
|
|
|
|
/**
|
|
* This is the superclass for all PaintContexts which use a multiple color
|
|
* gradient to fill in their raster. It provides the actual color
|
|
* interpolation functionality. Subclasses only have to deal with using
|
|
* the gradient to fill pixels in a raster.
|
|
*
|
|
* @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
|
|
*/
|
|
abstract class MultipleGradientPaintContext implements PaintContext {
|
|
|
|
/**
|
|
* The PaintContext's ColorModel. This is ARGB if colors are not all
|
|
* opaque, otherwise it is RGB.
|
|
*/
|
|
protected ColorModel model;
|
|
|
|
/** Color model used if gradient colors are all opaque. */
|
|
private static ColorModel xrgbmodel =
|
|
new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
|
|
|
|
/** The cached ColorModel. */
|
|
protected static ColorModel cachedModel;
|
|
|
|
/** The cached raster, which is reusable among instances. */
|
|
protected static WeakReference<Raster> cached;
|
|
|
|
/** Raster is reused whenever possible. */
|
|
protected Raster saved;
|
|
|
|
/** The method to use when painting out of the gradient bounds. */
|
|
protected CycleMethod cycleMethod;
|
|
|
|
/** The ColorSpace in which to perform the interpolation */
|
|
protected ColorSpaceType colorSpace;
|
|
|
|
/** Elements of the inverse transform matrix. */
|
|
protected float a00, a01, a10, a11, a02, a12;
|
|
|
|
/**
|
|
* This boolean specifies whether we are in simple lookup mode, where an
|
|
* input value between 0 and 1 may be used to directly index into a single
|
|
* array of gradient colors. If this boolean value is false, then we have
|
|
* to use a 2-step process where we have to determine which gradient array
|
|
* we fall into, then determine the index into that array.
|
|
*/
|
|
protected boolean isSimpleLookup;
|
|
|
|
/**
|
|
* Size of gradients array for scaling the 0-1 index when looking up
|
|
* colors the fast way.
|
|
*/
|
|
protected int fastGradientArraySize;
|
|
|
|
/**
|
|
* Array which contains the interpolated color values for each interval,
|
|
* used by calculateSingleArrayGradient(). It is protected for possible
|
|
* direct access by subclasses.
|
|
*/
|
|
protected int[] gradient;
|
|
|
|
/**
|
|
* Array of gradient arrays, one array for each interval. Used by
|
|
* calculateMultipleArrayGradient().
|
|
*/
|
|
private int[][] gradients;
|
|
|
|
/** Normalized intervals array. */
|
|
private float[] normalizedIntervals;
|
|
|
|
/** Fractions array. */
|
|
private float[] fractions;
|
|
|
|
/** Used to determine if gradient colors are all opaque. */
|
|
private int transparencyTest;
|
|
|
|
/** Color space conversion lookup tables. */
|
|
private static final int SRGBtoLinearRGB[] = new int[256];
|
|
private static final int LinearRGBtoSRGB[] = new int[256];
|
|
|
|
static {
|
|
// build the tables
|
|
for (int k = 0; k < 256; k++) {
|
|
SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k);
|
|
LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constant number of max colors between any 2 arbitrary colors.
|
|
* Used for creating and indexing gradients arrays.
|
|
*/
|
|
protected static final int GRADIENT_SIZE = 256;
|
|
protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1;
|
|
|
|
/**
|
|
* Maximum length of the fast single-array. If the estimated array size
|
|
* is greater than this, switch over to the slow lookup method.
|
|
* No particular reason for choosing this number, but it seems to provide
|
|
* satisfactory performance for the common case (fast lookup).
|
|
*/
|
|
private static final int MAX_GRADIENT_ARRAY_SIZE = 5000;
|
|
|
|
/**
|
|
* Constructor for MultipleGradientPaintContext superclass.
|
|
*/
|
|
protected MultipleGradientPaintContext(MultipleGradientPaint mgp,
|
|
ColorModel cm,
|
|
Rectangle deviceBounds,
|
|
Rectangle2D userBounds,
|
|
AffineTransform t,
|
|
RenderingHints hints,
|
|
float[] fractions,
|
|
Color[] colors,
|
|
CycleMethod cycleMethod,
|
|
ColorSpaceType colorSpace)
|
|
{
|
|
if (deviceBounds == null) {
|
|
throw new NullPointerException("Device bounds cannot be null");
|
|
}
|
|
|
|
if (userBounds == null) {
|
|
throw new NullPointerException("User bounds cannot be null");
|
|
}
|
|
|
|
if (t == null) {
|
|
throw new NullPointerException("Transform cannot be null");
|
|
}
|
|
|
|
if (hints == null) {
|
|
throw new NullPointerException("RenderingHints cannot be null");
|
|
}
|
|
|
|
// The inverse transform is needed to go from device to user space.
|
|
// Get all the components of the inverse transform matrix.
|
|
AffineTransform tInv;
|
|
try {
|
|
// the following assumes that the caller has copied the incoming
|
|
// transform and is not concerned about it being modified
|
|
t.invert();
|
|
tInv = t;
|
|
} catch (NoninvertibleTransformException e) {
|
|
// just use identity transform in this case; better to show
|
|
// (incorrect) results than to throw an exception and/or no-op
|
|
tInv = new AffineTransform();
|
|
}
|
|
double m[] = new double[6];
|
|
tInv.getMatrix(m);
|
|
a00 = (float)m[0];
|
|
a10 = (float)m[1];
|
|
a01 = (float)m[2];
|
|
a11 = (float)m[3];
|
|
a02 = (float)m[4];
|
|
a12 = (float)m[5];
|
|
|
|
// copy some flags
|
|
this.cycleMethod = cycleMethod;
|
|
this.colorSpace = colorSpace;
|
|
|
|
// we can avoid copying this array since we do not modify its values
|
|
this.fractions = fractions;
|
|
|
|
// note that only one of these values can ever be non-null (we either
|
|
// store the fast gradient array or the slow one, but never both
|
|
// at the same time)
|
|
int[] gradient =
|
|
(mgp.gradient != null) ? mgp.gradient.get() : null;
|
|
int[][] gradients =
|
|
(mgp.gradients != null) ? mgp.gradients.get() : null;
|
|
|
|
if (gradient == null && gradients == null) {
|
|
// we need to (re)create the appropriate values
|
|
calculateLookupData(colors);
|
|
|
|
// now cache the calculated values in the
|
|
// MultipleGradientPaint instance for future use
|
|
mgp.model = this.model;
|
|
mgp.normalizedIntervals = this.normalizedIntervals;
|
|
mgp.isSimpleLookup = this.isSimpleLookup;
|
|
if (isSimpleLookup) {
|
|
// only cache the fast array
|
|
mgp.fastGradientArraySize = this.fastGradientArraySize;
|
|
mgp.gradient = new SoftReference<int[]>(this.gradient);
|
|
} else {
|
|
// only cache the slow array
|
|
mgp.gradients = new SoftReference<int[][]>(this.gradients);
|
|
}
|
|
} else {
|
|
// use the values cached in the MultipleGradientPaint instance
|
|
this.model = mgp.model;
|
|
this.normalizedIntervals = mgp.normalizedIntervals;
|
|
this.isSimpleLookup = mgp.isSimpleLookup;
|
|
this.gradient = gradient;
|
|
this.fastGradientArraySize = mgp.fastGradientArraySize;
|
|
this.gradients = gradients;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function is the meat of this class. It calculates an array of
|
|
* gradient colors based on an array of fractions and color values at
|
|
* those fractions.
|
|
*/
|
|
private void calculateLookupData(Color[] colors) {
|
|
Color[] normalizedColors;
|
|
if (colorSpace == ColorSpaceType.LINEAR_RGB) {
|
|
// create a new colors array
|
|
normalizedColors = new Color[colors.length];
|
|
// convert the colors using the lookup table
|
|
for (int i = 0; i < colors.length; i++) {
|
|
int argb = colors[i].getRGB();
|
|
int a = argb >>> 24;
|
|
int r = SRGBtoLinearRGB[(argb >> 16) & 0xff];
|
|
int g = SRGBtoLinearRGB[(argb >> 8) & 0xff];
|
|
int b = SRGBtoLinearRGB[(argb ) & 0xff];
|
|
normalizedColors[i] = new Color(r, g, b, a);
|
|
}
|
|
} else {
|
|
// we can just use this array by reference since we do not
|
|
// modify its values in the case of SRGB
|
|
normalizedColors = colors;
|
|
}
|
|
|
|
// this will store the intervals (distances) between gradient stops
|
|
normalizedIntervals = new float[fractions.length-1];
|
|
|
|
// convert from fractions into intervals
|
|
for (int i = 0; i < normalizedIntervals.length; i++) {
|
|
// interval distance is equal to the difference in positions
|
|
normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i];
|
|
}
|
|
|
|
// initialize to be fully opaque for ANDing with colors
|
|
transparencyTest = 0xff000000;
|
|
|
|
// array of interpolation arrays
|
|
gradients = new int[normalizedIntervals.length][];
|
|
|
|
// find smallest interval
|
|
float Imin = 1;
|
|
for (int i = 0; i < normalizedIntervals.length; i++) {
|
|
Imin = (Imin > normalizedIntervals[i]) ?
|
|
normalizedIntervals[i] : Imin;
|
|
}
|
|
|
|
// Estimate the size of the entire gradients array.
|
|
// This is to prevent a tiny interval from causing the size of array
|
|
// to explode. If the estimated size is too large, break to using
|
|
// separate arrays for each interval, and using an indexing scheme at
|
|
// look-up time.
|
|
int estimatedSize = 0;
|
|
for (int i = 0; i < normalizedIntervals.length; i++) {
|
|
estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE;
|
|
}
|
|
|
|
if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) {
|
|
// slow method
|
|
calculateMultipleArrayGradient(normalizedColors);
|
|
} else {
|
|
// fast method
|
|
calculateSingleArrayGradient(normalizedColors, Imin);
|
|
}
|
|
|
|
// use the most "economical" model
|
|
if ((transparencyTest >>> 24) == 0xff) {
|
|
model = xrgbmodel;
|
|
} else {
|
|
model = ColorModel.getRGBdefault();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* FAST LOOKUP METHOD
|
|
*
|
|
* This method calculates the gradient color values and places them in a
|
|
* single int array, gradient[]. It does this by allocating space for
|
|
* each interval based on its size relative to the smallest interval in
|
|
* the array. The smallest interval is allocated 255 interpolated values
|
|
* (the maximum number of unique in-between colors in a 24 bit color
|
|
* system), and all other intervals are allocated
|
|
* size = (255 * the ratio of their size to the smallest interval).
|
|
*
|
|
* This scheme expedites a speedy retrieval because the colors are
|
|
* distributed along the array according to their user-specified
|
|
* distribution. All that is needed is a relative index from 0 to 1.
|
|
*
|
|
* The only problem with this method is that the possibility exists for
|
|
* the array size to balloon in the case where there is a
|
|
* disproportionately small gradient interval. In this case the other
|
|
* intervals will be allocated huge space, but much of that data is
|
|
* redundant. We thus need to use the space conserving scheme below.
|
|
*
|
|
* @param Imin the size of the smallest interval
|
|
*/
|
|
private void calculateSingleArrayGradient(Color[] colors, float Imin) {
|
|
// set the flag so we know later it is a simple (fast) lookup
|
|
isSimpleLookup = true;
|
|
|
|
// 2 colors to interpolate
|
|
int rgb1, rgb2;
|
|
|
|
//the eventual size of the single array
|
|
int gradientsTot = 1;
|
|
|
|
// for every interval (transition between 2 colors)
|
|
for (int i = 0; i < gradients.length; i++) {
|
|
// create an array whose size is based on the ratio to the
|
|
// smallest interval
|
|
int nGradients = (int)((normalizedIntervals[i]/Imin)*255f);
|
|
gradientsTot += nGradients;
|
|
gradients[i] = new int[nGradients];
|
|
|
|
// the 2 colors (keyframes) to interpolate between
|
|
rgb1 = colors[i].getRGB();
|
|
rgb2 = colors[i+1].getRGB();
|
|
|
|
// fill this array with the colors in between rgb1 and rgb2
|
|
interpolate(rgb1, rgb2, gradients[i]);
|
|
|
|
// if the colors are opaque, transparency should still
|
|
// be 0xff000000
|
|
transparencyTest &= rgb1;
|
|
transparencyTest &= rgb2;
|
|
}
|
|
|
|
// put all gradients in a single array
|
|
gradient = new int[gradientsTot];
|
|
int curOffset = 0;
|
|
for (int i = 0; i < gradients.length; i++){
|
|
System.arraycopy(gradients[i], 0, gradient,
|
|
curOffset, gradients[i].length);
|
|
curOffset += gradients[i].length;
|
|
}
|
|
gradient[gradient.length-1] = colors[colors.length-1].getRGB();
|
|
|
|
// if interpolation occurred in Linear RGB space, convert the
|
|
// gradients back to sRGB using the lookup table
|
|
if (colorSpace == ColorSpaceType.LINEAR_RGB) {
|
|
for (int i = 0; i < gradient.length; i++) {
|
|
gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]);
|
|
}
|
|
}
|
|
|
|
fastGradientArraySize = gradient.length - 1;
|
|
}
|
|
|
|
/**
|
|
* SLOW LOOKUP METHOD
|
|
*
|
|
* This method calculates the gradient color values for each interval and
|
|
* places each into its own 255 size array. The arrays are stored in
|
|
* gradients[][]. (255 is used because this is the maximum number of
|
|
* unique colors between 2 arbitrary colors in a 24 bit color system.)
|
|
*
|
|
* This method uses the minimum amount of space (only 255 * number of
|
|
* intervals), but it aggravates the lookup procedure, because now we
|
|
* have to find out which interval to select, then calculate the index
|
|
* within that interval. This causes a significant performance hit,
|
|
* because it requires this calculation be done for every point in
|
|
* the rendering loop.
|
|
*
|
|
* For those of you who are interested, this is a classic example of the
|
|
* time-space tradeoff.
|
|
*/
|
|
private void calculateMultipleArrayGradient(Color[] colors) {
|
|
// set the flag so we know later it is a non-simple lookup
|
|
isSimpleLookup = false;
|
|
|
|
// 2 colors to interpolate
|
|
int rgb1, rgb2;
|
|
|
|
// for every interval (transition between 2 colors)
|
|
for (int i = 0; i < gradients.length; i++){
|
|
// create an array of the maximum theoretical size for
|
|
// each interval
|
|
gradients[i] = new int[GRADIENT_SIZE];
|
|
|
|
// get the the 2 colors
|
|
rgb1 = colors[i].getRGB();
|
|
rgb2 = colors[i+1].getRGB();
|
|
|
|
// fill this array with the colors in between rgb1 and rgb2
|
|
interpolate(rgb1, rgb2, gradients[i]);
|
|
|
|
// if the colors are opaque, transparency should still
|
|
// be 0xff000000
|
|
transparencyTest &= rgb1;
|
|
transparencyTest &= rgb2;
|
|
}
|
|
|
|
// if interpolation occurred in Linear RGB space, convert the
|
|
// gradients back to SRGB using the lookup table
|
|
if (colorSpace == ColorSpaceType.LINEAR_RGB) {
|
|
for (int j = 0; j < gradients.length; j++) {
|
|
for (int i = 0; i < gradients[j].length; i++) {
|
|
gradients[j][i] =
|
|
convertEntireColorLinearRGBtoSRGB(gradients[j][i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Yet another helper function. This one linearly interpolates between
|
|
* 2 colors, filling up the output array.
|
|
*
|
|
* @param rgb1 the start color
|
|
* @param rgb2 the end color
|
|
* @param output the output array of colors; must not be null
|
|
*/
|
|
private void interpolate(int rgb1, int rgb2, int[] output) {
|
|
// color components
|
|
int a1, r1, g1, b1, da, dr, dg, db;
|
|
|
|
// step between interpolated values
|
|
float stepSize = 1.0f / output.length;
|
|
|
|
// extract color components from packed integer
|
|
a1 = (rgb1 >> 24) & 0xff;
|
|
r1 = (rgb1 >> 16) & 0xff;
|
|
g1 = (rgb1 >> 8) & 0xff;
|
|
b1 = (rgb1 ) & 0xff;
|
|
|
|
// calculate the total change in alpha, red, green, blue
|
|
da = ((rgb2 >> 24) & 0xff) - a1;
|
|
dr = ((rgb2 >> 16) & 0xff) - r1;
|
|
dg = ((rgb2 >> 8) & 0xff) - g1;
|
|
db = ((rgb2 ) & 0xff) - b1;
|
|
|
|
// for each step in the interval calculate the in-between color by
|
|
// multiplying the normalized current position by the total color
|
|
// change (0.5 is added to prevent truncation round-off error)
|
|
for (int i = 0; i < output.length; i++) {
|
|
output[i] =
|
|
(((int) ((a1 + i * da * stepSize) + 0.5) << 24)) |
|
|
(((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) |
|
|
(((int) ((g1 + i * dg * stepSize) + 0.5) << 8)) |
|
|
(((int) ((b1 + i * db * stepSize) + 0.5) ));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Yet another helper function. This one extracts the color components
|
|
* of an integer RGB triple, converts them from LinearRGB to SRGB, then
|
|
* recompacts them into an int.
|
|
*/
|
|
private int convertEntireColorLinearRGBtoSRGB(int rgb) {
|
|
// color components
|
|
int a1, r1, g1, b1;
|
|
|
|
// extract red, green, blue components
|
|
a1 = (rgb >> 24) & 0xff;
|
|
r1 = (rgb >> 16) & 0xff;
|
|
g1 = (rgb >> 8) & 0xff;
|
|
b1 = (rgb ) & 0xff;
|
|
|
|
// use the lookup table
|
|
r1 = LinearRGBtoSRGB[r1];
|
|
g1 = LinearRGBtoSRGB[g1];
|
|
b1 = LinearRGBtoSRGB[b1];
|
|
|
|
// re-compact the components
|
|
return ((a1 << 24) |
|
|
(r1 << 16) |
|
|
(g1 << 8) |
|
|
(b1 ));
|
|
}
|
|
|
|
/**
|
|
* Helper function to index into the gradients array. This is necessary
|
|
* because each interval has an array of colors with uniform size 255.
|
|
* However, the color intervals are not necessarily of uniform length, so
|
|
* a conversion is required.
|
|
*
|
|
* @param position the unmanipulated position, which will be mapped
|
|
* into the range 0 to 1
|
|
* @returns integer color to display
|
|
*/
|
|
protected final int indexIntoGradientsArrays(float position) {
|
|
// first, manipulate position value depending on the cycle method
|
|
if (cycleMethod == CycleMethod.NO_CYCLE) {
|
|
if (position > 1) {
|
|
// upper bound is 1
|
|
position = 1;
|
|
} else if (position < 0) {
|
|
// lower bound is 0
|
|
position = 0;
|
|
}
|
|
} else if (cycleMethod == CycleMethod.REPEAT) {
|
|
// get the fractional part
|
|
// (modulo behavior discards integer component)
|
|
position = position - (int)position;
|
|
|
|
//position should now be between -1 and 1
|
|
if (position < 0) {
|
|
// force it to be in the range 0-1
|
|
position = position + 1;
|
|
}
|
|
} else { // cycleMethod == CycleMethod.REFLECT
|
|
if (position < 0) {
|
|
// take absolute value
|
|
position = -position;
|
|
}
|
|
|
|
// get the integer part
|
|
int part = (int)position;
|
|
|
|
// get the fractional part
|
|
position = position - part;
|
|
|
|
if ((part & 1) == 1) {
|
|
// integer part is odd, get reflected color instead
|
|
position = 1 - position;
|
|
}
|
|
}
|
|
|
|
// now, get the color based on this 0-1 position...
|
|
|
|
if (isSimpleLookup) {
|
|
// easy to compute: just scale index by array size
|
|
return gradient[(int)(position * fastGradientArraySize)];
|
|
} else {
|
|
// more complicated computation, to save space
|
|
|
|
// for all the gradient interval arrays
|
|
for (int i = 0; i < gradients.length; i++) {
|
|
if (position < fractions[i+1]) {
|
|
// this is the array we want
|
|
float delta = position - fractions[i];
|
|
|
|
// this is the interval we want
|
|
int index = (int)((delta / normalizedIntervals[i])
|
|
* (GRADIENT_SIZE_INDEX));
|
|
|
|
return gradients[i][index];
|
|
}
|
|
}
|
|
}
|
|
|
|
return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX];
|
|
}
|
|
|
|
/**
|
|
* Helper function to convert a color component in sRGB space to linear
|
|
* RGB space. Used to build a static lookup table.
|
|
*/
|
|
private static int convertSRGBtoLinearRGB(int color) {
|
|
float input, output;
|
|
|
|
input = color / 255.0f;
|
|
if (input <= 0.04045f) {
|
|
output = input / 12.92f;
|
|
} else {
|
|
output = (float)Math.pow((input + 0.055) / 1.055, 2.4);
|
|
}
|
|
|
|
return Math.round(output * 255.0f);
|
|
}
|
|
|
|
/**
|
|
* Helper function to convert a color component in linear RGB space to
|
|
* SRGB space. Used to build a static lookup table.
|
|
*/
|
|
private static int convertLinearRGBtoSRGB(int color) {
|
|
float input, output;
|
|
|
|
input = color/255.0f;
|
|
if (input <= 0.0031308) {
|
|
output = input * 12.92f;
|
|
} else {
|
|
output = (1.055f *
|
|
((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f;
|
|
}
|
|
|
|
return Math.round(output * 255.0f);
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*/
|
|
public final Raster getRaster(int x, int y, int w, int h) {
|
|
// If working raster is big enough, reuse it. Otherwise,
|
|
// build a large enough new one.
|
|
Raster raster = saved;
|
|
if (raster == null ||
|
|
raster.getWidth() < w || raster.getHeight() < h)
|
|
{
|
|
raster = getCachedRaster(model, w, h);
|
|
saved = raster;
|
|
}
|
|
|
|
// Access raster internal int array. Because we use a DirectColorModel,
|
|
// we know the DataBuffer is of type DataBufferInt and the SampleModel
|
|
// is SinglePixelPackedSampleModel.
|
|
// Adjust for initial offset in DataBuffer and also for the scanline
|
|
// stride.
|
|
// These calls make the DataBuffer non-acceleratable, but the
|
|
// Raster is never Stable long enough to accelerate anyway...
|
|
DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer();
|
|
int[] pixels = rasterDB.getData(0);
|
|
int off = rasterDB.getOffset();
|
|
int scanlineStride = ((SinglePixelPackedSampleModel)
|
|
raster.getSampleModel()).getScanlineStride();
|
|
int adjust = scanlineStride - w;
|
|
|
|
fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass
|
|
|
|
return raster;
|
|
}
|
|
|
|
protected abstract void fillRaster(int pixels[], int off, int adjust,
|
|
int x, int y, int w, int h);
|
|
|
|
|
|
/**
|
|
* Took this cacheRaster code from GradientPaint. It appears to recycle
|
|
* rasters for use by any other instance, as long as they are sufficiently
|
|
* large.
|
|
*/
|
|
private static synchronized Raster getCachedRaster(ColorModel cm,
|
|
int w, int h)
|
|
{
|
|
if (cm == cachedModel) {
|
|
if (cached != null) {
|
|
Raster ras = (Raster) cached.get();
|
|
if (ras != null &&
|
|
ras.getWidth() >= w &&
|
|
ras.getHeight() >= h)
|
|
{
|
|
cached = null;
|
|
return ras;
|
|
}
|
|
}
|
|
}
|
|
return cm.createCompatibleWritableRaster(w, h);
|
|
}
|
|
|
|
/**
|
|
* Took this cacheRaster code from GradientPaint. It appears to recycle
|
|
* rasters for use by any other instance, as long as they are sufficiently
|
|
* large.
|
|
*/
|
|
private static synchronized void putCachedRaster(ColorModel cm,
|
|
Raster ras)
|
|
{
|
|
if (cached != null) {
|
|
Raster cras = (Raster) cached.get();
|
|
if (cras != null) {
|
|
int cw = cras.getWidth();
|
|
int ch = cras.getHeight();
|
|
int iw = ras.getWidth();
|
|
int ih = ras.getHeight();
|
|
if (cw >= iw && ch >= ih) {
|
|
return;
|
|
}
|
|
if (cw * ch >= iw * ih) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
cachedModel = cm;
|
|
cached = new WeakReference<Raster>(ras);
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*/
|
|
public final void dispose() {
|
|
if (saved != null) {
|
|
putCachedRaster(model, saved);
|
|
saved = null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*/
|
|
public final ColorModel getColorModel() {
|
|
return model;
|
|
}
|
|
}
|