1847 lines
74 KiB
1847 lines
74 KiB
/*
|
|
* Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*/
|
|
|
|
package java.lang.invoke;
|
|
|
|
import java.lang.annotation.*;
|
|
import java.lang.reflect.Method;
|
|
import java.util.List;
|
|
import java.util.Arrays;
|
|
import java.util.HashMap;
|
|
|
|
import sun.invoke.util.Wrapper;
|
|
import java.lang.reflect.Field;
|
|
|
|
import static java.lang.invoke.LambdaForm.BasicType.*;
|
|
import static java.lang.invoke.MethodHandleStatics.*;
|
|
import static java.lang.invoke.MethodHandleNatives.Constants.*;
|
|
|
|
/**
|
|
* The symbolic, non-executable form of a method handle's invocation semantics.
|
|
* It consists of a series of names.
|
|
* The first N (N=arity) names are parameters,
|
|
* while any remaining names are temporary values.
|
|
* Each temporary specifies the application of a function to some arguments.
|
|
* The functions are method handles, while the arguments are mixes of
|
|
* constant values and local names.
|
|
* The result of the lambda is defined as one of the names, often the last one.
|
|
* <p>
|
|
* Here is an approximate grammar:
|
|
* <blockquote><pre>{@code
|
|
* LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
|
|
* ArgName = "a" N ":" T
|
|
* TempName = "t" N ":" T "=" Function "(" Argument* ");"
|
|
* Function = ConstantValue
|
|
* Argument = NameRef | ConstantValue
|
|
* Result = NameRef | "void"
|
|
* NameRef = "a" N | "t" N
|
|
* N = (any whole number)
|
|
* T = "L" | "I" | "J" | "F" | "D" | "V"
|
|
* }</pre></blockquote>
|
|
* Names are numbered consecutively from left to right starting at zero.
|
|
* (The letters are merely a taste of syntax sugar.)
|
|
* Thus, the first temporary (if any) is always numbered N (where N=arity).
|
|
* Every occurrence of a name reference in an argument list must refer to
|
|
* a name previously defined within the same lambda.
|
|
* A lambda has a void result if and only if its result index is -1.
|
|
* If a temporary has the type "V", it cannot be the subject of a NameRef,
|
|
* even though possesses a number.
|
|
* Note that all reference types are erased to "L", which stands for {@code Object}.
|
|
* All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
|
|
* The other types stand for the usual primitive types.
|
|
* <p>
|
|
* Function invocation closely follows the static rules of the Java verifier.
|
|
* Arguments and return values must exactly match when their "Name" types are
|
|
* considered.
|
|
* Conversions are allowed only if they do not change the erased type.
|
|
* <ul>
|
|
* <li>L = Object: casts are used freely to convert into and out of reference types
|
|
* <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
|
|
* <li>J = long: no implicit conversions
|
|
* <li>F = float: no implicit conversions
|
|
* <li>D = double: no implicit conversions
|
|
* <li>V = void: a function result may be void if and only if its Name is of type "V"
|
|
* </ul>
|
|
* Although implicit conversions are not allowed, explicit ones can easily be
|
|
* encoded by using temporary expressions which call type-transformed identity functions.
|
|
* <p>
|
|
* Examples:
|
|
* <blockquote><pre>{@code
|
|
* (a0:J)=>{ a0 }
|
|
* == identity(long)
|
|
* (a0:I)=>{ t1:V = System.out#println(a0); void }
|
|
* == System.out#println(int)
|
|
* (a0:L)=>{ t1:V = System.out#println(a0); a0 }
|
|
* == identity, with printing side-effect
|
|
* (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
|
|
* t3:L = BoundMethodHandle#target(a0);
|
|
* t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
|
|
* == general invoker for unary insertArgument combination
|
|
* (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
|
|
* t3:L = MethodHandle#invoke(t2, a1);
|
|
* t4:L = FilterMethodHandle#target(a0);
|
|
* t5:L = MethodHandle#invoke(t4, t3); t5 }
|
|
* == general invoker for unary filterArgument combination
|
|
* (a0:L, a1:L)=>{ ...(same as previous example)...
|
|
* t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
|
|
* == general invoker for unary/unary foldArgument combination
|
|
* (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
|
|
* == invoker for identity method handle which performs i2l
|
|
* (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
|
|
* t3:L = Class#cast(t2,a1); t3 }
|
|
* == invoker for identity method handle which performs cast
|
|
* }</pre></blockquote>
|
|
* <p>
|
|
* @author John Rose, JSR 292 EG
|
|
*/
|
|
class LambdaForm {
|
|
final int arity;
|
|
final int result;
|
|
final boolean forceInline;
|
|
final MethodHandle customized;
|
|
@Stable final Name[] names;
|
|
final String debugName;
|
|
MemberName vmentry; // low-level behavior, or null if not yet prepared
|
|
private boolean isCompiled;
|
|
|
|
// Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
|
|
volatile Object transformCache;
|
|
|
|
public static final int VOID_RESULT = -1, LAST_RESULT = -2;
|
|
|
|
enum BasicType {
|
|
L_TYPE('L', Object.class, Wrapper.OBJECT), // all reference types
|
|
I_TYPE('I', int.class, Wrapper.INT),
|
|
J_TYPE('J', long.class, Wrapper.LONG),
|
|
F_TYPE('F', float.class, Wrapper.FLOAT),
|
|
D_TYPE('D', double.class, Wrapper.DOUBLE), // all primitive types
|
|
V_TYPE('V', void.class, Wrapper.VOID); // not valid in all contexts
|
|
|
|
static final BasicType[] ALL_TYPES = BasicType.values();
|
|
static final BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
|
|
|
|
static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
|
|
static final int TYPE_LIMIT = ALL_TYPES.length;
|
|
|
|
private final char btChar;
|
|
private final Class<?> btClass;
|
|
private final Wrapper btWrapper;
|
|
|
|
private BasicType(char btChar, Class<?> btClass, Wrapper wrapper) {
|
|
this.btChar = btChar;
|
|
this.btClass = btClass;
|
|
this.btWrapper = wrapper;
|
|
}
|
|
|
|
char basicTypeChar() {
|
|
return btChar;
|
|
}
|
|
Class<?> basicTypeClass() {
|
|
return btClass;
|
|
}
|
|
Wrapper basicTypeWrapper() {
|
|
return btWrapper;
|
|
}
|
|
int basicTypeSlots() {
|
|
return btWrapper.stackSlots();
|
|
}
|
|
|
|
static BasicType basicType(byte type) {
|
|
return ALL_TYPES[type];
|
|
}
|
|
static BasicType basicType(char type) {
|
|
switch (type) {
|
|
case 'L': return L_TYPE;
|
|
case 'I': return I_TYPE;
|
|
case 'J': return J_TYPE;
|
|
case 'F': return F_TYPE;
|
|
case 'D': return D_TYPE;
|
|
case 'V': return V_TYPE;
|
|
// all subword types are represented as ints
|
|
case 'Z':
|
|
case 'B':
|
|
case 'S':
|
|
case 'C':
|
|
return I_TYPE;
|
|
default:
|
|
throw newInternalError("Unknown type char: '"+type+"'");
|
|
}
|
|
}
|
|
static BasicType basicType(Wrapper type) {
|
|
char c = type.basicTypeChar();
|
|
return basicType(c);
|
|
}
|
|
static BasicType basicType(Class<?> type) {
|
|
if (!type.isPrimitive()) return L_TYPE;
|
|
return basicType(Wrapper.forPrimitiveType(type));
|
|
}
|
|
|
|
static char basicTypeChar(Class<?> type) {
|
|
return basicType(type).btChar;
|
|
}
|
|
static BasicType[] basicTypes(List<Class<?>> types) {
|
|
BasicType[] btypes = new BasicType[types.size()];
|
|
for (int i = 0; i < btypes.length; i++) {
|
|
btypes[i] = basicType(types.get(i));
|
|
}
|
|
return btypes;
|
|
}
|
|
static BasicType[] basicTypes(String types) {
|
|
BasicType[] btypes = new BasicType[types.length()];
|
|
for (int i = 0; i < btypes.length; i++) {
|
|
btypes[i] = basicType(types.charAt(i));
|
|
}
|
|
return btypes;
|
|
}
|
|
static byte[] basicTypesOrd(BasicType[] btypes) {
|
|
byte[] ords = new byte[btypes.length];
|
|
for (int i = 0; i < btypes.length; i++) {
|
|
ords[i] = (byte)btypes[i].ordinal();
|
|
}
|
|
return ords;
|
|
}
|
|
static boolean isBasicTypeChar(char c) {
|
|
return "LIJFDV".indexOf(c) >= 0;
|
|
}
|
|
static boolean isArgBasicTypeChar(char c) {
|
|
return "LIJFD".indexOf(c) >= 0;
|
|
}
|
|
|
|
static { assert(checkBasicType()); }
|
|
private static boolean checkBasicType() {
|
|
for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
|
|
assert ARG_TYPES[i].ordinal() == i;
|
|
assert ARG_TYPES[i] == ALL_TYPES[i];
|
|
}
|
|
for (int i = 0; i < TYPE_LIMIT; i++) {
|
|
assert ALL_TYPES[i].ordinal() == i;
|
|
}
|
|
assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
|
|
assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
LambdaForm(String debugName,
|
|
int arity, Name[] names, int result) {
|
|
this(debugName, arity, names, result, /*forceInline=*/true, /*customized=*/null);
|
|
}
|
|
LambdaForm(String debugName,
|
|
int arity, Name[] names, int result, boolean forceInline, MethodHandle customized) {
|
|
assert(namesOK(arity, names));
|
|
this.arity = arity;
|
|
this.result = fixResult(result, names);
|
|
this.names = names.clone();
|
|
this.debugName = fixDebugName(debugName);
|
|
this.forceInline = forceInline;
|
|
this.customized = customized;
|
|
int maxOutArity = normalize();
|
|
if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
|
|
// Cannot use LF interpreter on very high arity expressions.
|
|
assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
|
|
compileToBytecode();
|
|
}
|
|
}
|
|
LambdaForm(String debugName,
|
|
int arity, Name[] names) {
|
|
this(debugName, arity, names, LAST_RESULT, /*forceInline=*/true, /*customized=*/null);
|
|
}
|
|
LambdaForm(String debugName,
|
|
int arity, Name[] names, boolean forceInline) {
|
|
this(debugName, arity, names, LAST_RESULT, forceInline, /*customized=*/null);
|
|
}
|
|
LambdaForm(String debugName,
|
|
Name[] formals, Name[] temps, Name result) {
|
|
this(debugName,
|
|
formals.length, buildNames(formals, temps, result), LAST_RESULT, /*forceInline=*/true, /*customized=*/null);
|
|
}
|
|
LambdaForm(String debugName,
|
|
Name[] formals, Name[] temps, Name result, boolean forceInline) {
|
|
this(debugName,
|
|
formals.length, buildNames(formals, temps, result), LAST_RESULT, forceInline, /*customized=*/null);
|
|
}
|
|
|
|
private static Name[] buildNames(Name[] formals, Name[] temps, Name result) {
|
|
int arity = formals.length;
|
|
int length = arity + temps.length + (result == null ? 0 : 1);
|
|
Name[] names = Arrays.copyOf(formals, length);
|
|
System.arraycopy(temps, 0, names, arity, temps.length);
|
|
if (result != null)
|
|
names[length - 1] = result;
|
|
return names;
|
|
}
|
|
|
|
private LambdaForm(String sig) {
|
|
// Make a blank lambda form, which returns a constant zero or null.
|
|
// It is used as a template for managing the invocation of similar forms that are non-empty.
|
|
// Called only from getPreparedForm.
|
|
assert(isValidSignature(sig));
|
|
this.arity = signatureArity(sig);
|
|
this.result = (signatureReturn(sig) == V_TYPE ? -1 : arity);
|
|
this.names = buildEmptyNames(arity, sig);
|
|
this.debugName = "LF.zero";
|
|
this.forceInline = true;
|
|
this.customized = null;
|
|
assert(nameRefsAreLegal());
|
|
assert(isEmpty());
|
|
assert(sig.equals(basicTypeSignature())) : sig + " != " + basicTypeSignature();
|
|
}
|
|
|
|
private static Name[] buildEmptyNames(int arity, String basicTypeSignature) {
|
|
assert(isValidSignature(basicTypeSignature));
|
|
int resultPos = arity + 1; // skip '_'
|
|
if (arity < 0 || basicTypeSignature.length() != resultPos+1)
|
|
throw new IllegalArgumentException("bad arity for "+basicTypeSignature);
|
|
int numRes = (basicType(basicTypeSignature.charAt(resultPos)) == V_TYPE ? 0 : 1);
|
|
Name[] names = arguments(numRes, basicTypeSignature.substring(0, arity));
|
|
for (int i = 0; i < numRes; i++) {
|
|
Name zero = new Name(constantZero(basicType(basicTypeSignature.charAt(resultPos + i))));
|
|
names[arity + i] = zero.newIndex(arity + i);
|
|
}
|
|
return names;
|
|
}
|
|
|
|
private static int fixResult(int result, Name[] names) {
|
|
if (result == LAST_RESULT)
|
|
result = names.length - 1; // might still be void
|
|
if (result >= 0 && names[result].type == V_TYPE)
|
|
result = VOID_RESULT;
|
|
return result;
|
|
}
|
|
|
|
private static String fixDebugName(String debugName) {
|
|
if (DEBUG_NAME_COUNTERS != null) {
|
|
int under = debugName.indexOf('_');
|
|
int length = debugName.length();
|
|
if (under < 0) under = length;
|
|
String debugNameStem = debugName.substring(0, under);
|
|
Integer ctr;
|
|
synchronized (DEBUG_NAME_COUNTERS) {
|
|
ctr = DEBUG_NAME_COUNTERS.get(debugNameStem);
|
|
if (ctr == null) ctr = 0;
|
|
DEBUG_NAME_COUNTERS.put(debugNameStem, ctr+1);
|
|
}
|
|
StringBuilder buf = new StringBuilder(debugNameStem);
|
|
buf.append('_');
|
|
int leadingZero = buf.length();
|
|
buf.append((int) ctr);
|
|
for (int i = buf.length() - leadingZero; i < 3; i++)
|
|
buf.insert(leadingZero, '0');
|
|
if (under < length) {
|
|
++under; // skip "_"
|
|
while (under < length && Character.isDigit(debugName.charAt(under))) {
|
|
++under;
|
|
}
|
|
if (under < length && debugName.charAt(under) == '_') ++under;
|
|
if (under < length)
|
|
buf.append('_').append(debugName, under, length);
|
|
}
|
|
return buf.toString();
|
|
}
|
|
return debugName;
|
|
}
|
|
|
|
private static boolean namesOK(int arity, Name[] names) {
|
|
for (int i = 0; i < names.length; i++) {
|
|
Name n = names[i];
|
|
assert(n != null) : "n is null";
|
|
if (i < arity)
|
|
assert( n.isParam()) : n + " is not param at " + i;
|
|
else
|
|
assert(!n.isParam()) : n + " is param at " + i;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** Customize LambdaForm for a particular MethodHandle */
|
|
LambdaForm customize(MethodHandle mh) {
|
|
LambdaForm customForm = new LambdaForm(debugName, arity, names, result, forceInline, mh);
|
|
if (COMPILE_THRESHOLD > 0 && isCompiled) {
|
|
// If shared LambdaForm has been compiled, compile customized version as well.
|
|
customForm.compileToBytecode();
|
|
}
|
|
customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
|
|
return customForm;
|
|
}
|
|
|
|
/** Get uncustomized flavor of the LambdaForm */
|
|
LambdaForm uncustomize() {
|
|
if (customized == null) {
|
|
return this;
|
|
}
|
|
assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
|
|
LambdaForm uncustomizedForm = (LambdaForm)transformCache;
|
|
if (COMPILE_THRESHOLD > 0 && isCompiled) {
|
|
// If customized LambdaForm has been compiled, compile uncustomized version as well.
|
|
uncustomizedForm.compileToBytecode();
|
|
}
|
|
return uncustomizedForm;
|
|
}
|
|
|
|
/** Renumber and/or replace params so that they are interned and canonically numbered.
|
|
* @return maximum argument list length among the names (since we have to pass over them anyway)
|
|
*/
|
|
private int normalize() {
|
|
Name[] oldNames = null;
|
|
int maxOutArity = 0;
|
|
int changesStart = 0;
|
|
for (int i = 0; i < names.length; i++) {
|
|
Name n = names[i];
|
|
if (!n.initIndex(i)) {
|
|
if (oldNames == null) {
|
|
oldNames = names.clone();
|
|
changesStart = i;
|
|
}
|
|
names[i] = n.cloneWithIndex(i);
|
|
}
|
|
if (n.arguments != null && maxOutArity < n.arguments.length)
|
|
maxOutArity = n.arguments.length;
|
|
}
|
|
if (oldNames != null) {
|
|
int startFixing = arity;
|
|
if (startFixing <= changesStart)
|
|
startFixing = changesStart+1;
|
|
for (int i = startFixing; i < names.length; i++) {
|
|
Name fixed = names[i].replaceNames(oldNames, names, changesStart, i);
|
|
names[i] = fixed.newIndex(i);
|
|
}
|
|
}
|
|
assert(nameRefsAreLegal());
|
|
int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
|
|
boolean needIntern = false;
|
|
for (int i = 0; i < maxInterned; i++) {
|
|
Name n = names[i], n2 = internArgument(n);
|
|
if (n != n2) {
|
|
names[i] = n2;
|
|
needIntern = true;
|
|
}
|
|
}
|
|
if (needIntern) {
|
|
for (int i = arity; i < names.length; i++) {
|
|
names[i].internArguments();
|
|
}
|
|
}
|
|
assert(nameRefsAreLegal());
|
|
return maxOutArity;
|
|
}
|
|
|
|
/**
|
|
* Check that all embedded Name references are localizable to this lambda,
|
|
* and are properly ordered after their corresponding definitions.
|
|
* <p>
|
|
* Note that a Name can be local to multiple lambdas, as long as
|
|
* it possesses the same index in each use site.
|
|
* This allows Name references to be freely reused to construct
|
|
* fresh lambdas, without confusion.
|
|
*/
|
|
boolean nameRefsAreLegal() {
|
|
assert(arity >= 0 && arity <= names.length);
|
|
assert(result >= -1 && result < names.length);
|
|
// Do all names possess an index consistent with their local definition order?
|
|
for (int i = 0; i < arity; i++) {
|
|
Name n = names[i];
|
|
assert(n.index() == i) : Arrays.asList(n.index(), i);
|
|
assert(n.isParam());
|
|
}
|
|
// Also, do all local name references
|
|
for (int i = arity; i < names.length; i++) {
|
|
Name n = names[i];
|
|
assert(n.index() == i);
|
|
for (Object arg : n.arguments) {
|
|
if (arg instanceof Name) {
|
|
Name n2 = (Name) arg;
|
|
int i2 = n2.index;
|
|
assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
|
|
assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
|
|
assert(i2 < i); // ref must come after def!
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** Invoke this form on the given arguments. */
|
|
// final Object invoke(Object... args) throws Throwable {
|
|
// // NYI: fit this into the fast path?
|
|
// return interpretWithArguments(args);
|
|
// }
|
|
|
|
/** Report the return type. */
|
|
BasicType returnType() {
|
|
if (result < 0) return V_TYPE;
|
|
Name n = names[result];
|
|
return n.type;
|
|
}
|
|
|
|
/** Report the N-th argument type. */
|
|
BasicType parameterType(int n) {
|
|
return parameter(n).type;
|
|
}
|
|
|
|
/** Report the N-th argument name. */
|
|
Name parameter(int n) {
|
|
assert(n < arity);
|
|
Name param = names[n];
|
|
assert(param.isParam());
|
|
return param;
|
|
}
|
|
|
|
/** Report the N-th argument type constraint. */
|
|
Object parameterConstraint(int n) {
|
|
return parameter(n).constraint;
|
|
}
|
|
|
|
/** Report the arity. */
|
|
int arity() {
|
|
return arity;
|
|
}
|
|
|
|
/** Report the number of expressions (non-parameter names). */
|
|
int expressionCount() {
|
|
return names.length - arity;
|
|
}
|
|
|
|
/** Return the method type corresponding to my basic type signature. */
|
|
MethodType methodType() {
|
|
return signatureType(basicTypeSignature());
|
|
}
|
|
/** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
|
|
final String basicTypeSignature() {
|
|
StringBuilder buf = new StringBuilder(arity() + 3);
|
|
for (int i = 0, a = arity(); i < a; i++)
|
|
buf.append(parameterType(i).basicTypeChar());
|
|
return buf.append('_').append(returnType().basicTypeChar()).toString();
|
|
}
|
|
static int signatureArity(String sig) {
|
|
assert(isValidSignature(sig));
|
|
return sig.indexOf('_');
|
|
}
|
|
static BasicType signatureReturn(String sig) {
|
|
return basicType(sig.charAt(signatureArity(sig) + 1));
|
|
}
|
|
static boolean isValidSignature(String sig) {
|
|
int arity = sig.indexOf('_');
|
|
if (arity < 0) return false; // must be of the form *_*
|
|
int siglen = sig.length();
|
|
if (siglen != arity + 2) return false; // *_X
|
|
for (int i = 0; i < siglen; i++) {
|
|
if (i == arity) continue; // skip '_'
|
|
char c = sig.charAt(i);
|
|
if (c == 'V')
|
|
return (i == siglen - 1 && arity == siglen - 2);
|
|
if (!isArgBasicTypeChar(c)) return false; // must be [LIJFD]
|
|
}
|
|
return true; // [LIJFD]*_[LIJFDV]
|
|
}
|
|
static MethodType signatureType(String sig) {
|
|
Class<?>[] ptypes = new Class<?>[signatureArity(sig)];
|
|
for (int i = 0; i < ptypes.length; i++)
|
|
ptypes[i] = basicType(sig.charAt(i)).btClass;
|
|
Class<?> rtype = signatureReturn(sig).btClass;
|
|
return MethodType.methodType(rtype, ptypes);
|
|
}
|
|
|
|
/*
|
|
* Code generation issues:
|
|
*
|
|
* Compiled LFs should be reusable in general.
|
|
* The biggest issue is how to decide when to pull a name into
|
|
* the bytecode, versus loading a reified form from the MH data.
|
|
*
|
|
* For example, an asType wrapper may require execution of a cast
|
|
* after a call to a MH. The target type of the cast can be placed
|
|
* as a constant in the LF itself. This will force the cast type
|
|
* to be compiled into the bytecodes and native code for the MH.
|
|
* Or, the target type of the cast can be erased in the LF, and
|
|
* loaded from the MH data. (Later on, if the MH as a whole is
|
|
* inlined, the data will flow into the inlined instance of the LF,
|
|
* as a constant, and the end result will be an optimal cast.)
|
|
*
|
|
* This erasure of cast types can be done with any use of
|
|
* reference types. It can also be done with whole method
|
|
* handles. Erasing a method handle might leave behind
|
|
* LF code that executes correctly for any MH of a given
|
|
* type, and load the required MH from the enclosing MH's data.
|
|
* Or, the erasure might even erase the expected MT.
|
|
*
|
|
* Also, for direct MHs, the MemberName of the target
|
|
* could be erased, and loaded from the containing direct MH.
|
|
* As a simple case, a LF for all int-valued non-static
|
|
* field getters would perform a cast on its input argument
|
|
* (to non-constant base type derived from the MemberName)
|
|
* and load an integer value from the input object
|
|
* (at a non-constant offset also derived from the MemberName).
|
|
* Such MN-erased LFs would be inlinable back to optimized
|
|
* code, whenever a constant enclosing DMH is available
|
|
* to supply a constant MN from its data.
|
|
*
|
|
* The main problem here is to keep LFs reasonably generic,
|
|
* while ensuring that hot spots will inline good instances.
|
|
* "Reasonably generic" means that we don't end up with
|
|
* repeated versions of bytecode or machine code that do
|
|
* not differ in their optimized form. Repeated versions
|
|
* of machine would have the undesirable overheads of
|
|
* (a) redundant compilation work and (b) extra I$ pressure.
|
|
* To control repeated versions, we need to be ready to
|
|
* erase details from LFs and move them into MH data,
|
|
* whevener those details are not relevant to significant
|
|
* optimization. "Significant" means optimization of
|
|
* code that is actually hot.
|
|
*
|
|
* Achieving this may require dynamic splitting of MHs, by replacing
|
|
* a generic LF with a more specialized one, on the same MH,
|
|
* if (a) the MH is frequently executed and (b) the MH cannot
|
|
* be inlined into a containing caller, such as an invokedynamic.
|
|
*
|
|
* Compiled LFs that are no longer used should be GC-able.
|
|
* If they contain non-BCP references, they should be properly
|
|
* interlinked with the class loader(s) that their embedded types
|
|
* depend on. This probably means that reusable compiled LFs
|
|
* will be tabulated (indexed) on relevant class loaders,
|
|
* or else that the tables that cache them will have weak links.
|
|
*/
|
|
|
|
/**
|
|
* Make this LF directly executable, as part of a MethodHandle.
|
|
* Invariant: Every MH which is invoked must prepare its LF
|
|
* before invocation.
|
|
* (In principle, the JVM could do this very lazily,
|
|
* as a sort of pre-invocation linkage step.)
|
|
*/
|
|
public void prepare() {
|
|
if (COMPILE_THRESHOLD == 0 && !isCompiled) {
|
|
compileToBytecode();
|
|
}
|
|
if (this.vmentry != null) {
|
|
// already prepared (e.g., a primitive DMH invoker form)
|
|
return;
|
|
}
|
|
LambdaForm prep = getPreparedForm(basicTypeSignature());
|
|
this.vmentry = prep.vmentry;
|
|
// TO DO: Maybe add invokeGeneric, invokeWithArguments
|
|
}
|
|
|
|
/** Generate optimizable bytecode for this form. */
|
|
MemberName compileToBytecode() {
|
|
if (vmentry != null && isCompiled) {
|
|
return vmentry; // already compiled somehow
|
|
}
|
|
MethodType invokerType = methodType();
|
|
assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
|
|
try {
|
|
vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
|
|
if (TRACE_INTERPRETER)
|
|
traceInterpreter("compileToBytecode", this);
|
|
isCompiled = true;
|
|
return vmentry;
|
|
} catch (Error | Exception ex) {
|
|
throw newInternalError(this.toString(), ex);
|
|
}
|
|
}
|
|
|
|
private static void computeInitialPreparedForms() {
|
|
// Find all predefined invokers and associate them with canonical empty lambda forms.
|
|
for (MemberName m : MemberName.getFactory().getMethods(LambdaForm.class, false, null, null, null)) {
|
|
if (!m.isStatic() || !m.isPackage()) continue;
|
|
MethodType mt = m.getMethodType();
|
|
if (mt.parameterCount() > 0 &&
|
|
mt.parameterType(0) == MethodHandle.class &&
|
|
m.getName().startsWith("interpret_")) {
|
|
String sig = basicTypeSignature(mt);
|
|
assert(m.getName().equals("interpret" + sig.substring(sig.indexOf('_'))));
|
|
LambdaForm form = new LambdaForm(sig);
|
|
form.vmentry = m;
|
|
form = mt.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, form);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set this false to disable use of the interpret_L methods defined in this file.
|
|
private static final boolean USE_PREDEFINED_INTERPRET_METHODS = true;
|
|
|
|
// The following are predefined exact invokers. The system must build
|
|
// a separate invoker for each distinct signature.
|
|
static Object interpret_L(MethodHandle mh) throws Throwable {
|
|
Object[] av = {mh};
|
|
String sig = null;
|
|
assert(argumentTypesMatch(sig = "L_L", av));
|
|
Object res = mh.form.interpretWithArguments(av);
|
|
assert(returnTypesMatch(sig, av, res));
|
|
return res;
|
|
}
|
|
static Object interpret_L(MethodHandle mh, Object x1) throws Throwable {
|
|
Object[] av = {mh, x1};
|
|
String sig = null;
|
|
assert(argumentTypesMatch(sig = "LL_L", av));
|
|
Object res = mh.form.interpretWithArguments(av);
|
|
assert(returnTypesMatch(sig, av, res));
|
|
return res;
|
|
}
|
|
static Object interpret_L(MethodHandle mh, Object x1, Object x2) throws Throwable {
|
|
Object[] av = {mh, x1, x2};
|
|
String sig = null;
|
|
assert(argumentTypesMatch(sig = "LLL_L", av));
|
|
Object res = mh.form.interpretWithArguments(av);
|
|
assert(returnTypesMatch(sig, av, res));
|
|
return res;
|
|
}
|
|
private static LambdaForm getPreparedForm(String sig) {
|
|
MethodType mtype = signatureType(sig);
|
|
LambdaForm prep = mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
|
|
if (prep != null) return prep;
|
|
assert(isValidSignature(sig));
|
|
prep = new LambdaForm(sig);
|
|
prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(sig);
|
|
return mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
|
|
}
|
|
|
|
// The next few routines are called only from assert expressions
|
|
// They verify that the built-in invokers process the correct raw data types.
|
|
private static boolean argumentTypesMatch(String sig, Object[] av) {
|
|
int arity = signatureArity(sig);
|
|
assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
|
|
assert(av[0] instanceof MethodHandle) : "av[0] not instace of MethodHandle: " + av[0];
|
|
MethodHandle mh = (MethodHandle) av[0];
|
|
MethodType mt = mh.type();
|
|
assert(mt.parameterCount() == arity-1);
|
|
for (int i = 0; i < av.length; i++) {
|
|
Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
|
|
assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
|
|
}
|
|
return true;
|
|
}
|
|
private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
|
|
// The following line is needed because (...)void method handles can use non-void invokers
|
|
if (type == void.class) tc = V_TYPE; // can drop any kind of value
|
|
assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
|
|
switch (tc) {
|
|
case I_TYPE: assert checkInt(type, x) : "checkInt(" + type + "," + x +")"; break;
|
|
case J_TYPE: assert x instanceof Long : "instanceof Long: " + x; break;
|
|
case F_TYPE: assert x instanceof Float : "instanceof Float: " + x; break;
|
|
case D_TYPE: assert x instanceof Double : "instanceof Double: " + x; break;
|
|
case L_TYPE: assert checkRef(type, x) : "checkRef(" + type + "," + x + ")"; break;
|
|
case V_TYPE: break; // allow anything here; will be dropped
|
|
default: assert(false);
|
|
}
|
|
return true;
|
|
}
|
|
private static boolean returnTypesMatch(String sig, Object[] av, Object res) {
|
|
MethodHandle mh = (MethodHandle) av[0];
|
|
return valueMatches(signatureReturn(sig), mh.type().returnType(), res);
|
|
}
|
|
private static boolean checkInt(Class<?> type, Object x) {
|
|
assert(x instanceof Integer);
|
|
if (type == int.class) return true;
|
|
Wrapper w = Wrapper.forBasicType(type);
|
|
assert(w.isSubwordOrInt());
|
|
Object x1 = Wrapper.INT.wrap(w.wrap(x));
|
|
return x.equals(x1);
|
|
}
|
|
private static boolean checkRef(Class<?> type, Object x) {
|
|
assert(!type.isPrimitive());
|
|
if (x == null) return true;
|
|
if (type.isInterface()) return true;
|
|
return type.isInstance(x);
|
|
}
|
|
|
|
/** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
|
|
private static final int COMPILE_THRESHOLD;
|
|
static {
|
|
COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
|
|
}
|
|
private int invocationCounter = 0;
|
|
|
|
@Hidden
|
|
@DontInline
|
|
/** Interpretively invoke this form on the given arguments. */
|
|
Object interpretWithArguments(Object... argumentValues) throws Throwable {
|
|
if (TRACE_INTERPRETER)
|
|
return interpretWithArgumentsTracing(argumentValues);
|
|
checkInvocationCounter();
|
|
assert(arityCheck(argumentValues));
|
|
Object[] values = Arrays.copyOf(argumentValues, names.length);
|
|
for (int i = argumentValues.length; i < values.length; i++) {
|
|
values[i] = interpretName(names[i], values);
|
|
}
|
|
Object rv = (result < 0) ? null : values[result];
|
|
assert(resultCheck(argumentValues, rv));
|
|
return rv;
|
|
}
|
|
|
|
@Hidden
|
|
@DontInline
|
|
/** Evaluate a single Name within this form, applying its function to its arguments. */
|
|
Object interpretName(Name name, Object[] values) throws Throwable {
|
|
if (TRACE_INTERPRETER)
|
|
traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
|
|
Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
|
|
for (int i = 0; i < arguments.length; i++) {
|
|
Object a = arguments[i];
|
|
if (a instanceof Name) {
|
|
int i2 = ((Name)a).index();
|
|
assert(names[i2] == a);
|
|
a = values[i2];
|
|
arguments[i] = a;
|
|
}
|
|
}
|
|
return name.function.invokeWithArguments(arguments);
|
|
}
|
|
|
|
private void checkInvocationCounter() {
|
|
if (COMPILE_THRESHOLD != 0 &&
|
|
invocationCounter < COMPILE_THRESHOLD) {
|
|
invocationCounter++; // benign race
|
|
if (invocationCounter >= COMPILE_THRESHOLD) {
|
|
// Replace vmentry with a bytecode version of this LF.
|
|
compileToBytecode();
|
|
}
|
|
}
|
|
}
|
|
Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
|
|
traceInterpreter("[ interpretWithArguments", this, argumentValues);
|
|
if (invocationCounter < COMPILE_THRESHOLD) {
|
|
int ctr = invocationCounter++; // benign race
|
|
traceInterpreter("| invocationCounter", ctr);
|
|
if (invocationCounter >= COMPILE_THRESHOLD) {
|
|
compileToBytecode();
|
|
}
|
|
}
|
|
Object rval;
|
|
try {
|
|
assert(arityCheck(argumentValues));
|
|
Object[] values = Arrays.copyOf(argumentValues, names.length);
|
|
for (int i = argumentValues.length; i < values.length; i++) {
|
|
values[i] = interpretName(names[i], values);
|
|
}
|
|
rval = (result < 0) ? null : values[result];
|
|
} catch (Throwable ex) {
|
|
traceInterpreter("] throw =>", ex);
|
|
throw ex;
|
|
}
|
|
traceInterpreter("] return =>", rval);
|
|
return rval;
|
|
}
|
|
|
|
static void traceInterpreter(String event, Object obj, Object... args) {
|
|
if (TRACE_INTERPRETER) {
|
|
System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
|
|
}
|
|
}
|
|
static void traceInterpreter(String event, Object obj) {
|
|
traceInterpreter(event, obj, (Object[])null);
|
|
}
|
|
private boolean arityCheck(Object[] argumentValues) {
|
|
assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
|
|
// also check that the leading (receiver) argument is somehow bound to this LF:
|
|
assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
|
|
MethodHandle mh = (MethodHandle) argumentValues[0];
|
|
assert(mh.internalForm() == this);
|
|
// note: argument #0 could also be an interface wrapper, in the future
|
|
argumentTypesMatch(basicTypeSignature(), argumentValues);
|
|
return true;
|
|
}
|
|
private boolean resultCheck(Object[] argumentValues, Object result) {
|
|
MethodHandle mh = (MethodHandle) argumentValues[0];
|
|
MethodType mt = mh.type();
|
|
assert(valueMatches(returnType(), mt.returnType(), result));
|
|
return true;
|
|
}
|
|
|
|
private boolean isEmpty() {
|
|
if (result < 0)
|
|
return (names.length == arity);
|
|
else if (result == arity && names.length == arity + 1)
|
|
return names[arity].isConstantZero();
|
|
else
|
|
return false;
|
|
}
|
|
|
|
public String toString() {
|
|
StringBuilder buf = new StringBuilder(debugName+"=Lambda(");
|
|
for (int i = 0; i < names.length; i++) {
|
|
if (i == arity) buf.append(")=>{");
|
|
Name n = names[i];
|
|
if (i >= arity) buf.append("\n ");
|
|
buf.append(n.paramString());
|
|
if (i < arity) {
|
|
if (i+1 < arity) buf.append(",");
|
|
continue;
|
|
}
|
|
buf.append("=").append(n.exprString());
|
|
buf.append(";");
|
|
}
|
|
if (arity == names.length) buf.append(")=>{");
|
|
buf.append(result < 0 ? "void" : names[result]).append("}");
|
|
if (TRACE_INTERPRETER) {
|
|
// Extra verbosity:
|
|
buf.append(":").append(basicTypeSignature());
|
|
buf.append("/").append(vmentry);
|
|
}
|
|
return buf.toString();
|
|
}
|
|
|
|
@Override
|
|
public boolean equals(Object obj) {
|
|
return obj instanceof LambdaForm && equals((LambdaForm)obj);
|
|
}
|
|
public boolean equals(LambdaForm that) {
|
|
if (this.result != that.result) return false;
|
|
return Arrays.equals(this.names, that.names);
|
|
}
|
|
public int hashCode() {
|
|
return result + 31 * Arrays.hashCode(names);
|
|
}
|
|
LambdaFormEditor editor() {
|
|
return LambdaFormEditor.lambdaFormEditor(this);
|
|
}
|
|
|
|
boolean contains(Name name) {
|
|
int pos = name.index();
|
|
if (pos >= 0) {
|
|
return pos < names.length && name.equals(names[pos]);
|
|
}
|
|
for (int i = arity; i < names.length; i++) {
|
|
if (name.equals(names[i]))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
LambdaForm addArguments(int pos, BasicType... types) {
|
|
// names array has MH in slot 0; skip it.
|
|
int argpos = pos + 1;
|
|
assert(argpos <= arity);
|
|
int length = names.length;
|
|
int inTypes = types.length;
|
|
Name[] names2 = Arrays.copyOf(names, length + inTypes);
|
|
int arity2 = arity + inTypes;
|
|
int result2 = result;
|
|
if (result2 >= argpos)
|
|
result2 += inTypes;
|
|
// Note: The LF constructor will rename names2[argpos...].
|
|
// Make space for new arguments (shift temporaries).
|
|
System.arraycopy(names, argpos, names2, argpos + inTypes, length - argpos);
|
|
for (int i = 0; i < inTypes; i++) {
|
|
names2[argpos + i] = new Name(types[i]);
|
|
}
|
|
return new LambdaForm(debugName, arity2, names2, result2);
|
|
}
|
|
|
|
LambdaForm addArguments(int pos, List<Class<?>> types) {
|
|
return addArguments(pos, basicTypes(types));
|
|
}
|
|
|
|
LambdaForm permuteArguments(int skip, int[] reorder, BasicType[] types) {
|
|
// Note: When inArg = reorder[outArg], outArg is fed by a copy of inArg.
|
|
// The types are the types of the new (incoming) arguments.
|
|
int length = names.length;
|
|
int inTypes = types.length;
|
|
int outArgs = reorder.length;
|
|
assert(skip+outArgs == arity);
|
|
assert(permutedTypesMatch(reorder, types, names, skip));
|
|
int pos = 0;
|
|
// skip trivial first part of reordering:
|
|
while (pos < outArgs && reorder[pos] == pos) pos += 1;
|
|
Name[] names2 = new Name[length - outArgs + inTypes];
|
|
System.arraycopy(names, 0, names2, 0, skip+pos);
|
|
// copy the body:
|
|
int bodyLength = length - arity;
|
|
System.arraycopy(names, skip+outArgs, names2, skip+inTypes, bodyLength);
|
|
int arity2 = names2.length - bodyLength;
|
|
int result2 = result;
|
|
if (result2 >= 0) {
|
|
if (result2 < skip+outArgs) {
|
|
// return the corresponding inArg
|
|
result2 = reorder[result2-skip];
|
|
} else {
|
|
result2 = result2 - outArgs + inTypes;
|
|
}
|
|
}
|
|
// rework names in the body:
|
|
for (int j = pos; j < outArgs; j++) {
|
|
Name n = names[skip+j];
|
|
int i = reorder[j];
|
|
// replace names[skip+j] by names2[skip+i]
|
|
Name n2 = names2[skip+i];
|
|
if (n2 == null)
|
|
names2[skip+i] = n2 = new Name(types[i]);
|
|
else
|
|
assert(n2.type == types[i]);
|
|
for (int k = arity2; k < names2.length; k++) {
|
|
names2[k] = names2[k].replaceName(n, n2);
|
|
}
|
|
}
|
|
// some names are unused, but must be filled in
|
|
for (int i = skip+pos; i < arity2; i++) {
|
|
if (names2[i] == null)
|
|
names2[i] = argument(i, types[i - skip]);
|
|
}
|
|
for (int j = arity; j < names.length; j++) {
|
|
int i = j - arity + arity2;
|
|
// replace names2[i] by names[j]
|
|
Name n = names[j];
|
|
Name n2 = names2[i];
|
|
if (n != n2) {
|
|
for (int k = i+1; k < names2.length; k++) {
|
|
names2[k] = names2[k].replaceName(n, n2);
|
|
}
|
|
}
|
|
}
|
|
return new LambdaForm(debugName, arity2, names2, result2);
|
|
}
|
|
|
|
static boolean permutedTypesMatch(int[] reorder, BasicType[] types, Name[] names, int skip) {
|
|
int inTypes = types.length;
|
|
int outArgs = reorder.length;
|
|
for (int i = 0; i < outArgs; i++) {
|
|
assert(names[skip+i].isParam());
|
|
assert(names[skip+i].type == types[reorder[i]]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static class NamedFunction {
|
|
final MemberName member;
|
|
@Stable MethodHandle resolvedHandle;
|
|
@Stable MethodHandle invoker;
|
|
|
|
NamedFunction(MethodHandle resolvedHandle) {
|
|
this(resolvedHandle.internalMemberName(), resolvedHandle);
|
|
}
|
|
NamedFunction(MemberName member, MethodHandle resolvedHandle) {
|
|
this.member = member;
|
|
this.resolvedHandle = resolvedHandle;
|
|
// The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
|
|
//assert(!isInvokeBasic(member));
|
|
}
|
|
NamedFunction(MethodType basicInvokerType) {
|
|
assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
|
|
if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
|
|
this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
|
|
this.member = resolvedHandle.internalMemberName();
|
|
} else {
|
|
// necessary to pass BigArityTest
|
|
this.member = Invokers.invokeBasicMethod(basicInvokerType);
|
|
}
|
|
assert(isInvokeBasic(member));
|
|
}
|
|
|
|
private static boolean isInvokeBasic(MemberName member) {
|
|
return member != null &&
|
|
member.getDeclaringClass() == MethodHandle.class &&
|
|
"invokeBasic".equals(member.getName());
|
|
}
|
|
|
|
// The next 3 constructors are used to break circular dependencies on MH.invokeStatic, etc.
|
|
// Any LambdaForm containing such a member is not interpretable.
|
|
// This is OK, since all such LFs are prepared with special primitive vmentry points.
|
|
// And even without the resolvedHandle, the name can still be compiled and optimized.
|
|
NamedFunction(Method method) {
|
|
this(new MemberName(method));
|
|
}
|
|
NamedFunction(Field field) {
|
|
this(new MemberName(field));
|
|
}
|
|
NamedFunction(MemberName member) {
|
|
this.member = member;
|
|
this.resolvedHandle = null;
|
|
}
|
|
|
|
MethodHandle resolvedHandle() {
|
|
if (resolvedHandle == null) resolve();
|
|
return resolvedHandle;
|
|
}
|
|
|
|
void resolve() {
|
|
resolvedHandle = DirectMethodHandle.make(member);
|
|
}
|
|
|
|
@Override
|
|
public boolean equals(Object other) {
|
|
if (this == other) return true;
|
|
if (other == null) return false;
|
|
if (!(other instanceof NamedFunction)) return false;
|
|
NamedFunction that = (NamedFunction) other;
|
|
return this.member != null && this.member.equals(that.member);
|
|
}
|
|
|
|
@Override
|
|
public int hashCode() {
|
|
if (member != null)
|
|
return member.hashCode();
|
|
return super.hashCode();
|
|
}
|
|
|
|
// Put the predefined NamedFunction invokers into the table.
|
|
static void initializeInvokers() {
|
|
for (MemberName m : MemberName.getFactory().getMethods(NamedFunction.class, false, null, null, null)) {
|
|
if (!m.isStatic() || !m.isPackage()) continue;
|
|
MethodType type = m.getMethodType();
|
|
if (type.equals(INVOKER_METHOD_TYPE) &&
|
|
m.getName().startsWith("invoke_")) {
|
|
String sig = m.getName().substring("invoke_".length());
|
|
int arity = LambdaForm.signatureArity(sig);
|
|
MethodType srcType = MethodType.genericMethodType(arity);
|
|
if (LambdaForm.signatureReturn(sig) == V_TYPE)
|
|
srcType = srcType.changeReturnType(void.class);
|
|
MethodTypeForm typeForm = srcType.form();
|
|
typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, DirectMethodHandle.make(m));
|
|
}
|
|
}
|
|
}
|
|
|
|
// The following are predefined NamedFunction invokers. The system must build
|
|
// a separate invoker for each distinct signature.
|
|
/** void return type invokers. */
|
|
@Hidden
|
|
static Object invoke__V(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(0, void.class, mh, a));
|
|
mh.invokeBasic();
|
|
return null;
|
|
}
|
|
@Hidden
|
|
static Object invoke_L_V(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(1, void.class, mh, a));
|
|
mh.invokeBasic(a[0]);
|
|
return null;
|
|
}
|
|
@Hidden
|
|
static Object invoke_LL_V(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(2, void.class, mh, a));
|
|
mh.invokeBasic(a[0], a[1]);
|
|
return null;
|
|
}
|
|
@Hidden
|
|
static Object invoke_LLL_V(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(3, void.class, mh, a));
|
|
mh.invokeBasic(a[0], a[1], a[2]);
|
|
return null;
|
|
}
|
|
@Hidden
|
|
static Object invoke_LLLL_V(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(4, void.class, mh, a));
|
|
mh.invokeBasic(a[0], a[1], a[2], a[3]);
|
|
return null;
|
|
}
|
|
@Hidden
|
|
static Object invoke_LLLLL_V(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(5, void.class, mh, a));
|
|
mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
|
|
return null;
|
|
}
|
|
/** Object return type invokers. */
|
|
@Hidden
|
|
static Object invoke__L(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(0, mh, a));
|
|
return mh.invokeBasic();
|
|
}
|
|
@Hidden
|
|
static Object invoke_L_L(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(1, mh, a));
|
|
return mh.invokeBasic(a[0]);
|
|
}
|
|
@Hidden
|
|
static Object invoke_LL_L(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(2, mh, a));
|
|
return mh.invokeBasic(a[0], a[1]);
|
|
}
|
|
@Hidden
|
|
static Object invoke_LLL_L(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(3, mh, a));
|
|
return mh.invokeBasic(a[0], a[1], a[2]);
|
|
}
|
|
@Hidden
|
|
static Object invoke_LLLL_L(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(4, mh, a));
|
|
return mh.invokeBasic(a[0], a[1], a[2], a[3]);
|
|
}
|
|
@Hidden
|
|
static Object invoke_LLLLL_L(MethodHandle mh, Object[] a) throws Throwable {
|
|
assert(arityCheck(5, mh, a));
|
|
return mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
|
|
}
|
|
private static boolean arityCheck(int arity, MethodHandle mh, Object[] a) {
|
|
return arityCheck(arity, Object.class, mh, a);
|
|
}
|
|
private static boolean arityCheck(int arity, Class<?> rtype, MethodHandle mh, Object[] a) {
|
|
assert(a.length == arity)
|
|
: Arrays.asList(a.length, arity);
|
|
assert(mh.type().basicType() == MethodType.genericMethodType(arity).changeReturnType(rtype))
|
|
: Arrays.asList(mh, rtype, arity);
|
|
MemberName member = mh.internalMemberName();
|
|
if (isInvokeBasic(member)) {
|
|
assert(arity > 0);
|
|
assert(a[0] instanceof MethodHandle);
|
|
MethodHandle mh2 = (MethodHandle) a[0];
|
|
assert(mh2.type().basicType() == MethodType.genericMethodType(arity-1).changeReturnType(rtype))
|
|
: Arrays.asList(member, mh2, rtype, arity);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static final MethodType INVOKER_METHOD_TYPE =
|
|
MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
|
|
|
|
private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
|
|
typeForm = typeForm.basicType().form(); // normalize to basic type
|
|
MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
|
|
if (mh != null) return mh;
|
|
MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm); // this could take a while
|
|
mh = DirectMethodHandle.make(invoker);
|
|
MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
|
|
if (mh2 != null) return mh2; // benign race
|
|
if (!mh.type().equals(INVOKER_METHOD_TYPE))
|
|
throw newInternalError(mh.debugString());
|
|
return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
|
|
}
|
|
|
|
@Hidden
|
|
Object invokeWithArguments(Object... arguments) throws Throwable {
|
|
// If we have a cached invoker, call it right away.
|
|
// NOTE: The invoker always returns a reference value.
|
|
if (TRACE_INTERPRETER) return invokeWithArgumentsTracing(arguments);
|
|
assert(checkArgumentTypes(arguments, methodType()));
|
|
return invoker().invokeBasic(resolvedHandle(), arguments);
|
|
}
|
|
|
|
@Hidden
|
|
Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
|
|
Object rval;
|
|
try {
|
|
traceInterpreter("[ call", this, arguments);
|
|
if (invoker == null) {
|
|
traceInterpreter("| getInvoker", this);
|
|
invoker();
|
|
}
|
|
if (resolvedHandle == null) {
|
|
traceInterpreter("| resolve", this);
|
|
resolvedHandle();
|
|
}
|
|
assert(checkArgumentTypes(arguments, methodType()));
|
|
rval = invoker().invokeBasic(resolvedHandle(), arguments);
|
|
} catch (Throwable ex) {
|
|
traceInterpreter("] throw =>", ex);
|
|
throw ex;
|
|
}
|
|
traceInterpreter("] return =>", rval);
|
|
return rval;
|
|
}
|
|
|
|
private MethodHandle invoker() {
|
|
if (invoker != null) return invoker;
|
|
// Get an invoker and cache it.
|
|
return invoker = computeInvoker(methodType().form());
|
|
}
|
|
|
|
private static boolean checkArgumentTypes(Object[] arguments, MethodType methodType) {
|
|
if (true) return true; // FIXME
|
|
MethodType dstType = methodType.form().erasedType();
|
|
MethodType srcType = dstType.basicType().wrap();
|
|
Class<?>[] ptypes = new Class<?>[arguments.length];
|
|
for (int i = 0; i < arguments.length; i++) {
|
|
Object arg = arguments[i];
|
|
Class<?> ptype = arg == null ? Object.class : arg.getClass();
|
|
// If the dest. type is a primitive we keep the
|
|
// argument type.
|
|
ptypes[i] = dstType.parameterType(i).isPrimitive() ? ptype : Object.class;
|
|
}
|
|
MethodType argType = MethodType.methodType(srcType.returnType(), ptypes).wrap();
|
|
assert(argType.isConvertibleTo(srcType)) : "wrong argument types: cannot convert " + argType + " to " + srcType;
|
|
return true;
|
|
}
|
|
|
|
MethodType methodType() {
|
|
if (resolvedHandle != null)
|
|
return resolvedHandle.type();
|
|
else
|
|
// only for certain internal LFs during bootstrapping
|
|
return member.getInvocationType();
|
|
}
|
|
|
|
MemberName member() {
|
|
assert(assertMemberIsConsistent());
|
|
return member;
|
|
}
|
|
|
|
// Called only from assert.
|
|
private boolean assertMemberIsConsistent() {
|
|
if (resolvedHandle instanceof DirectMethodHandle) {
|
|
MemberName m = resolvedHandle.internalMemberName();
|
|
assert(m.equals(member));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Class<?> memberDeclaringClassOrNull() {
|
|
return (member == null) ? null : member.getDeclaringClass();
|
|
}
|
|
|
|
BasicType returnType() {
|
|
return basicType(methodType().returnType());
|
|
}
|
|
|
|
BasicType parameterType(int n) {
|
|
return basicType(methodType().parameterType(n));
|
|
}
|
|
|
|
int arity() {
|
|
return methodType().parameterCount();
|
|
}
|
|
|
|
public String toString() {
|
|
if (member == null) return String.valueOf(resolvedHandle);
|
|
return member.getDeclaringClass().getSimpleName()+"."+member.getName();
|
|
}
|
|
|
|
public boolean isIdentity() {
|
|
return this.equals(identity(returnType()));
|
|
}
|
|
|
|
public boolean isConstantZero() {
|
|
return this.equals(constantZero(returnType()));
|
|
}
|
|
|
|
public MethodHandleImpl.Intrinsic intrinsicName() {
|
|
return resolvedHandle == null ? MethodHandleImpl.Intrinsic.NONE
|
|
: resolvedHandle.intrinsicName();
|
|
}
|
|
}
|
|
|
|
public static String basicTypeSignature(MethodType type) {
|
|
char[] sig = new char[type.parameterCount() + 2];
|
|
int sigp = 0;
|
|
for (Class<?> pt : type.parameterList()) {
|
|
sig[sigp++] = basicTypeChar(pt);
|
|
}
|
|
sig[sigp++] = '_';
|
|
sig[sigp++] = basicTypeChar(type.returnType());
|
|
assert(sigp == sig.length);
|
|
return String.valueOf(sig);
|
|
}
|
|
public static String shortenSignature(String signature) {
|
|
// Hack to make signatures more readable when they show up in method names.
|
|
final int NO_CHAR = -1, MIN_RUN = 3;
|
|
int c0, c1 = NO_CHAR, c1reps = 0;
|
|
StringBuilder buf = null;
|
|
int len = signature.length();
|
|
if (len < MIN_RUN) return signature;
|
|
for (int i = 0; i <= len; i++) {
|
|
// shift in the next char:
|
|
c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
|
|
if (c1 == c0) { ++c1reps; continue; }
|
|
// shift in the next count:
|
|
int c0reps = c1reps; c1reps = 1;
|
|
// end of a character run
|
|
if (c0reps < MIN_RUN) {
|
|
if (buf != null) {
|
|
while (--c0reps >= 0)
|
|
buf.append((char)c0);
|
|
}
|
|
continue;
|
|
}
|
|
// found three or more in a row
|
|
if (buf == null)
|
|
buf = new StringBuilder().append(signature, 0, i - c0reps);
|
|
buf.append((char)c0).append(c0reps);
|
|
}
|
|
return (buf == null) ? signature : buf.toString();
|
|
}
|
|
|
|
static final class Name {
|
|
final BasicType type;
|
|
private short index;
|
|
final NamedFunction function;
|
|
final Object constraint; // additional type information, if not null
|
|
@Stable final Object[] arguments;
|
|
|
|
private Name(int index, BasicType type, NamedFunction function, Object[] arguments) {
|
|
this.index = (short)index;
|
|
this.type = type;
|
|
this.function = function;
|
|
this.arguments = arguments;
|
|
this.constraint = null;
|
|
assert(this.index == index);
|
|
}
|
|
private Name(Name that, Object constraint) {
|
|
this.index = that.index;
|
|
this.type = that.type;
|
|
this.function = that.function;
|
|
this.arguments = that.arguments;
|
|
this.constraint = constraint;
|
|
assert(constraint == null || isParam()); // only params have constraints
|
|
assert(constraint == null || constraint instanceof BoundMethodHandle.SpeciesData || constraint instanceof Class);
|
|
}
|
|
Name(MethodHandle function, Object... arguments) {
|
|
this(new NamedFunction(function), arguments);
|
|
}
|
|
Name(MethodType functionType, Object... arguments) {
|
|
this(new NamedFunction(functionType), arguments);
|
|
assert(arguments[0] instanceof Name && ((Name)arguments[0]).type == L_TYPE);
|
|
}
|
|
Name(MemberName function, Object... arguments) {
|
|
this(new NamedFunction(function), arguments);
|
|
}
|
|
Name(NamedFunction function, Object... arguments) {
|
|
this(-1, function.returnType(), function, arguments = Arrays.copyOf(arguments, arguments.length, Object[].class));
|
|
assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
|
|
for (int i = 0; i < arguments.length; i++)
|
|
assert(typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
|
|
}
|
|
/** Create a raw parameter of the given type, with an expected index. */
|
|
Name(int index, BasicType type) {
|
|
this(index, type, null, null);
|
|
}
|
|
/** Create a raw parameter of the given type. */
|
|
Name(BasicType type) { this(-1, type); }
|
|
|
|
BasicType type() { return type; }
|
|
int index() { return index; }
|
|
boolean initIndex(int i) {
|
|
if (index != i) {
|
|
if (index != -1) return false;
|
|
index = (short)i;
|
|
}
|
|
return true;
|
|
}
|
|
char typeChar() {
|
|
return type.btChar;
|
|
}
|
|
|
|
void resolve() {
|
|
if (function != null)
|
|
function.resolve();
|
|
}
|
|
|
|
Name newIndex(int i) {
|
|
if (initIndex(i)) return this;
|
|
return cloneWithIndex(i);
|
|
}
|
|
Name cloneWithIndex(int i) {
|
|
Object[] newArguments = (arguments == null) ? null : arguments.clone();
|
|
return new Name(i, type, function, newArguments).withConstraint(constraint);
|
|
}
|
|
Name withConstraint(Object constraint) {
|
|
if (constraint == this.constraint) return this;
|
|
return new Name(this, constraint);
|
|
}
|
|
Name replaceName(Name oldName, Name newName) { // FIXME: use replaceNames uniformly
|
|
if (oldName == newName) return this;
|
|
@SuppressWarnings("LocalVariableHidesMemberVariable")
|
|
Object[] arguments = this.arguments;
|
|
if (arguments == null) return this;
|
|
boolean replaced = false;
|
|
for (int j = 0; j < arguments.length; j++) {
|
|
if (arguments[j] == oldName) {
|
|
if (!replaced) {
|
|
replaced = true;
|
|
arguments = arguments.clone();
|
|
}
|
|
arguments[j] = newName;
|
|
}
|
|
}
|
|
if (!replaced) return this;
|
|
return new Name(function, arguments);
|
|
}
|
|
/** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
|
|
* Limit such replacements to {@code start<=i<end}. Return possibly changed self.
|
|
*/
|
|
Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
|
|
if (start >= end) return this;
|
|
@SuppressWarnings("LocalVariableHidesMemberVariable")
|
|
Object[] arguments = this.arguments;
|
|
boolean replaced = false;
|
|
eachArg:
|
|
for (int j = 0; j < arguments.length; j++) {
|
|
if (arguments[j] instanceof Name) {
|
|
Name n = (Name) arguments[j];
|
|
int check = n.index;
|
|
// harmless check to see if the thing is already in newNames:
|
|
if (check >= 0 && check < newNames.length && n == newNames[check])
|
|
continue eachArg;
|
|
// n might not have the correct index: n != oldNames[n.index].
|
|
for (int i = start; i < end; i++) {
|
|
if (n == oldNames[i]) {
|
|
if (n == newNames[i])
|
|
continue eachArg;
|
|
if (!replaced) {
|
|
replaced = true;
|
|
arguments = arguments.clone();
|
|
}
|
|
arguments[j] = newNames[i];
|
|
continue eachArg;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!replaced) return this;
|
|
return new Name(function, arguments);
|
|
}
|
|
void internArguments() {
|
|
@SuppressWarnings("LocalVariableHidesMemberVariable")
|
|
Object[] arguments = this.arguments;
|
|
for (int j = 0; j < arguments.length; j++) {
|
|
if (arguments[j] instanceof Name) {
|
|
Name n = (Name) arguments[j];
|
|
if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
|
|
arguments[j] = internArgument(n);
|
|
}
|
|
}
|
|
}
|
|
boolean isParam() {
|
|
return function == null;
|
|
}
|
|
boolean isConstantZero() {
|
|
return !isParam() && arguments.length == 0 && function.isConstantZero();
|
|
}
|
|
|
|
public String toString() {
|
|
return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
|
|
}
|
|
public String debugString() {
|
|
String s = paramString();
|
|
return (function == null) ? s : s + "=" + exprString();
|
|
}
|
|
public String paramString() {
|
|
String s = toString();
|
|
Object c = constraint;
|
|
if (c == null)
|
|
return s;
|
|
if (c instanceof Class) c = ((Class<?>)c).getSimpleName();
|
|
return s + "/" + c;
|
|
}
|
|
public String exprString() {
|
|
if (function == null) return toString();
|
|
StringBuilder buf = new StringBuilder(function.toString());
|
|
buf.append("(");
|
|
String cma = "";
|
|
for (Object a : arguments) {
|
|
buf.append(cma); cma = ",";
|
|
if (a instanceof Name || a instanceof Integer)
|
|
buf.append(a);
|
|
else
|
|
buf.append("(").append(a).append(")");
|
|
}
|
|
buf.append(")");
|
|
return buf.toString();
|
|
}
|
|
|
|
static boolean typesMatch(BasicType parameterType, Object object) {
|
|
if (object instanceof Name) {
|
|
return ((Name)object).type == parameterType;
|
|
}
|
|
switch (parameterType) {
|
|
case I_TYPE: return object instanceof Integer;
|
|
case J_TYPE: return object instanceof Long;
|
|
case F_TYPE: return object instanceof Float;
|
|
case D_TYPE: return object instanceof Double;
|
|
}
|
|
assert(parameterType == L_TYPE);
|
|
return true;
|
|
}
|
|
|
|
/** Return the index of the last occurrence of n in the argument array.
|
|
* Return -1 if the name is not used.
|
|
*/
|
|
int lastUseIndex(Name n) {
|
|
if (arguments == null) return -1;
|
|
for (int i = arguments.length; --i >= 0; ) {
|
|
if (arguments[i] == n) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/** Return the number of occurrences of n in the argument array.
|
|
* Return 0 if the name is not used.
|
|
*/
|
|
int useCount(Name n) {
|
|
if (arguments == null) return 0;
|
|
int count = 0;
|
|
for (int i = arguments.length; --i >= 0; ) {
|
|
if (arguments[i] == n) ++count;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
boolean contains(Name n) {
|
|
return this == n || lastUseIndex(n) >= 0;
|
|
}
|
|
|
|
public boolean equals(Name that) {
|
|
if (this == that) return true;
|
|
if (isParam())
|
|
// each parameter is a unique atom
|
|
return false; // this != that
|
|
return
|
|
//this.index == that.index &&
|
|
this.type == that.type &&
|
|
this.function.equals(that.function) &&
|
|
Arrays.equals(this.arguments, that.arguments);
|
|
}
|
|
@Override
|
|
public boolean equals(Object x) {
|
|
return x instanceof Name && equals((Name)x);
|
|
}
|
|
@Override
|
|
public int hashCode() {
|
|
if (isParam())
|
|
return index | (type.ordinal() << 8);
|
|
return function.hashCode() ^ Arrays.hashCode(arguments);
|
|
}
|
|
}
|
|
|
|
/** Return the index of the last name which contains n as an argument.
|
|
* Return -1 if the name is not used. Return names.length if it is the return value.
|
|
*/
|
|
int lastUseIndex(Name n) {
|
|
int ni = n.index, nmax = names.length;
|
|
assert(names[ni] == n);
|
|
if (result == ni) return nmax; // live all the way beyond the end
|
|
for (int i = nmax; --i > ni; ) {
|
|
if (names[i].lastUseIndex(n) >= 0)
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/** Return the number of times n is used as an argument or return value. */
|
|
int useCount(Name n) {
|
|
int ni = n.index, nmax = names.length;
|
|
int end = lastUseIndex(n);
|
|
if (end < 0) return 0;
|
|
int count = 0;
|
|
if (end == nmax) { count++; end--; }
|
|
int beg = n.index() + 1;
|
|
if (beg < arity) beg = arity;
|
|
for (int i = beg; i <= end; i++) {
|
|
count += names[i].useCount(n);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static Name argument(int which, char type) {
|
|
return argument(which, basicType(type));
|
|
}
|
|
static Name argument(int which, BasicType type) {
|
|
if (which >= INTERNED_ARGUMENT_LIMIT)
|
|
return new Name(which, type);
|
|
return INTERNED_ARGUMENTS[type.ordinal()][which];
|
|
}
|
|
static Name internArgument(Name n) {
|
|
assert(n.isParam()) : "not param: " + n;
|
|
assert(n.index < INTERNED_ARGUMENT_LIMIT);
|
|
if (n.constraint != null) return n;
|
|
return argument(n.index, n.type);
|
|
}
|
|
static Name[] arguments(int extra, String types) {
|
|
int length = types.length();
|
|
Name[] names = new Name[length + extra];
|
|
for (int i = 0; i < length; i++)
|
|
names[i] = argument(i, types.charAt(i));
|
|
return names;
|
|
}
|
|
static Name[] arguments(int extra, char... types) {
|
|
int length = types.length;
|
|
Name[] names = new Name[length + extra];
|
|
for (int i = 0; i < length; i++)
|
|
names[i] = argument(i, types[i]);
|
|
return names;
|
|
}
|
|
static Name[] arguments(int extra, List<Class<?>> types) {
|
|
int length = types.size();
|
|
Name[] names = new Name[length + extra];
|
|
for (int i = 0; i < length; i++)
|
|
names[i] = argument(i, basicType(types.get(i)));
|
|
return names;
|
|
}
|
|
static Name[] arguments(int extra, Class<?>... types) {
|
|
int length = types.length;
|
|
Name[] names = new Name[length + extra];
|
|
for (int i = 0; i < length; i++)
|
|
names[i] = argument(i, basicType(types[i]));
|
|
return names;
|
|
}
|
|
static Name[] arguments(int extra, MethodType types) {
|
|
int length = types.parameterCount();
|
|
Name[] names = new Name[length + extra];
|
|
for (int i = 0; i < length; i++)
|
|
names[i] = argument(i, basicType(types.parameterType(i)));
|
|
return names;
|
|
}
|
|
static final int INTERNED_ARGUMENT_LIMIT = 10;
|
|
private static final Name[][] INTERNED_ARGUMENTS
|
|
= new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
|
|
static {
|
|
for (BasicType type : BasicType.ARG_TYPES) {
|
|
int ord = type.ordinal();
|
|
for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
|
|
INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
|
|
}
|
|
}
|
|
}
|
|
|
|
private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
|
|
|
|
static LambdaForm identityForm(BasicType type) {
|
|
return LF_identityForm[type.ordinal()];
|
|
}
|
|
static LambdaForm zeroForm(BasicType type) {
|
|
return LF_zeroForm[type.ordinal()];
|
|
}
|
|
static NamedFunction identity(BasicType type) {
|
|
return NF_identity[type.ordinal()];
|
|
}
|
|
static NamedFunction constantZero(BasicType type) {
|
|
return NF_zero[type.ordinal()];
|
|
}
|
|
private static final LambdaForm[] LF_identityForm = new LambdaForm[TYPE_LIMIT];
|
|
private static final LambdaForm[] LF_zeroForm = new LambdaForm[TYPE_LIMIT];
|
|
private static final NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
|
|
private static final NamedFunction[] NF_zero = new NamedFunction[TYPE_LIMIT];
|
|
private static void createIdentityForms() {
|
|
for (BasicType type : BasicType.ALL_TYPES) {
|
|
int ord = type.ordinal();
|
|
char btChar = type.basicTypeChar();
|
|
boolean isVoid = (type == V_TYPE);
|
|
Class<?> btClass = type.btClass;
|
|
MethodType zeType = MethodType.methodType(btClass);
|
|
MethodType idType = isVoid ? zeType : zeType.appendParameterTypes(btClass);
|
|
|
|
// Look up some symbolic names. It might not be necessary to have these,
|
|
// but if we need to emit direct references to bytecodes, it helps.
|
|
// Zero is built from a call to an identity function with a constant zero input.
|
|
MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
|
|
MemberName zeMem = new MemberName(LambdaForm.class, "zero_"+btChar, zeType, REF_invokeStatic);
|
|
try {
|
|
zeMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zeMem, null, NoSuchMethodException.class);
|
|
idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, NoSuchMethodException.class);
|
|
} catch (IllegalAccessException|NoSuchMethodException ex) {
|
|
throw newInternalError(ex);
|
|
}
|
|
|
|
NamedFunction idFun = new NamedFunction(idMem);
|
|
LambdaForm idForm;
|
|
if (isVoid) {
|
|
Name[] idNames = new Name[] { argument(0, L_TYPE) };
|
|
idForm = new LambdaForm(idMem.getName(), 1, idNames, VOID_RESULT);
|
|
} else {
|
|
Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
|
|
idForm = new LambdaForm(idMem.getName(), 2, idNames, 1);
|
|
}
|
|
LF_identityForm[ord] = idForm;
|
|
NF_identity[ord] = idFun;
|
|
|
|
NamedFunction zeFun = new NamedFunction(zeMem);
|
|
LambdaForm zeForm;
|
|
if (isVoid) {
|
|
zeForm = idForm;
|
|
} else {
|
|
Object zeValue = Wrapper.forBasicType(btChar).zero();
|
|
Name[] zeNames = new Name[] { argument(0, L_TYPE), new Name(idFun, zeValue) };
|
|
zeForm = new LambdaForm(zeMem.getName(), 1, zeNames, 1);
|
|
}
|
|
LF_zeroForm[ord] = zeForm;
|
|
NF_zero[ord] = zeFun;
|
|
|
|
assert(idFun.isIdentity());
|
|
assert(zeFun.isConstantZero());
|
|
assert(new Name(zeFun).isConstantZero());
|
|
}
|
|
|
|
// Do this in a separate pass, so that SimpleMethodHandle.make can see the tables.
|
|
for (BasicType type : BasicType.ALL_TYPES) {
|
|
int ord = type.ordinal();
|
|
NamedFunction idFun = NF_identity[ord];
|
|
LambdaForm idForm = LF_identityForm[ord];
|
|
MemberName idMem = idFun.member;
|
|
idFun.resolvedHandle = SimpleMethodHandle.make(idMem.getInvocationType(), idForm);
|
|
|
|
NamedFunction zeFun = NF_zero[ord];
|
|
LambdaForm zeForm = LF_zeroForm[ord];
|
|
MemberName zeMem = zeFun.member;
|
|
zeFun.resolvedHandle = SimpleMethodHandle.make(zeMem.getInvocationType(), zeForm);
|
|
|
|
assert(idFun.isIdentity());
|
|
assert(zeFun.isConstantZero());
|
|
assert(new Name(zeFun).isConstantZero());
|
|
}
|
|
}
|
|
|
|
// Avoid appealing to ValueConversions at bootstrap time:
|
|
private static int identity_I(int x) { return x; }
|
|
private static long identity_J(long x) { return x; }
|
|
private static float identity_F(float x) { return x; }
|
|
private static double identity_D(double x) { return x; }
|
|
private static Object identity_L(Object x) { return x; }
|
|
private static void identity_V() { return; } // same as zeroV, but that's OK
|
|
private static int zero_I() { return 0; }
|
|
private static long zero_J() { return 0; }
|
|
private static float zero_F() { return 0; }
|
|
private static double zero_D() { return 0; }
|
|
private static Object zero_L() { return null; }
|
|
private static void zero_V() { return; }
|
|
|
|
/**
|
|
* Internal marker for byte-compiled LambdaForms.
|
|
*/
|
|
/*non-public*/
|
|
@Target(ElementType.METHOD)
|
|
@Retention(RetentionPolicy.RUNTIME)
|
|
@interface Compiled {
|
|
}
|
|
|
|
/**
|
|
* Internal marker for LambdaForm interpreter frames.
|
|
*/
|
|
/*non-public*/
|
|
@Target(ElementType.METHOD)
|
|
@Retention(RetentionPolicy.RUNTIME)
|
|
@interface Hidden {
|
|
}
|
|
|
|
private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
|
|
static {
|
|
if (debugEnabled())
|
|
DEBUG_NAME_COUNTERS = new HashMap<>();
|
|
else
|
|
DEBUG_NAME_COUNTERS = null;
|
|
}
|
|
|
|
// Put this last, so that previous static inits can run before.
|
|
static {
|
|
createIdentityForms();
|
|
if (USE_PREDEFINED_INTERPRET_METHODS)
|
|
computeInitialPreparedForms();
|
|
NamedFunction.initializeInvokers();
|
|
}
|
|
|
|
// The following hack is necessary in order to suppress TRACE_INTERPRETER
|
|
// during execution of the static initializes of this class.
|
|
// Turning on TRACE_INTERPRETER too early will cause
|
|
// stack overflows and other misbehavior during attempts to trace events
|
|
// that occur during LambdaForm.<clinit>.
|
|
// Therefore, do not move this line higher in this file, and do not remove.
|
|
private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
|
|
}
|