You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
213 lines
6.3 KiB
213 lines
6.3 KiB
/*
|
|
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*/
|
|
|
|
package java.security.spec;
|
|
|
|
import java.math.BigInteger;
|
|
|
|
/**
|
|
* This class specifies an RSA multi-prime private key, as defined in the
|
|
* PKCS#1 v2.1, using the Chinese Remainder Theorem (CRT) information
|
|
* values for efficiency.
|
|
*
|
|
* @author Valerie Peng
|
|
*
|
|
*
|
|
* @see java.security.Key
|
|
* @see java.security.KeyFactory
|
|
* @see KeySpec
|
|
* @see PKCS8EncodedKeySpec
|
|
* @see RSAPrivateKeySpec
|
|
* @see RSAPublicKeySpec
|
|
* @see RSAOtherPrimeInfo
|
|
*
|
|
* @since 1.4
|
|
*/
|
|
|
|
public class RSAMultiPrimePrivateCrtKeySpec extends RSAPrivateKeySpec {
|
|
|
|
private final BigInteger publicExponent;
|
|
private final BigInteger primeP;
|
|
private final BigInteger primeQ;
|
|
private final BigInteger primeExponentP;
|
|
private final BigInteger primeExponentQ;
|
|
private final BigInteger crtCoefficient;
|
|
private final RSAOtherPrimeInfo otherPrimeInfo[];
|
|
|
|
/**
|
|
* Creates a new {@code RSAMultiPrimePrivateCrtKeySpec}
|
|
* given the modulus, publicExponent, privateExponent,
|
|
* primeP, primeQ, primeExponentP, primeExponentQ,
|
|
* crtCoefficient, and otherPrimeInfo as defined in PKCS#1 v2.1.
|
|
*
|
|
* <p>Note that the contents of {@code otherPrimeInfo}
|
|
* are copied to protect against subsequent modification when
|
|
* constructing this object.
|
|
*
|
|
* @param modulus the modulus n.
|
|
* @param publicExponent the public exponent e.
|
|
* @param privateExponent the private exponent d.
|
|
* @param primeP the prime factor p of n.
|
|
* @param primeQ the prime factor q of n.
|
|
* @param primeExponentP this is d mod (p-1).
|
|
* @param primeExponentQ this is d mod (q-1).
|
|
* @param crtCoefficient the Chinese Remainder Theorem
|
|
* coefficient q-1 mod p.
|
|
* @param otherPrimeInfo triplets of the rest of primes, null can be
|
|
* specified if there are only two prime factors (p and q).
|
|
* @exception NullPointerException if any of the parameters, i.e.
|
|
* {@code modulus},
|
|
* {@code publicExponent}, {@code privateExponent},
|
|
* {@code primeP}, {@code primeQ},
|
|
* {@code primeExponentP}, {@code primeExponentQ},
|
|
* {@code crtCoefficient}, is null.
|
|
* @exception IllegalArgumentException if an empty, i.e. 0-length,
|
|
* {@code otherPrimeInfo} is specified.
|
|
*/
|
|
public RSAMultiPrimePrivateCrtKeySpec(BigInteger modulus,
|
|
BigInteger publicExponent,
|
|
BigInteger privateExponent,
|
|
BigInteger primeP,
|
|
BigInteger primeQ,
|
|
BigInteger primeExponentP,
|
|
BigInteger primeExponentQ,
|
|
BigInteger crtCoefficient,
|
|
RSAOtherPrimeInfo[] otherPrimeInfo) {
|
|
super(modulus, privateExponent);
|
|
if (modulus == null) {
|
|
throw new NullPointerException("the modulus parameter must be " +
|
|
"non-null");
|
|
}
|
|
if (publicExponent == null) {
|
|
throw new NullPointerException("the publicExponent parameter " +
|
|
"must be non-null");
|
|
}
|
|
if (privateExponent == null) {
|
|
throw new NullPointerException("the privateExponent parameter " +
|
|
"must be non-null");
|
|
}
|
|
if (primeP == null) {
|
|
throw new NullPointerException("the primeP parameter " +
|
|
"must be non-null");
|
|
}
|
|
if (primeQ == null) {
|
|
throw new NullPointerException("the primeQ parameter " +
|
|
"must be non-null");
|
|
}
|
|
if (primeExponentP == null) {
|
|
throw new NullPointerException("the primeExponentP parameter " +
|
|
"must be non-null");
|
|
}
|
|
if (primeExponentQ == null) {
|
|
throw new NullPointerException("the primeExponentQ parameter " +
|
|
"must be non-null");
|
|
}
|
|
if (crtCoefficient == null) {
|
|
throw new NullPointerException("the crtCoefficient parameter " +
|
|
"must be non-null");
|
|
}
|
|
this.publicExponent = publicExponent;
|
|
this.primeP = primeP;
|
|
this.primeQ = primeQ;
|
|
this.primeExponentP = primeExponentP;
|
|
this.primeExponentQ = primeExponentQ;
|
|
this.crtCoefficient = crtCoefficient;
|
|
if (otherPrimeInfo == null) {
|
|
this.otherPrimeInfo = null;
|
|
} else if (otherPrimeInfo.length == 0) {
|
|
throw new IllegalArgumentException("the otherPrimeInfo " +
|
|
"parameter must not be empty");
|
|
} else {
|
|
this.otherPrimeInfo = otherPrimeInfo.clone();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the public exponent.
|
|
*
|
|
* @return the public exponent.
|
|
*/
|
|
public BigInteger getPublicExponent() {
|
|
return this.publicExponent;
|
|
}
|
|
|
|
/**
|
|
* Returns the primeP.
|
|
*
|
|
* @return the primeP.
|
|
*/
|
|
public BigInteger getPrimeP() {
|
|
return this.primeP;
|
|
}
|
|
|
|
/**
|
|
* Returns the primeQ.
|
|
*
|
|
* @return the primeQ.
|
|
*/
|
|
public BigInteger getPrimeQ() {
|
|
return this.primeQ;
|
|
}
|
|
|
|
/**
|
|
* Returns the primeExponentP.
|
|
*
|
|
* @return the primeExponentP.
|
|
*/
|
|
public BigInteger getPrimeExponentP() {
|
|
return this.primeExponentP;
|
|
}
|
|
|
|
/**
|
|
* Returns the primeExponentQ.
|
|
*
|
|
* @return the primeExponentQ.
|
|
*/
|
|
public BigInteger getPrimeExponentQ() {
|
|
return this.primeExponentQ;
|
|
}
|
|
|
|
/**
|
|
* Returns the crtCoefficient.
|
|
*
|
|
* @return the crtCoefficient.
|
|
*/
|
|
public BigInteger getCrtCoefficient() {
|
|
return this.crtCoefficient;
|
|
}
|
|
|
|
/**
|
|
* Returns a copy of the otherPrimeInfo or null if there are
|
|
* only two prime factors (p and q).
|
|
*
|
|
* @return the otherPrimeInfo. Returns a new array each
|
|
* time this method is called.
|
|
*/
|
|
public RSAOtherPrimeInfo[] getOtherPrimeInfo() {
|
|
if (otherPrimeInfo == null) return null;
|
|
return otherPrimeInfo.clone();
|
|
}
|
|
}
|