You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1469 lines
53 KiB
1469 lines
53 KiB
/*
|
|
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
|
|
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*
|
|
*/
|
|
|
|
package java.util;
|
|
|
|
import java.util.function.Consumer;
|
|
import java.util.function.Predicate;
|
|
import java.util.function.UnaryOperator;
|
|
import sun.misc.SharedSecrets;
|
|
|
|
/**
|
|
* Resizable-array implementation of the <tt>List</tt> interface. Implements
|
|
* all optional list operations, and permits all elements, including
|
|
* <tt>null</tt>. In addition to implementing the <tt>List</tt> interface,
|
|
* this class provides methods to manipulate the size of the array that is
|
|
* used internally to store the list. (This class is roughly equivalent to
|
|
* <tt>Vector</tt>, except that it is unsynchronized.)
|
|
*
|
|
* <p>The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
|
|
* <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
|
|
* time. The <tt>add</tt> operation runs in <i>amortized constant time</i>,
|
|
* that is, adding n elements requires O(n) time. All of the other operations
|
|
* run in linear time (roughly speaking). The constant factor is low compared
|
|
* to that for the <tt>LinkedList</tt> implementation.
|
|
*
|
|
* <p>Each <tt>ArrayList</tt> instance has a <i>capacity</i>. The capacity is
|
|
* the size of the array used to store the elements in the list. It is always
|
|
* at least as large as the list size. As elements are added to an ArrayList,
|
|
* its capacity grows automatically. The details of the growth policy are not
|
|
* specified beyond the fact that adding an element has constant amortized
|
|
* time cost.
|
|
*
|
|
* <p>An application can increase the capacity of an <tt>ArrayList</tt> instance
|
|
* before adding a large number of elements using the <tt>ensureCapacity</tt>
|
|
* operation. This may reduce the amount of incremental reallocation.
|
|
*
|
|
* <p><strong>Note that this implementation is not synchronized.</strong>
|
|
* If multiple threads access an <tt>ArrayList</tt> instance concurrently,
|
|
* and at least one of the threads modifies the list structurally, it
|
|
* <i>must</i> be synchronized externally. (A structural modification is
|
|
* any operation that adds or deletes one or more elements, or explicitly
|
|
* resizes the backing array; merely setting the value of an element is not
|
|
* a structural modification.) This is typically accomplished by
|
|
* synchronizing on some object that naturally encapsulates the list.
|
|
*
|
|
* If no such object exists, the list should be "wrapped" using the
|
|
* {@link Collections#synchronizedList Collections.synchronizedList}
|
|
* method. This is best done at creation time, to prevent accidental
|
|
* unsynchronized access to the list:<pre>
|
|
* List list = Collections.synchronizedList(new ArrayList(...));</pre>
|
|
*
|
|
* <p><a name="fail-fast">
|
|
* The iterators returned by this class's {@link #iterator() iterator} and
|
|
* {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:</a>
|
|
* if the list is structurally modified at any time after the iterator is
|
|
* created, in any way except through the iterator's own
|
|
* {@link ListIterator#remove() remove} or
|
|
* {@link ListIterator#add(Object) add} methods, the iterator will throw a
|
|
* {@link ConcurrentModificationException}. Thus, in the face of
|
|
* concurrent modification, the iterator fails quickly and cleanly, rather
|
|
* than risking arbitrary, non-deterministic behavior at an undetermined
|
|
* time in the future.
|
|
*
|
|
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
|
|
* as it is, generally speaking, impossible to make any hard guarantees in the
|
|
* presence of unsynchronized concurrent modification. Fail-fast iterators
|
|
* throw {@code ConcurrentModificationException} on a best-effort basis.
|
|
* Therefore, it would be wrong to write a program that depended on this
|
|
* exception for its correctness: <i>the fail-fast behavior of iterators
|
|
* should be used only to detect bugs.</i>
|
|
*
|
|
* <p>This class is a member of the
|
|
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
|
|
* Java Collections Framework</a>.
|
|
*
|
|
* @author Josh Bloch
|
|
* @author Neal Gafter
|
|
* @see Collection
|
|
* @see List
|
|
* @see LinkedList
|
|
* @see Vector
|
|
* @since 1.2
|
|
*/
|
|
|
|
public class ArrayList<E> extends AbstractList<E>
|
|
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
|
|
{
|
|
private static final long serialVersionUID = 8683452581122892189L;
|
|
|
|
/**
|
|
* Default initial capacity.
|
|
*/
|
|
private static final int DEFAULT_CAPACITY = 10;
|
|
|
|
/**
|
|
* Shared empty array instance used for empty instances.
|
|
*/
|
|
private static final Object[] EMPTY_ELEMENTDATA = {};
|
|
|
|
/**
|
|
* Shared empty array instance used for default sized empty instances. We
|
|
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
|
|
* first element is added.
|
|
*/
|
|
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
|
|
|
|
/**
|
|
* The array buffer into which the elements of the ArrayList are stored.
|
|
* The capacity of the ArrayList is the length of this array buffer. Any
|
|
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
|
|
* will be expanded to DEFAULT_CAPACITY when the first element is added.
|
|
*/
|
|
transient Object[] elementData; // non-private to simplify nested class access
|
|
|
|
/**
|
|
* The size of the ArrayList (the number of elements it contains).
|
|
*
|
|
* @serial
|
|
*/
|
|
private int size;
|
|
|
|
/**
|
|
* Constructs an empty list with the specified initial capacity.
|
|
*
|
|
* @param initialCapacity the initial capacity of the list
|
|
* @throws IllegalArgumentException if the specified initial capacity
|
|
* is negative
|
|
*/
|
|
public ArrayList(int initialCapacity) {
|
|
if (initialCapacity > 0) {
|
|
this.elementData = new Object[initialCapacity];
|
|
} else if (initialCapacity == 0) {
|
|
this.elementData = EMPTY_ELEMENTDATA;
|
|
} else {
|
|
throw new IllegalArgumentException("Illegal Capacity: "+
|
|
initialCapacity);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs an empty list with an initial capacity of ten.
|
|
*/
|
|
public ArrayList() {
|
|
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
|
|
}
|
|
|
|
/**
|
|
* Constructs a list containing the elements of the specified
|
|
* collection, in the order they are returned by the collection's
|
|
* iterator.
|
|
*
|
|
* @param c the collection whose elements are to be placed into this list
|
|
* @throws NullPointerException if the specified collection is null
|
|
*/
|
|
public ArrayList(Collection<? extends E> c) {
|
|
elementData = c.toArray();
|
|
if ((size = elementData.length) != 0) {
|
|
// c.toArray might (incorrectly) not return Object[] (see 6260652)
|
|
if (elementData.getClass() != Object[].class)
|
|
elementData = Arrays.copyOf(elementData, size, Object[].class);
|
|
} else {
|
|
// replace with empty array.
|
|
this.elementData = EMPTY_ELEMENTDATA;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Trims the capacity of this <tt>ArrayList</tt> instance to be the
|
|
* list's current size. An application can use this operation to minimize
|
|
* the storage of an <tt>ArrayList</tt> instance.
|
|
*/
|
|
public void trimToSize() {
|
|
modCount++;
|
|
if (size < elementData.length) {
|
|
elementData = (size == 0)
|
|
? EMPTY_ELEMENTDATA
|
|
: Arrays.copyOf(elementData, size);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Increases the capacity of this <tt>ArrayList</tt> instance, if
|
|
* necessary, to ensure that it can hold at least the number of elements
|
|
* specified by the minimum capacity argument.
|
|
*
|
|
* @param minCapacity the desired minimum capacity
|
|
*/
|
|
public void ensureCapacity(int minCapacity) {
|
|
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
|
|
// any size if not default element table
|
|
? 0
|
|
// larger than default for default empty table. It's already
|
|
// supposed to be at default size.
|
|
: DEFAULT_CAPACITY;
|
|
|
|
if (minCapacity > minExpand) {
|
|
ensureExplicitCapacity(minCapacity);
|
|
}
|
|
}
|
|
|
|
private static int calculateCapacity(Object[] elementData, int minCapacity) {
|
|
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
|
|
return Math.max(DEFAULT_CAPACITY, minCapacity);
|
|
}
|
|
return minCapacity;
|
|
}
|
|
|
|
private void ensureCapacityInternal(int minCapacity) {
|
|
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
|
|
}
|
|
|
|
private void ensureExplicitCapacity(int minCapacity) {
|
|
modCount++;
|
|
|
|
// overflow-conscious code
|
|
if (minCapacity - elementData.length > 0)
|
|
grow(minCapacity);
|
|
}
|
|
|
|
/**
|
|
* The maximum size of array to allocate.
|
|
* Some VMs reserve some header words in an array.
|
|
* Attempts to allocate larger arrays may result in
|
|
* OutOfMemoryError: Requested array size exceeds VM limit
|
|
*/
|
|
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
|
|
|
|
/**
|
|
* Increases the capacity to ensure that it can hold at least the
|
|
* number of elements specified by the minimum capacity argument.
|
|
*
|
|
* @param minCapacity the desired minimum capacity
|
|
*/
|
|
private void grow(int minCapacity) {
|
|
// overflow-conscious code
|
|
int oldCapacity = elementData.length;
|
|
int newCapacity = oldCapacity + (oldCapacity >> 1);
|
|
if (newCapacity - minCapacity < 0)
|
|
newCapacity = minCapacity;
|
|
if (newCapacity - MAX_ARRAY_SIZE > 0)
|
|
newCapacity = hugeCapacity(minCapacity);
|
|
// minCapacity is usually close to size, so this is a win:
|
|
elementData = Arrays.copyOf(elementData, newCapacity);
|
|
}
|
|
|
|
private static int hugeCapacity(int minCapacity) {
|
|
if (minCapacity < 0) // overflow
|
|
throw new OutOfMemoryError();
|
|
return (minCapacity > MAX_ARRAY_SIZE) ?
|
|
Integer.MAX_VALUE :
|
|
MAX_ARRAY_SIZE;
|
|
}
|
|
|
|
/**
|
|
* Returns the number of elements in this list.
|
|
*
|
|
* @return the number of elements in this list
|
|
*/
|
|
public int size() {
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Returns <tt>true</tt> if this list contains no elements.
|
|
*
|
|
* @return <tt>true</tt> if this list contains no elements
|
|
*/
|
|
public boolean isEmpty() {
|
|
return size == 0;
|
|
}
|
|
|
|
/**
|
|
* Returns <tt>true</tt> if this list contains the specified element.
|
|
* More formally, returns <tt>true</tt> if and only if this list contains
|
|
* at least one element <tt>e</tt> such that
|
|
* <tt>(o==null ? e==null : o.equals(e))</tt>.
|
|
*
|
|
* @param o element whose presence in this list is to be tested
|
|
* @return <tt>true</tt> if this list contains the specified element
|
|
*/
|
|
public boolean contains(Object o) {
|
|
return indexOf(o) >= 0;
|
|
}
|
|
|
|
/**
|
|
* Returns the index of the first occurrence of the specified element
|
|
* in this list, or -1 if this list does not contain the element.
|
|
* More formally, returns the lowest index <tt>i</tt> such that
|
|
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>,
|
|
* or -1 if there is no such index.
|
|
*/
|
|
public int indexOf(Object o) {
|
|
if (o == null) {
|
|
for (int i = 0; i < size; i++)
|
|
if (elementData[i]==null)
|
|
return i;
|
|
} else {
|
|
for (int i = 0; i < size; i++)
|
|
if (o.equals(elementData[i]))
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Returns the index of the last occurrence of the specified element
|
|
* in this list, or -1 if this list does not contain the element.
|
|
* More formally, returns the highest index <tt>i</tt> such that
|
|
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>,
|
|
* or -1 if there is no such index.
|
|
*/
|
|
public int lastIndexOf(Object o) {
|
|
if (o == null) {
|
|
for (int i = size-1; i >= 0; i--)
|
|
if (elementData[i]==null)
|
|
return i;
|
|
} else {
|
|
for (int i = size-1; i >= 0; i--)
|
|
if (o.equals(elementData[i]))
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Returns a shallow copy of this <tt>ArrayList</tt> instance. (The
|
|
* elements themselves are not copied.)
|
|
*
|
|
* @return a clone of this <tt>ArrayList</tt> instance
|
|
*/
|
|
public Object clone() {
|
|
try {
|
|
ArrayList<?> v = (ArrayList<?>) super.clone();
|
|
v.elementData = Arrays.copyOf(elementData, size);
|
|
v.modCount = 0;
|
|
return v;
|
|
} catch (CloneNotSupportedException e) {
|
|
// this shouldn't happen, since we are Cloneable
|
|
throw new InternalError(e);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns an array containing all of the elements in this list
|
|
* in proper sequence (from first to last element).
|
|
*
|
|
* <p>The returned array will be "safe" in that no references to it are
|
|
* maintained by this list. (In other words, this method must allocate
|
|
* a new array). The caller is thus free to modify the returned array.
|
|
*
|
|
* <p>This method acts as bridge between array-based and collection-based
|
|
* APIs.
|
|
*
|
|
* @return an array containing all of the elements in this list in
|
|
* proper sequence
|
|
*/
|
|
public Object[] toArray() {
|
|
return Arrays.copyOf(elementData, size);
|
|
}
|
|
|
|
/**
|
|
* Returns an array containing all of the elements in this list in proper
|
|
* sequence (from first to last element); the runtime type of the returned
|
|
* array is that of the specified array. If the list fits in the
|
|
* specified array, it is returned therein. Otherwise, a new array is
|
|
* allocated with the runtime type of the specified array and the size of
|
|
* this list.
|
|
*
|
|
* <p>If the list fits in the specified array with room to spare
|
|
* (i.e., the array has more elements than the list), the element in
|
|
* the array immediately following the end of the collection is set to
|
|
* <tt>null</tt>. (This is useful in determining the length of the
|
|
* list <i>only</i> if the caller knows that the list does not contain
|
|
* any null elements.)
|
|
*
|
|
* @param a the array into which the elements of the list are to
|
|
* be stored, if it is big enough; otherwise, a new array of the
|
|
* same runtime type is allocated for this purpose.
|
|
* @return an array containing the elements of the list
|
|
* @throws ArrayStoreException if the runtime type of the specified array
|
|
* is not a supertype of the runtime type of every element in
|
|
* this list
|
|
* @throws NullPointerException if the specified array is null
|
|
*/
|
|
@SuppressWarnings("unchecked")
|
|
public <T> T[] toArray(T[] a) {
|
|
if (a.length < size)
|
|
// Make a new array of a's runtime type, but my contents:
|
|
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
|
|
System.arraycopy(elementData, 0, a, 0, size);
|
|
if (a.length > size)
|
|
a[size] = null;
|
|
return a;
|
|
}
|
|
|
|
// Positional Access Operations
|
|
|
|
@SuppressWarnings("unchecked")
|
|
E elementData(int index) {
|
|
return (E) elementData[index];
|
|
}
|
|
|
|
/**
|
|
* Returns the element at the specified position in this list.
|
|
*
|
|
* @param index index of the element to return
|
|
* @return the element at the specified position in this list
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
*/
|
|
public E get(int index) {
|
|
rangeCheck(index);
|
|
|
|
return elementData(index);
|
|
}
|
|
|
|
/**
|
|
* Replaces the element at the specified position in this list with
|
|
* the specified element.
|
|
*
|
|
* @param index index of the element to replace
|
|
* @param element element to be stored at the specified position
|
|
* @return the element previously at the specified position
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
*/
|
|
public E set(int index, E element) {
|
|
rangeCheck(index);
|
|
|
|
E oldValue = elementData(index);
|
|
elementData[index] = element;
|
|
return oldValue;
|
|
}
|
|
|
|
/**
|
|
* Appends the specified element to the end of this list.
|
|
*
|
|
* @param e element to be appended to this list
|
|
* @return <tt>true</tt> (as specified by {@link Collection#add})
|
|
*/
|
|
public boolean add(E e) {
|
|
ensureCapacityInternal(size + 1); // Increments modCount!!
|
|
elementData[size++] = e;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Inserts the specified element at the specified position in this
|
|
* list. Shifts the element currently at that position (if any) and
|
|
* any subsequent elements to the right (adds one to their indices).
|
|
*
|
|
* @param index index at which the specified element is to be inserted
|
|
* @param element element to be inserted
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
*/
|
|
public void add(int index, E element) {
|
|
rangeCheckForAdd(index);
|
|
|
|
ensureCapacityInternal(size + 1); // Increments modCount!!
|
|
System.arraycopy(elementData, index, elementData, index + 1,
|
|
size - index);
|
|
elementData[index] = element;
|
|
size++;
|
|
}
|
|
|
|
/**
|
|
* Removes the element at the specified position in this list.
|
|
* Shifts any subsequent elements to the left (subtracts one from their
|
|
* indices).
|
|
*
|
|
* @param index the index of the element to be removed
|
|
* @return the element that was removed from the list
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
*/
|
|
public E remove(int index) {
|
|
rangeCheck(index);
|
|
|
|
modCount++;
|
|
E oldValue = elementData(index);
|
|
|
|
int numMoved = size - index - 1;
|
|
if (numMoved > 0)
|
|
System.arraycopy(elementData, index+1, elementData, index,
|
|
numMoved);
|
|
elementData[--size] = null; // clear to let GC do its work
|
|
|
|
return oldValue;
|
|
}
|
|
|
|
/**
|
|
* Removes the first occurrence of the specified element from this list,
|
|
* if it is present. If the list does not contain the element, it is
|
|
* unchanged. More formally, removes the element with the lowest index
|
|
* <tt>i</tt> such that
|
|
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>
|
|
* (if such an element exists). Returns <tt>true</tt> if this list
|
|
* contained the specified element (or equivalently, if this list
|
|
* changed as a result of the call).
|
|
*
|
|
* @param o element to be removed from this list, if present
|
|
* @return <tt>true</tt> if this list contained the specified element
|
|
*/
|
|
public boolean remove(Object o) {
|
|
if (o == null) {
|
|
for (int index = 0; index < size; index++)
|
|
if (elementData[index] == null) {
|
|
fastRemove(index);
|
|
return true;
|
|
}
|
|
} else {
|
|
for (int index = 0; index < size; index++)
|
|
if (o.equals(elementData[index])) {
|
|
fastRemove(index);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Private remove method that skips bounds checking and does not
|
|
* return the value removed.
|
|
*/
|
|
private void fastRemove(int index) {
|
|
modCount++;
|
|
int numMoved = size - index - 1;
|
|
if (numMoved > 0)
|
|
System.arraycopy(elementData, index+1, elementData, index,
|
|
numMoved);
|
|
elementData[--size] = null; // clear to let GC do its work
|
|
}
|
|
|
|
/**
|
|
* Removes all of the elements from this list. The list will
|
|
* be empty after this call returns.
|
|
*/
|
|
public void clear() {
|
|
modCount++;
|
|
|
|
// clear to let GC do its work
|
|
for (int i = 0; i < size; i++)
|
|
elementData[i] = null;
|
|
|
|
size = 0;
|
|
}
|
|
|
|
/**
|
|
* Appends all of the elements in the specified collection to the end of
|
|
* this list, in the order that they are returned by the
|
|
* specified collection's Iterator. The behavior of this operation is
|
|
* undefined if the specified collection is modified while the operation
|
|
* is in progress. (This implies that the behavior of this call is
|
|
* undefined if the specified collection is this list, and this
|
|
* list is nonempty.)
|
|
*
|
|
* @param c collection containing elements to be added to this list
|
|
* @return <tt>true</tt> if this list changed as a result of the call
|
|
* @throws NullPointerException if the specified collection is null
|
|
*/
|
|
public boolean addAll(Collection<? extends E> c) {
|
|
Object[] a = c.toArray();
|
|
int numNew = a.length;
|
|
ensureCapacityInternal(size + numNew); // Increments modCount
|
|
System.arraycopy(a, 0, elementData, size, numNew);
|
|
size += numNew;
|
|
return numNew != 0;
|
|
}
|
|
|
|
/**
|
|
* Inserts all of the elements in the specified collection into this
|
|
* list, starting at the specified position. Shifts the element
|
|
* currently at that position (if any) and any subsequent elements to
|
|
* the right (increases their indices). The new elements will appear
|
|
* in the list in the order that they are returned by the
|
|
* specified collection's iterator.
|
|
*
|
|
* @param index index at which to insert the first element from the
|
|
* specified collection
|
|
* @param c collection containing elements to be added to this list
|
|
* @return <tt>true</tt> if this list changed as a result of the call
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
* @throws NullPointerException if the specified collection is null
|
|
*/
|
|
public boolean addAll(int index, Collection<? extends E> c) {
|
|
rangeCheckForAdd(index);
|
|
|
|
Object[] a = c.toArray();
|
|
int numNew = a.length;
|
|
ensureCapacityInternal(size + numNew); // Increments modCount
|
|
|
|
int numMoved = size - index;
|
|
if (numMoved > 0)
|
|
System.arraycopy(elementData, index, elementData, index + numNew,
|
|
numMoved);
|
|
|
|
System.arraycopy(a, 0, elementData, index, numNew);
|
|
size += numNew;
|
|
return numNew != 0;
|
|
}
|
|
|
|
/**
|
|
* Removes from this list all of the elements whose index is between
|
|
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
|
|
* Shifts any succeeding elements to the left (reduces their index).
|
|
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
|
|
* (If {@code toIndex==fromIndex}, this operation has no effect.)
|
|
*
|
|
* @throws IndexOutOfBoundsException if {@code fromIndex} or
|
|
* {@code toIndex} is out of range
|
|
* ({@code fromIndex < 0 ||
|
|
* fromIndex >= size() ||
|
|
* toIndex > size() ||
|
|
* toIndex < fromIndex})
|
|
*/
|
|
protected void removeRange(int fromIndex, int toIndex) {
|
|
modCount++;
|
|
int numMoved = size - toIndex;
|
|
System.arraycopy(elementData, toIndex, elementData, fromIndex,
|
|
numMoved);
|
|
|
|
// clear to let GC do its work
|
|
int newSize = size - (toIndex-fromIndex);
|
|
for (int i = newSize; i < size; i++) {
|
|
elementData[i] = null;
|
|
}
|
|
size = newSize;
|
|
}
|
|
|
|
/**
|
|
* Checks if the given index is in range. If not, throws an appropriate
|
|
* runtime exception. This method does *not* check if the index is
|
|
* negative: It is always used immediately prior to an array access,
|
|
* which throws an ArrayIndexOutOfBoundsException if index is negative.
|
|
*/
|
|
private void rangeCheck(int index) {
|
|
if (index >= size)
|
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
|
|
}
|
|
|
|
/**
|
|
* A version of rangeCheck used by add and addAll.
|
|
*/
|
|
private void rangeCheckForAdd(int index) {
|
|
if (index > size || index < 0)
|
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
|
|
}
|
|
|
|
/**
|
|
* Constructs an IndexOutOfBoundsException detail message.
|
|
* Of the many possible refactorings of the error handling code,
|
|
* this "outlining" performs best with both server and client VMs.
|
|
*/
|
|
private String outOfBoundsMsg(int index) {
|
|
return "Index: "+index+", Size: "+size;
|
|
}
|
|
|
|
/**
|
|
* Removes from this list all of its elements that are contained in the
|
|
* specified collection.
|
|
*
|
|
* @param c collection containing elements to be removed from this list
|
|
* @return {@code true} if this list changed as a result of the call
|
|
* @throws ClassCastException if the class of an element of this list
|
|
* is incompatible with the specified collection
|
|
* (<a href="Collection.html#optional-restrictions">optional</a>)
|
|
* @throws NullPointerException if this list contains a null element and the
|
|
* specified collection does not permit null elements
|
|
* (<a href="Collection.html#optional-restrictions">optional</a>),
|
|
* or if the specified collection is null
|
|
* @see Collection#contains(Object)
|
|
*/
|
|
public boolean removeAll(Collection<?> c) {
|
|
Objects.requireNonNull(c);
|
|
return batchRemove(c, false);
|
|
}
|
|
|
|
/**
|
|
* Retains only the elements in this list that are contained in the
|
|
* specified collection. In other words, removes from this list all
|
|
* of its elements that are not contained in the specified collection.
|
|
*
|
|
* @param c collection containing elements to be retained in this list
|
|
* @return {@code true} if this list changed as a result of the call
|
|
* @throws ClassCastException if the class of an element of this list
|
|
* is incompatible with the specified collection
|
|
* (<a href="Collection.html#optional-restrictions">optional</a>)
|
|
* @throws NullPointerException if this list contains a null element and the
|
|
* specified collection does not permit null elements
|
|
* (<a href="Collection.html#optional-restrictions">optional</a>),
|
|
* or if the specified collection is null
|
|
* @see Collection#contains(Object)
|
|
*/
|
|
public boolean retainAll(Collection<?> c) {
|
|
Objects.requireNonNull(c);
|
|
return batchRemove(c, true);
|
|
}
|
|
|
|
private boolean batchRemove(Collection<?> c, boolean complement) {
|
|
final Object[] elementData = this.elementData;
|
|
int r = 0, w = 0;
|
|
boolean modified = false;
|
|
try {
|
|
for (; r < size; r++)
|
|
if (c.contains(elementData[r]) == complement)
|
|
elementData[w++] = elementData[r];
|
|
} finally {
|
|
// Preserve behavioral compatibility with AbstractCollection,
|
|
// even if c.contains() throws.
|
|
if (r != size) {
|
|
System.arraycopy(elementData, r,
|
|
elementData, w,
|
|
size - r);
|
|
w += size - r;
|
|
}
|
|
if (w != size) {
|
|
// clear to let GC do its work
|
|
for (int i = w; i < size; i++)
|
|
elementData[i] = null;
|
|
modCount += size - w;
|
|
size = w;
|
|
modified = true;
|
|
}
|
|
}
|
|
return modified;
|
|
}
|
|
|
|
/**
|
|
* Save the state of the <tt>ArrayList</tt> instance to a stream (that
|
|
* is, serialize it).
|
|
*
|
|
* @serialData The length of the array backing the <tt>ArrayList</tt>
|
|
* instance is emitted (int), followed by all of its elements
|
|
* (each an <tt>Object</tt>) in the proper order.
|
|
*/
|
|
private void writeObject(java.io.ObjectOutputStream s)
|
|
throws java.io.IOException{
|
|
// Write out element count, and any hidden stuff
|
|
int expectedModCount = modCount;
|
|
s.defaultWriteObject();
|
|
|
|
// Write out size as capacity for behavioural compatibility with clone()
|
|
s.writeInt(size);
|
|
|
|
// Write out all elements in the proper order.
|
|
for (int i=0; i<size; i++) {
|
|
s.writeObject(elementData[i]);
|
|
}
|
|
|
|
if (modCount != expectedModCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
|
|
* deserialize it).
|
|
*/
|
|
private void readObject(java.io.ObjectInputStream s)
|
|
throws java.io.IOException, ClassNotFoundException {
|
|
elementData = EMPTY_ELEMENTDATA;
|
|
|
|
// Read in size, and any hidden stuff
|
|
s.defaultReadObject();
|
|
|
|
// Read in capacity
|
|
s.readInt(); // ignored
|
|
|
|
if (size > 0) {
|
|
// be like clone(), allocate array based upon size not capacity
|
|
int capacity = calculateCapacity(elementData, size);
|
|
SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity);
|
|
ensureCapacityInternal(size);
|
|
|
|
Object[] a = elementData;
|
|
// Read in all elements in the proper order.
|
|
for (int i=0; i<size; i++) {
|
|
a[i] = s.readObject();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a list iterator over the elements in this list (in proper
|
|
* sequence), starting at the specified position in the list.
|
|
* The specified index indicates the first element that would be
|
|
* returned by an initial call to {@link ListIterator#next next}.
|
|
* An initial call to {@link ListIterator#previous previous} would
|
|
* return the element with the specified index minus one.
|
|
*
|
|
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
|
|
*
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
*/
|
|
public ListIterator<E> listIterator(int index) {
|
|
if (index < 0 || index > size)
|
|
throw new IndexOutOfBoundsException("Index: "+index);
|
|
return new ListItr(index);
|
|
}
|
|
|
|
/**
|
|
* Returns a list iterator over the elements in this list (in proper
|
|
* sequence).
|
|
*
|
|
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
|
|
*
|
|
* @see #listIterator(int)
|
|
*/
|
|
public ListIterator<E> listIterator() {
|
|
return new ListItr(0);
|
|
}
|
|
|
|
/**
|
|
* Returns an iterator over the elements in this list in proper sequence.
|
|
*
|
|
* <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
|
|
*
|
|
* @return an iterator over the elements in this list in proper sequence
|
|
*/
|
|
public Iterator<E> iterator() {
|
|
return new Itr();
|
|
}
|
|
|
|
/**
|
|
* An optimized version of AbstractList.Itr
|
|
*/
|
|
private class Itr implements Iterator<E> {
|
|
int cursor; // index of next element to return
|
|
int lastRet = -1; // index of last element returned; -1 if no such
|
|
int expectedModCount = modCount;
|
|
|
|
Itr() {}
|
|
|
|
public boolean hasNext() {
|
|
return cursor != size;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public E next() {
|
|
checkForComodification();
|
|
int i = cursor;
|
|
if (i >= size)
|
|
throw new NoSuchElementException();
|
|
Object[] elementData = ArrayList.this.elementData;
|
|
if (i >= elementData.length)
|
|
throw new ConcurrentModificationException();
|
|
cursor = i + 1;
|
|
return (E) elementData[lastRet = i];
|
|
}
|
|
|
|
public void remove() {
|
|
if (lastRet < 0)
|
|
throw new IllegalStateException();
|
|
checkForComodification();
|
|
|
|
try {
|
|
ArrayList.this.remove(lastRet);
|
|
cursor = lastRet;
|
|
lastRet = -1;
|
|
expectedModCount = modCount;
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
@Override
|
|
@SuppressWarnings("unchecked")
|
|
public void forEachRemaining(Consumer<? super E> consumer) {
|
|
Objects.requireNonNull(consumer);
|
|
final int size = ArrayList.this.size;
|
|
int i = cursor;
|
|
if (i >= size) {
|
|
return;
|
|
}
|
|
final Object[] elementData = ArrayList.this.elementData;
|
|
if (i >= elementData.length) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
while (i != size && modCount == expectedModCount) {
|
|
consumer.accept((E) elementData[i++]);
|
|
}
|
|
// update once at end of iteration to reduce heap write traffic
|
|
cursor = i;
|
|
lastRet = i - 1;
|
|
checkForComodification();
|
|
}
|
|
|
|
final void checkForComodification() {
|
|
if (modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* An optimized version of AbstractList.ListItr
|
|
*/
|
|
private class ListItr extends Itr implements ListIterator<E> {
|
|
ListItr(int index) {
|
|
super();
|
|
cursor = index;
|
|
}
|
|
|
|
public boolean hasPrevious() {
|
|
return cursor != 0;
|
|
}
|
|
|
|
public int nextIndex() {
|
|
return cursor;
|
|
}
|
|
|
|
public int previousIndex() {
|
|
return cursor - 1;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public E previous() {
|
|
checkForComodification();
|
|
int i = cursor - 1;
|
|
if (i < 0)
|
|
throw new NoSuchElementException();
|
|
Object[] elementData = ArrayList.this.elementData;
|
|
if (i >= elementData.length)
|
|
throw new ConcurrentModificationException();
|
|
cursor = i;
|
|
return (E) elementData[lastRet = i];
|
|
}
|
|
|
|
public void set(E e) {
|
|
if (lastRet < 0)
|
|
throw new IllegalStateException();
|
|
checkForComodification();
|
|
|
|
try {
|
|
ArrayList.this.set(lastRet, e);
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public void add(E e) {
|
|
checkForComodification();
|
|
|
|
try {
|
|
int i = cursor;
|
|
ArrayList.this.add(i, e);
|
|
cursor = i + 1;
|
|
lastRet = -1;
|
|
expectedModCount = modCount;
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a view of the portion of this list between the specified
|
|
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
|
|
* {@code fromIndex} and {@code toIndex} are equal, the returned list is
|
|
* empty.) The returned list is backed by this list, so non-structural
|
|
* changes in the returned list are reflected in this list, and vice-versa.
|
|
* The returned list supports all of the optional list operations.
|
|
*
|
|
* <p>This method eliminates the need for explicit range operations (of
|
|
* the sort that commonly exist for arrays). Any operation that expects
|
|
* a list can be used as a range operation by passing a subList view
|
|
* instead of a whole list. For example, the following idiom
|
|
* removes a range of elements from a list:
|
|
* <pre>
|
|
* list.subList(from, to).clear();
|
|
* </pre>
|
|
* Similar idioms may be constructed for {@link #indexOf(Object)} and
|
|
* {@link #lastIndexOf(Object)}, and all of the algorithms in the
|
|
* {@link Collections} class can be applied to a subList.
|
|
*
|
|
* <p>The semantics of the list returned by this method become undefined if
|
|
* the backing list (i.e., this list) is <i>structurally modified</i> in
|
|
* any way other than via the returned list. (Structural modifications are
|
|
* those that change the size of this list, or otherwise perturb it in such
|
|
* a fashion that iterations in progress may yield incorrect results.)
|
|
*
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
* @throws IllegalArgumentException {@inheritDoc}
|
|
*/
|
|
public List<E> subList(int fromIndex, int toIndex) {
|
|
subListRangeCheck(fromIndex, toIndex, size);
|
|
return new SubList(this, 0, fromIndex, toIndex);
|
|
}
|
|
|
|
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
|
|
if (fromIndex < 0)
|
|
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
|
|
if (toIndex > size)
|
|
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
|
|
if (fromIndex > toIndex)
|
|
throw new IllegalArgumentException("fromIndex(" + fromIndex +
|
|
") > toIndex(" + toIndex + ")");
|
|
}
|
|
|
|
private class SubList extends AbstractList<E> implements RandomAccess {
|
|
private final AbstractList<E> parent;
|
|
private final int parentOffset;
|
|
private final int offset;
|
|
int size;
|
|
|
|
SubList(AbstractList<E> parent,
|
|
int offset, int fromIndex, int toIndex) {
|
|
this.parent = parent;
|
|
this.parentOffset = fromIndex;
|
|
this.offset = offset + fromIndex;
|
|
this.size = toIndex - fromIndex;
|
|
this.modCount = ArrayList.this.modCount;
|
|
}
|
|
|
|
public E set(int index, E e) {
|
|
rangeCheck(index);
|
|
checkForComodification();
|
|
E oldValue = ArrayList.this.elementData(offset + index);
|
|
ArrayList.this.elementData[offset + index] = e;
|
|
return oldValue;
|
|
}
|
|
|
|
public E get(int index) {
|
|
rangeCheck(index);
|
|
checkForComodification();
|
|
return ArrayList.this.elementData(offset + index);
|
|
}
|
|
|
|
public int size() {
|
|
checkForComodification();
|
|
return this.size;
|
|
}
|
|
|
|
public void add(int index, E e) {
|
|
rangeCheckForAdd(index);
|
|
checkForComodification();
|
|
parent.add(parentOffset + index, e);
|
|
this.modCount = parent.modCount;
|
|
this.size++;
|
|
}
|
|
|
|
public E remove(int index) {
|
|
rangeCheck(index);
|
|
checkForComodification();
|
|
E result = parent.remove(parentOffset + index);
|
|
this.modCount = parent.modCount;
|
|
this.size--;
|
|
return result;
|
|
}
|
|
|
|
protected void removeRange(int fromIndex, int toIndex) {
|
|
checkForComodification();
|
|
parent.removeRange(parentOffset + fromIndex,
|
|
parentOffset + toIndex);
|
|
this.modCount = parent.modCount;
|
|
this.size -= toIndex - fromIndex;
|
|
}
|
|
|
|
public boolean addAll(Collection<? extends E> c) {
|
|
return addAll(this.size, c);
|
|
}
|
|
|
|
public boolean addAll(int index, Collection<? extends E> c) {
|
|
rangeCheckForAdd(index);
|
|
int cSize = c.size();
|
|
if (cSize==0)
|
|
return false;
|
|
|
|
checkForComodification();
|
|
parent.addAll(parentOffset + index, c);
|
|
this.modCount = parent.modCount;
|
|
this.size += cSize;
|
|
return true;
|
|
}
|
|
|
|
public Iterator<E> iterator() {
|
|
return listIterator();
|
|
}
|
|
|
|
public ListIterator<E> listIterator(final int index) {
|
|
checkForComodification();
|
|
rangeCheckForAdd(index);
|
|
final int offset = this.offset;
|
|
|
|
return new ListIterator<E>() {
|
|
int cursor = index;
|
|
int lastRet = -1;
|
|
int expectedModCount = ArrayList.this.modCount;
|
|
|
|
public boolean hasNext() {
|
|
return cursor != SubList.this.size;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public E next() {
|
|
checkForComodification();
|
|
int i = cursor;
|
|
if (i >= SubList.this.size)
|
|
throw new NoSuchElementException();
|
|
Object[] elementData = ArrayList.this.elementData;
|
|
if (offset + i >= elementData.length)
|
|
throw new ConcurrentModificationException();
|
|
cursor = i + 1;
|
|
return (E) elementData[offset + (lastRet = i)];
|
|
}
|
|
|
|
public boolean hasPrevious() {
|
|
return cursor != 0;
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public E previous() {
|
|
checkForComodification();
|
|
int i = cursor - 1;
|
|
if (i < 0)
|
|
throw new NoSuchElementException();
|
|
Object[] elementData = ArrayList.this.elementData;
|
|
if (offset + i >= elementData.length)
|
|
throw new ConcurrentModificationException();
|
|
cursor = i;
|
|
return (E) elementData[offset + (lastRet = i)];
|
|
}
|
|
|
|
@SuppressWarnings("unchecked")
|
|
public void forEachRemaining(Consumer<? super E> consumer) {
|
|
Objects.requireNonNull(consumer);
|
|
final int size = SubList.this.size;
|
|
int i = cursor;
|
|
if (i >= size) {
|
|
return;
|
|
}
|
|
final Object[] elementData = ArrayList.this.elementData;
|
|
if (offset + i >= elementData.length) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
while (i != size && modCount == expectedModCount) {
|
|
consumer.accept((E) elementData[offset + (i++)]);
|
|
}
|
|
// update once at end of iteration to reduce heap write traffic
|
|
lastRet = cursor = i;
|
|
checkForComodification();
|
|
}
|
|
|
|
public int nextIndex() {
|
|
return cursor;
|
|
}
|
|
|
|
public int previousIndex() {
|
|
return cursor - 1;
|
|
}
|
|
|
|
public void remove() {
|
|
if (lastRet < 0)
|
|
throw new IllegalStateException();
|
|
checkForComodification();
|
|
|
|
try {
|
|
SubList.this.remove(lastRet);
|
|
cursor = lastRet;
|
|
lastRet = -1;
|
|
expectedModCount = ArrayList.this.modCount;
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public void set(E e) {
|
|
if (lastRet < 0)
|
|
throw new IllegalStateException();
|
|
checkForComodification();
|
|
|
|
try {
|
|
ArrayList.this.set(offset + lastRet, e);
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
public void add(E e) {
|
|
checkForComodification();
|
|
|
|
try {
|
|
int i = cursor;
|
|
SubList.this.add(i, e);
|
|
cursor = i + 1;
|
|
lastRet = -1;
|
|
expectedModCount = ArrayList.this.modCount;
|
|
} catch (IndexOutOfBoundsException ex) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
final void checkForComodification() {
|
|
if (expectedModCount != ArrayList.this.modCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
};
|
|
}
|
|
|
|
public List<E> subList(int fromIndex, int toIndex) {
|
|
subListRangeCheck(fromIndex, toIndex, size);
|
|
return new SubList(this, offset, fromIndex, toIndex);
|
|
}
|
|
|
|
private void rangeCheck(int index) {
|
|
if (index < 0 || index >= this.size)
|
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
|
|
}
|
|
|
|
private void rangeCheckForAdd(int index) {
|
|
if (index < 0 || index > this.size)
|
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
|
|
}
|
|
|
|
private String outOfBoundsMsg(int index) {
|
|
return "Index: "+index+", Size: "+this.size;
|
|
}
|
|
|
|
private void checkForComodification() {
|
|
if (ArrayList.this.modCount != this.modCount)
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
|
|
public Spliterator<E> spliterator() {
|
|
checkForComodification();
|
|
return new ArrayListSpliterator<E>(ArrayList.this, offset,
|
|
offset + this.size, this.modCount);
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void forEach(Consumer<? super E> action) {
|
|
Objects.requireNonNull(action);
|
|
final int expectedModCount = modCount;
|
|
@SuppressWarnings("unchecked")
|
|
final E[] elementData = (E[]) this.elementData;
|
|
final int size = this.size;
|
|
for (int i=0; modCount == expectedModCount && i < size; i++) {
|
|
action.accept(elementData[i]);
|
|
}
|
|
if (modCount != expectedModCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
|
|
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
|
|
* list.
|
|
*
|
|
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
|
|
* {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
|
|
* Overriding implementations should document the reporting of additional
|
|
* characteristic values.
|
|
*
|
|
* @return a {@code Spliterator} over the elements in this list
|
|
* @since 1.8
|
|
*/
|
|
@Override
|
|
public Spliterator<E> spliterator() {
|
|
return new ArrayListSpliterator<>(this, 0, -1, 0);
|
|
}
|
|
|
|
/** Index-based split-by-two, lazily initialized Spliterator */
|
|
static final class ArrayListSpliterator<E> implements Spliterator<E> {
|
|
|
|
/*
|
|
* If ArrayLists were immutable, or structurally immutable (no
|
|
* adds, removes, etc), we could implement their spliterators
|
|
* with Arrays.spliterator. Instead we detect as much
|
|
* interference during traversal as practical without
|
|
* sacrificing much performance. We rely primarily on
|
|
* modCounts. These are not guaranteed to detect concurrency
|
|
* violations, and are sometimes overly conservative about
|
|
* within-thread interference, but detect enough problems to
|
|
* be worthwhile in practice. To carry this out, we (1) lazily
|
|
* initialize fence and expectedModCount until the latest
|
|
* point that we need to commit to the state we are checking
|
|
* against; thus improving precision. (This doesn't apply to
|
|
* SubLists, that create spliterators with current non-lazy
|
|
* values). (2) We perform only a single
|
|
* ConcurrentModificationException check at the end of forEach
|
|
* (the most performance-sensitive method). When using forEach
|
|
* (as opposed to iterators), we can normally only detect
|
|
* interference after actions, not before. Further
|
|
* CME-triggering checks apply to all other possible
|
|
* violations of assumptions for example null or too-small
|
|
* elementData array given its size(), that could only have
|
|
* occurred due to interference. This allows the inner loop
|
|
* of forEach to run without any further checks, and
|
|
* simplifies lambda-resolution. While this does entail a
|
|
* number of checks, note that in the common case of
|
|
* list.stream().forEach(a), no checks or other computation
|
|
* occur anywhere other than inside forEach itself. The other
|
|
* less-often-used methods cannot take advantage of most of
|
|
* these streamlinings.
|
|
*/
|
|
|
|
private final ArrayList<E> list;
|
|
private int index; // current index, modified on advance/split
|
|
private int fence; // -1 until used; then one past last index
|
|
private int expectedModCount; // initialized when fence set
|
|
|
|
/** Create new spliterator covering the given range */
|
|
ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
|
|
int expectedModCount) {
|
|
this.list = list; // OK if null unless traversed
|
|
this.index = origin;
|
|
this.fence = fence;
|
|
this.expectedModCount = expectedModCount;
|
|
}
|
|
|
|
private int getFence() { // initialize fence to size on first use
|
|
int hi; // (a specialized variant appears in method forEach)
|
|
ArrayList<E> lst;
|
|
if ((hi = fence) < 0) {
|
|
if ((lst = list) == null)
|
|
hi = fence = 0;
|
|
else {
|
|
expectedModCount = lst.modCount;
|
|
hi = fence = lst.size;
|
|
}
|
|
}
|
|
return hi;
|
|
}
|
|
|
|
public ArrayListSpliterator<E> trySplit() {
|
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
|
|
return (lo >= mid) ? null : // divide range in half unless too small
|
|
new ArrayListSpliterator<E>(list, lo, index = mid,
|
|
expectedModCount);
|
|
}
|
|
|
|
public boolean tryAdvance(Consumer<? super E> action) {
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
int hi = getFence(), i = index;
|
|
if (i < hi) {
|
|
index = i + 1;
|
|
@SuppressWarnings("unchecked") E e = (E)list.elementData[i];
|
|
action.accept(e);
|
|
if (list.modCount != expectedModCount)
|
|
throw new ConcurrentModificationException();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
public void forEachRemaining(Consumer<? super E> action) {
|
|
int i, hi, mc; // hoist accesses and checks from loop
|
|
ArrayList<E> lst; Object[] a;
|
|
if (action == null)
|
|
throw new NullPointerException();
|
|
if ((lst = list) != null && (a = lst.elementData) != null) {
|
|
if ((hi = fence) < 0) {
|
|
mc = lst.modCount;
|
|
hi = lst.size;
|
|
}
|
|
else
|
|
mc = expectedModCount;
|
|
if ((i = index) >= 0 && (index = hi) <= a.length) {
|
|
for (; i < hi; ++i) {
|
|
@SuppressWarnings("unchecked") E e = (E) a[i];
|
|
action.accept(e);
|
|
}
|
|
if (lst.modCount == mc)
|
|
return;
|
|
}
|
|
}
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
|
|
public long estimateSize() {
|
|
return (long) (getFence() - index);
|
|
}
|
|
|
|
public int characteristics() {
|
|
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public boolean removeIf(Predicate<? super E> filter) {
|
|
Objects.requireNonNull(filter);
|
|
// figure out which elements are to be removed
|
|
// any exception thrown from the filter predicate at this stage
|
|
// will leave the collection unmodified
|
|
int removeCount = 0;
|
|
final BitSet removeSet = new BitSet(size);
|
|
final int expectedModCount = modCount;
|
|
final int size = this.size;
|
|
for (int i=0; modCount == expectedModCount && i < size; i++) {
|
|
@SuppressWarnings("unchecked")
|
|
final E element = (E) elementData[i];
|
|
if (filter.test(element)) {
|
|
removeSet.set(i);
|
|
removeCount++;
|
|
}
|
|
}
|
|
if (modCount != expectedModCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
|
|
// shift surviving elements left over the spaces left by removed elements
|
|
final boolean anyToRemove = removeCount > 0;
|
|
if (anyToRemove) {
|
|
final int newSize = size - removeCount;
|
|
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
|
|
i = removeSet.nextClearBit(i);
|
|
elementData[j] = elementData[i];
|
|
}
|
|
for (int k=newSize; k < size; k++) {
|
|
elementData[k] = null; // Let gc do its work
|
|
}
|
|
this.size = newSize;
|
|
if (modCount != expectedModCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
modCount++;
|
|
}
|
|
|
|
return anyToRemove;
|
|
}
|
|
|
|
@Override
|
|
@SuppressWarnings("unchecked")
|
|
public void replaceAll(UnaryOperator<E> operator) {
|
|
Objects.requireNonNull(operator);
|
|
final int expectedModCount = modCount;
|
|
final int size = this.size;
|
|
for (int i=0; modCount == expectedModCount && i < size; i++) {
|
|
elementData[i] = operator.apply((E) elementData[i]);
|
|
}
|
|
if (modCount != expectedModCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
modCount++;
|
|
}
|
|
|
|
@Override
|
|
@SuppressWarnings("unchecked")
|
|
public void sort(Comparator<? super E> c) {
|
|
final int expectedModCount = modCount;
|
|
Arrays.sort((E[]) elementData, 0, size, c);
|
|
if (modCount != expectedModCount) {
|
|
throw new ConcurrentModificationException();
|
|
}
|
|
modCount++;
|
|
}
|
|
}
|