Delete 'attention.py'

main
hnu202409060624 8 months ago
parent ca917ffc4e
commit c98e38d0a6

@ -1,115 +0,0 @@
import torch
from torch import nn
import config
import torch.nn.functional as F
class ScaledDotProductAttention(nn.Module):
""" Scaled Dot-Product Attention """
def __init__(self, scale_factor=16, dropout=config.dropout):
super().__init__()
self.scale_factor = scale_factor
# dropout用于防止过拟合在前向传播的过程中让某个神经元的激活值以一定的概率停止工作
self.dropout = nn.Dropout(dropout)
def forward(self, q, k, v, mask=None):
# batch_size: 批量大小
# len_q,len_k,len_v: 序列长度 在这里他们都相等
# n_head: 多头注意力论文中默认为8
# d_k,d_v: k v 的dim(维度) 默认都是64
# 此时q的shape为(batch_size, n_head, len_q, d_k) (batch_size, 8, len_q, 64)
# 此时k的shape为(batch_size, n_head, len_k, d_k) (batch_size, 8, len_k, 64)
# 此时v的shape为(batch_size, n_head, len_k, d_v) (batch_size, 8, len_k, 64)
# q先除以self.scale_factor再乘以k的转置(交换最后两个维度(这样才可以进行矩阵相乘))。
# attn的shape为(batch_size, n_head, len_q, len_k)
attn = torch.matmul(q / self.scale_factor, k.transpose(2, 3))
if mask is not None:
"""
-1e9代替0 -1e9是一个很大的负数 经过softmax之后接近0
# 其一去除掉各种padding在训练过程中的影响
# 其二将输入进行遮盖避免decoder看到后面要预测的东西。只用在decoder中
"""
attn = attn.masked_fill(mask.to('cuda:0') == 0, -1e9)
# 先在attn的最后一个维度做softmax 再dropout 得到注意力分数
attn = self.dropout(torch.softmax(attn, dim=-1))
# 最后attn与v矩阵相乘
# output的shape为(batch_size, 8, len_q, 64)
output = torch.matmul(attn, v)
# 返回 output和注意力分数
return output, attn
class MultiHeadAttention(nn.Module):
""" Multi-Head Attention module """
def __init__(self, n_head=config.n_head, d_model=config.input_dim, d_k=config.input_dim//2, d_v=config.hidden_dim//2, dropout=config.dropout):
# 论文中这里的n_head, d_model, d_k, d_v分别默认为8, 512, 64, 64
'''
# q k v先经过不同的线性层再用ScaledDotProductAttention最后再经过一个线性层
'''
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=config.bias)
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=config.bias)
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=config.bias)
self.fc = nn.Linear(n_head * d_v, d_model, bias=config.bias)
self.attention = ScaledDotProductAttention(scale_factor=d_k ** 0.5)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) # 默认对最后一个维度初始化
def forward(self, q, k, v, mask=None):
# q, k, v初次输入为含位置信息的嵌入矩阵X由于要堆叠N次后面的输入则是上个多头的输出
# q, k, vbatch_size * seq_num * d_model
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
# len_q, len_k, len_v 为输入的序列长度
# batch_size为batch_size
batch_size, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
# 用作残差连接
residual = q
# Pass through the pre-attention projection: b x lq x (n*dv)
# Separate different heads: b x lq x n x dv
# q k v 分别经过一个线性层再改变维度
# 由(batch_size, len_q, n_head*d_k) => (batch_size, len_q, n_head, d_k)
# (batch_size, len_q, 8*64) => (batch_size, len_q, 8, 64)
q = self.layer_norm(q)
k = self.layer_norm(k)
v = self.layer_norm(v)
# 与q,k,v相关矩阵相乘得到相应的q,k,v向量d_model=n_head * d_k
q = self.w_qs(q).view(batch_size, len_q, n_head, d_k)
k = self.w_ks(k).view(batch_size, len_k, n_head, d_k)
v = self.w_vs(v).view(batch_size, len_v, n_head, d_v)
# Transpose for attention dot product: b x n x lq x dv
# 交换维度做attention
# 由(batch_size, len_q, n_head, d_k) => (batch_size, n_head, len_q, d_k)
# (batch_size, len_q, 8, 64) => (batch_size, 8, len_q, 64)
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
# 输出的q为Softmax(QK/d + (1-S)σ)V, attn 为QK/D
q, attn = self.attention(q, k, v, mask=None)
# Transpose to move the head dimension back: b x lq x n x dv
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
# (batch_size, 8, len_k, 64) => (batch_size, len_k, 8, 64) => (batch_size, len_k, 512)
q = q.transpose(1, 2).contiguous().view(batch_size, len_q, -1)
# 经过fc和dropout
q = self.dropout(self.fc(q))
# 残差连接 论文中的Add & Norm中的Add
q += residual
# 论文中的Add & Norm中的Norm
q = self.layer_norm(q)
# q的shape为(batch_size, len_q, 512)
# attn的shape为(batch_size, n_head, len_q, len_k)
return q, attn
Loading…
Cancel
Save