You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

81 lines
2.0 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# -*- coding: utf-8 -*-
import cv2
import numpy as np
from numpy.linalg import norm
SZ = 20 # 训练图片长宽
MAX_WIDTH = 1000 # 原始图片最大宽度
Min_Area = 2000 # 车牌区域允许最大面积
PROVINCE_START = 1000
# 来自opencv的sample用于svm训练
def deskew(img):
m = cv2.moments(img)
if abs(m['mu02']) < 1e-2:
return img.copy()
skew = m['mu11'] / m['mu02']
M = np.float32([[1, skew, -0.5 * SZ * skew], [0, 1, 0]])
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
return img
# 来自opencv的sample用于svm训练
def preprocess_hog(digits):
samples = []
for img in digits:
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
mag, ang = cv2.cartToPolar(gx, gy)
bin_n = 16
bin = np.int32(bin_n * ang / (2 * np.pi))
bin_cells = bin[:10, :10], bin[10:, :10], bin[:10, 10:], bin[10:, 10:]
mag_cells = mag[:10, :10], mag[10:, :10], mag[:10, 10:], mag[10:, 10:]
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
hist = np.hstack(hists)
# transform to Hellinger kernel
eps = 1e-7
hist /= hist.sum() + eps
hist = np.sqrt(hist)
hist /= norm(hist) + eps
samples.append(hist)
return np.float32(samples)
provinces = [
"zh_cuan", "",
"zh_e", "",
"zh_gan", "",
"zh_gan1", "",
"zh_gui", "",
"zh_gui1", "",
"zh_hei", "",
"zh_hu", "",
"zh_ji", "",
"zh_jin", "",
"zh_jing", "",
"zh_jl", "",
"zh_liao", "",
"zh_lu", "",
"zh_meng", "",
"zh_min", "",
"zh_ning", "",
"zh_qing", "",
"zh_qiong", "",
"zh_shan", "",
"zh_su", "",
"zh_sx", "",
"zh_wan", "",
"zh_xiang", "",
"zh_xin", "",
"zh_yu", "",
"zh_yu1", "",
"zh_yue", "",
"zh_yun", "",
"zh_zang", "",
"zh_zhe", ""
]