test
fred 2 weeks ago
parent 2b0043f81b
commit a96095e481

@ -0,0 +1,10 @@
# 默认忽略的文件
/shelf/
/workspace.xml
# 基于编辑器的 HTTP 客户端请求
/httpRequests/
# 依赖于环境的 Maven 主目录路径
/mavenHomeManager.xml
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

@ -0,0 +1,18 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="CompilerConfiguration">
<annotationProcessing>
<profile name="Maven default annotation processors profile" enabled="true">
<sourceOutputDir name="target/generated-sources/annotations" />
<sourceTestOutputDir name="target/generated-test-sources/test-annotations" />
<outputRelativeToContentRoot value="true" />
<module name="web-digital-human" />
</profile>
</annotationProcessing>
</component>
<component name="JavacSettings">
<option name="ADDITIONAL_OPTIONS_OVERRIDE">
<module name="web-digital-human" options="-parameters" />
</option>
</component>
</project>

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Encoding">
<file url="file://$PROJECT_DIR$/web-digital-human/src/main/java" charset="UTF-8" />
</component>
</project>

@ -0,0 +1,20 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="RemoteRepositoriesConfiguration">
<remote-repository>
<option name="id" value="central" />
<option name="name" value="Central Repository" />
<option name="url" value="https://repo.maven.apache.org/maven2" />
</remote-repository>
<remote-repository>
<option name="id" value="central" />
<option name="name" value="Maven Central repository" />
<option name="url" value="https://repo1.maven.org/maven2" />
</remote-repository>
<remote-repository>
<option name="id" value="jboss.community" />
<option name="name" value="JBoss Community repository" />
<option name="url" value="https://repository.jboss.org/nexus/content/repositories/public/" />
</remote-repository>
</component>
</project>

@ -0,0 +1,14 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ExternalStorageConfigurationManager" enabled="true" />
<component name="MavenProjectsManager">
<option name="originalFiles">
<list>
<option value="$PROJECT_DIR$/web-digital-human/pom.xml" />
</list>
</option>
</component>
<component name="ProjectRootManager" version="2" languageLevel="JDK_23" default="true" project-jdk-name="23" project-jdk-type="JavaSDK">
<output url="file://$PROJECT_DIR$/out" />
</component>
</project>

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/语音交互大模型.iml" filepath="$PROJECT_DIR$/.idea/语音交互大模型.iml" />
</modules>
</component>
</project>

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$/web-digital-human" vcs="Git" />
</component>
</project>

@ -0,0 +1,9 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="JAVA_MODULE" version="4">
<component name="NewModuleRootManager" inherit-compiler-output="true">
<exclude-output />
<content url="file://$MODULE_DIR$" />
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

@ -0,0 +1,5 @@
<script type="text/javascript" src="https://webapi.amap.com/maps?v=1.4.15&key=b2c4862bb095bae06b8f523a8dca3739&plugin=AMap.Driving,AMap.Walking,AMap.Riding,AMap.Transfer,AMap.Geocoder"></script>
const currentKey = 'b2c4862bb095bae06b8f523a8dca3739';
const key = 'b2c4862bb095bae06b8f523a8dca3739';

@ -0,0 +1,3 @@
<p><strong>API密钥:</strong> <code>89809a75e72d097bf044c35b9cede50b</code></p>
const API_KEY = '89809a75e72d097bf044c35b9cede50b';

@ -0,0 +1 @@
Subproject commit 3787655d6696c11baa7c726d98bf26bfa671b655

@ -0,0 +1,222 @@
# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
.git
.cache
.idea
runs
output
coco
storage.googleapis.com
data/samples/*
**/results*.csv
*.jpg
# Neural Network weights -----------------------------------------------------------------------------------------------
**/*.pt
**/*.pth
**/*.onnx
**/*.engine
**/*.mlmodel
**/*.torchscript
**/*.torchscript.pt
**/*.tflite
**/*.h5
**/*.pb
*_saved_model/
*_web_model/
*_openvino_model/
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
wandb/
.installed.cfg
*.egg
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# SageMath parsed files
*.sage.py
# dotenv
.env
# virtualenv
.venv*
venv*/
ENV*/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
# General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
Icon?
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# User-specific stuff:
.idea/*
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/dictionaries
.html # Bokeh Plots
.pg # TensorFlow Frozen Graphs
.avi # videos
# Sensitive or high-churn files:
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
# Gradle:
.idea/**/gradle.xml
.idea/**/libraries
# CMake
cmake-build-debug/
cmake-build-release/
# Mongo Explorer plugin:
.idea/**/mongoSettings.xml
## File-based project format:
*.iws
## Plugin-specific files:
# IntelliJ
out/
# mpeltonen/sbt-idea plugin
.idea_modules/
# JIRA plugin
atlassian-ide-plugin.xml
# Cursive Clojure plugin
.idea/replstate.xml
# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties

@ -0,0 +1,2 @@
# this drop notebooks from GitHub language stats
*.ipynb linguist-vendored

@ -0,0 +1,87 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
name: 🐛 Bug Report
# title: " "
description: Problems with YOLOv5
labels: [bug, triage]
body:
- type: markdown
attributes:
value: |
Thank you for submitting a YOLOv5 🐛 Bug Report!
- type: checkboxes
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists.
options:
- label: >
I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report.
required: true
- type: dropdown
attributes:
label: YOLOv5 Component
description: |
Please select the part of YOLOv5 where you found the bug.
multiple: true
options:
- "Training"
- "Validation"
- "Detection"
- "Export"
- "PyTorch Hub"
- "Multi-GPU"
- "Evolution"
- "Integrations"
- "Other"
validations:
required: false
- type: textarea
attributes:
label: Bug
description: Provide console output with error messages and/or screenshots of the bug.
placeholder: |
💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
validations:
required: true
- type: textarea
attributes:
label: Environment
description: Please specify the software and hardware you used to produce the bug.
placeholder: |
- YOLO: YOLOv5 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)
- OS: Ubuntu 20.04
- Python: 3.9.0
validations:
required: false
- type: textarea
attributes:
label: Minimal Reproducible Example
description: >
When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem.
This is referred to by community members as creating a [minimal reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/).
placeholder: |
```
# Code to reproduce your issue here
```
validations:
required: false
- type: textarea
attributes:
label: Additional
description: Anything else you would like to share?
- type: checkboxes
attributes:
label: Are you willing to submit a PR?
description: >
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
See the YOLOv5 [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
options:
- label: Yes I'd like to help by submitting a PR!

@ -0,0 +1,13 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
blank_issues_enabled: true
contact_links:
- name: 📄 Docs
url: https://docs.ultralytics.com/yolov5
about: View Ultralytics YOLOv5 Docs
- name: 💬 Forum
url: https://community.ultralytics.com/
about: Ask on Ultralytics Community Forum
- name: 🎧 Discord
url: https://ultralytics.com/discord
about: Ask on Ultralytics Discord

@ -0,0 +1,52 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
name: 🚀 Feature Request
description: Suggest a YOLOv5 idea
# title: " "
labels: [enhancement]
body:
- type: markdown
attributes:
value: |
Thank you for submitting a YOLOv5 🚀 Feature Request!
- type: checkboxes
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists.
options:
- label: >
I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests.
required: true
- type: textarea
attributes:
label: Description
description: A short description of your feature.
placeholder: |
What new feature would you like to see in YOLOv5?
validations:
required: true
- type: textarea
attributes:
label: Use case
description: |
Describe the use case of your feature request. It will help us understand and prioritize the feature request.
placeholder: |
How would this feature be used, and who would use it?
- type: textarea
attributes:
label: Additional
description: Anything else you would like to share?
- type: checkboxes
attributes:
label: Are you willing to submit a PR?
description: >
(Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
See the YOLOv5 [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
options:
- label: Yes I'd like to help by submitting a PR!

@ -0,0 +1,35 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
name: ❓ Question
description: Ask a YOLOv5 question
# title: " "
labels: [question]
body:
- type: markdown
attributes:
value: |
Thank you for asking a YOLOv5 ❓ Question!
- type: checkboxes
attributes:
label: Search before asking
description: >
Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists.
options:
- label: >
I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions.
required: true
- type: textarea
attributes:
label: Question
description: What is your question?
placeholder: |
💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
validations:
required: true
- type: textarea
attributes:
label: Additional
description: Anything else you would like to share?

@ -0,0 +1,28 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Dependabot for package version updates
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
version: 2
updates:
- package-ecosystem: pip
directory: "/"
schedule:
interval: weekly
time: "04:00"
open-pull-requests-limit: 10
reviewers:
- glenn-jocher
labels:
- dependencies
- package-ecosystem: github-actions
directory: "/.github/workflows"
schedule:
interval: weekly
time: "04:00"
open-pull-requests-limit: 5
reviewers:
- glenn-jocher
labels:
- dependencies

@ -0,0 +1,152 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv5 Continuous Integration (CI) GitHub Actions tests
name: YOLOv5 CI
permissions:
contents: read
on:
push:
branches: [master]
pull_request:
branches: [master]
schedule:
- cron: "0 0 * * *" # runs at 00:00 UTC every day
workflow_dispatch:
jobs:
Benchmarks:
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest]
python-version: ["3.11"] # requires python<=3.11
model: [yolov5n]
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- uses: astral-sh/setup-uv@v6
- name: Install requirements
run: |
uv pip install --system -r requirements.txt coremltools openvino-dev tensorflow --extra-index-url https://download.pytorch.org/whl/cpu --index-strategy unsafe-best-match
yolo checks
uv pip list
- name: Benchmark DetectionModel
run: |
python benchmarks.py --data coco128.yaml --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29
- name: Benchmark SegmentationModel
run: |
python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22
- name: Test predictions
run: |
python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224
python detect.py --weights ${{ matrix.model }}.onnx --img 320
python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320
python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224
Tests:
timeout-minutes: 60
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-latest, macos-14] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049
python-version: ["3.11"]
model: [yolov5n]
include:
- os: ubuntu-latest
python-version: "3.8" # torch 1.8.0 requires python >=3.6, <=3.8
model: yolov5n
torch: "1.8.0" # min torch version CI https://pypi.org/project/torchvision/
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- uses: astral-sh/setup-uv@v6
- name: Install requirements
run: |
torch=""
if [ "${{ matrix.torch }}" == "1.8.0" ]; then
torch="torch==1.8.0 torchvision==0.9.0"
fi
uv pip install --system -r requirements.txt $torch --extra-index-url https://download.pytorch.org/whl/cpu --index-strategy unsafe-best-match
shell: bash # for Windows compatibility
- name: Check environment
run: |
yolo checks
pip list
- name: Test detection
shell: bash # for Windows compatibility
run: |
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
m=${{ matrix.model }} # official weights
b=runs/train/exp/weights/best # best.pt checkpoint
python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
for d in cpu; do # devices
for w in $m $b; do # weights
python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
python detect.py --imgsz 64 --weights $w.pt --device $d # detect
done
done
python hubconf.py --model $m # hub
# python models/tf.py --weights $m.pt # build TF model
python models/yolo.py --cfg $m.yaml # build PyTorch model
python export.py --weights $m.pt --img 64 --include torchscript # export
python - <<EOF
import torch
im = torch.zeros([1, 3, 64, 64])
for path in '$m', '$b':
model = torch.hub.load('.', 'custom', path=path, source='local')
print(model('data/images/bus.jpg'))
model(im) # warmup, build grids for trace
torch.jit.trace(model, [im])
EOF
- name: Test segmentation
shell: bash # for Windows compatibility
run: |
m=${{ matrix.model }}-seg # official weights
b=runs/train-seg/exp/weights/best # best.pt checkpoint
python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train
python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu # train
for d in cpu; do # devices
for w in $m $b; do # weights
python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val
python segment/predict.py --imgsz 64 --weights $w.pt --device $d # predict
python export.py --weights $w.pt --img 64 --include torchscript --device $d # export
done
done
- name: Test classification
shell: bash # for Windows compatibility
run: |
m=${{ matrix.model }}-cls.pt # official weights
b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint
python classify/train.py --imgsz 32 --model $m --data mnist160 --epochs 1 # train
python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist160 # val
python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist160/test/7/60.png # predict
python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict
python export.py --weights $b --img 64 --include torchscript # export
python - <<EOF
import torch
for path in '$m', '$b':
model = torch.hub.load('.', 'custom', path=path, source='local')
EOF
Summary:
runs-on: ubuntu-latest
needs: [Benchmarks, Tests]
if: always()
steps:
- name: Check for failure and notify
if: (needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure' || needs.Benchmarks.result == 'cancelled' || needs.Tests.result == 'cancelled') && github.repository == 'ultralytics/yolov5' && (github.event_name == 'schedule' || github.event_name == 'push') && github.run_attempt == '1'
uses: slackapi/slack-github-action@v2.1.0
with:
webhook-type: incoming-webhook
webhook: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
payload: |
text: "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n"

@ -0,0 +1,45 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics Contributor License Agreement (CLA) action https://docs.ultralytics.com/help/CLA
# This workflow automatically requests Pull Requests (PR) authors to sign the Ultralytics CLA before PRs can be merged
name: CLA Assistant
on:
issue_comment:
types:
- created
pull_request_target:
types:
- reopened
- opened
- synchronize
permissions:
actions: write
contents: write
pull-requests: write
statuses: write
jobs:
CLA:
if: github.repository == 'ultralytics/yolov5'
runs-on: ubuntu-latest
steps:
- name: CLA Assistant
if: (github.event.comment.body == 'recheck' || github.event.comment.body == 'I have read the CLA Document and I sign the CLA') || github.event_name == 'pull_request_target'
uses: contributor-assistant/github-action@v2.6.1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# Must be repository secret PAT
PERSONAL_ACCESS_TOKEN: ${{ secrets._GITHUB_TOKEN }}
with:
path-to-signatures: "signatures/version1/cla.json"
path-to-document: "https://docs.ultralytics.com/help/CLA" # CLA document
# Branch must not be protected
branch: "cla-signatures"
allowlist: dependabot[bot],github-actions,[pre-commit*,pre-commit*,bot*
remote-organization-name: ultralytics
remote-repository-name: cla
custom-pr-sign-comment: "I have read the CLA Document and I sign the CLA"
custom-allsigned-prcomment: All Contributors have signed the CLA. ✅

@ -0,0 +1,61 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Builds ultralytics/yolov5:latest images on DockerHub https://hub.docker.com/r/ultralytics/yolov5
name: Publish Docker Images
on:
push:
branches: [master]
workflow_dispatch:
jobs:
docker:
if: github.repository == 'ultralytics/yolov5'
name: Push Docker image to Docker Hub
runs-on: ubuntu-latest
steps:
- name: Checkout repo
uses: actions/checkout@v4
with:
fetch-depth: 0 # copy full .git directory to access full git history in Docker images
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build and push arm64 image
uses: docker/build-push-action@v6
continue-on-error: true
with:
context: .
platforms: linux/arm64
file: utils/docker/Dockerfile-arm64
push: true
tags: ultralytics/yolov5:latest-arm64
- name: Build and push CPU image
uses: docker/build-push-action@v6
continue-on-error: true
with:
context: .
file: utils/docker/Dockerfile-cpu
push: true
tags: ultralytics/yolov5:latest-cpu
- name: Build and push GPU image
uses: docker/build-push-action@v6
continue-on-error: true
with:
context: .
file: utils/docker/Dockerfile
push: true
tags: ultralytics/yolov5:latest

@ -0,0 +1,55 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics Actions https://github.com/ultralytics/actions
# This workflow formats code and documentation in PRs to Ultralytics standards
name: Ultralytics Actions
on:
issues:
types: [opened]
pull_request:
branches: [main, master]
types: [opened, closed, synchronize, review_requested]
permissions:
contents: write # Modify code in PRs
pull-requests: write # Add comments and labels to PRs
issues: write # Add comments and labels to issues
jobs:
actions:
runs-on: ubuntu-latest
steps:
- name: Run Ultralytics Actions
uses: ultralytics/actions@main
with:
token: ${{ secrets._GITHUB_TOKEN || secrets.GITHUB_TOKEN }} # Auto-generated token
labels: true # Auto-label issues/PRs using AI
python: true # Format Python with Ruff and docformatter
prettier: true # Format YAML, JSON, Markdown, CSS
spelling: true # Check spelling with codespell
links: false # Check broken links with Lychee
summary: true # Generate AI-powered PR summaries
openai_api_key: ${{ secrets.OPENAI_API_KEY }} # Powers PR summaries, labels and comments
brave_api_key: ${{ secrets.BRAVE_API_KEY }} # Used for broken link resolution
first_issue_response: |
👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ [Tutorials](https://docs.ultralytics.com/yolov5/) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/) all the way to advanced concepts like [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/).
If this is a 🐛 Bug Report, please provide a **minimum reproducible example** to help us debug it.
If this is a custom training ❓ Question, please provide as much information as possible, including dataset image examples and training logs, and verify you are following our [Tips for Best Training Results](https://docs.ultralytics.com/guides/model-training-tips/).
## Requirements
[**Python>=3.8.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/). To get started:
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
## Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Notebooks** with free GPU: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/models/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)
- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
## Status
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.

@ -0,0 +1,82 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Continuous Integration (CI) GitHub Actions tests broken link checker using https://github.com/lycheeverse/lychee
# Ignores the following status codes to reduce false positives:
# - 403(OpenVINO, 'forbidden')
# - 429(Instagram, 'too many requests')
# - 500(Zenodo, 'cached')
# - 502(Zenodo, 'bad gateway')
# - 999(LinkedIn, 'unknown status code')
name: Check Broken links
on:
workflow_dispatch:
schedule:
- cron: "0 0 * * *" # runs at 00:00 UTC every day
jobs:
Links:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Download and install lychee
run: |
LYCHEE_URL=$(curl -s https://api.github.com/repos/lycheeverse/lychee/releases/latest | grep "browser_download_url" | grep "x86_64-unknown-linux-gnu.tar.gz" | cut -d '"' -f 4)
curl -L $LYCHEE_URL | tar xz -C /usr/local/bin
- name: Test Markdown and HTML links with retry
uses: ultralytics/actions/retry@main
with:
timeout_minutes: 5
retry_delay_seconds: 60
retries: 2
run: |
lychee \
--scheme 'https' \
--timeout 60 \
--insecure \
--accept 100..=103,200..=299,401,403,429,500,502,999 \
--exclude-all-private \
--exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|x\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
--exclude-path '**/ci.yaml' \
--github-token ${{ secrets.GITHUB_TOKEN }} \
--header "User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.6478.183 Safari/537.36" \
'./**/*.md' \
'./**/*.html' | tee -a $GITHUB_STEP_SUMMARY
# Raise error if broken links found
if ! grep -q "0 Errors" $GITHUB_STEP_SUMMARY; then
exit 1
fi
- name: Test Markdown, HTML, YAML, Python and Notebook links with retry
if: github.event_name == 'workflow_dispatch'
uses: ultralytics/actions/retry@main
with:
timeout_minutes: 5
retry_delay_seconds: 60
retries: 2
run: |
lychee \
--scheme 'https' \
--timeout 60 \
--insecure \
--accept 100..=103,200..=299,429,999 \
--exclude-all-private \
--exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|x\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
--exclude-path '**/ci.yaml' \
--github-token ${{ secrets.GITHUB_TOKEN }} \
--header "User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.6478.183 Safari/537.36" \
'./**/*.md' \
'./**/*.html' \
'./**/*.yml' \
'./**/*.yaml' \
'./**/*.py' \
'./**/*.ipynb' | tee -a $GITHUB_STEP_SUMMARY
# Raise error if broken links found
if ! grep -q "0 Errors" $GITHUB_STEP_SUMMARY; then
exit 1
fi

@ -0,0 +1,72 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Automatically merges repository 'main' branch into all open PRs to keep them up-to-date
# Action runs on updates to main branch so when one PR merges to main all others update
name: Merge main into PRs
on:
workflow_dispatch:
# push:
# branches:
# - ${{ github.event.repository.default_branch }}
jobs:
Merge:
if: github.repository == 'ultralytics/yolov5'
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
- uses: actions/setup-python@v5
with:
python-version: "3.x"
cache: "pip"
- name: Install requirements
run: |
pip install pygithub
- name: Merge default branch into PRs
shell: python
run: |
from github import Github
import os
g = Github(os.getenv('GITHUB_TOKEN'))
repo = g.get_repo(os.getenv('GITHUB_REPOSITORY'))
# Fetch the default branch name
default_branch_name = repo.default_branch
default_branch = repo.get_branch(default_branch_name)
for pr in repo.get_pulls(state='open', sort='created'):
try:
# Get full names for repositories and branches
base_repo_name = repo.full_name
head_repo_name = pr.head.repo.full_name
base_branch_name = pr.base.ref
head_branch_name = pr.head.ref
# Check if PR is behind the default branch
comparison = repo.compare(default_branch.commit.sha, pr.head.sha)
if comparison.behind_by > 0:
print(f"⚠️ PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}) is behind {default_branch_name} by {comparison.behind_by} commit(s).")
# Attempt to update the branch
try:
success = pr.update_branch()
assert success, "Branch update failed"
print(f"✅ Successfully merged '{default_branch_name}' into PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}).")
except Exception as update_error:
print(f"❌ Could not update PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}): {update_error}")
print(" This might be due to branch protection rules or insufficient permissions.")
else:
print(f"✅ PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}) is up to date with {default_branch_name}.")
except Exception as e:
print(f"❌ Could not process PR #{pr.number}: {e}")
env:
GITHUB_TOKEN: ${{ secrets._GITHUB_TOKEN }}
GITHUB_REPOSITORY: ${{ github.repository }}

@ -0,0 +1,47 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
name: Close stale issues
on:
schedule:
- cron: "0 0 * * *" # Runs at 00:00 UTC every day
jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v9
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-issue-message: |
👋 Hello there! We wanted to give you a friendly reminder that this issue has not had any recent activity and may be closed soon, but don't worry - you can always reopen it if needed. If you still have any questions or concerns, please feel free to let us know how we can help.
For additional resources and information, please see the links below:
- **Docs**: https://docs.ultralytics.com
- **HUB**: https://hub.ultralytics.com
- **Community**: https://community.ultralytics.com
Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed!
Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
stale-pr-message: |
👋 Hello there! We wanted to let you know that we've decided to close this pull request due to inactivity. We appreciate the effort you put into contributing to our project, but unfortunately, not all contributions are suitable or aligned with our product roadmap.
We hope you understand our decision, and please don't let it discourage you from contributing to open source projects in the future. We value all of our community members and their contributions, and we encourage you to keep exploring new projects and ways to get involved.
For additional resources and information, please see the links below:
- **Docs**: https://docs.ultralytics.com
- **HUB**: https://hub.ultralytics.com
- **Community**: https://community.ultralytics.com
Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
days-before-issue-stale: 30
days-before-issue-close: 10
days-before-pr-stale: 90
days-before-pr-close: 30
exempt-issue-labels: "documentation,tutorial,TODO"
operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.

@ -0,0 +1,258 @@
# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
*.jpg
*.jpeg
*.png
*.bmp
*.tif
*.tiff
*.heic
*.JPG
*.JPEG
*.PNG
*.BMP
*.TIF
*.TIFF
*.HEIC
*.mp4
*.mov
*.MOV
*.avi
*.data
*.json
*.cfg
!setup.cfg
!cfg/yolov3*.cfg
storage.googleapis.com
runs/*
data/*
data/images/*
!data/*.yaml
!data/hyps
!data/scripts
!data/images
!data/images/zidane.jpg
!data/images/bus.jpg
!data/*.sh
results*.csv
# Datasets -------------------------------------------------------------------------------------------------------------
coco/
coco128/
VOC/
# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
*.m~
*.mat
!targets*.mat
# Neural Network weights -----------------------------------------------------------------------------------------------
*.weights
*.pt
*.pb
*.onnx
*.engine
*.mlmodel
*.mlpackage
*.torchscript
*.tflite
*.h5
*_saved_model/
*_web_model/
*_openvino_model/
*_paddle_model/
darknet53.conv.74
yolov3-tiny.conv.15
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
/wandb/
.installed.cfg
*.egg
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# SageMath parsed files
*.sage.py
# dotenv
.env
# virtualenv
.venv*
venv*/
ENV*/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
# General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
Icon?
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# User-specific stuff:
.idea/*
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/dictionaries
.html # Bokeh Plots
.pg # TensorFlow Frozen Graphs
.avi # videos
# Sensitive or high-churn files:
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
# Gradle:
.idea/**/gradle.xml
.idea/**/libraries
# CMake
cmake-build-debug/
cmake-build-release/
# Mongo Explorer plugin:
.idea/**/mongoSettings.xml
## File-based project format:
*.iws
## Plugin-specific files:
# IntelliJ
out/
# mpeltonen/sbt-idea plugin
.idea_modules/
# JIRA plugin
atlassian-ide-plugin.xml
# Cursive Clojure plugin
.idea/replstate.xml
# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties

@ -0,0 +1,14 @@
cff-version: 1.2.0
preferred-citation:
type: software
message: If you use YOLOv5, please cite it as below.
authors:
- family-names: Jocher
given-names: Glenn
orcid: "https://orcid.org/0000-0001-5950-6979"
title: "YOLOv5 by Ultralytics"
version: 7.0
doi: 10.5281/zenodo.3908559
date-released: 2020-5-29
license: AGPL-3.0
url: "https://github.com/ultralytics/yolov5"

@ -0,0 +1,87 @@
<a href="https://www.ultralytics.com/"><img src="https://raw.githubusercontent.com/ultralytics/assets/main/logo/Ultralytics_Logotype_Original.svg" width="320" alt="Ultralytics logo"></a>
# Contributing to YOLO 🚀
We value your input and are committed to making contributing to YOLO as easy and transparent as possible. Whether you're:
- Reporting a bug
- Discussing the current state of the codebase
- Submitting a fix
- Proposing a new feature
- Interested in becoming a maintainer
Ultralytics YOLO thrives thanks to the collective efforts of our community. Every improvement you contribute helps push the boundaries of what's possible in AI! 😃
## 🛠️ Submitting a Pull Request (PR)
Submitting a PR is straightforward! Heres an example showing how to update `requirements.txt` in four simple steps:
### 1. Select the File to Update
Click on `requirements.txt` in the GitHub repository.
<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
### 2. Click 'Edit this file'
Find the 'Edit this file' button in the top-right corner.
<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
### 3. Make Your Changes
For example, update the `matplotlib` version from `3.2.2` to `3.3`.
<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
### 4. Preview Changes and Submit Your PR
Click the **Preview changes** tab to review your updates. At the bottom, select 'Create a new branch for this commit', give your branch a descriptive name like `fix/matplotlib_version`, and click the green **Propose changes** button. Your PR is now submitted for review! 😃
<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
### PR Best Practices
To ensure your work is integrated smoothly, please:
- ✅ Make sure your PR is **up-to-date** with the `ultralytics/yolov5` `master` branch. If your branch is behind, update it using the 'Update branch' button or by running `git pull` and `git merge master` locally.
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
- ✅ Ensure all YOLO Continuous Integration (CI) **checks are passing**.
<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
- ✅ Limit your changes to the **minimum** required for your bug fix or feature.
_"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
## 🐛 Submitting a Bug Report
If you encounter an issue with YOLO, please submit a bug report!
To help us investigate, we need to be able to reproduce the problem. Follow these guidelines to provide what we need to get started:
When asking a question or reporting a bug, you'll get better help if you provide **code** that others can easily understand and use to **reproduce** the issue. This is known as a [minimum reproducible example](https://docs.ultralytics.com/help/minimum-reproducible-example/). Your code should be:
- ✅ **Minimal** Use as little code as possible that still produces the issue
- ✅ **Complete** Include all parts needed for someone else to reproduce the problem
- ✅ **Reproducible** Test your code to ensure it actually reproduces the issue
Additionally, for [Ultralytics](https://www.ultralytics.com/) to assist you, your code should be:
- ✅ **Current** Ensure your code is up-to-date with the latest [master branch](https://github.com/ultralytics/yolov5/tree/master). Use `git pull` or `git clone` to get the latest version and confirm your issue hasn't already been fixed.
- ✅ **Unmodified** The problem must be reproducible without any custom modifications to the repository. [Ultralytics](https://www.ultralytics.com/) does not provide support for custom code ⚠️.
If your issue meets these criteria, please close your current issue and open a new one using the 🐛 **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose), including your [minimum reproducible example](https://docs.ultralytics.com/help/minimum-reproducible-example/) to help us diagnose your problem.
## 📄 License
By contributing, you agree that your contributions will be licensed under the [AGPL-3.0 license](https://choosealicense.com/licenses/agpl-3.0/).
---
For more details on contributing, check out the [Ultralytics open-source contributing guide](https://docs.ultralytics.com/help/contributing/), and explore our [Ultralytics blog](https://www.ultralytics.com/blog) for community highlights and best practices.
We welcome your contributions—thank you for helping make Ultralytics YOLO better! 🚀
[![Ultralytics open-source contributors](https://raw.githubusercontent.com/ultralytics/assets/main/im/image-contributors.png)](https://github.com/ultralytics/ultralytics/graphs/contributors)

@ -0,0 +1,156 @@
# 🚁 无人机控制系统
这是一个基于Flask和YOLOv5的无人机控制系统支持实时视频流和目标检测功能。
## 功能特性
- ✅ 实时视频流显示
- ✅ 无人机按钮控制
- ✅ YOLOv5目标检测
- ✅ Web界面控制
- ✅ 键盘快捷键支持
- ✅ 紧急停止功能
- ✅ 实时状态监控
- ✅ 操作日志记录
## 系统要求
- Python 3.7+
- Tello无人机
- 支持WiFi的电脑
- 摄像头(可选)
## 安装步骤
### 1. 安装依赖
```bash
pip install -r drone_requirements.txt
```
### 2. 确保YOLOv5权重文件存在
确保 `yolov5s.pt` 文件在当前目录下。
### 3. 连接无人机
- 将电脑连接到Tello无人机的WiFi网络
- 确保无人机IP地址为 `192.168.10.1`
## 使用方法
### 1. 启动系统
```bash
python drone_control.py
```
### 2. 访问Web界面
打开浏览器访问:`http://localhost:5000`
### 3. 控制无人机
#### 按钮控制
- **基础控制**: 起飞、降落、上升、下降
- **方向控制**: 前进、后退、左移、右移
- **旋转控制**: 左转、右转、前翻、后翻
- **特殊功能**: 目标检测开关、紧急停止
#### 键盘快捷键
- `空格键`: 起飞
- `回车键`: 降落
- `W/A/S/D`: 前进/左移/后退/右移
- `Q/E`: 左转/右转
- `ESC`: 紧急停止
## 界面说明
### 状态栏
- 🟢 **连接状态**: 显示与无人机的连接状态
- 🔵 **视频流**: 显示视频流状态
- 🟠 **目标检测**: 显示检测功能状态
### 主要区域
- **视频显示**: 实时显示无人机摄像头画面
- **控制面板**: 各种控制按钮
- **检测结果**: 显示YOLOv5检测到的目标
- **操作日志**: 记录所有操作和响应
## 配置说明
### 无人机配置
`drone_control.py` 中修改以下参数:
```python
TELLO_IP = '192.168.10.1' # 无人机IP地址
TELLO_PORT = 8889 # 控制端口
LOCAL_PORT = 9000 # 本地端口
```
### YOLOv5配置
- 模型文件: `yolov5s.pt`
- 检测阈值: 0.25
- IoU阈值: 0.45
- 输入尺寸: 640x640
## 故障排除
### 1. 连接失败
- 检查WiFi连接
- 确认无人机IP地址
- 重启无人机和程序
### 2. 视频流问题
- 检查UDP端口11111是否被占用
- 确认网络带宽足够
- 尝试降低视频质量
### 3. 检测功能异常
- 确认YOLOv5权重文件存在
- 检查PyTorch安装
- 查看控制台错误信息
### 4. 性能问题
- 降低视频分辨率
- 关闭不必要的检测功能
- 使用GPU加速如果可用
## 安全注意事项
⚠️ **重要提醒**:
- 在开阔空间使用无人机
- 保持安全距离
- 避免在人群密集区域飞行
- 遵守当地无人机法规
- 随时准备紧急停止
## 技术架构
```
无人机控制系统
├── Flask Web服务器
├── Socket.IO 实时通信
├── OpenCV 视频处理
├── YOLOv5 目标检测
├── PyAV 视频解码
└── UDP 无人机通信
```
## 开发说明
### 添加新功能
1. 在 `drone_control.py` 中添加新的命令处理函数
2. 在HTML模板中添加对应的按钮
3. 在JavaScript中添加事件处理
### 自定义检测
1. 训练自己的YOLOv5模型
2. 替换 `yolov5s.pt` 文件
3. 修改类别名称和检测逻辑
## 许可证
本项目基于MIT许可证开源。
## 贡献
欢迎提交Issue和Pull Request来改进这个项目
---
**注意**: 使用无人机时请遵守相关法律法规,确保飞行安全。

@ -0,0 +1,661 @@
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.

@ -0,0 +1,513 @@
<div align="center">
<p>
<a href="https://www.ultralytics.com/blog/all-you-need-to-know-about-ultralytics-yolo11-and-its-applications" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
</p>
[中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar)
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI Testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<a href="https://discord.com/invite/ultralytics"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a> <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a> <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/models/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
Ultralytics YOLOv5 🚀 is a cutting-edge, state-of-the-art (SOTA) computer vision model developed by [Ultralytics](https://www.ultralytics.com/). Based on the [PyTorch](https://pytorch.org/) framework, YOLOv5 is renowned for its ease of use, speed, and accuracy. It incorporates insights and best practices from extensive research and development, making it a popular choice for a wide range of vision AI tasks, including [object detection](https://docs.ultralytics.com/tasks/detect/), [image segmentation](https://docs.ultralytics.com/tasks/segment/), and [image classification](https://docs.ultralytics.com/tasks/classify/).
We hope the resources here help you get the most out of YOLOv5. Please browse the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5/) for detailed information, raise an issue on [GitHub](https://github.com/ultralytics/yolov5/issues/new/choose) for support, and join our [Discord community](https://discord.com/invite/ultralytics) for questions and discussions!
To request an Enterprise License, please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
<br>
## 🚀 YOLO11: The Next Evolution
We are excited to announce the launch of **Ultralytics YOLO11** 🚀, the latest advancement in our state-of-the-art (SOTA) vision models! Available now at the [Ultralytics YOLO GitHub repository](https://github.com/ultralytics/ultralytics), YOLO11 builds on our legacy of speed, precision, and ease of use. Whether you're tackling [object detection](https://docs.ultralytics.com/tasks/detect/), [instance segmentation](https://docs.ultralytics.com/tasks/segment/), [pose estimation](https://docs.ultralytics.com/tasks/pose/), [image classification](https://docs.ultralytics.com/tasks/classify/), or [oriented object detection (OBB)](https://docs.ultralytics.com/tasks/obb/), YOLO11 delivers the performance and versatility needed to excel in diverse applications.
Get started today and unlock the full potential of YOLO11! Visit the [Ultralytics Docs](https://docs.ultralytics.com/) for comprehensive guides and resources:
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://www.pepy.tech/projects/ultralytics)
```bash
# Install the ultralytics package
pip install ultralytics
```
<div align="center">
<a href="https://www.ultralytics.com/yolo" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="Ultralytics YOLO Performance Comparison"></a>
</div>
## 📚 Documentation
See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5/) for full documentation on training, testing, and deployment. See below for quickstart examples.
<details open>
<summary>Install</summary>
Clone the repository and install dependencies in a [**Python>=3.8.0**](https://www.python.org/) environment. Ensure you have [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/) installed.
```bash
# Clone the YOLOv5 repository
git clone https://github.com/ultralytics/yolov5
# Navigate to the cloned directory
cd yolov5
# Install required packages
pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference with PyTorch Hub</summary>
Use YOLOv5 via [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) for inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) are automatically downloaded from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Load a YOLOv5 model (options: yolov5n, yolov5s, yolov5m, yolov5l, yolov5x)
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # Default: yolov5s
# Define the input image source (URL, local file, PIL image, OpenCV frame, numpy array, or list)
img = "https://ultralytics.com/images/zidane.jpg" # Example image
# Perform inference (handles batching, resizing, normalization automatically)
results = model(img)
# Process the results (options: .print(), .show(), .save(), .crop(), .pandas())
results.print() # Print results to console
results.show() # Display results in a window
results.save() # Save results to runs/detect/exp
```
</details>
<details>
<summary>Inference with detect.py</summary>
The `detect.py` script runs inference on various sources. It automatically downloads [models](https://github.com/ultralytics/yolov5/tree/master/models) from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saves the results to the `runs/detect` directory.
```bash
# Run inference using a webcam
python detect.py --weights yolov5s.pt --source 0
# Run inference on a local image file
python detect.py --weights yolov5s.pt --source img.jpg
# Run inference on a local video file
python detect.py --weights yolov5s.pt --source vid.mp4
# Run inference on a screen capture
python detect.py --weights yolov5s.pt --source screen
# Run inference on a directory of images
python detect.py --weights yolov5s.pt --source path/to/images/
# Run inference on a text file listing image paths
python detect.py --weights yolov5s.pt --source list.txt
# Run inference on a text file listing stream URLs
python detect.py --weights yolov5s.pt --source list.streams
# Run inference using a glob pattern for images
python detect.py --weights yolov5s.pt --source 'path/to/*.jpg'
# Run inference on a YouTube video URL
python detect.py --weights yolov5s.pt --source 'https://youtu.be/LNwODJXcvt4'
# Run inference on an RTSP, RTMP, or HTTP stream
python detect.py --weights yolov5s.pt --source 'rtsp://example.com/media.mp4'
```
</details>
<details>
<summary>Training</summary>
The commands below demonstrate how to reproduce YOLOv5 [COCO dataset](https://docs.ultralytics.com/datasets/detect/coco/) results. Both [models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) are downloaded automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are approximately 1/2/4/6/8 days on a single [NVIDIA V100 GPU](https://www.nvidia.com/en-us/data-center/v100/). Using [Multi-GPU training](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/) can significantly reduce training time. Use the largest `--batch-size` your hardware allows, or use `--batch-size -1` for YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). The batch sizes shown below are for V100-16GB GPUs.
```bash
# Train YOLOv5n on COCO for 300 epochs
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
# Train YOLOv5s on COCO for 300 epochs
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5s.yaml --batch-size 64
# Train YOLOv5m on COCO for 300 epochs
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5m.yaml --batch-size 40
# Train YOLOv5l on COCO for 300 epochs
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5l.yaml --batch-size 24
# Train YOLOv5x on COCO for 300 epochs
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5x.yaml --batch-size 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" alt="YOLOv5 Training Results">
</details>
<details open>
<summary>Tutorials</summary>
- **[Train Custom Data](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/)** 🚀 **RECOMMENDED**: Learn how to train YOLOv5 on your own datasets.
- **[Tips for Best Training Results](https://docs.ultralytics.com/guides/model-training-tips/)** ☘️: Improve your model's performance with expert tips.
- **[Multi-GPU Training](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/)**: Speed up training using multiple GPUs.
- **[PyTorch Hub Integration](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/)** 🌟 **NEW**: Easily load models using PyTorch Hub.
- **[Model Export (TFLite, ONNX, CoreML, TensorRT)](https://docs.ultralytics.com/yolov5/tutorials/model_export/)** 🚀: Convert your models to various deployment formats like [ONNX](https://onnx.ai/) or [TensorRT](https://developer.nvidia.com/tensorrt).
- **[NVIDIA Jetson Deployment](https://docs.ultralytics.com/guides/nvidia-jetson/)** 🌟 **NEW**: Deploy YOLOv5 on [NVIDIA Jetson](https://developer.nvidia.com/embedded-computing) devices.
- **[Test-Time Augmentation (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)**: Enhance prediction accuracy with TTA.
- **[Model Ensembling](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling/)**: Combine multiple models for better performance.
- **[Model Pruning/Sparsity](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity/)**: Optimize models for size and speed.
- **[Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/)**: Automatically find the best training hyperparameters.
- **[Transfer Learning with Frozen Layers](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers/)**: Adapt pretrained models to new tasks efficiently using [transfer learning](https://www.ultralytics.com/glossary/transfer-learning).
- **[Architecture Summary](https://docs.ultralytics.com/yolov5/tutorials/architecture_description/)** 🌟 **NEW**: Understand the YOLOv5 model architecture.
- **[Ultralytics HUB Training](https://www.ultralytics.com/hub)** 🚀 **RECOMMENDED**: Train and deploy YOLO models using Ultralytics HUB.
- **[ClearML Logging](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration/)**: Integrate with [ClearML](https://clear.ml/) for experiment tracking.
- **[Neural Magic DeepSparse Integration](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization/)**: Accelerate inference with DeepSparse.
- **[Comet Logging](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration/)** 🌟 **NEW**: Log experiments using [Comet ML](https://www.comet.com/site/).
</details>
## 🧩 Integrations
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with partners like [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/), [Comet ML](https://docs.ultralytics.com/integrations/comet/), [Roboflow](https://docs.ultralytics.com/integrations/roboflow/), and [Intel OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow. Explore more at [Ultralytics Integrations](https://docs.ultralytics.com/integrations/).
<a href="https://docs.ultralytics.com/integrations/" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations">
</a>
<br>
<br>
<div align="center">
<a href="https://www.ultralytics.com/hub">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://docs.ultralytics.com/integrations/weights-biases/">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://docs.ultralytics.com/integrations/comet/">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://docs.ultralytics.com/integrations/neural-magic/">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
</div>
| Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
| :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
## ⭐ Ultralytics HUB
Experience seamless AI development with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the ultimate platform for building, training, and deploying [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) models. Visualize datasets, train [YOLOv5](https://docs.ultralytics.com/models/yolov5/) and [YOLOv8](https://docs.ultralytics.com/models/yolov8/) 🚀 models, and deploy them to real-world applications without writing any code. Transform images into actionable insights using our cutting-edge tools and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
<a align="center" href="https://www.ultralytics.com/hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB Platform Screenshot"></a>
## 🤔 Why YOLOv5?
YOLOv5 is designed for simplicity and ease of use. We prioritize real-world performance and accessibility.
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png" alt="YOLOv5 Performance Chart"></p>
<details>
<summary>YOLOv5-P5 640 Figure</summary>
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png" alt="YOLOv5 P5 640 Performance Chart"></p>
</details>
<details>
<summary>Figure Notes</summary>
- **COCO AP val** denotes the [mean Average Precision (mAP)](https://www.ultralytics.com/glossary/mean-average-precision-map) at [Intersection over Union (IoU)](https://www.ultralytics.com/glossary/intersection-over-union-iou) thresholds from 0.5 to 0.95, measured on the 5,000-image [COCO val2017 dataset](https://docs.ultralytics.com/datasets/detect/coco/) across various inference sizes (256 to 1536 pixels).
- **GPU Speed** measures the average inference time per image on the [COCO val2017 dataset](https://docs.ultralytics.com/datasets/detect/coco/) using an [AWS p3.2xlarge V100 instance](https://aws.amazon.com/ec2/instance-types/p4/) with a batch size of 32.
- **EfficientDet** data is sourced from the [google/automl repository](https://github.com/google/automl) at batch size 8.
- **Reproduce** these results using the command: `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
</details>
### Pretrained Checkpoints
This table shows the performance metrics for various YOLOv5 models trained on the COCO dataset.
| Model | Size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | Params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------- | -------------------- | ----------------- | ---------------------------- | ----------------------------- | ------------------------------ | ------------------ | ---------------------- |
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
| | | | | | | | | |
| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+ [[TTA]](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/) | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
<details>
<summary>Table Notes</summary>
- All checkpoints were trained for 300 epochs using default settings. Nano (n) and Small (s) models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyperparameters, while Medium (m), Large (l), and Extra-Large (x) models use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
- **mAP<sup>val</sup>** values represent single-model, single-scale performance on the [COCO val2017 dataset](https://docs.ultralytics.com/datasets/detect/coco/).<br>Reproduce using: `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
- **Speed** metrics are averaged over COCO val images using an [AWS p3.2xlarge V100 instance](https://aws.amazon.com/ec2/instance-types/p4/). Non-Maximum Suppression (NMS) time (~1 ms/image) is not included.<br>Reproduce using: `python val.py --data coco.yaml --img 640 --task speed --batch 1`
- **TTA** ([Test Time Augmentation](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)) includes reflection and scale augmentations for improved accuracy.<br>Reproduce using: `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
</details>
## 🖼️ Segmentation
The YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) introduced [instance segmentation](https://docs.ultralytics.com/tasks/segment/) models that achieve state-of-the-art performance. These models are designed for easy training, validation, and deployment. For full details, see the [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and explore the [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart examples.
<details>
<summary>Segmentation Checkpoints</summary>
<div align="center">
<a align="center" href="https://www.ultralytics.com/yolo" target="_blank">
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png" alt="YOLOv5 Segmentation Performance Chart"></a>
</div>
YOLOv5 segmentation models were trained on the [COCO dataset](https://docs.ultralytics.com/datasets/segment/coco/) for 300 epochs at an image size of 640 pixels using A100 GPUs. Models were exported to [ONNX](https://onnx.ai/) FP32 for CPU speed tests and [TensorRT](https://developer.nvidia.com/tensorrt) FP16 for GPU speed tests. All speed tests were conducted on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for reproducibility.
| Model | Size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train Time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | Params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
| ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | --------------------------------------------- | ------------------------------ | ------------------------------ | ------------------ | ---------------------- |
| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
- All checkpoints were trained for 300 epochs using the SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at an image size of 640 pixels, using default settings.<br>Training runs are logged at [https://wandb.ai/glenn-jocher/YOLOv5_v70_official](https://wandb.ai/glenn-jocher/YOLOv5_v70_official).
- **Accuracy** values represent single-model, single-scale performance on the COCO dataset.<br>Reproduce using: `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
- **Speed** metrics are averaged over 100 inference images using a [Colab Pro A100 High-RAM instance](https://colab.research.google.com/signup). Values indicate inference speed only (NMS adds approximately 1ms per image).<br>Reproduce using: `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
- **Export** to ONNX (FP32) and TensorRT (FP16) was performed using `export.py`.<br>Reproduce using: `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
</details>
<details>
<summary>Segmentation Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
### Train
YOLOv5 segmentation training supports automatic download of the [COCO128-seg dataset](https://docs.ultralytics.com/datasets/segment/coco8-seg/) via the `--data coco128-seg.yaml` argument. For the full [COCO-segments dataset](https://docs.ultralytics.com/datasets/segment/coco/), download it manually using `bash data/scripts/get_coco.sh --train --val --segments` and then train with `python train.py --data coco.yaml`.
```bash
# Train on a single GPU
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
# Train using Multi-GPU Distributed Data Parallel (DDP)
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
```
### Val
Validate the mask [mean Average Precision (mAP)](https://www.ultralytics.com/glossary/mean-average-precision-map) of YOLOv5s-seg on the COCO dataset:
```bash
# Download COCO validation segments split (780MB, 5000 images)
bash data/scripts/get_coco.sh --val --segments
# Validate the model
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640
```
### Predict
Use the pretrained YOLOv5m-seg.pt model to perform segmentation on `bus.jpg`:
```bash
# Run prediction
python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
```
```python
# Load model from PyTorch Hub (Note: Inference support might vary)
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5m-seg.pt")
```
| ![Zidane Segmentation Example](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![Bus Segmentation Example](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) |
| :-----------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------: |
### Export
Export the YOLOv5s-seg model to ONNX and TensorRT formats:
```bash
# Export model
python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
```
</details>
## 🏷️ Classification
YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases/v6.2) introduced support for [image classification](https://docs.ultralytics.com/tasks/classify/) model training, validation, and deployment. Check the [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) for details and the [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart guides.
<details>
<summary>Classification Checkpoints</summary>
<br>
YOLOv5-cls classification models were trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) for 90 epochs using a 4xA100 instance. [ResNet](https://arxiv.org/abs/1512.03385) and [EfficientNet](https://arxiv.org/abs/1905.11946) models were trained alongside under identical settings for comparison. Models were exported to [ONNX](https://onnx.ai/) FP32 (CPU speed tests) and [TensorRT](https://developer.nvidia.com/tensorrt) FP16 (GPU speed tests). All speed tests were run on Google [Colab Pro](https://colab.research.google.com/signup) for reproducibility.
| Model | Size<br><sup>(pixels) | Acc<br><sup>top1 | Acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | Params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
| -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ------------------------------ | ----------------------------------- | ------------------ | ---------------------- |
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
| | | | | | | | | |
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
| | | | | | | | | |
| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
<details>
<summary>Table Notes (click to expand)</summary>
- All checkpoints were trained for 90 epochs using the SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at an image size of 224 pixels, using default settings.<br>Training runs are logged at [https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2](https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2).
- **Accuracy** values (top-1 and top-5) represent single-model, single-scale performance on the [ImageNet-1k dataset](https://docs.ultralytics.com/datasets/classify/imagenet/).<br>Reproduce using: `python classify/val.py --data ../datasets/imagenet --img 224`
- **Speed** metrics are averaged over 100 inference images using a Google [Colab Pro V100 High-RAM instance](https://colab.research.google.com/signup).<br>Reproduce using: `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
- **Export** to ONNX (FP32) and TensorRT (FP16) was performed using `export.py`.<br>Reproduce using: `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
</details>
</details>
<details>
<summary>Classification Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
### Train
YOLOv5 classification training supports automatic download for datasets like [MNIST](https://docs.ultralytics.com/datasets/classify/mnist/), [Fashion-MNIST](https://docs.ultralytics.com/datasets/classify/fashion-mnist/), [CIFAR10](https://docs.ultralytics.com/datasets/classify/cifar10/), [CIFAR100](https://docs.ultralytics.com/datasets/classify/cifar100/), [Imagenette](https://docs.ultralytics.com/datasets/classify/imagenette/), [Imagewoof](https://docs.ultralytics.com/datasets/classify/imagewoof/), and [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) using the `--data` argument. For example, start training on MNIST with `--data mnist`.
```bash
# Train on a single GPU using CIFAR-100 dataset
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
# Train using Multi-GPU DDP on ImageNet dataset
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
```
### Val
Validate the accuracy of the YOLOv5m-cls model on the ImageNet-1k validation dataset:
```bash
# Download ImageNet validation split (6.3GB, 50,000 images)
bash data/scripts/get_imagenet.sh --val
# Validate the model
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224
```
### Predict
Use the pretrained YOLOv5s-cls.pt model to classify the image `bus.jpg`:
```bash
# Run prediction
python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
```
```python
# Load model from PyTorch Hub
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s-cls.pt")
```
### Export
Export trained YOLOv5s-cls, ResNet50, and EfficientNet_b0 models to ONNX and TensorRT formats:
```bash
# Export models
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
```
</details>
## ☁️ Environments
Get started quickly with our pre-configured environments. Click the icons below for setup details.
<div align="center">
<a href="https://bit.ly/yolov5-paperspace-notebook" title="Run on Paperspace Gradient">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gradient.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb" title="Open in Google Colab">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-colab-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
<a href="https://www.kaggle.com/models/ultralytics/yolov5" title="Open in Kaggle">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-kaggle-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
<a href="https://hub.docker.com/r/ultralytics/yolov5" title="Pull Docker Image">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-docker-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
<a href="https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/" title="AWS Quickstart Guide">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-aws-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
<a href="https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/" title="GCP Quickstart Guide">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gcp-small.png" width="10%" /></a>
</div>
## 🤝 Contribute
We welcome your contributions! Making YOLOv5 accessible and effective is a community effort. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. Share your feedback through the [YOLOv5 Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). Thank you to all our contributors for making YOLOv5 better!
[![Ultralytics open-source contributors](https://raw.githubusercontent.com/ultralytics/assets/main/im/image-contributors.png)](https://github.com/ultralytics/yolov5/graphs/contributors)
## 📜 License
Ultralytics provides two licensing options to meet different needs:
- **AGPL-3.0 License**: An [OSI-approved](https://opensource.org/license/agpl-v3) open-source license ideal for academic research, personal projects, and testing. It promotes open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for details.
- **Enterprise License**: Tailored for commercial applications, this license allows seamless integration of Ultralytics software and AI models into commercial products and services, bypassing the open-source requirements of AGPL-3.0. For commercial use cases, please contact us via [Ultralytics Licensing](https://www.ultralytics.com/license).
## 📧 Contact
For bug reports and feature requests related to YOLOv5, please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For general questions, discussions, and community support, join our [Discord server](https://discord.com/invite/ultralytics)!
<br>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
</div>

@ -0,0 +1,513 @@
<div align="center">
<p>
<a href="https://www.ultralytics.com/blog/all-you-need-to-know-about-ultralytics-yolo11-and-its-applications" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO 横幅"></a>
</p>
[中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar)
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI 测试"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 引用"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker 拉取次数"></a>
<a href="https://discord.com/invite/ultralytics"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a> <a href="https://community.ultralytics.com/"><img alt="Ultralytics 论坛" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a> <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="在 Gradient 上运行"></a>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a>
<a href="https://www.kaggle.com/models/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="在 Kaggle 中打开"></a>
</div>
<br>
Ultralytics YOLOv5 🚀 是由 [Ultralytics](https://www.ultralytics.com/) 开发的尖端、达到业界顶尖水平SOTA的计算机视觉模型。基于 [PyTorch](https://pytorch.org/) 框架YOLOv5 以其易用性、速度和准确性而闻名。它融合了广泛研究和开发的见解与最佳实践,使其成为各种视觉 AI 任务的热门选择,包括[目标检测](https://docs.ultralytics.com/tasks/detect/)、[图像分割](https://docs.ultralytics.com/tasks/segment/)和[图像分类](https://docs.ultralytics.com/tasks/classify/)。
我们希望这里的资源能帮助您充分利用 YOLOv5。请浏览 [YOLOv5 文档](https://docs.ultralytics.com/yolov5/)获取详细信息,在 [GitHub](https://github.com/ultralytics/yolov5/issues/new/choose) 上提出 issue 以获得支持,并加入我们的 [Discord 社区](https://discord.com/invite/ultralytics)进行提问和讨论!
如需申请企业许可证,请填写 [Ultralytics 授权许可](https://www.ultralytics.com/license) 表格。
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
<br>
## 🚀 YOLO11下一代进化
我们激动地宣布推出 **Ultralytics YOLO11** 🚀这是我们业界顶尖SOTA视觉模型的最新进展YOLO11 现已在 [Ultralytics YOLO GitHub 仓库](https://github.com/ultralytics/ultralytics)发布,它继承了我们速度快、精度高和易于使用的传统。无论您是处理[目标检测](https://docs.ultralytics.com/tasks/detect/)、[实例分割](https://docs.ultralytics.com/tasks/segment/)、[姿态估计](https://docs.ultralytics.com/tasks/pose/)、[图像分类](https://docs.ultralytics.com/tasks/classify/)还是[旋转目标检测 (OBB)](https://docs.ultralytics.com/tasks/obb/)YOLO11 都能提供在多样化应用中脱颖而出所需的性能和多功能性。
立即开始,释放 YOLO11 的全部潜力!访问 [Ultralytics 文档](https://docs.ultralytics.com/)获取全面的指南和资源:
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://www.pepy.tech/projects/ultralytics)
```bash
# 安装 ultralytics 包
pip install ultralytics
```
<div align="center">
<a href="https://www.ultralytics.com/yolo" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="Ultralytics YOLO 性能比较"></a>
</div>
## 📚 文档
请参阅 [YOLOv5 文档](https://docs.ultralytics.com/yolov5/),了解有关训练、测试和部署的完整文档。请参阅下方的快速入门示例。
<details open>
<summary>安装</summary>
克隆仓库并在 [**Python>=3.8.0**](https://www.python.org/) 环境中安装依赖项。确保您已安装 [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/)。
```bash
# 克隆 YOLOv5 仓库
git clone https://github.com/ultralytics/yolov5
# 导航到克隆的目录
cd yolov5
# 安装所需的包
pip install -r requirements.txt
```
</details>
<details open>
<summary>使用 PyTorch Hub 进行推理</summary>
通过 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) 使用 YOLOv5 进行推理。[模型](https://github.com/ultralytics/yolov5/tree/master/models) 会自动从最新的 YOLOv5 [发布版本](https://github.com/ultralytics/yolov5/releases)下载。
```python
import torch
# 加载 YOLOv5 模型选项yolov5n, yolov5s, yolov5m, yolov5l, yolov5x
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # 默认yolov5s
# 定义输入图像源URL、本地文件、PIL 图像、OpenCV 帧、numpy 数组或列表)
img = "https://ultralytics.com/images/zidane.jpg" # 示例图像
# 执行推理(自动处理批处理、调整大小、归一化)
results = model(img)
# 处理结果(选项:.print(), .show(), .save(), .crop(), .pandas()
results.print() # 将结果打印到控制台
results.show() # 在窗口中显示结果
results.save() # 将结果保存到 runs/detect/exp
```
</details>
<details>
<summary>使用 detect.py 进行推理</summary>
`detect.py` 脚本在各种来源上运行推理。它会自动从最新的 YOLOv5 [发布版本](https://github.com/ultralytics/yolov5/releases)下载[模型](https://github.com/ultralytics/yolov5/tree/master/models),并将结果保存到 `runs/detect` 目录。
```bash
# 使用网络摄像头运行推理
python detect.py --weights yolov5s.pt --source 0
# 对本地图像文件运行推理
python detect.py --weights yolov5s.pt --source img.jpg
# 对本地视频文件运行推理
python detect.py --weights yolov5s.pt --source vid.mp4
# 对屏幕截图运行推理
python detect.py --weights yolov5s.pt --source screen
# 对图像目录运行推理
python detect.py --weights yolov5s.pt --source path/to/images/
# 对列出图像路径的文本文件运行推理
python detect.py --weights yolov5s.pt --source list.txt
# 对列出流 URL 的文本文件运行推理
python detect.py --weights yolov5s.pt --source list.streams
# 使用 glob 模式对图像运行推理
python detect.py --weights yolov5s.pt --source 'path/to/*.jpg'
# 对 YouTube 视频 URL 运行推理
python detect.py --weights yolov5s.pt --source 'https://youtu.be/LNwODJXcvt4'
# 对 RTSP、RTMP 或 HTTP 流运行推理
python detect.py --weights yolov5s.pt --source 'rtsp://example.com/media.mp4'
```
</details>
<details>
<summary>训练</summary>
以下命令演示了如何复现 YOLOv5 在 [COCO 数据集](https://docs.ultralytics.com/datasets/detect/coco/)上的结果。[模型](https://github.com/ultralytics/yolov5/tree/master/models)和[数据集](https://github.com/ultralytics/yolov5/tree/master/data)都会自动从最新的 YOLOv5 [发布版本](https://github.com/ultralytics/yolov5/releases)下载。YOLOv5n/s/m/l/x 的训练时间在单个 [NVIDIA V100 GPU](https://www.nvidia.com/en-us/data-center/v100/) 上大约需要 1/2/4/6/8 天。使用[多 GPU 训练](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/)可以显著减少训练时间。请使用硬件允许的最大 `--batch-size`,或使用 `--batch-size -1` 以启用 YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092)。下面显示的批处理大小适用于 V100-16GB GPU。
```bash
# 在 COCO 上训练 YOLOv5n 300 个周期
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
# 在 COCO 上训练 YOLOv5s 300 个周期
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5s.yaml --batch-size 64
# 在 COCO 上训练 YOLOv5m 300 个周期
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5m.yaml --batch-size 40
# 在 COCO 上训练 YOLOv5l 300 个周期
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5l.yaml --batch-size 24
# 在 COCO 上训练 YOLOv5x 300 个周期
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5x.yaml --batch-size 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" alt="YOLOv5 训练结果">
</details>
<details open>
<summary>教程</summary>
- **[训练自定义数据](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/)** 🚀 **推荐**:学习如何在您自己的数据集上训练 YOLOv5。
- **[获得最佳训练结果的技巧](https://docs.ultralytics.com/guides/model-training-tips/)** ☘️:利用专家技巧提升模型性能。
- **[多 GPU 训练](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/)**:使用多个 GPU 加速训练。
- **[PyTorch Hub 集成](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/)** 🌟 **新增**:使用 PyTorch Hub 轻松加载模型。
- **[模型导出 (TFLite, ONNX, CoreML, TensorRT)](https://docs.ultralytics.com/yolov5/tutorials/model_export/)** 🚀:将您的模型转换为各种部署格式,如 [ONNX](https://onnx.ai/) 或 [TensorRT](https://developer.nvidia.com/tensorrt)。
- **[NVIDIA Jetson 部署](https://docs.ultralytics.com/guides/nvidia-jetson/)** 🌟 **新增**:在 [NVIDIA Jetson](https://developer.nvidia.com/embedded-computing) 设备上部署 YOLOv5。
- **[测试时增强 (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)**:使用 TTA 提高预测准确性。
- **[模型集成](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling/)**:组合多个模型以获得更好的性能。
- **[模型剪枝/稀疏化](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity/)**:优化模型的大小和速度。
- **[超参数进化](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/)**:自动找到最佳训练超参数。
- **[使用冻结层的迁移学习](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers/)**:使用[迁移学习](https://www.ultralytics.com/glossary/transfer-learning)高效地将预训练模型应用于新任务。
- **[架构摘要](https://docs.ultralytics.com/yolov5/tutorials/architecture_description/)** 🌟 **新增**:了解 YOLOv5 模型架构。
- **[Ultralytics HUB 训练](https://www.ultralytics.com/hub)** 🚀 **推荐**:使用 Ultralytics HUB 训练和部署 YOLO 模型。
- **[ClearML 日志记录](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration/)**:与 [ClearML](https://clear.ml/) 集成以进行实验跟踪。
- **[Neural Magic DeepSparse 集成](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization/)**:使用 DeepSparse 加速推理。
- **[Comet 日志记录](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration/)** 🌟 **新增**:使用 [Comet ML](https://www.comet.com/site/) 记录实验。
</details>
## 🧩 集成
我们与领先 AI 平台的关键集成扩展了 Ultralytics 产品的功能,增强了诸如数据集标注、训练、可视化和模型管理等任务。了解 Ultralytics 如何与 [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/)、[Comet ML](https://docs.ultralytics.com/integrations/comet/)、[Roboflow](https://docs.ultralytics.com/integrations/roboflow/) 和 [Intel OpenVINO](https://docs.ultralytics.com/integrations/openvino/) 等合作伙伴协作,优化您的 AI 工作流程。在 [Ultralytics 集成](https://docs.ultralytics.com/integrations/) 探索更多信息。
<a href="https://docs.ultralytics.com/integrations/" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics 主动学习集成">
</a>
<br>
<br>
<div align="center">
<a href="https://www.ultralytics.com/hub">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://docs.ultralytics.com/integrations/weights-biases/">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://docs.ultralytics.com/integrations/comet/">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://docs.ultralytics.com/integrations/neural-magic/">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
</div>
| Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
| :-------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------: |
| 简化 YOLO 工作流程:使用 [Ultralytics HUB](https://hub.ultralytics.com/) 轻松标注、训练和部署。立即试用! | 使用 [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/) 跟踪实验、超参数和结果。 | 永久免费的 [Comet ML](https://docs.ultralytics.com/integrations/comet/) 让您保存 YOLO 模型、恢复训练并交互式地可视化预测。 | 使用 [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/) 将 YOLO 推理速度提高多达 6 倍。 |
## ⭐ Ultralytics HUB
通过 [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐ 体验无缝的 AI 开发,这是构建、训练和部署[计算机视觉](https://www.ultralytics.com/glossary/computer-vision-cv)模型的终极平台。可视化数据集,训练 [YOLOv5](https://docs.ultralytics.com/models/yolov5/) 和 [YOLOv8](https://docs.ultralytics.com/models/yolov8/) 🚀 模型,并将它们部署到实际应用中,无需编写任何代码。使用我们尖端的工具和用户友好的 [Ultralytics App](https://www.ultralytics.com/app-install) 将图像转化为可操作的见解。今天就**免费**开始您的旅程吧!
<a align="center" href="https://www.ultralytics.com/hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB 平台截图"></a>
## 🤔 为何选择 YOLOv5
YOLOv5 的设计旨在简单易用。我们优先考虑实际性能和可访问性。
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png" alt="YOLOv5 性能图表"></p>
<details>
<summary>YOLOv5-P5 640 图表</summary>
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png" alt="YOLOv5 P5 640 性能图表"></p>
</details>
<details>
<summary>图表说明</summary>
- **COCO AP val** 表示在 [交并比 (IoU)](https://www.ultralytics.com/glossary/intersection-over-union-iou) 阈值从 0.5 到 0.95 范围内的[平均精度均值 (mAP)](https://www.ultralytics.com/glossary/mean-average-precision-map),在包含 5000 张图像的 [COCO val2017 数据集](https://docs.ultralytics.com/datasets/detect/coco/)上使用各种推理尺寸256 到 1536 像素)测量得出。
- **GPU Speed** 使用批处理大小为 32 的 [AWS p3.2xlarge V100 实例](https://aws.amazon.com/ec2/instance-types/p4/),测量在 [COCO val2017 数据集](https://docs.ultralytics.com/datasets/detect/coco/)上每张图像的平均推理时间。
- **EfficientDet** 数据来源于 [google/automl 仓库](https://github.com/google/automl),批处理大小为 8。
- **复现**这些结果请使用命令:`python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
</details>
### 预训练权重
此表显示了在 COCO 数据集上训练的各种 YOLOv5 模型的性能指标。
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | 速度<br><sup>CPU b1<br>(毫秒) | 速度<br><sup>V100 b1<br>(毫秒) | 速度<br><sup>V100 b32<br>(毫秒) | 参数<br><sup>(M) | FLOPs<br><sup>@640 (B) |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------- | -------------------- | ----------------- | ----------------------------- | ------------------------------ | ------------------------------- | ---------------- | ---------------------- |
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
| | | | | | | | | |
| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+ [[TTA]](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/) | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
<details>
<summary>表格说明</summary>
- 所有预训练权重均使用默认设置训练了 300 个周期。Nano (n) 和 Small (s) 模型使用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) 超参数,而 Medium (m)、Large (l) 和 Extra-Large (x) 模型使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml)。
- **mAP<sup>val</sup>** 值表示在 [COCO val2017 数据集](https://docs.ultralytics.com/datasets/detect/coco/)上的单模型、单尺度性能。<br>复现请使用:`python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
- **速度**指标是在 [AWS p3.2xlarge V100 实例](https://aws.amazon.com/ec2/instance-types/p4/)上对 COCO val 图像进行平均测量的。不包括非极大值抑制 (NMS) 时间(约 1 毫秒/图像)。<br>复现请使用:`python val.py --data coco.yaml --img 640 --task speed --batch 1`
- **TTA** ([测试时增强](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)) 包括反射和尺度增强以提高准确性。<br>复现请使用:`python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
</details>
## 🖼️ 分割
YOLOv5 [v7.0 版本](https://github.com/ultralytics/yolov5/releases/v7.0) 引入了[实例分割](https://docs.ultralytics.com/tasks/segment/)模型,达到了业界顶尖的性能。这些模型设计用于轻松训练、验证和部署。有关完整详细信息,请参阅[发布说明](https://github.com/ultralytics/yolov5/releases/v7.0),并探索 [YOLOv5 分割 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb)以获取快速入门示例。
<details>
<summary>分割预训练权重</summary>
<div align="center">
<a align="center" href="https://www.ultralytics.com/yolo" target="_blank">
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png" alt="YOLOv5 分割性能图表"></a>
</div>
YOLOv5 分割模型在 [COCO 数据集](https://docs.ultralytics.com/datasets/segment/coco/)上使用 A100 GPU 以 640 像素的图像大小训练了 300 个周期。模型导出为 [ONNX](https://onnx.ai/) FP32 用于 CPU 速度测试,导出为 [TensorRT](https://developer.nvidia.com/tensorrt) FP16 用于 GPU 速度测试。所有速度测试均在 Google [Colab Pro](https://colab.research.google.com/signup) 笔记本上进行,以确保可复现性。
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 训练时间<br><sup>300 周期<br>A100 (小时) | 速度<br><sup>ONNX CPU<br>(毫秒) | 速度<br><sup>TRT A100<br>(毫秒) | 参数<br><sup>(M) | FLOPs<br><sup>@640 (B) |
| ------------------------------------------------------------------------------------------ | ------------------- | -------------------- | --------------------- | ---------------------------------------- | ------------------------------- | ------------------------------- | ---------------- | ---------------------- |
| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 |
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |
- 所有预训练权重均使用 SGD 优化器,`lr0=0.01` 和 `weight_decay=5e-5`,在 640 像素的图像大小下,使用默认设置训练了 300 个周期。<br>训练运行记录在 [https://wandb.ai/glenn-jocher/YOLOv5_v70_official](https://wandb.ai/glenn-jocher/YOLOv5_v70_official)。
- **准确度**值表示在 COCO 数据集上的单模型、单尺度性能。<br>复现请使用:`python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
- **速度**指标是在 [Colab Pro A100 High-RAM 实例](https://colab.research.google.com/signup)上对 100 张推理图像进行平均测量的。值仅表示推理速度NMS 约增加 1 毫秒/图像)。<br>复现请使用:`python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
- **导出**到 ONNX (FP32) 和 TensorRT (FP16) 是使用 `export.py` 完成的。<br>复现请使用:`python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
</details>
<details>
<summary>分割使用示例 &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a></summary>
### 训练
YOLOv5 分割训练支持通过 `--data coco128-seg.yaml` 参数自动下载 [COCO128-seg 数据集](https://docs.ultralytics.com/datasets/segment/coco8-seg/)。对于完整的 [COCO-segments 数据集](https://docs.ultralytics.com/datasets/segment/coco/),请使用 `bash data/scripts/get_coco.sh --train --val --segments` 手动下载,然后使用 `python train.py --data coco.yaml` 进行训练。
```bash
# 在单个 GPU 上训练
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
# 使用多 GPU 分布式数据并行 (DDP) 进行训练
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
```
### 验证
在 COCO 数据集上验证 YOLOv5s-seg 的掩码[平均精度均值 (mAP)](https://www.ultralytics.com/glossary/mean-average-precision-map)
```bash
# 下载 COCO 验证分割集 (780MB, 5000 张图像)
bash data/scripts/get_coco.sh --val --segments
# 验证模型
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640
```
### 预测
使用预训练的 YOLOv5m-seg.pt 模型对 `bus.jpg` 执行分割:
```bash
# 运行预测
python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
```
```python
# 从 PyTorch Hub 加载模型(注意:推理支持可能有所不同)
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5m-seg.pt")
```
| ![Zidane 分割示例](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![Bus 分割示例](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) |
| :-----------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------: |
### 导出
将 YOLOv5s-seg 模型导出为 ONNX 和 TensorRT 格式:
```bash
# 导出模型
python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
```
</details>
## 🏷️ 分类
YOLOv5 [v6.2 版本](https://github.com/ultralytics/yolov5/releases/v6.2) 引入了对[图像分类](https://docs.ultralytics.com/tasks/classify/)模型训练、验证和部署的支持。请查看[发布说明](https://github.com/ultralytics/yolov5/releases/v6.2)了解详细信息,并参阅 [YOLOv5 分类 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb)获取快速入门指南。
<details>
<summary>分类预训练权重</summary>
<br>
YOLOv5-cls 分类模型在 [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) 上使用 4xA100 实例训练了 90 个周期。[ResNet](https://arxiv.org/abs/1512.03385) 和 [EfficientNet](https://arxiv.org/abs/1905.11946) 模型在相同设置下一起训练以进行比较。模型导出为 [ONNX](https://onnx.ai/) FP32用于 CPU 速度测试)和 [TensorRT](https://developer.nvidia.com/tensorrt) FP16用于 GPU 速度测试)。所有速度测试均在 Google [Colab Pro](https://colab.research.google.com/signup) 上运行,以确保可复现性。
| 模型 | 尺寸<br><sup>(像素) | 准确率<br><sup>top1 | 准确率<br><sup>top5 | 训练<br><sup>90 周期<br>4xA100 (小时) | 速度<br><sup>ONNX CPU<br>(毫秒) | 速度<br><sup>TensorRT V100<br>(毫秒) | 参数<br><sup>(M) | FLOPs<br><sup>@224 (B) |
| -------------------------------------------------------------------------------------------------- | ------------------- | ------------------- | ------------------- | ------------------------------------- | ------------------------------- | ------------------------------------ | ---------------- | ---------------------- |
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
| | | | | | | | | |
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
| | | | | | | | | |
| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
<details>
<summary>表格说明(点击展开)</summary>
- 所有预训练权重均使用 SGD 优化器,`lr0=0.001` 和 `weight_decay=5e-5`,在 224 像素的图像大小下,使用默认设置训练了 90 个周期。<br>训练运行记录在 [https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2](https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2)。
- **准确度**值top-1 和 top-5表示在 [ImageNet-1k 数据集](https://docs.ultralytics.com/datasets/classify/imagenet/)上的单模型、单尺度性能。<br>复现请使用:`python classify/val.py --data ../datasets/imagenet --img 224`
- **速度**指标是在 Google [Colab Pro V100 High-RAM 实例](https://colab.research.google.com/signup)上对 100 张推理图像进行平均测量的。<br>复现请使用:`python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
- **导出**到 ONNX (FP32) 和 TensorRT (FP16) 是使用 `export.py` 完成的。<br>复现请使用:`python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
</details>
</details>
<details>
<summary>分类使用示例 &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a></summary>
### 训练
YOLOv5 分类训练支持使用 `--data` 参数自动下载诸如 [MNIST](https://docs.ultralytics.com/datasets/classify/mnist/)、[Fashion-MNIST](https://docs.ultralytics.com/datasets/classify/fashion-mnist/)、[CIFAR10](https://docs.ultralytics.com/datasets/classify/cifar10/)、[CIFAR100](https://docs.ultralytics.com/datasets/classify/cifar100/)、[Imagenette](https://docs.ultralytics.com/datasets/classify/imagenette/)、[Imagewoof](https://docs.ultralytics.com/datasets/classify/imagewoof/) 和 [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) 等数据集。例如,使用 `--data mnist` 开始在 MNIST 上训练。
```bash
# 使用 CIFAR-100 数据集在单个 GPU 上训练
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
# 在 ImageNet 数据集上使用多 GPU DDP 进行训练
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
```
### 验证
在 ImageNet-1k 验证数据集上验证 YOLOv5m-cls 模型的准确性:
```bash
# 下载 ImageNet 验证集 (6.3GB, 50,000 张图像)
bash data/scripts/get_imagenet.sh --val
# 验证模型
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224
```
### 预测
使用预训练的 YOLOv5s-cls.pt 模型对图像 `bus.jpg` 进行分类:
```bash
# 运行预测
python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
```
```python
# 从 PyTorch Hub 加载模型
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s-cls.pt")
```
### 导出
将训练好的 YOLOv5s-cls、ResNet50 和 EfficientNet_b0 模型导出为 ONNX 和 TensorRT 格式:
```bash
# 导出模型
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
```
</details>
## ☁️ 环境
使用我们预配置的环境快速开始。点击下面的图标查看设置详情。
<div align="center">
<a href="https://bit.ly/yolov5-paperspace-notebook" title="在 Paperspace Gradient 上运行">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gradient.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb" title="在 Google Colab 中打开">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-colab-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
<a href="https://www.kaggle.com/models/ultralytics/yolov5" title="在 Kaggle 中打开">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-kaggle-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
<a href="https://hub.docker.com/r/ultralytics/yolov5" title="拉取 Docker 镜像">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-docker-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
<a href="https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/" title="AWS 快速入门指南">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-aws-small.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
<a href="https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/" title="GCP 快速入门指南">
<img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gcp-small.png" width="10%" /></a>
</div>
## 🤝 贡献
我们欢迎您的贡献!让 YOLOv5 变得易于访问和有效是社区的共同努力。请参阅我们的[贡献指南](https://docs.ultralytics.com/help/contributing/)开始。通过 [YOLOv5 调查](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)分享您的反馈。感谢所有为使 YOLOv5 变得更好而做出贡献的人!
[![Ultralytics 开源贡献者](https://raw.githubusercontent.com/ultralytics/assets/main/im/image-contributors.png)](https://github.com/ultralytics/yolov5/graphs/contributors)
## 📜 许可证
Ultralytics 提供两种许可选项以满足不同需求:
- **AGPL-3.0 许可证**:一种 [OSI 批准的](https://opensource.org/license/agpl-v3)开源许可证,非常适合学术研究、个人项目和测试。它促进开放协作和知识共享。详情请参阅 [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) 文件。
- **企业许可证**:专为商业应用量身定制,此许可证允许将 Ultralytics 软件和 AI 模型无缝集成到商业产品和服务中,绕过 AGPL-3.0 的开源要求。对于商业用例,请通过 [Ultralytics 授权许可](https://www.ultralytics.com/license)联系我们。
## 📧 联系
对于与 YOLOv5 相关的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)。对于一般问题、讨论和社区支持,请加入我们的 [Discord 服务器](https://discord.com/invite/ultralytics)
<br>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
</div>

@ -0,0 +1,176 @@
# 📹 电脑摄像头YOLOv5目标检测系统
这是一个基于YOLOv5和Flask的实时目标检测Web应用使用电脑摄像头进行实时检测。
## 功能特性
- ✅ 实时摄像头画面显示
- ✅ YOLOv5目标检测80种COCO对象
- ✅ Web界面控制
- ✅ 实时检测结果显示
- ✅ 摄像头开关控制
- ✅ 检测功能开关
- ✅ 操作日志记录
- ✅ 响应式设计
## 系统要求
- Python 3.7+
- 电脑摄像头
- 支持WebSocket的现代浏览器
- YOLOv5权重文件yolov5s.pt
## 安装步骤
### 1. 安装依赖
```bash
pip install -r drone_requirements.txt
```
### 2. 确保YOLOv5权重文件存在
确保 `yolov5s.pt` 文件在当前目录下。
### 3. 确认摄像头可用
确保电脑摄像头正常工作,没有被其他程序占用。
## 使用方法
### 1. 启动系统
```bash
python webcam_detection.py
```
### 2. 访问Web界面
打开浏览器访问:`http://localhost:5000`
### 3. 使用步骤
1. **启动摄像头**:点击"启动摄像头"按钮
2. **开启检测**:摄像头启动后,点击"开启目标检测"按钮
3. **查看结果**:检测结果会实时显示在右侧面板
4. **停止使用**:点击"停止摄像头"按钮
## 界面说明
### 状态栏
- 🟢 **连接状态**: 显示与后端的WebSocket连接状态
- 🔵 **摄像头**: 显示摄像头运行状态
- 🟠 **目标检测**: 显示检测功能状态
### 主要区域
- **视频显示**: 实时显示摄像头画面(带检测框)
- **控制面板**: 摄像头和检测功能控制按钮
- **检测结果**: 显示检测到的对象类别和置信度
- **操作日志**: 记录所有操作和系统状态
### 系统信息
- **YOLOv5模型**: 显示模型加载状态
- **检测类别**: 80种COCO对象
- **检测阈值**: 0.25可检测置信度≥25%的对象)
- **帧率**: 约30 FPS
## 检测对象类别
YOLOv5可以检测80种常见对象包括
- 人物person
- 车辆car, truck, bus, motorcycle
- 动物dog, cat, horse, sheep, cow
- 日常用品chair, table, book, phone, laptop
- 等等...
## 配置说明
### 检测参数
`webcam_detection.py` 中可以调整:
```python
# 检测阈值0.0-1.0
conf_thres=0.25
# IoU阈值0.0-1.0
iou_thres=0.45
# 输入图像尺寸
img = cv2.resize(frame, (640, 640))
# 输出图像尺寸
frame = cv2.resize(frame, (640, 480))
```
### 摄像头设置
```python
# 使用默认摄像头
camera = cv2.VideoCapture(0)
# 使用其他摄像头(如外接摄像头)
# camera = cv2.VideoCapture(1)
```
## 故障排除
### 1. 摄像头无法启动
- 检查摄像头是否被其他程序占用
- 确认摄像头驱动正常
- 尝试重启电脑
### 2. 检测功能异常
- 确认YOLOv5权重文件存在
- 检查PyTorch安装
- 查看控制台错误信息
### 3. 网页无法访问
- 确认后端服务已启动
- 检查端口5000是否被占用
- 确认防火墙设置
### 4. 性能问题
- 降低检测频率增加time.sleep时间
- 使用更小的模型如yolov5n.pt
- 关闭不必要的检测功能
## 技术架构
```
电脑摄像头检测系统
├── Flask Web服务器
├── Socket.IO 实时通信
├── OpenCV 摄像头处理
├── YOLOv5 目标检测
├── PyTorch 深度学习推理
└── Web前端界面
```
## 开发说明
### 添加新功能
1. 在 `webcam_detection.py` 中添加新的处理函数
2. 在HTML模板中添加对应的按钮
3. 在JavaScript中添加事件处理
### 自定义检测
1. 训练自己的YOLOv5模型
2. 替换 `yolov5s.pt` 文件
3. 修改类别名称和检测逻辑
### 性能优化
1. 使用GPU加速如果可用
2. 调整检测频率
3. 优化图像预处理
## 安全注意事项
⚠️ **重要提醒**:
- 确保摄像头使用安全,避免泄露隐私
- 在公共网络使用时注意数据安全
- 定期更新依赖包以修复安全漏洞
## 许可证
本项目基于MIT许可证开源。
## 贡献
欢迎提交Issue和Pull Request来改进这个项目
---
**注意**: 使用摄像头时请遵守相关法律法规,确保隐私安全。

@ -0,0 +1,294 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Run YOLOv5 benchmarks on all supported export formats.
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlpackage
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
Usage:
$ python benchmarks.py --weights yolov5s.pt --img 640
"""
import argparse
import platform
import sys
import time
from pathlib import Path
import pandas as pd
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd()) # relative
import export
from models.experimental import attempt_load
from models.yolo import SegmentationModel
from segment.val import run as val_seg
from utils import notebook_init
from utils.general import LOGGER, check_yaml, file_size, print_args
from utils.torch_utils import select_device
from val import run as val_det
def run(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=640, # inference size (pixels)
batch_size=1, # batch size
data=ROOT / "data/coco128.yaml", # dataset.yaml path
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
test=False, # test exports only
pt_only=False, # test PyTorch only
hard_fail=False, # throw error on benchmark failure
):
"""
Run YOLOv5 benchmarks on multiple export formats and log results for model performance evaluation.
Args:
weights (Path | str): Path to the model weights file (default: ROOT / "yolov5s.pt").
imgsz (int): Inference size in pixels (default: 640).
batch_size (int): Batch size for inference (default: 1).
data (Path | str): Path to the dataset.yaml file (default: ROOT / "data/coco128.yaml").
device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu' (default: "").
half (bool): Use FP16 half-precision inference (default: False).
test (bool): Test export formats only (default: False).
pt_only (bool): Test PyTorch format only (default: False).
hard_fail (bool): Throw an error on benchmark failure if True (default: False).
Returns:
None. Logs information about the benchmark results, including the format, size, mAP50-95, and inference time.
Notes:
Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML,
TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js
are unsupported.
Example:
```python
$ python benchmarks.py --weights yolov5s.pt --img 640
```
Usage:
Install required packages:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
Run benchmarks:
$ python benchmarks.py --weights yolov5s.pt --img 640
"""
y, t = [], time.time()
device = select_device(device)
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
try:
assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
if "cpu" in device.type:
assert cpu, "inference not supported on CPU"
if "cuda" in device.type:
assert gpu, "inference not supported on GPU"
# Export
if f == "-":
w = weights # PyTorch format
else:
w = export.run(
weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half
)[-1] # all others
assert suffix in str(w), "export failed"
# Validate
if model_type == SegmentationModel:
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
else: # DetectionModel:
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
speed = result[2][1] # times (preprocess, inference, postprocess)
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
except Exception as e:
if hard_fail:
assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}"
LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}")
y.append([name, None, None, None]) # mAP, t_inference
if pt_only and i == 0:
break # break after PyTorch
# Print results
LOGGER.info("\n")
parse_opt()
notebook_init() # print system info
c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""]
py = pd.DataFrame(y, columns=c)
LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)")
LOGGER.info(str(py if map else py.iloc[:, :2]))
if hard_fail and isinstance(hard_fail, str):
metrics = py["mAP50-95"].array # values to compare to floor
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}"
return py
def test(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=640, # inference size (pixels)
batch_size=1, # batch size
data=ROOT / "data/coco128.yaml", # dataset.yaml path
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
test=False, # test exports only
pt_only=False, # test PyTorch only
hard_fail=False, # throw error on benchmark failure
):
"""
Run YOLOv5 export tests for all supported formats and log the results, including export statuses.
Args:
weights (Path | str): Path to the model weights file (.pt format). Default is 'ROOT / "yolov5s.pt"'.
imgsz (int): Inference image size (in pixels). Default is 640.
batch_size (int): Batch size for testing. Default is 1.
data (Path | str): Path to the dataset configuration file (.yaml format). Default is 'ROOT / "data/coco128.yaml"'.
device (str): Device for running the tests, can be 'cpu' or a specific CUDA device ('0', '0,1,2,3', etc.). Default is an empty string.
half (bool): Use FP16 half-precision for inference if True. Default is False.
test (bool): Test export formats only without running inference. Default is False.
pt_only (bool): Test only the PyTorch model if True. Default is False.
hard_fail (bool): Raise error on export or test failure if True. Default is False.
Returns:
pd.DataFrame: DataFrame containing the results of the export tests, including format names and export statuses.
Examples:
```python
$ python benchmarks.py --weights yolov5s.pt --img 640
```
Notes:
Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow
SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js are unsupported.
Usage:
Install required packages:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
Run export tests:
$ python benchmarks.py --weights yolov5s.pt --img 640
"""
y, t = [], time.time()
device = select_device(device)
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
try:
w = (
weights
if f == "-"
else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]
) # weights
assert suffix in str(w), "export failed"
y.append([name, True])
except Exception:
y.append([name, False]) # mAP, t_inference
# Print results
LOGGER.info("\n")
parse_opt()
notebook_init() # print system info
py = pd.DataFrame(y, columns=["Format", "Export"])
LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)")
LOGGER.info(str(py))
return py
def parse_opt():
"""
Parses command-line arguments for YOLOv5 model inference configuration.
Args:
weights (str): The path to the weights file. Defaults to 'ROOT / "yolov5s.pt"'.
imgsz (int): Inference size in pixels. Defaults to 640.
batch_size (int): Batch size. Defaults to 1.
data (str): Path to the dataset YAML file. Defaults to 'ROOT / "data/coco128.yaml"'.
device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu'. Defaults to an empty string (auto-select).
half (bool): Use FP16 half-precision inference. This is a flag and defaults to False.
test (bool): Test exports only. This is a flag and defaults to False.
pt_only (bool): Test PyTorch only. This is a flag and defaults to False.
hard_fail (bool | str): Throw an error on benchmark failure. Can be a boolean or a string representing a minimum
metric floor, e.g., '0.29'. Defaults to False.
Returns:
argparse.Namespace: Parsed command-line arguments encapsulated in an argparse Namespace object.
Notes:
The function modifies the 'opt.data' by checking and validating the YAML path using 'check_yaml()'.
The parsed arguments are printed for reference using 'print_args()'.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--test", action="store_true", help="test exports only")
parser.add_argument("--pt-only", action="store_true", help="test PyTorch only")
parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric")
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
print_args(vars(opt))
return opt
def main(opt):
"""
Executes YOLOv5 benchmark tests or main training/inference routines based on the provided command-line arguments.
Args:
opt (argparse.Namespace): Parsed command-line arguments including options for weights, image size, batch size, data
configuration, device, and other flags for inference settings.
Returns:
None: This function does not return any value. It leverages side-effects such as logging and running benchmarks.
Example:
```python
if __name__ == "__main__":
opt = parse_opt()
main(opt)
```
Notes:
- For a complete list of supported export formats and their respective requirements, refer to the
[Ultralytics YOLOv5 Export Formats](https://github.com/ultralytics/yolov5#export-formats).
- Ensure that you have installed all necessary dependencies by following the installation instructions detailed in
the [main repository](https://github.com/ultralytics/yolov5#installation).
```shell
# Running benchmarks on default weights and image size
$ python benchmarks.py --weights yolov5s.pt --img 640
```
"""
test(**vars(opt)) if opt.test else run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

@ -0,0 +1,241 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/LNwODJXcvt4' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
yolov5s-cls.torchscript # TorchScript
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s-cls_openvino_model # OpenVINO
yolov5s-cls.engine # TensorRT
yolov5s-cls.mlmodel # CoreML (macOS-only)
yolov5s-cls_saved_model # TensorFlow SavedModel
yolov5s-cls.pb # TensorFlow GraphDef
yolov5s-cls.tflite # TensorFlow Lite
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
yolov5s-cls_paddle_model # PaddlePaddle
"""
import argparse
import os
import platform
import sys
from pathlib import Path
import torch
import torch.nn.functional as F
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from ultralytics.utils.plotting import Annotator
from models.common import DetectMultiBackend
from utils.augmentations import classify_transforms
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (
LOGGER,
Profile,
check_file,
check_img_size,
check_imshow,
check_requirements,
colorstr,
cv2,
increment_path,
print_args,
strip_optimizer,
)
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
weights=ROOT / "yolov5s-cls.pt", # model.pt path(s)
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
data=ROOT / "data/coco128.yaml", # dataset.yaml path
imgsz=(224, 224), # inference size (height, width)
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
nosave=False, # do not save images/videos
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / "runs/predict-cls", # save results to project/name
name="exp", # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
"""Conducts YOLOv5 classification inference on diverse input sources and saves results."""
source = str(source)
save_img = not nosave and not source.endswith(".txt") # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
screenshot = source.lower().startswith("screen")
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.Tensor(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with dt[1]:
results = model(im)
# Post-process
with dt[2]:
pred = F.softmax(results, dim=1) # probabilities
# Process predictions
for i, prob in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f"{i}: "
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
annotator = Annotator(im0, example=str(names), pil=True)
# Print results
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
# Write results
text = "\n".join(f"{prob[j]:.2f} {names[j]}" for j in top5i)
if save_img or view_img: # Add bbox to image
annotator.text([32, 32], text, txt_color=(255, 255, 255))
if save_txt: # Write to file
with open(f"{txt_path}.txt", "a") as f:
f.write(text + "\n")
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == "Linux" and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{dt[1].dt * 1e3:.1f}ms")
# Print results
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
def parse_opt():
"""Parses command line arguments for YOLOv5 inference settings including model, source, device, and image size."""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model path(s)")
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[224], help="inference size h,w")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--view-img", action="store_true", help="show results")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--visualize", action="store_true", help="visualize features")
parser.add_argument("--update", action="store_true", help="update all models")
parser.add_argument("--project", default=ROOT / "runs/predict-cls", help="save results to project/name")
parser.add_argument("--name", default="exp", help="save results to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
"""Executes YOLOv5 model inference with options for ONNX DNN and video frame-rate stride adjustments."""
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

@ -0,0 +1,382 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Train a YOLOv5 classifier model on a classification dataset.
Usage - Single-GPU training:
$ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
Usage - Multi-GPU DDP training:
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
"""
import argparse
import os
import subprocess
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path
import torch
import torch.distributed as dist
import torch.hub as hub
import torch.optim.lr_scheduler as lr_scheduler
import torchvision
from torch.cuda import amp
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from classify import val as validate
from models.experimental import attempt_load
from models.yolo import ClassificationModel, DetectionModel
from utils.dataloaders import create_classification_dataloader
from utils.general import (
DATASETS_DIR,
LOGGER,
TQDM_BAR_FORMAT,
WorkingDirectory,
check_git_info,
check_git_status,
check_requirements,
colorstr,
download,
increment_path,
init_seeds,
print_args,
yaml_save,
)
from utils.loggers import GenericLogger
from utils.plots import imshow_cls
from utils.torch_utils import (
ModelEMA,
de_parallel,
model_info,
reshape_classifier_output,
select_device,
smart_DDP,
smart_optimizer,
smartCrossEntropyLoss,
torch_distributed_zero_first,
)
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv("RANK", -1))
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
GIT_INFO = check_git_info()
def train(opt, device):
"""Trains a YOLOv5 model, managing datasets, model optimization, logging, and saving checkpoints."""
init_seeds(opt.seed + 1 + RANK, deterministic=True)
save_dir, data, bs, epochs, nw, imgsz, pretrained = (
opt.save_dir,
Path(opt.data),
opt.batch_size,
opt.epochs,
min(os.cpu_count() - 1, opt.workers),
opt.imgsz,
str(opt.pretrained).lower() == "true",
)
cuda = device.type != "cpu"
# Directories
wdir = save_dir / "weights"
wdir.mkdir(parents=True, exist_ok=True) # make dir
last, best = wdir / "last.pt", wdir / "best.pt"
# Save run settings
yaml_save(save_dir / "opt.yaml", vars(opt))
# Logger
logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
# Download Dataset
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
data_dir = data if data.is_dir() else (DATASETS_DIR / data)
if not data_dir.is_dir():
LOGGER.info(f"\nDataset not found ⚠️, missing path {data_dir}, attempting download...")
t = time.time()
if str(data) == "imagenet":
subprocess.run(["bash", str(ROOT / "data/scripts/get_imagenet.sh")], shell=True, check=True)
else:
url = f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{data}.zip"
download(url, dir=data_dir.parent)
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
LOGGER.info(s)
# Dataloaders
nc = len([x for x in (data_dir / "train").glob("*") if x.is_dir()]) # number of classes
trainloader = create_classification_dataloader(
path=data_dir / "train",
imgsz=imgsz,
batch_size=bs // WORLD_SIZE,
augment=True,
cache=opt.cache,
rank=LOCAL_RANK,
workers=nw,
)
test_dir = data_dir / "test" if (data_dir / "test").exists() else data_dir / "val" # data/test or data/val
if RANK in {-1, 0}:
testloader = create_classification_dataloader(
path=test_dir,
imgsz=imgsz,
batch_size=bs // WORLD_SIZE * 2,
augment=False,
cache=opt.cache,
rank=-1,
workers=nw,
)
# Model
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
if Path(opt.model).is_file() or opt.model.endswith(".pt"):
model = attempt_load(opt.model, device="cpu", fuse=False)
elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
model = torchvision.models.__dict__[opt.model](weights="IMAGENET1K_V1" if pretrained else None)
else:
m = hub.list("ultralytics/yolov5") # + hub.list('pytorch/vision') # models
raise ModuleNotFoundError(f"--model {opt.model} not found. Available models are: \n" + "\n".join(m))
if isinstance(model, DetectionModel):
LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
reshape_classifier_output(model, nc) # update class count
for m in model.modules():
if not pretrained and hasattr(m, "reset_parameters"):
m.reset_parameters()
if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
m.p = opt.dropout # set dropout
for p in model.parameters():
p.requires_grad = True # for training
model = model.to(device)
# Info
if RANK in {-1, 0}:
model.names = trainloader.dataset.classes # attach class names
model.transforms = testloader.dataset.torch_transforms # attach inference transforms
model_info(model)
if opt.verbose:
LOGGER.info(model)
images, labels = next(iter(trainloader))
file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / "train_images.jpg")
logger.log_images(file, name="Train Examples")
logger.log_graph(model, imgsz) # log model
# Optimizer
optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
# Scheduler
lrf = 0.01 # final lr (fraction of lr0)
# lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
def lf(x):
"""Linear learning rate scheduler function, scaling learning rate from initial value to `lrf` over `epochs`."""
return (1 - x / epochs) * (1 - lrf) + lrf # linear
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
# final_div_factor=1 / 25 / lrf)
# EMA
ema = ModelEMA(model) if RANK in {-1, 0} else None
# DDP mode
if cuda and RANK != -1:
model = smart_DDP(model)
# Train
t0 = time.time()
criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
best_fitness = 0.0
scaler = amp.GradScaler(enabled=cuda)
val = test_dir.stem # 'val' or 'test'
LOGGER.info(
f"Image sizes {imgsz} train, {imgsz} test\n"
f"Using {nw * WORLD_SIZE} dataloader workers\n"
f"Logging results to {colorstr('bold', save_dir)}\n"
f"Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n"
f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}"
)
for epoch in range(epochs): # loop over the dataset multiple times
tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
model.train()
if RANK != -1:
trainloader.sampler.set_epoch(epoch)
pbar = enumerate(trainloader)
if RANK in {-1, 0}:
pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
for i, (images, labels) in pbar: # progress bar
images, labels = images.to(device, non_blocking=True), labels.to(device)
# Forward
with amp.autocast(enabled=cuda): # stability issues when enabled
loss = criterion(model(images), labels)
# Backward
scaler.scale(loss).backward()
# Optimize
scaler.unscale_(optimizer) # unscale gradients
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if ema:
ema.update(model)
if RANK in {-1, 0}:
# Print
tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
mem = "%.3gG" % (torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0) # (GB)
pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + " " * 36
# Test
if i == len(pbar) - 1: # last batch
top1, top5, vloss = validate.run(
model=ema.ema, dataloader=testloader, criterion=criterion, pbar=pbar
) # test accuracy, loss
fitness = top1 # define fitness as top1 accuracy
# Scheduler
scheduler.step()
# Log metrics
if RANK in {-1, 0}:
# Best fitness
if fitness > best_fitness:
best_fitness = fitness
# Log
metrics = {
"train/loss": tloss,
f"{val}/loss": vloss,
"metrics/accuracy_top1": top1,
"metrics/accuracy_top5": top5,
"lr/0": optimizer.param_groups[0]["lr"],
} # learning rate
logger.log_metrics(metrics, epoch)
# Save model
final_epoch = epoch + 1 == epochs
if (not opt.nosave) or final_epoch:
ckpt = {
"epoch": epoch,
"best_fitness": best_fitness,
"model": deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
"ema": None, # deepcopy(ema.ema).half(),
"updates": ema.updates,
"optimizer": None, # optimizer.state_dict(),
"opt": vars(opt),
"git": GIT_INFO, # {remote, branch, commit} if a git repo
"date": datetime.now().isoformat(),
}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fitness:
torch.save(ckpt, best)
del ckpt
# Train complete
if RANK in {-1, 0} and final_epoch:
LOGGER.info(
f"\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)"
f"\nResults saved to {colorstr('bold', save_dir)}"
f"\nPredict: python classify/predict.py --weights {best} --source im.jpg"
f"\nValidate: python classify/val.py --weights {best} --data {data_dir}"
f"\nExport: python export.py --weights {best} --include onnx"
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
f"\nVisualize: https://netron.app\n"
)
# Plot examples
images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
pred = torch.max(ema.ema(images.to(device)), 1)[1]
file = imshow_cls(images, labels, pred, de_parallel(model).names, verbose=False, f=save_dir / "test_images.jpg")
# Log results
meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
logger.log_images(file, name="Test Examples (true-predicted)", epoch=epoch)
logger.log_model(best, epochs, metadata=meta)
def parse_opt(known=False):
"""Parses command line arguments for YOLOv5 training including model path, dataset, epochs, and more, returning
parsed arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="yolov5s-cls.pt", help="initial weights path")
parser.add_argument("--data", type=str, default="imagenette160", help="cifar10, cifar100, mnist, imagenet, ...")
parser.add_argument("--epochs", type=int, default=10, help="total training epochs")
parser.add_argument("--batch-size", type=int, default=64, help="total batch size for all GPUs")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="train, val image size (pixels)")
parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"')
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
parser.add_argument("--project", default=ROOT / "runs/train-cls", help="save to project/name")
parser.add_argument("--name", default="exp", help="save to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--pretrained", nargs="?", const=True, default=True, help="start from i.e. --pretrained False")
parser.add_argument("--optimizer", choices=["SGD", "Adam", "AdamW", "RMSProp"], default="Adam", help="optimizer")
parser.add_argument("--lr0", type=float, default=0.001, help="initial learning rate")
parser.add_argument("--decay", type=float, default=5e-5, help="weight decay")
parser.add_argument("--label-smoothing", type=float, default=0.1, help="Label smoothing epsilon")
parser.add_argument("--cutoff", type=int, default=None, help="Model layer cutoff index for Classify() head")
parser.add_argument("--dropout", type=float, default=None, help="Dropout (fraction)")
parser.add_argument("--verbose", action="store_true", help="Verbose mode")
parser.add_argument("--seed", type=int, default=0, help="Global training seed")
parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
return parser.parse_known_args()[0] if known else parser.parse_args()
def main(opt):
"""Executes YOLOv5 training with given options, handling device setup and DDP mode; includes pre-training checks."""
if RANK in {-1, 0}:
print_args(vars(opt))
check_git_status()
check_requirements(ROOT / "requirements.txt")
# DDP mode
device = select_device(opt.device, batch_size=opt.batch_size)
if LOCAL_RANK != -1:
assert opt.batch_size != -1, "AutoBatch is coming soon for classification, please pass a valid --batch-size"
assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
torch.cuda.set_device(LOCAL_RANK)
device = torch.device("cuda", LOCAL_RANK)
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
# Parameters
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
# Train
train(opt, device)
def run(**kwargs):
"""
Executes YOLOv5 model training or inference with specified parameters, returning updated options.
Example: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
"""
opt = parse_opt(True)
for k, v in kwargs.items():
setattr(opt, k, v)
main(opt)
return opt
if __name__ == "__main__":
opt = parse_opt()
main(opt)

File diff suppressed because it is too large Load Diff

@ -0,0 +1,178 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Validate a trained YOLOv5 classification model on a classification dataset.
Usage:
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
Usage - formats:
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch
yolov5s-cls.torchscript # TorchScript
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s-cls_openvino_model # OpenVINO
yolov5s-cls.engine # TensorRT
yolov5s-cls.mlmodel # CoreML (macOS-only)
yolov5s-cls_saved_model # TensorFlow SavedModel
yolov5s-cls.pb # TensorFlow GraphDef
yolov5s-cls.tflite # TensorFlow Lite
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
yolov5s-cls_paddle_model # PaddlePaddle
"""
import argparse
import os
import sys
from pathlib import Path
import torch
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.dataloaders import create_classification_dataloader
from utils.general import (
LOGGER,
TQDM_BAR_FORMAT,
Profile,
check_img_size,
check_requirements,
colorstr,
increment_path,
print_args,
)
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
data=ROOT / "../datasets/mnist", # dataset dir
weights=ROOT / "yolov5s-cls.pt", # model.pt path(s)
batch_size=128, # batch size
imgsz=224, # inference size (pixels)
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
workers=8, # max dataloader workers (per RANK in DDP mode)
verbose=False, # verbose output
project=ROOT / "runs/val-cls", # save to project/name
name="exp", # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
model=None,
dataloader=None,
criterion=None,
pbar=None,
):
"""Validates a YOLOv5 classification model on a dataset, computing metrics like top1 and top5 accuracy."""
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
half &= device.type != "cpu" # half precision only supported on CUDA
model.half() if half else model.float()
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
save_dir.mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size
half = model.fp16 # FP16 supported on limited backends with CUDA
if engine:
batch_size = model.batch_size
else:
device = model.device
if not (pt or jit):
batch_size = 1 # export.py models default to batch-size 1
LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
# Dataloader
data = Path(data)
test_dir = data / "test" if (data / "test").exists() else data / "val" # data/test or data/val
dataloader = create_classification_dataloader(
path=test_dir, imgsz=imgsz, batch_size=batch_size, augment=False, rank=-1, workers=workers
)
model.eval()
pred, targets, loss, dt = [], [], 0, (Profile(device=device), Profile(device=device), Profile(device=device))
n = len(dataloader) # number of batches
action = "validating" if dataloader.dataset.root.stem == "val" else "testing"
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
with torch.cuda.amp.autocast(enabled=device.type != "cpu"):
for images, labels in bar:
with dt[0]:
images, labels = images.to(device, non_blocking=True), labels.to(device)
with dt[1]:
y = model(images)
with dt[2]:
pred.append(y.argsort(1, descending=True)[:, :5])
targets.append(labels)
if criterion:
loss += criterion(y, labels)
loss /= n
pred, targets = torch.cat(pred), torch.cat(targets)
correct = (targets[:, None] == pred).float()
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
top1, top5 = acc.mean(0).tolist()
if pbar:
pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
if verbose: # all classes
LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
for i, c in model.names.items():
acc_i = acc[targets == i]
top1i, top5i = acc_i.mean(0).tolist()
LOGGER.info(f"{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
# Print results
t = tuple(x.t / len(dataloader.dataset.samples) * 1e3 for x in dt) # speeds per image
shape = (1, 3, imgsz, imgsz)
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}" % t)
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
return top1, top5, loss
def parse_opt():
"""Parses and returns command line arguments for YOLOv5 model evaluation and inference settings."""
parser = argparse.ArgumentParser()
parser.add_argument("--data", type=str, default=ROOT / "../datasets/mnist", help="dataset path")
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model.pt path(s)")
parser.add_argument("--batch-size", type=int, default=128, help="batch size")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="inference size (pixels)")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
parser.add_argument("--verbose", nargs="?", const=True, default=True, help="verbose output")
parser.add_argument("--project", default=ROOT / "runs/val-cls", help="save to project/name")
parser.add_argument("--name", default="exp", help="save to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
opt = parser.parse_args()
print_args(vars(opt))
return opt
def main(opt):
"""Executes the YOLOv5 model prediction workflow, handling argument parsing and requirement checks."""
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

@ -0,0 +1,73 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
# Example usage: python train.py --data Argoverse.yaml
# parent
# ├── yolov5
# └── datasets
# └── Argoverse ← downloads here (31.3 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Argoverse # dataset root dir
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: bus
5: truck
6: traffic_light
7: stop_sign
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json
from tqdm import tqdm
from utils.general import download, Path
def argoverse2yolo(set):
labels = {}
a = json.load(open(set, "rb"))
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
img_id = annot['image_id']
img_name = a['images'][img_id]['name']
img_label_name = f'{img_name[:-3]}txt'
cls = annot['category_id'] # instance class id
x_center, y_center, width, height = annot['bbox']
x_center = (x_center + width / 2) / 1920.0 # offset and scale
y_center = (y_center + height / 2) / 1200.0 # offset and scale
width /= 1920.0 # scale
height /= 1200.0 # scale
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
if not img_dir.exists():
img_dir.mkdir(parents=True, exist_ok=True)
k = str(img_dir / img_label_name)
if k not in labels:
labels[k] = []
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
for k in labels:
with open(k, "w") as f:
f.writelines(labels[k])
# Download
dir = Path(yaml['path']) # dataset root dir
urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
download(urls, dir=dir, delete=False)
# Convert
annotations_dir = 'Argoverse-HD/annotations/'
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
for d in "train.json", "val.json":
argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels

@ -0,0 +1,53 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
# Example usage: python train.py --data GlobalWheat2020.yaml
# parent
# ├── yolov5
# └── datasets
# └── GlobalWheat2020 ← downloads here (7.0 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/GlobalWheat2020 # dataset root dir
train: # train images (relative to 'path') 3422 images
- images/arvalis_1
- images/arvalis_2
- images/arvalis_3
- images/ethz_1
- images/rres_1
- images/inrae_1
- images/usask_1
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
- images/ethz_1
test: # test images (optional) 1276 images
- images/utokyo_1
- images/utokyo_2
- images/nau_1
- images/uq_1
# Classes
names:
0: wheat_head
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from utils.general import download, Path
# Download
dir = Path(yaml['path']) # dataset root dir
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/GlobalWheat2020_labels.zip']
download(urls, dir=dir)
# Make Directories
for p in 'annotations', 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
# Move
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
(dir / p).rename(dir / 'images' / p) # move to /images
f = (dir / p).with_suffix('.json') # json file
if f.exists():
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations

File diff suppressed because it is too large Load Diff

@ -0,0 +1,31 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
# Example usage: python classify/train.py --data imagenet
# parent
# ├── yolov5
# └── datasets
# └── imagenet10 ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/imagenet10 # dataset root dir
train: train # train images (relative to 'path') 1281167 images
val: val # val images (relative to 'path') 50000 images
test: # test images (optional)
# Classes
names:
0: tench
1: goldfish
2: great white shark
3: tiger shark
4: hammerhead shark
5: electric ray
6: stingray
7: cock
8: hen
9: ostrich
# Download script/URL (optional)
download: data/scripts/get_imagenet10.sh

@ -0,0 +1,120 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
# Example usage: python classify/train.py --data imagenet
# parent
# ├── yolov5
# └── datasets
# └── imagenet100 ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/imagenet100 # dataset root dir
train: train # train images (relative to 'path') 1281167 images
val: val # val images (relative to 'path') 50000 images
test: # test images (optional)
# Classes
names:
0: tench
1: goldfish
2: great white shark
3: tiger shark
4: hammerhead shark
5: electric ray
6: stingray
7: cock
8: hen
9: ostrich
10: brambling
11: goldfinch
12: house finch
13: junco
14: indigo bunting
15: American robin
16: bulbul
17: jay
18: magpie
19: chickadee
20: American dipper
21: kite
22: bald eagle
23: vulture
24: great grey owl
25: fire salamander
26: smooth newt
27: newt
28: spotted salamander
29: axolotl
30: American bullfrog
31: tree frog
32: tailed frog
33: loggerhead sea turtle
34: leatherback sea turtle
35: mud turtle
36: terrapin
37: box turtle
38: banded gecko
39: green iguana
40: Carolina anole
41: desert grassland whiptail lizard
42: agama
43: frilled-necked lizard
44: alligator lizard
45: Gila monster
46: European green lizard
47: chameleon
48: Komodo dragon
49: Nile crocodile
50: American alligator
51: triceratops
52: worm snake
53: ring-necked snake
54: eastern hog-nosed snake
55: smooth green snake
56: kingsnake
57: garter snake
58: water snake
59: vine snake
60: night snake
61: boa constrictor
62: African rock python
63: Indian cobra
64: green mamba
65: sea snake
66: Saharan horned viper
67: eastern diamondback rattlesnake
68: sidewinder
69: trilobite
70: harvestman
71: scorpion
72: yellow garden spider
73: barn spider
74: European garden spider
75: southern black widow
76: tarantula
77: wolf spider
78: tick
79: centipede
80: black grouse
81: ptarmigan
82: ruffed grouse
83: prairie grouse
84: peacock
85: quail
86: partridge
87: grey parrot
88: macaw
89: sulphur-crested cockatoo
90: lorikeet
91: coucal
92: bee eater
93: hornbill
94: hummingbird
95: jacamar
96: toucan
97: duck
98: red-breasted merganser
99: goose
# Download script/URL (optional)
download: data/scripts/get_imagenet100.sh

@ -0,0 +1,437 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Objects365 dataset https://www.objects365.org/ by Megvii
# Example usage: python train.py --data Objects365.yaml
# parent
# ├── yolov5
# └── datasets
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Objects365 # dataset root dir
train: images/train # train images (relative to 'path') 1742289 images
val: images/val # val images (relative to 'path') 80000 images
test: # test images (optional)
# Classes
names:
0: Person
1: Sneakers
2: Chair
3: Other Shoes
4: Hat
5: Car
6: Lamp
7: Glasses
8: Bottle
9: Desk
10: Cup
11: Street Lights
12: Cabinet/shelf
13: Handbag/Satchel
14: Bracelet
15: Plate
16: Picture/Frame
17: Helmet
18: Book
19: Gloves
20: Storage box
21: Boat
22: Leather Shoes
23: Flower
24: Bench
25: Potted Plant
26: Bowl/Basin
27: Flag
28: Pillow
29: Boots
30: Vase
31: Microphone
32: Necklace
33: Ring
34: SUV
35: Wine Glass
36: Belt
37: Monitor/TV
38: Backpack
39: Umbrella
40: Traffic Light
41: Speaker
42: Watch
43: Tie
44: Trash bin Can
45: Slippers
46: Bicycle
47: Stool
48: Barrel/bucket
49: Van
50: Couch
51: Sandals
52: Basket
53: Drum
54: Pen/Pencil
55: Bus
56: Wild Bird
57: High Heels
58: Motorcycle
59: Guitar
60: Carpet
61: Cell Phone
62: Bread
63: Camera
64: Canned
65: Truck
66: Traffic cone
67: Cymbal
68: Lifesaver
69: Towel
70: Stuffed Toy
71: Candle
72: Sailboat
73: Laptop
74: Awning
75: Bed
76: Faucet
77: Tent
78: Horse
79: Mirror
80: Power outlet
81: Sink
82: Apple
83: Air Conditioner
84: Knife
85: Hockey Stick
86: Paddle
87: Pickup Truck
88: Fork
89: Traffic Sign
90: Balloon
91: Tripod
92: Dog
93: Spoon
94: Clock
95: Pot
96: Cow
97: Cake
98: Dinning Table
99: Sheep
100: Hanger
101: Blackboard/Whiteboard
102: Napkin
103: Other Fish
104: Orange/Tangerine
105: Toiletry
106: Keyboard
107: Tomato
108: Lantern
109: Machinery Vehicle
110: Fan
111: Green Vegetables
112: Banana
113: Baseball Glove
114: Airplane
115: Mouse
116: Train
117: Pumpkin
118: Soccer
119: Skiboard
120: Luggage
121: Nightstand
122: Tea pot
123: Telephone
124: Trolley
125: Head Phone
126: Sports Car
127: Stop Sign
128: Dessert
129: Scooter
130: Stroller
131: Crane
132: Remote
133: Refrigerator
134: Oven
135: Lemon
136: Duck
137: Baseball Bat
138: Surveillance Camera
139: Cat
140: Jug
141: Broccoli
142: Piano
143: Pizza
144: Elephant
145: Skateboard
146: Surfboard
147: Gun
148: Skating and Skiing shoes
149: Gas stove
150: Donut
151: Bow Tie
152: Carrot
153: Toilet
154: Kite
155: Strawberry
156: Other Balls
157: Shovel
158: Pepper
159: Computer Box
160: Toilet Paper
161: Cleaning Products
162: Chopsticks
163: Microwave
164: Pigeon
165: Baseball
166: Cutting/chopping Board
167: Coffee Table
168: Side Table
169: Scissors
170: Marker
171: Pie
172: Ladder
173: Snowboard
174: Cookies
175: Radiator
176: Fire Hydrant
177: Basketball
178: Zebra
179: Grape
180: Giraffe
181: Potato
182: Sausage
183: Tricycle
184: Violin
185: Egg
186: Fire Extinguisher
187: Candy
188: Fire Truck
189: Billiards
190: Converter
191: Bathtub
192: Wheelchair
193: Golf Club
194: Briefcase
195: Cucumber
196: Cigar/Cigarette
197: Paint Brush
198: Pear
199: Heavy Truck
200: Hamburger
201: Extractor
202: Extension Cord
203: Tong
204: Tennis Racket
205: Folder
206: American Football
207: earphone
208: Mask
209: Kettle
210: Tennis
211: Ship
212: Swing
213: Coffee Machine
214: Slide
215: Carriage
216: Onion
217: Green beans
218: Projector
219: Frisbee
220: Washing Machine/Drying Machine
221: Chicken
222: Printer
223: Watermelon
224: Saxophone
225: Tissue
226: Toothbrush
227: Ice cream
228: Hot-air balloon
229: Cello
230: French Fries
231: Scale
232: Trophy
233: Cabbage
234: Hot dog
235: Blender
236: Peach
237: Rice
238: Wallet/Purse
239: Volleyball
240: Deer
241: Goose
242: Tape
243: Tablet
244: Cosmetics
245: Trumpet
246: Pineapple
247: Golf Ball
248: Ambulance
249: Parking meter
250: Mango
251: Key
252: Hurdle
253: Fishing Rod
254: Medal
255: Flute
256: Brush
257: Penguin
258: Megaphone
259: Corn
260: Lettuce
261: Garlic
262: Swan
263: Helicopter
264: Green Onion
265: Sandwich
266: Nuts
267: Speed Limit Sign
268: Induction Cooker
269: Broom
270: Trombone
271: Plum
272: Rickshaw
273: Goldfish
274: Kiwi fruit
275: Router/modem
276: Poker Card
277: Toaster
278: Shrimp
279: Sushi
280: Cheese
281: Notepaper
282: Cherry
283: Pliers
284: CD
285: Pasta
286: Hammer
287: Cue
288: Avocado
289: Hamimelon
290: Flask
291: Mushroom
292: Screwdriver
293: Soap
294: Recorder
295: Bear
296: Eggplant
297: Board Eraser
298: Coconut
299: Tape Measure/Ruler
300: Pig
301: Showerhead
302: Globe
303: Chips
304: Steak
305: Crosswalk Sign
306: Stapler
307: Camel
308: Formula 1
309: Pomegranate
310: Dishwasher
311: Crab
312: Hoverboard
313: Meat ball
314: Rice Cooker
315: Tuba
316: Calculator
317: Papaya
318: Antelope
319: Parrot
320: Seal
321: Butterfly
322: Dumbbell
323: Donkey
324: Lion
325: Urinal
326: Dolphin
327: Electric Drill
328: Hair Dryer
329: Egg tart
330: Jellyfish
331: Treadmill
332: Lighter
333: Grapefruit
334: Game board
335: Mop
336: Radish
337: Baozi
338: Target
339: French
340: Spring Rolls
341: Monkey
342: Rabbit
343: Pencil Case
344: Yak
345: Red Cabbage
346: Binoculars
347: Asparagus
348: Barbell
349: Scallop
350: Noddles
351: Comb
352: Dumpling
353: Oyster
354: Table Tennis paddle
355: Cosmetics Brush/Eyeliner Pencil
356: Chainsaw
357: Eraser
358: Lobster
359: Durian
360: Okra
361: Lipstick
362: Cosmetics Mirror
363: Curling
364: Table Tennis
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from tqdm import tqdm
from utils.general import Path, check_requirements, download, np, xyxy2xywhn
check_requirements('pycocotools>=2.0')
from pycocotools.coco import COCO
# Make Directories
dir = Path(yaml['path']) # dataset root dir
for p in 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
for q in 'train', 'val':
(dir / p / q).mkdir(parents=True, exist_ok=True)
# Train, Val Splits
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
print(f"Processing {split} in {patches} patches ...")
images, labels = dir / 'images' / split, dir / 'labels' / split
# Download
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
if split == 'train':
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
elif split == 'val':
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
# Move
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
f.rename(images / f.name) # move to /images/{split}
# Labels
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
for cid, cat in enumerate(names):
catIds = coco.getCatIds(catNms=[cat])
imgIds = coco.getImgIds(catIds=catIds)
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
width, height = im["width"], im["height"]
path = Path(im["file_name"]) # image filename
try:
with open(labels / path.with_suffix('.txt').name, 'a') as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=False)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
except Exception as e:
print(e)

@ -0,0 +1,52 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
# Example usage: python train.py --data SKU-110K.yaml
# parent
# ├── yolov5
# └── datasets
# └── SKU-110K ← downloads here (13.6 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/SKU-110K # dataset root dir
train: train.txt # train images (relative to 'path') 8219 images
val: val.txt # val images (relative to 'path') 588 images
test: test.txt # test images (optional) 2936 images
# Classes
names:
0: object
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import shutil
from tqdm import tqdm
from utils.general import np, pd, Path, download, xyxy2xywh
# Download
dir = Path(yaml['path']) # dataset root dir
parent = Path(dir.parent) # download dir
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
download(urls, dir=parent, delete=False)
# Rename directories
if dir.exists():
shutil.rmtree(dir)
(parent / 'SKU110K_fixed').rename(dir) # rename dir
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
# Convert labels
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
images, unique_images = x[:, 0], np.unique(x[:, 0])
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
f.writelines(f'./images/{s}\n' for s in unique_images)
for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
cls = 0 # single-class dataset
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
for r in x[images == im]:
w, h = r[6], r[7] # image width, height
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label

@ -0,0 +1,99 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
# Example usage: python train.py --data VOC.yaml
# parent
# ├── yolov5
# └── datasets
# └── VOC ← downloads here (2.8 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VOC
train: # train images (relative to 'path') 16551 images
- images/train2012
- images/train2007
- images/val2012
- images/val2007
val: # val images (relative to 'path') 4952 images
- images/test2007
test: # test images (optional)
- images/test2007
# Classes
names:
0: aeroplane
1: bicycle
2: bird
3: boat
4: bottle
5: bus
6: car
7: cat
8: chair
9: cow
10: diningtable
11: dog
12: horse
13: motorbike
14: person
15: pottedplant
16: sheep
17: sofa
18: train
19: tvmonitor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import xml.etree.ElementTree as ET
from tqdm import tqdm
from utils.general import download, Path
def convert_label(path, lb_path, year, image_id):
def convert_box(size, box):
dw, dh = 1. / size[0], 1. / size[1]
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
return x * dw, y * dh, w * dw, h * dh
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
out_file = open(lb_path, 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
names = list(yaml['names'].values()) # names list
for obj in root.iter('object'):
cls = obj.find('name').text
if cls in names and int(obj.find('difficult').text) != 1:
xmlbox = obj.find('bndbox')
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
cls_id = names.index(cls) # class id
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
# Download
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
# Convert
path = dir / 'images/VOCdevkit'
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
imgs_path = dir / 'images' / f'{image_set}{year}'
lbs_path = dir / 'labels' / f'{image_set}{year}'
imgs_path.mkdir(exist_ok=True, parents=True)
lbs_path.mkdir(exist_ok=True, parents=True)
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
image_ids = f.read().strip().split()
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
f.rename(imgs_path / f.name) # move image
convert_label(path, lb_path, year, id) # convert labels to YOLO format

@ -0,0 +1,69 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
# Example usage: python train.py --data VisDrone.yaml
# parent
# ├── yolov5
# └── datasets
# └── VisDrone ← downloads here (2.3 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VisDrone # dataset root dir
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
# Classes
names:
0: pedestrian
1: people
2: bicycle
3: car
4: van
5: truck
6: tricycle
7: awning-tricycle
8: bus
9: motor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from utils.general import download, os, Path
def visdrone2yolo(dir):
from PIL import Image
from tqdm import tqdm
def convert_box(size, box):
# Convert VisDrone box to YOLO xywh box
dw = 1. / size[0]
dh = 1. / size[1]
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
for f in pbar:
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
lines = []
with open(f, 'r') as file: # read annotation.txt
for row in [x.split(',') for x in file.read().strip().splitlines()]:
if row[4] == '0': # VisDrone 'ignored regions' class 0
continue
cls = int(row[5]) - 1
box = convert_box(img_size, tuple(map(int, row[:4])))
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
fl.writelines(lines) # write label.txt
# Download
dir = Path(yaml['path']) # dataset root dir
urls = ['https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip',
'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip']
download(urls, dir=dir, curl=True, threads=4)
# Convert
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels

@ -0,0 +1,115 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: python train.py --data coco.yaml
# parent
# ├── yolov5
# └── datasets
# └── coco ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: |
from utils.general import download, Path
# Download labels
segments = False # segment or box labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)

@ -0,0 +1,100 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
# └── coco128-seg ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128-seg # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip

@ -0,0 +1,100 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
# └── coco128 ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip

@ -0,0 +1,35 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters for Objects365 training
# python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
lr0: 0.00258
lrf: 0.17
momentum: 0.779
weight_decay: 0.00058
warmup_epochs: 1.33
warmup_momentum: 0.86
warmup_bias_lr: 0.0711
box: 0.0539
cls: 0.299
cls_pw: 0.825
obj: 0.632
obj_pw: 1.0
iou_t: 0.2
anchor_t: 3.44
anchors: 3.2
fl_gamma: 0.0
hsv_h: 0.0188
hsv_s: 0.704
hsv_v: 0.36
degrees: 0.0
translate: 0.0902
scale: 0.491
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 1.0
mixup: 0.0
copy_paste: 0.0

@ -0,0 +1,41 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters for VOC training
# python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
# YOLOv5 Hyperparameter Evolution Results
# Best generation: 467
# Last generation: 996
# metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
# 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865
lr0: 0.00334
lrf: 0.15135
momentum: 0.74832
weight_decay: 0.00025
warmup_epochs: 3.3835
warmup_momentum: 0.59462
warmup_bias_lr: 0.18657
box: 0.02
cls: 0.21638
cls_pw: 0.5
obj: 0.51728
obj_pw: 0.67198
iou_t: 0.2
anchor_t: 3.3744
fl_gamma: 0.0
hsv_h: 0.01041
hsv_s: 0.54703
hsv_v: 0.27739
degrees: 0.0
translate: 0.04591
scale: 0.75544
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 0.85834
mixup: 0.04266
copy_paste: 0.0
anchors: 3.412

@ -0,0 +1,36 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters when using Albumentations frameworks
# python train.py --hyp hyp.no-augmentation.yaml
# See https://github.com/ultralytics/yolov5/pull/3882 for YOLOv5 + Albumentations Usage examples
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
# this parameters are all zero since we want to use albumentation framework
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0 # image HSV-Hue augmentation (fraction)
hsv_s: 0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0 # image translation (+/- fraction)
scale: 0 # image scale (+/- gain)
shear: 0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.0 # image flip left-right (probability)
mosaic: 0.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

@ -0,0 +1,35 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters for high-augmentation COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.9 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.1 # image mixup (probability)
copy_paste: 0.1 # segment copy-paste (probability)

@ -0,0 +1,35 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters for low-augmentation COCO training from scratch
# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

@ -0,0 +1,35 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hyperparameters for medium-augmentation COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.9 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.1 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

Binary file not shown.

After

Width:  |  Height:  |  Size: 476 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 165 KiB

@ -0,0 +1,23 @@
#!/bin/bash
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Download latest models from https://github.com/ultralytics/yolov5/releases
# Example usage: bash data/scripts/download_weights.sh
# parent
# └── yolov5
# ├── yolov5s.pt ← downloads here
# ├── yolov5m.pt
# └── ...
python - << EOF
from utils.downloads import attempt_download
p5 = list('nsmlx') # P5 models
p6 = [f'{x}6' for x in p5] # P6 models
cls = [f'{x}-cls' for x in p5] # classification models
seg = [f'{x}-seg' for x in p5] # classification models
for x in p5 + p6 + cls + seg:
attempt_download(f'weights/yolov5{x}.pt')
EOF

@ -0,0 +1,57 @@
#!/bin/bash
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Download COCO 2017 dataset http://cocodataset.org
# Example usage: bash data/scripts/get_coco.sh
# parent
# ├── yolov5
# └── datasets
# └── coco ← downloads here
# Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments
if [ "$#" -gt 0 ]; then
for opt in "$@"; do
case "${opt}" in
--train) train=true ;;
--val) val=true ;;
--test) test=true ;;
--segments) segments=true ;;
esac
done
else
train=true
val=true
test=false
segments=false
fi
# Download/unzip labels
d='../datasets' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
if [ "$segments" == "true" ]; then
f='coco2017labels-segments.zip' # 168 MB
else
f='coco2017labels.zip' # 46 MB
fi
echo 'Downloading' $url$f ' ...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
# Download/unzip images
d='../datasets/coco/images' # unzip directory
url=http://images.cocodataset.org/zips/
if [ "$train" == "true" ]; then
f='train2017.zip' # 19G, 118k images
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
fi
if [ "$val" == "true" ]; then
f='val2017.zip' # 1G, 5k images
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
fi
if [ "$test" == "true" ]; then
f='test2017.zip' # 7G, 41k images (optional)
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
fi
wait # finish background tasks

@ -0,0 +1,18 @@
#!/bin/bash
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
# Example usage: bash data/scripts/get_coco128.sh
# parent
# ├── yolov5
# └── datasets
# └── coco128 ← downloads here
# Download/unzip images and labels
d='../datasets' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f='coco128.zip' # or 'coco128-segments.zip', 68 MB
echo 'Downloading' $url$f ' ...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
wait # finish background tasks

@ -0,0 +1,52 @@
#!/bin/bash
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Download ILSVRC2012 ImageNet dataset https://image-net.org
# Example usage: bash data/scripts/get_imagenet.sh
# parent
# ├── yolov5
# └── datasets
# └── imagenet ← downloads here
# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
if [ "$#" -gt 0 ]; then
for opt in "$@"; do
case "${opt}" in
--train) train=true ;;
--val) val=true ;;
esac
done
else
train=true
val=true
fi
# Make dir
d='../datasets/imagenet' # unzip directory
mkdir -p $d && cd $d
# Download/unzip train
if [ "$train" == "true" ]; then
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images
mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME; do
mkdir -p "${NAME%.tar}"
tar -xf "${NAME}" -C "${NAME%.tar}"
rm -f "${NAME}"
done
cd ..
fi
# Download/unzip val
if [ "$val" == "true" ]; then
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images
mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs
fi
# Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail)
# rm train/n04266014/n04266014_10835.JPEG
# TFRecords (optional)
# wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt

@ -0,0 +1,30 @@
#!/bin/bash
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Download ILSVRC2012 ImageNet dataset https://image-net.org
# Example usage: bash data/scripts/get_imagenet.sh
# parent
# ├── yolov5
# └── datasets
# └── imagenet ← downloads here
# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
if [ "$#" -gt 0 ]; then
for opt in "$@"; do
case "${opt}" in
--train) train=true ;;
--val) val=true ;;
esac
done
else
train=true
val=true
fi
# Make dir
d='../datasets/imagenet10' # unzip directory
mkdir -p $d && cd $d
# Download/unzip train
wget https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenet10.zip
unzip imagenet10.zip && rm imagenet10.zip

@ -0,0 +1,30 @@
#!/bin/bash
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Download ILSVRC2012 ImageNet dataset https://image-net.org
# Example usage: bash data/scripts/get_imagenet.sh
# parent
# ├── yolov5
# └── datasets
# └── imagenet ← downloads here
# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
if [ "$#" -gt 0 ]; then
for opt in "$@"; do
case "${opt}" in
--train) train=true ;;
--val) val=true ;;
esac
done
else
train=true
val=true
fi
# Make dir
d='../datasets/imagenet100' # unzip directory
mkdir -p $d && cd $d
# Download/unzip train
wget https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenet100.zip
unzip imagenet100.zip && rm imagenet100.zip

@ -0,0 +1,30 @@
#!/bin/bash
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Download ILSVRC2012 ImageNet dataset https://image-net.org
# Example usage: bash data/scripts/get_imagenet.sh
# parent
# ├── yolov5
# └── datasets
# └── imagenet ← downloads here
# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
if [ "$#" -gt 0 ]; then
for opt in "$@"; do
case "${opt}" in
--train) train=true ;;
--val) val=true ;;
esac
done
else
train=true
val=true
fi
# Make dir
d='../datasets/imagenet1000' # unzip directory
mkdir -p $d && cd $d
# Download/unzip train
wget https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenet1000.zip
unzip imagenet1000.zip && rm imagenet1000.zip

@ -0,0 +1,152 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
# Example usage: python train.py --data xView.yaml
# parent
# ├── yolov5
# └── datasets
# └── xView ← downloads here (20.7 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/xView # dataset root dir
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
# Classes
names:
0: Fixed-wing Aircraft
1: Small Aircraft
2: Cargo Plane
3: Helicopter
4: Passenger Vehicle
5: Small Car
6: Bus
7: Pickup Truck
8: Utility Truck
9: Truck
10: Cargo Truck
11: Truck w/Box
12: Truck Tractor
13: Trailer
14: Truck w/Flatbed
15: Truck w/Liquid
16: Crane Truck
17: Railway Vehicle
18: Passenger Car
19: Cargo Car
20: Flat Car
21: Tank car
22: Locomotive
23: Maritime Vessel
24: Motorboat
25: Sailboat
26: Tugboat
27: Barge
28: Fishing Vessel
29: Ferry
30: Yacht
31: Container Ship
32: Oil Tanker
33: Engineering Vehicle
34: Tower crane
35: Container Crane
36: Reach Stacker
37: Straddle Carrier
38: Mobile Crane
39: Dump Truck
40: Haul Truck
41: Scraper/Tractor
42: Front loader/Bulldozer
43: Excavator
44: Cement Mixer
45: Ground Grader
46: Hut/Tent
47: Shed
48: Building
49: Aircraft Hangar
50: Damaged Building
51: Facility
52: Construction Site
53: Vehicle Lot
54: Helipad
55: Storage Tank
56: Shipping container lot
57: Shipping Container
58: Pylon
59: Tower
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json
import os
from pathlib import Path
import numpy as np
from PIL import Image
from tqdm import tqdm
from utils.dataloaders import autosplit
from utils.general import download, xyxy2xywhn
def convert_labels(fname=Path('xView/xView_train.geojson')):
# Convert xView geoJSON labels to YOLO format
path = fname.parent
with open(fname) as f:
print(f'Loading {fname}...')
data = json.load(f)
# Make dirs
labels = Path(path / 'labels' / 'train')
os.system(f'rm -rf {labels}')
labels.mkdir(parents=True, exist_ok=True)
# xView classes 11-94 to 0-59
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
shapes = {}
for feature in tqdm(data['features'], desc=f'Converting {fname}'):
p = feature['properties']
if p['bounds_imcoords']:
id = p['image_id']
file = path / 'train_images' / id
if file.exists(): # 1395.tif missing
try:
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
cls = p['type_id']
cls = xview_class2index[int(cls)] # xView class to 0-60
assert 59 >= cls >= 0, f'incorrect class index {cls}'
# Write YOLO label
if id not in shapes:
shapes[id] = Image.open(file).size
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
with open((labels / id).with_suffix('.txt'), 'a') as f:
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
except Exception as e:
print(f'WARNING: skipping one label for {file}: {e}')
# Download manually from https://challenge.xviewdataset.org
dir = Path(yaml['path']) # dataset root dir
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
# download(urls, dir=dir, delete=False)
# Convert labels
convert_labels(dir / 'xView_train.geojson')
# Move images
images = Path(dir / 'images')
images.mkdir(parents=True, exist_ok=True)
Path(dir / 'train_images').rename(dir / 'images' / 'train')
Path(dir / 'val_images').rename(dir / 'images' / 'val')
# Split
autosplit(dir / 'images' / 'train')

@ -0,0 +1,438 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/LNwODJXcvt4' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlpackage # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""
import argparse
import csv
import os
import platform
import sys
from pathlib import Path
import torch
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (
LOGGER,
Profile,
check_file,
check_img_size,
check_imshow,
check_requirements,
colorstr,
cv2,
increment_path,
non_max_suppression,
print_args,
scale_boxes,
strip_optimizer,
xyxy2xywh,
)
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
weights=ROOT / "yolov5s.pt", # model path or triton URL
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
data=ROOT / "data/coco128.yaml", # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_format=0, # save boxes coordinates in YOLO format or Pascal-VOC format (0 for YOLO and 1 for Pascal-VOC)
save_csv=False, # save results in CSV format
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / "runs/detect", # save results to project/name
name="exp", # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
"""
Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc.
Args:
weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'.
source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam
index. Default is 'data/images'.
data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640).
conf_thres (float): Confidence threshold for detections. Default is 0.25.
iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45.
max_det (int): Maximum number of detections per image. Default is 1000.
device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the
best available device.
view_img (bool): If True, display inference results using OpenCV. Default is False.
save_txt (bool): If True, save results in a text file. Default is False.
save_csv (bool): If True, save results in a CSV file. Default is False.
save_conf (bool): If True, include confidence scores in the saved results. Default is False.
save_crop (bool): If True, save cropped prediction boxes. Default is False.
nosave (bool): If True, do not save inference images or videos. Default is False.
classes (list[int]): List of class indices to filter detections by. Default is None.
agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False.
augment (bool): If True, use augmented inference. Default is False.
visualize (bool): If True, visualize feature maps. Default is False.
update (bool): If True, update all models' weights. Default is False.
project (str | Path): Directory to save results. Default is 'runs/detect'.
name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'.
exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is
False.
line_thickness (int): Thickness of bounding box lines in pixels. Default is 3.
hide_labels (bool): If True, do not display labels on bounding boxes. Default is False.
hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False.
half (bool): If True, use FP16 half-precision inference. Default is False.
dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False.
vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1.
Returns:
None
Examples:
```python
from ultralytics import run
# Run inference on an image
run(source='data/images/example.jpg', weights='yolov5s.pt', device='0')
# Run inference on a video with specific confidence threshold
run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0')
```
"""
source = str(source)
save_img = not nosave and not source.endswith(".txt") # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
screenshot = source.lower().startswith("screen")
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if model.xml and im.shape[0] > 1:
ims = torch.chunk(im, im.shape[0], 0)
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
if model.xml and im.shape[0] > 1:
pred = None
for image in ims:
if pred is None:
pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
else:
pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
pred = [pred, None]
else:
pred = model(im, augment=augment, visualize=visualize)
# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Define the path for the CSV file
csv_path = save_dir / "predictions.csv"
# Create or append to the CSV file
def write_to_csv(image_name, prediction, confidence):
"""Writes prediction data for an image to a CSV file, appending if the file exists."""
data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
file_exists = os.path.isfile(csv_path)
with open(csv_path, mode="a", newline="") as f:
writer = csv.DictWriter(f, fieldnames=data.keys())
if not file_exists:
writer.writeheader()
writer.writerow(data)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f"{i}: "
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = names[c] if hide_conf else f"{names[c]}"
confidence = float(conf)
confidence_str = f"{confidence:.2f}"
if save_csv:
write_to_csv(p.name, label, confidence_str)
if save_txt: # Write to file
if save_format == 0:
coords = (
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
) # normalized xywh
else:
coords = (torch.tensor(xyxy).view(1, 4) / gn).view(-1).tolist() # xyxy
line = (cls, *coords, conf) if save_conf else (cls, *coords) # label format
with open(f"{txt_path}.txt", "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == "Linux" and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1e3:.1f}ms")
# Print results
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
def parse_opt():
"""
Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations.
Args:
--weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'.
--source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'.
--data (str, optional): Dataset YAML path. Provides dataset configuration information.
--imgsz (list[int], optional): Inference size (height, width). Defaults to [640].
--conf-thres (float, optional): Confidence threshold. Defaults to 0.25.
--iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45.
--max-det (int, optional): Maximum number of detections per image. Defaults to 1000.
--device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "".
--view-img (bool, optional): Flag to display results. Defaults to False.
--save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False.
--save-csv (bool, optional): Flag to save results in CSV format. Defaults to False.
--save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False.
--save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False.
--nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False.
--classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None.
--agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False.
--augment (bool, optional): Flag for augmented inference. Defaults to False.
--visualize (bool, optional): Flag for visualizing features. Defaults to False.
--update (bool, optional): Flag to update all models in the model directory. Defaults to False.
--project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'.
--name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'.
--exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False.
--line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3.
--hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False.
--hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False.
--half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False.
--dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False.
--vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between
consecutive frames. Defaults to 1.
Returns:
argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object.
Example:
```python
from ultralytics import YOLOv5
args = YOLOv5.parse_opt()
```
"""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--view-img", action="store_true", help="show results")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument(
"--save-format",
type=int,
default=0,
help="whether to save boxes coordinates in YOLO format or Pascal-VOC format when save-txt is True, 0 for YOLO and 1 for Pascal-VOC",
)
parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--visualize", action="store_true", help="visualize features")
parser.add_argument("--update", action="store_true", help="update all models")
parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
parser.add_argument("--name", default="exp", help="save results to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
"""
Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running.
Args:
opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details.
Returns:
None
Note:
This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified
options. Refer to the usage guide and examples for more information about different sources and formats at:
https://github.com/ultralytics/ultralytics
Example usage:
```python
if __name__ == "__main__":
opt = parse_opt()
main(opt)
```
"""
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)

@ -0,0 +1,277 @@
import os
import sys
import threading
from flask import Flask, render_template, jsonify, request, Response
from flask_socketio import SocketIO, emit
import socket
import time
import av
import cv2
import base64
import numpy as np
# 添加YOLOv5路径
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# 尝试导入YOLOv5模块
try:
from models.experimental import attempt_load
from utils.general import non_max_suppression
from utils.torch_utils import select_device
import torch
YOLO_AVAILABLE = True
except ImportError:
print("警告: YOLOv5模块未找到将禁用目标检测功能")
YOLO_AVAILABLE = False
app = Flask(__name__)
socketio = SocketIO(app, cors_allowed_origins="*")
# Tello 配置
TELLO_IP = '192.168.10.1'
TELLO_PORT = 8889
LOCAL_PORT = 9000
# 全局变量
drone_connected = False
video_streaming = False
detection_enabled = False
model = None
device = None
# 初始化 UDP 套接字
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(('', LOCAL_PORT))
def send_command(cmd, retry=1, timeout=1):
"""发送指令到 Tello 并接收响应"""
global drone_connected
for _ in range(retry):
print(f"发送命令: {cmd}")
sock.sendto(cmd.encode('utf-8'), (TELLO_IP, TELLO_PORT))
try:
sock.settimeout(timeout)
response, _ = sock.recvfrom(1024)
response_text = response.decode().strip()
print(f"响应: {response_text}")
if response_text == 'ok':
drone_connected = True
return True, response_text
except socket.timeout:
print(f"超时:第 {_+1} 次重试...")
continue
print("错误: 指令发送失败!")
drone_connected = False
return False, "timeout"
def initialize_drone():
"""初始化无人机连接支持Tello Talent/Robomaster TT"""
global drone_connected
print("正在连接无人机...")
# 发送command指令
success, response = send_command('command')
if not success or response != 'ok':
print("command 指令失败请检查无人机连接和WiFi")
return False
time.sleep(2) # 增加等待时间
# 尝试多次开启视频流
streamon_success = False
for i in range(3):
success, response = send_command('streamon')
if success and response == 'ok':
streamon_success = True
print(f"streamon 第{i+1}次尝试成功!")
break
else:
print(f"streamon 第{i+1}次失败2秒后重试...")
time.sleep(2)
if not streamon_success:
print("警告streamon 指令多次失败,视频流不可用,但可继续控制无人机。")
# 允许继续运行
else:
print("视频流已开启。")
time.sleep(2)
print("无人机连接成功!")
return True
def initialize_yolo():
"""初始化YOLOv5模型"""
global model, device
if not YOLO_AVAILABLE:
return False
try:
device = select_device('')
model = attempt_load('yolov5s.pt', device=device)
print("YOLOv5模型加载成功")
return True
except Exception as e:
print(f"YOLOv5模型加载失败: {e}")
return False
def detect_objects(frame):
"""使用YOLOv5检测目标"""
if not YOLO_AVAILABLE or model is None:
return frame, []
try:
# 预处理图像
img = cv2.resize(frame, (640, 640))
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.float()
img /= 255.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# 推理
with torch.no_grad():
pred = model(img)[0]
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)
# 处理结果
detections = []
if pred[0] is not None and len(pred[0]) > 0:
for det in pred[0]:
x1, y1, x2, y2, conf, cls = det.cpu().numpy()
class_name = model.names[int(cls)]
detections.append({
'class': class_name,
'confidence': float(conf),
'bbox': [int(x1), int(y1), int(x2), int(y2)]
})
# 在图像上绘制检测框
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
cv2.putText(frame, f'{class_name} {conf:.2f}',
(int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
return frame, detections
except Exception as e:
print(f"检测错误: {e}")
return frame, []
def gen_frames():
"""MJPEG视频流生成器"""
global video_streaming
container = None
while True:
try:
if not drone_connected:
time.sleep(1)
continue
container = av.open(
'udp://0.0.0.0:11111',
format='h264',
options={'threads': '1', 'fflags': 'nobuffer', 'flags': 'low_delay'}
)
video_streaming = True
for frame in container.decode(video=0):
img = frame.to_ndarray(format='bgr24')
if detection_enabled:
img, _ = detect_objects(img)
img = cv2.resize(img, (640, 480))
_, buffer = cv2.imencode('.jpg', img, [cv2.IMWRITE_JPEG_QUALITY, 70])
frame_bytes = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame_bytes + b'\r\n')
except Exception as e:
print(f"视频流错误: {e}")
video_streaming = False
finally:
if container:
container.close()
time.sleep(2)
@app.route('/')
def index():
return render_template('drone_control.html')
@app.route('/api/status')
def get_status():
"""获取无人机状态"""
return jsonify({
'connected': drone_connected,
'streaming': video_streaming,
'detection_enabled': detection_enabled
})
@socketio.on('connect')
def handle_connect():
print('客户端已连接')
emit('status_update', {
'connected': drone_connected,
'streaming': video_streaming,
'detection_enabled': detection_enabled
})
@socketio.on('disconnect')
def handle_disconnect():
print('客户端已断开连接')
@socketio.on('drone_command')
def handle_drone_command(data):
print('收到drone_command事件', data)
command = data.get('command')
if command:
success, response = send_command(command)
emit('command_response', {
'success': success,
'command': command,
'response': response
})
@socketio.on('toggle_detection')
def handle_toggle_detection(data):
"""切换目标检测功能"""
global detection_enabled
detection_enabled = data.get('enabled', False)
emit('detection_toggled', {'enabled': detection_enabled})
@socketio.on('emergency_stop')
def handle_emergency_stop():
"""紧急停止"""
send_command('emergency')
emit('emergency_stopped', {'success': True})
@app.route('/video_feed')
def video_feed():
"""MJPEG视频流路由"""
return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
def cleanup():
"""清理资源"""
global video_streaming
video_streaming = False
if drone_connected:
send_command('streamoff')
send_command('land')
sock.close()
if __name__ == '__main__':
# 初始化YOLOv5
if initialize_yolo():
print("YOLOv5初始化成功")
else:
print("YOLOv5初始化失败将禁用检测功能")
# 初始化无人机
if initialize_drone():
print("无人机初始化成功")
else:
print("无人机初始化失败,请检查连接")
try:
print("启动Web服务器访问 http://localhost:5000")
socketio.run(app, host='0.0.0.0', port=5000, debug=False)
except KeyboardInterrupt:
print("正在关闭程序...")
finally:
cleanup()

@ -0,0 +1,29 @@
# Flask & WebSocket 核心依赖
flask==2.3.3
flask-socketio==5.3.6
eventlet==0.33.3 # 用于异步支持
python-socketio==5.8.0
# 视频处理
av==10.0.0
# 计算机视觉基础库
opencv-python==4.8.1.78 # 固定版本以避免兼容性问题
numpy==1.23.5 # YOLOv5 推荐版本
Pillow==10.0.1 # 图像处理
# PyTorch 和 YOLOv5 核心
torch==2.0.1+cu118 # 根据CUDA版本调整 (如无GPU则用 torch==2.0.1)
torchvision==0.15.2+cu118
ultralytics==8.2.34 # 包含YOLOv5官方接口
# YOLOv5 附加依赖
gitpython>=3.1.30
matplotlib>=3.3
psutil>=5.9.0
PyYAML>=5.3.1
requests>=2.32.2
scipy>=1.4.1
tqdm>=4.66.3
pandas>=1.1.4 # 可选(用于数据分析)
seaborn>=0.11.0 # 可选(可视化)

File diff suppressed because it is too large Load Diff

@ -0,0 +1,510 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5.
Usage:
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
"""
import torch
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
"""
Creates or loads a YOLOv5 model, with options for pretrained weights and model customization.
Args:
name (str): Model name (e.g., 'yolov5s') or path to the model checkpoint (e.g., 'path/to/best.pt').
pretrained (bool, optional): If True, loads pretrained weights into the model. Defaults to True.
channels (int, optional): Number of input channels the model expects. Defaults to 3.
classes (int, optional): Number of classes the model is expected to detect. Defaults to 80.
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper for various input formats. Defaults to True.
verbose (bool, optional): If True, prints detailed information during the model creation/loading process. Defaults to True.
device (str | torch.device | None, optional): Device to use for model parameters (e.g., 'cpu', 'cuda'). If None, selects
the best available device. Defaults to None.
Returns:
(DetectMultiBackend | AutoShape): The loaded YOLOv5 model, potentially wrapped with AutoShape if specified.
Examples:
```python
import torch
from ultralytics import _create
# Load an official YOLOv5s model with pretrained weights
model = _create('yolov5s')
# Load a custom model from a local checkpoint
model = _create('path/to/custom_model.pt', pretrained=False)
# Load a model with specific input channels and classes
model = _create('yolov5s', channels=1, classes=10)
```
Notes:
For more information on model loading and customization, visit the
[YOLOv5 PyTorch Hub Documentation](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/).
"""
from pathlib import Path
from models.common import AutoShape, DetectMultiBackend
from models.experimental import attempt_load
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
from utils.downloads import attempt_download
from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging
from utils.torch_utils import select_device
if not verbose:
LOGGER.setLevel(logging.WARNING)
check_requirements(ROOT / "requirements.txt", exclude=("opencv-python", "tensorboard", "thop"))
name = Path(name)
path = name.with_suffix(".pt") if name.suffix == "" and not name.is_dir() else name # checkpoint path
try:
device = select_device(device)
if pretrained and channels == 3 and classes == 80:
try:
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
if autoshape:
if model.pt and isinstance(model.model, ClassificationModel):
LOGGER.warning(
"WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. "
"You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224)."
)
elif model.pt and isinstance(model.model, SegmentationModel):
LOGGER.warning(
"WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. "
"You will not be able to run inference with this model."
)
else:
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
except Exception:
model = attempt_load(path, device=device, fuse=False) # arbitrary model
else:
cfg = list((Path(__file__).parent / "models").rglob(f"{path.stem}.yaml"))[0] # model.yaml path
model = DetectionModel(cfg, channels, classes) # create model
if pretrained:
ckpt = torch.load(attempt_download(path), map_location=device) # load
csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, model.state_dict(), exclude=["anchors"]) # intersect
model.load_state_dict(csd, strict=False) # load
if len(ckpt["model"].names) == classes:
model.names = ckpt["model"].names # set class names attribute
if not verbose:
LOGGER.setLevel(logging.INFO) # reset to default
return model.to(device)
except Exception as e:
help_url = "https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading"
s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help."
raise Exception(s) from e
def custom(path="path/to/model.pt", autoshape=True, _verbose=True, device=None):
"""
Loads a custom or local YOLOv5 model from a given path with optional autoshaping and device specification.
Args:
path (str): Path to the custom model file (e.g., 'path/to/model.pt').
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model if True, enabling compatibility with various input
types (default is True).
_verbose (bool): If True, prints all informational messages to the screen; otherwise, operates silently
(default is True).
device (str | torch.device | None): Device to load the model on, e.g., 'cpu', 'cuda', torch.device('cuda:0'), etc.
(default is None, which automatically selects the best available device).
Returns:
torch.nn.Module: A YOLOv5 model loaded with the specified parameters.
Notes:
For more details on loading models from PyTorch Hub:
https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading
Examples:
```python
# Load model from a given path with autoshape enabled on the best available device
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')
# Load model from a local path without autoshape on the CPU device
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local', autoshape=False, device='cpu')
```
"""
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiates the YOLOv5-nano model with options for pretraining, input channels, class count, autoshaping,
verbosity, and device.
Args:
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True.
channels (int): Number of input channels for the model. Defaults to 3.
classes (int): Number of classes for object detection. Defaults to 80.
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper to the model for various formats (file/URI/PIL/
cv2/np) and non-maximum suppression (NMS) during inference. Defaults to True.
_verbose (bool): If True, prints detailed information to the screen. Defaults to True.
device (str | torch.device | None): Specifies the device to use for model computation. If None, uses the best device
available (i.e., GPU if available, otherwise CPU). Defaults to None.
Returns:
DetectionModel | ClassificationModel | SegmentationModel: The instantiated YOLOv5-nano model, potentially with
pretrained weights and autoshaping applied.
Notes:
For further details on loading models from PyTorch Hub, refer to [PyTorch Hub models](https://pytorch.org/hub/
ultralytics_yolov5).
Examples:
```python
import torch
from ultralytics import yolov5n
# Load the YOLOv5-nano model with defaults
model = yolov5n()
# Load the YOLOv5-nano model with a specific device
model = yolov5n(device='cuda')
```
"""
return _create("yolov5n", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Create a YOLOv5-small (yolov5s) model with options for pretraining, input channels, class count, autoshaping,
verbosity, and device configuration.
Args:
pretrained (bool, optional): Flag to load pretrained weights into the model. Defaults to True.
channels (int, optional): Number of input channels. Defaults to 3.
classes (int, optional): Number of model classes. Defaults to 80.
autoshape (bool, optional): Whether to wrap the model with YOLOv5's .autoshape() for handling various input formats.
Defaults to True.
_verbose (bool, optional): Flag to print detailed information regarding model loading. Defaults to True.
device (str | torch.device | None, optional): Device to use for model computation, can be 'cpu', 'cuda', or
torch.device instances. If None, automatically selects the best available device. Defaults to None.
Returns:
torch.nn.Module: The YOLOv5-small model configured and loaded according to the specified parameters.
Example:
```python
import torch
# Load the official YOLOv5-small model with pretrained weights
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
# Load the YOLOv5-small model from a specific branch
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s')
# Load a custom YOLOv5-small model from a local checkpoint
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')
# Load a local YOLOv5-small model specifying source as local repository
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local')
```
Notes:
For more details on model loading and customization, visit
the [YOLOv5 PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5/).
"""
return _create("yolov5s", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiates the YOLOv5-medium model with customizable pretraining, channel count, class count, autoshaping,
verbosity, and device.
Args:
pretrained (bool, optional): Whether to load pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): Apply YOLOv5 .autoshape() wrapper to the model for handling various input formats.
Default is True.
_verbose (bool, optional): Whether to print detailed information to the screen. Default is True.
device (str | torch.device | None, optional): Device specification to use for model parameters (e.g., 'cpu', 'cuda').
Default is None.
Returns:
torch.nn.Module: The instantiated YOLOv5-medium model.
Usage Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5m') # Load YOLOv5-medium from Ultralytics repository
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5m') # Load from the master branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5m.pt') # Load a custom/local YOLOv5-medium model
model = torch.hub.load('.', 'custom', 'yolov5m.pt', source='local') # Load from a local repository
```
For more information, visit https://pytorch.org/hub/ultralytics_yolov5.
"""
return _create("yolov5m", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Creates YOLOv5-large model with options for pretraining, channels, classes, autoshaping, verbosity, and device
selection.
Args:
pretrained (bool): Load pretrained weights into the model. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of model classes. Default is 80.
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model. Default is True.
_verbose (bool): Print all information to screen. Default is True.
device (str | torch.device | None): Device to use for model parameters, e.g., 'cpu', 'cuda', or a torch.device instance.
Default is None.
Returns:
YOLOv5 model (torch.nn.Module): The YOLOv5-large model instantiated with specified configurations and possibly
pretrained weights.
Examples:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5l')
```
Notes:
For additional details, refer to the PyTorch Hub models documentation:
https://pytorch.org/hub/ultralytics_yolov5
"""
return _create("yolov5l", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Perform object detection using the YOLOv5-xlarge model with options for pretraining, input channels, class count,
autoshaping, verbosity, and device specification.
Args:
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True.
channels (int): Number of input channels for the model. Defaults to 3.
classes (int): Number of model classes for object detection. Defaults to 80.
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper for handling different input formats. Defaults to
True.
_verbose (bool): If True, prints detailed information during model loading. Defaults to True.
device (str | torch.device | None): Device specification for computing the model, e.g., 'cpu', 'cuda:0', torch.device('cuda').
Defaults to None.
Returns:
torch.nn.Module: The YOLOv5-xlarge model loaded with the specified parameters, optionally with pretrained weights and
autoshaping applied.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5x')
```
For additional details, refer to the official YOLOv5 PyTorch Hub models documentation:
https://pytorch.org/hub/ultralytics_yolov5
"""
return _create("yolov5x", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Creates YOLOv5-nano-P6 model with options for pretraining, channels, classes, autoshaping, verbosity, and device.
Args:
pretrained (bool, optional): If True, loads pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper to the model. Default is True.
_verbose (bool, optional): If True, prints all information to screen. Default is True.
device (str | torch.device | None, optional): Device to use for model parameters. Can be 'cpu', 'cuda', or None.
Default is None.
Returns:
torch.nn.Module: YOLOv5-nano-P6 model loaded with the specified configurations.
Example:
```python
import torch
model = yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device='cuda')
```
Notes:
For more information on PyTorch Hub models, visit: https://pytorch.org/hub/ultralytics_yolov5
"""
return _create("yolov5n6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiate the YOLOv5-small-P6 model with options for pretraining, input channels, number of classes, autoshaping,
verbosity, and device selection.
Args:
pretrained (bool): If True, loads pretrained weights. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of object detection classes. Default is 80.
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model, allowing for varied input formats.
Default is True.
_verbose (bool): If True, prints detailed information during model loading. Default is True.
device (str | torch.device | None): Device specification for model parameters (e.g., 'cpu', 'cuda', or torch.device).
Default is None, which selects an available device automatically.
Returns:
torch.nn.Module: The YOLOv5-small-P6 model instance.
Usage:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s6')
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s6') # load from a specific branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5s6.pt') # custom/local model
model = torch.hub.load('.', 'custom', 'path/to/yolov5s6.pt', source='local') # local repo model
```
Notes:
- For more information, refer to the PyTorch Hub models documentation at https://pytorch.org/hub/ultralytics_yolov5
Raises:
Exception: If there is an error during model creation or loading, with a suggestion to visit the YOLOv5
tutorials for help.
"""
return _create("yolov5s6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Create YOLOv5-medium-P6 model with options for pretraining, channel count, class count, autoshaping, verbosity, and
device.
Args:
pretrained (bool): If True, loads pretrained weights. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of model classes. Default is 80.
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to the model for file/URI/PIL/cv2/np inputs and NMS.
Default is True.
_verbose (bool): If True, prints detailed information to the screen. Default is True.
device (str | torch.device | None): Device to use for model parameters. Default is None, which uses the
best available device.
Returns:
torch.nn.Module: The YOLOv5-medium-P6 model.
Refer to the PyTorch Hub models documentation: https://pytorch.org/hub/ultralytics_yolov5 for additional details.
Example:
```python
import torch
# Load YOLOv5-medium-P6 model
model = torch.hub.load('ultralytics/yolov5', 'yolov5m6')
```
Notes:
- The model can be loaded with pre-trained weights for better performance on specific tasks.
- The autoshape feature simplifies input handling by allowing various popular data formats.
"""
return _create("yolov5m6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiate the YOLOv5-large-P6 model with options for pretraining, channel and class counts, autoshaping,
verbosity, and device selection.
Args:
pretrained (bool, optional): If True, load pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): If True, apply YOLOv5 .autoshape() wrapper to the model for input flexibility. Default is True.
_verbose (bool, optional): If True, print all information to the screen. Default is True.
device (str | torch.device | None, optional): Device to use for model parameters, e.g., 'cpu', 'cuda', or torch.device.
If None, automatically selects the best available device. Default is None.
Returns:
torch.nn.Module: The instantiated YOLOv5-large-P6 model.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5l6') # official model
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5l6') # from specific branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5l6.pt') # custom/local model
model = torch.hub.load('.', 'custom', 'path/to/yolov5l6.pt', source='local') # local repository
```
Note:
Refer to [PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5/) for additional usage instructions.
"""
return _create("yolov5l6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Creates the YOLOv5-xlarge-P6 model with options for pretraining, number of input channels, class count, autoshaping,
verbosity, and device selection.
Args:
pretrained (bool): If True, loads pretrained weights into the model. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of model classes. Default is 80.
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model. Default is True.
_verbose (bool): If True, prints all information to the screen. Default is True.
device (str | torch.device | None): Device to use for model parameters, can be a string, torch.device object, or
None for default device selection. Default is None.
Returns:
torch.nn.Module: The instantiated YOLOv5-xlarge-P6 model.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5x6') # load the YOLOv5-xlarge-P6 model
```
Note:
For more information on YOLOv5 models, visit the official documentation:
https://docs.ultralytics.com/yolov5
"""
return _create("yolov5x6", pretrained, channels, classes, autoshape, _verbose, device)
if __name__ == "__main__":
import argparse
from pathlib import Path
import numpy as np
from PIL import Image
from utils.general import cv2, print_args
# Argparser
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="yolov5s", help="model name")
opt = parser.parse_args()
print_args(vars(opt))
# Model
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
# model = custom(path='path/to/model.pt') # custom
# Images
imgs = [
"data/images/zidane.jpg", # filename
Path("data/images/zidane.jpg"), # Path
"https://ultralytics.com/images/zidane.jpg", # URI
cv2.imread("data/images/bus.jpg")[:, :, ::-1], # OpenCV
Image.open("data/images/bus.jpg"), # PIL
np.zeros((320, 640, 3)),
] # numpy
# Inference
results = model(imgs, size=320) # batched inference
# Results
results.print()
results.save()

@ -0,0 +1 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

File diff suppressed because it is too large Load Diff

@ -0,0 +1,130 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""Experimental modules."""
import math
import numpy as np
import torch
import torch.nn as nn
from utils.downloads import attempt_download
class Sum(nn.Module):
"""Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070."""
def __init__(self, n, weight=False):
"""Initializes a module to sum outputs of layers with number of inputs `n` and optional weighting, supporting 2+
inputs.
"""
super().__init__()
self.weight = weight # apply weights boolean
self.iter = range(n - 1) # iter object
if weight:
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
def forward(self, x):
"""Processes input through a customizable weighted sum of `n` inputs, optionally applying learned weights."""
y = x[0] # no weight
if self.weight:
w = torch.sigmoid(self.w) * 2
for i in self.iter:
y = y + x[i + 1] * w[i]
else:
for i in self.iter:
y = y + x[i + 1]
return y
class MixConv2d(nn.Module):
"""Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595."""
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
"""Initializes MixConv2d with mixed depth-wise convolutional layers, taking input and output channels (c1, c2),
kernel sizes (k), stride (s), and channel distribution strategy (equal_ch).
"""
super().__init__()
n = len(k) # number of convolutions
if equal_ch: # equal c_ per group
i = torch.linspace(0, n - 1e-6, c2).floor() # c2 indices
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
else: # equal weight.numel() per group
b = [c2] + [0] * n
a = np.eye(n + 1, n, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
self.m = nn.ModuleList(
[nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)]
)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU()
def forward(self, x):
"""Performs forward pass by applying SiLU activation on batch-normalized concatenated convolutional layer
outputs.
"""
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
class Ensemble(nn.ModuleList):
"""Ensemble of models."""
def __init__(self):
"""Initializes an ensemble of models to be used for aggregated predictions."""
super().__init__()
def forward(self, x, augment=False, profile=False, visualize=False):
"""Performs forward pass aggregating outputs from an ensemble of models.."""
y = [module(x, augment, profile, visualize)[0] for module in self]
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.stack(y).mean(0) # mean ensemble
y = torch.cat(y, 1) # nms ensemble
return y, None # inference, train output
def attempt_load(weights, device=None, inplace=True, fuse=True):
"""
Loads and fuses an ensemble or single YOLOv5 model from weights, handling device placement and model adjustments.
Example inputs: weights=[a,b,c] or a single model weights=[a] or weights=a.
"""
from models.yolo import Detect, Model
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
ckpt = torch.load(attempt_download(w), map_location="cpu") # load
ckpt = (ckpt.get("ema") or ckpt["model"]).to(device).float() # FP32 model
# Model compatibility updates
if not hasattr(ckpt, "stride"):
ckpt.stride = torch.tensor([32.0])
if hasattr(ckpt, "names") and isinstance(ckpt.names, (list, tuple)):
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, "fuse") else ckpt.eval()) # model in eval mode
# Module updates
for m in model.modules():
t = type(m)
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
m.inplace = inplace
if t is Detect and not isinstance(m.anchor_grid, list):
delattr(m, "anchor_grid")
setattr(m, "anchor_grid", [torch.zeros(1)] * m.nl)
elif t is nn.Upsample and not hasattr(m, "recompute_scale_factor"):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model
if len(model) == 1:
return model[-1]
# Return detection ensemble
print(f"Ensemble created with {weights}\n")
for k in "names", "nc", "yaml":
setattr(model, k, getattr(model[0], k))
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
assert all(model[0].nc == m.nc for m in model), f"Models have different class counts: {[m.nc for m in model]}"
return model

@ -0,0 +1,57 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Default anchors for COCO data
# P5 -------------------------------------------------------------------------------------------------------------------
# P5-640:
anchors_p5_640:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# P6 -------------------------------------------------------------------------------------------------------------------
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
anchors_p6_640:
- [9, 11, 21, 19, 17, 41] # P3/8
- [43, 32, 39, 70, 86, 64] # P4/16
- [65, 131, 134, 130, 120, 265] # P5/32
- [282, 180, 247, 354, 512, 387] # P6/64
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
anchors_p6_1280:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
anchors_p6_1920:
- [28, 41, 67, 59, 57, 141] # P3/8
- [144, 103, 129, 227, 270, 205] # P4/16
- [209, 452, 455, 396, 358, 812] # P5/32
- [653, 922, 1109, 570, 1387, 1187] # P6/64
# P7 -------------------------------------------------------------------------------------------------------------------
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
anchors_p7_640:
- [11, 11, 13, 30, 29, 20] # P3/8
- [30, 46, 61, 38, 39, 92] # P4/16
- [78, 80, 146, 66, 79, 163] # P5/32
- [149, 150, 321, 143, 157, 303] # P6/64
- [257, 402, 359, 290, 524, 372] # P7/128
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
anchors_p7_1280:
- [19, 22, 54, 36, 32, 77] # P3/8
- [70, 83, 138, 71, 75, 173] # P4/16
- [165, 159, 148, 334, 375, 151] # P5/32
- [334, 317, 251, 626, 499, 474] # P6/64
- [750, 326, 534, 814, 1079, 818] # P7/128
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
anchors_p7_1920:
- [29, 34, 81, 55, 47, 115] # P3/8
- [105, 124, 207, 107, 113, 259] # P4/16
- [247, 238, 222, 500, 563, 227] # P5/32
- [501, 476, 376, 939, 749, 711] # P6/64
- [1126, 489, 801, 1222, 1618, 1227] # P7/128

@ -0,0 +1,52 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# darknet53 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [32, 3, 1]], # 0
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
[-1, 1, Bottleneck, [64]],
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
[-1, 2, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
[-1, 8, Bottleneck, [256]],
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
[-1, 8, Bottleneck, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
[-1, 4, Bottleneck, [1024]], # 10
]
# YOLOv3-SPP head
head: [
[-1, 1, Bottleneck, [1024, False]],
[-1, 1, SPP, [512, [5, 9, 13]]],
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
[-2, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P4
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
[-2, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P3
[-1, 1, Bottleneck, [256, False]],
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

@ -0,0 +1,42 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 14, 23, 27, 37, 58] # P4/16
- [81, 82, 135, 169, 344, 319] # P5/32
# YOLOv3-tiny backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [16, 3, 1]], # 0
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
[-1, 1, Conv, [32, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
[-1, 1, Conv, [64, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
[-1, 1, Conv, [512, 3, 1]],
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
]
# YOLOv3-tiny head
head: [
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
[-2, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
]

@ -0,0 +1,52 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# darknet53 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [32, 3, 1]], # 0
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
[-1, 1, Bottleneck, [64]],
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
[-1, 2, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
[-1, 8, Bottleneck, [256]],
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
[-1, 8, Bottleneck, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
[-1, 4, Bottleneck, [1024]], # 10
]
# YOLOv3 head
head: [
[-1, 1, Bottleneck, [1024, False]],
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
[-2, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P4
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
[-2, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P3
[-1, 1, Bottleneck, [256, False]],
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 BiFPN head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

@ -0,0 +1,43 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 FPN head
head: [
[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, C3, [512, False]], # 14 (P4/16-medium)
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, C3, [256, False]], # 18 (P3/8-small)
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

@ -0,0 +1,55 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 2], 1, Concat, [1]], # cat backbone P2
[-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
[-1, 1, Conv, [128, 3, 2]],
[[-1, 18], 1, Concat, [1]], # cat head P3
[-1, 3, C3, [256, False]], # 24 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 27 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 30 (P5/32-large)
[[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
]

@ -0,0 +1,42 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head with (P3, P4) outputs
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[[17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4)
]

@ -0,0 +1,57 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

@ -0,0 +1,68 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
[-1, 3, C3, [1280]],
[-1, 1, SPPF, [1280, 5]], # 13
]
# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
head: [
[-1, 1, Conv, [1024, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 10], 1, Concat, [1]], # cat backbone P6
[-1, 3, C3, [1024, False]], # 17
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 21
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 25
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 29 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 26], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 32 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 22], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 35 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 18], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
[-1, 1, Conv, [1024, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P7
[-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
[[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
]

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 PANet head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

@ -0,0 +1,61 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

@ -0,0 +1,61 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
anchors:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

@ -0,0 +1,61 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

@ -0,0 +1,50 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
activation: nn.LeakyReLU(0.1) # <----- Conv() activation used throughout entire YOLOv5 model
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3Ghost, [128]],
[-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3Ghost, [256]],
[-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3Ghost, [512]],
[-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3Ghost, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, GhostConv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3Ghost, [512, False]], # 13
[-1, 1, GhostConv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
[-1, 1, GhostConv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
[-1, 1, GhostConv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10, 13, 16, 30, 33, 23] # P3/8
- [30, 61, 62, 45, 59, 119] # P4/16
- [116, 90, 156, 198, 373, 326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

@ -0,0 +1,61 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

@ -0,0 +1,61 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.33 # model depth multiple
width_multiple: 1.25 # layer channel multiple
anchors:
- [19, 27, 44, 40, 38, 94] # P3/8
- [96, 68, 86, 152, 180, 137] # P4/16
- [140, 301, 303, 264, 238, 542] # P5/32
- [436, 615, 739, 380, 925, 792] # P6/64
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C3, [768]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 11
]
# YOLOv5 v6.0 head
head: [
[-1, 1, Conv, [768, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 8], 1, Concat, [1]], # cat backbone P5
[-1, 3, C3, [768, False]], # 15
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 19
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 20], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
[-1, 1, Conv, [768, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P6
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save