|
|
|
@ -36,19 +36,19 @@
|
|
|
|
|
#include "../types.h"
|
|
|
|
|
|
|
|
|
|
#ifndef PAGE_SIZE
|
|
|
|
|
# define PAGE_SIZE 4096
|
|
|
|
|
# define PAGE_SIZE 4096 // 定义页面大小为4096字节
|
|
|
|
|
#endif /* !PAGE_SIZE */
|
|
|
|
|
|
|
|
|
|
#ifndef MAP_ANONYMOUS
|
|
|
|
|
# define MAP_ANONYMOUS MAP_ANON
|
|
|
|
|
# define MAP_ANONYMOUS MAP_ANON // 定义MAP_ANONYMOUS为MAP_ANON,用于匿名映射
|
|
|
|
|
#endif /* !MAP_ANONYMOUS */
|
|
|
|
|
|
|
|
|
|
/* Error / message handling: */
|
|
|
|
|
/* 错误/消息处理: */
|
|
|
|
|
|
|
|
|
|
#define DEBUGF(_x...) do { \
|
|
|
|
|
if (alloc_verbose) { \
|
|
|
|
|
if (++call_depth == 1) { \
|
|
|
|
|
fprintf(stderr, "[AFL] " _x); \
|
|
|
|
|
fprintf(stderr, "[AFL] " _x); // 输出调试信息
|
|
|
|
|
fprintf(stderr, "\n"); \
|
|
|
|
|
} \
|
|
|
|
|
call_depth--; \
|
|
|
|
@ -57,101 +57,97 @@
|
|
|
|
|
|
|
|
|
|
#define FATAL(_x...) do { \
|
|
|
|
|
if (++call_depth == 1) { \
|
|
|
|
|
fprintf(stderr, "*** [AFL] " _x); \
|
|
|
|
|
fprintf(stderr, "*** [AFL] " _x); // 输出致命错误信息
|
|
|
|
|
fprintf(stderr, " ***\n"); \
|
|
|
|
|
abort(); \
|
|
|
|
|
abort(); // 终止程序
|
|
|
|
|
} \
|
|
|
|
|
call_depth--; \
|
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
|
/* Macro to count the number of pages needed to store a buffer: */
|
|
|
|
|
/* 宏来计算存储缓冲区所需的页面数量: */
|
|
|
|
|
|
|
|
|
|
#define PG_COUNT(_l) (((_l) + (PAGE_SIZE - 1)) / PAGE_SIZE)
|
|
|
|
|
#define PG_COUNT(_l) (((_l) + (PAGE_SIZE - 1)) / PAGE_SIZE) // 计算所需页面数,向上取整
|
|
|
|
|
|
|
|
|
|
/* Canary & clobber bytes: */
|
|
|
|
|
|
|
|
|
|
#define ALLOC_CANARY 0xAACCAACC
|
|
|
|
|
#define ALLOC_CLOBBER 0xCC
|
|
|
|
|
#define ALLOC_CANARY 0xAACCAACC // 定义canary值
|
|
|
|
|
#define ALLOC_CLOBBER 0xCC // 定义clobber值
|
|
|
|
|
|
|
|
|
|
#define PTR_C(_p) (((u32*)(_p))[-1])
|
|
|
|
|
#define PTR_L(_p) (((u32*)(_p))[-2])
|
|
|
|
|
#define PTR_C(_p) (((u32*)(_p))[-1]) // 获取canary值的指针
|
|
|
|
|
#define PTR_L(_p) (((u32*)(_p))[-2]) // 获取分配长度值的指针
|
|
|
|
|
|
|
|
|
|
/* Configurable stuff (use AFL_LD_* to set): */
|
|
|
|
|
/* 可配置项(使用AFL_LD_*来设置): */
|
|
|
|
|
|
|
|
|
|
static u32 max_mem = MAX_ALLOC; /* Max heap usage to permit */
|
|
|
|
|
static u8 alloc_verbose, /* Additional debug messages */
|
|
|
|
|
hard_fail, /* abort() when max_mem exceeded? */
|
|
|
|
|
no_calloc_over; /* abort() on calloc() overflows? */
|
|
|
|
|
static u32 max_mem = MAX_ALLOC; /* 允许的最大堆使用量 */
|
|
|
|
|
static u8 alloc_verbose, /* 是否显示额外的调试消息 */
|
|
|
|
|
hard_fail, /* 当超过max_mem时是否使用abort() */
|
|
|
|
|
no_calloc_over; /* 对calloc()溢出是否使用abort() */
|
|
|
|
|
|
|
|
|
|
static __thread size_t total_mem; /* Currently allocated mem */
|
|
|
|
|
static __thread size_t total_mem; /* 当前已分配的内存 */
|
|
|
|
|
|
|
|
|
|
static __thread u32 call_depth; /* To avoid recursion via fprintf() */
|
|
|
|
|
static __thread u32 call_depth; /* 避免通过fprintf()引起的递归 */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* This is the main alloc function. It allocates one page more than necessary,
|
|
|
|
|
sets that tailing page to PROT_NONE, and then increments the return address
|
|
|
|
|
so that it is right-aligned to that boundary. Since it always uses mmap(),
|
|
|
|
|
the returned memory will be zeroed. */
|
|
|
|
|
/* 这是主要的分配函数。它分配比必要多一个页面的内存,
|
|
|
|
|
将最后一个页面设置为PROT_NONE,并然后增加返回地址
|
|
|
|
|
使其对齐到该边界。由于它总是使用mmap(),
|
|
|
|
|
返回的内存将是零化的。 */
|
|
|
|
|
|
|
|
|
|
static void* __dislocator_alloc(size_t len) {
|
|
|
|
|
|
|
|
|
|
void* ret;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (total_mem + len > max_mem || total_mem + len < total_mem) {
|
|
|
|
|
|
|
|
|
|
if (hard_fail)
|
|
|
|
|
FATAL("total allocs exceed %u MB", max_mem / 1024 / 1024);
|
|
|
|
|
FATAL("total allocs exceed %u MB", max_mem / 1024 / 1024); // 如果超过最大内存且hard_fail为真,输出错误并终止程序
|
|
|
|
|
|
|
|
|
|
DEBUGF("total allocs exceed %u MB, returning NULL",
|
|
|
|
|
max_mem / 1024 / 1024);
|
|
|
|
|
max_mem / 1024 / 1024); // 如果超过最大内存且hard_fail为假,输出调试信息并返回NULL
|
|
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We will also store buffer length and a canary below the actual buffer, so
|
|
|
|
|
let's add 8 bytes for that. */
|
|
|
|
|
/* 我们还会在实际缓冲区下面存储缓冲区长度和canary,
|
|
|
|
|
因此让我们加上8个字节以存储这些信息。 */
|
|
|
|
|
|
|
|
|
|
ret = mmap(NULL, (1 + PG_COUNT(len + 8)) * PAGE_SIZE, PROT_READ | PROT_WRITE,
|
|
|
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
|
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); // 使用mmap分配内存
|
|
|
|
|
|
|
|
|
|
if (ret == (void*)-1) {
|
|
|
|
|
|
|
|
|
|
if (hard_fail) FATAL("mmap() failed on alloc (OOM?)");
|
|
|
|
|
if (hard_fail) FATAL("mmap() failed on alloc (OOM?)"); // 如果mmap失败且hard_fail为真,输出错误并终止程序
|
|
|
|
|
|
|
|
|
|
DEBUGF("mmap() failed on alloc (OOM?)");
|
|
|
|
|
DEBUGF("mmap() failed on alloc (OOM?)"); // 如果mmap失败且hard_fail为假,输出调试信息并返回NULL
|
|
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Set PROT_NONE on the last page. */
|
|
|
|
|
/* 在最后一个页面设置PROT_NONE。 */
|
|
|
|
|
|
|
|
|
|
if (mprotect(ret + PG_COUNT(len + 8) * PAGE_SIZE, PAGE_SIZE, PROT_NONE))
|
|
|
|
|
FATAL("mprotect() failed when allocating memory");
|
|
|
|
|
FATAL("mprotect() failed when allocating memory"); // 如果mprotect失败,输出错误并终止程序
|
|
|
|
|
|
|
|
|
|
/* Offset the return pointer so that it's right-aligned to the page
|
|
|
|
|
boundary. */
|
|
|
|
|
/* 增加返回指针,使其对齐到页面边界。 */
|
|
|
|
|
|
|
|
|
|
ret += PAGE_SIZE * PG_COUNT(len + 8) - len - 8;
|
|
|
|
|
|
|
|
|
|
/* Store allocation metadata. */
|
|
|
|
|
/* 存储分配元数据。 */
|
|
|
|
|
|
|
|
|
|
ret += 8;
|
|
|
|
|
|
|
|
|
|
PTR_L(ret) = len;
|
|
|
|
|
PTR_C(ret) = ALLOC_CANARY;
|
|
|
|
|
PTR_L(ret) = len; // 存储分配长度
|
|
|
|
|
PTR_C(ret) = ALLOC_CANARY; // 存储canary值
|
|
|
|
|
|
|
|
|
|
total_mem += len;
|
|
|
|
|
total_mem += len; // 增加已分配内存计数
|
|
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* The "user-facing" wrapper for calloc(). This just checks for overflows and
|
|
|
|
|
displays debug messages if requested. */
|
|
|
|
|
/* 面向用户的calloc()包装器。这只是一个溢出检查和
|
|
|
|
|
在请求时显示调试消息。 */
|
|
|
|
|
|
|
|
|
|
void* calloc(size_t elem_len, size_t elem_cnt) {
|
|
|
|
|
|
|
|
|
@ -159,42 +155,40 @@ void* calloc(size_t elem_len, size_t elem_cnt) {
|
|
|
|
|
|
|
|
|
|
size_t len = elem_len * elem_cnt;
|
|
|
|
|
|
|
|
|
|
/* Perform some sanity checks to detect obvious issues... */
|
|
|
|
|
/* 进行一些简单的检查,以检测明显的错误... */
|
|
|
|
|
|
|
|
|
|
if (elem_cnt && len / elem_cnt != elem_len) {
|
|
|
|
|
|
|
|
|
|
if (no_calloc_over) {
|
|
|
|
|
DEBUGF("calloc(%zu, %zu) would overflow, returning NULL", elem_len, elem_cnt);
|
|
|
|
|
DEBUGF("calloc(%zu, %zu) would overflow, returning NULL", elem_len, elem_cnt); // 如果no_calloc_over为真,输出调试信息并返回NULL
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
FATAL("calloc(%zu, %zu) would overflow", elem_len, elem_cnt);
|
|
|
|
|
FATAL("calloc(%zu, %zu) would overflow", elem_len, elem_cnt); // 如果no_calloc_over为假,输出错误并终止程序
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ret = __dislocator_alloc(len);
|
|
|
|
|
ret = __dislocator_alloc(len); // 调用内部分配函数
|
|
|
|
|
|
|
|
|
|
DEBUGF("calloc(%zu, %zu) = %p [%zu total]", elem_len, elem_cnt, ret,
|
|
|
|
|
total_mem);
|
|
|
|
|
total_mem); // 输出调试信息
|
|
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* The wrapper for malloc(). Roughly the same, also clobbers the returned
|
|
|
|
|
memory (unlike calloc(), malloc() is not guaranteed to return zeroed
|
|
|
|
|
memory). */
|
|
|
|
|
/* malloc()的包装器。大致相同,
|
|
|
|
|
也会污染返回的内存(与calloc()不同,malloc()不保证返回零化的内存)。 */
|
|
|
|
|
|
|
|
|
|
void* malloc(size_t len) {
|
|
|
|
|
|
|
|
|
|
void* ret;
|
|
|
|
|
|
|
|
|
|
ret = __dislocator_alloc(len);
|
|
|
|
|
ret = __dislocator_alloc(len); // 调用内部分配函数
|
|
|
|
|
|
|
|
|
|
DEBUGF("malloc(%zu) = %p [%zu total]", len, ret, total_mem);
|
|
|
|
|
DEBUGF("malloc(%zu) = %p [%zu total]", len, ret, total_mem); // 输出调试信息
|
|
|
|
|
|
|
|
|
|
if (ret && len) memset(ret, ALLOC_CLOBBER, len);
|
|
|
|
|
if (ret && len) memset(ret, ALLOC_CLOBBER, len); // 使用clobber值填充内存
|
|
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
|
@ -206,70 +200,84 @@ void* malloc(size_t len) {
|
|
|
|
|
read the canary. Not very graceful, but works, right? */
|
|
|
|
|
|
|
|
|
|
void free(void* ptr) {
|
|
|
|
|
|
|
|
|
|
// 定义一个变量len用于存储要释放的内存块的长度
|
|
|
|
|
u32 len;
|
|
|
|
|
|
|
|
|
|
// 调试信息,打印正在释放的内存指针地址
|
|
|
|
|
DEBUGF("free(%p)", ptr);
|
|
|
|
|
|
|
|
|
|
// 如果指针为NULL,直接返回,不进行任何操作
|
|
|
|
|
if (!ptr) return;
|
|
|
|
|
|
|
|
|
|
// 检查指针的canary值是否正确,如果不正确,程序将致命错误并退出
|
|
|
|
|
if (PTR_C(ptr) != ALLOC_CANARY) FATAL("bad allocator canary on free()");
|
|
|
|
|
|
|
|
|
|
// 获取指针所指向的内存块的实际长度
|
|
|
|
|
len = PTR_L(ptr);
|
|
|
|
|
|
|
|
|
|
// 减少全局变量total_mem的值,表示当前分配的内存总大小减少
|
|
|
|
|
total_mem -= len;
|
|
|
|
|
|
|
|
|
|
/* Protect everything. Note that the extra page at the end is already
|
|
|
|
|
set as PROT_NONE, so we don't need to touch that. */
|
|
|
|
|
|
|
|
|
|
// 计算出内存块的实际起始地址,以便后续对整个内存块进行操作
|
|
|
|
|
// 减去len+8是因为在分配内存时,内存块的前面8个字节用于存储canary和长度信息
|
|
|
|
|
ptr -= PAGE_SIZE * PG_COUNT(len + 8) - len - 8;
|
|
|
|
|
|
|
|
|
|
// 使用mprotect系统调用来将内存块的权限设置为PROT_NONE,即无法读写执行
|
|
|
|
|
// 这样可以防止内存块被再次使用,增加了程序的安全性
|
|
|
|
|
if (mprotect(ptr - 8, PG_COUNT(len + 8) * PAGE_SIZE, PROT_NONE))
|
|
|
|
|
FATAL("mprotect() failed when freeing memory");
|
|
|
|
|
|
|
|
|
|
/* Keep the mapping; this is wasteful, but prevents ptr reuse. */
|
|
|
|
|
|
|
|
|
|
// 保持内存映射的存在,虽然这样做会浪费一些内存,但是防止内存地址被重复使用
|
|
|
|
|
// 这是一种保护机制,防止使用已经释放的内存
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Realloc is pretty straightforward, too. We forcibly reallocate the buffer,
|
|
|
|
|
move data, and then free (aka mprotect()) the original one. */
|
|
|
|
|
|
|
|
|
|
/* realloc函数用于重新分配内存,其逻辑是:
|
|
|
|
|
1. 为新的长度分配内存
|
|
|
|
|
2. 将原始内存中的数据复制到新分配的内存中
|
|
|
|
|
3. 释放原始内存(通过调用free函数来实现,free函数中会调用mprotect来保护原始内存)
|
|
|
|
|
*/
|
|
|
|
|
void* realloc(void* ptr, size_t len) {
|
|
|
|
|
|
|
|
|
|
// 定义一个指针ret用于存储新分配的内存地址
|
|
|
|
|
void* ret;
|
|
|
|
|
|
|
|
|
|
// 为新的长度分配内存,分配失败时ret为NULL
|
|
|
|
|
ret = malloc(len);
|
|
|
|
|
|
|
|
|
|
// 如果新内存分配成功且原始指针不为NULL,则进行数据复制和原始内存释放
|
|
|
|
|
if (ret && ptr) {
|
|
|
|
|
|
|
|
|
|
// 检查原始指针的canary值是否正确,如果不正确,程序将致命错误并退出
|
|
|
|
|
if (PTR_C(ptr) != ALLOC_CANARY) FATAL("bad allocator canary on realloc()");
|
|
|
|
|
|
|
|
|
|
// 将原始内存中的数据复制到新分配的内存中,复制的数据长度为原始内存和新内存长度的最小值
|
|
|
|
|
memcpy(ret, ptr, MIN(len, PTR_L(ptr)));
|
|
|
|
|
// 释放原始内存,free函数中同样会调用mprotect来保护原始内存
|
|
|
|
|
free(ptr);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 调试信息,打印原始指针地址、新长度、新内存地址以及当前分配的总内存大小
|
|
|
|
|
DEBUGF("realloc(%p, %zu) = %p [%zu total]", ptr, len, ret, total_mem);
|
|
|
|
|
|
|
|
|
|
// 返回新分配的内存地址
|
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// __dislocator_init函数在程序加载时通过构造函数属性自动执行
|
|
|
|
|
__attribute__((constructor)) void __dislocator_init(void) {
|
|
|
|
|
|
|
|
|
|
// 定义一个临时变量tmp用于存储环境变量AFL_LD_LIMIT_MB的值
|
|
|
|
|
u8* tmp = getenv("AFL_LD_LIMIT_MB");
|
|
|
|
|
|
|
|
|
|
// 如果环境变量AFL_LD_LIMIT_MB存在,则将其转换为max_mem的值(以字节为单位)
|
|
|
|
|
if (tmp) {
|
|
|
|
|
|
|
|
|
|
// atoi将字符串转换为整数,乘以1024*1024表示将MB转换为字节
|
|
|
|
|
max_mem = atoi(tmp) * 1024 * 1024;
|
|
|
|
|
// 如果转换后的max_mem为0,表示环境变量设置不正确,程序将致命错误并退出
|
|
|
|
|
if (!max_mem) FATAL("Bad value for AFL_LD_LIMIT_MB");
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 检查环境变量AFL_LD_VERBOSE是否存在,存在则将alloc_verbose设置为1,否则为0
|
|
|
|
|
alloc_verbose = !!getenv("AFL_LD_VERBOSE");
|
|
|
|
|
// 检查环境变量AFL_LD_HARD_FAIL是否存在,存在则将hard_fail设置为1,否则为0
|
|
|
|
|
hard_fail = !!getenv("AFL_LD_HARD_FAIL");
|
|
|
|
|
// 检查环境变量AFL_LD_NO_CALLOC_OVER是否存在,存在则将no_calloc_over设置为1,否则为0
|
|
|
|
|
no_calloc_over = !!getenv("AFL_LD_NO_CALLOC_OVER");
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|