ADD file via upload

main
pnmfazke8 3 months ago
parent 6b371d5faa
commit 6cc65e11ee

@ -0,0 +1,267 @@
import torchvision.models as models
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock1D(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(BasicBlock1D, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm1d(out_channels)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck1D(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(Bottleneck1D, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm1d(out_channels)
self.conv3 = nn.Conv1d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm1d(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class AudioResNet(nn.Module):
def __init__(self, block, layers, num_classes=7):
"""
构建用于音频分类的1D ResNet
参数:
block: 使用的残差块类型(BasicBlock1D or Bottleneck1D)
layers: 每个层的块数量的列表
num_classes: 分类的类别数量默认为7种情感
"""
super(AudioResNet, self).__init__()
self.in_channels = 64
# 初始卷积层,缩减序列长度
self.conv1 = nn.Conv1d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
# 残差块堆叠
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# 全局平均池化和分类器
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
# 权重初始化
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
nn.Conv1d(self.in_channels, out_channels * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(out_channels * block.expansion),
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
# 输入 x 形状: [batch_size, 1, 24000]
x = self.conv1(x) # [batch_size, 64, 12000]
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x) # [batch_size, 64, 6000]
x = self.layer1(x) # [batch_size, 64*expansion, 6000]
x = self.layer2(x) # [batch_size, 128*expansion, 3000]
x = self.layer3(x) # [batch_size, 256*expansion, 1500]
x = self.layer4(x) # [batch_size, 512*expansion, 750]
x = self.avgpool(x) # [batch_size, 512*expansion, 1]
x = torch.flatten(x, 1) # [batch_size, 512*expansion]
x = self.fc(x) # [batch_size, num_classes]
return x
# 定义不同规模的ResNet模型
def waveform_resnet18(num_classes=7):
"""
构建类似ResNet18的音频分类模型
"""
return AudioResNet(BasicBlock1D, [2, 2, 2, 2], num_classes)
def waveform_resnet34(num_classes=7):
"""
构建类似ResNet34的音频分类模型
"""
return AudioResNet(BasicBlock1D, [3, 4, 6, 3], num_classes)
def waveform_resnet50(num_classes=7):
"""
构建类似ResNet50的音频分类模型
"""
return AudioResNet(Bottleneck1D, [3, 4, 6, 3], num_classes)
def waveform_resnet101(num_classes=7):
"""
构建类似ResNet101的音频分类模型
"""
return AudioResNet(Bottleneck1D, [3, 4, 23, 3], num_classes)
class SpectrogramResNet(nn.Module):
"""
使用预训练的ResNet模型对音频频谱图进行情感分类
"""
def __init__(self, model_name='resnet18', num_classes=6, pretrained=True):
"""
初始化频谱图ResNet分类模型
参数:
model_name: 使用的ResNet版本 ('resnet18', 'resnet34', 'resnet50', 'resnet101')
num_classes: 情感类别数量
pretrained: 是否使用预训练权重
"""
super(SpectrogramResNet, self).__init__()
# 选择预训练的ResNet模型
if model_name == 'resnet18':
base_model = models.resnet18(pretrained=pretrained)
elif model_name == 'resnet34':
base_model = models.resnet34(pretrained=pretrained)
elif model_name == 'resnet50':
base_model = models.resnet50(pretrained=pretrained)
elif model_name == 'resnet101':
base_model = models.resnet101(pretrained=pretrained)
else:
raise ValueError(f"不支持的模型名称: {model_name}")
# 修改第一个卷积层以接受单通道输入
self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
# 使用预训练权重初始化第一层(如果可用)
if pretrained:
# 将预训练的三通道权重平均为单通道权重
with torch.no_grad():
self.conv1.weight.data = base_model.conv1.weight.data.mean(dim=1, keepdim=True)
# 使用其余的预训练层
self.bn1 = base_model.bn1
self.relu = base_model.relu
self.maxpool = base_model.maxpool
self.layer1 = base_model.layer1
self.layer2 = base_model.layer2
self.layer3 = base_model.layer3
self.layer4 = base_model.layer4
self.avgpool = base_model.avgpool
# 修改全连接层以匹配目标类别数
in_features = base_model.fc.in_features
self.fc = nn.Linear(in_features, num_classes)
def forward(self, x):
"""
前向传播
参数:
x: 形状为 [batch_size, 1, 128, 128] 的频谱图
返回:
形状为 [batch_size, num_classes] 的类别预测
"""
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
# 便捷函数用于创建不同版本的模型
def spectrogram_resnet18(num_classes=6, pretrained=True):
return SpectrogramResNet('resnet18', num_classes, pretrained)
def spectrogram_resnet34(num_classes=6, pretrained=True):
return SpectrogramResNet('resnet34', num_classes, pretrained)
def spectrogram_resnet50(num_classes=6, pretrained=True):
return SpectrogramResNet('resnet50', num_classes, pretrained)
def spectrogram_resnet101(num_classes=6, pretrained=True):
return SpectrogramResNet('resnet101', num_classes, pretrained)
Loading…
Cancel
Save