parent
8d8e8e53db
commit
16453b33ce
@ -0,0 +1,61 @@
|
||||
import requests
|
||||
url = "https://www.bitpush.news/covid19/"
|
||||
# 设置请求头信息
|
||||
headers = {
|
||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36"
|
||||
}
|
||||
# 使用reqeusts模快发起 GET 请求
|
||||
response = requests.get(url, headers=headers)
|
||||
# 获取请求的返回结果
|
||||
html = response.text
|
||||
html
|
||||
# 导入 lxml
|
||||
from lxml import etree
|
||||
# 若是本地没有安装 lxml 的同学可以通过“pip install lxml”来安装
|
||||
# 创建一个 lxml 对象,编码方式设为 utf-8
|
||||
parse = etree.HTMLParser(encoding='utf-8') # 添加编码
|
||||
# 解析 requests 返回的响应结果
|
||||
doc = etree.HTML(html)
|
||||
country = doc.xpath('//div[@class="table_container"]//tbody/tr/td/span/text()')
|
||||
# 确诊人数
|
||||
person = doc.xpath('//div[@class="table_container"]//tbody/tr/td[2]/text()')
|
||||
# 由于确诊人数中有逗号,我们使用列表推导式删除
|
||||
person = [x.replace(",", "") for x in person]
|
||||
# 死亡人数
|
||||
death = doc.xpath('//div[@class="table_container"]//tbody/tr/td[3]/text()')
|
||||
# 同样使用列表推导式删除逗号
|
||||
death = [x.replace(",", "") for x in death]
|
||||
message = list(zip(country, person, death))
|
||||
message
|
||||
import csv
|
||||
with open("content.csv", "w") as f:
|
||||
w = csv.writer(f)
|
||||
w.writerows(message)
|
||||
import pandas as pd
|
||||
|
||||
# 读取数据
|
||||
df = pd.read_csv("content.csv", names=["country", "person", "death"],encoding='gbk')
|
||||
df.head()
|
||||
df.info()
|
||||
df1 = df.drop(0).tail(58)
|
||||
df2=df1.head(15)
|
||||
print(df2)
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# 在jupyter中直接展示图像
|
||||
%matplotlib inline
|
||||
# 设置中文显示
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
plt.rcParams['figure.figsize'] = (10, 5) # 设置figure_size尺寸
|
||||
|
||||
# x轴坐标
|
||||
x = df2["country"].values
|
||||
# y轴坐标
|
||||
y = df2["death"].values
|
||||
# 绘制柱状图
|
||||
plt.bar(x, y)
|
||||
# 设置x轴名称
|
||||
plt.xlabel("国家",fontsize=14)
|
||||
# 设置x轴名称
|
||||
plt.ylabel("死亡人数",fontsize=14)
|
||||
plt.show()
|
Loading…
Reference in new issue