ADD file via upload

main
hy22 7 months ago
parent ad3c375357
commit 83f7962d0c

@ -0,0 +1,210 @@
import jittor as jt
from jittor import init
import argparse
import os
import numpy as np
import math
from jittor import nn
if jt.has_cuda:
jt.flags.use_cuda = 1
parser = argparse.ArgumentParser()
parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs of training')
parser.add_argument('--batch_size', type=int, default=64, help='size of the batches')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--latent_dim', type=int, default=100, help='dimensionality of the latent space')
parser.add_argument('--n_classes', type=int, default=10, help='number of classes for dataset')
parser.add_argument('--img_size', type=int, default=32, help='size of each image dimension')
parser.add_argument('--channels', type=int, default=1, help='number of image channels')
parser.add_argument('--sample_interval', type=int, default=1000, help='interval between image sampling')
opt = parser.parse_args()
print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(opt.n_classes, opt.n_classes)
# nn.Linear(in_dim, out_dim)表示全连接层
# in_dim输入向量维度
# out_dim输出向量维度
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2))
return layers
self.model = nn.Sequential(*block((opt.latent_dim + opt.n_classes), 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh())
def execute(self, noise, labels):
gen_input = jt.contrib.concat((self.label_emb(labels), noise), dim=1)
img = self.model(gen_input)
# 将img从1024维向量变为32*32矩阵
img = img.view((img.shape[0], *img_shape))
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes)
self.model = nn.Sequential(nn.Linear((opt.n_classes + int(np.prod(img_shape))), 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 512),
nn.Dropout(0.4),
nn.LeakyReLU(0.2),
nn.Linear(512, 512),
nn.Dropout(0.4),
nn.LeakyReLU(0.2),
# TODO: 添加最后一个线性层,最终输出为一个实数
nn.Linear(512,1)
)
def execute(self, img, labels):
d_in = jt.contrib.concat((img.view((img.shape[0], (- 1))), self.label_embedding(labels)), dim=1)
# TODO: 将d_in输入到模型中并返回计算结果
return self.model(d_in)
# 损失函数:平方误差
# 调用方法adversarial_loss(网络输出A, 分类标签B)
# 计算结果:(A-B)^2
adversarial_loss = nn.MSELoss()
generator = Generator()
discriminator = Discriminator()
# 导入MNIST数据集
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
transform = transform.Compose([
transform.Resize(opt.img_size),
transform.Gray(),
transform.ImageNormalize(mean=[0.5], std=[0.5]),
])
dataloader = MNIST(train=True, transform=transform).set_attrs(batch_size=opt.batch_size, shuffle=True)
optimizer_G = nn.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = nn.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
from PIL import Image
def save_image(img, path, nrow=10, padding=5):
N,C,W,H = img.shape
if (N%nrow!=0):
print("N%nrow!=0")
return
ncol=int(N/nrow)
img_all = []
for i in range(ncol):
img_ = []
for j in range(nrow):
img_.append(img[i*nrow+j])
img_.append(np.zeros((C,W,padding)))
img_all.append(np.concatenate(img_, 2))
img_all.append(np.zeros((C,padding,img_all[0].shape[2])))
img = np.concatenate(img_all, 1)
img = np.concatenate([np.zeros((C,padding,img.shape[2])), img], 1)
img = np.concatenate([np.zeros((C,img.shape[1],padding)), img], 2)
min_=img.min()
max_=img.max()
img=(img-min_)/(max_-min_)*255
img=img.transpose((1,2,0))
if C==3:
img = img[:,:,::-1]
elif C==1:
img = img[:,:,0]
Image.fromarray(np.uint8(img)).save(path)
def sample_image(n_row, batches_done):
# 随机采样输入并保存生成的图片
z = jt.array(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))).float32().stop_grad()
labels = jt.array(np.array([num for _ in range(n_row) for num in range(n_row)])).float32().stop_grad()
gen_imgs = generator(z, labels)
save_image(gen_imgs.numpy(), "%d.png" % batches_done, nrow=n_row)
# ----------
# 模型训练
# ----------
for epoch in range(opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
# 数据标签valid=1表示真实的图片fake=0表示生成的图片
valid = jt.ones([batch_size, 1]).float32().stop_grad()
fake = jt.zeros([batch_size, 1]).float32().stop_grad()
# 真实图片及其类别
real_imgs = jt.array(imgs)
labels = jt.array(labels)
# -----------------
# 训练生成器
# -----------------
# 采样随机噪声和数字类别作为生成器输入
z = jt.array(np.random.normal(0, 1, (batch_size, opt.latent_dim))).float32()
gen_labels = jt.array(np.random.randint(0, opt.n_classes, batch_size)).float32()
# 生成一组图片
gen_imgs = generator(z, gen_labels)
# 损失函数衡量生成器欺骗判别器的能力即希望判别器将生成图片分类为valid
validity = discriminator(gen_imgs, gen_labels)
g_loss = adversarial_loss(validity, valid)
g_loss.sync()
optimizer_G.step(g_loss)
# ---------------------
# 训练判别器
# ---------------------
validity_real = discriminator(real_imgs, labels)
d_real_loss = adversarial_loss(validity_real, valid) # """TODO: 计算真实类别的损失函数"""
validity_fake = discriminator(gen_imgs.stop_grad(), gen_labels)
d_fake_loss = adversarial_loss(validity_fake, fake) # """TODO: 计算虚假类别的损失函数"""
# 总的判别器损失
d_loss = (d_real_loss + d_fake_loss) / 2
d_loss.sync()
optimizer_D.step(d_loss)
if i % 50 == 0:
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.data, g_loss.data)
)
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
sample_image(n_row=10, batches_done=batches_done)
if epoch % 10 == 0:
generator.save("generator_last.pkl")
discriminator.save("discriminator_last.pkl")
generator.eval()
discriminator.eval()
generator.load('generator_last.pkl')
discriminator.load('discriminator_last.pkl')
number ="20662262061325" #TODO: 写入比赛页面中指定的数字序列(字符串类型)
n_row = len(number)
z = jt.array(np.random.normal(0, 1, (n_row, opt.latent_dim))).float32().stop_grad()
labels = jt.array(np.array([int(number[num]) for num in range(n_row)])).float32().stop_grad()
gen_imgs = generator(z,labels)
img_array = gen_imgs.data.transpose((1,2,0,3))[0].reshape((gen_imgs.shape[2], -1))
min_=img_array.min()
max_=img_array.max()
img_array=(img_array-min_)/(max_-min_)*255
Image.fromarray(np.uint8(img_array)).save("result.png")
Loading…
Cancel
Save