|
|
|
@ -90,7 +90,7 @@ def prune(model, amount=0.3):
|
|
|
|
|
import torch.nn.utils.prune as prune
|
|
|
|
|
print('Pruning model... ', end='')
|
|
|
|
|
for name, m in model.named_modules():
|
|
|
|
|
if isinstance(m, torch.nn.Conv2d):
|
|
|
|
|
if isinstance(m, nn.Conv2d):
|
|
|
|
|
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
|
|
|
|
prune.remove(m, 'weight') # make permanent
|
|
|
|
|
print(' %.3g global sparsity' % sparsity(model))
|
|
|
|
@ -100,12 +100,12 @@ def fuse_conv_and_bn(conv, bn):
|
|
|
|
|
# https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
# init
|
|
|
|
|
fusedconv = torch.nn.Conv2d(conv.in_channels,
|
|
|
|
|
conv.out_channels,
|
|
|
|
|
kernel_size=conv.kernel_size,
|
|
|
|
|
stride=conv.stride,
|
|
|
|
|
padding=conv.padding,
|
|
|
|
|
bias=True)
|
|
|
|
|
fusedconv = nn.Conv2d(conv.in_channels,
|
|
|
|
|
conv.out_channels,
|
|
|
|
|
kernel_size=conv.kernel_size,
|
|
|
|
|
stride=conv.stride,
|
|
|
|
|
padding=conv.padding,
|
|
|
|
|
bias=True).to(conv.weight.device)
|
|
|
|
|
|
|
|
|
|
# prepare filters
|
|
|
|
|
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
|
|
|
@ -113,10 +113,7 @@ def fuse_conv_and_bn(conv, bn):
|
|
|
|
|
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
|
|
|
|
|
|
|
|
|
|
# prepare spatial bias
|
|
|
|
|
if conv.bias is not None:
|
|
|
|
|
b_conv = conv.bias
|
|
|
|
|
else:
|
|
|
|
|
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device)
|
|
|
|
|
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
|
|
|
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
|
|
|
|
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
|
|
|
|
|
|
|
|
@ -159,8 +156,8 @@ def load_classifier(name='resnet101', n=2):
|
|
|
|
|
|
|
|
|
|
# Reshape output to n classes
|
|
|
|
|
filters = model.fc.weight.shape[1]
|
|
|
|
|
model.fc.bias = torch.nn.Parameter(torch.zeros(n), requires_grad=True)
|
|
|
|
|
model.fc.weight = torch.nn.Parameter(torch.zeros(n, filters), requires_grad=True)
|
|
|
|
|
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
|
|
|
|
|
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
|
|
|
|
|
model.fc.out_features = n
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|