|
|
@ -101,11 +101,13 @@ def train(hyp):
|
|
|
|
optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
|
|
|
optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
|
|
|
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
|
|
|
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
|
|
|
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
|
|
|
|
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
|
|
|
|
|
|
|
|
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
|
|
|
|
|
|
|
del pg0, pg1, pg2
|
|
|
|
|
|
|
|
|
|
|
|
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
|
|
|
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
|
|
|
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine
|
|
|
|
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine
|
|
|
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
|
|
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
|
|
|
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
|
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
|
|
|
del pg0, pg1, pg2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Load Model
|
|
|
|
# Load Model
|
|
|
|
google_utils.attempt_download(weights)
|
|
|
|
google_utils.attempt_download(weights)
|
|
|
@ -147,12 +149,7 @@ def train(hyp):
|
|
|
|
if mixed_precision:
|
|
|
|
if mixed_precision:
|
|
|
|
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
|
|
|
|
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Distributed training
|
|
|
|
scheduler.last_epoch = start_epoch - 1 # do not move
|
|
|
|
|
|
|
|
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
|
|
|
|
|
|
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Initialize distributed training
|
|
|
|
|
|
|
|
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
|
|
|
|
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
|
|
|
|
dist.init_process_group(backend='nccl', # distributed backend
|
|
|
|
dist.init_process_group(backend='nccl', # distributed backend
|
|
|
|
init_method='tcp://127.0.0.1:9999', # init method
|
|
|
|
init_method='tcp://127.0.0.1:9999', # init method
|
|
|
@ -198,9 +195,10 @@ def train(hyp):
|
|
|
|
# Start training
|
|
|
|
# Start training
|
|
|
|
t0 = time.time()
|
|
|
|
t0 = time.time()
|
|
|
|
nb = len(dataloader) # number of batches
|
|
|
|
nb = len(dataloader) # number of batches
|
|
|
|
n_burn = max(3 * nb, 1e3) # burn-in iterations, max(3 epochs, 1k iterations)
|
|
|
|
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
|
|
|
|
maps = np.zeros(nc) # mAP per class
|
|
|
|
maps = np.zeros(nc) # mAP per class
|
|
|
|
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
|
|
|
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
|
|
|
|
|
|
|
scheduler.last_epoch = start_epoch - 1 # do not move
|
|
|
|
print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
|
|
|
|
print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
|
|
|
|
print('Using %g dataloader workers' % dataloader.num_workers)
|
|
|
|
print('Using %g dataloader workers' % dataloader.num_workers)
|
|
|
|
print('Starting training for %g epochs...' % epochs)
|
|
|
|
print('Starting training for %g epochs...' % epochs)
|
|
|
@ -225,9 +223,9 @@ def train(hyp):
|
|
|
|
ni = i + nb * epoch # number integrated batches (since train start)
|
|
|
|
ni = i + nb * epoch # number integrated batches (since train start)
|
|
|
|
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
|
|
|
|
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
|
|
|
|
|
|
|
|
|
|
|
|
# Burn-in
|
|
|
|
# Warmup
|
|
|
|
if ni <= n_burn:
|
|
|
|
if ni <= nw:
|
|
|
|
xi = [0, n_burn] # x interp
|
|
|
|
xi = [0, nw] # x interp
|
|
|
|
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
|
|
|
|
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
|
|
|
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
|
|
|
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
|
|
|
|
for j, x in enumerate(optimizer.param_groups):
|
|
|
|
for j, x in enumerate(optimizer.param_groups):
|
|
|
|