--resume EMA fix #292

pull/1/head
Glenn Jocher 5 years ago
parent 2b6209a9d5
commit 24c5a941f0

@ -163,6 +163,7 @@ def train(hyp):
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect)
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
nb = len(dataloader) # number of batches
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)
# Testloader
@ -191,11 +192,10 @@ def train(hyp):
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
# Exponential moving average
ema = torch_utils.ModelEMA(model)
ema = torch_utils.ModelEMA(model, updates=start_epoch * nb / accumulate)
# Start training
t0 = time.time()
nb = len(dataloader) # number of batches
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'

@ -191,15 +191,11 @@ class ModelEMA:
I've tested with the sequence in my own train.py for torch.DataParallel, apex.DDP, and single-GPU.
"""
def __init__(self, model, decay=0.9999, device=''):
def __init__(self, model, decay=0.9999, updates=0):
# Create EMA
self.ema = deepcopy(model.module if is_parallel(model) else model) # FP32 EMA
self.ema.eval()
self.updates = 0 # number of EMA updates
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
self.device = device # perform ema on different device from model if set
if device:
self.ema.to(device)
for p in self.ema.parameters():
p.requires_grad_(False)

Loading…
Cancel
Save