AutoAnchor update - improvement check

pull/1/head
Glenn Jocher 5 years ago
parent afe1df385b
commit 4052603e1f

@ -58,17 +58,24 @@ def check_anchors(dataset, model, thr=4.0, imgsz=640):
anchors = model.module.model[-1].anchor_grid if hasattr(model, 'module') else model.model[-1].anchor_grid anchors = model.module.model[-1].anchor_grid if hasattr(model, 'module') else model.model[-1].anchor_grid
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh
ratio = wh[:, None] / anchors.view(-1, 2).cpu()[None] # ratio
m = torch.max(ratio, 1. / ratio).max(2)[0] # max ratio
bpr = (m.min(1)[0] < thr).float().mean() # best possible recall
# mr = (m < thr).float().mean() # match ratio
def metric(k): # compute metric
r = wh[:, None] / k[None]
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
best = x.max(1)[0] # best_x
return (best > 1. / thr).float().mean() #  best possible recall
bpr = metric(anchors.clone().cpu().view(-1, 2))
print('Best Possible Recall (BPR) = %.3f' % bpr, end='') print('Best Possible Recall (BPR) = %.3f' % bpr, end='')
if bpr < 0.99: # threshold to recompute if bpr < 0.99: # threshold to recompute
print('. Generating new anchors for improved recall, please wait...' % bpr) print('. Attempting to generate improved anchors, please wait...' % bpr)
new_anchors = kmean_anchors(dataset, n=9, img_size=640, thr=4.0, gen=1000, verbose=False) new_anchors = kmean_anchors(dataset, n=9, img_size=640, thr=4.0, gen=1000, verbose=False)
anchors[:] = torch.tensor(new_anchors).view_as(anchors).type_as(anchors) new_bpr = metric(new_anchors.reshape(-1, 2))
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.') if new_bpr > bpr:
anchors[:] = torch.tensor(new_anchors).view_as(anchors).type_as(anchors)
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
else:
print('Original anchors better than new anchors. Proceeding with original anchors.')
print('') # newline print('') # newline
@ -712,19 +719,19 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
""" """
thr = 1. / thr thr = 1. / thr
def metric(k): # compute metrics def metric(k, wh): # compute metrics
r = wh[:, None] / k[None] r = wh[:, None] / k[None]
x = torch.min(r, 1. / r).min(2)[0] # ratio metric x = torch.min(r, 1. / r).min(2)[0] # ratio metric
# x = wh_iou(wh, torch.tensor(k)) # iou metric # x = wh_iou(wh, torch.tensor(k)) # iou metric
return x, x.max(1)[0] # x, best_x return x, x.max(1)[0] # x, best_x
def fitness(k): # mutation fitness def fitness(k): # mutation fitness
_, best = metric(torch.tensor(k, dtype=torch.float32)) _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
return (best * (best > thr).float()).mean() # fitness return (best * (best > thr).float()).mean() # fitness
def print_results(k): def print_results(k):
k = k[np.argsort(k.prod(1))] # sort small to large k = k[np.argsort(k.prod(1))] # sort small to large
x, best = metric(k) x, best = metric(k, wh0)
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
print('thr=%.2f: %.3f best possible recall, %.2f anchors past thr' % (thr, bpr, aat)) print('thr=%.2f: %.3f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' % print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
@ -743,8 +750,14 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
# Get label wh # Get label wh
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
wh = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
wh = wh[(wh > 2.0).all(1)] # filter > 2 pixels
# Filter
i = (wh0 < 4.0).any(1).sum()
if i:
print('WARNING: Extremely small objects found. '
'%g of %g labels are < 4 pixels in width or height.' % (i, len(wh0)))
wh = wh0[(wh0 >= 4.0).any(1)] # filter > 2 pixels
# Kmeans calculation # Kmeans calculation
from scipy.cluster.vq import kmeans from scipy.cluster.vq import kmeans
@ -752,7 +765,8 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
s = wh.std(0) # sigmas for whitening s = wh.std(0) # sigmas for whitening
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
k *= s k *= s
wh = torch.tensor(wh, dtype=torch.float32) wh = torch.tensor(wh, dtype=torch.float32) # filtered
wh0 = torch.tensor(wh0, dtype=torch.float32) # unflitered
k = print_results(k) k = print_results(k)
# Plot # Plot
@ -781,8 +795,8 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
f, k = fg, kg.copy() f, k = fg, kg.copy()
if verbose: if verbose:
print_results(k) print_results(k)
k = print_results(k)
return k return print_results(k)
def print_mutation(hyp, results, bucket=''): def print_mutation(hyp, results, bucket=''):
@ -1099,6 +1113,7 @@ def plot_labels(labels):
ax[2].set_xlabel('width') ax[2].set_xlabel('width')
ax[2].set_ylabel('height') ax[2].set_ylabel('height')
plt.savefig('labels.png', dpi=200) plt.savefig('labels.png', dpi=200)
plt.close()
def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp) def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp)

Loading…
Cancel
Save