|
|
|
@ -18,11 +18,6 @@ except:
|
|
|
|
|
print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
|
|
|
|
|
mixed_precision = False # not installed
|
|
|
|
|
|
|
|
|
|
wdir = 'weights' + os.sep # weights dir
|
|
|
|
|
os.makedirs(wdir, exist_ok=True)
|
|
|
|
|
last = wdir + 'last.pt'
|
|
|
|
|
best = wdir + 'best.pt'
|
|
|
|
|
results_file = 'results.txt'
|
|
|
|
|
|
|
|
|
|
# Hyperparameters
|
|
|
|
|
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
|
|
|
|
@ -59,13 +54,21 @@ if hyp['fl_gamma']:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train(hyp):
|
|
|
|
|
#write all results to the tb log_dir, so all data from one run is together
|
|
|
|
|
log_dir = tb_writer.log_dir
|
|
|
|
|
|
|
|
|
|
#weights dir unique to each experiment
|
|
|
|
|
wdir = os.path.join(log_dir, 'weights') + os.sep # weights dir
|
|
|
|
|
|
|
|
|
|
os.makedirs(wdir, exist_ok=True)
|
|
|
|
|
last = wdir + 'last.pt'
|
|
|
|
|
best = wdir + 'best.pt'
|
|
|
|
|
results_file = 'results.txt'
|
|
|
|
|
|
|
|
|
|
epochs = opt.epochs # 300
|
|
|
|
|
batch_size = opt.batch_size # 64
|
|
|
|
|
weights = opt.weights # initial training weights
|
|
|
|
|
|
|
|
|
|
#write all results to the tb log_dir, so all data from one run is together
|
|
|
|
|
log_dir = tb_writer.log_dir
|
|
|
|
|
|
|
|
|
|
# Configure
|
|
|
|
|
init_seeds(1)
|
|
|
|
|
with open(opt.data) as f:
|
|
|
|
|