add save_dir arg to plot_lr_scheduler, default to current dir.

Uncomment plot_lr_scheduler in train() and pass log_dir as save location
pull/1/head
Alex Stoken 5 years ago
parent 4418809cf5
commit 490f1e7b9c

@ -148,7 +148,7 @@ def train(hyp):
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
scheduler.last_epoch = start_epoch - 1 # do not move
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
# plot_lr_scheduler(optimizer, scheduler, epochs)
plot_lr_scheduler(optimizer, scheduler, epochs, save_dir = log_dir)
# Initialize distributed training
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():

@ -1005,7 +1005,7 @@ def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max
return mosaic
def plot_lr_scheduler(optimizer, scheduler, epochs=300):
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir='./'):
# Plot LR simulating training for full epochs
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
y = []

Loading…
Cancel
Save