Label caching foundational re-write #306

pull/1/head
Glenn Jocher 5 years ago
parent f310ca3bff
commit 520f5de6f0

@ -26,6 +26,11 @@ for orientation in ExifTags.TAGS.keys():
break break
def get_hash(files):
# Returns a single hash value of a list of files
return sum(os.path.getsize(f) for f in files)
def exif_size(img): def exif_size(img):
# Returns exif-corrected PIL size # Returns exif-corrected PIL size
s = img.size # (width, height) s = img.size # (width, height)
@ -280,7 +285,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
cache_images=False, single_cls=False, stride=32, pad=0.0): cache_images=False, single_cls=False, stride=32, pad=0.0):
try: try:
f = [] f = [] # image files
for p in path if isinstance(path, list) else [path]: for p in path if isinstance(path, list) else [path]:
p = str(Path(p)) # os-agnostic p = str(Path(p)) # os-agnostic
parent = str(Path(p).parent) + os.sep parent = str(Path(p).parent) + os.sep
@ -292,7 +297,6 @@ class LoadImagesAndLabels(Dataset): # for training/testing
f += glob.iglob(p + os.sep + '*.*') f += glob.iglob(p + os.sep + '*.*')
else: else:
raise Exception('%s does not exist' % p) raise Exception('%s does not exist' % p)
path = p # *.npy dir
self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats] self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats]
except Exception as e: except Exception as e:
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url)) raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
@ -314,20 +318,22 @@ class LoadImagesAndLabels(Dataset): # for training/testing
self.stride = stride self.stride = stride
# Define labels # Define labels
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in
for x in self.img_files] self.img_files]
# Read image shapes (wh) # Check cache
sp = path.replace('.txt', '') + '.shapes' # shapefile path cache_path = str(Path(self.label_files[0]).parent) + '.cache' # cached labels
try: if os.path.isfile(cache_path):
with open(sp, 'r') as f: # read existing shapefile cache = torch.load(cache_path) # load
s = [x.split() for x in f.read().splitlines()] if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
assert len(s) == n, 'Shapefile out of sync' cache = self.cache_labels(cache_path) # re-cache
except: else:
s = [exif_size(Image.open(f)) for f in tqdm(self.img_files, desc='Reading image shapes')] cache = self.cache_labels(cache_path) # cache
np.savetxt(sp, s, fmt='%g') # overwrites existing (if any)
self.shapes = np.array(s, dtype=np.float64) # Get labels
labels, shapes = zip(*[cache[x] for x in self.img_files])
self.shapes = np.array(shapes, dtype=np.float64)
self.labels = list(labels)
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232 # Rectangular Training https://github.com/ultralytics/yolov3/issues/232
if self.rect: if self.rect:
@ -353,33 +359,11 @@ class LoadImagesAndLabels(Dataset): # for training/testing
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
# Cache labels # Cache labels
self.imgs = [None] * n
self.labels = [np.zeros((0, 5), dtype=np.float32)] * n
create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
np_labels_path = str(Path(self.label_files[0]).parent) + '.npy' # saved labels in *.npy file
if os.path.isfile(np_labels_path):
s = np_labels_path # print string
x = np.load(np_labels_path, allow_pickle=True)
if len(x) == n:
self.labels = x
labels_loaded = True
else:
s = path.replace('images', 'labels')
pbar = tqdm(self.label_files) pbar = tqdm(self.label_files)
for i, file in enumerate(pbar): for i, file in enumerate(pbar):
if labels_loaded: l = self.labels[i] # label
l = self.labels[i]
# np.savetxt(file, l, '%g') # save *.txt from *.npy file
else:
try:
with open(file, 'r') as f:
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
except:
nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing
continue
if l.shape[0]: if l.shape[0]:
assert l.shape[1] == 5, '> 5 label columns: %s' % file assert l.shape[1] == 5, '> 5 label columns: %s' % file
assert (l >= 0).all(), 'negative labels: %s' % file assert (l >= 0).all(), 'negative labels: %s' % file
@ -425,15 +409,13 @@ class LoadImagesAndLabels(Dataset): # for training/testing
ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove # os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
pbar.desc = 'Caching labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % ( pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
s, nf, nm, ne, nd, n) cache_path, nf, nm, ne, nd, n)
assert nf > 0 or n == 20288, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url) assert nf > 0, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
if not labels_loaded and n > 1000:
print('Saving labels to %s for faster future loading' % np_labels_path)
np.save(np_labels_path, self.labels) # save for next time
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
if cache_images: # if training self.imgs = [None] * n
if cache_images:
gb = 0 # Gigabytes of cached images gb = 0 # Gigabytes of cached images
pbar = tqdm(range(len(self.img_files)), desc='Caching images') pbar = tqdm(range(len(self.img_files)), desc='Caching images')
self.img_hw0, self.img_hw = [None] * n, [None] * n self.img_hw0, self.img_hw = [None] * n, [None] * n
@ -442,15 +424,30 @@ class LoadImagesAndLabels(Dataset): # for training/testing
gb += self.imgs[i].nbytes gb += self.imgs[i].nbytes
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9) pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
# Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3 def cache_labels(self, path='labels.cache'):
detect_corrupted_images = False # Cache dataset labels, check images and read shapes
if detect_corrupted_images: x = {} # dict
from skimage import io # conda install -c conda-forge scikit-image pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
for file in tqdm(self.img_files, desc='Detecting corrupted images'): for (img, label) in pbar:
try: try:
_ = io.imread(file) l = []
except: image = Image.open(img)
print('Corrupted image detected: %s' % file) image.verify() # PIL verify
# _ = io.imread(img) # skimage verify (from skimage import io)
shape = exif_size(image) # image size
if os.path.isfile(label):
with open(label, 'r') as f:
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
if len(l) == 0:
l = np.zeros((0, 5), dtype=np.float32)
x[img] = [l, shape]
except Exception as e:
x[img] = None
print('WARNING: %s: %s' % (img, e))
x['hash'] = get_hash(self.label_files + self.img_files)
torch.save(x, path) # save for next time
return x
def __len__(self): def __len__(self):
return len(self.img_files) return len(self.img_files)

Loading…
Cancel
Save