|
|
@ -496,7 +496,6 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
|
|
|
s = 3 / np # output count scaling
|
|
|
|
s = 3 / np # output count scaling
|
|
|
|
lbox *= h['giou'] * s
|
|
|
|
lbox *= h['giou'] * s
|
|
|
|
lobj *= h['obj'] * s * (1.4 if np == 4 else 1.)
|
|
|
|
lobj *= h['obj'] * s * (1.4 if np == 4 else 1.)
|
|
|
|
if model.nc > 1:
|
|
|
|
|
|
|
|
lcls *= h['cls'] * s
|
|
|
|
lcls *= h['cls'] * s
|
|
|
|
bs = tobj.shape[0] # batch size
|
|
|
|
bs = tobj.shape[0] # batch size
|
|
|
|
|
|
|
|
|
|
|
@ -524,7 +523,7 @@ def build_targets(p, targets, model):
|
|
|
|
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
|
|
|
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
|
|
|
|
|
|
|
|
|
|
|
# Match targets to anchors
|
|
|
|
# Match targets to anchors
|
|
|
|
t, offsets = targets * gain, 0
|
|
|
|
t = targets * gain
|
|
|
|
if nt:
|
|
|
|
if nt:
|
|
|
|
# Matches
|
|
|
|
# Matches
|
|
|
|
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
|
|
|
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
|
|
@ -540,6 +539,9 @@ def build_targets(p, targets, model):
|
|
|
|
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
|
|
|
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
|
|
|
t = t.repeat((5, 1, 1))[j]
|
|
|
|
t = t.repeat((5, 1, 1))[j]
|
|
|
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
|
|
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
t = targets[0]
|
|
|
|
|
|
|
|
offsets = 0
|
|
|
|
|
|
|
|
|
|
|
|
# Define
|
|
|
|
# Define
|
|
|
|
b, c = t[:, :2].long().T # image, class
|
|
|
|
b, c = t[:, :2].long().T # image, class
|
|
|
|