|
|
@ -125,6 +125,11 @@ class Model(nn.Module):
|
|
|
|
b = self.model[f].bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
|
|
|
b = self.model[f].bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
|
|
|
print(('%g Conv2d.bias:' + '%10.3g' * 6) % (f, *b[:5].mean(1).tolist(), b[5:].mean()))
|
|
|
|
print(('%g Conv2d.bias:' + '%10.3g' * 6) % (f, *b[:5].mean(1).tolist(), b[5:].mean()))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# def _print_weights(self):
|
|
|
|
|
|
|
|
# for m in self.model.modules():
|
|
|
|
|
|
|
|
# if type(m) is Bottleneck:
|
|
|
|
|
|
|
|
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
|
|
|
|
|
|
|
|
|
|
|
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
|
|
|
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
|
|
|
print('Fusing layers...')
|
|
|
|
print('Fusing layers...')
|
|
|
|
for m in self.model.modules():
|
|
|
|
for m in self.model.modules():
|
|
|
|