augmented inference

pull/1/head
Glenn Jocher 5 years ago
parent d5d160449c
commit b810b21299

@ -72,8 +72,8 @@ class Model(nn.Module):
s = [0.83, 0.67] # scales
y = []
for i, xi in enumerate((x,
torch_utils.scale_img(x.flip(3), s[0], same_shape=False), # flip-lr and scale
torch_utils.scale_img(x, s[1], same_shape=False), # scale
torch_utils.scale_img(x.flip(3), s[0]), # flip-lr and scale
torch_utils.scale_img(x, s[1]), # scale
)):
# cv2.imwrite('img%g.jpg' % i, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1])
y.append(self.forward_once(xi)[0])

@ -135,7 +135,7 @@ def load_classifier(name='resnet101', n=2):
return model
def scale_img(img, ratio=1.0, same_shape=True): # img(16,3,256,416), r=ratio
def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
# scales img(bs,3,y,x) by ratio
h, w = img.shape[2:]
s = (int(h * ratio), int(w * ratio)) # new size

Loading…
Cancel
Save