commit
bfd51f62f8
@ -0,0 +1,55 @@
|
|||||||
|
"""Exports a YOLOv5 *.pt model to *.onnx and *.torchscript formats
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import onnx
|
||||||
|
|
||||||
|
from models.common import *
|
||||||
|
from utils import google_utils
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
|
||||||
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
|
||||||
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
||||||
|
print(opt)
|
||||||
|
|
||||||
|
# Input
|
||||||
|
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection
|
||||||
|
|
||||||
|
# Load PyTorch model
|
||||||
|
google_utils.attempt_download(opt.weights)
|
||||||
|
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
|
||||||
|
model.eval()
|
||||||
|
model.model[-1].export = True # set Detect() layer export=True
|
||||||
|
_ = model(img) # dry run
|
||||||
|
|
||||||
|
# Export to torchscript
|
||||||
|
try:
|
||||||
|
f = opt.weights.replace('.pt', '.torchscript') # filename
|
||||||
|
ts = torch.jit.trace(model, img)
|
||||||
|
ts.save(f)
|
||||||
|
print('Torchscript export success, saved as %s' % f)
|
||||||
|
except:
|
||||||
|
print('Torchscript export failed.')
|
||||||
|
|
||||||
|
# Export to ONNX
|
||||||
|
try:
|
||||||
|
f = opt.weights.replace('.pt', '.onnx') # filename
|
||||||
|
model.fuse() # only for ONNX
|
||||||
|
torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'],
|
||||||
|
output_names=['output']) # output_names=['classes', 'boxes']
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
onnx_model = onnx.load(f) # load onnx model
|
||||||
|
onnx.checker.check_model(onnx_model) # check onnx model
|
||||||
|
print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable representation of the graph
|
||||||
|
print('ONNX export success, saved as %s\nView with https://github.com/lutzroeder/netron' % f)
|
||||||
|
except:
|
||||||
|
print('ONNX export failed.')
|
@ -1,43 +0,0 @@
|
|||||||
"""Exports a pytorch *.pt model to *.onnx format
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
$ export PYTHONPATH="$PWD" && python models/onnx_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
|
|
||||||
import onnx
|
|
||||||
|
|
||||||
from models.common import *
|
|
||||||
from utils import google_utils
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
|
|
||||||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
|
|
||||||
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
|
||||||
opt = parser.parse_args()
|
|
||||||
opt.img_size *= 2 if len(opt.img_size) == 1 else 1
|
|
||||||
print(opt)
|
|
||||||
|
|
||||||
# Parameters
|
|
||||||
f = opt.weights.replace('.pt', '.onnx') # onnx filename
|
|
||||||
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size, (1, 3, 320, 192) iDetection
|
|
||||||
|
|
||||||
# Load pytorch model
|
|
||||||
google_utils.attempt_download(opt.weights)
|
|
||||||
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
|
|
||||||
model.eval()
|
|
||||||
model.fuse()
|
|
||||||
|
|
||||||
# Export to onnx
|
|
||||||
model.model[-1].export = True # set Detect() layer export=True
|
|
||||||
_ = model(img) # dry run
|
|
||||||
torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'],
|
|
||||||
output_names=['output']) # output_names=['classes', 'boxes']
|
|
||||||
|
|
||||||
# Check onnx model
|
|
||||||
model = onnx.load(f) # load onnx model
|
|
||||||
onnx.checker.check_model(model) # check onnx model
|
|
||||||
print(onnx.helper.printable_graph(model.graph)) # print a human readable representation of the graph
|
|
||||||
print('Export complete. ONNX model saved to %s\nView with https://github.com/lutzroeder/netron' % f)
|
|
Loading…
Reference in new issue