glob search bug fix #77

pull/1/head
Glenn Jocher 5 years ago
parent ace56eb5b6
commit c5966abba8

@ -255,7 +255,7 @@ if __name__ == '__main__':
opt = parser.parse_args() opt = parser.parse_args()
opt.img_size = check_img_size(opt.img_size) opt.img_size = check_img_size(opt.img_size)
opt.save_json = opt.save_json or opt.data.endswith('coco.yaml') opt.save_json = opt.save_json or opt.data.endswith('coco.yaml')
opt.data = glob.glob('./**/' + opt.data, recursive=True)[0] # find file opt.data = check_file(opt.data) # check file
print(opt) print(opt)
# task = 'val', 'test', 'study' # task = 'val', 'test', 'study'

@ -384,8 +384,8 @@ if __name__ == '__main__':
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
opt = parser.parse_args() opt = parser.parse_args()
opt.weights = last if opt.resume else opt.weights opt.weights = last if opt.resume else opt.weights
opt.cfg = glob.glob('./**/' + opt.cfg, recursive=True)[0] # find file opt.cfg = check_file(opt.cfg) # check file
opt.data = glob.glob('./**/' + opt.data, recursive=True)[0] # find file opt.data = check_file(opt.data) # check file
print(opt) print(opt)
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size) device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)

@ -1,4 +1,5 @@
import torch import torch
import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torch.nn as nn import torch.nn as nn

@ -64,6 +64,16 @@ def check_best_possible_recall(dataset, anchors, thr):
'Compute new anchors with utils.utils.kmeans_anchors() and update model before training.' % bpr 'Compute new anchors with utils.utils.kmeans_anchors() and update model before training.' % bpr
def check_file(file):
# Searches for file if not found locally
if os.path.isfile(file):
return file
else:
files = glob.glob('./**/' + file, recursive=True) # find file
assert len(files), 'File Not Found: %s' % file # assert file was found
return files[0] # return first file if multiple found
def make_divisible(x, divisor): def make_divisible(x, divisor):
# Returns x evenly divisble by divisor # Returns x evenly divisble by divisor
return math.ceil(x / divisor) * divisor return math.ceil(x / divisor) * divisor

Loading…
Cancel
Save