remove NBSP

pull/1/head
Glenn Jocher 5 years ago
parent 023e37807c
commit d989bc9260

@ -127,7 +127,7 @@ class Model(nn.Module):
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
m = self.model[-1] # Detect() module m = self.model[-1] # Detect() module
for mi, s in zip(m.m, m.stride): #  from for mi, s in zip(m.m, m.stride): # from
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
@ -135,7 +135,7 @@ class Model(nn.Module):
def _print_biases(self): def _print_biases(self):
m = self.model[-1] # Detect() module m = self.model[-1] # Detect() module
for mi in m.m: #  from for mi in m.m: # from
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))

@ -21,7 +21,7 @@ import yaml
from scipy.signal import butter, filtfilt from scipy.signal import butter, filtfilt
from tqdm import tqdm from tqdm import tqdm
from . import torch_utils #  torch_utils, google_utils from . import torch_utils # torch_utils, google_utils
# Set printoptions # Set printoptions
torch.set_printoptions(linewidth=320, precision=5, profile='long') torch.set_printoptions(linewidth=320, precision=5, profile='long')
@ -84,7 +84,7 @@ def check_anchors(dataset, model, thr=4.0, imgsz=640):
r = wh[:, None] / k[None] r = wh[:, None] / k[None]
x = torch.min(r, 1. / r).min(2)[0] # ratio metric x = torch.min(r, 1. / r).min(2)[0] # ratio metric
best = x.max(1)[0] # best_x best = x.max(1)[0] # best_x
return (best > 1. / thr).float().mean() #  best possible recall return (best > 1. / thr).float().mean() # best possible recall
bpr = metric(m.anchor_grid.clone().cpu().view(-1, 2)) bpr = metric(m.anchor_grid.clone().cpu().view(-1, 2))
print('Best Possible Recall (BPR) = %.4f' % bpr, end='') print('Best Possible Recall (BPR) = %.4f' % bpr, end='')

Loading…
Cancel
Save