|
|
|
@ -35,7 +35,7 @@ def test(data,
|
|
|
|
|
google_utils.attempt_download(weights)
|
|
|
|
|
model = torch.load(weights, map_location=device)['model'].float() # load to FP32
|
|
|
|
|
torch_utils.model_info(model)
|
|
|
|
|
# model.fuse()
|
|
|
|
|
model.fuse()
|
|
|
|
|
model.to(device)
|
|
|
|
|
if half:
|
|
|
|
|
model.half() # to FP16
|
|
|
|
@ -71,7 +71,7 @@ def test(data,
|
|
|
|
|
batch_size,
|
|
|
|
|
rect=True, # rectangular inference
|
|
|
|
|
single_cls=opt.single_cls, # single class mode
|
|
|
|
|
pad=0.0 if fast else 0.5) # padding
|
|
|
|
|
pad=0.5) # padding
|
|
|
|
|
batch_size = min(batch_size, len(dataset))
|
|
|
|
|
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
|
|
|
|
|
dataloader = DataLoader(dataset,
|
|
|
|
|