parent
e41bc3484b
commit
ce2d404c87
@ -0,0 +1,493 @@
|
||||
# american fuzzy lop
|
||||
|
||||
[![Build Status](https://travis-ci.org/google/AFL.svg?branch=master)](https://travis-ci.org/google/AFL)
|
||||
|
||||
Originally developed by Michal Zalewski <lcamtuf@google.com>.
|
||||
|
||||
See [QuickStartGuide.txt](docs/QuickStartGuide.txt) if you don't have time to read
|
||||
this file.
|
||||
|
||||
## 1) Challenges of guided fuzzing
|
||||
|
||||
Fuzzing is one of the most powerful and proven strategies for identifying
|
||||
security issues in real-world software; it is responsible for the vast
|
||||
majority of remote code execution and privilege escalation bugs found to date
|
||||
in security-critical software.
|
||||
|
||||
Unfortunately, fuzzing is also relatively shallow; blind, random mutations
|
||||
make it very unlikely to reach certain code paths in the tested code, leaving
|
||||
some vulnerabilities firmly outside the reach of this technique.
|
||||
|
||||
There have been numerous attempts to solve this problem. One of the early
|
||||
approaches - pioneered by Tavis Ormandy - is corpus distillation. The method
|
||||
relies on coverage signals to select a subset of interesting seeds from a
|
||||
massive, high-quality corpus of candidate files, and then fuzz them by
|
||||
traditional means. The approach works exceptionally well, but requires such
|
||||
a corpus to be readily available. In addition, block coverage measurements
|
||||
provide only a very simplistic understanding of program state, and are less
|
||||
useful for guiding the fuzzing effort in the long haul.
|
||||
|
||||
Other, more sophisticated research has focused on techniques such as program
|
||||
flow analysis ("concolic execution"), symbolic execution, or static analysis.
|
||||
All these methods are extremely promising in experimental settings, but tend
|
||||
to suffer from reliability and performance problems in practical uses - and
|
||||
currently do not offer a viable alternative to "dumb" fuzzing techniques.
|
||||
|
||||
## 2) The afl-fuzz approach
|
||||
|
||||
American Fuzzy Lop is a brute-force fuzzer coupled with an exceedingly simple
|
||||
but rock-solid instrumentation-guided genetic algorithm. It uses a modified
|
||||
form of edge coverage to effortlessly pick up subtle, local-scale changes to
|
||||
program control flow.
|
||||
|
||||
Simplifying a bit, the overall algorithm can be summed up as:
|
||||
|
||||
1) Load user-supplied initial test cases into the queue,
|
||||
|
||||
2) Take next input file from the queue,
|
||||
|
||||
3) Attempt to trim the test case to the smallest size that doesn't alter
|
||||
the measured behavior of the program,
|
||||
|
||||
4) Repeatedly mutate the file using a balanced and well-researched variety
|
||||
of traditional fuzzing strategies,
|
||||
|
||||
5) If any of the generated mutations resulted in a new state transition
|
||||
recorded by the instrumentation, add mutated output as a new entry in the
|
||||
queue.
|
||||
|
||||
6) Go to 2.
|
||||
|
||||
The discovered test cases are also periodically culled to eliminate ones that
|
||||
have been obsoleted by newer, higher-coverage finds; and undergo several other
|
||||
instrumentation-driven effort minimization steps.
|
||||
|
||||
As a side result of the fuzzing process, the tool creates a small,
|
||||
self-contained corpus of interesting test cases. These are extremely useful
|
||||
for seeding other, labor- or resource-intensive testing regimes - for example,
|
||||
for stress-testing browsers, office applications, graphics suites, or
|
||||
closed-source tools.
|
||||
|
||||
The fuzzer is thoroughly tested to deliver out-of-the-box performance far
|
||||
superior to blind fuzzing or coverage-only tools.
|
||||
|
||||
## 3) Instrumenting programs for use with AFL
|
||||
|
||||
When source code is available, instrumentation can be injected by a companion
|
||||
tool that works as a drop-in replacement for gcc or clang in any standard build
|
||||
process for third-party code.
|
||||
|
||||
The instrumentation has a fairly modest performance impact; in conjunction with
|
||||
other optimizations implemented by afl-fuzz, most programs can be fuzzed as fast
|
||||
or even faster than possible with traditional tools.
|
||||
|
||||
The correct way to recompile the target program may vary depending on the
|
||||
specifics of the build process, but a nearly-universal approach would be:
|
||||
|
||||
```shell
|
||||
$ CC=/path/to/afl/afl-gcc ./configure
|
||||
$ make clean all
|
||||
```
|
||||
|
||||
For C++ programs, you'd would also want to set `CXX=/path/to/afl/afl-g++`.
|
||||
|
||||
The clang wrappers (afl-clang and afl-clang++) can be used in the same way;
|
||||
clang users may also opt to leverage a higher-performance instrumentation mode,
|
||||
as described in llvm_mode/README.llvm.
|
||||
|
||||
When testing libraries, you need to find or write a simple program that reads
|
||||
data from stdin or from a file and passes it to the tested library. In such a
|
||||
case, it is essential to link this executable against a static version of the
|
||||
instrumented library, or to make sure that the correct .so file is loaded at
|
||||
runtime (usually by setting `LD_LIBRARY_PATH`). The simplest option is a static
|
||||
build, usually possible via:
|
||||
|
||||
```shell
|
||||
$ CC=/path/to/afl/afl-gcc ./configure --disable-shared
|
||||
```
|
||||
|
||||
Setting `AFL_HARDEN=1` when calling 'make' will cause the CC wrapper to
|
||||
automatically enable code hardening options that make it easier to detect
|
||||
simple memory bugs. Libdislocator, a helper library included with AFL (see
|
||||
libdislocator/README.dislocator) can help uncover heap corruption issues, too.
|
||||
|
||||
PS. ASAN users are advised to review [notes_for_asan.txt](docs/notes_for_asan.txt) file for important
|
||||
caveats.
|
||||
|
||||
## 4) Instrumenting binary-only apps
|
||||
|
||||
When source code is *NOT* available, the fuzzer offers experimental support for
|
||||
fast, on-the-fly instrumentation of black-box binaries. This is accomplished
|
||||
with a version of QEMU running in the lesser-known "user space emulation" mode.
|
||||
|
||||
QEMU is a project separate from AFL, but you can conveniently build the
|
||||
feature by doing:
|
||||
|
||||
```shell
|
||||
$ cd qemu_mode
|
||||
$ ./build_qemu_support.sh
|
||||
```
|
||||
|
||||
For additional instructions and caveats, see qemu_mode/README.qemu.
|
||||
|
||||
The mode is approximately 2-5x slower than compile-time instrumentation, is
|
||||
less conducive to parallelization, and may have some other quirks.
|
||||
|
||||
## 5) Choosing initial test cases
|
||||
|
||||
To operate correctly, the fuzzer requires one or more starting file that
|
||||
contains a good example of the input data normally expected by the targeted
|
||||
application. There are two basic rules:
|
||||
|
||||
- Keep the files small. Under 1 kB is ideal, although not strictly necessary.
|
||||
For a discussion of why size matters, see [perf_tips.txt](docs/perf_tips.txt).
|
||||
|
||||
- Use multiple test cases only if they are functionally different from
|
||||
each other. There is no point in using fifty different vacation photos
|
||||
to fuzz an image library.
|
||||
|
||||
You can find many good examples of starting files in the testcases/ subdirectory
|
||||
that comes with this tool.
|
||||
|
||||
PS. If a large corpus of data is available for screening, you may want to use
|
||||
the afl-cmin utility to identify a subset of functionally distinct files that
|
||||
exercise different code paths in the target binary.
|
||||
|
||||
## 6) Fuzzing binaries
|
||||
|
||||
The fuzzing process itself is carried out by the afl-fuzz utility. This program
|
||||
requires a read-only directory with initial test cases, a separate place to
|
||||
store its findings, plus a path to the binary to test.
|
||||
|
||||
For target binaries that accept input directly from stdin, the usual syntax is:
|
||||
|
||||
```shell
|
||||
$ ./afl-fuzz -i testcase_dir -o findings_dir /path/to/program [...params...]
|
||||
```
|
||||
|
||||
For programs that take input from a file, use '@@' to mark the location in
|
||||
the target's command line where the input file name should be placed. The
|
||||
fuzzer will substitute this for you:
|
||||
|
||||
```shell
|
||||
$ ./afl-fuzz -i testcase_dir -o findings_dir /path/to/program @@
|
||||
```
|
||||
|
||||
You can also use the -f option to have the mutated data written to a specific
|
||||
file. This is useful if the program expects a particular file extension or so.
|
||||
|
||||
Non-instrumented binaries can be fuzzed in the QEMU mode (add -Q in the command
|
||||
line) or in a traditional, blind-fuzzer mode (specify -n).
|
||||
|
||||
You can use -t and -m to override the default timeout and memory limit for the
|
||||
executed process; rare examples of targets that may need these settings touched
|
||||
include compilers and video decoders.
|
||||
|
||||
Tips for optimizing fuzzing performance are discussed in [perf_tips.txt](docs/perf_tips.txt).
|
||||
|
||||
Note that afl-fuzz starts by performing an array of deterministic fuzzing
|
||||
steps, which can take several days, but tend to produce neat test cases. If you
|
||||
want quick & dirty results right away - akin to zzuf and other traditional
|
||||
fuzzers - add the -d option to the command line.
|
||||
|
||||
## 7) Interpreting output
|
||||
|
||||
See the [status_screen.txt](docs/status_screen.txt) file for information on
|
||||
how to interpret the displayed stats and monitor the health of the process.
|
||||
Be sure to consult this file especially if any UI elements are highlighted in
|
||||
red.
|
||||
|
||||
The fuzzing process will continue until you press Ctrl-C. At minimum, you want
|
||||
to allow the fuzzer to complete one queue cycle, which may take anywhere from a
|
||||
couple of hours to a week or so.
|
||||
|
||||
There are three subdirectories created within the output directory and updated
|
||||
in real time:
|
||||
|
||||
- queue/ - test cases for every distinctive execution path, plus all the
|
||||
starting files given by the user. This is the synthesized corpus
|
||||
mentioned in section 2.
|
||||
Before using this corpus for any other purposes, you can shrink
|
||||
it to a smaller size using the afl-cmin tool. The tool will find
|
||||
a smaller subset of files offering equivalent edge coverage.
|
||||
|
||||
- crashes/ - unique test cases that cause the tested program to receive a
|
||||
fatal signal (e.g., SIGSEGV, SIGILL, SIGABRT). The entries are
|
||||
grouped by the received signal.
|
||||
|
||||
- hangs/ - unique test cases that cause the tested program to time out. The
|
||||
default time limit before something is classified as a hang is
|
||||
the larger of 1 second and the value of the -t parameter.
|
||||
The value can be fine-tuned by setting AFL_HANG_TMOUT, but this
|
||||
is rarely necessary.
|
||||
|
||||
Crashes and hangs are considered "unique" if the associated execution paths
|
||||
involve any state transitions not seen in previously-recorded faults. If a
|
||||
single bug can be reached in multiple ways, there will be some count inflation
|
||||
early in the process, but this should quickly taper off.
|
||||
|
||||
The file names for crashes and hangs are correlated with parent, non-faulting
|
||||
queue entries. This should help with debugging.
|
||||
|
||||
When you can't reproduce a crash found by afl-fuzz, the most likely cause is
|
||||
that you are not setting the same memory limit as used by the tool. Try:
|
||||
|
||||
```shell
|
||||
$ LIMIT_MB=50
|
||||
$ ( ulimit -Sv $[LIMIT_MB << 10]; /path/to/tested_binary ... )
|
||||
```
|
||||
|
||||
Change LIMIT_MB to match the -m parameter passed to afl-fuzz. On OpenBSD,
|
||||
also change -Sv to -Sd.
|
||||
|
||||
Any existing output directory can be also used to resume aborted jobs; try:
|
||||
|
||||
```shell
|
||||
$ ./afl-fuzz -i- -o existing_output_dir [...etc...]
|
||||
```
|
||||
|
||||
If you have gnuplot installed, you can also generate some pretty graphs for any
|
||||
active fuzzing task using afl-plot. For an example of how this looks like,
|
||||
see [http://lcamtuf.coredump.cx/afl/plot/](http://lcamtuf.coredump.cx/afl/plot/).
|
||||
|
||||
## 8) Parallelized fuzzing
|
||||
|
||||
Every instance of afl-fuzz takes up roughly one core. This means that on
|
||||
multi-core systems, parallelization is necessary to fully utilize the hardware.
|
||||
For tips on how to fuzz a common target on multiple cores or multiple networked
|
||||
machines, please refer to [parallel_fuzzing.txt](docs/parallel_fuzzing.txt).
|
||||
|
||||
The parallel fuzzing mode also offers a simple way for interfacing AFL to other
|
||||
fuzzers, to symbolic or concolic execution engines, and so forth; again, see the
|
||||
last section of [parallel_fuzzing.txt](docs/parallel_fuzzing.txt) for tips.
|
||||
|
||||
## 9) Fuzzer dictionaries
|
||||
|
||||
By default, afl-fuzz mutation engine is optimized for compact data formats -
|
||||
say, images, multimedia, compressed data, regular expression syntax, or shell
|
||||
scripts. It is somewhat less suited for languages with particularly verbose and
|
||||
redundant verbiage - notably including HTML, SQL, or JavaScript.
|
||||
|
||||
To avoid the hassle of building syntax-aware tools, afl-fuzz provides a way to
|
||||
seed the fuzzing process with an optional dictionary of language keywords,
|
||||
magic headers, or other special tokens associated with the targeted data type
|
||||
-- and use that to reconstruct the underlying grammar on the go:
|
||||
|
||||
[http://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html](http://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html)
|
||||
|
||||
To use this feature, you first need to create a dictionary in one of the two
|
||||
formats discussed in dictionaries/README.dictionaries; and then point the fuzzer
|
||||
to it via the -x option in the command line.
|
||||
|
||||
(Several common dictionaries are already provided in that subdirectory, too.)
|
||||
|
||||
There is no way to provide more structured descriptions of the underlying
|
||||
syntax, but the fuzzer will likely figure out some of this based on the
|
||||
instrumentation feedback alone. This actually works in practice, say:
|
||||
|
||||
[http://lcamtuf.blogspot.com/2015/04/finding-bugs-in-sqlite-easy-way.html](http://lcamtuf.blogspot.com/2015/04/finding-bugs-in-sqlite-easy-way.html)
|
||||
|
||||
PS. Even when no explicit dictionary is given, afl-fuzz will try to extract
|
||||
existing syntax tokens in the input corpus by watching the instrumentation
|
||||
very closely during deterministic byte flips. This works for some types of
|
||||
parsers and grammars, but isn't nearly as good as the -x mode.
|
||||
|
||||
If a dictionary is really hard to come by, another option is to let AFL run
|
||||
for a while, and then use the token capture library that comes as a companion
|
||||
utility with AFL. For that, see libtokencap/README.tokencap.
|
||||
|
||||
## 10) Crash triage
|
||||
|
||||
The coverage-based grouping of crashes usually produces a small data set that
|
||||
can be quickly triaged manually or with a very simple GDB or Valgrind script.
|
||||
Every crash is also traceable to its parent non-crashing test case in the
|
||||
queue, making it easier to diagnose faults.
|
||||
|
||||
Having said that, it's important to acknowledge that some fuzzing crashes can be
|
||||
difficult to quickly evaluate for exploitability without a lot of debugging and
|
||||
code analysis work. To assist with this task, afl-fuzz supports a very unique
|
||||
"crash exploration" mode enabled with the -C flag.
|
||||
|
||||
In this mode, the fuzzer takes one or more crashing test cases as the input,
|
||||
and uses its feedback-driven fuzzing strategies to very quickly enumerate all
|
||||
code paths that can be reached in the program while keeping it in the
|
||||
crashing state.
|
||||
|
||||
Mutations that do not result in a crash are rejected; so are any changes that
|
||||
do not affect the execution path.
|
||||
|
||||
The output is a small corpus of files that can be very rapidly examined to see
|
||||
what degree of control the attacker has over the faulting address, or whether
|
||||
it is possible to get past an initial out-of-bounds read - and see what lies
|
||||
beneath.
|
||||
|
||||
Oh, one more thing: for test case minimization, give afl-tmin a try. The tool
|
||||
can be operated in a very simple way:
|
||||
|
||||
```shell
|
||||
$ ./afl-tmin -i test_case -o minimized_result -- /path/to/program [...]
|
||||
```
|
||||
|
||||
The tool works with crashing and non-crashing test cases alike. In the crash
|
||||
mode, it will happily accept instrumented and non-instrumented binaries. In the
|
||||
non-crashing mode, the minimizer relies on standard AFL instrumentation to make
|
||||
the file simpler without altering the execution path.
|
||||
|
||||
The minimizer accepts the -m, -t, -f and @@ syntax in a manner compatible with
|
||||
afl-fuzz.
|
||||
|
||||
Another recent addition to AFL is the afl-analyze tool. It takes an input
|
||||
file, attempts to sequentially flip bytes, and observes the behavior of the
|
||||
tested program. It then color-codes the input based on which sections appear to
|
||||
be critical, and which are not; while not bulletproof, it can often offer quick
|
||||
insights into complex file formats. More info about its operation can be found
|
||||
near the end of [technical_details.txt](docs/technical_details.txt).
|
||||
|
||||
## 11) Going beyond crashes
|
||||
|
||||
Fuzzing is a wonderful and underutilized technique for discovering non-crashing
|
||||
design and implementation errors, too. Quite a few interesting bugs have been
|
||||
found by modifying the target programs to call abort() when, say:
|
||||
|
||||
- Two bignum libraries produce different outputs when given the same
|
||||
fuzzer-generated input,
|
||||
|
||||
- An image library produces different outputs when asked to decode the same
|
||||
input image several times in a row,
|
||||
|
||||
- A serialization / deserialization library fails to produce stable outputs
|
||||
when iteratively serializing and deserializing fuzzer-supplied data,
|
||||
|
||||
- A compression library produces an output inconsistent with the input file
|
||||
when asked to compress and then decompress a particular blob.
|
||||
|
||||
Implementing these or similar sanity checks usually takes very little time;
|
||||
if you are the maintainer of a particular package, you can make this code
|
||||
conditional with `#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION` (a flag also
|
||||
shared with libfuzzer) or `#ifdef __AFL_COMPILER` (this one is just for AFL).
|
||||
|
||||
## 12) Common-sense risks
|
||||
|
||||
Please keep in mind that, similarly to many other computationally-intensive
|
||||
tasks, fuzzing may put strain on your hardware and on the OS. In particular:
|
||||
|
||||
- Your CPU will run hot and will need adequate cooling. In most cases, if
|
||||
cooling is insufficient or stops working properly, CPU speeds will be
|
||||
automatically throttled. That said, especially when fuzzing on less
|
||||
suitable hardware (laptops, smartphones, etc), it's not entirely impossible
|
||||
for something to blow up.
|
||||
|
||||
- Targeted programs may end up erratically grabbing gigabytes of memory or
|
||||
filling up disk space with junk files. AFL tries to enforce basic memory
|
||||
limits, but can't prevent each and every possible mishap. The bottom line
|
||||
is that you shouldn't be fuzzing on systems where the prospect of data loss
|
||||
is not an acceptable risk.
|
||||
|
||||
- Fuzzing involves billions of reads and writes to the filesystem. On modern
|
||||
systems, this will be usually heavily cached, resulting in fairly modest
|
||||
"physical" I/O - but there are many factors that may alter this equation.
|
||||
It is your responsibility to monitor for potential trouble; with very heavy
|
||||
I/O, the lifespan of many HDDs and SSDs may be reduced.
|
||||
|
||||
A good way to monitor disk I/O on Linux is the 'iostat' command:
|
||||
|
||||
```shell
|
||||
$ iostat -d 3 -x -k [...optional disk ID...]
|
||||
```
|
||||
|
||||
## 13) Known limitations & areas for improvement
|
||||
|
||||
Here are some of the most important caveats for AFL:
|
||||
|
||||
- AFL detects faults by checking for the first spawned process dying due to
|
||||
a signal (SIGSEGV, SIGABRT, etc). Programs that install custom handlers for
|
||||
these signals may need to have the relevant code commented out. In the same
|
||||
vein, faults in child processed spawned by the fuzzed target may evade
|
||||
detection unless you manually add some code to catch that.
|
||||
|
||||
- As with any other brute-force tool, the fuzzer offers limited coverage if
|
||||
encryption, checksums, cryptographic signatures, or compression are used to
|
||||
wholly wrap the actual data format to be tested.
|
||||
|
||||
To work around this, you can comment out the relevant checks (see
|
||||
experimental/libpng_no_checksum/ for inspiration); if this is not possible,
|
||||
you can also write a postprocessor, as explained in
|
||||
experimental/post_library/.
|
||||
|
||||
- There are some unfortunate trade-offs with ASAN and 64-bit binaries. This
|
||||
isn't due to any specific fault of afl-fuzz; see [notes_for_asan.txt](docs/notes_for_asan.txt)
|
||||
for tips.
|
||||
|
||||
- There is no direct support for fuzzing network services, background
|
||||
daemons, or interactive apps that require UI interaction to work. You may
|
||||
need to make simple code changes to make them behave in a more traditional
|
||||
way. Preeny may offer a relatively simple option, too - see:
|
||||
https://github.com/zardus/preeny
|
||||
|
||||
Some useful tips for modifying network-based services can be also found at:
|
||||
https://www.fastly.com/blog/how-to-fuzz-server-american-fuzzy-lop
|
||||
|
||||
- AFL doesn't output human-readable coverage data. If you want to monitor
|
||||
coverage, use afl-cov from Michael Rash: https://github.com/mrash/afl-cov
|
||||
|
||||
- Occasionally, sentient machines rise against their creators. If this
|
||||
happens to you, please consult http://lcamtuf.coredump.cx/prep/.
|
||||
|
||||
Beyond this, see INSTALL for platform-specific tips.
|
||||
|
||||
## 14) Special thanks
|
||||
|
||||
Many of the improvements to afl-fuzz wouldn't be possible without feedback,
|
||||
bug reports, or patches from:
|
||||
|
||||
```
|
||||
Jann Horn Hanno Boeck
|
||||
Felix Groebert Jakub Wilk
|
||||
Richard W. M. Jones Alexander Cherepanov
|
||||
Tom Ritter Hovik Manucharyan
|
||||
Sebastian Roschke Eberhard Mattes
|
||||
Padraig Brady Ben Laurie
|
||||
@dronesec Luca Barbato
|
||||
Tobias Ospelt Thomas Jarosch
|
||||
Martin Carpenter Mudge Zatko
|
||||
Joe Zbiciak Ryan Govostes
|
||||
Michael Rash William Robinet
|
||||
Jonathan Gray Filipe Cabecinhas
|
||||
Nico Weber Jodie Cunningham
|
||||
Andrew Griffiths Parker Thompson
|
||||
Jonathan Neuschfer Tyler Nighswander
|
||||
Ben Nagy Samir Aguiar
|
||||
Aidan Thornton Aleksandar Nikolich
|
||||
Sam Hakim Laszlo Szekeres
|
||||
David A. Wheeler Turo Lamminen
|
||||
Andreas Stieger Richard Godbee
|
||||
Louis Dassy teor2345
|
||||
Alex Moneger Dmitry Vyukov
|
||||
Keegan McAllister Kostya Serebryany
|
||||
Richo Healey Martijn Bogaard
|
||||
rc0r Jonathan Foote
|
||||
Christian Holler Dominique Pelle
|
||||
Jacek Wielemborek Leo Barnes
|
||||
Jeremy Barnes Jeff Trull
|
||||
Guillaume Endignoux ilovezfs
|
||||
Daniel Godas-Lopez Franjo Ivancic
|
||||
Austin Seipp Daniel Komaromy
|
||||
Daniel Binderman Jonathan Metzman
|
||||
Vegard Nossum Jan Kneschke
|
||||
Kurt Roeckx Marcel Bohme
|
||||
Van-Thuan Pham Abhik Roychoudhury
|
||||
Joshua J. Drake Toby Hutton
|
||||
Rene Freingruber Sergey Davidoff
|
||||
Sami Liedes Craig Young
|
||||
Andrzej Jackowski Daniel Hodson
|
||||
```
|
||||
|
||||
Thank you!
|
||||
|
||||
## 15) Contact
|
||||
|
||||
Questions? Concerns? Bug reports? Please use GitHub.
|
||||
|
||||
There is also a mailing list for the project; to join, send a mail to
|
||||
<afl-users+subscribe@googlegroups.com>. Or, if you prefer to browse
|
||||
archives first, try: [https://groups.google.com/group/afl-users](https://groups.google.com/group/afl-users).
|
Loading…
Reference in new issue