You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

266 lines
8.0 KiB

/*
* Copyright 2002-2019 Intel Corporation.
*
* This software is provided to you as Sample Source Code as defined in the accompanying
* End User License Agreement for the Intel(R) Software Development Products ("Agreement")
* section 1.L.
*
* This software and the related documents are provided as is, with no express or implied
* warranties, other than those that are expressly stated in the License.
*/
/*
*
* A memory trace (Ip of memory accessing instruction and address of memory access - see
* struct MEMREF) is collected by inserting Pin buffering API code into the application code,
* via calls to INS_InsertFillBuffer. This analysis code writes a MEMREF into the
* buffer being filled, and calls the registered BufferFull function (see call to
* PIN_DefineTraceBuffer which defines the buffer and registers the BufferFull function)
* when the buffer becomes full.
* The BufferFull function processes the buffer and returns it to Pin to be filled again.
*
* Each application thread has it's own buffer - so multiple application threads do NOT
* block each other on buffer accesses
*
* This tool is similar to memtrace_simple, but uses the Pin Buffering API
*
*/
#include <cstdio>
#include <cstdlib>
#include <cstddef>
#include "pin.H"
/*
* Knobs for tool
*/
KNOB<BOOL> KnobProcessBuffer(KNOB_MODE_WRITEONCE, "pintool", "process_buffs", "1", "process the filled buffers");
// 256*4096=1048576 - same size buffer in memtrace_simple, membuffer_simple, membuffer_multi
KNOB<UINT32> KnobNumPagesInBuffer(KNOB_MODE_WRITEONCE, "pintool", "num_pages_in_buffer", "256", "number of pages in buffer");
/* Struct of memory reference written to the buffer
*/
struct MEMREF
{
ADDRINT pc;
ADDRINT ea;
};
// The buffer ID returned by the one call to PIN_DefineTraceBuffer
BUFFER_ID bufId;
// the Pin TLS slot that an application-thread will use to hold the APP_THREAD_REPRESENTITVE
// object that it owns
TLS_KEY appThreadRepresentitiveKey;
UINT32 totalBuffersFilled = 0;
UINT64 totalElementsProcessed = 0;
/*
*
* APP_THREAD_REPRESENTITVE
*
* Each application thread, creates an object of this class and saves it in it's Pin TLS
* slot (appThreadRepresentitiveKey).
*/
class APP_THREAD_REPRESENTITVE
{
public:
APP_THREAD_REPRESENTITVE(THREADID tid);
~APP_THREAD_REPRESENTITVE();
VOID ProcessBuffer(VOID *buf, UINT64 numElements);
UINT32 NumBuffersFilled() {return _numBuffersFilled;}
UINT32 NumElementsProcessed() {return _numElementsProcessed;}
private:
UINT32 _numBuffersFilled;
UINT32 _numElementsProcessed;
};
APP_THREAD_REPRESENTITVE::APP_THREAD_REPRESENTITVE(THREADID tid)
{
_numBuffersFilled = 0;
_numElementsProcessed = 0;
}
APP_THREAD_REPRESENTITVE::~APP_THREAD_REPRESENTITVE()
{
}
VOID APP_THREAD_REPRESENTITVE::ProcessBuffer(VOID *buf, UINT64 numElements)
{
_numBuffersFilled++;
//printf ("numElements %d\n", (UINT32)numElements);
if (!KnobProcessBuffer )
{
return;
}
struct MEMREF * memref=(struct MEMREF*)buf;
struct MEMREF * firstMemref = memref;
UINT64 until = numElements;
for(UINT64 i=0; i<until; i++, memref++)
{
firstMemref->pc += memref->pc + memref->ea;
}
_numElementsProcessed += (UINT32)until;
//printf ("numElements processed %d\n", (UINT32)numElements);
}
/*
* Insert code to write data to a thread-specific buffer for instructions
* that access memory.
*/
VOID Trace(TRACE trace, VOID *v)
{
// Insert a call to record the effective address.
for(BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl=BBL_Next(bbl))
{
for(INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins=INS_Next(ins))
{
UINT32 memOperands = INS_MemoryOperandCount(ins);
// Iterate over each memory operand of the instruction.
for (UINT32 memOp = 0; memOp < memOperands; memOp++)
{
INS_InsertFillBuffer(ins, IPOINT_BEFORE, bufId,
IARG_INST_PTR, offsetof(struct MEMREF, pc),
IARG_MEMORYOP_EA, memOp,
offsetof(struct MEMREF, ea),
IARG_END);
}
}
}
}
/**************************************************************************
*
* Callback Routines
*
**************************************************************************/
/*!
* Called when a buffer fills up, or the thread exits, so we can process it or pass it off
* as we see fit.
* @param[in] id buffer handle
* @param[in] tid id of owning thread
* @param[in] ctxt application context
* @param[in] buf actual pointer to buffer
* @param[in] numElements number of records
* @param[in] v callback value
* @return A pointer to the buffer to resume filling.
*/
VOID * BufferFull(BUFFER_ID id, THREADID tid, const CONTEXT *ctxt, VOID *buf,
UINT64 numElements, VOID *v)
{
APP_THREAD_REPRESENTITVE * appThreadRepresentitive = static_cast<APP_THREAD_REPRESENTITVE*>( PIN_GetThreadData( appThreadRepresentitiveKey, tid ) );
appThreadRepresentitive->ProcessBuffer(buf, numElements);
return buf;
}
VOID ThreadStart(THREADID tid, CONTEXT *ctxt, INT32 flags, VOID *v)
{
// There is a new APP_THREAD_REPRESENTITVE for every thread.
APP_THREAD_REPRESENTITVE * appThreadRepresentitive = new APP_THREAD_REPRESENTITVE(tid);
// A thread will need to look up its APP_THREAD_REPRESENTITVE, so save pointer in TLS
PIN_SetThreadData(appThreadRepresentitiveKey, appThreadRepresentitive, tid);
}
VOID ThreadFini(THREADID tid, const CONTEXT *ctxt, INT32 code, VOID *v)
{
APP_THREAD_REPRESENTITVE * appThreadRepresentitive = static_cast<APP_THREAD_REPRESENTITVE*>(PIN_GetThreadData(appThreadRepresentitiveKey, tid));
totalBuffersFilled += appThreadRepresentitive->NumBuffersFilled();
totalElementsProcessed += appThreadRepresentitive->NumElementsProcessed();
delete appThreadRepresentitive;
PIN_SetThreadData(appThreadRepresentitiveKey, 0, tid);
}
VOID Fini(INT32 code, VOID *v)
{
return;
printf ("totalBuffersFilled %u totalElementsProcessed %14.0f\n", (totalBuffersFilled),
static_cast<double>(totalElementsProcessed));
}
INT32 Usage()
{
printf( "This tool demonstrates simple pin-tool buffer managing\n");
printf ("The following command line options are available:\n");
printf ("-num_pages_in_buffer <num> :number of (4096byte) pages allocated in each buffer, default 256\n");
printf ("-process_buffs <0 or 1> :specify 0 to disable processing of the buffers, default 1\n");
return -1;
}
/*!
* The main procedure of the tool.
* This function is called when the application image is loaded but not yet started.
* @param[in] argc total number of elements in the argv array
* @param[in] argv array of command line arguments,
* including pin -t <toolname> -- ...
*/
int main(int argc, char *argv[])
{
// Initialize PIN library. Print help message if -h(elp) is specified
// in the command line or the command line is invalid
if( PIN_Init(argc,argv) )
{
return Usage();
}
// Initialize the memory reference buffer
//printf ("buffer size in bytes 0x%x\n", KnobNumPagesInBuffer.Value()*4096);
// fflush (stdout);
bufId = PIN_DefineTraceBuffer(sizeof(struct MEMREF), KnobNumPagesInBuffer,
BufferFull, 0);
if(bufId == BUFFER_ID_INVALID)
{
printf ("Error: could not allocate initial buffer\n");
return 1;
}
// Initialize thread-specific data not handled by buffering api.
appThreadRepresentitiveKey = PIN_CreateThreadDataKey(0);
// add an instrumentation function
TRACE_AddInstrumentFunction(Trace, 0);
// add callbacks
PIN_AddThreadStartFunction(ThreadStart, 0);
PIN_AddThreadFiniFunction(ThreadFini, 0);
PIN_AddFiniFunction(Fini, 0);
// Start the program, never returns
PIN_StartProgram();
return 0;
}