You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pgi29wjsp/_book/pingpong/what is reinforce learning....

610 lines
22 KiB

5 years ago
<!DOCTYPE HTML>
<html lang="" >
<head>
<meta charset="UTF-8">
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<title>什么是强化学习 · GitBook</title>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="description" content="">
<meta name="generator" content="GitBook 3.2.3">
<link rel="stylesheet" href="../gitbook/style.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-katex/katex.min.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-highlight/website.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-search/search.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-fontsettings/website.css">
<meta name="HandheldFriendly" content="true"/>
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="../gitbook/images/apple-touch-icon-precomposed-152.png">
<link rel="shortcut icon" href="../gitbook/images/favicon.ico" type="image/x-icon">
<link rel="next" href="Policy Gradient.html" />
</head>
<body>
<div class="book">
<div class="book-summary">
<div id="book-search-input" role="search">
<input type="text" placeholder="Type to search" />
</div>
<nav role="navigation">
<ul class="summary">
<li class="chapter " data-level="1.1" data-path="../">
<a href="../">
简介
</a>
</li>
5 years ago
<li class="chapter " data-level="1.2" data-path="../machine_learning.html">
<a href="../machine_learning.html">
机器学习概述
</a>
</li>
<li class="chapter " data-level="1.3" data-path="../algorithm.html">
<a href="../algorithm.html">
常见机器学习算法
</a>
<ul class="articles">
<li class="chapter " data-level="1.3.1" data-path="../kNN.html">
<a href="../kNN.html">
近朱者赤近墨者黑-kNN
</a>
</li>
<li class="chapter " data-level="1.3.2" data-path="../linear_regression.html">
<a href="../linear_regression.html">
最简单的回归算法-线性回归
</a>
</li>
<li class="chapter " data-level="1.3.3" data-path="../logistic_regression.html">
<a href="../logistic_regression.html">
使用回归的思想进行分类-逻辑回归
</a>
</li>
<li class="chapter " data-level="1.3.4" data-path="../decision_tree.html">
<a href="../decision_tree.html">
最接近人类思维的算法-决策树
</a>
</li>
<li class="chapter " data-level="1.3.5" data-path="../random_forest.html">
<a href="../random_forest.html">
群众的力量是伟大的-随机森林
</a>
</li>
<li class="chapter " data-level="1.3.6" data-path="../kMeans.html">
<a href="../kMeans.html">
物以类聚人以群分-kMeans
</a>
</li>
<li class="chapter " data-level="1.3.7" data-path="../AGNES.html">
<a href="../AGNES.html">
以距离为尺-AGNES
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.4" data-path="../metrics.html">
<a href="../metrics.html">
模型评估指标
</a>
<ul class="articles">
<li class="chapter " data-level="1.4.1" data-path="../classification_metrics.html">
<a href="../classification_metrics.html">
分类性能评估指标
</a>
</li>
<li class="chapter " data-level="1.4.2" data-path="../regression_metrics.html">
<a href="../regression_metrics.html">
回归性能评估指标
</a>
</li>
<li class="chapter " data-level="1.4.3" data-path="../cluster_metrics.html">
<a href="../cluster_metrics.html">
聚类性能评估指标
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.5" data-path="../sklearn.html">
<a href="../sklearn.html">
使用sklearn进行机器学习
</a>
</li>
<li class="chapter " data-level="1.6" >
<span>
综合实战案例
</span>
<ul class="articles">
<li class="chapter " data-level="1.6.1" >
5 years ago
<span>
泰坦尼克生还预测
</span>
<ul class="articles">
5 years ago
<li class="chapter " data-level="1.6.1.1" data-path="../titanic/introduction.html">
5 years ago
<a href="../titanic/introduction.html">
简介
</a>
</li>
5 years ago
<li class="chapter " data-level="1.6.1.2" data-path="../titanic/EDA.html">
5 years ago
<a href="../titanic/EDA.html">
探索性数据分析(EDA)
</a>
</li>
5 years ago
<li class="chapter " data-level="1.6.1.3" data-path="../titanic/feature engerning.html">
5 years ago
<a href="../titanic/feature engerning.html">
特征工程
</a>
</li>
5 years ago
<li class="chapter " data-level="1.6.1.4" data-path="../titanic/fit and predict.html">
5 years ago
<a href="../titanic/fit and predict.html">
构建模型进行预测
</a>
</li>
5 years ago
<li class="chapter " data-level="1.6.1.5" data-path="../titanic/tuning.html">
5 years ago
<a href="../titanic/tuning.html">
调参
</a>
</li>
</ul>
</li>
5 years ago
<li class="chapter " data-level="1.6.2" >
5 years ago
<span>
使用强化学习玩乒乓球游戏
</span>
<ul class="articles">
5 years ago
<li class="chapter active" data-level="1.6.2.1" data-path="what is reinforce learning.html">
5 years ago
<a href="what is reinforce learning.html">
什么是强化学习
</a>
</li>
5 years ago
<li class="chapter " data-level="1.6.2.2" data-path="Policy Gradient.html">
5 years ago
<a href="Policy Gradient.html">
Policy Gradient原理
</a>
</li>
5 years ago
<li class="chapter " data-level="1.6.2.3" data-path="coding.html">
5 years ago
<a href="coding.html">
使用Policy Gradient玩乒乓球游戏
</a>
</li>
</ul>
</li>
5 years ago
</ul>
</li>
<li class="chapter " data-level="1.7" data-path="../recommand.html">
<a href="../recommand.html">
实训推荐
</a>
</li>
5 years ago
<li class="divider"></li>
<li>
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
Published with GitBook
</a>
</li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<!-- Title -->
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i>
<a href=".." >什么是强化学习</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<div id="book-search-results">
<div class="search-noresults">
<section class="normal markdown-section">
<h1 id="&#x4EC0;&#x4E48;&#x662F;&#x5F3A;&#x5316;&#x5B66;&#x4E60;">&#x4EC0;&#x4E48;&#x662F;&#x5F3A;&#x5316;&#x5B66;&#x4E60;</h1>
<p>&#x5F3A;&#x5316;&#x5B66;&#x4E60;&#x662F;&#x4E00;&#x7C7B;&#x7B97;&#x6CD5;&#xFF0C;&#x662F;&#x8BA9;&#x8BA1;&#x7B97;&#x673A;&#x5B9E;&#x73B0;&#x4ECE;&#x4E00;&#x5F00;&#x59CB;&#x5B8C;&#x5168;&#x968F;&#x673A;&#x7684;&#x8FDB;&#x884C;&#x64CD;&#x4F5C;&#xFF0C;&#x901A;&#x8FC7;&#x4E0D;&#x65AD;&#x5730;&#x5C1D;&#x8BD5;&#xFF0C;&#x4ECE;&#x9519;&#x8BEF;&#x4E2D;&#x5B66;&#x4E60;&#xFF0C;&#x6700;&#x540E;&#x627E;&#x5230;&#x89C4;&#x5F8B;&#xFF0C;&#x5B66;&#x4F1A;&#x4E86;&#x8FBE;&#x5230;&#x76EE;&#x7684;&#x7684;&#x65B9;&#x6CD5;&#x3002;&#x8FD9;&#x5C31;&#x662F;&#x4E00;&#x4E2A;&#x5B8C;&#x6574;&#x7684;&#x5F3A;&#x5316;&#x5B66;&#x4E60;&#x8FC7;&#x7A0B;&#x3002;&#x8BA9;&#x8BA1;&#x7B97;&#x673A;&#x5728;&#x4E0D;&#x65AD;&#x7684;&#x5C1D;&#x8BD5;&#x4E2D;&#x66F4;&#x65B0;&#x81EA;&#x5DF1;&#x7684;&#x884C;&#x4E3A;&#xFF0C;&#x4ECE;&#x800C;&#x4E00;&#x6B65;&#x6B65;&#x5B66;&#x4E60;&#x5982;&#x4F55;&#x64CD;&#x81EA;&#x5DF1;&#x7684;&#x884C;&#x4E3A;&#x5F97;&#x5230;&#x9AD8;&#x5206;&#x3002;</p>
<p>&#x5B83;&#x4E3B;&#x8981;&#x5305;&#x542B;&#x56DB;&#x4E2A;&#x5143;&#x7D20;&#xFF0C;Agent&#x3001;&#x73AF;&#x5883;&#x72B6;&#x6001;&#x3001;&#x884C;&#x52A8;&#x3001;&#x5956;&#x52B1;&#xFF0C;&#x5F3A;&#x5316;&#x5B66;&#x4E60;&#x7684;&#x76EE;&#x6807;&#x5C31;&#x662F;&#x83B7;&#x5F97;&#x6700;&#x591A;&#x7684;&#x7D2F;&#x8BA1;&#x5956;&#x52B1;&#x3002;</p>
<p>&#x8BA9;&#x6211;&#x4EEC;&#x60F3;&#x8C61;&#x4E00;&#x4E0B;&#x6BD4;&#x8D5B;&#x73B0;&#x573A;&#xFF1A;</p>
<p>&#x8BA1;&#x7B97;&#x673A;&#x6709;&#x4E00;&#x4F4D;&#x865A;&#x62DF;&#x7684;&#x88C1;&#x5224;&#xFF0C;&#x8FD9;&#x4E2A;&#x88C1;&#x5224;&#x4ED6;&#x4E0D;&#x4F1A;&#x544A;&#x8BC9;&#x4F60;&#x5982;&#x4F55;&#x884C;&#x52A8;&#xFF0C;&#x5982;&#x4F55;&#x505A;&#x51B3;&#x5B9A;&#xFF0C;&#x4ED6;&#x4E3A;&#x4F60;&#x505A;&#x7684;&#x4E8B;&#x53EA;&#x6709;&#x7ED9;&#x4F60;&#x7684;&#x884C;&#x4E3A;&#x6253;&#x5206;&#xFF0C;&#x6700;&#x5F00;&#x59CB;&#xFF0C;&#x8BA1;&#x7B97;&#x673A;&#x5B8C;&#x5168;&#x4E0D;&#x77E5;&#x9053;&#x8BE5;&#x600E;&#x4E48;&#x505A;&#xFF0C;&#x884C;&#x4E3A;&#x5B8C;&#x5168;&#x662F;&#x968F;&#x673A;&#x7684;&#xFF0C;&#x90A3;&#x8BA1;&#x7B97;&#x673A;&#x5E94;&#x8BE5;&#x4EE5;&#x4EC0;&#x4E48;&#x5F62;&#x5F0F;&#x5B66;&#x4E60;&#x8FD9;&#x4E9B;&#x73B0;&#x6709;&#x7684;&#x8D44;&#x6E90;&#xFF0C;&#x6216;&#x8005;&#x8BF4;&#x600E;&#x4E48;&#x6837;&#x53EA;&#x4ECE;&#x5206;&#x6570;&#x4E2D;&#x5B66;&#x4E60;&#x5230;&#x6211;&#x5E94;&#x8BE5;&#x600E;&#x6837;&#x505A;&#x51B3;&#x5B9A;&#x5462;&#xFF1F;&#x5F88;&#x7B80;&#x5355;&#xFF0C;&#x53EA;&#x9700;&#x8981;&#x8BB0;&#x4F4F;&#x90A3;&#x4E9B;&#x9AD8;&#x5206;&#xFF0C;&#x4F4E;&#x5206;&#x5BF9;&#x5E94;&#x7684;&#x884C;&#x4E3A;&#xFF0C;&#x4E0B;&#x6B21;&#x7528;&#x540C;&#x6837;&#x7684;&#x884C;&#x4E3A;&#x62FF;&#x9AD8;&#x5206;, &#x5E76;&#x907F;&#x514D;&#x4F4E;&#x5206;&#x7684;&#x884C;&#x4E3A;&#x3002;</p>
<p>&#x8BA1;&#x7B97;&#x673A;&#x5C31;&#x662F; Agent&#xFF0C;&#x4ED6;&#x8BD5;&#x56FE;&#x901A;&#x8FC7;&#x91C7;&#x53D6;&#x884C;&#x52A8;&#x6765;&#x64CD;&#x7EB5;&#x73AF;&#x5883;&#xFF0C;&#x5E76;&#x4E14;&#x4ECE;&#x4E00;&#x4E2A;&#x72B6;&#x6001;&#x8F6C;&#x53D8;&#x5230;&#x53E6;&#x4E00;&#x4E2A;&#x72B6;&#x6001;&#xFF0C;&#x5F53;&#x4ED6;&#x5B8C;&#x6210;&#x4EFB;&#x52A1;&#x65F6;&#x7ED9;&#x9AD8;&#x5206;(&#x5956;&#x52B1;)&#xFF0C;&#x4F46;&#x662F;&#x5F53;&#x4ED6;&#x6CA1;&#x5B8C;&#x6210;&#x4EFB;&#x52A1;&#x65F6;&#xFF0C;&#x7ED9;&#x4F4E;&#x5206;(&#x65E0;&#x5956;&#x52B1;)&#x3002;&#x8FD9;&#x4E5F;&#x662F;&#x5F3A;&#x5316;&#x5B66;&#x4E60;&#x7684;&#x6838;&#x5FC3;&#x601D;&#x60F3;&#x3002;</p>
<p><img src="../img/1.jpg" alt=""></p>
<p>&#x5728;&#x5F3A;&#x5316;&#x5B66;&#x4E60;&#x4E2D;&#x6709;&#x5F88;&#x591A;&#x7B97;&#x6CD5;&#xFF0C;&#x5982;&#x679C;&#x6309;&#x7C7B;&#x522B;&#x5212;&#x5206;&#x53EF;&#x4EE5;&#x5212;&#x5206;&#x6210; model-based (&#x57FA;&#x4E8E;&#x6A21;&#x578B;)&#x548C; model-free (&#x4E0D;&#x57FA;&#x4E8E;&#x6A21;&#x578B;)&#x4E24;&#x5927;&#x7C7B;&#x3002;</p>
<p>&#x5982;&#x679C;&#x6211;&#x4EEC;&#x7684; Agent &#x4E0D;&#x7406;&#x89E3;&#x73AF;&#x5883;&#xFF0C;&#x73AF;&#x5883;&#x7ED9;&#x4E86;&#x4EC0;&#x4E48;&#x5C31;&#x662F;&#x4EC0;&#x4E48;&#xFF0C;&#x6211;&#x4EEC;&#x5C31;&#x628A;&#x8FD9;&#x79CD;&#x65B9;&#x6CD5;&#x53EB;&#x505A; model-free&#xFF0C;&#x8FD9;&#x91CC;&#x7684; model &#x5C31;&#x662F;&#x7528;&#x6A21;&#x578B;&#x6765;&#x8868;&#x793A;&#x73AF;&#x5883;&#xFF0C;&#x7406;&#x89E3;&#x73AF;&#x5883;&#x5C31;&#x662F;&#x5B66;&#x4F1A;&#x4E86;&#x7528;&#x4E00;&#x4E2A;&#x6A21;&#x578B;&#x6765;&#x4EE3;&#x8868;&#x73AF;&#x5883;&#xFF0C;&#x6240;&#x4EE5;&#x8FD9;&#x79CD;&#x5C31;&#x662F; model-based &#x65B9;&#x6CD5;&#x3002;</p>
<p>Model-free &#x7684;&#x65B9;&#x6CD5;&#x6709;&#x5F88;&#x591A;, &#x50CF; Q learning&#x3001;Sarsa&#x3001;Policy Gradients &#x90FD;&#x662F;&#x4ECE;&#x73AF;&#x5883;&#x4E2D;&#x5F97;&#x5230;&#x53CD;&#x9988;&#x7136;&#x540E;&#x4ECE;&#x4E2D;&#x5B66;&#x4E60;&#x3002;&#x800C; model-based &#x53EA;&#x662F;&#x591A;&#x4E86;&#x4E00;&#x9053;&#x7A0B;&#x5E8F;&#xFF0C;&#x4E3A;&#x771F;&#x5B9E;&#x4E16;&#x754C;&#x5EFA;&#x6A21;&#xFF0C;&#x4E5F;&#x53EF;&#x4EE5;&#x8BF4;&#x4ED6;&#x4EEC;&#x90FD;&#x662F; model-free &#x7684;&#x5F3A;&#x5316;&#x5B66;&#x4E60;, &#x53EA;&#x662F; Model-based &#x591A;&#x51FA;&#x4E86;&#x4E00;&#x4E2A;&#x865A;&#x62DF;&#x73AF;&#x5883;&#xFF0C;&#x6211;&#x4EEC;&#x53EF;&#x4EE5;&#x5148;&#x5728;&#x865A;&#x62DF;&#x73AF;&#x5883;&#x4E2D;&#x5C1D;&#x8BD5;&#xFF0C;&#x5982;&#x679C;&#x6CA1;&#x95EE;&#x9898;&#xFF0C;&#x518D;&#x62FF;&#x5230;&#x73B0;&#x5B9E;&#x73AF;&#x5883;&#x4E2D;&#x6765;&#x3002;</p>
<p>model-free &#x4E2D;, Agent &#x53EA;&#x80FD;&#x6309;&#x90E8;&#x5C31;&#x73ED;&#xFF0C;&#x4E00;&#x6B65;&#x4E00;&#x6B65;&#x7B49;&#x5F85;&#x771F;&#x5B9E;&#x4E16;&#x754C;&#x7684;&#x53CD;&#x9988;&#xFF0C;&#x518D;&#x6839;&#x636E;&#x53CD;&#x9988;&#x91C7;&#x53D6;&#x4E0B;&#x4E00;&#x6B65;&#x884C;&#x52A8;&#x3002;&#x800C; model-based&#xFF0C;&#x80FD;&#x901A;&#x8FC7;&#x60F3;&#x8C61;&#x6765;&#x9884;&#x5224;&#x65AD;&#x63A5;&#x4E0B;&#x6765;&#x5C06;&#x8981;&#x53D1;&#x751F;&#x7684;&#x6240;&#x6709;&#x60C5;&#x51B5;&#xFF0C;&#x7136;&#x540E;&#x9009;&#x62E9;&#x8FD9;&#x4E9B;&#x60F3;&#x8C61;&#x60C5;&#x51B5;&#x4E2D;&#x6700;&#x597D;&#x7684;&#x90A3;&#x79CD;&#xFF0C;&#x5E76;&#x4F9D;&#x636E;&#x8FD9;&#x79CD;&#x60C5;&#x51B5;&#x6765;&#x91C7;&#x53D6;&#x4E0B;&#x4E00;&#x6B65;&#x7684;&#x7B56;&#x7565;&#xFF0C;&#x8FD9;&#x4E5F;&#x5C31;&#x662F;&#x56F4;&#x68CB;&#x573A;&#x4E0A; AlphaGo &#x80FD;&#x591F;&#x8D85;&#x8D8A;&#x4EBA;&#x7C7B;&#x7684;&#x539F;&#x56E0;&#x3002;</p>
<p><img src="../img/2.jpg" alt=""></p>
<p>&#x5728;&#x8FD9;&#x91CC;&#x4E3B;&#x8981;&#x4ECB;&#x7ECD;&#x4E00;&#x4E0B; model-free &#x4E2D;&#x57FA;&#x4E8E;&#x7B56;&#x7565;&#x7684;&#x4E00;&#x79CD;&#x7B97;&#x6CD5;&#xFF0C;Policy Gradient&#x3002;&#x5728;&#x4ECB;&#x7ECD;&#x8BE5;&#x7B97;&#x6CD5;&#x4E4B;&#x524D;&#xFF0C;&#x6211;&#x4EEC;&#x5148;&#x8981;&#x660E;&#x786E;&#x4E00;&#x4E0B;&#x8FD9;&#x4E2A;&#x96C5;&#x8FBE;&#x5229;&#x4E52;&#x4E53;&#x7403;&#x6E38;&#x620F;&#x4E2D;&#x7684;<strong>&#x73AF;&#x5883;&#x72B6;&#x6001;</strong>&#x662F;&#x6E38;&#x620F;&#x753B;&#x9762;&#xFF0C;<strong>Agent</strong>&#x662F;&#x6211;&#x4EEC;&#x64CD;&#x4F5C;&#x7684;&#x6321;&#x677F;&#xFF0C;<strong>&#x5956;&#x52B1;</strong>&#x662F;&#x5206;&#x6570;&#xFF0C;<strong>&#x52A8;&#x4F5C;</strong>&#x662F;&#x4E0A;&#x6216;&#x8005;&#x4E0B;&#x3002;</p>
<p><img src="../img/3.jpg" alt=""></p>
</section>
</div>
<div class="search-results">
<div class="has-results">
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
<ul class="search-results-list"></ul>
</div>
<div class="no-results">
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
</div>
</div>
</div>
</div>
</div>
</div>
<a href="Policy Gradient.html" class="navigation navigation-next navigation-unique" aria-label="Next page: Policy Gradient原理">
<i class="fa fa-angle-right"></i>
</a>
</div>
<script>
var gitbook = gitbook || [];
gitbook.push(function() {
5 years ago
gitbook.page.hasChanged({"page":{"title":"什么是强化学习","level":"1.6.2.1","depth":3,"next":{"title":"Policy Gradient原理","level":"1.6.2.2","depth":3,"path":"pingpong/Policy Gradient.md","ref":"./pingpong/Policy Gradient.md","articles":[]},"previous":{"title":"使用强化学习玩乒乓球游戏","level":"1.6.2","depth":2,"ref":"","articles":[{"title":"什么是强化学习","level":"1.6.2.1","depth":3,"path":"pingpong/what is reinforce learning.md","ref":"./pingpong/what is reinforce learning.md","articles":[]},{"title":"Policy Gradient原理","level":"1.6.2.2","depth":3,"path":"pingpong/Policy Gradient.md","ref":"./pingpong/Policy Gradient.md","articles":[]},{"title":"使用Policy Gradient玩乒乓球游戏","level":"1.6.2.3","depth":3,"path":"pingpong/coding.md","ref":"./pingpong/coding.md","articles":[]}]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["katex"],"pluginsConfig":{"katex":{},"highlight":{},"search":{},"lunr":{"maxIndexSize":1000000,"ignoreSpecialCharacters":false},"sharing":{"facebook":true,"twitter":true,"google":false,"weibo":false,"instapaper":false,"vk":false,"all":["facebook","google","twitter","weibo","instapaper"]},"fontsettings":{"theme":"white","family":"sans","size":2},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"pingpong/what is reinforce learning.md","mtime":"2019-07-05T01:27:11.061Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-06T07:31:21.537Z"},"basePath":"..","book":{"language":""}});
5 years ago
});
</script>
</div>
<script src="../gitbook/gitbook.js"></script>
<script src="../gitbook/theme.js"></script>
<script src="../gitbook/gitbook-plugin-search/search-engine.js"></script>
<script src="../gitbook/gitbook-plugin-search/search.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/lunr.min.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/search-lunr.js"></script>
<script src="../gitbook/gitbook-plugin-sharing/buttons.js"></script>
<script src="../gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
</body>
</html>