master
aolingwen 5 years ago
parent cb794857b6
commit 07f0574513

@ -17,7 +17,7 @@ AGNES 算法是一种自底向上聚合的层次聚类算法,它先会将数
最小距离描述的是两个簇之间距离最近的两个样本所对应的距离。例如下图中圆圈和菱形分别代表两个簇,两个簇之间离得最近的样本的**欧式距离**为 3.3 ,则最小距离为 3.3。
![](./img/59.jpg)
<div align=center><img src="../img/59.jpg"/></div>
假设给定簇$$C_i$$与$$C_j$$,则最小距离为:$$d_{min}=min_{x\in i,z\in j}dist(x,z)$$
@ -25,7 +25,7 @@ AGNES 算法是一种自底向上聚合的层次聚类算法,它先会将数
最大距离描述的是两个簇之间距离最远的两个样本所对应的距离。例如下图中圆圈和菱形分别代表两个簇,两个簇之间离得最远的样本的**欧式距离**为 23.3 ,则最大距离为 23.3 。
![](/img/60.jpg)
<div align=center><img src="../img/60.jpg"/></div>
假设给定簇$$C_i$$与$$C_j$$,则最大距离为:$$d_{min}=max_{x\in i,z\in j}dist(x,z)$$
@ -33,7 +33,7 @@ AGNES 算法是一种自底向上聚合的层次聚类算法,它先会将数
平均距离描述的是两个簇之间样本的平均距离。例如下图中圆圈和菱形分别代表两个簇,计算两个簇之间的所有样本之间的欧式距离并求其平均值。
![](./img/61.jpg)
<div align=center><img src="../img/61.jpg"/></div>
假设给定簇$$C_i$$与$$C_j$$$$|C_i|,|C_j|$$分别表示簇 i 与簇 j 中样本的数量,则平均距离为:$$d_{min}=\frac{1}{|C_i||C_j|}\sum_{x\in i}\sum_{z\in j}dist(x, z)$$
@ -63,7 +63,7 @@ AGNES 算法是一种自底向上聚合的层次聚类算法,它先会将数
如果将整个聚类过程中的合并,与合并的次序可视化出来,就能看出为什么说 AGNES 是自底向上的层次聚类算法了。
![](./img/62.jpg)
<div align=center><img src="../img/62.jpg"/></div>
所以 AGNES 伪代码如下:

@ -0,0 +1,4 @@
本资料主要介绍一些机器学习的入门知识,例如什么是机器学习,常见的机器学习算法原理,常用的模型性能评估指标,怎样快速入门 sklearn 等内容。
若想更加全面,系统的学习机器学习相关知识,可以在本书的最后扫码体验整套机器学习实训课程。该课程是与南京大学合作共建的实训课程,总共有 65 个实践任务,涵盖了《机器学习》中的前十章内容,并已在南京大学投入使用。

@ -15,4 +15,16 @@
* [回归性能评估指标](regression_metrics.md)
* [聚类性能评估指标](cluster_metrics.md)
* [使用sklearn进行机器学习](sklearn.md)
* [综合实战案例]()
* [泰坦尼克生还预测]()
* [简介](./titanic/introduction.md)
* [探索性数据分析(EDA)](./titanic/EDA.md)
* [特征工程](./titanic/feature engerning.md)
* [构建模型进行预测](./titanic/fit and predict.md)
* [调参](./titanic/tuning.md)
* [使用强化学习玩乒乓球游戏]()
* [什么是强化学习](./pingpong/what is reinforce learning.md)
* [Policy Gradient原理](./pingpong/Policy Gradient.md)
* [使用Policy Gradient玩乒乓球游戏](./pingpong/coding.md)
* [实训推荐](recommand.md)

File diff suppressed because one or more lines are too long

@ -17,6 +17,10 @@
<link rel="stylesheet" href="gitbook/gitbook-plugin-katex/katex.min.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-highlight/website.css">
@ -296,6 +300,180 @@
</li>
<li class="chapter " data-level="1.6" >
<span>
综合实战案例
</span>
<ul class="articles">
<li class="chapter " data-level="1.6.1" >
<span>
泰坦尼克生还预测
</span>
<ul class="articles">
<li class="chapter " data-level="1.6.1.1" data-path="titanic/introduction.html">
<a href="titanic/introduction.html">
简介
</a>
</li>
<li class="chapter " data-level="1.6.1.2" data-path="titanic/EDA.html">
<a href="titanic/EDA.html">
探索性数据分析(EDA)
</a>
</li>
<li class="chapter " data-level="1.6.1.3" data-path="titanic/feature engerning.html">
<a href="titanic/feature engerning.html">
特征工程
</a>
</li>
<li class="chapter " data-level="1.6.1.4" data-path="titanic/fit and predict.html">
<a href="titanic/fit and predict.html">
构建模型进行预测
</a>
</li>
<li class="chapter " data-level="1.6.1.5" data-path="titanic/tuning.html">
<a href="titanic/tuning.html">
调参
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.6.2" >
<span>
使用强化学习玩乒乓球游戏
</span>
<ul class="articles">
<li class="chapter " data-level="1.6.2.1" data-path="pingpong/what is reinforce learning.html">
<a href="pingpong/what is reinforce learning.html">
什么是强化学习
</a>
</li>
<li class="chapter " data-level="1.6.2.2" data-path="pingpong/Policy Gradient.html">
<a href="pingpong/Policy Gradient.html">
Policy Gradient原理
</a>
</li>
<li class="chapter " data-level="1.6.2.3" data-path="pingpong/coding.html">
<a href="pingpong/coding.html">
使用Policy Gradient玩乒乓球游戏
</a>
</li>
</ul>
</li>
</ul>
</li>
<li class="chapter " data-level="1.7" data-path="recommand.html">
<a href="recommand.html">
实训推荐
</a>
</li>
@ -385,7 +563,7 @@
<script>
var gitbook = gitbook || [];
gitbook.push(function() {
gitbook.page.hasChanged({"page":{"title":"常见机器学习算法","level":"1.3","depth":1,"next":{"title":"近朱者赤近墨者黑-kNN","level":"1.3.1","depth":2,"path":"kNN.md","ref":"kNN.md","articles":[]},"previous":{"title":"机器学习概述","level":"1.2","depth":1,"path":"machine_learning.md","ref":"machine_learning.md","articles":[]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["mathjax"],"pluginsConfig":{"mathjax":{"forceSVG":false,"version":"2.6-latest"},"highlight":{},"search":{},"lunr":{"maxIndexSize":1000000,"ignoreSpecialCharacters":false},"sharing":{"facebook":true,"twitter":true,"google":false,"weibo":false,"instapaper":false,"vk":false,"all":["facebook","google","twitter","weibo","instapaper"]},"fontsettings":{"theme":"white","family":"sans","size":2},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"algorithm.md","mtime":"2019-07-04T06:59:04.131Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-05T01:10:51.626Z"},"basePath":".","book":{"language":""}});
gitbook.page.hasChanged({"page":{"title":"常见机器学习算法","level":"1.3","depth":1,"next":{"title":"近朱者赤近墨者黑-kNN","level":"1.3.1","depth":2,"path":"kNN.md","ref":"kNN.md","articles":[]},"previous":{"title":"机器学习概述","level":"1.2","depth":1,"path":"machine_learning.md","ref":"machine_learning.md","articles":[]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["katex"],"pluginsConfig":{"katex":{},"highlight":{},"search":{},"lunr":{"maxIndexSize":1000000,"ignoreSpecialCharacters":false},"sharing":{"facebook":true,"twitter":true,"google":false,"weibo":false,"instapaper":false,"vk":false,"all":["facebook","google","twitter","weibo","instapaper"]},"fontsettings":{"theme":"white","family":"sans","size":2},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"algorithm.md","mtime":"2019-07-04T06:59:04.131Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-06T07:31:21.537Z"},"basePath":".","book":{"language":""}});
});
</script>
</div>
@ -395,14 +573,6 @@
<script src="gitbook/theme.js"></script>
<script src="https://cdn.mathjax.org/mathjax/2.6-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script src="gitbook/gitbook-plugin-mathjax/plugin.js"></script>
<script src="gitbook/gitbook-plugin-search/search-engine.js"></script>

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save