|
|
|
@ -17,6 +17,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="gitbook/gitbook-plugin-katex/katex.min.css">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="gitbook/gitbook-plugin-highlight/website.css">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -296,6 +300,180 @@
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.6" >
|
|
|
|
|
|
|
|
|
|
<span>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
综合实战案例
|
|
|
|
|
|
|
|
|
|
</span>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.6.1" >
|
|
|
|
|
|
|
|
|
|
<span>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
泰坦尼克生还预测
|
|
|
|
|
|
|
|
|
|
</span>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.6.1.1" data-path="titanic/introduction.html">
|
|
|
|
|
|
|
|
|
|
<a href="titanic/introduction.html">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
简介
|
|
|
|
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.6.1.2" data-path="titanic/EDA.html">
|
|
|
|
|
|
|
|
|
|
<a href="titanic/EDA.html">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
探索性数据分析(EDA)
|
|
|
|
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.6.1.3" data-path="titanic/feature engerning.html">
|
|
|
|
|
|
|
|
|
|
<a href="titanic/feature engerning.html">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
特征工程
|
|
|
|
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.6.1.4" data-path="titanic/fit and predict.html">
|
|
|
|
|
|
|
|
|
|
<a href="titanic/fit and predict.html">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
构建模型进行预测
|
|
|
|
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.6.1.5" data-path="titanic/tuning.html">
|
|
|
|
|
|
|
|
|
|
<a href="titanic/tuning.html">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
调参
|
|
|
|
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.6.2" >
|
|
|
|
|
|
|
|
|
|
<span>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
使用强化学习玩乒乓球游戏
|
|
|
|
|
|
|
|
|
|
</span>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.6.2.1" data-path="pingpong/what is reinforce learning.html">
|
|
|
|
|
|
|
|
|
|
<a href="pingpong/what is reinforce learning.html">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
什么是强化学习
|
|
|
|
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.6.2.2" data-path="pingpong/Policy Gradient.html">
|
|
|
|
|
|
|
|
|
|
<a href="pingpong/Policy Gradient.html">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Policy Gradient原理
|
|
|
|
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.6.2.3" data-path="pingpong/coding.html">
|
|
|
|
|
|
|
|
|
|
<a href="pingpong/coding.html">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
使用Policy Gradient玩乒乓球游戏
|
|
|
|
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.7" data-path="recommand.html">
|
|
|
|
|
|
|
|
|
|
<a href="recommand.html">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
实训推荐
|
|
|
|
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -385,7 +563,7 @@
|
|
|
|
|
<script>
|
|
|
|
|
var gitbook = gitbook || [];
|
|
|
|
|
gitbook.push(function() {
|
|
|
|
|
gitbook.page.hasChanged({"page":{"title":"常见机器学习算法","level":"1.3","depth":1,"next":{"title":"近朱者赤近墨者黑-kNN","level":"1.3.1","depth":2,"path":"kNN.md","ref":"kNN.md","articles":[]},"previous":{"title":"机器学习概述","level":"1.2","depth":1,"path":"machine_learning.md","ref":"machine_learning.md","articles":[]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["mathjax"],"pluginsConfig":{"mathjax":{"forceSVG":false,"version":"2.6-latest"},"highlight":{},"search":{},"lunr":{"maxIndexSize":1000000,"ignoreSpecialCharacters":false},"sharing":{"facebook":true,"twitter":true,"google":false,"weibo":false,"instapaper":false,"vk":false,"all":["facebook","google","twitter","weibo","instapaper"]},"fontsettings":{"theme":"white","family":"sans","size":2},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"algorithm.md","mtime":"2019-07-04T06:59:04.131Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-05T01:10:51.626Z"},"basePath":".","book":{"language":""}});
|
|
|
|
|
gitbook.page.hasChanged({"page":{"title":"常见机器学习算法","level":"1.3","depth":1,"next":{"title":"近朱者赤近墨者黑-kNN","level":"1.3.1","depth":2,"path":"kNN.md","ref":"kNN.md","articles":[]},"previous":{"title":"机器学习概述","level":"1.2","depth":1,"path":"machine_learning.md","ref":"machine_learning.md","articles":[]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["katex"],"pluginsConfig":{"katex":{},"highlight":{},"search":{},"lunr":{"maxIndexSize":1000000,"ignoreSpecialCharacters":false},"sharing":{"facebook":true,"twitter":true,"google":false,"weibo":false,"instapaper":false,"vk":false,"all":["facebook","google","twitter","weibo","instapaper"]},"fontsettings":{"theme":"white","family":"sans","size":2},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"algorithm.md","mtime":"2019-07-04T06:59:04.131Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-06T07:31:21.537Z"},"basePath":".","book":{"language":""}});
|
|
|
|
|
});
|
|
|
|
|
</script>
|
|
|
|
|
</div>
|
|
|
|
@ -395,14 +573,6 @@
|
|
|
|
|
<script src="gitbook/theme.js"></script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script src="https://cdn.mathjax.org/mathjax/2.6-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script src="gitbook/gitbook-plugin-mathjax/plugin.js"></script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script src="gitbook/gitbook-plugin-search/search-engine.js"></script>
|
|
|
|
|
|
|
|
|
|
|