|
|
|
从$$sigmoid$$函数的图像可以看出当$$t$$趋近于$$-\infty$$时函数值趋近于$$0$$,当$$t$$趋近于$$+\infty$$时函数值趋近于$$1$$。可见$$sigmoid$$函数的值域是$$(0,1)$$,满足我们要将$$(-\infty,+\infty)$$的实数转换成$$(0,1)$$的概率值的需求。因此**逻辑回归**在预测时可以看成$$\hat p=1/(1+e^{-Wx+b})$$,如果$$\hat p>0.5$$时预测为一种类别,否则预测为另一种类别。
|
|
|
|
从$$sigmoid$$函数的图像可以看出当$$t$$趋近于$$-\infty$$时函数值趋近于$$0$$,当$$t$$趋近于$$+\infty$$时函数值趋近于$$1$$。可见$$sigmoid$$函数的值域是$$(0,1)$$,满足我们要将$$(-\infty,+\infty)$$的实数转换成$$(0,1)$$的概率值的需求。因此**逻辑回归**在预测时可以看成$$\hat p=1/(1+e^{-Wx+b})$$,如果$$\hat p>0.5$$时预测为一种类别,否则预测为另一种类别。
|