You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.
这些年来,大数据先是被神化,继而又被妖魔化,到了今天,其实谁也不知道别人所谓的大数据指的是什么。有时候大数据的定义里既有平台(硬件)又有分析技术。但为了说清楚大数据和人工智能的关系,我们还是回归大数据的本质:海量的、多维度、多形式的数据。
任何智能的发展,其实都需要一个学习的过程。而近期人工智能之所以能取得突飞猛进的进展,不能不说是因为这些年来大数据长足发展的结果。正是由于各类感应器和数据采集技术的发展,我们开始拥有以往难以想象的的海量数据,同时,也开始在某一领域拥有深度的、细致的数据。而这些,都是训练某一领域“智能”的前提。
如果我们把人工智能看成一个嗷嗷待哺拥有无限潜力的婴儿,某一领域专业的海量的深度的数据就是喂养这个天才的奶粉。奶粉的数量决定了婴儿是否能长大,而奶粉的质量则决定了婴儿后续的智力发育水平。
与以前的众多数据分析技术相比,人工智能技术立足于神经网络,同时发展出多层神经网络,从而可以进行深度机器学习。与以外传统的算法相比,这一算法并无多余的假设前提(比如线性建模需要假设数据之间的线性关系),而是完全利用输入的数据自行模拟和构建相应的模型结构。这一算法特点决定了它是更为灵活的、且可以根据不同的训练数据而拥有自优化的能力。
但这一显著的优点带来的便是显著增加的运算量。在计算机运算能力取得突破以前,这样的算法几乎没有实际应用的价值。大概十几年前,我们尝试用神经网络运算一组并不海量的数据,整整等待三天都不一定会有结果。但今天的情况却大大不同了。高速并行运算、海量数据、更优化的算法共同促成了人工智能发展的突破。所以大数据与人工智能的关系非常密切。
本系列书籍主要针对大数据与人工智能两个方向中使用最广的技术编写了四本书, 分别为: 《HBase入门指南》, 《xxx》, 《xxx》与《机器学习 原理与实践》。
由于编者水平有限, 加之时间仓促, 书中难免存在疏漏与不足之处, 恳请读者和专家提出您宝贵的意见和建议。educoder团队将竭尽所能, 不断提高书籍质量, 为广大读者提供更好的书籍。