This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.
# 回归模型性能评估指标
##MSE
MSE(Mean Squared Error)叫做均方误差,其实就是线性回归的损失函数。公式如下:
$$
\frac{1}{m}\sum_{i=1}^m(y^i-p^i)^2
$$
其中$$y^i$$表示第 i 个样本的真实标签,$$p^i$$表示模型对第 i 个样本的预测标签。线性回归的目的就是让损失函数最小。那么模型训练出来了,我们在测试集上用损失函数来评估模型就行了。